WIP FPC-III support
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / tid_rdma.c
blob92aa2a9b3b5ac219bca2d45707cd3eab7fe0fa9f
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3 * Copyright(c) 2018 - 2020 Intel Corporation.
5 */
7 #include "hfi.h"
8 #include "qp.h"
9 #include "rc.h"
10 #include "verbs.h"
11 #include "tid_rdma.h"
12 #include "exp_rcv.h"
13 #include "trace.h"
15 /**
16 * DOC: TID RDMA READ protocol
18 * This is an end-to-end protocol at the hfi1 level between two nodes that
19 * improves performance by avoiding data copy on the requester side. It
20 * converts a qualified RDMA READ request into a TID RDMA READ request on
21 * the requester side and thereafter handles the request and response
22 * differently. To be qualified, the RDMA READ request should meet the
23 * following:
24 * -- The total data length should be greater than 256K;
25 * -- The total data length should be a multiple of 4K page size;
26 * -- Each local scatter-gather entry should be 4K page aligned;
27 * -- Each local scatter-gather entry should be a multiple of 4K page size;
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
40 #define GENERATION_MASK 0xFFFFF
42 static u32 mask_generation(u32 a)
44 return a & GENERATION_MASK;
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
51 * J_KEY for kernel contexts when TID RDMA is used.
52 * See generate_jkey() in hfi.h for more information.
54 #define TID_RDMA_JKEY 32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ 6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
65 #define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE)
67 #define TID_RDMA_DESTQP_FLOW_SHIFT 11
68 #define TID_RDMA_DESTQP_FLOW_MASK 0x1f
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
92 * OPFN TID layout
94 * 63 47 31 15
95 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97 * N - the context Number
98 * K - the Kdeth_qp
99 * M - Max_len
100 * T - Timeout
101 * D - reserveD
102 * V - version
103 * U - Urg capable
104 * J - Jkey
105 * R - max_Read
106 * W - max_Write
107 * C - Capcode
110 static void tid_rdma_trigger_resume(struct work_struct *work);
111 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
112 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
113 gfp_t gfp);
114 static void hfi1_init_trdma_req(struct rvt_qp *qp,
115 struct tid_rdma_request *req);
116 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx);
117 static void hfi1_tid_timeout(struct timer_list *t);
118 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp);
119 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp);
120 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp);
121 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp);
122 static void hfi1_tid_retry_timeout(struct timer_list *t);
123 static int make_tid_rdma_ack(struct rvt_qp *qp,
124 struct ib_other_headers *ohdr,
125 struct hfi1_pkt_state *ps);
126 static void hfi1_do_tid_send(struct rvt_qp *qp);
127 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx);
128 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
129 struct ib_other_headers *ohdr,
130 struct rvt_qp *qp, u32 psn, int diff, bool fecn);
131 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
132 struct hfi1_qp_priv *priv,
133 struct hfi1_ctxtdata *rcd,
134 struct tid_rdma_flow *flow,
135 bool fecn);
137 static void validate_r_tid_ack(struct hfi1_qp_priv *priv)
139 if (priv->r_tid_ack == HFI1_QP_WQE_INVALID)
140 priv->r_tid_ack = priv->r_tid_tail;
143 static void tid_rdma_schedule_ack(struct rvt_qp *qp)
145 struct hfi1_qp_priv *priv = qp->priv;
147 priv->s_flags |= RVT_S_ACK_PENDING;
148 hfi1_schedule_tid_send(qp);
151 static void tid_rdma_trigger_ack(struct rvt_qp *qp)
153 validate_r_tid_ack(qp->priv);
154 tid_rdma_schedule_ack(qp);
157 static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
159 return
160 (((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
161 TID_OPFN_QP_CTXT_SHIFT) |
162 ((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
163 TID_OPFN_QP_KDETH_SHIFT) |
164 (((u64)((p->max_len >> PAGE_SHIFT) - 1) &
165 TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
166 (((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
167 TID_OPFN_TIMEOUT_SHIFT) |
168 (((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
169 (((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
170 (((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
171 TID_OPFN_MAX_READ_SHIFT) |
172 (((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
173 TID_OPFN_MAX_WRITE_SHIFT);
176 static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
178 p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
179 TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
180 p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
181 p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
182 TID_OPFN_MAX_WRITE_MASK;
183 p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
184 TID_OPFN_MAX_READ_MASK;
185 p->qp =
186 ((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
187 << 16) |
188 ((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
189 p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
190 p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
193 void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
195 struct hfi1_qp_priv *priv = qp->priv;
197 p->qp = (RVT_KDETH_QP_PREFIX << 16) | priv->rcd->ctxt;
198 p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
199 p->jkey = priv->rcd->jkey;
200 p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
201 p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
202 p->timeout = qp->timeout;
203 p->urg = is_urg_masked(priv->rcd);
206 bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
208 struct hfi1_qp_priv *priv = qp->priv;
210 *data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
211 return true;
214 bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
216 struct hfi1_qp_priv *priv = qp->priv;
217 struct tid_rdma_params *remote, *old;
218 bool ret = true;
220 old = rcu_dereference_protected(priv->tid_rdma.remote,
221 lockdep_is_held(&priv->opfn.lock));
222 data &= ~0xfULL;
224 * If data passed in is zero, return true so as not to continue the
225 * negotiation process
227 if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
228 goto null;
230 * If kzalloc fails, return false. This will result in:
231 * * at the requester a new OPFN request being generated to retry
232 * the negotiation
233 * * at the responder, 0 being returned to the requester so as to
234 * disable TID RDMA at both the requester and the responder
236 remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
237 if (!remote) {
238 ret = false;
239 goto null;
242 tid_rdma_opfn_decode(remote, data);
243 priv->tid_timer_timeout_jiffies =
244 usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
245 1000UL) << 3) * 7);
246 trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
247 trace_hfi1_opfn_param(qp, 1, remote);
248 rcu_assign_pointer(priv->tid_rdma.remote, remote);
250 * A TID RDMA READ request's segment size is not equal to
251 * remote->max_len only when the request's data length is smaller
252 * than remote->max_len. In that case, there will be only one segment.
253 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254 * during retry, it will lead to req->cur_seg = 0, which is exactly
255 * what is expected.
257 priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
258 priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
259 goto free;
260 null:
261 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
262 priv->timeout_shift = 0;
263 free:
264 if (old)
265 kfree_rcu(old, rcu_head);
266 return ret;
269 bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
271 bool ret;
273 ret = tid_rdma_conn_reply(qp, *data);
274 *data = 0;
276 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277 * TID RDMA could not be enabled. This will result in TID RDMA being
278 * disabled at the requester too.
280 if (ret)
281 (void)tid_rdma_conn_req(qp, data);
282 return ret;
285 void tid_rdma_conn_error(struct rvt_qp *qp)
287 struct hfi1_qp_priv *priv = qp->priv;
288 struct tid_rdma_params *old;
290 old = rcu_dereference_protected(priv->tid_rdma.remote,
291 lockdep_is_held(&priv->opfn.lock));
292 RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
293 if (old)
294 kfree_rcu(old, rcu_head);
297 /* This is called at context initialization time */
298 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
300 if (reinit)
301 return 0;
303 BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
304 BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
305 rcd->jkey = TID_RDMA_JKEY;
306 hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
307 return hfi1_alloc_ctxt_rcv_groups(rcd);
311 * qp_to_rcd - determine the receive context used by a qp
312 * @qp - the qp
314 * This routine returns the receive context associated
315 * with a a qp's qpn.
317 * Returns the context.
319 static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
320 struct rvt_qp *qp)
322 struct hfi1_ibdev *verbs_dev = container_of(rdi,
323 struct hfi1_ibdev,
324 rdi);
325 struct hfi1_devdata *dd = container_of(verbs_dev,
326 struct hfi1_devdata,
327 verbs_dev);
328 unsigned int ctxt;
330 if (qp->ibqp.qp_num == 0)
331 ctxt = 0;
332 else
333 ctxt = hfi1_get_qp_map(dd, qp->ibqp.qp_num >> dd->qos_shift);
334 return dd->rcd[ctxt];
337 int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
338 struct ib_qp_init_attr *init_attr)
340 struct hfi1_qp_priv *qpriv = qp->priv;
341 int i, ret;
343 qpriv->rcd = qp_to_rcd(rdi, qp);
345 spin_lock_init(&qpriv->opfn.lock);
346 INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
347 INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
348 qpriv->flow_state.psn = 0;
349 qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
350 qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
351 qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
352 qpriv->s_state = TID_OP(WRITE_RESP);
353 qpriv->s_tid_cur = HFI1_QP_WQE_INVALID;
354 qpriv->s_tid_head = HFI1_QP_WQE_INVALID;
355 qpriv->s_tid_tail = HFI1_QP_WQE_INVALID;
356 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
357 qpriv->r_tid_head = HFI1_QP_WQE_INVALID;
358 qpriv->r_tid_tail = HFI1_QP_WQE_INVALID;
359 qpriv->r_tid_ack = HFI1_QP_WQE_INVALID;
360 qpriv->r_tid_alloc = HFI1_QP_WQE_INVALID;
361 atomic_set(&qpriv->n_requests, 0);
362 atomic_set(&qpriv->n_tid_requests, 0);
363 timer_setup(&qpriv->s_tid_timer, hfi1_tid_timeout, 0);
364 timer_setup(&qpriv->s_tid_retry_timer, hfi1_tid_retry_timeout, 0);
365 INIT_LIST_HEAD(&qpriv->tid_wait);
367 if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
368 struct hfi1_devdata *dd = qpriv->rcd->dd;
370 qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
371 sizeof(*qpriv->pages),
372 GFP_KERNEL, dd->node);
373 if (!qpriv->pages)
374 return -ENOMEM;
375 for (i = 0; i < qp->s_size; i++) {
376 struct hfi1_swqe_priv *priv;
377 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
379 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
380 dd->node);
381 if (!priv)
382 return -ENOMEM;
384 hfi1_init_trdma_req(qp, &priv->tid_req);
385 priv->tid_req.e.swqe = wqe;
386 wqe->priv = priv;
388 for (i = 0; i < rvt_max_atomic(rdi); i++) {
389 struct hfi1_ack_priv *priv;
391 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
392 dd->node);
393 if (!priv)
394 return -ENOMEM;
396 hfi1_init_trdma_req(qp, &priv->tid_req);
397 priv->tid_req.e.ack = &qp->s_ack_queue[i];
399 ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
400 GFP_KERNEL);
401 if (ret) {
402 kfree(priv);
403 return ret;
405 qp->s_ack_queue[i].priv = priv;
409 return 0;
412 void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
414 struct hfi1_qp_priv *qpriv = qp->priv;
415 struct rvt_swqe *wqe;
416 u32 i;
418 if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
419 for (i = 0; i < qp->s_size; i++) {
420 wqe = rvt_get_swqe_ptr(qp, i);
421 kfree(wqe->priv);
422 wqe->priv = NULL;
424 for (i = 0; i < rvt_max_atomic(rdi); i++) {
425 struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
427 if (priv)
428 hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
429 kfree(priv);
430 qp->s_ack_queue[i].priv = NULL;
432 cancel_work_sync(&qpriv->opfn.opfn_work);
433 kfree(qpriv->pages);
434 qpriv->pages = NULL;
438 /* Flow and tid waiter functions */
440 * DOC: lock ordering
442 * There are two locks involved with the queuing
443 * routines: the qp s_lock and the exp_lock.
445 * Since the tid space allocation is called from
446 * the send engine, the qp s_lock is already held.
448 * The allocation routines will get the exp_lock.
450 * The first_qp() call is provided to allow the head of
451 * the rcd wait queue to be fetched under the exp_lock and
452 * followed by a drop of the exp_lock.
454 * Any qp in the wait list will have the qp reference count held
455 * to hold the qp in memory.
459 * return head of rcd wait list
461 * Must hold the exp_lock.
463 * Get a reference to the QP to hold the QP in memory.
465 * The caller must release the reference when the local
466 * is no longer being used.
468 static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
469 struct tid_queue *queue)
470 __must_hold(&rcd->exp_lock)
472 struct hfi1_qp_priv *priv;
474 lockdep_assert_held(&rcd->exp_lock);
475 priv = list_first_entry_or_null(&queue->queue_head,
476 struct hfi1_qp_priv,
477 tid_wait);
478 if (!priv)
479 return NULL;
480 rvt_get_qp(priv->owner);
481 return priv->owner;
485 * kernel_tid_waiters - determine rcd wait
486 * @rcd: the receive context
487 * @qp: the head of the qp being processed
489 * This routine will return false IFF
490 * the list is NULL or the head of the
491 * list is the indicated qp.
493 * Must hold the qp s_lock and the exp_lock.
495 * Return:
496 * false if either of the conditions below are satisfied:
497 * 1. The list is empty or
498 * 2. The indicated qp is at the head of the list and the
499 * HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
500 * true is returned otherwise.
502 static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
503 struct tid_queue *queue, struct rvt_qp *qp)
504 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
506 struct rvt_qp *fqp;
507 bool ret = true;
509 lockdep_assert_held(&qp->s_lock);
510 lockdep_assert_held(&rcd->exp_lock);
511 fqp = first_qp(rcd, queue);
512 if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
513 ret = false;
514 rvt_put_qp(fqp);
515 return ret;
519 * dequeue_tid_waiter - dequeue the qp from the list
520 * @qp - the qp to remove the wait list
522 * This routine removes the indicated qp from the
523 * wait list if it is there.
525 * This should be done after the hardware flow and
526 * tid array resources have been allocated.
528 * Must hold the qp s_lock and the rcd exp_lock.
530 * It assumes the s_lock to protect the s_flags
531 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
533 static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
534 struct tid_queue *queue, struct rvt_qp *qp)
535 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
537 struct hfi1_qp_priv *priv = qp->priv;
539 lockdep_assert_held(&qp->s_lock);
540 lockdep_assert_held(&rcd->exp_lock);
541 if (list_empty(&priv->tid_wait))
542 return;
543 list_del_init(&priv->tid_wait);
544 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
545 queue->dequeue++;
546 rvt_put_qp(qp);
550 * queue_qp_for_tid_wait - suspend QP on tid space
551 * @rcd: the receive context
552 * @qp: the qp
554 * The qp is inserted at the tail of the rcd
555 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
557 * Must hold the qp s_lock and the exp_lock.
559 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
560 struct tid_queue *queue, struct rvt_qp *qp)
561 __must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
563 struct hfi1_qp_priv *priv = qp->priv;
565 lockdep_assert_held(&qp->s_lock);
566 lockdep_assert_held(&rcd->exp_lock);
567 if (list_empty(&priv->tid_wait)) {
568 qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
569 list_add_tail(&priv->tid_wait, &queue->queue_head);
570 priv->tid_enqueue = ++queue->enqueue;
571 rcd->dd->verbs_dev.n_tidwait++;
572 trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
573 rvt_get_qp(qp);
578 * __trigger_tid_waiter - trigger tid waiter
579 * @qp: the qp
581 * This is a private entrance to schedule the qp
582 * assuming the caller is holding the qp->s_lock.
584 static void __trigger_tid_waiter(struct rvt_qp *qp)
585 __must_hold(&qp->s_lock)
587 lockdep_assert_held(&qp->s_lock);
588 if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
589 return;
590 trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
591 hfi1_schedule_send(qp);
595 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
596 * @qp - the qp
598 * trigger a schedule or a waiting qp in a deadlock
599 * safe manner. The qp reference is held prior
600 * to this call via first_qp().
602 * If the qp trigger was already scheduled (!rval)
603 * the the reference is dropped, otherwise the resume
604 * or the destroy cancel will dispatch the reference.
606 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
608 struct hfi1_qp_priv *priv;
609 struct hfi1_ibport *ibp;
610 struct hfi1_pportdata *ppd;
611 struct hfi1_devdata *dd;
612 bool rval;
614 if (!qp)
615 return;
617 priv = qp->priv;
618 ibp = to_iport(qp->ibqp.device, qp->port_num);
619 ppd = ppd_from_ibp(ibp);
620 dd = dd_from_ibdev(qp->ibqp.device);
622 rval = queue_work_on(priv->s_sde ?
623 priv->s_sde->cpu :
624 cpumask_first(cpumask_of_node(dd->node)),
625 ppd->hfi1_wq,
626 &priv->tid_rdma.trigger_work);
627 if (!rval)
628 rvt_put_qp(qp);
632 * tid_rdma_trigger_resume - field a trigger work request
633 * @work - the work item
635 * Complete the off qp trigger processing by directly
636 * calling the progress routine.
638 static void tid_rdma_trigger_resume(struct work_struct *work)
640 struct tid_rdma_qp_params *tr;
641 struct hfi1_qp_priv *priv;
642 struct rvt_qp *qp;
644 tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
645 priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
646 qp = priv->owner;
647 spin_lock_irq(&qp->s_lock);
648 if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
649 spin_unlock_irq(&qp->s_lock);
650 hfi1_do_send(priv->owner, true);
651 } else {
652 spin_unlock_irq(&qp->s_lock);
654 rvt_put_qp(qp);
658 * tid_rdma_flush_wait - unwind any tid space wait
660 * This is called when resetting a qp to
661 * allow a destroy or reset to get rid
662 * of any tid space linkage and reference counts.
664 static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
665 __must_hold(&qp->s_lock)
667 struct hfi1_qp_priv *priv;
669 if (!qp)
670 return;
671 lockdep_assert_held(&qp->s_lock);
672 priv = qp->priv;
673 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
674 spin_lock(&priv->rcd->exp_lock);
675 if (!list_empty(&priv->tid_wait)) {
676 list_del_init(&priv->tid_wait);
677 qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
678 queue->dequeue++;
679 rvt_put_qp(qp);
681 spin_unlock(&priv->rcd->exp_lock);
684 void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
685 __must_hold(&qp->s_lock)
687 struct hfi1_qp_priv *priv = qp->priv;
689 _tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
690 _tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
693 /* Flow functions */
695 * kern_reserve_flow - allocate a hardware flow
696 * @rcd - the context to use for allocation
697 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
698 * signify "don't care".
700 * Use a bit mask based allocation to reserve a hardware
701 * flow for use in receiving KDETH data packets. If a preferred flow is
702 * specified the function will attempt to reserve that flow again, if
703 * available.
705 * The exp_lock must be held.
707 * Return:
708 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
709 * On failure: -EAGAIN
711 static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
712 __must_hold(&rcd->exp_lock)
714 int nr;
716 /* Attempt to reserve the preferred flow index */
717 if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
718 !test_and_set_bit(last, &rcd->flow_mask))
719 return last;
721 nr = ffz(rcd->flow_mask);
722 BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
723 (sizeof(rcd->flow_mask) * BITS_PER_BYTE));
724 if (nr > (RXE_NUM_TID_FLOWS - 1))
725 return -EAGAIN;
726 set_bit(nr, &rcd->flow_mask);
727 return nr;
730 static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
731 u32 flow_idx)
733 u64 reg;
735 reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
736 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
737 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
738 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
739 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
740 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
742 if (generation != KERN_GENERATION_RESERVED)
743 reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
745 write_uctxt_csr(rcd->dd, rcd->ctxt,
746 RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
749 static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
750 __must_hold(&rcd->exp_lock)
752 u32 generation = rcd->flows[flow_idx].generation;
754 kern_set_hw_flow(rcd, generation, flow_idx);
755 return generation;
758 static u32 kern_flow_generation_next(u32 gen)
760 u32 generation = mask_generation(gen + 1);
762 if (generation == KERN_GENERATION_RESERVED)
763 generation = mask_generation(generation + 1);
764 return generation;
767 static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
768 __must_hold(&rcd->exp_lock)
770 rcd->flows[flow_idx].generation =
771 kern_flow_generation_next(rcd->flows[flow_idx].generation);
772 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
775 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
777 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
778 struct tid_flow_state *fs = &qpriv->flow_state;
779 struct rvt_qp *fqp;
780 unsigned long flags;
781 int ret = 0;
783 /* The QP already has an allocated flow */
784 if (fs->index != RXE_NUM_TID_FLOWS)
785 return ret;
787 spin_lock_irqsave(&rcd->exp_lock, flags);
788 if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
789 goto queue;
791 ret = kern_reserve_flow(rcd, fs->last_index);
792 if (ret < 0)
793 goto queue;
794 fs->index = ret;
795 fs->last_index = fs->index;
797 /* Generation received in a RESYNC overrides default flow generation */
798 if (fs->generation != KERN_GENERATION_RESERVED)
799 rcd->flows[fs->index].generation = fs->generation;
800 fs->generation = kern_setup_hw_flow(rcd, fs->index);
801 fs->psn = 0;
802 dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
803 /* get head before dropping lock */
804 fqp = first_qp(rcd, &rcd->flow_queue);
805 spin_unlock_irqrestore(&rcd->exp_lock, flags);
807 tid_rdma_schedule_tid_wakeup(fqp);
808 return 0;
809 queue:
810 queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
811 spin_unlock_irqrestore(&rcd->exp_lock, flags);
812 return -EAGAIN;
815 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
817 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
818 struct tid_flow_state *fs = &qpriv->flow_state;
819 struct rvt_qp *fqp;
820 unsigned long flags;
822 if (fs->index >= RXE_NUM_TID_FLOWS)
823 return;
824 spin_lock_irqsave(&rcd->exp_lock, flags);
825 kern_clear_hw_flow(rcd, fs->index);
826 clear_bit(fs->index, &rcd->flow_mask);
827 fs->index = RXE_NUM_TID_FLOWS;
828 fs->psn = 0;
829 fs->generation = KERN_GENERATION_RESERVED;
831 /* get head before dropping lock */
832 fqp = first_qp(rcd, &rcd->flow_queue);
833 spin_unlock_irqrestore(&rcd->exp_lock, flags);
835 if (fqp == qp) {
836 __trigger_tid_waiter(fqp);
837 rvt_put_qp(fqp);
838 } else {
839 tid_rdma_schedule_tid_wakeup(fqp);
843 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
845 int i;
847 for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
848 rcd->flows[i].generation = mask_generation(prandom_u32());
849 kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
853 /* TID allocation functions */
854 static u8 trdma_pset_order(struct tid_rdma_pageset *s)
856 u8 count = s->count;
858 return ilog2(count) + 1;
862 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
863 * @npages - number of pages
864 * @pages - pointer to an array of page structs
865 * @list - page set array to return
867 * This routine returns the number of groups associated with
868 * the current sge information. This implementation is based
869 * on the expected receive find_phys_blocks() adjusted to
870 * use the MR information vs. the pfn.
872 * Return:
873 * the number of RcvArray entries
875 static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
876 struct page **pages,
877 u32 npages,
878 struct tid_rdma_pageset *list)
880 u32 pagecount, pageidx, setcount = 0, i;
881 void *vaddr, *this_vaddr;
883 if (!npages)
884 return 0;
887 * Look for sets of physically contiguous pages in the user buffer.
