1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
3 * Copyright(c) 2018 - 2020 Intel Corporation.
16 * DOC: TID RDMA READ protocol
18 * This is an end-to-end protocol at the hfi1 level between two nodes that
19 * improves performance by avoiding data copy on the requester side. It
20 * converts a qualified RDMA READ request into a TID RDMA READ request on
21 * the requester side and thereafter handles the request and response
22 * differently. To be qualified, the RDMA READ request should meet the
24 * -- The total data length should be greater than 256K;
25 * -- The total data length should be a multiple of 4K page size;
26 * -- Each local scatter-gather entry should be 4K page aligned;
27 * -- Each local scatter-gather entry should be a multiple of 4K page size;
30 #define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
31 #define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
32 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
33 #define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
34 #define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
35 #define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
37 /* Maximum number of packets within a flow generation. */
38 #define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
40 #define GENERATION_MASK 0xFFFFF
42 static u32
mask_generation(u32 a
)
44 return a
& GENERATION_MASK
;
47 /* Reserved generation value to set to unused flows for kernel contexts */
48 #define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
51 * J_KEY for kernel contexts when TID RDMA is used.
52 * See generate_jkey() in hfi.h for more information.
54 #define TID_RDMA_JKEY 32
55 #define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
56 #define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
58 /* Maximum number of segments in flight per QP request. */
59 #define TID_RDMA_MAX_READ_SEGS_PER_REQ 6
60 #define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
61 #define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
62 TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
63 #define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
65 #define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE)
67 #define TID_RDMA_DESTQP_FLOW_SHIFT 11
68 #define TID_RDMA_DESTQP_FLOW_MASK 0x1f
70 #define TID_OPFN_QP_CTXT_MASK 0xff
71 #define TID_OPFN_QP_CTXT_SHIFT 56
72 #define TID_OPFN_QP_KDETH_MASK 0xff
73 #define TID_OPFN_QP_KDETH_SHIFT 48
74 #define TID_OPFN_MAX_LEN_MASK 0x7ff
75 #define TID_OPFN_MAX_LEN_SHIFT 37
76 #define TID_OPFN_TIMEOUT_MASK 0x1f
77 #define TID_OPFN_TIMEOUT_SHIFT 32
78 #define TID_OPFN_RESERVED_MASK 0x3f
79 #define TID_OPFN_RESERVED_SHIFT 26
80 #define TID_OPFN_URG_MASK 0x1
81 #define TID_OPFN_URG_SHIFT 25
82 #define TID_OPFN_VER_MASK 0x7
83 #define TID_OPFN_VER_SHIFT 22
84 #define TID_OPFN_JKEY_MASK 0x3f
85 #define TID_OPFN_JKEY_SHIFT 16
86 #define TID_OPFN_MAX_READ_MASK 0x3f
87 #define TID_OPFN_MAX_READ_SHIFT 10
88 #define TID_OPFN_MAX_WRITE_MASK 0x3f
89 #define TID_OPFN_MAX_WRITE_SHIFT 4
95 * NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
96 * 3210987654321098 7654321098765432 1098765432109876 5432109876543210
97 * N - the context Number
110 static void tid_rdma_trigger_resume(struct work_struct
*work
);
111 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request
*req
);
112 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request
*req
,
114 static void hfi1_init_trdma_req(struct rvt_qp
*qp
,
115 struct tid_rdma_request
*req
);
116 static void hfi1_tid_write_alloc_resources(struct rvt_qp
*qp
, bool intr_ctx
);
117 static void hfi1_tid_timeout(struct timer_list
*t
);
118 static void hfi1_add_tid_reap_timer(struct rvt_qp
*qp
);
119 static void hfi1_mod_tid_reap_timer(struct rvt_qp
*qp
);
120 static void hfi1_mod_tid_retry_timer(struct rvt_qp
*qp
);
121 static int hfi1_stop_tid_retry_timer(struct rvt_qp
*qp
);
122 static void hfi1_tid_retry_timeout(struct timer_list
*t
);
123 static int make_tid_rdma_ack(struct rvt_qp
*qp
,
124 struct ib_other_headers
*ohdr
,
125 struct hfi1_pkt_state
*ps
);
126 static void hfi1_do_tid_send(struct rvt_qp
*qp
);
127 static u32
read_r_next_psn(struct hfi1_devdata
*dd
, u8 ctxt
, u8 fidx
);
128 static void tid_rdma_rcv_err(struct hfi1_packet
*packet
,
129 struct ib_other_headers
*ohdr
,
130 struct rvt_qp
*qp
, u32 psn
, int diff
, bool fecn
);
131 static void update_r_next_psn_fecn(struct hfi1_packet
*packet
,
132 struct hfi1_qp_priv
*priv
,
133 struct hfi1_ctxtdata
*rcd
,
134 struct tid_rdma_flow
*flow
,
137 static void validate_r_tid_ack(struct hfi1_qp_priv
*priv
)
139 if (priv
->r_tid_ack
== HFI1_QP_WQE_INVALID
)
140 priv
->r_tid_ack
= priv
->r_tid_tail
;
143 static void tid_rdma_schedule_ack(struct rvt_qp
*qp
)
145 struct hfi1_qp_priv
*priv
= qp
->priv
;
147 priv
->s_flags
|= RVT_S_ACK_PENDING
;
148 hfi1_schedule_tid_send(qp
);
151 static void tid_rdma_trigger_ack(struct rvt_qp
*qp
)
153 validate_r_tid_ack(qp
->priv
);
154 tid_rdma_schedule_ack(qp
);
157 static u64
tid_rdma_opfn_encode(struct tid_rdma_params
*p
)
160 (((u64
)p
->qp
& TID_OPFN_QP_CTXT_MASK
) <<
161 TID_OPFN_QP_CTXT_SHIFT
) |
162 ((((u64
)p
->qp
>> 16) & TID_OPFN_QP_KDETH_MASK
) <<
163 TID_OPFN_QP_KDETH_SHIFT
) |
164 (((u64
)((p
->max_len
>> PAGE_SHIFT
) - 1) &
165 TID_OPFN_MAX_LEN_MASK
) << TID_OPFN_MAX_LEN_SHIFT
) |
166 (((u64
)p
->timeout
& TID_OPFN_TIMEOUT_MASK
) <<
167 TID_OPFN_TIMEOUT_SHIFT
) |
168 (((u64
)p
->urg
& TID_OPFN_URG_MASK
) << TID_OPFN_URG_SHIFT
) |
169 (((u64
)p
->jkey
& TID_OPFN_JKEY_MASK
) << TID_OPFN_JKEY_SHIFT
) |
170 (((u64
)p
->max_read
& TID_OPFN_MAX_READ_MASK
) <<
171 TID_OPFN_MAX_READ_SHIFT
) |
172 (((u64
)p
->max_write
& TID_OPFN_MAX_WRITE_MASK
) <<
173 TID_OPFN_MAX_WRITE_SHIFT
);
176 static void tid_rdma_opfn_decode(struct tid_rdma_params
*p
, u64 data
)
178 p
->max_len
= (((data
>> TID_OPFN_MAX_LEN_SHIFT
) &
179 TID_OPFN_MAX_LEN_MASK
) + 1) << PAGE_SHIFT
;
180 p
->jkey
= (data
>> TID_OPFN_JKEY_SHIFT
) & TID_OPFN_JKEY_MASK
;
181 p
->max_write
= (data
>> TID_OPFN_MAX_WRITE_SHIFT
) &
182 TID_OPFN_MAX_WRITE_MASK
;
183 p
->max_read
= (data
>> TID_OPFN_MAX_READ_SHIFT
) &
184 TID_OPFN_MAX_READ_MASK
;
186 ((((data
>> TID_OPFN_QP_KDETH_SHIFT
) & TID_OPFN_QP_KDETH_MASK
)
188 ((data
>> TID_OPFN_QP_CTXT_SHIFT
) & TID_OPFN_QP_CTXT_MASK
));
189 p
->urg
= (data
>> TID_OPFN_URG_SHIFT
) & TID_OPFN_URG_MASK
;
190 p
->timeout
= (data
>> TID_OPFN_TIMEOUT_SHIFT
) & TID_OPFN_TIMEOUT_MASK
;
193 void tid_rdma_opfn_init(struct rvt_qp
*qp
, struct tid_rdma_params
*p
)
195 struct hfi1_qp_priv
*priv
= qp
->priv
;
197 p
->qp
= (RVT_KDETH_QP_PREFIX
<< 16) | priv
->rcd
->ctxt
;
198 p
->max_len
= TID_RDMA_MAX_SEGMENT_SIZE
;
199 p
->jkey
= priv
->rcd
->jkey
;
200 p
->max_read
= TID_RDMA_MAX_READ_SEGS_PER_REQ
;
201 p
->max_write
= TID_RDMA_MAX_WRITE_SEGS_PER_REQ
;
202 p
->timeout
= qp
->timeout
;
203 p
->urg
= is_urg_masked(priv
->rcd
);
206 bool tid_rdma_conn_req(struct rvt_qp
*qp
, u64
*data
)
208 struct hfi1_qp_priv
*priv
= qp
->priv
;
210 *data
= tid_rdma_opfn_encode(&priv
->tid_rdma
.local
);
214 bool tid_rdma_conn_reply(struct rvt_qp
*qp
, u64 data
)
216 struct hfi1_qp_priv
*priv
= qp
->priv
;
217 struct tid_rdma_params
*remote
, *old
;
220 old
= rcu_dereference_protected(priv
->tid_rdma
.remote
,
221 lockdep_is_held(&priv
->opfn
.lock
));
224 * If data passed in is zero, return true so as not to continue the
225 * negotiation process
227 if (!data
|| !HFI1_CAP_IS_KSET(TID_RDMA
))
230 * If kzalloc fails, return false. This will result in:
231 * * at the requester a new OPFN request being generated to retry
233 * * at the responder, 0 being returned to the requester so as to
234 * disable TID RDMA at both the requester and the responder
236 remote
= kzalloc(sizeof(*remote
), GFP_ATOMIC
);
242 tid_rdma_opfn_decode(remote
, data
);
243 priv
->tid_timer_timeout_jiffies
=
244 usecs_to_jiffies((((4096UL * (1UL << remote
->timeout
)) /
246 trace_hfi1_opfn_param(qp
, 0, &priv
->tid_rdma
.local
);
247 trace_hfi1_opfn_param(qp
, 1, remote
);
248 rcu_assign_pointer(priv
->tid_rdma
.remote
, remote
);
250 * A TID RDMA READ request's segment size is not equal to
251 * remote->max_len only when the request's data length is smaller
252 * than remote->max_len. In that case, there will be only one segment.
253 * Therefore, when priv->pkts_ps is used to calculate req->cur_seg
254 * during retry, it will lead to req->cur_seg = 0, which is exactly
257 priv
->pkts_ps
= (u16
)rvt_div_mtu(qp
, remote
->max_len
);
258 priv
->timeout_shift
= ilog2(priv
->pkts_ps
- 1) + 1;
261 RCU_INIT_POINTER(priv
->tid_rdma
.remote
, NULL
);
262 priv
->timeout_shift
= 0;
265 kfree_rcu(old
, rcu_head
);
269 bool tid_rdma_conn_resp(struct rvt_qp
*qp
, u64
*data
)
273 ret
= tid_rdma_conn_reply(qp
, *data
);
276 * If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
277 * TID RDMA could not be enabled. This will result in TID RDMA being
278 * disabled at the requester too.
281 (void)tid_rdma_conn_req(qp
, data
);
285 void tid_rdma_conn_error(struct rvt_qp
*qp
)
287 struct hfi1_qp_priv
*priv
= qp
->priv
;
288 struct tid_rdma_params
*old
;
290 old
= rcu_dereference_protected(priv
->tid_rdma
.remote
,
291 lockdep_is_held(&priv
->opfn
.lock
));
292 RCU_INIT_POINTER(priv
->tid_rdma
.remote
, NULL
);
294 kfree_rcu(old
, rcu_head
);
297 /* This is called at context initialization time */
298 int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata
*rcd
, int reinit
)
303 BUILD_BUG_ON(TID_RDMA_JKEY
< HFI1_KERNEL_MIN_JKEY
);
304 BUILD_BUG_ON(TID_RDMA_JKEY
> HFI1_KERNEL_MAX_JKEY
);
305 rcd
->jkey
= TID_RDMA_JKEY
;
306 hfi1_set_ctxt_jkey(rcd
->dd
, rcd
, rcd
->jkey
);
307 return hfi1_alloc_ctxt_rcv_groups(rcd
);
311 * qp_to_rcd - determine the receive context used by a qp
314 * This routine returns the receive context associated
317 * Returns the context.