888 * This will allow us to optimize Expected RcvArray entry usage by
889 * using the bigger supported sizes.
891 vaddr = page_address(pages[0]);
892 trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
893 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
894 this_vaddr = i < npages ? page_address(pages[i]) : NULL;
895 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
896 this_vaddr);
898 * If the vaddr's are not sequential, pages are not physically
899 * contiguous.
901 if (this_vaddr != (vaddr + PAGE_SIZE)) {
903 * At this point we have to loop over the set of
904 * physically contiguous pages and break them down it
905 * sizes supported by the HW.
906 * There are two main constraints:
907 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
908 * If the total set size is bigger than that
909 * program only a MAX_EXPECTED_BUFFER chunk.
910 * 2. The buffer size has to be a power of two. If
911 * it is not, round down to the closes power of
912 * 2 and program that size.
914 while (pagecount) {
915 int maxpages = pagecount;
916 u32 bufsize = pagecount * PAGE_SIZE;
918 if (bufsize > MAX_EXPECTED_BUFFER)
919 maxpages =
920 MAX_EXPECTED_BUFFER >>
921 PAGE_SHIFT;
922 else if (!is_power_of_2(bufsize))
923 maxpages =
924 rounddown_pow_of_two(bufsize) >>
925 PAGE_SHIFT;
927 list[setcount].idx = pageidx;
928 list[setcount].count = maxpages;
929 trace_hfi1_tid_pageset(flow->req->qp, setcount,
930 list[setcount].idx,
931 list[setcount].count);
932 pagecount -= maxpages;
933 pageidx += maxpages;
934 setcount++;
936 pageidx = i;
937 pagecount = 1;
938 vaddr = this_vaddr;
939 } else {
940 vaddr += PAGE_SIZE;
941 pagecount++;
944 /* insure we always return an even number of sets */
945 if (setcount & 1)
946 list[setcount++].count = 0;
947 return setcount;
951 * tid_flush_pages - dump out pages into pagesets
952 * @list - list of pagesets
953 * @idx - pointer to current page index
954 * @pages - number of pages to dump
955 * @sets - current number of pagesset
957 * This routine flushes out accumuated pages.
959 * To insure an even number of sets the
960 * code may add a filler.
962 * This can happen with when pages is not
963 * a power of 2 or pages is a power of 2
964 * less than the maximum pages.
966 * Return:
967 * The new number of sets
970 static u32 tid_flush_pages(struct tid_rdma_pageset *list,
971 u32 *idx, u32 pages, u32 sets)
973 while (pages) {
974 u32 maxpages = pages;
976 if (maxpages > MAX_EXPECTED_PAGES)
977 maxpages = MAX_EXPECTED_PAGES;
978 else if (!is_power_of_2(maxpages))
979 maxpages = rounddown_pow_of_two(maxpages);
980 list[sets].idx = *idx;
981 list[sets++].count = maxpages;
982 *idx += maxpages;
983 pages -= maxpages;
985 /* might need a filler */
986 if (sets & 1)
987 list[sets++].count = 0;
988 return sets;
992 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
993 * @pages - pointer to an array of page structs
994 * @npages - number of pages
995 * @list - page set array to return
997 * This routine parses an array of pages to compute pagesets
998 * in an 8k compatible way.
1000 * pages are tested two at a time, i, i + 1 for contiguous
1001 * pages and i - 1 and i contiguous pages.
1003 * If any condition is false, any accumlated pages are flushed and
1004 * v0,v1 are emitted as separate PAGE_SIZE pagesets
1006 * Otherwise, the current 8k is totaled for a future flush.
1008 * Return:
1009 * The number of pagesets
1010 * list set with the returned number of pagesets
1013 static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
1014 struct page **pages,
1015 u32 npages,
1016 struct tid_rdma_pageset *list)
1018 u32 idx, sets = 0, i;
1019 u32 pagecnt = 0;
1020 void *v0, *v1, *vm1;
1022 if (!npages)
1023 return 0;
1024 for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
1025 /* get a new v0 */
1026 v0 = page_address(pages[i]);
1027 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
1028 v1 = i + 1 < npages ?
1029 page_address(pages[i + 1]) : NULL;
1030 trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
1031 /* compare i, i + 1 vaddr */
1032 if (v1 != (v0 + PAGE_SIZE)) {
1033 /* flush out pages */
1034 sets = tid_flush_pages(list, &idx, pagecnt, sets);
1035 /* output v0,v1 as two pagesets */
1036 list[sets].idx = idx++;
1037 list[sets++].count = 1;
1038 if (v1) {
1039 list[sets].count = 1;
1040 list[sets++].idx = idx++;
1041 } else {
1042 list[sets++].count = 0;
1044 vm1 = NULL;
1045 pagecnt = 0;
1046 continue;
1048 /* i,i+1 consecutive, look at i-1,i */
1049 if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
1050 /* flush out pages */
1051 sets = tid_flush_pages(list, &idx, pagecnt, sets);
1052 pagecnt = 0;
1054 /* pages will always be a multiple of 8k */
1055 pagecnt += 2;
1056 /* save i-1 */
1057 vm1 = v1;
1058 /* move to next pair */
1060 /* dump residual pages at end */
1061 sets = tid_flush_pages(list, &idx, npages - idx, sets);
1062 /* by design cannot be odd sets */
1063 WARN_ON(sets & 1);
1064 return sets;
1068 * Find pages for one segment of a sge array represented by @ss. The function
1069 * does not check the sge, the sge must have been checked for alignment with a
1070 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1071 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1072 * copy maintained in @ss->sge, the original sge is not modified.
1074 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1075 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1076 * references to the MR. This difference requires that we keep track of progress
1077 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1078 * structure.
1080 static u32 kern_find_pages(struct tid_rdma_flow *flow,
1081 struct page **pages,
1082 struct rvt_sge_state *ss, bool *last)
1084 struct tid_rdma_request *req = flow->req;
1085 struct rvt_sge *sge = &ss->sge;
1086 u32 length = flow->req->seg_len;
1087 u32 len = PAGE_SIZE;
1088 u32 i = 0;
1090 while (length && req->isge < ss->num_sge) {
1091 pages[i++] = virt_to_page(sge->vaddr);
1093 sge->vaddr += len;
1094 sge->length -= len;
1095 sge->sge_length -= len;
1096 if (!sge->sge_length) {
1097 if (++req->isge < ss->num_sge)
1098 *sge = ss->sg_list[req->isge - 1];
1099 } else if (sge->length == 0 && sge->mr->lkey) {
1100 if (++sge->n >= RVT_SEGSZ) {
1101 ++sge->m;
1102 sge->n = 0;
1104 sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
1105 sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
1107 length -= len;
1110 flow->length = flow->req->seg_len - length;
1111 *last = req->isge == ss->num_sge ? false : true;
1112 return i;
1115 static void dma_unmap_flow(struct tid_rdma_flow *flow)
1117 struct hfi1_devdata *dd;
1118 int i;
1119 struct tid_rdma_pageset *pset;
1121 dd = flow->req->rcd->dd;
1122 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1123 i++, pset++) {
1124 if (pset->count && pset->addr) {
1125 dma_unmap_page(&dd->pcidev->dev,
1126 pset->addr,
1127 PAGE_SIZE * pset->count,
1128 DMA_FROM_DEVICE);
1129 pset->mapped = 0;
1134 static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
1136 int i;
1137 struct hfi1_devdata *dd = flow->req->rcd->dd;
1138 struct tid_rdma_pageset *pset;
1140 for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
1141 i++, pset++) {
1142 if (pset->count) {
1143 pset->addr = dma_map_page(&dd->pcidev->dev,
1144 pages[pset->idx],
1146 PAGE_SIZE * pset->count,
1147 DMA_FROM_DEVICE);
1149 if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
1150 dma_unmap_flow(flow);
1151 return -ENOMEM;
1153 pset->mapped = 1;
1156 return 0;
1159 static inline bool dma_mapped(struct tid_rdma_flow *flow)
1161 return !!flow->pagesets[0].mapped;
1165 * Get pages pointers and identify contiguous physical memory chunks for a
1166 * segment. All segments are of length flow->req->seg_len.
1168 static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
1169 struct page **pages,
1170 struct rvt_sge_state *ss, bool *last)
1172 u8 npages;
1174 /* Reuse previously computed pagesets, if any */
1175 if (flow->npagesets) {
1176 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
1177 flow);
1178 if (!dma_mapped(flow))
1179 return dma_map_flow(flow, pages);
1180 return 0;
1183 npages = kern_find_pages(flow, pages, ss, last);
1185 if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
1186 flow->npagesets =
1187 tid_rdma_find_phys_blocks_4k(flow, pages, npages,
1188 flow->pagesets);
1189 else
1190 flow->npagesets =
1191 tid_rdma_find_phys_blocks_8k(flow, pages, npages,
1192 flow->pagesets);
1194 return dma_map_flow(flow, pages);
1197 static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
1198 struct hfi1_ctxtdata *rcd, char *s,
1199 struct tid_group *grp, u8 cnt)
1201 struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
1203 WARN_ON_ONCE(flow->tnode_cnt >=
1204 (TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
1205 if (WARN_ON_ONCE(cnt & 1))
1206 dd_dev_err(rcd->dd,
1207 "unexpected odd allocation cnt %u map 0x%x used %u",
1208 cnt, grp->map, grp->used);
1210 node->grp = grp;
1211 node->map = grp->map;
1212 node->cnt = cnt;
1213 trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
1214 grp->base, grp->map, grp->used, cnt);
1218 * Try to allocate pageset_count TID's from TID groups for a context
1220 * This function allocates TID's without moving groups between lists or
1221 * modifying grp->map. This is done as follows, being cogizant of the lists
1222 * between which the TID groups will move:
1223 * 1. First allocate complete groups of 8 TID's since this is more efficient,
1224 * these groups will move from group->full without affecting used
1225 * 2. If more TID's are needed allocate from used (will move from used->full or
1226 * stay in used)
1227 * 3. If we still don't have the required number of TID's go back and look again
1228 * at a complete group (will move from group->used)
1230 static int kern_alloc_tids(struct tid_rdma_flow *flow)
1232 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1233 struct hfi1_devdata *dd = rcd->dd;
1234 u32 ngroups, pageidx = 0;
1235 struct tid_group *group = NULL, *used;
1236 u8 use;
1238 flow->tnode_cnt = 0;
1239 ngroups = flow->npagesets / dd->rcv_entries.group_size;
1240 if (!ngroups)
1241 goto used_list;
1243 /* First look at complete groups */
1244 list_for_each_entry(group, &rcd->tid_group_list.list, list) {
1245 kern_add_tid_node(flow, rcd, "complete groups", group,
1246 group->size);
1248 pageidx += group->size;
1249 if (!--ngroups)
1250 break;
1253 if (pageidx >= flow->npagesets)
1254 goto ok;
1256 used_list:
1257 /* Now look at partially used groups */
1258 list_for_each_entry(used, &rcd->tid_used_list.list, list) {
1259 use = min_t(u32, flow->npagesets - pageidx,
1260 used->size - used->used);
1261 kern_add_tid_node(flow, rcd, "used groups", used, use);
1263 pageidx += use;
1264 if (pageidx >= flow->npagesets)
1265 goto ok;
1269 * Look again at a complete group, continuing from where we left.
1270 * However, if we are at the head, we have reached the end of the
1271 * complete groups list from the first loop above
1273 if (group && &group->list == &rcd->tid_group_list.list)
1274 goto bail_eagain;
1275 group = list_prepare_entry(group, &rcd->tid_group_list.list,
1276 list);
1277 if (list_is_last(&group->list, &rcd->tid_group_list.list))
1278 goto bail_eagain;
1279 group = list_next_entry(group, list);
1280 use = min_t(u32, flow->npagesets - pageidx, group->size);
1281 kern_add_tid_node(flow, rcd, "complete continue", group, use);
1282 pageidx += use;
1283 if (pageidx >= flow->npagesets)
1284 goto ok;
1285 bail_eagain:
1286 trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
1287 (u64)flow->npagesets);
1288 return -EAGAIN;
1290 return 0;
1293 static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
1294 u32 *pset_idx)
1296 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1297 struct hfi1_devdata *dd = rcd->dd;
1298 struct kern_tid_node *node = &flow->tnode[grp_num];
1299 struct tid_group *grp = node->grp;
1300 struct tid_rdma_pageset *pset;
1301 u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
1302 u32 rcventry, npages = 0, pair = 0, tidctrl;
1303 u8 i, cnt = 0;
1305 for (i = 0; i < grp->size; i++) {
1306 rcventry = grp->base + i;
1308 if (node->map & BIT(i) || cnt >= node->cnt) {
1309 rcv_array_wc_fill(dd, rcventry);
1310 continue;
1312 pset = &flow->pagesets[(*pset_idx)++];
1313 if (pset->count) {
1314 hfi1_put_tid(dd, rcventry, PT_EXPECTED,
1315 pset->addr, trdma_pset_order(pset));
1316 } else {
1317 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1319 npages += pset->count;
1321 rcventry -= rcd->expected_base;
1322 tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
1324 * A single TID entry will be used to use a rcvarr pair (with
1325 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1326 * (b) the group map shows current and the next bits as free
1327 * indicating two consecutive rcvarry entries are available (c)
1328 * we actually need 2 more entries
1330 pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
1331 node->cnt >= cnt + 2;
1332 if (!pair) {
1333 if (!pset->count)
1334 tidctrl = 0x1;
1335 flow->tid_entry[flow->tidcnt++] =
1336 EXP_TID_SET(IDX, rcventry >> 1) |
1337 EXP_TID_SET(CTRL, tidctrl) |
1338 EXP_TID_SET(LEN, npages);
1339 trace_hfi1_tid_entry_alloc(/* entry */
1340 flow->req->qp, flow->tidcnt - 1,
1341 flow->tid_entry[flow->tidcnt - 1]);
1343 /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1344 flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
1345 npages = 0;
1348 if (grp->used == grp->size - 1)
1349 tid_group_move(grp, &rcd->tid_used_list,
1350 &rcd->tid_full_list);
1351 else if (!grp->used)
1352 tid_group_move(grp, &rcd->tid_group_list,
1353 &rcd->tid_used_list);
1355 grp->used++;
1356 grp->map |= BIT(i);
1357 cnt++;
1361 static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
1363 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1364 struct hfi1_devdata *dd = rcd->dd;
1365 struct kern_tid_node *node = &flow->tnode[grp_num];
1366 struct tid_group *grp = node->grp;
1367 u32 rcventry;
1368 u8 i, cnt = 0;
1370 for (i = 0; i < grp->size; i++) {
1371 rcventry = grp->base + i;
1373 if (node->map & BIT(i) || cnt >= node->cnt) {
1374 rcv_array_wc_fill(dd, rcventry);
1375 continue;
1378 hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
1380 grp->used--;
1381 grp->map &= ~BIT(i);
1382 cnt++;
1384 if (grp->used == grp->size - 1)
1385 tid_group_move(grp, &rcd->tid_full_list,
1386 &rcd->tid_used_list);
1387 else if (!grp->used)
1388 tid_group_move(grp, &rcd->tid_used_list,
1389 &rcd->tid_group_list);
1391 if (WARN_ON_ONCE(cnt & 1)) {
1392 struct hfi1_ctxtdata *rcd = flow->req->rcd;
1393 struct hfi1_devdata *dd = rcd->dd;
1395 dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
1396 cnt, grp->map, grp->used);
1400 static void kern_program_rcvarray(struct tid_rdma_flow *flow)
1402 u32 pset_idx = 0;
1403 int i;
1405 flow->npkts = 0;
1406 flow->tidcnt = 0;
1407 for (i = 0; i < flow->tnode_cnt; i++)
1408 kern_program_rcv_group(flow, i, &pset_idx);
1409 trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
1413 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1414 * TID RDMA request
1416 * @req: TID RDMA request for which the segment/flow is being set up
1417 * @ss: sge state, maintains state across successive segments of a sge
1418 * @last: set to true after the last sge segment has been processed
1420 * This function
1421 * (1) finds a free flow entry in the flow circular buffer
1422 * (2) finds pages and continuous physical chunks constituing one segment
1423 * of an sge
1424 * (3) allocates TID group entries for those chunks
1425 * (4) programs rcvarray entries in the hardware corresponding to those
1426 * TID's
1427 * (5) computes a tidarray with formatted TID entries which can be sent
1428 * to the sender
1429 * (6) Reserves and programs HW flows.
1430 * (7) It also manages queing the QP when TID/flow resources are not
1431 * available.
1433 * @req points to struct tid_rdma_request of which the segments are a part. The
1434 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1435 * req->flow_idx is the index of the flow which has been prepared in this
1436 * invocation of function call. With flow = &req->flows[req->flow_idx],
1437 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1438 * sends and flow->npkts contains number of packets required to send the
1439 * segment.
1441 * hfi1_check_sge_align should be called prior to calling this function and if
1442 * it signals error TID RDMA cannot be used for this sge and this function
1443 * should not be called.
1445 * For the queuing, caller must hold the flow->req->qp s_lock from the send
1446 * engine and the function will procure the exp_lock.
1448 * Return:
1449 * The function returns -EAGAIN if sufficient number of TID/flow resources to
1450 * map the segment could not be allocated. In this case the function should be
1451 * called again with previous arguments to retry the TID allocation. There are
1452 * no other error returns. The function returns 0 on success.
1454 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
1455 struct rvt_sge_state *ss, bool *last)
1456 __must_hold(&req->qp->s_lock)
1458 struct tid_rdma_flow *flow = &req->flows[req->setup_head];
1459 struct hfi1_ctxtdata *rcd = req->rcd;
1460 struct hfi1_qp_priv *qpriv = req->qp->priv;
1461 unsigned long flags;
1462 struct rvt_qp *fqp;
1463 u16 clear_tail = req->clear_tail;
1465 lockdep_assert_held(&req->qp->s_lock);
1467 * We return error if either (a) we don't have space in the flow
1468 * circular buffer, or (b) we already have max entries in the buffer.
1469 * Max entries depend on the type of request we are processing and the
1470 * negotiated TID RDMA parameters.
1472 if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
1473 CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
1474 req->n_flows)
1475 return -EINVAL;
1478 * Get pages, identify contiguous physical memory chunks for the segment
1479 * If we can not determine a DMA address mapping we will treat it just
1480 * like if we ran out of space above.
1482 if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
1483 hfi1_wait_kmem(flow->req->qp);
1484 return -ENOMEM;
1487 spin_lock_irqsave(&rcd->exp_lock, flags);
1488 if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
1489 goto queue;
1492 * At this point we know the number of pagesets and hence the number of
1493 * TID's to map the segment. Allocate the TID's from the TID groups. If
1494 * we cannot allocate the required number we exit and try again later
1496 if (kern_alloc_tids(flow))
1497 goto queue;
1499 * Finally program the TID entries with the pagesets, compute the
1500 * tidarray and enable the HW flow
1502 kern_program_rcvarray(flow);
1505 * Setup the flow state with relevant information.
1506 * This information is used for tracking the sequence of data packets
1507 * for the segment.
1508 * The flow is setup here as this is the most accurate time and place
1509 * to do so. Doing at a later time runs the risk of the flow data in
1510 * qpriv getting out of sync.
1512 memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
1513 flow->idx = qpriv->flow_state.index;
1514 flow->flow_state.generation = qpriv->flow_state.generation;
1515 flow->flow_state.spsn = qpriv->flow_state.psn;
1516 flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
1517 flow->flow_state.r_next_psn =
1518 full_flow_psn(flow, flow->flow_state.spsn);
1519 qpriv->flow_state.psn += flow->npkts;
1521 dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
1522 /* get head before dropping lock */
1523 fqp = first_qp(rcd, &rcd->rarr_queue);
1524 spin_unlock_irqrestore(&rcd->exp_lock, flags);
1525 tid_rdma_schedule_tid_wakeup(fqp);
1527 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1528 return 0;
1529 queue:
1530 queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
1531 spin_unlock_irqrestore(&rcd->exp_lock, flags);
1532 return -EAGAIN;
1535 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
1537 flow->npagesets = 0;
1541 * This function is called after one segment has been successfully sent to
1542 * release the flow and TID HW/SW resources for that segment. The segments for a
1543 * TID RDMA request are setup and cleared in FIFO order which is managed using a
1544 * circular buffer.
1546 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
1547 __must_hold(&req->qp->s_lock)
1549 struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
1550 struct hfi1_ctxtdata *rcd = req->rcd;
1551 unsigned long flags;
1552 int i;
1553 struct rvt_qp *fqp;
1555 lockdep_assert_held(&req->qp->s_lock);
1556 /* Exit if we have nothing in the flow circular buffer */
1557 if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
1558 return -EINVAL;
1560 spin_lock_irqsave(&rcd->exp_lock, flags);
1562 for (i = 0; i < flow->tnode_cnt; i++)
1563 kern_unprogram_rcv_group(flow, i);
1564 /* To prevent double unprogramming */
1565 flow->tnode_cnt = 0;
1566 /* get head before dropping lock */
1567 fqp = first_qp(rcd, &rcd->rarr_queue);
1568 spin_unlock_irqrestore(&rcd->exp_lock, flags);
1570 dma_unmap_flow(flow);
1572 hfi1_tid_rdma_reset_flow(flow);
1573 req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
1575 if (fqp == req->qp) {
1576 __trigger_tid_waiter(fqp);
1577 rvt_put_qp(fqp);
1578 } else {
1579 tid_rdma_schedule_tid_wakeup(fqp);
1582 return 0;
1586 * This function is called to release all the tid entries for
1587 * a request.
1589 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
1590 __must_hold(&req->qp->s_lock)
1592 /* Use memory barrier for proper ordering */
1593 while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
1594 if (hfi1_kern_exp_rcv_clear(req))
1595 break;
1600 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1601 * @req - the tid rdma request to be cleaned
1603 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
1605 kfree(req->flows);
1606 req->flows = NULL;
1610 * __trdma_clean_swqe - clean up for large sized QPs
1611 * @qp: the queue patch
1612 * @wqe: the send wqe
1614 void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
1616 struct hfi1_swqe_priv *p = wqe->priv;
1618 hfi1_kern_exp_rcv_free_flows(&p->tid_req);
1622 * This can be called at QP create time or in the data path.
1624 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
1625 gfp_t gfp)
1627 struct tid_rdma_flow *flows;
1628 int i;
1630 if (likely(req->flows))
1631 return 0;
1632 flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
1633 req->rcd->numa_id);
1634 if (!flows)
1635 return -ENOMEM;
1636 /* mini init */
1637 for (i = 0; i < MAX_FLOWS; i++) {
1638 flows[i].req = req;
1639 flows[i].npagesets = 0;
1640 flows[i].pagesets[0].mapped = 0;
1641 flows[i].resync_npkts = 0;
1643 req->flows = flows;
1644 return 0;
1647 static void hfi1_init_trdma_req(struct rvt_qp *qp,
1648 struct tid_rdma_request *req)
1650 struct hfi1_qp_priv *qpriv = qp->priv;
1653 * Initialize various TID RDMA request variables.
1654 * These variables are "static", which is why they
1655 * can be pre-initialized here before the WRs has
1656 * even been submitted.
1657 * However, non-NULL values for these variables do not
1658 * imply that this WQE has been enabled for TID RDMA.
1659 * Drivers should check the WQE's opcode to determine
1660 * if a request is a TID RDMA one or not.
1662 req->qp = qp;
1663 req->rcd = qpriv->rcd;
1666 u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
1667 void *context, int vl, int mode, u64 data)
1669 struct hfi1_devdata *dd = context;
1671 return dd->verbs_dev.n_tidwait;
1674 static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
1675 u32 psn, u16 *fidx)
1677 u16 head, tail;
1678 struct tid_rdma_flow *flow;
1680 head = req->setup_head;
1681 tail = req->clear_tail;
1682 for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
1683 tail = CIRC_NEXT(tail, MAX_FLOWS)) {
1684 flow = &req->flows[tail];
1685 if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
1686 cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
1687 if (fidx)
1688 *fidx = tail;
1689 return flow;
1692 return NULL;
1695 /* TID RDMA READ functions */
1696 u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
1697 struct ib_other_headers *ohdr, u32 *bth1,
1698 u32 *bth2, u32 *len)
1700 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1701 struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
1702 struct rvt_qp *qp = req->qp;
1703 struct hfi1_qp_priv *qpriv = qp->priv;
1704 struct hfi1_swqe_priv *wpriv = wqe->priv;
1705 struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
1706 struct tid_rdma_params *remote;
1707 u32 req_len = 0;
1708 void *req_addr = NULL;
1710 /* This is the IB psn used to send the request */
1711 *bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
1712 trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
1714 /* TID Entries for TID RDMA READ payload */
1715 req_addr = &flow->tid_entry[flow->tid_idx];
1716 req_len = sizeof(*flow->tid_entry) *
1717 (flow->tidcnt - flow->tid_idx);
1719 memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
1720 wpriv->ss.sge.vaddr = req_addr;
1721 wpriv->ss.sge.sge_length = req_len;
1722 wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
1724 * We can safely zero these out. Since the first SGE covers the
1725 * entire packet, nothing else should even look at the MR.
1727 wpriv->ss.sge.mr = NULL;
1728 wpriv->ss.sge.m = 0;
1729 wpriv->ss.sge.n = 0;
1731 wpriv->ss.sg_list = NULL;
1732 wpriv->ss.total_len = wpriv->ss.sge.sge_length;
1733 wpriv->ss.num_sge = 1;
1735 /* Construct the TID RDMA READ REQ packet header */
1736 rcu_read_lock();
1737 remote = rcu_dereference(qpriv->tid_rdma.remote);
1739 KDETH_RESET(rreq->kdeth0, KVER, 0x1);
1740 KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
1741 rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
1742 req->cur_seg * req->seg_len + flow->sent);
1743 rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
1744 rreq->reth.length = cpu_to_be32(*len);
1745 rreq->tid_flow_psn =
1746 cpu_to_be32((flow->flow_state.generation <<
1747 HFI1_KDETH_BTH_SEQ_SHIFT) |
1748 ((flow->flow_state.spsn + flow->pkt) &
1749 HFI1_KDETH_BTH_SEQ_MASK));
1750 rreq->tid_flow_qp =
1751 cpu_to_be32(qpriv->tid_rdma.local.qp |
1752 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
1753 TID_RDMA_DESTQP_FLOW_SHIFT) |
1754 qpriv->rcd->ctxt);
1755 rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
1756 *bth1 &= ~RVT_QPN_MASK;
1757 *bth1 |= remote->qp;
1758 *bth2 |= IB_BTH_REQ_ACK;
1759 rcu_read_unlock();
1761 /* We are done with this segment */
1762 flow->sent += *len;
1763 req->cur_seg++;
1764 qp->s_state = TID_OP(READ_REQ);
1765 req->ack_pending++;
1766 req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
1767 qpriv->pending_tid_r_segs++;
1768 qp->s_num_rd_atomic++;
1770 /* Set the TID RDMA READ request payload size */
1771 *len = req_len;
1773 return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
1777 * @len: contains the data length to read upon entry and the read request
1778 * payload length upon exit.
1780 u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
1781 struct ib_other_headers *ohdr, u32 *bth1,
1782 u32 *bth2, u32 *len)
1783 __must_hold(&qp->s_lock)
1785 struct hfi1_qp_priv *qpriv = qp->priv;
1786 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
1787 struct tid_rdma_flow *flow = NULL;
1788 u32 hdwords = 0;
1789 bool last;
1790 bool retry = true;
1791 u32 npkts = rvt_div_round_up_mtu(qp, *len);
1793 trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
1794 wqe->lpsn, req);
1796 * Check sync conditions. Make sure that there are no pending
1797 * segments before freeing the flow.
1799 sync_check:
1800 if (req->state == TID_REQUEST_SYNC) {
1801 if (qpriv->pending_tid_r_segs)
1802 goto done;
1804 hfi1_kern_clear_hw_flow(req->rcd, qp);
1805 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
1806 req->state = TID_REQUEST_ACTIVE;
1810 * If the request for this segment is resent, the tid resources should
1811 * have been allocated before. In this case, req->flow_idx should
1812 * fall behind req->setup_head.
1814 if (req->flow_idx == req->setup_head) {
1815 retry = false;
1816 if (req->state == TID_REQUEST_RESEND) {
1818 * This is the first new segment for a request whose
1819 * earlier segments have been re-sent. We need to
1820 * set up the sge pointer correctly.
1822 restart_sge(&qp->s_sge, wqe, req->s_next_psn,
1823 qp->pmtu);
1824 req->isge = 0;
1825 req->state = TID_REQUEST_ACTIVE;
1829 * Check sync. The last PSN of each generation is reserved for
1830 * RESYNC.
1832 if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
1833 req->state = TID_REQUEST_SYNC;
1834 goto sync_check;
1837 /* Allocate the flow if not yet */
1838 if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
1839 goto done;
1842 * The following call will advance req->setup_head after
1843 * allocating the tid entries.
1845 if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
1846 req->state = TID_REQUEST_QUEUED;
1849 * We don't have resources for this segment. The QP has
1850 * already been queued.
1852 goto done;
1856 /* req->flow_idx should only be one slot behind req->setup_head */
1857 flow = &req->flows[req->flow_idx];
1858 flow->pkt = 0;
1859 flow->tid_idx = 0;
1860 flow->sent = 0;
1861 if (!retry) {
1862 /* Set the first and last IB PSN for the flow in use.*/
1863 flow->flow_state.ib_spsn = req->s_next_psn;
1864 flow->flow_state.ib_lpsn =
1865 flow->flow_state.ib_spsn + flow->npkts - 1;
1868 /* Calculate the next segment start psn.*/
1869 req->s_next_psn += flow->npkts;
1871 /* Build the packet header */
1872 hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
1873 done:
1874 return hdwords;
1878 * Validate and accept the TID RDMA READ request parameters.
1879 * Return 0 if the request is accepted successfully;
1880 * Return 1 otherwise.
1882 static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
1883 struct rvt_ack_entry *e,
1884 struct hfi1_packet *packet,
1885 struct ib_other_headers *ohdr,
1886 u32 bth0, u32 psn, u64 vaddr, u32 len)
1888 struct hfi1_qp_priv *qpriv = qp->priv;
1889 struct tid_rdma_request *req;
1890 struct tid_rdma_flow *flow;
1891 u32 flow_psn, i, tidlen = 0, pktlen, tlen;
1893 req = ack_to_tid_req(e);
1895 /* Validate the payload first */
1896 flow = &req->flows[req->setup_head];
1898 /* payload length = packet length - (header length + ICRC length) */
1899 pktlen = packet->tlen - (packet->hlen + 4);
1900 if (pktlen > sizeof(flow->tid_entry))
1901 return 1;
1902 memcpy(flow->tid_entry, packet->ebuf, pktlen);
1903 flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
1906 * Walk the TID_ENTRY list to make sure we have enough space for a
1907 * complete segment. Also calculate the number of required packets.
1909 flow->npkts = rvt_div_round_up_mtu(qp, len);
1910 for (i = 0; i < flow->tidcnt; i++) {
1911 trace_hfi1_tid_entry_rcv_read_req(qp, i,
1912 flow->tid_entry[i]);
1913 tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
1914 if (!tlen)
1915 return 1;
1918 * For tid pair (tidctr == 3), the buffer size of the pair
1919 * should be the sum of the buffer size described by each
1920 * tid entry. However, only the first entry needs to be
1921 * specified in the request (see WFR HAS Section 8.5.7.1).
1923 tidlen += tlen;
1925 if (tidlen * PAGE_SIZE < len)
1926 return 1;
1928 /* Empty the flow array */
1929 req->clear_tail = req->setup_head;
1930 flow->pkt = 0;
1931 flow->tid_idx = 0;
1932 flow->tid_offset = 0;
1933 flow->sent = 0;
1934 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
1935 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
1936 TID_RDMA_DESTQP_FLOW_MASK;
1937 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
1938 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
1939 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
1940 flow->length = len;
1942 flow->flow_state.lpsn = flow->flow_state.spsn +
1943 flow->npkts - 1;
1944 flow->flow_state.ib_spsn = psn;
1945 flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
1947 trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
1948 /* Set the initial flow index to the current flow. */
1949 req->flow_idx = req->setup_head;
1951 /* advance circular buffer head */
1952 req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
1955 * Compute last PSN for request.
1957 e->opcode = (bth0 >> 24) & 0xff;
1958 e->psn = psn;
1959 e->lpsn = psn + flow->npkts - 1;
1960 e->sent = 0;
1962 req->n_flows = qpriv->tid_rdma.local.max_read;
1963 req->state = TID_REQUEST_ACTIVE;
1964 req->cur_seg = 0;
1965 req->comp_seg = 0;
1966 req->ack_seg = 0;
1967 req->isge = 0;
1968 req->seg_len = qpriv->tid_rdma.local.max_len;
1969 req->total_len = len;
1970 req->total_segs = 1;
1971 req->r_flow_psn = e->psn;
1973 trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
1974 req);
1975 return 0;
1978 static int tid_rdma_rcv_error(struct hfi1_packet *packet,
1979 struct ib_other_headers *ohdr,
1980 struct rvt_qp *qp, u32 psn, int diff)
1982 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1983 struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
1984 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1985 struct hfi1_qp_priv *qpriv = qp->priv;
1986 struct rvt_ack_entry *e;
1987 struct tid_rdma_request *req;
1988 unsigned long flags;
1989 u8 prev;
1990 bool old_req;
1992 trace_hfi1_rsp_tid_rcv_error(qp, psn);
1993 trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
1994 if (diff > 0) {
1995 /* sequence error */
1996 if (!qp->r_nak_state) {
1997 ibp->rvp.n_rc_seqnak++;
1998 qp->r_nak_state = IB_NAK_PSN_ERROR;
1999 qp->r_ack_psn = qp->r_psn;
2000 rc_defered_ack(rcd, qp);
2002 goto done;
2005 ibp->rvp.n_rc_dupreq++;
2007 spin_lock_irqsave(&qp->s_lock, flags);
2008 e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
2009 if (!e || (e->opcode != TID_OP(READ_REQ) &&
2010 e->opcode != TID_OP(WRITE_REQ)))
2011 goto unlock;
2013 req = ack_to_tid_req(e);
2014 req->r_flow_psn = psn;
2015 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
2016 if (e->opcode == TID_OP(READ_REQ)) {
2017 struct ib_reth *reth;
2018 u32 len;
2019 u32 rkey;
2020 u64 vaddr;
2021 int ok;
2022 u32 bth0;
2024 reth = &ohdr->u.tid_rdma.r_req.reth;
2026 * The requester always restarts from the start of the original
2027 * request.
2029 len = be32_to_cpu(reth->length);
2030 if (psn != e->psn || len != req->total_len)
2031 goto unlock;
2033 release_rdma_sge_mr(e);
2035 rkey = be32_to_cpu(reth->rkey);
2036 vaddr = get_ib_reth_vaddr(reth);
2038 qp->r_len = len;
2039 ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
2040 IB_ACCESS_REMOTE_READ);
2041 if (unlikely(!ok))
2042 goto unlock;
2045 * If all the response packets for the current request have
2046 * been sent out and this request is complete (old_request
2047 * == false) and the TID flow may be unusable (the
2048 * req->clear_tail is advanced). However, when an earlier
2049 * request is received, this request will not be complete any
2050 * more (qp->s_tail_ack_queue is moved back, see below).
2051 * Consequently, we need to update the TID flow info everytime
2052 * a duplicate request is received.
2054 bth0 = be32_to_cpu(ohdr->bth[0]);
2055 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
2056 vaddr, len))
2057 goto unlock;
2060 * True if the request is already scheduled (between
2061 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2063 if (old_req)
2064 goto unlock;
2065 } else {
2066 struct flow_state *fstate;
2067 bool schedule = false;
2068 u8 i;
2070 if (req->state == TID_REQUEST_RESEND) {
2071 req->state = TID_REQUEST_RESEND_ACTIVE;
2072 } else if (req->state == TID_REQUEST_INIT_RESEND) {
2073 req->state = TID_REQUEST_INIT;
2074 schedule = true;
2078 * True if the request is already scheduled (between
2079 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2080 * Also, don't change requests, which are at the SYNC
2081 * point and haven't generated any responses yet.
2082 * There is nothing to retransmit for them yet.
2084 if (old_req || req->state == TID_REQUEST_INIT ||
2085 (req->state == TID_REQUEST_SYNC && !req->cur_seg)) {
2086 for (i = prev + 1; ; i++) {
2087 if (i > rvt_size_atomic(&dev->rdi))
2088 i = 0;
2089 if (i == qp->r_head_ack_queue)
2090 break;
2091 e = &qp->s_ack_queue[i];
2092 req = ack_to_tid_req(e);
2093 if (e->opcode == TID_OP(WRITE_REQ) &&
2094 req->state == TID_REQUEST_INIT)
2095 req->state = TID_REQUEST_INIT_RESEND;
2098 * If the state of the request has been changed,
2099 * the first leg needs to get scheduled in order to
2100 * pick up the change. Otherwise, normal response
2101 * processing should take care of it.
2103 if (!schedule)
2104 goto unlock;
2108 * If there is no more allocated segment, just schedule the qp
2109 * without changing any state.
2111 if (req->clear_tail == req->setup_head)
2112 goto schedule;
2114 * If this request has sent responses for segments, which have
2115 * not received data yet (flow_idx != clear_tail), the flow_idx
2116 * pointer needs to be adjusted so the same responses can be
2117 * re-sent.
2119 if (CIRC_CNT(req->flow_idx, req->clear_tail, MAX_FLOWS)) {
2120 fstate = &req->flows[req->clear_tail].flow_state;
2121 qpriv->pending_tid_w_segs -=
2122 CIRC_CNT(req->flow_idx, req->clear_tail,
2123 MAX_FLOWS);
2124 req->flow_idx =
2125 CIRC_ADD(req->clear_tail,
2126 delta_psn(psn, fstate->resp_ib_psn),
2127 MAX_FLOWS);
2128 qpriv->pending_tid_w_segs +=
2129 delta_psn(psn, fstate->resp_ib_psn);
2131 * When flow_idx == setup_head, we've gotten a duplicate
2132 * request for a segment, which has not been allocated
2133 * yet. In that case, don't adjust this request.
2134 * However, we still want to go through the loop below
2135 * to adjust all subsequent requests.
2137 if (CIRC_CNT(req->setup_head, req->flow_idx,
2138 MAX_FLOWS)) {
2139 req->cur_seg = delta_psn(psn, e->psn);
2140 req->state = TID_REQUEST_RESEND_ACTIVE;
2144 for (i = prev + 1; ; i++) {
2146 * Look at everything up to and including
2147 * s_tail_ack_queue
2149 if (i > rvt_size_atomic(&dev->rdi))
2150 i = 0;
2151 if (i == qp->r_head_ack_queue)
2152 break;
2153 e = &qp->s_ack_queue[i];
2154 req = ack_to_tid_req(e);
2155 trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn,
2156 e->lpsn, req);
2157 if (e->opcode != TID_OP(WRITE_REQ) ||
2158 req->cur_seg == req->comp_seg ||
2159 req->state == TID_REQUEST_INIT ||
2160 req->state == TID_REQUEST_INIT_RESEND) {
2161 if (req->state == TID_REQUEST_INIT)
2162 req->state = TID_REQUEST_INIT_RESEND;
2163 continue;
2165 qpriv->pending_tid_w_segs -=
2166 CIRC_CNT(req->flow_idx,
2167 req->clear_tail,
2168 MAX_FLOWS);
2169 req->flow_idx = req->clear_tail;
2170 req->state = TID_REQUEST_RESEND;
2171 req->cur_seg = req->comp_seg;
2173 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
2175 /* Re-process old requests.*/
2176 if (qp->s_acked_ack_queue == qp->s_tail_ack_queue)
2177 qp->s_acked_ack_queue = prev;
2178 qp->s_tail_ack_queue = prev;
2180 * Since the qp->s_tail_ack_queue is modified, the
2181 * qp->s_ack_state must be changed to re-initialize
2182 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2183 * wrong memory region.
2185 qp->s_ack_state = OP(ACKNOWLEDGE);
2186 schedule:
2188 * It's possible to receive a retry psn that is earlier than an RNRNAK
2189 * psn. In this case, the rnrnak state should be cleared.
2191 if (qpriv->rnr_nak_state) {
2192 qp->s_nak_state = 0;
2193 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
2194 qp->r_psn = e->lpsn + 1;
2195 hfi1_tid_write_alloc_resources(qp, true);
2198 qp->r_state = e->opcode;
2199 qp->r_nak_state = 0;
2200 qp->s_flags |= RVT_S_RESP_PENDING;
2201 hfi1_schedule_send(qp);
2202 unlock:
2203 spin_unlock_irqrestore(&qp->s_lock, flags);
2204 done:
2205 return 1;
2208 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
2210 /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2213 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2214 * (see hfi1_rc_rcv())
2215 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2216 * - Setup struct tid_rdma_req with request info
2217 * - Initialize struct tid_rdma_flow info;
2218 * - Copy TID entries;
2219 * 3. Set the qp->s_ack_state.
2220 * 4. Set RVT_S_RESP_PENDING in s_flags.
2221 * 5. Kick the send engine (hfi1_schedule_send())
2223 struct hfi1_ctxtdata *rcd = packet->rcd;
2224 struct rvt_qp *qp = packet->qp;
2225 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
2226 struct ib_other_headers *ohdr = packet->ohdr;
2227 struct rvt_ack_entry *e;
2228 unsigned long flags;
2229 struct ib_reth *reth;
2230 struct hfi1_qp_priv *qpriv = qp->priv;
2231 u32 bth0, psn, len, rkey;
2232 bool fecn;
2233 u8 next;
2234 u64 vaddr;
2235 int diff;
2236 u8 nack_state = IB_NAK_INVALID_REQUEST;
2238 bth0 = be32_to_cpu(ohdr->bth[0]);
2239 if (hfi1_ruc_check_hdr(ibp, packet))
2240 return;
2242 fecn = process_ecn(qp, packet);
2243 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2244 trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
2246 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
2247 rvt_comm_est(qp);
2249 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2250 goto nack_inv;
2252 reth = &ohdr->u.tid_rdma.r_req.reth;
2253 vaddr = be64_to_cpu(reth->vaddr);
2254 len = be32_to_cpu(reth->length);
2255 /* The length needs to be in multiples of PAGE_SIZE */
2256 if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
2257 goto nack_inv;
2259 diff = delta_psn(psn, qp->r_psn);
2260 if (unlikely(diff)) {
2261 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
2262 return;
2265 /* We've verified the request, insert it into the ack queue. */
2266 next = qp->r_head_ack_queue + 1;
2267 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
2268 next = 0;
2269 spin_lock_irqsave(&qp->s_lock, flags);
2270 if (unlikely(next == qp->s_tail_ack_queue)) {
2271 if (!qp->s_ack_queue[next].sent) {
2272 nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
2273 goto nack_inv_unlock;
2275 update_ack_queue(qp, next);
2277 e = &qp->s_ack_queue[qp->r_head_ack_queue];
2278 release_rdma_sge_mr(e);
2280 rkey = be32_to_cpu(reth->rkey);
2281 qp->r_len = len;
2283 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
2284 rkey, IB_ACCESS_REMOTE_READ)))
2285 goto nack_acc;
2287 /* Accept the request parameters */
2288 if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
2289 len))
2290 goto nack_inv_unlock;
2292 qp->r_state = e->opcode;
2293 qp->r_nak_state = 0;
2295 * We need to increment the MSN here instead of when we
2296 * finish sending the result since a duplicate request would
2297 * increment it more than once.
2299 qp->r_msn++;
2300 qp->r_psn += e->lpsn - e->psn + 1;
2302 qp->r_head_ack_queue = next;
2305 * For all requests other than TID WRITE which are added to the ack
2306 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2307 * do this because of interlocks between these and TID WRITE
2308 * requests. The same change has also been made in hfi1_rc_rcv().