319 static struct hfi1_ctxtdata
*qp_to_rcd(struct rvt_dev_info
*rdi
,
322 struct hfi1_ibdev
*verbs_dev
= container_of(rdi
,
325 struct hfi1_devdata
*dd
= container_of(verbs_dev
,
330 if (qp
->ibqp
.qp_num
== 0)
333 ctxt
= hfi1_get_qp_map(dd
, qp
->ibqp
.qp_num
>> dd
->qos_shift
);
334 return dd
->rcd
[ctxt
];
337 int hfi1_qp_priv_init(struct rvt_dev_info
*rdi
, struct rvt_qp
*qp
,
338 struct ib_qp_init_attr
*init_attr
)
340 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
343 qpriv
->rcd
= qp_to_rcd(rdi
, qp
);
345 spin_lock_init(&qpriv
->opfn
.lock
);
346 INIT_WORK(&qpriv
->opfn
.opfn_work
, opfn_send_conn_request
);
347 INIT_WORK(&qpriv
->tid_rdma
.trigger_work
, tid_rdma_trigger_resume
);
348 qpriv
->flow_state
.psn
= 0;
349 qpriv
->flow_state
.index
= RXE_NUM_TID_FLOWS
;
350 qpriv
->flow_state
.last_index
= RXE_NUM_TID_FLOWS
;
351 qpriv
->flow_state
.generation
= KERN_GENERATION_RESERVED
;
352 qpriv
->s_state
= TID_OP(WRITE_RESP
);
353 qpriv
->s_tid_cur
= HFI1_QP_WQE_INVALID
;
354 qpriv
->s_tid_head
= HFI1_QP_WQE_INVALID
;
355 qpriv
->s_tid_tail
= HFI1_QP_WQE_INVALID
;
356 qpriv
->rnr_nak_state
= TID_RNR_NAK_INIT
;
357 qpriv
->r_tid_head
= HFI1_QP_WQE_INVALID
;
358 qpriv
->r_tid_tail
= HFI1_QP_WQE_INVALID
;
359 qpriv
->r_tid_ack
= HFI1_QP_WQE_INVALID
;
360 qpriv
->r_tid_alloc
= HFI1_QP_WQE_INVALID
;
361 atomic_set(&qpriv
->n_requests
, 0);
362 atomic_set(&qpriv
->n_tid_requests
, 0);
363 timer_setup(&qpriv
->s_tid_timer
, hfi1_tid_timeout
, 0);
364 timer_setup(&qpriv
->s_tid_retry_timer
, hfi1_tid_retry_timeout
, 0);
365 INIT_LIST_HEAD(&qpriv
->tid_wait
);
367 if (init_attr
->qp_type
== IB_QPT_RC
&& HFI1_CAP_IS_KSET(TID_RDMA
)) {
368 struct hfi1_devdata
*dd
= qpriv
->rcd
->dd
;
370 qpriv
->pages
= kzalloc_node(TID_RDMA_MAX_PAGES
*
371 sizeof(*qpriv
->pages
),
372 GFP_KERNEL
, dd
->node
);
375 for (i
= 0; i
< qp
->s_size
; i
++) {
376 struct hfi1_swqe_priv
*priv
;
377 struct rvt_swqe
*wqe
= rvt_get_swqe_ptr(qp
, i
);
379 priv
= kzalloc_node(sizeof(*priv
), GFP_KERNEL
,
384 hfi1_init_trdma_req(qp
, &priv
->tid_req
);
385 priv
->tid_req
.e
.swqe
= wqe
;
388 for (i
= 0; i
< rvt_max_atomic(rdi
); i
++) {
389 struct hfi1_ack_priv
*priv
;
391 priv
= kzalloc_node(sizeof(*priv
), GFP_KERNEL
,
396 hfi1_init_trdma_req(qp
, &priv
->tid_req
);
397 priv
->tid_req
.e
.ack
= &qp
->s_ack_queue
[i
];
399 ret
= hfi1_kern_exp_rcv_alloc_flows(&priv
->tid_req
,
405 qp
->s_ack_queue
[i
].priv
= priv
;
412 void hfi1_qp_priv_tid_free(struct rvt_dev_info
*rdi
, struct rvt_qp
*qp
)
414 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
415 struct rvt_swqe
*wqe
;
418 if (qp
->ibqp
.qp_type
== IB_QPT_RC
&& HFI1_CAP_IS_KSET(TID_RDMA
)) {
419 for (i
= 0; i
< qp
->s_size
; i
++) {
420 wqe
= rvt_get_swqe_ptr(qp
, i
);
424 for (i
= 0; i
< rvt_max_atomic(rdi
); i
++) {
425 struct hfi1_ack_priv
*priv
= qp
->s_ack_queue
[i
].priv
;
428 hfi1_kern_exp_rcv_free_flows(&priv
->tid_req
);
430 qp
->s_ack_queue
[i
].priv
= NULL
;
432 cancel_work_sync(&qpriv
->opfn
.opfn_work
);
438 /* Flow and tid waiter functions */
442 * There are two locks involved with the queuing
443 * routines: the qp s_lock and the exp_lock.
445 * Since the tid space allocation is called from
446 * the send engine, the qp s_lock is already held.
448 * The allocation routines will get the exp_lock.
450 * The first_qp() call is provided to allow the head of
451 * the rcd wait queue to be fetched under the exp_lock and
452 * followed by a drop of the exp_lock.
454 * Any qp in the wait list will have the qp reference count held
455 * to hold the qp in memory.
459 * return head of rcd wait list
461 * Must hold the exp_lock.
463 * Get a reference to the QP to hold the QP in memory.
465 * The caller must release the reference when the local
466 * is no longer being used.
468 static struct rvt_qp
*first_qp(struct hfi1_ctxtdata
*rcd
,
469 struct tid_queue
*queue
)
470 __must_hold(&rcd
->exp_lock
)
472 struct hfi1_qp_priv
*priv
;
474 lockdep_assert_held(&rcd
->exp_lock
);
475 priv
= list_first_entry_or_null(&queue
->queue_head
,
480 rvt_get_qp(priv
->owner
);
485 * kernel_tid_waiters - determine rcd wait
486 * @rcd: the receive context
487 * @qp: the head of the qp being processed
489 * This routine will return false IFF
490 * the list is NULL or the head of the
491 * list is the indicated qp.
493 * Must hold the qp s_lock and the exp_lock.
496 * false if either of the conditions below are satisfied:
497 * 1. The list is empty or
498 * 2. The indicated qp is at the head of the list and the
499 * HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
500 * true is returned otherwise.
502 static bool kernel_tid_waiters(struct hfi1_ctxtdata
*rcd
,
503 struct tid_queue
*queue
, struct rvt_qp
*qp
)
504 __must_hold(&rcd
->exp_lock
) __must_hold(&qp
->s_lock
)
509 lockdep_assert_held(&qp
->s_lock
);
510 lockdep_assert_held(&rcd
->exp_lock
);
511 fqp
= first_qp(rcd
, queue
);
512 if (!fqp
|| (fqp
== qp
&& (qp
->s_flags
& HFI1_S_WAIT_TID_SPACE
)))
519 * dequeue_tid_waiter - dequeue the qp from the list
520 * @qp - the qp to remove the wait list
522 * This routine removes the indicated qp from the
523 * wait list if it is there.
525 * This should be done after the hardware flow and
526 * tid array resources have been allocated.
528 * Must hold the qp s_lock and the rcd exp_lock.
530 * It assumes the s_lock to protect the s_flags
531 * field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
533 static void dequeue_tid_waiter(struct hfi1_ctxtdata
*rcd
,
534 struct tid_queue
*queue
, struct rvt_qp
*qp
)
535 __must_hold(&rcd
->exp_lock
) __must_hold(&qp
->s_lock
)
537 struct hfi1_qp_priv
*priv
= qp
->priv
;
539 lockdep_assert_held(&qp
->s_lock
);
540 lockdep_assert_held(&rcd
->exp_lock
);
541 if (list_empty(&priv
->tid_wait
))
543 list_del_init(&priv
->tid_wait
);
544 qp
->s_flags
&= ~HFI1_S_WAIT_TID_SPACE
;
550 * queue_qp_for_tid_wait - suspend QP on tid space
551 * @rcd: the receive context
554 * The qp is inserted at the tail of the rcd
555 * wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
557 * Must hold the qp s_lock and the exp_lock.
559 static void queue_qp_for_tid_wait(struct hfi1_ctxtdata
*rcd
,
560 struct tid_queue
*queue
, struct rvt_qp
*qp
)
561 __must_hold(&rcd
->exp_lock
) __must_hold(&qp
->s_lock
)
563 struct hfi1_qp_priv
*priv
= qp
->priv
;
565 lockdep_assert_held(&qp
->s_lock
);
566 lockdep_assert_held(&rcd
->exp_lock
);
567 if (list_empty(&priv
->tid_wait
)) {
568 qp
->s_flags
|= HFI1_S_WAIT_TID_SPACE
;
569 list_add_tail(&priv
->tid_wait
, &queue
->queue_head
);
570 priv
->tid_enqueue
= ++queue
->enqueue
;
571 rcd
->dd
->verbs_dev
.n_tidwait
++;
572 trace_hfi1_qpsleep(qp
, HFI1_S_WAIT_TID_SPACE
);
578 * __trigger_tid_waiter - trigger tid waiter
581 * This is a private entrance to schedule the qp
582 * assuming the caller is holding the qp->s_lock.
584 static void __trigger_tid_waiter(struct rvt_qp
*qp
)
585 __must_hold(&qp
->s_lock
)
587 lockdep_assert_held(&qp
->s_lock
);
588 if (!(qp
->s_flags
& HFI1_S_WAIT_TID_SPACE
))
590 trace_hfi1_qpwakeup(qp
, HFI1_S_WAIT_TID_SPACE
);
591 hfi1_schedule_send(qp
);
595 * tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
598 * trigger a schedule or a waiting qp in a deadlock
599 * safe manner. The qp reference is held prior
600 * to this call via first_qp().
602 * If the qp trigger was already scheduled (!rval)
603 * the the reference is dropped, otherwise the resume
604 * or the destroy cancel will dispatch the reference.
606 static void tid_rdma_schedule_tid_wakeup(struct rvt_qp
*qp
)
608 struct hfi1_qp_priv
*priv
;
609 struct hfi1_ibport
*ibp
;
610 struct hfi1_pportdata
*ppd
;
611 struct hfi1_devdata
*dd
;
618 ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
619 ppd
= ppd_from_ibp(ibp
);
620 dd
= dd_from_ibdev(qp
->ibqp
.device
);
622 rval
= queue_work_on(priv
->s_sde
?
624 cpumask_first(cpumask_of_node(dd
->node
)),
626 &priv
->tid_rdma
.trigger_work
);
632 * tid_rdma_trigger_resume - field a trigger work request
633 * @work - the work item
635 * Complete the off qp trigger processing by directly
636 * calling the progress routine.
638 static void tid_rdma_trigger_resume(struct work_struct
*work
)
640 struct tid_rdma_qp_params
*tr
;
641 struct hfi1_qp_priv
*priv
;
644 tr
= container_of(work
, struct tid_rdma_qp_params
, trigger_work
);
645 priv
= container_of(tr
, struct hfi1_qp_priv
, tid_rdma
);
647 spin_lock_irq(&qp
->s_lock
);
648 if (qp
->s_flags
& HFI1_S_WAIT_TID_SPACE
) {
649 spin_unlock_irq(&qp
->s_lock
);
650 hfi1_do_send(priv
->owner
, true);
652 spin_unlock_irq(&qp
->s_lock
);
658 * tid_rdma_flush_wait - unwind any tid space wait
660 * This is called when resetting a qp to
661 * allow a destroy or reset to get rid
662 * of any tid space linkage and reference counts.