2310 qpriv->r_tid_alloc = qp->r_head_ack_queue;
2312 /* Schedule the send tasklet. */
2313 qp->s_flags |= RVT_S_RESP_PENDING;
2314 if (fecn)
2315 qp->s_flags |= RVT_S_ECN;
2316 hfi1_schedule_send(qp);
2318 spin_unlock_irqrestore(&qp->s_lock, flags);
2319 return;
2321 nack_inv_unlock:
2322 spin_unlock_irqrestore(&qp->s_lock, flags);
2323 nack_inv:
2324 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
2325 qp->r_nak_state = nack_state;
2326 qp->r_ack_psn = qp->r_psn;
2327 /* Queue NAK for later */
2328 rc_defered_ack(rcd, qp);
2329 return;
2330 nack_acc:
2331 spin_unlock_irqrestore(&qp->s_lock, flags);
2332 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
2333 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
2334 qp->r_ack_psn = qp->r_psn;
2337 u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
2338 struct ib_other_headers *ohdr, u32 *bth0,
2339 u32 *bth1, u32 *bth2, u32 *len, bool *last)
2341 struct hfi1_ack_priv *epriv = e->priv;
2342 struct tid_rdma_request *req = &epriv->tid_req;
2343 struct hfi1_qp_priv *qpriv = qp->priv;
2344 struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
2345 u32 tidentry = flow->tid_entry[flow->tid_idx];
2346 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
2347 struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
2348 u32 next_offset, om = KDETH_OM_LARGE;
2349 bool last_pkt;
2350 u32 hdwords = 0;
2351 struct tid_rdma_params *remote;
2353 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
2354 flow->sent += *len;
2355 next_offset = flow->tid_offset + *len;
2356 last_pkt = (flow->sent >= flow->length);
2358 trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
2359 trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
2361 rcu_read_lock();
2362 remote = rcu_dereference(qpriv->tid_rdma.remote);
2363 if (!remote) {
2364 rcu_read_unlock();
2365 goto done;
2367 KDETH_RESET(resp->kdeth0, KVER, 0x1);
2368 KDETH_SET(resp->kdeth0, SH, !last_pkt);
2369 KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
2370 KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
2371 KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
2372 KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
2373 KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
2374 KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
2375 resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
2376 rcu_read_unlock();
2378 resp->aeth = rvt_compute_aeth(qp);
2379 resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
2380 flow->pkt));
2382 *bth0 = TID_OP(READ_RESP) << 24;
2383 *bth1 = flow->tid_qpn;
2384 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
2385 HFI1_KDETH_BTH_SEQ_MASK) |
2386 (flow->flow_state.generation <<
2387 HFI1_KDETH_BTH_SEQ_SHIFT));
2388 *last = last_pkt;
2389 if (last_pkt)
2390 /* Advance to next flow */
2391 req->clear_tail = (req->clear_tail + 1) &
2392 (MAX_FLOWS - 1);
2394 if (next_offset >= tidlen) {
2395 flow->tid_offset = 0;
2396 flow->tid_idx++;
2397 } else {
2398 flow->tid_offset = next_offset;
2401 hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
2403 done:
2404 return hdwords;
2407 static inline struct tid_rdma_request *
2408 find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
2409 __must_hold(&qp->s_lock)
2411 struct rvt_swqe *wqe;
2412 struct tid_rdma_request *req = NULL;
2413 u32 i, end;
2415 end = qp->s_cur + 1;
2416 if (end == qp->s_size)
2417 end = 0;
2418 for (i = qp->s_acked; i != end;) {
2419 wqe = rvt_get_swqe_ptr(qp, i);
2420 if (cmp_psn(psn, wqe->psn) >= 0 &&
2421 cmp_psn(psn, wqe->lpsn) <= 0) {
2422 if (wqe->wr.opcode == opcode)
2423 req = wqe_to_tid_req(wqe);
2424 break;
2426 if (++i == qp->s_size)
2427 i = 0;
2430 return req;
2433 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
2435 /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2438 * 1. Find matching SWQE
2439 * 2. Check that the entire segment has been read.
2440 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2441 * 4. Free the TID flow resources.
2442 * 5. Kick the send engine (hfi1_schedule_send())
2444 struct ib_other_headers *ohdr = packet->ohdr;
2445 struct rvt_qp *qp = packet->qp;
2446 struct hfi1_qp_priv *priv = qp->priv;
2447 struct hfi1_ctxtdata *rcd = packet->rcd;
2448 struct tid_rdma_request *req;
2449 struct tid_rdma_flow *flow;
2450 u32 opcode, aeth;
2451 bool fecn;
2452 unsigned long flags;
2453 u32 kpsn, ipsn;
2455 trace_hfi1_sender_rcv_tid_read_resp(qp);
2456 fecn = process_ecn(qp, packet);
2457 kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2458 aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
2459 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2461 spin_lock_irqsave(&qp->s_lock, flags);
2462 ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
2463 req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
2464 if (unlikely(!req))
2465 goto ack_op_err;
2467 flow = &req->flows[req->clear_tail];
2468 /* When header suppression is disabled */
2469 if (cmp_psn(ipsn, flow->flow_state.ib_lpsn)) {
2470 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
2472 if (cmp_psn(kpsn, flow->flow_state.r_next_psn))
2473 goto ack_done;
2474 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2476 * Copy the payload to destination buffer if this packet is
2477 * delivered as an eager packet due to RSM rule and FECN.
2478 * The RSM rule selects FECN bit in BTH and SH bit in
2479 * KDETH header and therefore will not match the last
2480 * packet of each segment that has SH bit cleared.
2482 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
2483 struct rvt_sge_state ss;
2484 u32 len;
2485 u32 tlen = packet->tlen;
2486 u16 hdrsize = packet->hlen;
2487 u8 pad = packet->pad;
2488 u8 extra_bytes = pad + packet->extra_byte +
2489 (SIZE_OF_CRC << 2);
2490 u32 pmtu = qp->pmtu;
2492 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
2493 goto ack_op_err;
2494 len = restart_sge(&ss, req->e.swqe, ipsn, pmtu);
2495 if (unlikely(len < pmtu))
2496 goto ack_op_err;
2497 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
2498 false);
2499 /* Raise the sw sequence check flag for next packet */
2500 priv->s_flags |= HFI1_R_TID_SW_PSN;
2503 goto ack_done;
2505 flow->flow_state.r_next_psn = mask_psn(kpsn + 1);
2506 req->ack_pending--;
2507 priv->pending_tid_r_segs--;
2508 qp->s_num_rd_atomic--;
2509 if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
2510 !qp->s_num_rd_atomic) {
2511 qp->s_flags &= ~(RVT_S_WAIT_FENCE |
2512 RVT_S_WAIT_ACK);
2513 hfi1_schedule_send(qp);
2515 if (qp->s_flags & RVT_S_WAIT_RDMAR) {
2516 qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
2517 hfi1_schedule_send(qp);
2520 trace_hfi1_ack(qp, ipsn);
2521 trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
2522 req->e.swqe->psn, req->e.swqe->lpsn,
2523 req);
2524 trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
2526 /* Release the tid resources */
2527 hfi1_kern_exp_rcv_clear(req);
2529 if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
2530 goto ack_done;
2532 /* If not done yet, build next read request */
2533 if (++req->comp_seg >= req->total_segs) {
2534 priv->tid_r_comp++;
2535 req->state = TID_REQUEST_COMPLETE;
2539 * Clear the hw flow under two conditions:
2540 * 1. This request is a sync point and it is complete;
2541 * 2. Current request is completed and there are no more requests.
2543 if ((req->state == TID_REQUEST_SYNC &&
2544 req->comp_seg == req->cur_seg) ||
2545 priv->tid_r_comp == priv->tid_r_reqs) {
2546 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2547 priv->s_flags &= ~HFI1_R_TID_SW_PSN;
2548 if (req->state == TID_REQUEST_SYNC)
2549 req->state = TID_REQUEST_ACTIVE;
2552 hfi1_schedule_send(qp);
2553 goto ack_done;
2555 ack_op_err:
2557 * The test indicates that the send engine has finished its cleanup
2558 * after sending the request and it's now safe to put the QP into error
2559 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2560 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2561 * qp->s_acked here. Putting the qp into error state will safely flush
2562 * all remaining requests.
2564 if (qp->s_last == qp->s_acked)
2565 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
2567 ack_done:
2568 spin_unlock_irqrestore(&qp->s_lock, flags);
2571 void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
2572 __must_hold(&qp->s_lock)
2574 u32 n = qp->s_acked;
2575 struct rvt_swqe *wqe;
2576 struct tid_rdma_request *req;
2577 struct hfi1_qp_priv *priv = qp->priv;
2579 lockdep_assert_held(&qp->s_lock);
2580 /* Free any TID entries */
2581 while (n != qp->s_tail) {
2582 wqe = rvt_get_swqe_ptr(qp, n);
2583 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2584 req = wqe_to_tid_req(wqe);
2585 hfi1_kern_exp_rcv_clear_all(req);
2588 if (++n == qp->s_size)
2589 n = 0;
2591 /* Free flow */
2592 hfi1_kern_clear_hw_flow(priv->rcd, qp);
2595 static bool tid_rdma_tid_err(struct hfi1_packet *packet, u8 rcv_type)
2597 struct rvt_qp *qp = packet->qp;
2599 if (rcv_type >= RHF_RCV_TYPE_IB)
2600 goto done;
2602 spin_lock(&qp->s_lock);
2605 * We've ran out of space in the eager buffer.
2606 * Eagerly received KDETH packets which require space in the
2607 * Eager buffer (packet that have payload) are TID RDMA WRITE
2608 * response packets. In this case, we have to re-transmit the
2609 * TID RDMA WRITE request.
2611 if (rcv_type == RHF_RCV_TYPE_EAGER) {
2612 hfi1_restart_rc(qp, qp->s_last_psn + 1, 1);
2613 hfi1_schedule_send(qp);
2616 /* Since no payload is delivered, just drop the packet */
2617 spin_unlock(&qp->s_lock);
2618 done:
2619 return true;
2622 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
2623 struct rvt_qp *qp, struct rvt_swqe *wqe)
2625 struct tid_rdma_request *req;
2626 struct tid_rdma_flow *flow;
2628 /* Start from the right segment */
2629 qp->r_flags |= RVT_R_RDMAR_SEQ;
2630 req = wqe_to_tid_req(wqe);
2631 flow = &req->flows[req->clear_tail];
2632 hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
2633 if (list_empty(&qp->rspwait)) {
2634 qp->r_flags |= RVT_R_RSP_SEND;
2635 rvt_get_qp(qp);
2636 list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
2641 * Handle the KDETH eflags for TID RDMA READ response.
2643 * Return true if the last packet for a segment has been received and it is
2644 * time to process the response normally; otherwise, return true.
2646 * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2648 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2649 struct hfi1_packet *packet, u8 rcv_type,
2650 u8 rte, u32 psn, u32 ibpsn)
2651 __must_hold(&packet->qp->r_lock) __must_hold(RCU)
2653 struct hfi1_pportdata *ppd = rcd->ppd;
2654 struct hfi1_devdata *dd = ppd->dd;
2655 struct hfi1_ibport *ibp;
2656 struct rvt_swqe *wqe;
2657 struct tid_rdma_request *req;
2658 struct tid_rdma_flow *flow;
2659 u32 ack_psn;
2660 struct rvt_qp *qp = packet->qp;
2661 struct hfi1_qp_priv *priv = qp->priv;
2662 bool ret = true;
2663 int diff = 0;
2664 u32 fpsn;
2666 lockdep_assert_held(&qp->r_lock);
2667 trace_hfi1_rsp_read_kdeth_eflags(qp, ibpsn);
2668 trace_hfi1_sender_read_kdeth_eflags(qp);
2669 trace_hfi1_tid_read_sender_kdeth_eflags(qp, 0);
2670 spin_lock(&qp->s_lock);
2671 /* If the psn is out of valid range, drop the packet */
2672 if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
2673 cmp_psn(ibpsn, qp->s_psn) > 0)
2674 goto s_unlock;
2677 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2678 * requests and implicitly NAK RDMA read and atomic requests issued
2679 * before the NAK'ed request.
2681 ack_psn = ibpsn - 1;
2682 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
2683 ibp = to_iport(qp->ibqp.device, qp->port_num);
2685 /* Complete WQEs that the PSN finishes. */
2686 while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
2688 * If this request is a RDMA read or atomic, and the NACK is
2689 * for a later operation, this NACK NAKs the RDMA read or
2690 * atomic.
2692 if (wqe->wr.opcode == IB_WR_RDMA_READ ||
2693 wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
2694 wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
2695 wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
2696 /* Retry this request. */
2697 if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
2698 qp->r_flags |= RVT_R_RDMAR_SEQ;
2699 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
2700 restart_tid_rdma_read_req(rcd, qp,
2701 wqe);
2702 } else {
2703 hfi1_restart_rc(qp, qp->s_last_psn + 1,
2705 if (list_empty(&qp->rspwait)) {
2706 qp->r_flags |= RVT_R_RSP_SEND;
2707 rvt_get_qp(qp);
2708 list_add_tail(/* wait */
2709 &qp->rspwait,
2710 &rcd->qp_wait_list);
2715 * No need to process the NAK since we are
2716 * restarting an earlier request.
2718 break;
2721 wqe = do_rc_completion(qp, wqe, ibp);
2722 if (qp->s_acked == qp->s_tail)
2723 goto s_unlock;
2726 if (qp->s_acked == qp->s_tail)
2727 goto s_unlock;
2729 /* Handle the eflags for the request */
2730 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
2731 goto s_unlock;
2733 req = wqe_to_tid_req(wqe);
2734 trace_hfi1_tid_req_read_kdeth_eflags(qp, 0, wqe->wr.opcode, wqe->psn,
2735 wqe->lpsn, req);
2736 switch (rcv_type) {
2737 case RHF_RCV_TYPE_EXPECTED:
2738 switch (rte) {
2739 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2741 * On the first occurrence of a Flow Sequence error,
2742 * the flag TID_FLOW_SW_PSN is set.
2744 * After that, the flow is *not* reprogrammed and the
2745 * protocol falls back to SW PSN checking. This is done
2746 * to prevent continuous Flow Sequence errors for any
2747 * packets that could be still in the fabric.
2749 flow = &req->flows[req->clear_tail];
2750 trace_hfi1_tid_flow_read_kdeth_eflags(qp,
2751 req->clear_tail,
2752 flow);
2753 if (priv->s_flags & HFI1_R_TID_SW_PSN) {
2754 diff = cmp_psn(psn,
2755 flow->flow_state.r_next_psn);
2756 if (diff > 0) {
2757 /* Drop the packet.*/
2758 goto s_unlock;
2759 } else if (diff < 0) {
2761 * If a response packet for a restarted
2762 * request has come back, reset the
2763 * restart flag.
2765 if (qp->r_flags & RVT_R_RDMAR_SEQ)
2766 qp->r_flags &=
2767 ~RVT_R_RDMAR_SEQ;
2769 /* Drop the packet.*/
2770 goto s_unlock;
2774 * If SW PSN verification is successful and
2775 * this is the last packet in the segment, tell
2776 * the caller to process it as a normal packet.
2778 fpsn = full_flow_psn(flow,
2779 flow->flow_state.lpsn);
2780 if (cmp_psn(fpsn, psn) == 0) {
2781 ret = false;
2782 if (qp->r_flags & RVT_R_RDMAR_SEQ)
2783 qp->r_flags &=
2784 ~RVT_R_RDMAR_SEQ;
2786 flow->flow_state.r_next_psn =
2787 mask_psn(psn + 1);
2788 } else {
2789 u32 last_psn;
2791 last_psn = read_r_next_psn(dd, rcd->ctxt,
2792 flow->idx);
2793 flow->flow_state.r_next_psn = last_psn;
2794 priv->s_flags |= HFI1_R_TID_SW_PSN;
2796 * If no request has been restarted yet,
2797 * restart the current one.
2799 if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
2800 restart_tid_rdma_read_req(rcd, qp,
2801 wqe);
2804 break;
2806 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2808 * Since the TID flow is able to ride through
2809 * generation mismatch, drop this stale packet.
2811 break;
2813 default:
2814 break;
2816 break;
2818 case RHF_RCV_TYPE_ERROR:
2819 switch (rte) {
2820 case RHF_RTE_ERROR_OP_CODE_ERR:
2821 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
2822 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
2823 case RHF_RTE_ERROR_KHDR_KVER_ERR:
2824 case RHF_RTE_ERROR_CONTEXT_ERR:
2825 case RHF_RTE_ERROR_KHDR_TID_ERR:
2826 default:
2827 break;
2829 break;
2830 default:
2831 break;
2833 s_unlock:
2834 spin_unlock(&qp->s_lock);
2835 return ret;
2838 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
2839 struct hfi1_pportdata *ppd,
2840 struct hfi1_packet *packet)
2842 struct hfi1_ibport *ibp = &ppd->ibport_data;
2843 struct hfi1_devdata *dd = ppd->dd;
2844 struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
2845 u8 rcv_type = rhf_rcv_type(packet->rhf);
2846 u8 rte = rhf_rcv_type_err(packet->rhf);
2847 struct ib_header *hdr = packet->hdr;
2848 struct ib_other_headers *ohdr = NULL;
2849 int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
2850 u16 lid = be16_to_cpu(hdr->lrh[1]);
2851 u8 opcode;
2852 u32 qp_num, psn, ibpsn;
2853 struct rvt_qp *qp;
2854 struct hfi1_qp_priv *qpriv;
2855 unsigned long flags;
2856 bool ret = true;
2857 struct rvt_ack_entry *e;
2858 struct tid_rdma_request *req;
2859 struct tid_rdma_flow *flow;
2860 int diff = 0;
2862 trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
2863 packet->rhf);
2864 if (packet->rhf & RHF_ICRC_ERR)
2865 return ret;
2867 packet->ohdr = &hdr->u.oth;
2868 ohdr = packet->ohdr;
2869 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
2871 /* Get the destination QP number. */
2872 qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
2873 RVT_QPN_MASK;
2874 if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
2875 goto drop;
2877 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
2878 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
2880 rcu_read_lock();
2881 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
2882 if (!qp)
2883 goto rcu_unlock;
2885 packet->qp = qp;
2887 /* Check for valid receive state. */
2888 spin_lock_irqsave(&qp->r_lock, flags);
2889 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2890 ibp->rvp.n_pkt_drops++;
2891 goto r_unlock;
2894 if (packet->rhf & RHF_TID_ERR) {
2895 /* For TIDERR and RC QPs preemptively schedule a NAK */
2896 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
2898 /* Sanity check packet */
2899 if (tlen < 24)
2900 goto r_unlock;
2903 * Check for GRH. We should never get packets with GRH in this
2904 * path.
2906 if (lnh == HFI1_LRH_GRH)
2907 goto r_unlock;
2909 if (tid_rdma_tid_err(packet, rcv_type))
2910 goto r_unlock;
2913 /* handle TID RDMA READ */
2914 if (opcode == TID_OP(READ_RESP)) {
2915 ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
2916 ibpsn = mask_psn(ibpsn);
2917 ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
2918 ibpsn);
2919 goto r_unlock;
2923 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2924 * processed. These a completed sequentially so we can be sure that
2925 * the pointer will not change until the entire request has completed.
2927 spin_lock(&qp->s_lock);
2928 qpriv = qp->priv;
2929 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID ||
2930 qpriv->r_tid_tail == qpriv->r_tid_head)
2931 goto unlock;
2932 e = &qp->s_ack_queue[qpriv->r_tid_tail];
2933 if (e->opcode != TID_OP(WRITE_REQ))
2934 goto unlock;
2935 req = ack_to_tid_req(e);
2936 if (req->comp_seg == req->cur_seg)
2937 goto unlock;
2938 flow = &req->flows[req->clear_tail];
2939 trace_hfi1_eflags_err_write(qp, rcv_type, rte, psn);
2940 trace_hfi1_rsp_handle_kdeth_eflags(qp, psn);
2941 trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp);
2942 trace_hfi1_tid_req_handle_kdeth_eflags(qp, 0, e->opcode, e->psn,
2943 e->lpsn, req);
2944 trace_hfi1_tid_flow_handle_kdeth_eflags(qp, req->clear_tail, flow);
2946 switch (rcv_type) {
2947 case RHF_RCV_TYPE_EXPECTED:
2948 switch (rte) {
2949 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
2950 if (!(qpriv->s_flags & HFI1_R_TID_SW_PSN)) {
2951 qpriv->s_flags |= HFI1_R_TID_SW_PSN;
2952 flow->flow_state.r_next_psn =
2953 read_r_next_psn(dd, rcd->ctxt,
2954 flow->idx);
2955 qpriv->r_next_psn_kdeth =
2956 flow->flow_state.r_next_psn;
2957 goto nak_psn;
2958 } else {
2960 * If the received PSN does not match the next
2961 * expected PSN, NAK the packet.
2962 * However, only do that if we know that the a
2963 * NAK has already been sent. Otherwise, this
2964 * mismatch could be due to packets that were
2965 * already in flight.
2967 diff = cmp_psn(psn,
2968 flow->flow_state.r_next_psn);
2969 if (diff > 0)
2970 goto nak_psn;
2971 else if (diff < 0)
2972 break;
2974 qpriv->s_nak_state = 0;
2976 * If SW PSN verification is successful and this
2977 * is the last packet in the segment, tell the
2978 * caller to process it as a normal packet.
2980 if (psn == full_flow_psn(flow,
2981 flow->flow_state.lpsn))
2982 ret = false;
2983 flow->flow_state.r_next_psn =
2984 mask_psn(psn + 1);
2985 qpriv->r_next_psn_kdeth =
2986 flow->flow_state.r_next_psn;
2988 break;
2990 case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
2991 goto nak_psn;
2993 default:
2994 break;
2996 break;
2998 case RHF_RCV_TYPE_ERROR:
2999 switch (rte) {
3000 case RHF_RTE_ERROR_OP_CODE_ERR:
3001 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
3002 case RHF_RTE_ERROR_KHDR_HCRC_ERR:
3003 case RHF_RTE_ERROR_KHDR_KVER_ERR:
3004 case RHF_RTE_ERROR_CONTEXT_ERR:
3005 case RHF_RTE_ERROR_KHDR_TID_ERR:
3006 default:
3007 break;
3009 break;
3010 default:
3011 break;
3014 unlock:
3015 spin_unlock(&qp->s_lock);
3016 r_unlock:
3017 spin_unlock_irqrestore(&qp->r_lock, flags);
3018 rcu_unlock:
3019 rcu_read_unlock();
3020 drop:
3021 return ret;
3022 nak_psn:
3023 ibp->rvp.n_rc_seqnak++;
3024 if (!qpriv->s_nak_state) {
3025 qpriv->s_nak_state = IB_NAK_PSN_ERROR;
3026 /* We are NAK'ing the next expected PSN */
3027 qpriv->s_nak_psn = mask_psn(flow->flow_state.r_next_psn);
3028 tid_rdma_trigger_ack(qp);
3030 goto unlock;
3034 * "Rewind" the TID request information.
3035 * This means that we reset the state back to ACTIVE,
3036 * find the proper flow, set the flow index to that flow,
3037 * and reset the flow information.
3039 void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3040 u32 *bth2)
3042 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3043 struct tid_rdma_flow *flow;
3044 struct hfi1_qp_priv *qpriv = qp->priv;
3045 int diff, delta_pkts;
3046 u32 tididx = 0, i;
3047 u16 fidx;
3049 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3050 *bth2 = mask_psn(qp->s_psn);
3051 flow = find_flow_ib(req, *bth2, &fidx);
3052 if (!flow) {
3053 trace_hfi1_msg_tid_restart_req(/* msg */
3054 qp, "!!!!!! Could not find flow to restart: bth2 ",
3055 (u64)*bth2);
3056 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
3057 wqe->psn, wqe->lpsn,
3058 req);
3059 return;
3061 } else {
3062 fidx = req->acked_tail;
3063 flow = &req->flows[fidx];
3064 *bth2 = mask_psn(req->r_ack_psn);
3067 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3068 delta_pkts = delta_psn(*bth2, flow->flow_state.ib_spsn);
3069 else
3070 delta_pkts = delta_psn(*bth2,
3071 full_flow_psn(flow,
3072 flow->flow_state.spsn));
3074 trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3075 diff = delta_pkts + flow->resync_npkts;
3077 flow->sent = 0;
3078 flow->pkt = 0;
3079 flow->tid_idx = 0;
3080 flow->tid_offset = 0;
3081 if (diff) {
3082 for (tididx = 0; tididx < flow->tidcnt; tididx++) {
3083 u32 tidentry = flow->tid_entry[tididx], tidlen,
3084 tidnpkts, npkts;
3086 flow->tid_offset = 0;
3087 tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
3088 tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
3089 npkts = min_t(u32, diff, tidnpkts);
3090 flow->pkt += npkts;
3091 flow->sent += (npkts == tidnpkts ? tidlen :
3092 npkts * qp->pmtu);
3093 flow->tid_offset += npkts * qp->pmtu;
3094 diff -= npkts;
3095 if (!diff)
3096 break;
3099 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3100 rvt_skip_sge(&qpriv->tid_ss, (req->cur_seg * req->seg_len) +
3101 flow->sent, 0);
3103 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3104 * during a RESYNC, the generation is incremented and the
3105 * sequence is reset to 0. Since we've adjusted the npkts in the
3106 * flow and the SGE has been sufficiently advanced, we have to
3107 * adjust flow->pkt in order to calculate the correct PSN.
3109 flow->pkt -= flow->resync_npkts;
3112 if (flow->tid_offset ==
3113 EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
3114 tididx++;
3115 flow->tid_offset = 0;
3117 flow->tid_idx = tididx;
3118 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ)
3119 /* Move flow_idx to correct index */
3120 req->flow_idx = fidx;
3121 else
3122 req->clear_tail = fidx;
3124 trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
3125 trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
3126 wqe->lpsn, req);
3127 req->state = TID_REQUEST_ACTIVE;
3128 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) {
3129 /* Reset all the flows that we are going to resend */
3130 fidx = CIRC_NEXT(fidx, MAX_FLOWS);
3131 i = qpriv->s_tid_tail;
3132 do {
3133 for (; CIRC_CNT(req->setup_head, fidx, MAX_FLOWS);
3134 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
3135 req->flows[fidx].sent = 0;
3136 req->flows[fidx].pkt = 0;
3137 req->flows[fidx].tid_idx = 0;
3138 req->flows[fidx].tid_offset = 0;
3139 req->flows[fidx].resync_npkts = 0;
3141 if (i == qpriv->s_tid_cur)
3142 break;
3143 do {
3144 i = (++i == qp->s_size ? 0 : i);
3145 wqe = rvt_get_swqe_ptr(qp, i);
3146 } while (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE);
3147 req = wqe_to_tid_req(wqe);
3148 req->cur_seg = req->ack_seg;
3149 fidx = req->acked_tail;
3150 /* Pull req->clear_tail back */
3151 req->clear_tail = fidx;
3152 } while (1);
3156 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
3158 int i, ret;
3159 struct hfi1_qp_priv *qpriv = qp->priv;
3160 struct tid_flow_state *fs;
3162 if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
3163 return;
3166 * First, clear the flow to help prevent any delayed packets from
3167 * being delivered.
3169 fs = &qpriv->flow_state;
3170 if (fs->index != RXE_NUM_TID_FLOWS)
3171 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3173 for (i = qp->s_acked; i != qp->s_head;) {
3174 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
3176 if (++i == qp->s_size)
3177 i = 0;
3178 /* Free only locally allocated TID entries */
3179 if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
3180 continue;
3181 do {
3182 struct hfi1_swqe_priv *priv = wqe->priv;
3184 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3185 } while (!ret);
3187 for (i = qp->s_acked_ack_queue; i != qp->r_head_ack_queue;) {
3188 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
3190 if (++i == rvt_max_atomic(ib_to_rvt(qp->ibqp.device)))
3191 i = 0;
3192 /* Free only locally allocated TID entries */
3193 if (e->opcode != TID_OP(WRITE_REQ))
3194 continue;
3195 do {
3196 struct hfi1_ack_priv *priv = e->priv;
3198 ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
3199 } while (!ret);
3203 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
3205 struct rvt_swqe *prev;
3206 struct hfi1_qp_priv *priv = qp->priv;
3207 u32 s_prev;
3208 struct tid_rdma_request *req;
3210 s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
3211 prev = rvt_get_swqe_ptr(qp, s_prev);
3213 switch (wqe->wr.opcode) {
3214 case IB_WR_SEND:
3215 case IB_WR_SEND_WITH_IMM:
3216 case IB_WR_SEND_WITH_INV:
3217 case IB_WR_ATOMIC_CMP_AND_SWP:
3218 case IB_WR_ATOMIC_FETCH_AND_ADD:
3219 case IB_WR_RDMA_WRITE:
3220 case IB_WR_RDMA_WRITE_WITH_IMM:
3221 switch (prev->wr.opcode) {
3222 case IB_WR_TID_RDMA_WRITE:
3223 req = wqe_to_tid_req(prev);
3224 if (req->ack_seg != req->total_segs)
3225 goto interlock;
3226 break;
3227 default:
3228 break;
3230 break;
3231 case IB_WR_RDMA_READ:
3232 if (prev->wr.opcode != IB_WR_TID_RDMA_WRITE)
3233 break;
3234 fallthrough;
3235 case IB_WR_TID_RDMA_READ:
3236 switch (prev->wr.opcode) {
3237 case IB_WR_RDMA_READ:
3238 if (qp->s_acked != qp->s_cur)
3239 goto interlock;
3240 break;
3241 case IB_WR_TID_RDMA_WRITE:
3242 req = wqe_to_tid_req(prev);
3243 if (req->ack_seg != req->total_segs)
3244 goto interlock;
3245 break;
3246 default:
3247 break;
3249 break;
3250 default:
3251 break;
3253 return false;
3255 interlock:
3256 priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
3257 return true;
3260 /* Does @sge meet the alignment requirements for tid rdma? */
3261 static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
3262 struct rvt_sge *sge, int num_sge)
3264 int i;
3266 for (i = 0; i < num_sge; i++, sge++) {
3267 trace_hfi1_sge_check_align(qp, i, sge);
3268 if ((u64)sge->vaddr & ~PAGE_MASK ||
3269 sge->sge_length & ~PAGE_MASK)
3270 return false;
3272 return true;
3275 void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
3277 struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
3278 struct hfi1_swqe_priv *priv = wqe->priv;
3279 struct tid_rdma_params *remote;
3280 enum ib_wr_opcode new_opcode;
3281 bool do_tid_rdma = false;
3282 struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
3284 if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
3285 ppd->lid)
3286 return;
3287 if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
3288 return;
3290 rcu_read_lock();
3291 remote = rcu_dereference(qpriv->tid_rdma.remote);
3293 * If TID RDMA is disabled by the negotiation, don't
3294 * use it.
3296 if (!remote)
3297 goto exit;
3299 if (wqe->wr.opcode == IB_WR_RDMA_READ) {
3300 if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
3301 wqe->wr.num_sge)) {
3302 new_opcode = IB_WR_TID_RDMA_READ;
3303 do_tid_rdma = true;
3305 } else if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
3307 * TID RDMA is enabled for this RDMA WRITE request iff:
3308 * 1. The remote address is page-aligned,
3309 * 2. The length is larger than the minimum segment size,
3310 * 3. The length is page-multiple.
3312 if (!(wqe->rdma_wr.remote_addr & ~PAGE_MASK) &&
3313 !(wqe->length & ~PAGE_MASK)) {
3314 new_opcode = IB_WR_TID_RDMA_WRITE;
3315 do_tid_rdma = true;
3319 if (do_tid_rdma) {
3320 if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
3321 goto exit;
3322 wqe->wr.opcode = new_opcode;
3323 priv->tid_req.seg_len =
3324 min_t(u32, remote->max_len, wqe->length);
3325 priv->tid_req.total_segs =
3326 DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
3327 /* Compute the last PSN of the request */
3328 wqe->lpsn = wqe->psn;
3329 if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
3330 priv->tid_req.n_flows = remote->max_read;
3331 qpriv->tid_r_reqs++;
3332 wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
3333 } else {
3334 wqe->lpsn += priv->tid_req.total_segs - 1;
3335 atomic_inc(&qpriv->n_requests);
3338 priv->tid_req.cur_seg = 0;
3339 priv->tid_req.comp_seg = 0;
3340 priv->tid_req.ack_seg = 0;
3341 priv->tid_req.state = TID_REQUEST_INACTIVE;
3343 * Reset acked_tail.
3344 * TID RDMA READ does not have ACKs so it does not
3345 * update the pointer. We have to reset it so TID RDMA
3346 * WRITE does not get confused.
3348 priv->tid_req.acked_tail = priv->tid_req.setup_head;
3349 trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
3350 wqe->psn, wqe->lpsn,
3351 &priv->tid_req);
3353 exit:
3354 rcu_read_unlock();
3357 /* TID RDMA WRITE functions */
3359 u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
3360 struct ib_other_headers *ohdr,
3361 u32 *bth1, u32 *bth2, u32 *len)
3363 struct hfi1_qp_priv *qpriv = qp->priv;
3364 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
3365 struct tid_rdma_params *remote;
3367 rcu_read_lock();
3368 remote = rcu_dereference(qpriv->tid_rdma.remote);
3370 * Set the number of flow to be used based on negotiated
3371 * parameters.
3373 req->n_flows = remote->max_write;
3374 req->state = TID_REQUEST_ACTIVE;
3376 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
3377 KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
3378 ohdr->u.tid_rdma.w_req.reth.vaddr =
3379 cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
3380 ohdr->u.tid_rdma.w_req.reth.rkey =
3381 cpu_to_be32(wqe->rdma_wr.rkey);
3382 ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
3383 ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
3384 *bth1 &= ~RVT_QPN_MASK;
3385 *bth1 |= remote->qp;
3386 qp->s_state = TID_OP(WRITE_REQ);
3387 qp->s_flags |= HFI1_S_WAIT_TID_RESP;
3388 *bth2 |= IB_BTH_REQ_ACK;
3389 *len = 0;
3391 rcu_read_unlock();
3392 return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
3395 static u32 hfi1_compute_tid_rdma_flow_wt(struct rvt_qp *qp)
3398 * Heuristic for computing the RNR timeout when waiting on the flow
3399 * queue. Rather than a computationaly expensive exact estimate of when
3400 * a flow will be available, we assume that if a QP is at position N in
3401 * the flow queue it has to wait approximately (N + 1) * (number of
3402 * segments between two sync points). The rationale for this is that
3403 * flows are released and recycled at each sync point.
3405 return (MAX_TID_FLOW_PSN * qp->pmtu) >> TID_RDMA_SEGMENT_SHIFT;
3408 static u32 position_in_queue(struct hfi1_qp_priv *qpriv,
3409 struct tid_queue *queue)
3411 return qpriv->tid_enqueue - queue->dequeue;
3415 * @qp: points to rvt_qp context.
3416 * @to_seg: desired RNR timeout in segments.
3417 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3419 static u32 hfi1_compute_tid_rnr_timeout(struct rvt_qp *qp, u32 to_seg)
3421 struct hfi1_qp_priv *qpriv = qp->priv;
3422 u64 timeout;
3423 u32 bytes_per_us;
3424 u8 i;
3426 bytes_per_us = active_egress_rate(qpriv->rcd->ppd) / 8;
3427 timeout = (to_seg * TID_RDMA_MAX_SEGMENT_SIZE) / bytes_per_us;
3429 * Find the next highest value in the RNR table to the required
3430 * timeout. This gives the responder some padding.
3432 for (i = 1; i <= IB_AETH_CREDIT_MASK; i++)
3433 if (rvt_rnr_tbl_to_usec(i) >= timeout)
3434 return i;
3435 return 0;
3439 * Central place for resource allocation at TID write responder,
3440 * is called from write_req and write_data interrupt handlers as
3441 * well as the send thread when a queued QP is scheduled for
3442 * resource allocation.
3444 * Iterates over (a) segments of a request and then (b) queued requests
3445 * themselves to allocate resources for up to local->max_write
3446 * segments across multiple requests. Stop allocating when we
3447 * hit a sync point, resume allocating after data packets at
3448 * sync point have been received.
3450 * Resource allocation and sending of responses is decoupled. The
3451 * request/segment which are being allocated and sent are as follows.
3452 * Resources are allocated for:
3453 * [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3454 * The send thread sends:
3455 * [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3457 static void hfi1_tid_write_alloc_resources(struct rvt_qp *qp, bool intr_ctx)
3459 struct tid_rdma_request *req;
3460 struct hfi1_qp_priv *qpriv = qp->priv;
3461 struct hfi1_ctxtdata *rcd = qpriv->rcd;
3462 struct tid_rdma_params *local = &qpriv->tid_rdma.local;
3463 struct rvt_ack_entry *e;
3464 u32 npkts, to_seg;
3465 bool last;
3466 int ret = 0;
3468 lockdep_assert_held(&qp->s_lock);
3470 while (1) {
3471 trace_hfi1_rsp_tid_write_alloc_res(qp, 0);
3472 trace_hfi1_tid_write_rsp_alloc_res(qp);
3474 * Don't allocate more segments if a RNR NAK has already been
3475 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3476 * be sent only when all allocated segments have been sent.
3477 * However, if more segments are allocated before that, TID RDMA
3478 * WRITE RESP packets will be sent out for these new segments
3479 * before the RNR NAK packet. When the requester receives the
3480 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3481 * which does not match qp->r_psn and will be dropped.
3482 * Consequently, the requester will exhaust its retries and
3483 * put the qp into error state.
3485 if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND)
3486 break;
3488 /* No requests left to process */
3489 if (qpriv->r_tid_alloc == qpriv->r_tid_head) {
3490 /* If all data has been received, clear the flow */
3491 if (qpriv->flow_state.index < RXE_NUM_TID_FLOWS &&
3492 !qpriv->alloc_w_segs) {
3493 hfi1_kern_clear_hw_flow(rcd, qp);
3494 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3496 break;
3499 e = &qp->s_ack_queue[qpriv->r_tid_alloc];
3500 if (e->opcode != TID_OP(WRITE_REQ))
3501 goto next_req;
3502 req = ack_to_tid_req(e);
3503 trace_hfi1_tid_req_write_alloc_res(qp, 0, e->opcode, e->psn,
3504 e->lpsn, req);
3505 /* Finished allocating for all segments of this request */
3506 if (req->alloc_seg >= req->total_segs)
3507 goto next_req;
3509 /* Can allocate only a maximum of local->max_write for a QP */
3510 if (qpriv->alloc_w_segs >= local->max_write)
3511 break;
3513 /* Don't allocate at a sync point with data packets pending */
3514 if (qpriv->sync_pt && qpriv->alloc_w_segs)
3515 break;
3517 /* All data received at the sync point, continue */
3518 if (qpriv->sync_pt && !qpriv->alloc_w_segs) {
3519 hfi1_kern_clear_hw_flow(rcd, qp);
3520 qpriv->sync_pt = false;
3521 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
3524 /* Allocate flow if we don't have one */
3525 if (qpriv->flow_state.index >= RXE_NUM_TID_FLOWS) {
3526 ret = hfi1_kern_setup_hw_flow(qpriv->rcd, qp);
3527 if (ret) {
3528 to_seg = hfi1_compute_tid_rdma_flow_wt(qp) *
3529 position_in_queue(qpriv,
3530 &rcd->flow_queue);
3531 break;
3535 npkts = rvt_div_round_up_mtu(qp, req->seg_len);
3538 * We are at a sync point if we run out of KDETH PSN space.
3539 * Last PSN of every generation is reserved for RESYNC.
3541 if (qpriv->flow_state.psn + npkts > MAX_TID_FLOW_PSN - 1) {
3542 qpriv->sync_pt = true;
3543 break;
3547 * If overtaking req->acked_tail, send an RNR NAK. Because the
3548 * QP is not queued in this case, and the issue can only be
3549 * caused by a delay in scheduling the second leg which we
3550 * cannot estimate, we use a rather arbitrary RNR timeout of
3551 * (MAX_FLOWS / 2) segments
3553 if (!CIRC_SPACE(req->setup_head, req->acked_tail,
3554 MAX_FLOWS)) {
3555 ret = -EAGAIN;
3556 to_seg = MAX_FLOWS >> 1;
3557 tid_rdma_trigger_ack(qp);
3558 break;
3561 /* Try to allocate rcv array / TID entries */
3562 ret = hfi1_kern_exp_rcv_setup(req, &req->ss, &last);
3563 if (ret == -EAGAIN)
3564 to_seg = position_in_queue(qpriv, &rcd->rarr_queue);
3565 if (ret)
3566 break;
3568 qpriv->alloc_w_segs++;
3569 req->alloc_seg++;
3570 continue;
3571 next_req:
3572 /* Begin processing the next request */
3573 if (++qpriv->r_tid_alloc >
3574 rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3575 qpriv->r_tid_alloc = 0;
3579 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3580 * has failed (b) we are called from the rcv handler interrupt context
3581 * (c) an RNR NAK has not already been scheduled
3583 if (ret == -EAGAIN && intr_ctx && !qp->r_nak_state)
3584 goto send_rnr_nak;
3586 return;
3588 send_rnr_nak:
3589 lockdep_assert_held(&qp->r_lock);
3591 /* Set r_nak_state to prevent unrelated events from generating NAK's */
3592 qp->r_nak_state = hfi1_compute_tid_rnr_timeout(qp, to_seg) | IB_RNR_NAK;
3594 /* Pull back r_psn to the segment being RNR NAK'd */
3595 qp->r_psn = e->psn + req->alloc_seg;
3596 qp->r_ack_psn = qp->r_psn;
3598 * Pull back r_head_ack_queue to the ack entry following the request
3599 * being RNR NAK'd. This allows resources to be allocated to the request
3600 * if the queued QP is scheduled.
3602 qp->r_head_ack_queue = qpriv->r_tid_alloc + 1;
3603 if (qp->r_head_ack_queue > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3604 qp->r_head_ack_queue = 0;
3605 qpriv->r_tid_head = qp->r_head_ack_queue;
3607 * These send side fields are used in make_rc_ack(). They are set in
3608 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3609 * for consistency
3611 qp->s_nak_state = qp->r_nak_state;
3612 qp->s_ack_psn = qp->r_ack_psn;
3614 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3615 * have modified qp->s_ack_psn here.
3617 qp->s_flags &= ~(RVT_S_ACK_PENDING);
3619 trace_hfi1_rsp_tid_write_alloc_res(qp, qp->r_psn);
3621 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3622 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3623 * used for this because qp->s_lock is dropped before calling
3624 * hfi1_send_rc_ack() leading to inconsistency between the receive
3625 * interrupt handlers and the send thread in make_rc_ack()
3627 qpriv->rnr_nak_state = TID_RNR_NAK_SEND;
3630 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3631 * interrupt handlers but will be sent from the send engine behind any
3632 * previous responses that may have been scheduled
3634 rc_defered_ack(rcd, qp);
3637 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet)
3639 /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3642 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3643 * (see hfi1_rc_rcv())
3644 * - Don't allow 0-length requests.
3645 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3646 * - Setup struct tid_rdma_req with request info
3647 * - Prepare struct tid_rdma_flow array?
3648 * 3. Set the qp->s_ack_state as state diagram in design doc.
3649 * 4. Set RVT_S_RESP_PENDING in s_flags.
3650 * 5. Kick the send engine (hfi1_schedule_send())
3652 struct hfi1_ctxtdata *rcd = packet->rcd;
3653 struct rvt_qp *qp = packet->qp;
3654 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
3655 struct ib_other_headers *ohdr = packet->ohdr;
3656 struct rvt_ack_entry *e;
3657 unsigned long flags;
3658 struct ib_reth *reth;
3659 struct hfi1_qp_priv *qpriv = qp->priv;
3660 struct tid_rdma_request *req;
3661 u32 bth0, psn, len, rkey, num_segs;
3662 bool fecn;
3663 u8 next;
3664 u64 vaddr;
3665 int diff;
3667 bth0 = be32_to_cpu(ohdr->bth[0]);
3668 if (hfi1_ruc_check_hdr(ibp, packet))
3669 return;
3671 fecn = process_ecn(qp, packet);
3672 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
3673 trace_hfi1_rsp_rcv_tid_write_req(qp, psn);
3675 if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
3676 rvt_comm_est(qp);
3678 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3679 goto nack_inv;
3681 reth = &ohdr->u.tid_rdma.w_req.reth;
3682 vaddr = be64_to_cpu(reth->vaddr);
3683 len = be32_to_cpu(reth->length);
3685 num_segs = DIV_ROUND_UP(len, qpriv->tid_rdma.local.max_len);
3686 diff = delta_psn(psn, qp->r_psn);
3687 if (unlikely(diff)) {
3688 tid_rdma_rcv_err(packet, ohdr, qp, psn, diff, fecn);
3689 return;
3693 * The resent request which was previously RNR NAK'd is inserted at the
3694 * location of the original request, which is one entry behind
3695 * r_head_ack_queue
3697 if (qpriv->rnr_nak_state)
3698 qp->r_head_ack_queue = qp->r_head_ack_queue ?
3699 qp->r_head_ack_queue - 1 :
3700 rvt_size_atomic(ib_to_rvt(qp->ibqp.device));
3702 /* We've verified the request, insert it into the ack queue. */
3703 next = qp->r_head_ack_queue + 1;
3704 if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
3705 next = 0;
3706 spin_lock_irqsave(&qp->s_lock, flags);
3707 if (unlikely(next == qp->s_acked_ack_queue)) {
3708 if (!qp->s_ack_queue[next].sent)
3709 goto nack_inv_unlock;
3710 update_ack_queue(qp, next);
3712 e = &qp->s_ack_queue[qp->r_head_ack_queue];
3713 req = ack_to_tid_req(e);
3715 /* Bring previously RNR NAK'd request back to life */
3716 if (qpriv->rnr_nak_state) {
3717 qp->r_nak_state = 0;
3718 qp->s_nak_state = 0;
3719 qpriv->rnr_nak_state = TID_RNR_NAK_INIT;
3720 qp->r_psn = e->lpsn + 1;
3721 req->state = TID_REQUEST_INIT;
3722 goto update_head;
3725 release_rdma_sge_mr(e);
3727 /* The length needs to be in multiples of PAGE_SIZE */
3728 if (!len || len & ~PAGE_MASK)
3729 goto nack_inv_unlock;
3731 rkey = be32_to_cpu(reth->rkey);
3732 qp->r_len = len;
3734 if (e->opcode == TID_OP(WRITE_REQ) &&
3735 (req->setup_head != req->clear_tail ||
3736 req->clear_tail != req->acked_tail))
3737 goto nack_inv_unlock;
3739 if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
3740 rkey, IB_ACCESS_REMOTE_WRITE)))
3741 goto nack_acc;
3743 qp->r_psn += num_segs - 1;
3745 e->opcode = (bth0 >> 24) & 0xff;
3746 e->psn = psn;
3747 e->lpsn = qp->r_psn;
3748 e->sent = 0;
3750 req->n_flows = min_t(u16, num_segs, qpriv->tid_rdma.local.max_write);
3751 req->state = TID_REQUEST_INIT;
3752 req->cur_seg = 0;
3753 req->comp_seg = 0;
3754 req->ack_seg = 0;
3755 req->alloc_seg = 0;
3756 req->isge = 0;
3757 req->seg_len = qpriv->tid_rdma.local.max_len;
3758 req->total_len = len;
3759 req->total_segs = num_segs;
3760 req->r_flow_psn = e->psn;
3761 req->ss.sge = e->rdma_sge;
3762 req->ss.num_sge = 1;
3764 req->flow_idx = req->setup_head;
3765 req->clear_tail = req->setup_head;
3766 req->acked_tail = req->setup_head;
3768 qp->r_state = e->opcode;
3769 qp->r_nak_state = 0;
3771 * We need to increment the MSN here instead of when we
3772 * finish sending the result since a duplicate request would
3773 * increment it more than once.