664 static void _tid_rdma_flush_wait(struct rvt_qp
*qp
, struct tid_queue
*queue
)
665 __must_hold(&qp
->s_lock
)
667 struct hfi1_qp_priv
*priv
;
671 lockdep_assert_held(&qp
->s_lock
);
673 qp
->s_flags
&= ~HFI1_S_WAIT_TID_SPACE
;
674 spin_lock(&priv
->rcd
->exp_lock
);
675 if (!list_empty(&priv
->tid_wait
)) {
676 list_del_init(&priv
->tid_wait
);
677 qp
->s_flags
&= ~HFI1_S_WAIT_TID_SPACE
;
681 spin_unlock(&priv
->rcd
->exp_lock
);
684 void hfi1_tid_rdma_flush_wait(struct rvt_qp
*qp
)
685 __must_hold(&qp
->s_lock
)
687 struct hfi1_qp_priv
*priv
= qp
->priv
;
689 _tid_rdma_flush_wait(qp
, &priv
->rcd
->flow_queue
);
690 _tid_rdma_flush_wait(qp
, &priv
->rcd
->rarr_queue
);
695 * kern_reserve_flow - allocate a hardware flow
696 * @rcd - the context to use for allocation
697 * @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
698 * signify "don't care".
700 * Use a bit mask based allocation to reserve a hardware
701 * flow for use in receiving KDETH data packets. If a preferred flow is
702 * specified the function will attempt to reserve that flow again, if
705 * The exp_lock must be held.
708 * On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
709 * On failure: -EAGAIN
711 static int kern_reserve_flow(struct hfi1_ctxtdata
*rcd
, int last
)
712 __must_hold(&rcd
->exp_lock
)
716 /* Attempt to reserve the preferred flow index */
717 if (last
>= 0 && last
< RXE_NUM_TID_FLOWS
&&
718 !test_and_set_bit(last
, &rcd
->flow_mask
))
721 nr
= ffz(rcd
->flow_mask
);
722 BUILD_BUG_ON(RXE_NUM_TID_FLOWS
>=
723 (sizeof(rcd
->flow_mask
) * BITS_PER_BYTE
));
724 if (nr
> (RXE_NUM_TID_FLOWS
- 1))
726 set_bit(nr
, &rcd
->flow_mask
);
730 static void kern_set_hw_flow(struct hfi1_ctxtdata
*rcd
, u32 generation
,
735 reg
= ((u64
)generation
<< HFI1_KDETH_BTH_SEQ_SHIFT
) |
736 RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK
|
737 RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK
|
738 RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK
|
739 RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK
|
740 RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK
;
742 if (generation
!= KERN_GENERATION_RESERVED
)
743 reg
|= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK
;
745 write_uctxt_csr(rcd
->dd
, rcd
->ctxt
,
746 RCV_TID_FLOW_TABLE
+ 8 * flow_idx
, reg
);
749 static u32
kern_setup_hw_flow(struct hfi1_ctxtdata
*rcd
, u32 flow_idx
)
750 __must_hold(&rcd
->exp_lock
)
752 u32 generation
= rcd
->flows
[flow_idx
].generation
;
754 kern_set_hw_flow(rcd
, generation
, flow_idx
);
758 static u32
kern_flow_generation_next(u32 gen
)
760 u32 generation
= mask_generation(gen
+ 1);
762 if (generation
== KERN_GENERATION_RESERVED
)
763 generation
= mask_generation(generation
+ 1);
767 static void kern_clear_hw_flow(struct hfi1_ctxtdata
*rcd
, u32 flow_idx
)
768 __must_hold(&rcd
->exp_lock
)
770 rcd
->flows
[flow_idx
].generation
=
771 kern_flow_generation_next(rcd
->flows
[flow_idx
].generation
);
772 kern_set_hw_flow(rcd
, KERN_GENERATION_RESERVED
, flow_idx
);
775 int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata
*rcd
, struct rvt_qp
*qp
)
777 struct hfi1_qp_priv
*qpriv
= (struct hfi1_qp_priv
*)qp
->priv
;
778 struct tid_flow_state
*fs
= &qpriv
->flow_state
;
783 /* The QP already has an allocated flow */
784 if (fs
->index
!= RXE_NUM_TID_FLOWS
)
787 spin_lock_irqsave(&rcd
->exp_lock
, flags
);
788 if (kernel_tid_waiters(rcd
, &rcd
->flow_queue
, qp
))
791 ret
= kern_reserve_flow(rcd
, fs
->last_index
);
795 fs
->last_index
= fs
->index
;
797 /* Generation received in a RESYNC overrides default flow generation */
798 if (fs
->generation
!= KERN_GENERATION_RESERVED
)
799 rcd
->flows
[fs
->index
].generation
= fs
->generation
;
800 fs
->generation
= kern_setup_hw_flow(rcd
, fs
->index
);
802 dequeue_tid_waiter(rcd
, &rcd
->flow_queue
, qp
);
803 /* get head before dropping lock */
804 fqp
= first_qp(rcd
, &rcd
->flow_queue
);
805 spin_unlock_irqrestore(&rcd
->exp_lock
, flags
);
807 tid_rdma_schedule_tid_wakeup(fqp
);
810 queue_qp_for_tid_wait(rcd
, &rcd
->flow_queue
, qp
);
811 spin_unlock_irqrestore(&rcd
->exp_lock
, flags
);
815 void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata
*rcd
, struct rvt_qp
*qp
)
817 struct hfi1_qp_priv
*qpriv
= (struct hfi1_qp_priv
*)qp
->priv
;
818 struct tid_flow_state
*fs
= &qpriv
->flow_state
;
822 if (fs
->index
>= RXE_NUM_TID_FLOWS
)
824 spin_lock_irqsave(&rcd
->exp_lock
, flags
);
825 kern_clear_hw_flow(rcd
, fs
->index
);
826 clear_bit(fs
->index
, &rcd
->flow_mask
);
827 fs
->index
= RXE_NUM_TID_FLOWS
;
829 fs
->generation
= KERN_GENERATION_RESERVED
;
831 /* get head before dropping lock */
832 fqp
= first_qp(rcd
, &rcd
->flow_queue
);
833 spin_unlock_irqrestore(&rcd
->exp_lock
, flags
);
836 __trigger_tid_waiter(fqp
);
839 tid_rdma_schedule_tid_wakeup(fqp
);
843 void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata
*rcd
)
847 for (i
= 0; i
< RXE_NUM_TID_FLOWS
; i
++) {
848 rcd
->flows
[i
].generation
= mask_generation(prandom_u32());
849 kern_set_hw_flow(rcd
, KERN_GENERATION_RESERVED
, i
);
853 /* TID allocation functions */
854 static u8
trdma_pset_order(struct tid_rdma_pageset
*s
)
858 return ilog2(count
) + 1;
862 * tid_rdma_find_phys_blocks_4k - get groups base on mr info
863 * @npages - number of pages
864 * @pages - pointer to an array of page structs
865 * @list - page set array to return
867 * This routine returns the number of groups associated with
868 * the current sge information. This implementation is based
869 * on the expected receive find_phys_blocks() adjusted to
870 * use the MR information vs. the pfn.
873 * the number of RcvArray entries
875 static u32
tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow
*flow
,
878 struct tid_rdma_pageset
*list
)
880 u32 pagecount
, pageidx
, setcount
= 0, i
;
881 void *vaddr
, *this_vaddr
;
887 * Look for sets of physically contiguous pages in the user buffer.
888 * This will allow us to optimize Expected RcvArray entry usage by
889 * using the bigger supported sizes.
891 vaddr
= page_address(pages
[0]);
892 trace_hfi1_tid_flow_page(flow
->req
->qp
, flow
, 0, 0, 0, vaddr
);
893 for (pageidx
= 0, pagecount
= 1, i
= 1; i
<= npages
; i
++) {
894 this_vaddr
= i
< npages
? page_address(pages
[i
]) : NULL
;
895 trace_hfi1_tid_flow_page(flow
->req
->qp
, flow
, i
, 0, 0,
898 * If the vaddr's are not sequential, pages are not physically
901 if (this_vaddr
!= (vaddr
+ PAGE_SIZE
)) {
903 * At this point we have to loop over the set of
904 * physically contiguous pages and break them down it
905 * sizes supported by the HW.
906 * There are two main constraints:
907 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
908 * If the total set size is bigger than that
909 * program only a MAX_EXPECTED_BUFFER chunk.
910 * 2. The buffer size has to be a power of two. If
911 * it is not, round down to the closes power of
912 * 2 and program that size.
915 int maxpages
= pagecount
;
916 u32 bufsize
= pagecount
* PAGE_SIZE
;
918 if (bufsize
> MAX_EXPECTED_BUFFER
)
920 MAX_EXPECTED_BUFFER
>>
922 else if (!is_power_of_2(bufsize
))
924 rounddown_pow_of_two(bufsize
) >>
927 list
[setcount
].idx
= pageidx
;
928 list
[setcount
].count
= maxpages
;
929 trace_hfi1_tid_pageset(flow
->req
->qp
, setcount
,
931 list
[setcount
].count
);
932 pagecount
-= maxpages
;
944 /* insure we always return an even number of sets */
946 list
[setcount
++].count
= 0;
951 * tid_flush_pages - dump out pages into pagesets
952 * @list - list of pagesets
953 * @idx - pointer to current page index
954 * @pages - number of pages to dump
955 * @sets - current number of pagesset
957 * This routine flushes out accumuated pages.
959 * To insure an even number of sets the
960 * code may add a filler.
962 * This can happen with when pages is not
963 * a power of 2 or pages is a power of 2
964 * less than the maximum pages.
967 * The new number of sets
970 static u32
tid_flush_pages(struct tid_rdma_pageset
*list
,
971 u32
*idx
, u32 pages
, u32 sets
)
974 u32 maxpages
= pages
;
976 if (maxpages
> MAX_EXPECTED_PAGES
)
977 maxpages
= MAX_EXPECTED_PAGES
;
978 else if (!is_power_of_2(maxpages
))
979 maxpages
= rounddown_pow_of_two(maxpages
);
980 list
[sets
].idx
= *idx
;
981 list
[sets
++].count
= maxpages
;
985 /* might need a filler */
987 list
[sets
++].count
= 0;
992 * tid_rdma_find_phys_blocks_8k - get groups base on mr info
993 * @pages - pointer to an array of page structs
994 * @npages - number of pages
995 * @list - page set array to return
997 * This routine parses an array of pages to compute pagesets
998 * in an 8k compatible way.
1000 * pages are tested two at a time, i, i + 1 for contiguous
1001 * pages and i - 1 and i contiguous pages.
1003 * If any condition is false, any accumlated pages are flushed and
1004 * v0,v1 are emitted as separate PAGE_SIZE pagesets
1006 * Otherwise, the current 8k is totaled for a future flush.
1009 * The number of pagesets
1010 * list set with the returned number of pagesets
1013 static u32
tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow
*flow
,
1014 struct page
**pages
,
1016 struct tid_rdma_pageset
*list
)
1018 u32 idx
, sets
= 0, i
;
1020 void *v0
, *v1
, *vm1
;
1024 for (idx
= 0, i
= 0, vm1
= NULL
; i
< npages
; i
+= 2) {
1026 v0
= page_address(pages
[i
]);
1027 trace_hfi1_tid_flow_page(flow
->req
->qp
, flow
, i
, 1, 0, v0
);
1028 v1
= i
+ 1 < npages
?
1029 page_address(pages
[i
+ 1]) : NULL
;
1030 trace_hfi1_tid_flow_page(flow
->req
->qp
, flow
, i
, 1, 1, v1
);
1031 /* compare i, i + 1 vaddr */
1032 if (v1
!= (v0
+ PAGE_SIZE
)) {
1033 /* flush out pages */
1034 sets
= tid_flush_pages(list
, &idx
, pagecnt
, sets
);
1035 /* output v0,v1 as two pagesets */
1036 list
[sets
].idx
= idx
++;
1037 list
[sets
++].count
= 1;
1039 list
[sets
].count
= 1;
1040 list
[sets
++].idx
= idx
++;
1042 list
[sets
++].count
= 0;
1048 /* i,i+1 consecutive, look at i-1,i */
1049 if (vm1
&& v0
!= (vm1
+ PAGE_SIZE
)) {
1050 /* flush out pages */
1051 sets
= tid_flush_pages(list
, &idx
, pagecnt
, sets
);
1054 /* pages will always be a multiple of 8k */
1058 /* move to next pair */
1060 /* dump residual pages at end */
1061 sets
= tid_flush_pages(list
, &idx
, npages
- idx
, sets
);
1062 /* by design cannot be odd sets */
1068 * Find pages for one segment of a sge array represented by @ss. The function
1069 * does not check the sge, the sge must have been checked for alignment with a
1070 * prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
1071 * rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
1072 * copy maintained in @ss->sge, the original sge is not modified.
1074 * Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
1075 * releasing the MR reference count at the same time. Otherwise, we'll "leak"
1076 * references to the MR. This difference requires that we keep track of progress
1077 * into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
1080 static u32
kern_find_pages(struct tid_rdma_flow
*flow
,
1081 struct page
**pages
,
1082 struct rvt_sge_state
*ss
, bool *last
)
1084 struct tid_rdma_request
*req
= flow
->req
;
1085 struct rvt_sge
*sge
= &ss
->sge
;
1086 u32 length
= flow
->req
->seg_len
;
1087 u32 len
= PAGE_SIZE
;
1090 while (length
&& req
->isge
< ss
->num_sge
) {
1091 pages
[i
++] = virt_to_page(sge
->vaddr
);
1095 sge
->sge_length
-= len
;
1096 if (!sge
->sge_length
) {
1097 if (++req
->isge
< ss
->num_sge
)
1098 *sge
= ss
->sg_list
[req
->isge
- 1];
1099 } else if (sge
->length
== 0 && sge
->mr
->lkey
) {
1100 if (++sge
->n
>= RVT_SEGSZ
) {
1104 sge
->vaddr
= sge
->mr
->map
[sge
->m
]->segs
[sge
->n
].vaddr
;
1105 sge
->length
= sge
->mr
->map
[sge
->m
]->segs
[sge
->n
].length
;
1110 flow
->length
= flow
->req
->seg_len
- length
;
1111 *last
= req
->isge
== ss
->num_sge
? false : true;
1115 static void dma_unmap_flow(struct tid_rdma_flow
*flow
)
1117 struct hfi1_devdata
*dd
;
1119 struct tid_rdma_pageset
*pset
;
1121 dd
= flow
->req
->rcd
->dd
;
1122 for (i
= 0, pset
= &flow
->pagesets
[0]; i
< flow
->npagesets
;
1124 if (pset
->count
&& pset
->addr
) {
1125 dma_unmap_page(&dd
->pcidev
->dev
,
1127 PAGE_SIZE
* pset
->count
,
1134 static int dma_map_flow(struct tid_rdma_flow
*flow
, struct page
**pages
)
1137 struct hfi1_devdata
*dd
= flow
->req
->rcd
->dd
;
1138 struct tid_rdma_pageset
*pset
;
1140 for (i
= 0, pset
= &flow
->pagesets
[0]; i
< flow
->npagesets
;
1143 pset
->addr
= dma_map_page(&dd
->pcidev
->dev
,
1146 PAGE_SIZE
* pset
->count
,
1149 if (dma_mapping_error(&dd
->pcidev
->dev
, pset
->addr
)) {
1150 dma_unmap_flow(flow
);
1159 static inline bool dma_mapped(struct tid_rdma_flow
*flow
)
1161 return !!flow
->pagesets
[0].mapped
;
1165 * Get pages pointers and identify contiguous physical memory chunks for a
1166 * segment. All segments are of length flow->req->seg_len.
1168 static int kern_get_phys_blocks(struct tid_rdma_flow
*flow
,
1169 struct page
**pages
,
1170 struct rvt_sge_state
*ss
, bool *last
)
1174 /* Reuse previously computed pagesets, if any */
1175 if (flow
->npagesets
) {
1176 trace_hfi1_tid_flow_alloc(flow
->req
->qp
, flow
->req
->setup_head
,
1178 if (!dma_mapped(flow
))
1179 return dma_map_flow(flow
, pages
);
1183 npages
= kern_find_pages(flow
, pages
, ss
, last
);
1185 if (flow
->req
->qp
->pmtu
== enum_to_mtu(OPA_MTU_4096
))
1187 tid_rdma_find_phys_blocks_4k(flow
, pages
, npages
,
1191 tid_rdma_find_phys_blocks_8k(flow
, pages
, npages
,
1194 return dma_map_flow(flow
, pages
);
1197 static inline void kern_add_tid_node(struct tid_rdma_flow
*flow
,
1198 struct hfi1_ctxtdata
*rcd
, char *s
,
1199 struct tid_group
*grp
, u8 cnt
)
1201 struct kern_tid_node
*node
= &flow
->tnode
[flow
->tnode_cnt
++];
1203 WARN_ON_ONCE(flow
->tnode_cnt
>=
1204 (TID_RDMA_MAX_SEGMENT_SIZE
>> PAGE_SHIFT
));
1205 if (WARN_ON_ONCE(cnt
& 1))
1207 "unexpected odd allocation cnt %u map 0x%x used %u",
1208 cnt
, grp
->map
, grp
->used
);
1211 node
->map
= grp
->map
;
1213 trace_hfi1_tid_node_add(flow
->req
->qp
, s
, flow
->tnode_cnt
- 1,
1214 grp
->base
, grp
->map
, grp
->used
, cnt
);
1218 * Try to allocate pageset_count TID's from TID groups for a context
1220 * This function allocates TID's without moving groups between lists or
1221 * modifying grp->map. This is done as follows, being cogizant of the lists
1222 * between which the TID groups will move:
1223 * 1. First allocate complete groups of 8 TID's since this is more efficient,
1224 * these groups will move from group->full without affecting used
1225 * 2. If more TID's are needed allocate from used (will move from used->full or
1227 * 3. If we still don't have the required number of TID's go back and look again
1228 * at a complete group (will move from group->used)
1230 static int kern_alloc_tids(struct tid_rdma_flow
*flow
)
1232 struct hfi1_ctxtdata
*rcd
= flow
->req
->rcd
;
1233 struct hfi1_devdata
*dd
= rcd
->dd
;
1234 u32 ngroups
, pageidx
= 0;
1235 struct tid_group
*group
= NULL
, *used
;
1238 flow
->tnode_cnt
= 0;
1239 ngroups
= flow
->npagesets
/ dd
->rcv_entries
.group_size
;
1243 /* First look at complete groups */
1244 list_for_each_entry(group
, &rcd
->tid_group_list
.list
, list
) {
1245 kern_add_tid_node(flow
, rcd
, "complete groups", group
,
1248 pageidx
+= group
->size
;
1253 if (pageidx
>= flow
->npagesets
)
1257 /* Now look at partially used groups */
1258 list_for_each_entry(used
, &rcd
->tid_used_list
.list
, list
) {
1259 use
= min_t(u32
, flow
->npagesets
- pageidx
,
1260 used
->size
- used
->used
);
1261 kern_add_tid_node(flow
, rcd
, "used groups", used
, use
);
1264 if (pageidx
>= flow
->npagesets
)
1269 * Look again at a complete group, continuing from where we left.
1270 * However, if we are at the head, we have reached the end of the
1271 * complete groups list from the first loop above
1273 if (group
&& &group
->list
== &rcd
->tid_group_list
.list
)
1275 group
= list_prepare_entry(group
, &rcd
->tid_group_list
.list
,
1277 if (list_is_last(&group
->list
, &rcd
->tid_group_list
.list
))
1279 group
= list_next_entry(group
, list
);
1280 use
= min_t(u32
, flow
->npagesets
- pageidx
, group
->size
);
1281 kern_add_tid_node(flow
, rcd
, "complete continue", group
, use
);
1283 if (pageidx
>= flow
->npagesets
)
1286 trace_hfi1_msg_alloc_tids(flow
->req
->qp
, " insufficient tids: needed ",
1287 (u64
)flow
->npagesets
);
1293 static void kern_program_rcv_group(struct tid_rdma_flow
*flow
, int grp_num
,
1296 struct hfi1_ctxtdata
*rcd
= flow
->req
->rcd
;
1297 struct hfi1_devdata
*dd
= rcd
->dd
;
1298 struct kern_tid_node
*node
= &flow
->tnode
[grp_num
];
1299 struct tid_group
*grp
= node
->grp
;
1300 struct tid_rdma_pageset
*pset
;
1301 u32 pmtu_pg
= flow
->req
->qp
->pmtu
>> PAGE_SHIFT
;
1302 u32 rcventry
, npages
= 0, pair
= 0, tidctrl
;
1305 for (i
= 0; i
< grp
->size
; i
++) {
1306 rcventry
= grp
->base
+ i
;
1308 if (node
->map
& BIT(i
) || cnt
>= node
->cnt
) {
1309 rcv_array_wc_fill(dd
, rcventry
);
1312 pset
= &flow
->pagesets
[(*pset_idx
)++];
1314 hfi1_put_tid(dd
, rcventry
, PT_EXPECTED
,
1315 pset
->addr
, trdma_pset_order(pset
));
1317 hfi1_put_tid(dd
, rcventry
, PT_INVALID
, 0, 0);
1319 npages
+= pset
->count
;
1321 rcventry
-= rcd
->expected_base
;
1322 tidctrl
= pair
? 0x3 : rcventry
& 0x1 ? 0x2 : 0x1;
1324 * A single TID entry will be used to use a rcvarr pair (with
1325 * tidctrl 0x3), if ALL these are true (a) the bit pos is even
1326 * (b) the group map shows current and the next bits as free
1327 * indicating two consecutive rcvarry entries are available (c)
1328 * we actually need 2 more entries
1330 pair
= !(i
& 0x1) && !((node
->map
>> i
) & 0x3) &&
1331 node
->cnt
>= cnt
+ 2;
1335 flow
->tid_entry
[flow
->tidcnt
++] =
1336 EXP_TID_SET(IDX
, rcventry
>> 1) |
1337 EXP_TID_SET(CTRL
, tidctrl
) |
1338 EXP_TID_SET(LEN
, npages
);
1339 trace_hfi1_tid_entry_alloc(/* entry */
1340 flow
->req
->qp
, flow
->tidcnt
- 1,
1341 flow
->tid_entry
[flow
->tidcnt
- 1]);
1343 /* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
1344 flow
->npkts
+= (npages
+ pmtu_pg
- 1) >> ilog2(pmtu_pg
);
1348 if (grp
->used
== grp
->size
- 1)
1349 tid_group_move(grp
, &rcd
->tid_used_list
,
1350 &rcd
->tid_full_list
);
1351 else if (!grp
->used
)
1352 tid_group_move(grp
, &rcd
->tid_group_list
,
1353 &rcd
->tid_used_list
);
1361 static void kern_unprogram_rcv_group(struct tid_rdma_flow
*flow
, int grp_num
)
1363 struct hfi1_ctxtdata
*rcd
= flow
->req
->rcd
;
1364 struct hfi1_devdata
*dd
= rcd
->dd
;
1365 struct kern_tid_node
*node
= &flow
->tnode
[grp_num
];
1366 struct tid_group
*grp
= node
->grp
;
1370 for (i
= 0; i
< grp
->size
; i
++) {
1371 rcventry
= grp
->base
+ i
;
1373 if (node
->map
& BIT(i
) || cnt
>= node
->cnt
) {
1374 rcv_array_wc_fill(dd
, rcventry
);
1378 hfi1_put_tid(dd
, rcventry
, PT_INVALID
, 0, 0);
1381 grp
->map
&= ~BIT(i
);
1384 if (grp
->used
== grp
->size
- 1)
1385 tid_group_move(grp
, &rcd
->tid_full_list
,
1386 &rcd
->tid_used_list
);
1387 else if (!grp
->used
)
1388 tid_group_move(grp
, &rcd
->tid_used_list
,
1389 &rcd
->tid_group_list
);
1391 if (WARN_ON_ONCE(cnt
& 1)) {
1392 struct hfi1_ctxtdata
*rcd
= flow
->req
->rcd
;
1393 struct hfi1_devdata
*dd
= rcd
->dd
;
1395 dd_dev_err(dd
, "unexpected odd free cnt %u map 0x%x used %u",
1396 cnt
, grp
->map
, grp
->used
);
1400 static void kern_program_rcvarray(struct tid_rdma_flow
*flow
)
1407 for (i
= 0; i
< flow
->tnode_cnt
; i
++)
1408 kern_program_rcv_group(flow
, i
, &pset_idx
);
1409 trace_hfi1_tid_flow_alloc(flow
->req
->qp
, flow
->req
->setup_head
, flow
);
1413 * hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
1416 * @req: TID RDMA request for which the segment/flow is being set up
1417 * @ss: sge state, maintains state across successive segments of a sge
1418 * @last: set to true after the last sge segment has been processed
1421 * (1) finds a free flow entry in the flow circular buffer
1422 * (2) finds pages and continuous physical chunks constituing one segment
1424 * (3) allocates TID group entries for those chunks
1425 * (4) programs rcvarray entries in the hardware corresponding to those
1427 * (5) computes a tidarray with formatted TID entries which can be sent
1429 * (6) Reserves and programs HW flows.