3775 qp->r_msn++;
3776 qp->r_psn++;
3778 trace_hfi1_tid_req_rcv_write_req(qp, 0, e->opcode, e->psn, e->lpsn,
3779 req);
3781 if (qpriv->r_tid_tail == HFI1_QP_WQE_INVALID) {
3782 qpriv->r_tid_tail = qp->r_head_ack_queue;
3783 } else if (qpriv->r_tid_tail == qpriv->r_tid_head) {
3784 struct tid_rdma_request *ptr;
3786 e = &qp->s_ack_queue[qpriv->r_tid_tail];
3787 ptr = ack_to_tid_req(e);
3789 if (e->opcode != TID_OP(WRITE_REQ) ||
3790 ptr->comp_seg == ptr->total_segs) {
3791 if (qpriv->r_tid_tail == qpriv->r_tid_ack)
3792 qpriv->r_tid_ack = qp->r_head_ack_queue;
3793 qpriv->r_tid_tail = qp->r_head_ack_queue;
3796 update_head:
3797 qp->r_head_ack_queue = next;
3798 qpriv->r_tid_head = qp->r_head_ack_queue;
3800 hfi1_tid_write_alloc_resources(qp, true);
3801 trace_hfi1_tid_write_rsp_rcv_req(qp);
3803 /* Schedule the send tasklet. */
3804 qp->s_flags |= RVT_S_RESP_PENDING;
3805 if (fecn)
3806 qp->s_flags |= RVT_S_ECN;
3807 hfi1_schedule_send(qp);
3809 spin_unlock_irqrestore(&qp->s_lock, flags);
3810 return;
3812 nack_inv_unlock:
3813 spin_unlock_irqrestore(&qp->s_lock, flags);
3814 nack_inv:
3815 rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
3816 qp->r_nak_state = IB_NAK_INVALID_REQUEST;
3817 qp->r_ack_psn = qp->r_psn;
3818 /* Queue NAK for later */
3819 rc_defered_ack(rcd, qp);
3820 return;
3821 nack_acc:
3822 spin_unlock_irqrestore(&qp->s_lock, flags);
3823 rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
3824 qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
3825 qp->r_ack_psn = qp->r_psn;
3828 u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
3829 struct ib_other_headers *ohdr, u32 *bth1,
3830 u32 bth2, u32 *len,
3831 struct rvt_sge_state **ss)
3833 struct hfi1_ack_priv *epriv = e->priv;
3834 struct tid_rdma_request *req = &epriv->tid_req;
3835 struct hfi1_qp_priv *qpriv = qp->priv;
3836 struct tid_rdma_flow *flow = NULL;
3837 u32 resp_len = 0, hdwords = 0;
3838 void *resp_addr = NULL;
3839 struct tid_rdma_params *remote;
3841 trace_hfi1_tid_req_build_write_resp(qp, 0, e->opcode, e->psn, e->lpsn,
3842 req);
3843 trace_hfi1_tid_write_rsp_build_resp(qp);
3844 trace_hfi1_rsp_build_tid_write_resp(qp, bth2);
3845 flow = &req->flows[req->flow_idx];
3846 switch (req->state) {
3847 default:
3849 * Try to allocate resources here in case QP was queued and was
3850 * later scheduled when resources became available
3852 hfi1_tid_write_alloc_resources(qp, false);
3854 /* We've already sent everything which is ready */
3855 if (req->cur_seg >= req->alloc_seg)
3856 goto done;
3859 * Resources can be assigned but responses cannot be sent in
3860 * rnr_nak state, till the resent request is received
3862 if (qpriv->rnr_nak_state == TID_RNR_NAK_SENT)
3863 goto done;
3865 req->state = TID_REQUEST_ACTIVE;
3866 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3867 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3868 hfi1_add_tid_reap_timer(qp);
3869 break;
3871 case TID_REQUEST_RESEND_ACTIVE:
3872 case TID_REQUEST_RESEND:
3873 trace_hfi1_tid_flow_build_write_resp(qp, req->flow_idx, flow);
3874 req->flow_idx = CIRC_NEXT(req->flow_idx, MAX_FLOWS);
3875 if (!CIRC_CNT(req->setup_head, req->flow_idx, MAX_FLOWS))
3876 req->state = TID_REQUEST_ACTIVE;
3878 hfi1_mod_tid_reap_timer(qp);
3879 break;
3881 flow->flow_state.resp_ib_psn = bth2;
3882 resp_addr = (void *)flow->tid_entry;
3883 resp_len = sizeof(*flow->tid_entry) * flow->tidcnt;
3884 req->cur_seg++;
3886 memset(&ohdr->u.tid_rdma.w_rsp, 0, sizeof(ohdr->u.tid_rdma.w_rsp));
3887 epriv->ss.sge.vaddr = resp_addr;
3888 epriv->ss.sge.sge_length = resp_len;
3889 epriv->ss.sge.length = epriv->ss.sge.sge_length;
3891 * We can safely zero these out. Since the first SGE covers the
3892 * entire packet, nothing else should even look at the MR.
3894 epriv->ss.sge.mr = NULL;
3895 epriv->ss.sge.m = 0;
3896 epriv->ss.sge.n = 0;
3898 epriv->ss.sg_list = NULL;
3899 epriv->ss.total_len = epriv->ss.sge.sge_length;
3900 epriv->ss.num_sge = 1;
3902 *ss = &epriv->ss;
3903 *len = epriv->ss.total_len;
3905 /* Construct the TID RDMA WRITE RESP packet header */
3906 rcu_read_lock();
3907 remote = rcu_dereference(qpriv->tid_rdma.remote);
3909 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth0, KVER, 0x1);
3910 KDETH_RESET(ohdr->u.tid_rdma.w_rsp.kdeth1, JKEY, remote->jkey);
3911 ohdr->u.tid_rdma.w_rsp.aeth = rvt_compute_aeth(qp);
3912 ohdr->u.tid_rdma.w_rsp.tid_flow_psn =
3913 cpu_to_be32((flow->flow_state.generation <<
3914 HFI1_KDETH_BTH_SEQ_SHIFT) |
3915 (flow->flow_state.spsn &
3916 HFI1_KDETH_BTH_SEQ_MASK));
3917 ohdr->u.tid_rdma.w_rsp.tid_flow_qp =
3918 cpu_to_be32(qpriv->tid_rdma.local.qp |
3919 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
3920 TID_RDMA_DESTQP_FLOW_SHIFT) |
3921 qpriv->rcd->ctxt);
3922 ohdr->u.tid_rdma.w_rsp.verbs_qp = cpu_to_be32(qp->remote_qpn);
3923 *bth1 = remote->qp;
3924 rcu_read_unlock();
3925 hdwords = sizeof(ohdr->u.tid_rdma.w_rsp) / sizeof(u32);
3926 qpriv->pending_tid_w_segs++;
3927 done:
3928 return hdwords;
3931 static void hfi1_add_tid_reap_timer(struct rvt_qp *qp)
3933 struct hfi1_qp_priv *qpriv = qp->priv;
3935 lockdep_assert_held(&qp->s_lock);
3936 if (!(qpriv->s_flags & HFI1_R_TID_RSC_TIMER)) {
3937 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3938 qpriv->s_tid_timer.expires = jiffies +
3939 qpriv->tid_timer_timeout_jiffies;
3940 add_timer(&qpriv->s_tid_timer);
3944 static void hfi1_mod_tid_reap_timer(struct rvt_qp *qp)
3946 struct hfi1_qp_priv *qpriv = qp->priv;
3948 lockdep_assert_held(&qp->s_lock);
3949 qpriv->s_flags |= HFI1_R_TID_RSC_TIMER;
3950 mod_timer(&qpriv->s_tid_timer, jiffies +
3951 qpriv->tid_timer_timeout_jiffies);
3954 static int hfi1_stop_tid_reap_timer(struct rvt_qp *qp)
3956 struct hfi1_qp_priv *qpriv = qp->priv;
3957 int rval = 0;
3959 lockdep_assert_held(&qp->s_lock);
3960 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3961 rval = del_timer(&qpriv->s_tid_timer);
3962 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3964 return rval;
3967 void hfi1_del_tid_reap_timer(struct rvt_qp *qp)
3969 struct hfi1_qp_priv *qpriv = qp->priv;
3971 del_timer_sync(&qpriv->s_tid_timer);
3972 qpriv->s_flags &= ~HFI1_R_TID_RSC_TIMER;
3975 static void hfi1_tid_timeout(struct timer_list *t)
3977 struct hfi1_qp_priv *qpriv = from_timer(qpriv, t, s_tid_timer);
3978 struct rvt_qp *qp = qpriv->owner;
3979 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
3980 unsigned long flags;
3981 u32 i;
3983 spin_lock_irqsave(&qp->r_lock, flags);
3984 spin_lock(&qp->s_lock);
3985 if (qpriv->s_flags & HFI1_R_TID_RSC_TIMER) {
3986 dd_dev_warn(dd_from_ibdev(qp->ibqp.device), "[QP%u] %s %d\n",
3987 qp->ibqp.qp_num, __func__, __LINE__);
3988 trace_hfi1_msg_tid_timeout(/* msg */
3989 qp, "resource timeout = ",
3990 (u64)qpriv->tid_timer_timeout_jiffies);
3991 hfi1_stop_tid_reap_timer(qp);
3993 * Go though the entire ack queue and clear any outstanding
3994 * HW flow and RcvArray resources.
3996 hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
3997 for (i = 0; i < rvt_max_atomic(rdi); i++) {
3998 struct tid_rdma_request *req =
3999 ack_to_tid_req(&qp->s_ack_queue[i]);
4001 hfi1_kern_exp_rcv_clear_all(req);
4003 spin_unlock(&qp->s_lock);
4004 if (qp->ibqp.event_handler) {
4005 struct ib_event ev;
4007 ev.device = qp->ibqp.device;
4008 ev.element.qp = &qp->ibqp;
4009 ev.event = IB_EVENT_QP_FATAL;
4010 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
4012 rvt_rc_error(qp, IB_WC_RESP_TIMEOUT_ERR);
4013 goto unlock_r_lock;
4015 spin_unlock(&qp->s_lock);
4016 unlock_r_lock:
4017 spin_unlock_irqrestore(&qp->r_lock, flags);
4020 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet)
4022 /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4025 * 1. Find matching SWQE
4026 * 2. Check that TIDENTRY array has enough space for a complete
4027 * segment. If not, put QP in error state.
4028 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4029 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4030 * 5. Set qp->s_state
4031 * 6. Kick the send engine (hfi1_schedule_send())
4033 struct ib_other_headers *ohdr = packet->ohdr;
4034 struct rvt_qp *qp = packet->qp;
4035 struct hfi1_qp_priv *qpriv = qp->priv;
4036 struct hfi1_ctxtdata *rcd = packet->rcd;
4037 struct rvt_swqe *wqe;
4038 struct tid_rdma_request *req;
4039 struct tid_rdma_flow *flow;
4040 enum ib_wc_status status;
4041 u32 opcode, aeth, psn, flow_psn, i, tidlen = 0, pktlen;
4042 bool fecn;
4043 unsigned long flags;
4045 fecn = process_ecn(qp, packet);
4046 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4047 aeth = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.aeth);
4048 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4050 spin_lock_irqsave(&qp->s_lock, flags);
4052 /* Ignore invalid responses */
4053 if (cmp_psn(psn, qp->s_next_psn) >= 0)
4054 goto ack_done;
4056 /* Ignore duplicate responses. */
4057 if (unlikely(cmp_psn(psn, qp->s_last_psn) <= 0))
4058 goto ack_done;
4060 if (unlikely(qp->s_acked == qp->s_tail))
4061 goto ack_done;
4064 * If we are waiting for a particular packet sequence number
4065 * due to a request being resent, check for it. Otherwise,
4066 * ensure that we haven't missed anything.
4068 if (qp->r_flags & RVT_R_RDMAR_SEQ) {
4069 if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
4070 goto ack_done;
4071 qp->r_flags &= ~RVT_R_RDMAR_SEQ;
4074 wqe = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur);
4075 if (unlikely(wqe->wr.opcode != IB_WR_TID_RDMA_WRITE))
4076 goto ack_op_err;
4078 req = wqe_to_tid_req(wqe);
4080 * If we've lost ACKs and our acked_tail pointer is too far
4081 * behind, don't overwrite segments. Just drop the packet and
4082 * let the reliability protocol take care of it.
4084 if (!CIRC_SPACE(req->setup_head, req->acked_tail, MAX_FLOWS))
4085 goto ack_done;
4088 * The call to do_rc_ack() should be last in the chain of
4089 * packet checks because it will end up updating the QP state.
4090 * Therefore, anything that would prevent the packet from
4091 * being accepted as a successful response should be prior
4092 * to it.
4094 if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
4095 goto ack_done;
4097 trace_hfi1_ack(qp, psn);
4099 flow = &req->flows[req->setup_head];
4100 flow->pkt = 0;
4101 flow->tid_idx = 0;
4102 flow->tid_offset = 0;
4103 flow->sent = 0;
4104 flow->resync_npkts = 0;
4105 flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_qp);
4106 flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
4107 TID_RDMA_DESTQP_FLOW_MASK;
4108 flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.w_rsp.tid_flow_psn));
4109 flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4110 flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
4111 flow->flow_state.resp_ib_psn = psn;
4112 flow->length = min_t(u32, req->seg_len,
4113 (wqe->length - (req->comp_seg * req->seg_len)));
4115 flow->npkts = rvt_div_round_up_mtu(qp, flow->length);
4116 flow->flow_state.lpsn = flow->flow_state.spsn +
4117 flow->npkts - 1;
4118 /* payload length = packet length - (header length + ICRC length) */
4119 pktlen = packet->tlen - (packet->hlen + 4);
4120 if (pktlen > sizeof(flow->tid_entry)) {
4121 status = IB_WC_LOC_LEN_ERR;
4122 goto ack_err;
4124 memcpy(flow->tid_entry, packet->ebuf, pktlen);
4125 flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
4126 trace_hfi1_tid_flow_rcv_write_resp(qp, req->setup_head, flow);
4128 req->comp_seg++;
4129 trace_hfi1_tid_write_sender_rcv_resp(qp, 0);
4131 * Walk the TID_ENTRY list to make sure we have enough space for a
4132 * complete segment.
4134 for (i = 0; i < flow->tidcnt; i++) {
4135 trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4136 qp, i, flow->tid_entry[i]);
4137 if (!EXP_TID_GET(flow->tid_entry[i], LEN)) {
4138 status = IB_WC_LOC_LEN_ERR;
4139 goto ack_err;
4141 tidlen += EXP_TID_GET(flow->tid_entry[i], LEN);
4143 if (tidlen * PAGE_SIZE < flow->length) {
4144 status = IB_WC_LOC_LEN_ERR;
4145 goto ack_err;
4148 trace_hfi1_tid_req_rcv_write_resp(qp, 0, wqe->wr.opcode, wqe->psn,
4149 wqe->lpsn, req);
4151 * If this is the first response for this request, set the initial
4152 * flow index to the current flow.
4154 if (!cmp_psn(psn, wqe->psn)) {
4155 req->r_last_acked = mask_psn(wqe->psn - 1);
4156 /* Set acked flow index to head index */
4157 req->acked_tail = req->setup_head;
4160 /* advance circular buffer head */
4161 req->setup_head = CIRC_NEXT(req->setup_head, MAX_FLOWS);
4162 req->state = TID_REQUEST_ACTIVE;
4165 * If all responses for this TID RDMA WRITE request have been received
4166 * advance the pointer to the next one.
4167 * Since TID RDMA requests could be mixed in with regular IB requests,
4168 * they might not appear sequentially in the queue. Therefore, the
4169 * next request needs to be "found".
4171 if (qpriv->s_tid_cur != qpriv->s_tid_head &&
4172 req->comp_seg == req->total_segs) {
4173 for (i = qpriv->s_tid_cur + 1; ; i++) {
4174 if (i == qp->s_size)
4175 i = 0;
4176 wqe = rvt_get_swqe_ptr(qp, i);
4177 if (i == qpriv->s_tid_head)
4178 break;
4179 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4180 break;
4182 qpriv->s_tid_cur = i;
4184 qp->s_flags &= ~HFI1_S_WAIT_TID_RESP;
4185 hfi1_schedule_tid_send(qp);
4186 goto ack_done;
4188 ack_op_err:
4189 status = IB_WC_LOC_QP_OP_ERR;
4190 ack_err:
4191 rvt_error_qp(qp, status);
4192 ack_done:
4193 if (fecn)
4194 qp->s_flags |= RVT_S_ECN;
4195 spin_unlock_irqrestore(&qp->s_lock, flags);
4198 bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
4199 struct ib_other_headers *ohdr,
4200 u32 *bth1, u32 *bth2, u32 *len)
4202 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4203 struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
4204 struct tid_rdma_params *remote;
4205 struct rvt_qp *qp = req->qp;
4206 struct hfi1_qp_priv *qpriv = qp->priv;
4207 u32 tidentry = flow->tid_entry[flow->tid_idx];
4208 u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
4209 struct tid_rdma_write_data *wd = &ohdr->u.tid_rdma.w_data;
4210 u32 next_offset, om = KDETH_OM_LARGE;
4211 bool last_pkt;
4213 if (!tidlen) {
4214 hfi1_trdma_send_complete(qp, wqe, IB_WC_REM_INV_RD_REQ_ERR);
4215 rvt_error_qp(qp, IB_WC_REM_INV_RD_REQ_ERR);
4218 *len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
4219 flow->sent += *len;
4220 next_offset = flow->tid_offset + *len;
4221 last_pkt = (flow->tid_idx == (flow->tidcnt - 1) &&
4222 next_offset >= tidlen) || (flow->sent >= flow->length);
4223 trace_hfi1_tid_entry_build_write_data(qp, flow->tid_idx, tidentry);
4224 trace_hfi1_tid_flow_build_write_data(qp, req->clear_tail, flow);
4226 rcu_read_lock();
4227 remote = rcu_dereference(qpriv->tid_rdma.remote);
4228 KDETH_RESET(wd->kdeth0, KVER, 0x1);
4229 KDETH_SET(wd->kdeth0, SH, !last_pkt);
4230 KDETH_SET(wd->kdeth0, INTR, !!(!last_pkt && remote->urg));
4231 KDETH_SET(wd->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
4232 KDETH_SET(wd->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
4233 KDETH_SET(wd->kdeth0, OM, om == KDETH_OM_LARGE);
4234 KDETH_SET(wd->kdeth0, OFFSET, flow->tid_offset / om);
4235 KDETH_RESET(wd->kdeth1, JKEY, remote->jkey);
4236 wd->verbs_qp = cpu_to_be32(qp->remote_qpn);
4237 rcu_read_unlock();
4239 *bth1 = flow->tid_qpn;
4240 *bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
4241 HFI1_KDETH_BTH_SEQ_MASK) |
4242 (flow->flow_state.generation <<
4243 HFI1_KDETH_BTH_SEQ_SHIFT));
4244 if (last_pkt) {
4245 /* PSNs are zero-based, so +1 to count number of packets */
4246 if (flow->flow_state.lpsn + 1 +
4247 rvt_div_round_up_mtu(qp, req->seg_len) >
4248 MAX_TID_FLOW_PSN)
4249 req->state = TID_REQUEST_SYNC;
4250 *bth2 |= IB_BTH_REQ_ACK;
4253 if (next_offset >= tidlen) {
4254 flow->tid_offset = 0;
4255 flow->tid_idx++;
4256 } else {
4257 flow->tid_offset = next_offset;
4259 return last_pkt;
4262 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet)
4264 struct rvt_qp *qp = packet->qp;
4265 struct hfi1_qp_priv *priv = qp->priv;
4266 struct hfi1_ctxtdata *rcd = priv->rcd;
4267 struct ib_other_headers *ohdr = packet->ohdr;
4268 struct rvt_ack_entry *e;
4269 struct tid_rdma_request *req;
4270 struct tid_rdma_flow *flow;
4271 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4272 unsigned long flags;
4273 u32 psn, next;
4274 u8 opcode;
4275 bool fecn;
4277 fecn = process_ecn(qp, packet);
4278 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4279 opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
4282 * All error handling should be done by now. If we are here, the packet
4283 * is either good or been accepted by the error handler.
4285 spin_lock_irqsave(&qp->s_lock, flags);
4286 e = &qp->s_ack_queue[priv->r_tid_tail];
4287 req = ack_to_tid_req(e);
4288 flow = &req->flows[req->clear_tail];
4289 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.lpsn))) {
4290 update_r_next_psn_fecn(packet, priv, rcd, flow, fecn);
4292 if (cmp_psn(psn, flow->flow_state.r_next_psn))
4293 goto send_nak;
4295 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4297 * Copy the payload to destination buffer if this packet is
4298 * delivered as an eager packet due to RSM rule and FECN.
4299 * The RSM rule selects FECN bit in BTH and SH bit in
4300 * KDETH header and therefore will not match the last
4301 * packet of each segment that has SH bit cleared.
4303 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER) {
4304 struct rvt_sge_state ss;
4305 u32 len;
4306 u32 tlen = packet->tlen;
4307 u16 hdrsize = packet->hlen;
4308 u8 pad = packet->pad;
4309 u8 extra_bytes = pad + packet->extra_byte +
4310 (SIZE_OF_CRC << 2);
4311 u32 pmtu = qp->pmtu;
4313 if (unlikely(tlen != (hdrsize + pmtu + extra_bytes)))
4314 goto send_nak;
4315 len = req->comp_seg * req->seg_len;
4316 len += delta_psn(psn,
4317 full_flow_psn(flow, flow->flow_state.spsn)) *
4318 pmtu;
4319 if (unlikely(req->total_len - len < pmtu))
4320 goto send_nak;
4323 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4324 * is first received and is never modified thereafter.
4326 ss.sge = e->rdma_sge;
4327 ss.sg_list = NULL;
4328 ss.num_sge = 1;
4329 ss.total_len = req->total_len;
4330 rvt_skip_sge(&ss, len, false);
4331 rvt_copy_sge(qp, &ss, packet->payload, pmtu, false,
4332 false);
4333 /* Raise the sw sequence check flag for next packet */
4334 priv->r_next_psn_kdeth = mask_psn(psn + 1);
4335 priv->s_flags |= HFI1_R_TID_SW_PSN;
4337 goto exit;
4339 flow->flow_state.r_next_psn = mask_psn(psn + 1);
4340 hfi1_kern_exp_rcv_clear(req);
4341 priv->alloc_w_segs--;
4342 rcd->flows[flow->idx].psn = psn & HFI1_KDETH_BTH_SEQ_MASK;
4343 req->comp_seg++;
4344 priv->s_nak_state = 0;
4347 * Release the flow if one of the following conditions has been met:
4348 * - The request has reached a sync point AND all outstanding
4349 * segments have been completed, or
4350 * - The entire request is complete and there are no more requests
4351 * (of any kind) in the queue.
4353 trace_hfi1_rsp_rcv_tid_write_data(qp, psn);
4354 trace_hfi1_tid_req_rcv_write_data(qp, 0, e->opcode, e->psn, e->lpsn,
4355 req);
4356 trace_hfi1_tid_write_rsp_rcv_data(qp);
4357 validate_r_tid_ack(priv);
4359 if (opcode == TID_OP(WRITE_DATA_LAST)) {
4360 release_rdma_sge_mr(e);
4361 for (next = priv->r_tid_tail + 1; ; next++) {
4362 if (next > rvt_size_atomic(&dev->rdi))
4363 next = 0;
4364 if (next == priv->r_tid_head)
4365 break;
4366 e = &qp->s_ack_queue[next];
4367 if (e->opcode == TID_OP(WRITE_REQ))
4368 break;
4370 priv->r_tid_tail = next;
4371 if (++qp->s_acked_ack_queue > rvt_size_atomic(&dev->rdi))
4372 qp->s_acked_ack_queue = 0;
4375 hfi1_tid_write_alloc_resources(qp, true);
4378 * If we need to generate more responses, schedule the
4379 * send engine.
4381 if (req->cur_seg < req->total_segs ||
4382 qp->s_tail_ack_queue != qp->r_head_ack_queue) {
4383 qp->s_flags |= RVT_S_RESP_PENDING;
4384 hfi1_schedule_send(qp);
4387 priv->pending_tid_w_segs--;
4388 if (priv->s_flags & HFI1_R_TID_RSC_TIMER) {
4389 if (priv->pending_tid_w_segs)
4390 hfi1_mod_tid_reap_timer(req->qp);
4391 else
4392 hfi1_stop_tid_reap_timer(req->qp);
4395 done:
4396 tid_rdma_schedule_ack(qp);
4397 exit:
4398 priv->r_next_psn_kdeth = flow->flow_state.r_next_psn;
4399 if (fecn)
4400 qp->s_flags |= RVT_S_ECN;
4401 spin_unlock_irqrestore(&qp->s_lock, flags);
4402 return;
4404 send_nak:
4405 if (!priv->s_nak_state) {
4406 priv->s_nak_state = IB_NAK_PSN_ERROR;
4407 priv->s_nak_psn = flow->flow_state.r_next_psn;
4408 tid_rdma_trigger_ack(qp);
4410 goto done;
4413 static bool hfi1_tid_rdma_is_resync_psn(u32 psn)
4415 return (bool)((psn & HFI1_KDETH_BTH_SEQ_MASK) ==
4416 HFI1_KDETH_BTH_SEQ_MASK);
4419 u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
4420 struct ib_other_headers *ohdr, u16 iflow,
4421 u32 *bth1, u32 *bth2)
4423 struct hfi1_qp_priv *qpriv = qp->priv;
4424 struct tid_flow_state *fs = &qpriv->flow_state;
4425 struct tid_rdma_request *req = ack_to_tid_req(e);
4426 struct tid_rdma_flow *flow = &req->flows[iflow];
4427 struct tid_rdma_params *remote;
4429 rcu_read_lock();
4430 remote = rcu_dereference(qpriv->tid_rdma.remote);
4431 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4432 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4433 *bth1 = remote->qp;
4434 rcu_read_unlock();
4436 if (qpriv->resync) {
4437 *bth2 = mask_psn((fs->generation <<
4438 HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4439 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4440 } else if (qpriv->s_nak_state) {
4441 *bth2 = mask_psn(qpriv->s_nak_psn);
4442 ohdr->u.tid_rdma.ack.aeth =
4443 cpu_to_be32((qp->r_msn & IB_MSN_MASK) |
4444 (qpriv->s_nak_state <<
4445 IB_AETH_CREDIT_SHIFT));
4446 } else {
4447 *bth2 = full_flow_psn(flow, flow->flow_state.lpsn);
4448 ohdr->u.tid_rdma.ack.aeth = rvt_compute_aeth(qp);
4450 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4451 ohdr->u.tid_rdma.ack.tid_flow_qp =
4452 cpu_to_be32(qpriv->tid_rdma.local.qp |
4453 ((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
4454 TID_RDMA_DESTQP_FLOW_SHIFT) |
4455 qpriv->rcd->ctxt);
4457 ohdr->u.tid_rdma.ack.tid_flow_psn = 0;
4458 ohdr->u.tid_rdma.ack.verbs_psn =
4459 cpu_to_be32(flow->flow_state.resp_ib_psn);
4461 if (qpriv->resync) {
4463 * If the PSN before the current expect KDETH PSN is the
4464 * RESYNC PSN, then we never received a good TID RDMA WRITE
4465 * DATA packet after a previous RESYNC.
4466 * In this case, the next expected KDETH PSN stays the same.
4468 if (hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1)) {
4469 ohdr->u.tid_rdma.ack.tid_flow_psn =
4470 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4471 } else {
4473 * Because the KDETH PSNs jump during a RESYNC, it's
4474 * not possible to infer (or compute) the previous value
4475 * of r_next_psn_kdeth in the case of back-to-back
4476 * RESYNC packets. Therefore, we save it.
4478 qpriv->r_next_psn_kdeth_save =
4479 qpriv->r_next_psn_kdeth - 1;
4480 ohdr->u.tid_rdma.ack.tid_flow_psn =
4481 cpu_to_be32(qpriv->r_next_psn_kdeth_save);
4482 qpriv->r_next_psn_kdeth = mask_psn(*bth2 + 1);
4484 qpriv->resync = false;
4487 return sizeof(ohdr->u.tid_rdma.ack) / sizeof(u32);
4490 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet)
4492 struct ib_other_headers *ohdr = packet->ohdr;
4493 struct rvt_qp *qp = packet->qp;
4494 struct hfi1_qp_priv *qpriv = qp->priv;
4495 struct rvt_swqe *wqe;
4496 struct tid_rdma_request *req;
4497 struct tid_rdma_flow *flow;
4498 u32 aeth, psn, req_psn, ack_psn, flpsn, resync_psn, ack_kpsn;
4499 unsigned long flags;
4500 u16 fidx;
4502 trace_hfi1_tid_write_sender_rcv_tid_ack(qp, 0);
4503 process_ecn(qp, packet);
4504 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4505 aeth = be32_to_cpu(ohdr->u.tid_rdma.ack.aeth);
4506 req_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.verbs_psn));
4507 resync_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.ack.tid_flow_psn));
4509 spin_lock_irqsave(&qp->s_lock, flags);
4510 trace_hfi1_rcv_tid_ack(qp, aeth, psn, req_psn, resync_psn);
4512 /* If we are waiting for an ACK to RESYNC, drop any other packets */
4513 if ((qp->s_flags & HFI1_S_WAIT_HALT) &&
4514 cmp_psn(psn, qpriv->s_resync_psn))
4515 goto ack_op_err;
4517 ack_psn = req_psn;
4518 if (hfi1_tid_rdma_is_resync_psn(psn))
4519 ack_kpsn = resync_psn;
4520 else
4521 ack_kpsn = psn;
4522 if (aeth >> 29) {
4523 ack_psn--;
4524 ack_kpsn--;
4527 if (unlikely(qp->s_acked == qp->s_tail))
4528 goto ack_op_err;
4530 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4532 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4533 goto ack_op_err;
4535 req = wqe_to_tid_req(wqe);
4536 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4537 wqe->lpsn, req);
4538 flow = &req->flows[req->acked_tail];
4539 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4541 /* Drop stale ACK/NAK */
4542 if (cmp_psn(psn, full_flow_psn(flow, flow->flow_state.spsn)) < 0 ||
4543 cmp_psn(req_psn, flow->flow_state.resp_ib_psn) < 0)
4544 goto ack_op_err;
4546 while (cmp_psn(ack_kpsn,
4547 full_flow_psn(flow, flow->flow_state.lpsn)) >= 0 &&
4548 req->ack_seg < req->cur_seg) {
4549 req->ack_seg++;
4550 /* advance acked segment pointer */
4551 req->acked_tail = CIRC_NEXT(req->acked_tail, MAX_FLOWS);
4552 req->r_last_acked = flow->flow_state.resp_ib_psn;
4553 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4554 wqe->lpsn, req);
4555 if (req->ack_seg == req->total_segs) {
4556 req->state = TID_REQUEST_COMPLETE;
4557 wqe = do_rc_completion(qp, wqe,
4558 to_iport(qp->ibqp.device,
4559 qp->port_num));
4560 trace_hfi1_sender_rcv_tid_ack(qp);
4561 atomic_dec(&qpriv->n_tid_requests);
4562 if (qp->s_acked == qp->s_tail)
4563 break;
4564 if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE)
4565 break;
4566 req = wqe_to_tid_req(wqe);
4568 flow = &req->flows[req->acked_tail];
4569 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail, flow);
4572 trace_hfi1_tid_req_rcv_tid_ack(qp, 0, wqe->wr.opcode, wqe->psn,
4573 wqe->lpsn, req);
4574 switch (aeth >> 29) {
4575 case 0: /* ACK */
4576 if (qpriv->s_flags & RVT_S_WAIT_ACK)
4577 qpriv->s_flags &= ~RVT_S_WAIT_ACK;
4578 if (!hfi1_tid_rdma_is_resync_psn(psn)) {
4579 /* Check if there is any pending TID ACK */
4580 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE &&
4581 req->ack_seg < req->cur_seg)
4582 hfi1_mod_tid_retry_timer(qp);
4583 else
4584 hfi1_stop_tid_retry_timer(qp);
4585 hfi1_schedule_send(qp);
4586 } else {
4587 u32 spsn, fpsn, last_acked, generation;
4588 struct tid_rdma_request *rptr;
4590 /* ACK(RESYNC) */
4591 hfi1_stop_tid_retry_timer(qp);
4592 /* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4593 qp->s_flags &= ~HFI1_S_WAIT_HALT;
4595 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4596 * ACK is received after the TID retry timer is fired
4597 * again. In this case, do not send any more TID
4598 * RESYNC request or wait for any more TID ACK packet.
4600 qpriv->s_flags &= ~RVT_S_SEND_ONE;
4601 hfi1_schedule_send(qp);
4603 if ((qp->s_acked == qpriv->s_tid_tail &&
4604 req->ack_seg == req->total_segs) ||
4605 qp->s_acked == qp->s_tail) {
4606 qpriv->s_state = TID_OP(WRITE_DATA_LAST);
4607 goto done;
4610 if (req->ack_seg == req->comp_seg) {
4611 qpriv->s_state = TID_OP(WRITE_DATA);
4612 goto done;
4616 * The PSN to start with is the next PSN after the
4617 * RESYNC PSN.
4619 psn = mask_psn(psn + 1);
4620 generation = psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
4621 spsn = 0;
4624 * Update to the correct WQE when we get an ACK(RESYNC)
4625 * in the middle of a request.
4627 if (delta_psn(ack_psn, wqe->lpsn))
4628 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4629 req = wqe_to_tid_req(wqe);
4630 flow = &req->flows[req->acked_tail];
4632 * RESYNC re-numbers the PSN ranges of all remaining
4633 * segments. Also, PSN's start from 0 in the middle of a
4634 * segment and the first segment size is less than the
4635 * default number of packets. flow->resync_npkts is used
4636 * to track the number of packets from the start of the
4637 * real segment to the point of 0 PSN after the RESYNC
4638 * in order to later correctly rewind the SGE.
4640 fpsn = full_flow_psn(flow, flow->flow_state.spsn);
4641 req->r_ack_psn = psn;
4643 * If resync_psn points to the last flow PSN for a
4644 * segment and the new segment (likely from a new
4645 * request) starts with a new generation number, we
4646 * need to adjust resync_psn accordingly.
4648 if (flow->flow_state.generation !=
4649 (resync_psn >> HFI1_KDETH_BTH_SEQ_SHIFT))
4650 resync_psn = mask_psn(fpsn - 1);
4651 flow->resync_npkts +=
4652 delta_psn(mask_psn(resync_psn + 1), fpsn);
4654 * Renumber all packet sequence number ranges
4655 * based on the new generation.
4657 last_acked = qp->s_acked;
4658 rptr = req;
4659 while (1) {
4660 /* start from last acked segment */
4661 for (fidx = rptr->acked_tail;
4662 CIRC_CNT(rptr->setup_head, fidx,
4663 MAX_FLOWS);
4664 fidx = CIRC_NEXT(fidx, MAX_FLOWS)) {
4665 u32 lpsn;
4666 u32 gen;
4668 flow = &rptr->flows[fidx];
4669 gen = flow->flow_state.generation;
4670 if (WARN_ON(gen == generation &&
4671 flow->flow_state.spsn !=
4672 spsn))
4673 continue;
4674 lpsn = flow->flow_state.lpsn;
4675 lpsn = full_flow_psn(flow, lpsn);
4676 flow->npkts =
4677 delta_psn(lpsn,
4678 mask_psn(resync_psn)
4680 flow->flow_state.generation =
4681 generation;
4682 flow->flow_state.spsn = spsn;
4683 flow->flow_state.lpsn =
4684 flow->flow_state.spsn +
4685 flow->npkts - 1;
4686 flow->pkt = 0;
4687 spsn += flow->npkts;
4688 resync_psn += flow->npkts;
4689 trace_hfi1_tid_flow_rcv_tid_ack(qp,
4690 fidx,
4691 flow);
4693 if (++last_acked == qpriv->s_tid_cur + 1)
4694 break;
4695 if (last_acked == qp->s_size)
4696 last_acked = 0;
4697 wqe = rvt_get_swqe_ptr(qp, last_acked);
4698 rptr = wqe_to_tid_req(wqe);
4700 req->cur_seg = req->ack_seg;
4701 qpriv->s_tid_tail = qp->s_acked;
4702 qpriv->s_state = TID_OP(WRITE_REQ);
4703 hfi1_schedule_tid_send(qp);
4705 done:
4706 qpriv->s_retry = qp->s_retry_cnt;
4707 break;
4709 case 3: /* NAK */
4710 hfi1_stop_tid_retry_timer(qp);
4711 switch ((aeth >> IB_AETH_CREDIT_SHIFT) &
4712 IB_AETH_CREDIT_MASK) {
4713 case 0: /* PSN sequence error */
4714 if (!req->flows)
4715 break;
4716 flow = &req->flows[req->acked_tail];
4717 flpsn = full_flow_psn(flow, flow->flow_state.lpsn);
4718 if (cmp_psn(psn, flpsn) > 0)
4719 break;
4720 trace_hfi1_tid_flow_rcv_tid_ack(qp, req->acked_tail,
4721 flow);
4722 req->r_ack_psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4723 req->cur_seg = req->ack_seg;
4724 qpriv->s_tid_tail = qp->s_acked;
4725 qpriv->s_state = TID_OP(WRITE_REQ);
4726 qpriv->s_retry = qp->s_retry_cnt;
4727 hfi1_schedule_tid_send(qp);
4728 break;
4730 default:
4731 break;
4733 break;
4735 default:
4736 break;
4739 ack_op_err:
4740 spin_unlock_irqrestore(&qp->s_lock, flags);
4743 void hfi1_add_tid_retry_timer(struct rvt_qp *qp)
4745 struct hfi1_qp_priv *priv = qp->priv;
4746 struct ib_qp *ibqp = &qp->ibqp;
4747 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4749 lockdep_assert_held(&qp->s_lock);
4750 if (!(priv->s_flags & HFI1_S_TID_RETRY_TIMER)) {
4751 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4752 priv->s_tid_retry_timer.expires = jiffies +
4753 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies;
4754 add_timer(&priv->s_tid_retry_timer);
4758 static void hfi1_mod_tid_retry_timer(struct rvt_qp *qp)
4760 struct hfi1_qp_priv *priv = qp->priv;
4761 struct ib_qp *ibqp = &qp->ibqp;
4762 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
4764 lockdep_assert_held(&qp->s_lock);
4765 priv->s_flags |= HFI1_S_TID_RETRY_TIMER;
4766 mod_timer(&priv->s_tid_retry_timer, jiffies +
4767 priv->tid_retry_timeout_jiffies + rdi->busy_jiffies);
4770 static int hfi1_stop_tid_retry_timer(struct rvt_qp *qp)
4772 struct hfi1_qp_priv *priv = qp->priv;
4773 int rval = 0;
4775 lockdep_assert_held(&qp->s_lock);
4776 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4777 rval = del_timer(&priv->s_tid_retry_timer);
4778 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4780 return rval;
4783 void hfi1_del_tid_retry_timer(struct rvt_qp *qp)
4785 struct hfi1_qp_priv *priv = qp->priv;
4787 del_timer_sync(&priv->s_tid_retry_timer);
4788 priv->s_flags &= ~HFI1_S_TID_RETRY_TIMER;
4791 static void hfi1_tid_retry_timeout(struct timer_list *t)
4793 struct hfi1_qp_priv *priv = from_timer(priv, t, s_tid_retry_timer);
4794 struct rvt_qp *qp = priv->owner;
4795 struct rvt_swqe *wqe;
4796 unsigned long flags;
4797 struct tid_rdma_request *req;
4799 spin_lock_irqsave(&qp->r_lock, flags);
4800 spin_lock(&qp->s_lock);
4801 trace_hfi1_tid_write_sender_retry_timeout(qp, 0);
4802 if (priv->s_flags & HFI1_S_TID_RETRY_TIMER) {
4803 hfi1_stop_tid_retry_timer(qp);
4804 if (!priv->s_retry) {
4805 trace_hfi1_msg_tid_retry_timeout(/* msg */
4807 "Exhausted retries. Tid retry timeout = ",
4808 (u64)priv->tid_retry_timeout_jiffies);
4810 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4811 hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
4812 rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
4813 } else {
4814 wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
4815 req = wqe_to_tid_req(wqe);
4816 trace_hfi1_tid_req_tid_retry_timeout(/* req */
4817 qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req);
4819 priv->s_flags &= ~RVT_S_WAIT_ACK;
4820 /* Only send one packet (the RESYNC) */
4821 priv->s_flags |= RVT_S_SEND_ONE;
4823 * No additional request shall be made by this QP until
4824 * the RESYNC has been complete.
4826 qp->s_flags |= HFI1_S_WAIT_HALT;
4827 priv->s_state = TID_OP(RESYNC);
4828 priv->s_retry--;
4829 hfi1_schedule_tid_send(qp);
4832 spin_unlock(&qp->s_lock);
4833 spin_unlock_irqrestore(&qp->r_lock, flags);
4836 u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
4837 struct ib_other_headers *ohdr, u32 *bth1,
4838 u32 *bth2, u16 fidx)
4840 struct hfi1_qp_priv *qpriv = qp->priv;
4841 struct tid_rdma_params *remote;
4842 struct tid_rdma_request *req = wqe_to_tid_req(wqe);
4843 struct tid_rdma_flow *flow = &req->flows[fidx];
4844 u32 generation;
4846 rcu_read_lock();
4847 remote = rcu_dereference(qpriv->tid_rdma.remote);
4848 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth1, JKEY, remote->jkey);
4849 ohdr->u.tid_rdma.ack.verbs_qp = cpu_to_be32(qp->remote_qpn);
4850 *bth1 = remote->qp;
4851 rcu_read_unlock();
4853 generation = kern_flow_generation_next(flow->flow_state.generation);
4854 *bth2 = mask_psn((generation << HFI1_KDETH_BTH_SEQ_SHIFT) - 1);
4855 qpriv->s_resync_psn = *bth2;
4856 *bth2 |= IB_BTH_REQ_ACK;
4857 KDETH_RESET(ohdr->u.tid_rdma.ack.kdeth0, KVER, 0x1);
4859 return sizeof(ohdr->u.tid_rdma.resync) / sizeof(u32);
4862 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet)
4864 struct ib_other_headers *ohdr = packet->ohdr;
4865 struct rvt_qp *qp = packet->qp;
4866 struct hfi1_qp_priv *qpriv = qp->priv;
4867 struct hfi1_ctxtdata *rcd = qpriv->rcd;
4868 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
4869 struct rvt_ack_entry *e;
4870 struct tid_rdma_request *req;
4871 struct tid_rdma_flow *flow;
4872 struct tid_flow_state *fs = &qpriv->flow_state;
4873 u32 psn, generation, idx, gen_next;
4874 bool fecn;
4875 unsigned long flags;
4877 fecn = process_ecn(qp, packet);
4878 psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
4880 generation = mask_psn(psn + 1) >> HFI1_KDETH_BTH_SEQ_SHIFT;
4881 spin_lock_irqsave(&qp->s_lock, flags);
4883 gen_next = (fs->generation == KERN_GENERATION_RESERVED) ?
4884 generation : kern_flow_generation_next(fs->generation);
4886 * RESYNC packet contains the "next" generation and can only be
4887 * from the current or previous generations
4889 if (generation != mask_generation(gen_next - 1) &&
4890 generation != gen_next)
4891 goto bail;
4892 /* Already processing a resync */
4893 if (qpriv->resync)
4894 goto bail;
4896 spin_lock(&rcd->exp_lock);
4897 if (fs->index >= RXE_NUM_TID_FLOWS) {
4899 * If we don't have a flow, save the generation so it can be
4900 * applied when a new flow is allocated
4902 fs->generation = generation;
4903 } else {
4904 /* Reprogram the QP flow with new generation */
4905 rcd->flows[fs->index].generation = generation;
4906 fs->generation = kern_setup_hw_flow(rcd, fs->index);
4908 fs->psn = 0;
4910 * Disable SW PSN checking since a RESYNC is equivalent to a
4911 * sync point and the flow has/will be reprogrammed
4913 qpriv->s_flags &= ~HFI1_R_TID_SW_PSN;
4914 trace_hfi1_tid_write_rsp_rcv_resync(qp);
4917 * Reset all TID flow information with the new generation.