1430 * (7) It also manages queing the QP when TID/flow resources are not
1433 * @req points to struct tid_rdma_request of which the segments are a part. The
1434 * function uses qp, rcd and seg_len members of @req. In the absence of errors,
1435 * req->flow_idx is the index of the flow which has been prepared in this
1436 * invocation of function call. With flow = &req->flows[req->flow_idx],
1437 * flow->tid_entry contains the TID array which the sender can use for TID RDMA
1438 * sends and flow->npkts contains number of packets required to send the
1441 * hfi1_check_sge_align should be called prior to calling this function and if
1442 * it signals error TID RDMA cannot be used for this sge and this function
1443 * should not be called.
1445 * For the queuing, caller must hold the flow->req->qp s_lock from the send
1446 * engine and the function will procure the exp_lock.
1449 * The function returns -EAGAIN if sufficient number of TID/flow resources to
1450 * map the segment could not be allocated. In this case the function should be
1451 * called again with previous arguments to retry the TID allocation. There are
1452 * no other error returns. The function returns 0 on success.
1454 int hfi1_kern_exp_rcv_setup(struct tid_rdma_request
*req
,
1455 struct rvt_sge_state
*ss
, bool *last
)
1456 __must_hold(&req
->qp
->s_lock
)
1458 struct tid_rdma_flow
*flow
= &req
->flows
[req
->setup_head
];
1459 struct hfi1_ctxtdata
*rcd
= req
->rcd
;
1460 struct hfi1_qp_priv
*qpriv
= req
->qp
->priv
;
1461 unsigned long flags
;
1463 u16 clear_tail
= req
->clear_tail
;
1465 lockdep_assert_held(&req
->qp
->s_lock
);
1467 * We return error if either (a) we don't have space in the flow
1468 * circular buffer, or (b) we already have max entries in the buffer.
1469 * Max entries depend on the type of request we are processing and the
1470 * negotiated TID RDMA parameters.
1472 if (!CIRC_SPACE(req
->setup_head
, clear_tail
, MAX_FLOWS
) ||
1473 CIRC_CNT(req
->setup_head
, clear_tail
, MAX_FLOWS
) >=
1478 * Get pages, identify contiguous physical memory chunks for the segment
1479 * If we can not determine a DMA address mapping we will treat it just
1480 * like if we ran out of space above.
1482 if (kern_get_phys_blocks(flow
, qpriv
->pages
, ss
, last
)) {
1483 hfi1_wait_kmem(flow
->req
->qp
);
1487 spin_lock_irqsave(&rcd
->exp_lock
, flags
);
1488 if (kernel_tid_waiters(rcd
, &rcd
->rarr_queue
, flow
->req
->qp
))
1492 * At this point we know the number of pagesets and hence the number of
1493 * TID's to map the segment. Allocate the TID's from the TID groups. If
1494 * we cannot allocate the required number we exit and try again later
1496 if (kern_alloc_tids(flow
))
1499 * Finally program the TID entries with the pagesets, compute the
1500 * tidarray and enable the HW flow
1502 kern_program_rcvarray(flow
);
1505 * Setup the flow state with relevant information.
1506 * This information is used for tracking the sequence of data packets
1508 * The flow is setup here as this is the most accurate time and place
1509 * to do so. Doing at a later time runs the risk of the flow data in
1510 * qpriv getting out of sync.
1512 memset(&flow
->flow_state
, 0x0, sizeof(flow
->flow_state
));
1513 flow
->idx
= qpriv
->flow_state
.index
;
1514 flow
->flow_state
.generation
= qpriv
->flow_state
.generation
;
1515 flow
->flow_state
.spsn
= qpriv
->flow_state
.psn
;
1516 flow
->flow_state
.lpsn
= flow
->flow_state
.spsn
+ flow
->npkts
- 1;
1517 flow
->flow_state
.r_next_psn
=
1518 full_flow_psn(flow
, flow
->flow_state
.spsn
);
1519 qpriv
->flow_state
.psn
+= flow
->npkts
;
1521 dequeue_tid_waiter(rcd
, &rcd
->rarr_queue
, flow
->req
->qp
);
1522 /* get head before dropping lock */
1523 fqp
= first_qp(rcd
, &rcd
->rarr_queue
);
1524 spin_unlock_irqrestore(&rcd
->exp_lock
, flags
);
1525 tid_rdma_schedule_tid_wakeup(fqp
);
1527 req
->setup_head
= (req
->setup_head
+ 1) & (MAX_FLOWS
- 1);
1530 queue_qp_for_tid_wait(rcd
, &rcd
->rarr_queue
, flow
->req
->qp
);
1531 spin_unlock_irqrestore(&rcd
->exp_lock
, flags
);
1535 static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow
*flow
)
1537 flow
->npagesets
= 0;
1541 * This function is called after one segment has been successfully sent to
1542 * release the flow and TID HW/SW resources for that segment. The segments for a
1543 * TID RDMA request are setup and cleared in FIFO order which is managed using a
1546 int hfi1_kern_exp_rcv_clear(struct tid_rdma_request
*req
)
1547 __must_hold(&req
->qp
->s_lock
)
1549 struct tid_rdma_flow
*flow
= &req
->flows
[req
->clear_tail
];
1550 struct hfi1_ctxtdata
*rcd
= req
->rcd
;
1551 unsigned long flags
;
1555 lockdep_assert_held(&req
->qp
->s_lock
);
1556 /* Exit if we have nothing in the flow circular buffer */
1557 if (!CIRC_CNT(req
->setup_head
, req
->clear_tail
, MAX_FLOWS
))
1560 spin_lock_irqsave(&rcd
->exp_lock
, flags
);
1562 for (i
= 0; i
< flow
->tnode_cnt
; i
++)
1563 kern_unprogram_rcv_group(flow
, i
);
1564 /* To prevent double unprogramming */
1565 flow
->tnode_cnt
= 0;
1566 /* get head before dropping lock */
1567 fqp
= first_qp(rcd
, &rcd
->rarr_queue
);
1568 spin_unlock_irqrestore(&rcd
->exp_lock
, flags
);
1570 dma_unmap_flow(flow
);
1572 hfi1_tid_rdma_reset_flow(flow
);
1573 req
->clear_tail
= (req
->clear_tail
+ 1) & (MAX_FLOWS
- 1);
1575 if (fqp
== req
->qp
) {
1576 __trigger_tid_waiter(fqp
);
1579 tid_rdma_schedule_tid_wakeup(fqp
);
1586 * This function is called to release all the tid entries for
1589 void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request
*req
)
1590 __must_hold(&req
->qp
->s_lock
)
1592 /* Use memory barrier for proper ordering */
1593 while (CIRC_CNT(req
->setup_head
, req
->clear_tail
, MAX_FLOWS
)) {
1594 if (hfi1_kern_exp_rcv_clear(req
))
1600 * hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
1601 * @req - the tid rdma request to be cleaned
1603 static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request
*req
)
1610 * __trdma_clean_swqe - clean up for large sized QPs
1611 * @qp: the queue patch
1612 * @wqe: the send wqe
1614 void __trdma_clean_swqe(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
)
1616 struct hfi1_swqe_priv
*p
= wqe
->priv
;
1618 hfi1_kern_exp_rcv_free_flows(&p
->tid_req
);
1622 * This can be called at QP create time or in the data path.
1624 static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request
*req
,
1627 struct tid_rdma_flow
*flows
;
1630 if (likely(req
->flows
))
1632 flows
= kmalloc_node(MAX_FLOWS
* sizeof(*flows
), gfp
,
1637 for (i
= 0; i
< MAX_FLOWS
; i
++) {
1639 flows
[i
].npagesets
= 0;
1640 flows
[i
].pagesets
[0].mapped
= 0;
1641 flows
[i
].resync_npkts
= 0;
1647 static void hfi1_init_trdma_req(struct rvt_qp
*qp
,
1648 struct tid_rdma_request
*req
)
1650 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
1653 * Initialize various TID RDMA request variables.
1654 * These variables are "static", which is why they
1655 * can be pre-initialized here before the WRs has
1656 * even been submitted.
1657 * However, non-NULL values for these variables do not
1658 * imply that this WQE has been enabled for TID RDMA.
1659 * Drivers should check the WQE's opcode to determine
1660 * if a request is a TID RDMA one or not.
1663 req
->rcd
= qpriv
->rcd
;
1666 u64
hfi1_access_sw_tid_wait(const struct cntr_entry
*entry
,
1667 void *context
, int vl
, int mode
, u64 data
)
1669 struct hfi1_devdata
*dd
= context
;
1671 return dd
->verbs_dev
.n_tidwait
;
1674 static struct tid_rdma_flow
*find_flow_ib(struct tid_rdma_request
*req
,
1678 struct tid_rdma_flow
*flow
;
1680 head
= req
->setup_head
;
1681 tail
= req
->clear_tail
;
1682 for ( ; CIRC_CNT(head
, tail
, MAX_FLOWS
);
1683 tail
= CIRC_NEXT(tail
, MAX_FLOWS
)) {
1684 flow
= &req
->flows
[tail
];
1685 if (cmp_psn(psn
, flow
->flow_state
.ib_spsn
) >= 0 &&
1686 cmp_psn(psn
, flow
->flow_state
.ib_lpsn
) <= 0) {
1695 /* TID RDMA READ functions */
1696 u32
hfi1_build_tid_rdma_read_packet(struct rvt_swqe
*wqe
,
1697 struct ib_other_headers
*ohdr
, u32
*bth1
,
1698 u32
*bth2
, u32
*len
)
1700 struct tid_rdma_request
*req
= wqe_to_tid_req(wqe
);
1701 struct tid_rdma_flow
*flow
= &req
->flows
[req
->flow_idx
];
1702 struct rvt_qp
*qp
= req
->qp
;
1703 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
1704 struct hfi1_swqe_priv
*wpriv
= wqe
->priv
;
1705 struct tid_rdma_read_req
*rreq
= &ohdr
->u
.tid_rdma
.r_req
;
1706 struct tid_rdma_params
*remote
;
1708 void *req_addr
= NULL
;
1710 /* This is the IB psn used to send the request */
1711 *bth2
= mask_psn(flow
->flow_state
.ib_spsn
+ flow
->pkt
);
1712 trace_hfi1_tid_flow_build_read_pkt(qp
, req
->flow_idx
, flow
);
1714 /* TID Entries for TID RDMA READ payload */
1715 req_addr
= &flow
->tid_entry
[flow
->tid_idx
];
1716 req_len
= sizeof(*flow
->tid_entry
) *
1717 (flow
->tidcnt
- flow
->tid_idx
);
1719 memset(&ohdr
->u
.tid_rdma
.r_req
, 0, sizeof(ohdr
->u
.tid_rdma
.r_req
));
1720 wpriv
->ss
.sge
.vaddr
= req_addr
;
1721 wpriv
->ss
.sge
.sge_length
= req_len
;
1722 wpriv
->ss
.sge
.length
= wpriv
->ss
.sge
.sge_length
;
1724 * We can safely zero these out. Since the first SGE covers the
1725 * entire packet, nothing else should even look at the MR.
1727 wpriv
->ss
.sge
.mr
= NULL
;
1728 wpriv
->ss
.sge
.m
= 0;
1729 wpriv
->ss
.sge
.n
= 0;
1731 wpriv
->ss
.sg_list
= NULL
;
1732 wpriv
->ss
.total_len
= wpriv
->ss
.sge
.sge_length
;
1733 wpriv
->ss
.num_sge
= 1;
1735 /* Construct the TID RDMA READ REQ packet header */
1737 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
1739 KDETH_RESET(rreq
->kdeth0
, KVER
, 0x1);
1740 KDETH_RESET(rreq
->kdeth1
, JKEY
, remote
->jkey
);
1741 rreq
->reth
.vaddr
= cpu_to_be64(wqe
->rdma_wr
.remote_addr
+
1742 req
->cur_seg
* req
->seg_len
+ flow
->sent
);
1743 rreq
->reth
.rkey
= cpu_to_be32(wqe
->rdma_wr
.rkey
);
1744 rreq
->reth
.length
= cpu_to_be32(*len
);
1745 rreq
->tid_flow_psn
=
1746 cpu_to_be32((flow
->flow_state
.generation
<<
1747 HFI1_KDETH_BTH_SEQ_SHIFT
) |
1748 ((flow
->flow_state
.spsn
+ flow
->pkt
) &
1749 HFI1_KDETH_BTH_SEQ_MASK
));
1751 cpu_to_be32(qpriv
->tid_rdma
.local
.qp
|
1752 ((flow
->idx
& TID_RDMA_DESTQP_FLOW_MASK
) <<
1753 TID_RDMA_DESTQP_FLOW_SHIFT
) |
1755 rreq
->verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
1756 *bth1
&= ~RVT_QPN_MASK
;
1757 *bth1
|= remote
->qp
;
1758 *bth2
|= IB_BTH_REQ_ACK
;
1761 /* We are done with this segment */
1764 qp
->s_state
= TID_OP(READ_REQ
);
1766 req
->flow_idx
= (req
->flow_idx
+ 1) & (MAX_FLOWS
- 1);
1767 qpriv
->pending_tid_r_segs
++;
1768 qp
->s_num_rd_atomic
++;
1770 /* Set the TID RDMA READ request payload size */
1773 return sizeof(ohdr
->u
.tid_rdma
.r_req
) / sizeof(u32
);
1777 * @len: contains the data length to read upon entry and the read request
1778 * payload length upon exit.
1780 u32
hfi1_build_tid_rdma_read_req(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
,
1781 struct ib_other_headers
*ohdr
, u32
*bth1
,
1782 u32
*bth2
, u32
*len
)
1783 __must_hold(&qp
->s_lock
)
1785 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
1786 struct tid_rdma_request
*req
= wqe_to_tid_req(wqe
);
1787 struct tid_rdma_flow
*flow
= NULL
;
1791 u32 npkts
= rvt_div_round_up_mtu(qp
, *len
);
1793 trace_hfi1_tid_req_build_read_req(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
1796 * Check sync conditions. Make sure that there are no pending
1797 * segments before freeing the flow.
1800 if (req
->state
== TID_REQUEST_SYNC
) {
1801 if (qpriv
->pending_tid_r_segs
)
1804 hfi1_kern_clear_hw_flow(req
->rcd
, qp
);
1805 qpriv
->s_flags
&= ~HFI1_R_TID_SW_PSN
;
1806 req
->state
= TID_REQUEST_ACTIVE
;
1810 * If the request for this segment is resent, the tid resources should
1811 * have been allocated before. In this case, req->flow_idx should
1812 * fall behind req->setup_head.
1814 if (req
->flow_idx
== req
->setup_head
) {
1816 if (req
->state
== TID_REQUEST_RESEND
) {
1818 * This is the first new segment for a request whose
1819 * earlier segments have been re-sent. We need to
1820 * set up the sge pointer correctly.
1822 restart_sge(&qp
->s_sge
, wqe
, req
->s_next_psn
,
1825 req
->state
= TID_REQUEST_ACTIVE
;
1829 * Check sync. The last PSN of each generation is reserved for
1832 if ((qpriv
->flow_state
.psn
+ npkts
) > MAX_TID_FLOW_PSN
- 1) {
1833 req
->state
= TID_REQUEST_SYNC
;
1837 /* Allocate the flow if not yet */
1838 if (hfi1_kern_setup_hw_flow(qpriv
->rcd
, qp
))
1842 * The following call will advance req->setup_head after
1843 * allocating the tid entries.
1845 if (hfi1_kern_exp_rcv_setup(req
, &qp
->s_sge
, &last
)) {
1846 req
->state
= TID_REQUEST_QUEUED
;
1849 * We don't have resources for this segment. The QP has
1850 * already been queued.
1856 /* req->flow_idx should only be one slot behind req->setup_head */
1857 flow
= &req
->flows
[req
->flow_idx
];
1862 /* Set the first and last IB PSN for the flow in use.*/
1863 flow
->flow_state
.ib_spsn
= req
->s_next_psn
;
1864 flow
->flow_state
.ib_lpsn
=
1865 flow
->flow_state
.ib_spsn
+ flow
->npkts
- 1;
1868 /* Calculate the next segment start psn.*/
1869 req
->s_next_psn
+= flow
->npkts
;
1871 /* Build the packet header */
1872 hdwords
= hfi1_build_tid_rdma_read_packet(wqe
, ohdr
, bth1
, bth2
, len
);
1878 * Validate and accept the TID RDMA READ request parameters.
1879 * Return 0 if the request is accepted successfully;
1880 * Return 1 otherwise.
1882 static int tid_rdma_rcv_read_request(struct rvt_qp
*qp
,
1883 struct rvt_ack_entry
*e
,
1884 struct hfi1_packet
*packet
,
1885 struct ib_other_headers
*ohdr
,
1886 u32 bth0
, u32 psn
, u64 vaddr
, u32 len
)
1888 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
1889 struct tid_rdma_request
*req
;
1890 struct tid_rdma_flow
*flow
;
1891 u32 flow_psn
, i
, tidlen
= 0, pktlen
, tlen
;
1893 req
= ack_to_tid_req(e
);
1895 /* Validate the payload first */
1896 flow
= &req
->flows
[req
->setup_head
];
1898 /* payload length = packet length - (header length + ICRC length) */
1899 pktlen
= packet
->tlen
- (packet
->hlen
+ 4);
1900 if (pktlen
> sizeof(flow
->tid_entry
))
1902 memcpy(flow
->tid_entry
, packet
->ebuf
, pktlen
);
1903 flow
->tidcnt
= pktlen
/ sizeof(*flow
->tid_entry
);
1906 * Walk the TID_ENTRY list to make sure we have enough space for a
1907 * complete segment. Also calculate the number of required packets.
1909 flow
->npkts
= rvt_div_round_up_mtu(qp
, len
);
1910 for (i
= 0; i
< flow
->tidcnt
; i
++) {
1911 trace_hfi1_tid_entry_rcv_read_req(qp
, i
,
1912 flow
->tid_entry
[i
]);
1913 tlen
= EXP_TID_GET(flow
->tid_entry
[i
], LEN
);
1918 * For tid pair (tidctr == 3), the buffer size of the pair
1919 * should be the sum of the buffer size described by each
1920 * tid entry. However, only the first entry needs to be
1921 * specified in the request (see WFR HAS Section 8.5.7.1).
1925 if (tidlen
* PAGE_SIZE
< len
)
1928 /* Empty the flow array */
1929 req
->clear_tail
= req
->setup_head
;
1932 flow
->tid_offset
= 0;
1934 flow
->tid_qpn
= be32_to_cpu(ohdr
->u
.tid_rdma
.r_req
.tid_flow_qp
);
1935 flow
->idx
= (flow
->tid_qpn
>> TID_RDMA_DESTQP_FLOW_SHIFT
) &
1936 TID_RDMA_DESTQP_FLOW_MASK
;
1937 flow_psn
= mask_psn(be32_to_cpu(ohdr
->u
.tid_rdma
.r_req
.tid_flow_psn
));
1938 flow
->flow_state
.generation
= flow_psn
>> HFI1_KDETH_BTH_SEQ_SHIFT
;
1939 flow
->flow_state
.spsn
= flow_psn
& HFI1_KDETH_BTH_SEQ_MASK
;
1942 flow
->flow_state
.lpsn
= flow
->flow_state
.spsn
+
1944 flow
->flow_state
.ib_spsn
= psn
;
1945 flow
->flow_state
.ib_lpsn
= flow
->flow_state
.ib_spsn
+ flow
->npkts
- 1;
1947 trace_hfi1_tid_flow_rcv_read_req(qp
, req
->setup_head
, flow
);
1948 /* Set the initial flow index to the current flow. */
1949 req
->flow_idx
= req
->setup_head
;
1951 /* advance circular buffer head */
1952 req
->setup_head
= (req
->setup_head
+ 1) & (MAX_FLOWS
- 1);
1955 * Compute last PSN for request.
1957 e
->opcode
= (bth0
>> 24) & 0xff;
1959 e
->lpsn
= psn
+ flow
->npkts
- 1;
1962 req
->n_flows
= qpriv
->tid_rdma
.local
.max_read
;
1963 req
->state
= TID_REQUEST_ACTIVE
;
1968 req
->seg_len
= qpriv
->tid_rdma
.local
.max_len
;
1969 req
->total_len
= len
;
1970 req
->total_segs
= 1;
1971 req
->r_flow_psn
= e
->psn
;
1973 trace_hfi1_tid_req_rcv_read_req(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
,
1978 static int tid_rdma_rcv_error(struct hfi1_packet
*packet
,
1979 struct ib_other_headers
*ohdr
,
1980 struct rvt_qp
*qp
, u32 psn
, int diff
)
1982 struct hfi1_ibport
*ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
1983 struct hfi1_ctxtdata
*rcd
= ((struct hfi1_qp_priv
*)qp
->priv
)->rcd
;
1984 struct hfi1_ibdev
*dev
= to_idev(qp
->ibqp
.device
);
1985 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
1986 struct rvt_ack_entry
*e
;
1987 struct tid_rdma_request
*req
;
1988 unsigned long flags
;
1992 trace_hfi1_rsp_tid_rcv_error(qp
, psn
);
1993 trace_hfi1_tid_rdma_rcv_err(qp
, 0, psn
, diff
);
1995 /* sequence error */
1996 if (!qp
->r_nak_state
) {
1997 ibp
->rvp
.n_rc_seqnak
++;
1998 qp
->r_nak_state
= IB_NAK_PSN_ERROR
;
1999 qp
->r_ack_psn
= qp
->r_psn
;
2000 rc_defered_ack(rcd
, qp
);
2005 ibp
->rvp
.n_rc_dupreq
++;
2007 spin_lock_irqsave(&qp
->s_lock
, flags
);
2008 e
= find_prev_entry(qp
, psn
, &prev
, NULL
, &old_req
);
2009 if (!e
|| (e
->opcode
!= TID_OP(READ_REQ
) &&
2010 e
->opcode
!= TID_OP(WRITE_REQ
)))
2013 req
= ack_to_tid_req(e
);
2014 req
->r_flow_psn
= psn
;
2015 trace_hfi1_tid_req_rcv_err(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
, req
);
2016 if (e
->opcode
== TID_OP(READ_REQ
)) {
2017 struct ib_reth
*reth
;
2024 reth
= &ohdr
->u
.tid_rdma
.r_req
.reth
;
2026 * The requester always restarts from the start of the original
2029 len
= be32_to_cpu(reth
->length
);
2030 if (psn
!= e
->psn
|| len
!= req
->total_len
)
2033 release_rdma_sge_mr(e
);
2035 rkey
= be32_to_cpu(reth
->rkey
);
2036 vaddr
= get_ib_reth_vaddr(reth
);
2039 ok
= rvt_rkey_ok(qp
, &e
->rdma_sge
, len
, vaddr
, rkey
,
2040 IB_ACCESS_REMOTE_READ
);
2045 * If all the response packets for the current request have
2046 * been sent out and this request is complete (old_request
2047 * == false) and the TID flow may be unusable (the
2048 * req->clear_tail is advanced). However, when an earlier
2049 * request is received, this request will not be complete any
2050 * more (qp->s_tail_ack_queue is moved back, see below).
2051 * Consequently, we need to update the TID flow info everytime
2052 * a duplicate request is received.
2054 bth0
= be32_to_cpu(ohdr
->bth
[0]);
2055 if (tid_rdma_rcv_read_request(qp
, e
, packet
, ohdr
, bth0
, psn
,
2060 * True if the request is already scheduled (between
2061 * qp->s_tail_ack_queue and qp->r_head_ack_queue);
2066 struct flow_state
*fstate
;
2067 bool schedule
= false;
2070 if (req
->state
== TID_REQUEST_RESEND
) {
2071 req
->state
= TID_REQUEST_RESEND_ACTIVE
;
2072 } else if (req
->state
== TID_REQUEST_INIT_RESEND
) {
2073 req
->state
= TID_REQUEST_INIT
;
2078 * True if the request is already scheduled (between
2079 * qp->s_tail_ack_queue and qp->r_head_ack_queue).
2080 * Also, don't change requests, which are at the SYNC
2081 * point and haven't generated any responses yet.