4918 * This is done for all requests and segments after the
4919 * last received segment
4921 for (idx = qpriv->r_tid_tail; ; idx++) {
4922 u16 flow_idx;
4924 if (idx > rvt_size_atomic(&dev->rdi))
4925 idx = 0;
4926 e = &qp->s_ack_queue[idx];
4927 if (e->opcode == TID_OP(WRITE_REQ)) {
4928 req = ack_to_tid_req(e);
4929 trace_hfi1_tid_req_rcv_resync(qp, 0, e->opcode, e->psn,
4930 e->lpsn, req);
4932 /* start from last unacked segment */
4933 for (flow_idx = req->clear_tail;
4934 CIRC_CNT(req->setup_head, flow_idx,
4935 MAX_FLOWS);
4936 flow_idx = CIRC_NEXT(flow_idx, MAX_FLOWS)) {
4937 u32 lpsn;
4938 u32 next;
4940 flow = &req->flows[flow_idx];
4941 lpsn = full_flow_psn(flow,
4942 flow->flow_state.lpsn);
4943 next = flow->flow_state.r_next_psn;
4944 flow->npkts = delta_psn(lpsn, next - 1);
4945 flow->flow_state.generation = fs->generation;
4946 flow->flow_state.spsn = fs->psn;
4947 flow->flow_state.lpsn =
4948 flow->flow_state.spsn + flow->npkts - 1;
4949 flow->flow_state.r_next_psn =
4950 full_flow_psn(flow,
4951 flow->flow_state.spsn);
4952 fs->psn += flow->npkts;
4953 trace_hfi1_tid_flow_rcv_resync(qp, flow_idx,
4954 flow);
4957 if (idx == qp->s_tail_ack_queue)
4958 break;
4961 spin_unlock(&rcd->exp_lock);
4962 qpriv->resync = true;
4963 /* RESYNC request always gets a TID RDMA ACK. */
4964 qpriv->s_nak_state = 0;
4965 tid_rdma_trigger_ack(qp);
4966 bail:
4967 if (fecn)
4968 qp->s_flags |= RVT_S_ECN;
4969 spin_unlock_irqrestore(&qp->s_lock, flags);
4973 * Call this function when the last TID RDMA WRITE DATA packet for a request
4974 * is built.
4976 static void update_tid_tail(struct rvt_qp *qp)
4977 __must_hold(&qp->s_lock)
4979 struct hfi1_qp_priv *priv = qp->priv;
4980 u32 i;
4981 struct rvt_swqe *wqe;
4983 lockdep_assert_held(&qp->s_lock);
4984 /* Can't move beyond s_tid_cur */
4985 if (priv->s_tid_tail == priv->s_tid_cur)
4986 return;
4987 for (i = priv->s_tid_tail + 1; ; i++) {
4988 if (i == qp->s_size)
4989 i = 0;
4991 if (i == priv->s_tid_cur)
4992 break;
4993 wqe = rvt_get_swqe_ptr(qp, i);
4994 if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE)
4995 break;
4997 priv->s_tid_tail = i;
4998 priv->s_state = TID_OP(WRITE_RESP);
5001 int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
5002 __must_hold(&qp->s_lock)
5004 struct hfi1_qp_priv *priv = qp->priv;
5005 struct rvt_swqe *wqe;
5006 u32 bth1 = 0, bth2 = 0, hwords = 5, len, middle = 0;
5007 struct ib_other_headers *ohdr;
5008 struct rvt_sge_state *ss = &qp->s_sge;
5009 struct rvt_ack_entry *e = &qp->s_ack_queue[qp->s_tail_ack_queue];
5010 struct tid_rdma_request *req = ack_to_tid_req(e);
5011 bool last = false;
5012 u8 opcode = TID_OP(WRITE_DATA);
5014 lockdep_assert_held(&qp->s_lock);
5015 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5017 * Prioritize the sending of the requests and responses over the
5018 * sending of the TID RDMA data packets.
5020 if (((atomic_read(&priv->n_tid_requests) < HFI1_TID_RDMA_WRITE_CNT) &&
5021 atomic_read(&priv->n_requests) &&
5022 !(qp->s_flags & (RVT_S_BUSY | RVT_S_WAIT_ACK |
5023 HFI1_S_ANY_WAIT_IO))) ||
5024 (e->opcode == TID_OP(WRITE_REQ) && req->cur_seg < req->alloc_seg &&
5025 !(qp->s_flags & (RVT_S_BUSY | HFI1_S_ANY_WAIT_IO)))) {
5026 struct iowait_work *iowork;
5028 iowork = iowait_get_ib_work(&priv->s_iowait);
5029 ps->s_txreq = get_waiting_verbs_txreq(iowork);
5030 if (ps->s_txreq || hfi1_make_rc_req(qp, ps)) {
5031 priv->s_flags |= HFI1_S_TID_BUSY_SET;
5032 return 1;
5036 ps->s_txreq = get_txreq(ps->dev, qp);
5037 if (!ps->s_txreq)
5038 goto bail_no_tx;
5040 ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth;
5042 if ((priv->s_flags & RVT_S_ACK_PENDING) &&
5043 make_tid_rdma_ack(qp, ohdr, ps))
5044 return 1;
5047 * Bail out if we can't send data.
5048 * Be reminded that this check must been done after the call to
5049 * make_tid_rdma_ack() because the responding QP could be in
5050 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5052 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK))
5053 goto bail;
5055 if (priv->s_flags & RVT_S_WAIT_ACK)
5056 goto bail;
5058 /* Check whether there is anything to do. */
5059 if (priv->s_tid_tail == HFI1_QP_WQE_INVALID)
5060 goto bail;
5061 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5062 req = wqe_to_tid_req(wqe);
5063 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode, wqe->psn,
5064 wqe->lpsn, req);
5065 switch (priv->s_state) {
5066 case TID_OP(WRITE_REQ):
5067 case TID_OP(WRITE_RESP):
5068 priv->tid_ss.sge = wqe->sg_list[0];
5069 priv->tid_ss.sg_list = wqe->sg_list + 1;
5070 priv->tid_ss.num_sge = wqe->wr.num_sge;
5071 priv->tid_ss.total_len = wqe->length;
5073 if (priv->s_state == TID_OP(WRITE_REQ))
5074 hfi1_tid_rdma_restart_req(qp, wqe, &bth2);
5075 priv->s_state = TID_OP(WRITE_DATA);
5076 fallthrough;
5078 case TID_OP(WRITE_DATA):
5080 * 1. Check whether TID RDMA WRITE RESP available.
5081 * 2. If no:
5082 * 2.1 If have more segments and no TID RDMA WRITE RESP,
5083 * set HFI1_S_WAIT_TID_RESP
5084 * 2.2 Return indicating no progress made.
5085 * 3. If yes:
5086 * 3.1 Build TID RDMA WRITE DATA packet.
5087 * 3.2 If last packet in segment:
5088 * 3.2.1 Change KDETH header bits
5089 * 3.2.2 Advance RESP pointers.
5090 * 3.3 Return indicating progress made.
5092 trace_hfi1_sender_make_tid_pkt(qp);
5093 trace_hfi1_tid_write_sender_make_tid_pkt(qp, 0);
5094 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_tail);
5095 req = wqe_to_tid_req(wqe);
5096 len = wqe->length;
5098 if (!req->comp_seg || req->cur_seg == req->comp_seg)
5099 goto bail;
5101 trace_hfi1_tid_req_make_tid_pkt(qp, 0, wqe->wr.opcode,
5102 wqe->psn, wqe->lpsn, req);
5103 last = hfi1_build_tid_rdma_packet(wqe, ohdr, &bth1, &bth2,
5104 &len);
5106 if (last) {
5107 /* move pointer to next flow */
5108 req->clear_tail = CIRC_NEXT(req->clear_tail,
5109 MAX_FLOWS);
5110 if (++req->cur_seg < req->total_segs) {
5111 if (!CIRC_CNT(req->setup_head, req->clear_tail,
5112 MAX_FLOWS))
5113 qp->s_flags |= HFI1_S_WAIT_TID_RESP;
5114 } else {
5115 priv->s_state = TID_OP(WRITE_DATA_LAST);
5116 opcode = TID_OP(WRITE_DATA_LAST);
5118 /* Advance the s_tid_tail now */
5119 update_tid_tail(qp);
5122 hwords += sizeof(ohdr->u.tid_rdma.w_data) / sizeof(u32);
5123 ss = &priv->tid_ss;
5124 break;
5126 case TID_OP(RESYNC):
5127 trace_hfi1_sender_make_tid_pkt(qp);
5128 /* Use generation from the most recently received response */
5129 wqe = rvt_get_swqe_ptr(qp, priv->s_tid_cur);
5130 req = wqe_to_tid_req(wqe);
5131 /* If no responses for this WQE look at the previous one */
5132 if (!req->comp_seg) {
5133 wqe = rvt_get_swqe_ptr(qp,
5134 (!priv->s_tid_cur ? qp->s_size :
5135 priv->s_tid_cur) - 1);
5136 req = wqe_to_tid_req(wqe);
5138 hwords += hfi1_build_tid_rdma_resync(qp, wqe, ohdr, &bth1,
5139 &bth2,
5140 CIRC_PREV(req->setup_head,
5141 MAX_FLOWS));
5142 ss = NULL;
5143 len = 0;
5144 opcode = TID_OP(RESYNC);
5145 break;
5147 default:
5148 goto bail;
5150 if (priv->s_flags & RVT_S_SEND_ONE) {
5151 priv->s_flags &= ~RVT_S_SEND_ONE;
5152 priv->s_flags |= RVT_S_WAIT_ACK;
5153 bth2 |= IB_BTH_REQ_ACK;
5155 qp->s_len -= len;
5156 ps->s_txreq->hdr_dwords = hwords;
5157 ps->s_txreq->sde = priv->s_sde;
5158 ps->s_txreq->ss = ss;
5159 ps->s_txreq->s_cur_size = len;
5160 hfi1_make_ruc_header(qp, ohdr, (opcode << 24), bth1, bth2,
5161 middle, ps);
5162 return 1;
5163 bail:
5164 hfi1_put_txreq(ps->s_txreq);
5165 bail_no_tx:
5166 ps->s_txreq = NULL;
5167 priv->s_flags &= ~RVT_S_BUSY;
5169 * If we didn't get a txreq, the QP will be woken up later to try
5170 * again, set the flags to the the wake up which work item to wake
5171 * up.
5172 * (A better algorithm should be found to do this and generalize the
5173 * sleep/wakeup flags.)
5175 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5176 return 0;
5179 static int make_tid_rdma_ack(struct rvt_qp *qp,
5180 struct ib_other_headers *ohdr,
5181 struct hfi1_pkt_state *ps)
5183 struct rvt_ack_entry *e;
5184 struct hfi1_qp_priv *qpriv = qp->priv;
5185 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5186 u32 hwords, next;
5187 u32 len = 0;
5188 u32 bth1 = 0, bth2 = 0;
5189 int middle = 0;
5190 u16 flow;
5191 struct tid_rdma_request *req, *nreq;
5193 trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5194 /* Don't send an ACK if we aren't supposed to. */
5195 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
5196 goto bail;
5198 /* header size in 32-bit words LRH+BTH = (8+12)/4. */
5199 hwords = 5;
5201 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5202 req = ack_to_tid_req(e);
5204 * In the RESYNC case, we are exactly one segment past the
5205 * previously sent ack or at the previously sent NAK. So to send
5206 * the resync ack, we go back one segment (which might be part of
5207 * the previous request) and let the do-while loop execute again.
5208 * The advantage of executing the do-while loop is that any data
5209 * received after the previous ack is automatically acked in the
5210 * RESYNC ack. It turns out that for the do-while loop we only need
5211 * to pull back qpriv->r_tid_ack, not the segment
5212 * indices/counters. The scheme works even if the previous request
5213 * was not a TID WRITE request.
5215 if (qpriv->resync) {
5216 if (!req->ack_seg || req->ack_seg == req->total_segs)
5217 qpriv->r_tid_ack = !qpriv->r_tid_ack ?
5218 rvt_size_atomic(&dev->rdi) :
5219 qpriv->r_tid_ack - 1;
5220 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5221 req = ack_to_tid_req(e);
5224 trace_hfi1_rsp_make_tid_ack(qp, e->psn);
5225 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5226 req);
5228 * If we've sent all the ACKs that we can, we are done
5229 * until we get more segments...
5231 if (!qpriv->s_nak_state && !qpriv->resync &&
5232 req->ack_seg == req->comp_seg)
5233 goto bail;
5235 do {
5237 * To deal with coalesced ACKs, the acked_tail pointer
5238 * into the flow array is used. The distance between it
5239 * and the clear_tail is the number of flows that are
5240 * being ACK'ed.
5242 req->ack_seg +=
5243 /* Get up-to-date value */
5244 CIRC_CNT(req->clear_tail, req->acked_tail,
5245 MAX_FLOWS);
5246 /* Advance acked index */
5247 req->acked_tail = req->clear_tail;
5250 * req->clear_tail points to the segment currently being
5251 * received. So, when sending an ACK, the previous
5252 * segment is being ACK'ed.
5254 flow = CIRC_PREV(req->acked_tail, MAX_FLOWS);
5255 if (req->ack_seg != req->total_segs)
5256 break;
5257 req->state = TID_REQUEST_COMPLETE;
5259 next = qpriv->r_tid_ack + 1;
5260 if (next > rvt_size_atomic(&dev->rdi))
5261 next = 0;
5262 qpriv->r_tid_ack = next;
5263 if (qp->s_ack_queue[next].opcode != TID_OP(WRITE_REQ))
5264 break;
5265 nreq = ack_to_tid_req(&qp->s_ack_queue[next]);
5266 if (!nreq->comp_seg || nreq->ack_seg == nreq->comp_seg)
5267 break;
5269 /* Move to the next ack entry now */
5270 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5271 req = ack_to_tid_req(e);
5272 } while (1);
5275 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5276 * req could be pointing at the previous ack queue entry
5278 if (qpriv->s_nak_state ||
5279 (qpriv->resync &&
5280 !hfi1_tid_rdma_is_resync_psn(qpriv->r_next_psn_kdeth - 1) &&
5281 (cmp_psn(qpriv->r_next_psn_kdeth - 1,
5282 full_flow_psn(&req->flows[flow],
5283 req->flows[flow].flow_state.lpsn)) > 0))) {
5285 * A NAK will implicitly acknowledge all previous TID RDMA
5286 * requests. Therefore, we NAK with the req->acked_tail
5287 * segment for the request at qpriv->r_tid_ack (same at
5288 * this point as the req->clear_tail segment for the
5289 * qpriv->r_tid_tail request)
5291 e = &qp->s_ack_queue[qpriv->r_tid_ack];
5292 req = ack_to_tid_req(e);
5293 flow = req->acked_tail;
5294 } else if (req->ack_seg == req->total_segs &&
5295 qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK)
5296 qpriv->s_flags &= ~HFI1_R_TID_WAIT_INTERLCK;
5298 trace_hfi1_tid_write_rsp_make_tid_ack(qp);
5299 trace_hfi1_tid_req_make_tid_ack(qp, 0, e->opcode, e->psn, e->lpsn,
5300 req);
5301 hwords += hfi1_build_tid_rdma_write_ack(qp, e, ohdr, flow, &bth1,
5302 &bth2);
5303 len = 0;
5304 qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5305 ps->s_txreq->hdr_dwords = hwords;
5306 ps->s_txreq->sde = qpriv->s_sde;
5307 ps->s_txreq->s_cur_size = len;
5308 ps->s_txreq->ss = NULL;
5309 hfi1_make_ruc_header(qp, ohdr, (TID_OP(ACK) << 24), bth1, bth2, middle,
5310 ps);
5311 ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP;
5312 return 1;
5313 bail:
5315 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5316 * RVT_S_RESP_PENDING
5318 smp_wmb();
5319 qpriv->s_flags &= ~RVT_S_ACK_PENDING;
5320 return 0;
5323 static int hfi1_send_tid_ok(struct rvt_qp *qp)
5325 struct hfi1_qp_priv *priv = qp->priv;
5327 return !(priv->s_flags & RVT_S_BUSY ||
5328 qp->s_flags & HFI1_S_ANY_WAIT_IO) &&
5329 (verbs_txreq_queued(iowait_get_tid_work(&priv->s_iowait)) ||
5330 (priv->s_flags & RVT_S_RESP_PENDING) ||
5331 !(qp->s_flags & HFI1_S_ANY_TID_WAIT_SEND));
5334 void _hfi1_do_tid_send(struct work_struct *work)
5336 struct iowait_work *w = container_of(work, struct iowait_work, iowork);
5337 struct rvt_qp *qp = iowait_to_qp(w->iow);
5339 hfi1_do_tid_send(qp);
5342 static void hfi1_do_tid_send(struct rvt_qp *qp)
5344 struct hfi1_pkt_state ps;
5345 struct hfi1_qp_priv *priv = qp->priv;
5347 ps.dev = to_idev(qp->ibqp.device);
5348 ps.ibp = to_iport(qp->ibqp.device, qp->port_num);
5349 ps.ppd = ppd_from_ibp(ps.ibp);
5350 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5351 ps.in_thread = false;
5352 ps.timeout_int = qp->timeout_jiffies / 8;
5354 trace_hfi1_rc_do_tid_send(qp, false);
5355 spin_lock_irqsave(&qp->s_lock, ps.flags);
5357 /* Return if we are already busy processing a work request. */
5358 if (!hfi1_send_tid_ok(qp)) {
5359 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5360 iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
5361 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5362 return;
5365 priv->s_flags |= RVT_S_BUSY;
5367 ps.timeout = jiffies + ps.timeout_int;
5368 ps.cpu = priv->s_sde ? priv->s_sde->cpu :
5369 cpumask_first(cpumask_of_node(ps.ppd->dd->node));
5370 ps.pkts_sent = false;
5372 /* insure a pre-built packet is handled */
5373 ps.s_txreq = get_waiting_verbs_txreq(ps.wait);
5374 do {
5375 /* Check for a constructed packet to be sent. */
5376 if (ps.s_txreq) {
5377 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5378 qp->s_flags |= RVT_S_BUSY;
5379 ps.wait = iowait_get_ib_work(&priv->s_iowait);
5381 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5384 * If the packet cannot be sent now, return and
5385 * the send tasklet will be woken up later.
5387 if (hfi1_verbs_send(qp, &ps))
5388 return;
5390 /* allow other tasks to run */
5391 if (hfi1_schedule_send_yield(qp, &ps, true))
5392 return;
5394 spin_lock_irqsave(&qp->s_lock, ps.flags);
5395 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
5396 qp->s_flags &= ~RVT_S_BUSY;
5397 priv->s_flags &= ~HFI1_S_TID_BUSY_SET;
5398 ps.wait = iowait_get_tid_work(&priv->s_iowait);
5399 if (iowait_flag_set(&priv->s_iowait,
5400 IOWAIT_PENDING_IB))
5401 hfi1_schedule_send(qp);
5404 } while (hfi1_make_tid_rdma_pkt(qp, &ps));
5405 iowait_starve_clear(ps.pkts_sent, &priv->s_iowait);
5406 spin_unlock_irqrestore(&qp->s_lock, ps.flags);
5409 static bool _hfi1_schedule_tid_send(struct rvt_qp *qp)
5411 struct hfi1_qp_priv *priv = qp->priv;
5412 struct hfi1_ibport *ibp =
5413 to_iport(qp->ibqp.device, qp->port_num);
5414 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
5415 struct hfi1_devdata *dd = ppd->dd;
5417 if ((dd->flags & HFI1_SHUTDOWN))
5418 return true;
5420 return iowait_tid_schedule(&priv->s_iowait, ppd->hfi1_wq,
5421 priv->s_sde ?
5422 priv->s_sde->cpu :
5423 cpumask_first(cpumask_of_node(dd->node)));
5427 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5428 * @qp: the QP
5430 * This schedules qp progress on the TID RDMA state machine. Caller
5431 * should hold the s_lock.
5432 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5433 * the two state machines can step on each other with respect to the
5434 * RVT_S_BUSY flag.
5435 * Therefore, a modified test is used.
5436 * @return true if the second leg is scheduled;
5437 * false if the second leg is not scheduled.
5439 bool hfi1_schedule_tid_send(struct rvt_qp *qp)
5441 lockdep_assert_held(&qp->s_lock);
5442 if (hfi1_send_tid_ok(qp)) {
5444 * The following call returns true if the qp is not on the
5445 * queue and false if the qp is already on the queue before
5446 * this call. Either way, the qp will be on the queue when the
5447 * call returns.
5449 _hfi1_schedule_tid_send(qp);
5450 return true;
5452 if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
5453 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
5454 IOWAIT_PENDING_TID);
5455 return false;
5458 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e)
5460 struct rvt_ack_entry *prev;
5461 struct tid_rdma_request *req;
5462 struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
5463 struct hfi1_qp_priv *priv = qp->priv;
5464 u32 s_prev;
5466 s_prev = qp->s_tail_ack_queue == 0 ? rvt_size_atomic(&dev->rdi) :
5467 (qp->s_tail_ack_queue - 1);
5468 prev = &qp->s_ack_queue[s_prev];
5470 if ((e->opcode == TID_OP(READ_REQ) ||
5471 e->opcode == OP(RDMA_READ_REQUEST)) &&
5472 prev->opcode == TID_OP(WRITE_REQ)) {
5473 req = ack_to_tid_req(prev);
5474 if (req->ack_seg != req->total_segs) {
5475 priv->s_flags |= HFI1_R_TID_WAIT_INTERLCK;
5476 return true;
5479 return false;
5482 static u32 read_r_next_psn(struct hfi1_devdata *dd, u8 ctxt, u8 fidx)
5484 u64 reg;
5487 * The only sane way to get the amount of
5488 * progress is to read the HW flow state.
5490 reg = read_uctxt_csr(dd, ctxt, RCV_TID_FLOW_TABLE + (8 * fidx));
5491 return mask_psn(reg);
5494 static void tid_rdma_rcv_err(struct hfi1_packet *packet,
5495 struct ib_other_headers *ohdr,
5496 struct rvt_qp *qp, u32 psn, int diff, bool fecn)
5498 unsigned long flags;
5500 tid_rdma_rcv_error(packet, ohdr, qp, psn, diff);
5501 if (fecn) {
5502 spin_lock_irqsave(&qp->s_lock, flags);
5503 qp->s_flags |= RVT_S_ECN;
5504 spin_unlock_irqrestore(&qp->s_lock, flags);
5508 static void update_r_next_psn_fecn(struct hfi1_packet *packet,
5509 struct hfi1_qp_priv *priv,
5510 struct hfi1_ctxtdata *rcd,
5511 struct tid_rdma_flow *flow,
5512 bool fecn)
5515 * If a start/middle packet is delivered here due to
5516 * RSM rule and FECN, we need to update the r_next_psn.
5518 if (fecn && packet->etype == RHF_RCV_TYPE_EAGER &&
5519 !(priv->s_flags & HFI1_R_TID_SW_PSN)) {
5520 struct hfi1_devdata *dd = rcd->dd;
5522 flow->flow_state.r_next_psn =
5523 read_r_next_psn(dd, rcd->ctxt, flow->idx);