2082 * There is nothing to retransmit for them yet.
2084 if (old_req
|| req
->state
== TID_REQUEST_INIT
||
2085 (req
->state
== TID_REQUEST_SYNC
&& !req
->cur_seg
)) {
2086 for (i
= prev
+ 1; ; i
++) {
2087 if (i
> rvt_size_atomic(&dev
->rdi
))
2089 if (i
== qp
->r_head_ack_queue
)
2091 e
= &qp
->s_ack_queue
[i
];
2092 req
= ack_to_tid_req(e
);
2093 if (e
->opcode
== TID_OP(WRITE_REQ
) &&
2094 req
->state
== TID_REQUEST_INIT
)
2095 req
->state
= TID_REQUEST_INIT_RESEND
;
2098 * If the state of the request has been changed,
2099 * the first leg needs to get scheduled in order to
2100 * pick up the change. Otherwise, normal response
2101 * processing should take care of it.
2108 * If there is no more allocated segment, just schedule the qp
2109 * without changing any state.
2111 if (req
->clear_tail
== req
->setup_head
)
2114 * If this request has sent responses for segments, which have
2115 * not received data yet (flow_idx != clear_tail), the flow_idx
2116 * pointer needs to be adjusted so the same responses can be
2119 if (CIRC_CNT(req
->flow_idx
, req
->clear_tail
, MAX_FLOWS
)) {
2120 fstate
= &req
->flows
[req
->clear_tail
].flow_state
;
2121 qpriv
->pending_tid_w_segs
-=
2122 CIRC_CNT(req
->flow_idx
, req
->clear_tail
,
2125 CIRC_ADD(req
->clear_tail
,
2126 delta_psn(psn
, fstate
->resp_ib_psn
),
2128 qpriv
->pending_tid_w_segs
+=
2129 delta_psn(psn
, fstate
->resp_ib_psn
);
2131 * When flow_idx == setup_head, we've gotten a duplicate
2132 * request for a segment, which has not been allocated
2133 * yet. In that case, don't adjust this request.
2134 * However, we still want to go through the loop below
2135 * to adjust all subsequent requests.
2137 if (CIRC_CNT(req
->setup_head
, req
->flow_idx
,
2139 req
->cur_seg
= delta_psn(psn
, e
->psn
);
2140 req
->state
= TID_REQUEST_RESEND_ACTIVE
;
2144 for (i
= prev
+ 1; ; i
++) {
2146 * Look at everything up to and including
2149 if (i
> rvt_size_atomic(&dev
->rdi
))
2151 if (i
== qp
->r_head_ack_queue
)
2153 e
= &qp
->s_ack_queue
[i
];
2154 req
= ack_to_tid_req(e
);
2155 trace_hfi1_tid_req_rcv_err(qp
, 0, e
->opcode
, e
->psn
,
2157 if (e
->opcode
!= TID_OP(WRITE_REQ
) ||
2158 req
->cur_seg
== req
->comp_seg
||
2159 req
->state
== TID_REQUEST_INIT
||
2160 req
->state
== TID_REQUEST_INIT_RESEND
) {
2161 if (req
->state
== TID_REQUEST_INIT
)
2162 req
->state
= TID_REQUEST_INIT_RESEND
;
2165 qpriv
->pending_tid_w_segs
-=
2166 CIRC_CNT(req
->flow_idx
,
2169 req
->flow_idx
= req
->clear_tail
;
2170 req
->state
= TID_REQUEST_RESEND
;
2171 req
->cur_seg
= req
->comp_seg
;
2173 qpriv
->s_flags
&= ~HFI1_R_TID_WAIT_INTERLCK
;
2175 /* Re-process old requests.*/
2176 if (qp
->s_acked_ack_queue
== qp
->s_tail_ack_queue
)
2177 qp
->s_acked_ack_queue
= prev
;
2178 qp
->s_tail_ack_queue
= prev
;
2180 * Since the qp->s_tail_ack_queue is modified, the
2181 * qp->s_ack_state must be changed to re-initialize
2182 * qp->s_ack_rdma_sge; Otherwise, we will end up in
2183 * wrong memory region.
2185 qp
->s_ack_state
= OP(ACKNOWLEDGE
);
2188 * It's possible to receive a retry psn that is earlier than an RNRNAK
2189 * psn. In this case, the rnrnak state should be cleared.
2191 if (qpriv
->rnr_nak_state
) {
2192 qp
->s_nak_state
= 0;
2193 qpriv
->rnr_nak_state
= TID_RNR_NAK_INIT
;
2194 qp
->r_psn
= e
->lpsn
+ 1;
2195 hfi1_tid_write_alloc_resources(qp
, true);
2198 qp
->r_state
= e
->opcode
;
2199 qp
->r_nak_state
= 0;
2200 qp
->s_flags
|= RVT_S_RESP_PENDING
;
2201 hfi1_schedule_send(qp
);
2203 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2208 void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet
*packet
)
2210 /* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
2213 * 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
2214 * (see hfi1_rc_rcv())
2215 * 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
2216 * - Setup struct tid_rdma_req with request info
2217 * - Initialize struct tid_rdma_flow info;
2218 * - Copy TID entries;
2219 * 3. Set the qp->s_ack_state.
2220 * 4. Set RVT_S_RESP_PENDING in s_flags.
2221 * 5. Kick the send engine (hfi1_schedule_send())
2223 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
2224 struct rvt_qp
*qp
= packet
->qp
;
2225 struct hfi1_ibport
*ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
2226 struct ib_other_headers
*ohdr
= packet
->ohdr
;
2227 struct rvt_ack_entry
*e
;
2228 unsigned long flags
;
2229 struct ib_reth
*reth
;
2230 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
2231 u32 bth0
, psn
, len
, rkey
;
2236 u8 nack_state
= IB_NAK_INVALID_REQUEST
;
2238 bth0
= be32_to_cpu(ohdr
->bth
[0]);
2239 if (hfi1_ruc_check_hdr(ibp
, packet
))
2242 fecn
= process_ecn(qp
, packet
);
2243 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
2244 trace_hfi1_rsp_rcv_tid_read_req(qp
, psn
);
2246 if (qp
->state
== IB_QPS_RTR
&& !(qp
->r_flags
& RVT_R_COMM_EST
))
2249 if (unlikely(!(qp
->qp_access_flags
& IB_ACCESS_REMOTE_READ
)))
2252 reth
= &ohdr
->u
.tid_rdma
.r_req
.reth
;
2253 vaddr
= be64_to_cpu(reth
->vaddr
);
2254 len
= be32_to_cpu(reth
->length
);
2255 /* The length needs to be in multiples of PAGE_SIZE */
2256 if (!len
|| len
& ~PAGE_MASK
|| len
> qpriv
->tid_rdma
.local
.max_len
)
2259 diff
= delta_psn(psn
, qp
->r_psn
);
2260 if (unlikely(diff
)) {
2261 tid_rdma_rcv_err(packet
, ohdr
, qp
, psn
, diff
, fecn
);
2265 /* We've verified the request, insert it into the ack queue. */
2266 next
= qp
->r_head_ack_queue
+ 1;
2267 if (next
> rvt_size_atomic(ib_to_rvt(qp
->ibqp
.device
)))
2269 spin_lock_irqsave(&qp
->s_lock
, flags
);
2270 if (unlikely(next
== qp
->s_tail_ack_queue
)) {
2271 if (!qp
->s_ack_queue
[next
].sent
) {
2272 nack_state
= IB_NAK_REMOTE_OPERATIONAL_ERROR
;
2273 goto nack_inv_unlock
;
2275 update_ack_queue(qp
, next
);
2277 e
= &qp
->s_ack_queue
[qp
->r_head_ack_queue
];
2278 release_rdma_sge_mr(e
);
2280 rkey
= be32_to_cpu(reth
->rkey
);
2283 if (unlikely(!rvt_rkey_ok(qp
, &e
->rdma_sge
, qp
->r_len
, vaddr
,
2284 rkey
, IB_ACCESS_REMOTE_READ
)))
2287 /* Accept the request parameters */
2288 if (tid_rdma_rcv_read_request(qp
, e
, packet
, ohdr
, bth0
, psn
, vaddr
,
2290 goto nack_inv_unlock
;
2292 qp
->r_state
= e
->opcode
;
2293 qp
->r_nak_state
= 0;
2295 * We need to increment the MSN here instead of when we
2296 * finish sending the result since a duplicate request would
2297 * increment it more than once.
2300 qp
->r_psn
+= e
->lpsn
- e
->psn
+ 1;
2302 qp
->r_head_ack_queue
= next
;
2305 * For all requests other than TID WRITE which are added to the ack
2306 * queue, qpriv->r_tid_alloc follows qp->r_head_ack_queue. It is ok to
2307 * do this because of interlocks between these and TID WRITE
2308 * requests. The same change has also been made in hfi1_rc_rcv().
2310 qpriv
->r_tid_alloc
= qp
->r_head_ack_queue
;
2312 /* Schedule the send tasklet. */
2313 qp
->s_flags
|= RVT_S_RESP_PENDING
;
2315 qp
->s_flags
|= RVT_S_ECN
;
2316 hfi1_schedule_send(qp
);
2318 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2322 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2324 rvt_rc_error(qp
, IB_WC_LOC_QP_OP_ERR
);
2325 qp
->r_nak_state
= nack_state
;
2326 qp
->r_ack_psn
= qp
->r_psn
;
2327 /* Queue NAK for later */
2328 rc_defered_ack(rcd
, qp
);
2331 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2332 rvt_rc_error(qp
, IB_WC_LOC_PROT_ERR
);
2333 qp
->r_nak_state
= IB_NAK_REMOTE_ACCESS_ERROR
;
2334 qp
->r_ack_psn
= qp
->r_psn
;
2337 u32
hfi1_build_tid_rdma_read_resp(struct rvt_qp
*qp
, struct rvt_ack_entry
*e
,
2338 struct ib_other_headers
*ohdr
, u32
*bth0
,
2339 u32
*bth1
, u32
*bth2
, u32
*len
, bool *last
)
2341 struct hfi1_ack_priv
*epriv
= e
->priv
;
2342 struct tid_rdma_request
*req
= &epriv
->tid_req
;
2343 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
2344 struct tid_rdma_flow
*flow
= &req
->flows
[req
->clear_tail
];
2345 u32 tidentry
= flow
->tid_entry
[flow
->tid_idx
];
2346 u32 tidlen
= EXP_TID_GET(tidentry
, LEN
) << PAGE_SHIFT
;
2347 struct tid_rdma_read_resp
*resp
= &ohdr
->u
.tid_rdma
.r_rsp
;
2348 u32 next_offset
, om
= KDETH_OM_LARGE
;
2351 struct tid_rdma_params
*remote
;
2353 *len
= min_t(u32
, qp
->pmtu
, tidlen
- flow
->tid_offset
);
2355 next_offset
= flow
->tid_offset
+ *len
;
2356 last_pkt
= (flow
->sent
>= flow
->length
);
2358 trace_hfi1_tid_entry_build_read_resp(qp
, flow
->tid_idx
, tidentry
);
2359 trace_hfi1_tid_flow_build_read_resp(qp
, req
->clear_tail
, flow
);
2362 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
2367 KDETH_RESET(resp
->kdeth0
, KVER
, 0x1);
2368 KDETH_SET(resp
->kdeth0
, SH
, !last_pkt
);
2369 KDETH_SET(resp
->kdeth0
, INTR
, !!(!last_pkt
&& remote
->urg
));
2370 KDETH_SET(resp
->kdeth0
, TIDCTRL
, EXP_TID_GET(tidentry
, CTRL
));
2371 KDETH_SET(resp
->kdeth0
, TID
, EXP_TID_GET(tidentry
, IDX
));
2372 KDETH_SET(resp
->kdeth0
, OM
, om
== KDETH_OM_LARGE
);
2373 KDETH_SET(resp
->kdeth0
, OFFSET
, flow
->tid_offset
/ om
);
2374 KDETH_RESET(resp
->kdeth1
, JKEY
, remote
->jkey
);
2375 resp
->verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
2378 resp
->aeth
= rvt_compute_aeth(qp
);
2379 resp
->verbs_psn
= cpu_to_be32(mask_psn(flow
->flow_state
.ib_spsn
+
2382 *bth0
= TID_OP(READ_RESP
) << 24;
2383 *bth1
= flow
->tid_qpn
;
2384 *bth2
= mask_psn(((flow
->flow_state
.spsn
+ flow
->pkt
++) &
2385 HFI1_KDETH_BTH_SEQ_MASK
) |
2386 (flow
->flow_state
.generation
<<
2387 HFI1_KDETH_BTH_SEQ_SHIFT
));
2390 /* Advance to next flow */
2391 req
->clear_tail
= (req
->clear_tail
+ 1) &
2394 if (next_offset
>= tidlen
) {
2395 flow
->tid_offset
= 0;
2398 flow
->tid_offset
= next_offset
;
2401 hdwords
= sizeof(ohdr
->u
.tid_rdma
.r_rsp
) / sizeof(u32
);
2407 static inline struct tid_rdma_request
*
2408 find_tid_request(struct rvt_qp
*qp
, u32 psn
, enum ib_wr_opcode opcode
)
2409 __must_hold(&qp
->s_lock
)
2411 struct rvt_swqe
*wqe
;
2412 struct tid_rdma_request
*req
= NULL
;
2415 end
= qp
->s_cur
+ 1;
2416 if (end
== qp
->s_size
)
2418 for (i
= qp
->s_acked
; i
!= end
;) {
2419 wqe
= rvt_get_swqe_ptr(qp
, i
);
2420 if (cmp_psn(psn
, wqe
->psn
) >= 0 &&
2421 cmp_psn(psn
, wqe
->lpsn
) <= 0) {
2422 if (wqe
->wr
.opcode
== opcode
)
2423 req
= wqe_to_tid_req(wqe
);
2426 if (++i
== qp
->s_size
)
2433 void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet
*packet
)
2435 /* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
2438 * 1. Find matching SWQE
2439 * 2. Check that the entire segment has been read.
2440 * 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
2441 * 4. Free the TID flow resources.
2442 * 5. Kick the send engine (hfi1_schedule_send())
2444 struct ib_other_headers
*ohdr
= packet
->ohdr
;
2445 struct rvt_qp
*qp
= packet
->qp
;
2446 struct hfi1_qp_priv
*priv
= qp
->priv
;
2447 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
2448 struct tid_rdma_request
*req
;
2449 struct tid_rdma_flow
*flow
;
2452 unsigned long flags
;
2455 trace_hfi1_sender_rcv_tid_read_resp(qp
);
2456 fecn
= process_ecn(qp
, packet
);
2457 kpsn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
2458 aeth
= be32_to_cpu(ohdr
->u
.tid_rdma
.r_rsp
.aeth
);
2459 opcode
= (be32_to_cpu(ohdr
->bth
[0]) >> 24) & 0xff;
2461 spin_lock_irqsave(&qp
->s_lock
, flags
);
2462 ipsn
= mask_psn(be32_to_cpu(ohdr
->u
.tid_rdma
.r_rsp
.verbs_psn
));
2463 req
= find_tid_request(qp
, ipsn
, IB_WR_TID_RDMA_READ
);
2467 flow
= &req
->flows
[req
->clear_tail
];
2468 /* When header suppression is disabled */
2469 if (cmp_psn(ipsn
, flow
->flow_state
.ib_lpsn
)) {
2470 update_r_next_psn_fecn(packet
, priv
, rcd
, flow
, fecn
);
2472 if (cmp_psn(kpsn
, flow
->flow_state
.r_next_psn
))
2474 flow
->flow_state
.r_next_psn
= mask_psn(kpsn
+ 1);
2476 * Copy the payload to destination buffer if this packet is
2477 * delivered as an eager packet due to RSM rule and FECN.
2478 * The RSM rule selects FECN bit in BTH and SH bit in
2479 * KDETH header and therefore will not match the last
2480 * packet of each segment that has SH bit cleared.
2482 if (fecn
&& packet
->etype
== RHF_RCV_TYPE_EAGER
) {
2483 struct rvt_sge_state ss
;
2485 u32 tlen
= packet
->tlen
;
2486 u16 hdrsize
= packet
->hlen
;
2487 u8 pad
= packet
->pad
;
2488 u8 extra_bytes
= pad
+ packet
->extra_byte
+
2490 u32 pmtu
= qp
->pmtu
;
2492 if (unlikely(tlen
!= (hdrsize
+ pmtu
+ extra_bytes
)))
2494 len
= restart_sge(&ss
, req
->e
.swqe
, ipsn
, pmtu
);
2495 if (unlikely(len
< pmtu
))
2497 rvt_copy_sge(qp
, &ss
, packet
->payload
, pmtu
, false,
2499 /* Raise the sw sequence check flag for next packet */
2500 priv
->s_flags
|= HFI1_R_TID_SW_PSN
;
2505 flow
->flow_state
.r_next_psn
= mask_psn(kpsn
+ 1);
2507 priv
->pending_tid_r_segs
--;
2508 qp
->s_num_rd_atomic
--;
2509 if ((qp
->s_flags
& RVT_S_WAIT_FENCE
) &&
2510 !qp
->s_num_rd_atomic
) {
2511 qp
->s_flags
&= ~(RVT_S_WAIT_FENCE
|
2513 hfi1_schedule_send(qp
);
2515 if (qp
->s_flags
& RVT_S_WAIT_RDMAR
) {
2516 qp
->s_flags
&= ~(RVT_S_WAIT_RDMAR
| RVT_S_WAIT_ACK
);
2517 hfi1_schedule_send(qp
);
2520 trace_hfi1_ack(qp
, ipsn
);
2521 trace_hfi1_tid_req_rcv_read_resp(qp
, 0, req
->e
.swqe
->wr
.opcode
,
2522 req
->e
.swqe
->psn
, req
->e
.swqe
->lpsn
,
2524 trace_hfi1_tid_flow_rcv_read_resp(qp
, req
->clear_tail
, flow
);
2526 /* Release the tid resources */
2527 hfi1_kern_exp_rcv_clear(req
);
2529 if (!do_rc_ack(qp
, aeth
, ipsn
, opcode
, 0, rcd
))
2532 /* If not done yet, build next read request */
2533 if (++req
->comp_seg
>= req
->total_segs
) {
2535 req
->state
= TID_REQUEST_COMPLETE
;
2539 * Clear the hw flow under two conditions:
2540 * 1. This request is a sync point and it is complete;
2541 * 2. Current request is completed and there are no more requests.
2543 if ((req
->state
== TID_REQUEST_SYNC
&&
2544 req
->comp_seg
== req
->cur_seg
) ||
2545 priv
->tid_r_comp
== priv
->tid_r_reqs
) {
2546 hfi1_kern_clear_hw_flow(priv
->rcd
, qp
);
2547 priv
->s_flags
&= ~HFI1_R_TID_SW_PSN
;
2548 if (req
->state
== TID_REQUEST_SYNC
)
2549 req
->state
= TID_REQUEST_ACTIVE
;
2552 hfi1_schedule_send(qp
);
2557 * The test indicates that the send engine has finished its cleanup
2558 * after sending the request and it's now safe to put the QP into error
2559 * state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
2560 * == qp->s_head), it would be unsafe to complete the wqe pointed by
2561 * qp->s_acked here. Putting the qp into error state will safely flush
2562 * all remaining requests.
2564 if (qp
->s_last
== qp
->s_acked
)
2565 rvt_error_qp(qp
, IB_WC_WR_FLUSH_ERR
);
2568 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
2571 void hfi1_kern_read_tid_flow_free(struct rvt_qp
*qp
)
2572 __must_hold(&qp
->s_lock
)
2574 u32 n
= qp
->s_acked
;
2575 struct rvt_swqe
*wqe
;
2576 struct tid_rdma_request
*req
;
2577 struct hfi1_qp_priv
*priv
= qp
->priv
;
2579 lockdep_assert_held(&qp
->s_lock
);
2580 /* Free any TID entries */
2581 while (n
!= qp
->s_tail
) {
2582 wqe
= rvt_get_swqe_ptr(qp
, n
);
2583 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
) {
2584 req
= wqe_to_tid_req(wqe
);
2585 hfi1_kern_exp_rcv_clear_all(req
);
2588 if (++n
== qp
->s_size
)
2592 hfi1_kern_clear_hw_flow(priv
->rcd
, qp
);
2595 static bool tid_rdma_tid_err(struct hfi1_packet
*packet
, u8 rcv_type
)
2597 struct rvt_qp
*qp
= packet
->qp
;
2599 if (rcv_type
>= RHF_RCV_TYPE_IB
)
2602 spin_lock(&qp
->s_lock
);
2605 * We've ran out of space in the eager buffer.
2606 * Eagerly received KDETH packets which require space in the
2607 * Eager buffer (packet that have payload) are TID RDMA WRITE
2608 * response packets. In this case, we have to re-transmit the
2609 * TID RDMA WRITE request.
2611 if (rcv_type
== RHF_RCV_TYPE_EAGER
) {
2612 hfi1_restart_rc(qp
, qp
->s_last_psn
+ 1, 1);
2613 hfi1_schedule_send(qp
);
2616 /* Since no payload is delivered, just drop the packet */
2617 spin_unlock(&qp
->s_lock
);
2622 static void restart_tid_rdma_read_req(struct hfi1_ctxtdata
*rcd
,
2623 struct rvt_qp
*qp
, struct rvt_swqe
*wqe
)
2625 struct tid_rdma_request
*req
;
2626 struct tid_rdma_flow
*flow
;
2628 /* Start from the right segment */
2629 qp
->r_flags
|= RVT_R_RDMAR_SEQ
;
2630 req
= wqe_to_tid_req(wqe
);
2631 flow
= &req
->flows
[req
->clear_tail
];
2632 hfi1_restart_rc(qp
, flow
->flow_state
.ib_spsn
, 0);
2633 if (list_empty(&qp
->rspwait
)) {
2634 qp
->r_flags
|= RVT_R_RSP_SEND
;
2636 list_add_tail(&qp
->rspwait
, &rcd
->qp_wait_list
);
2641 * Handle the KDETH eflags for TID RDMA READ response.
2643 * Return true if the last packet for a segment has been received and it is
2644 * time to process the response normally; otherwise, return true.
2646 * The caller must hold the packet->qp->r_lock and the rcu_read_lock.
2648 static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata
*rcd
,
2649 struct hfi1_packet
*packet
, u8 rcv_type
,
2650 u8 rte
, u32 psn
, u32 ibpsn
)
2651 __must_hold(&packet
->qp
->r_lock
) __must_hold(RCU
)
2653 struct hfi1_pportdata
*ppd
= rcd
->ppd
;
2654 struct hfi1_devdata
*dd
= ppd
->dd
;
2655 struct hfi1_ibport
*ibp
;
2656 struct rvt_swqe
*wqe
;
2657 struct tid_rdma_request
*req
;
2658 struct tid_rdma_flow
*flow
;
2660 struct rvt_qp
*qp
= packet
->qp
;
2661 struct hfi1_qp_priv
*priv
= qp
->priv
;
2666 lockdep_assert_held(&qp
->r_lock
);
2667 trace_hfi1_rsp_read_kdeth_eflags(qp
, ibpsn
);
2668 trace_hfi1_sender_read_kdeth_eflags(qp
);
2669 trace_hfi1_tid_read_sender_kdeth_eflags(qp
, 0);
2670 spin_lock(&qp
->s_lock
);
2671 /* If the psn is out of valid range, drop the packet */
2672 if (cmp_psn(ibpsn
, qp
->s_last_psn
) < 0 ||
2673 cmp_psn(ibpsn
, qp
->s_psn
) > 0)
2677 * Note that NAKs implicitly ACK outstanding SEND and RDMA write
2678 * requests and implicitly NAK RDMA read and atomic requests issued
2679 * before the NAK'ed request.
2681 ack_psn
= ibpsn
- 1;
2682 wqe
= rvt_get_swqe_ptr(qp
, qp
->s_acked
);
2683 ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
2685 /* Complete WQEs that the PSN finishes. */
2686 while ((int)delta_psn(ack_psn
, wqe
->lpsn
) >= 0) {
2688 * If this request is a RDMA read or atomic, and the NACK is
2689 * for a later operation, this NACK NAKs the RDMA read or
2692 if (wqe
->wr
.opcode
== IB_WR_RDMA_READ
||
2693 wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
||
2694 wqe
->wr
.opcode
== IB_WR_ATOMIC_CMP_AND_SWP
||
2695 wqe
->wr
.opcode
== IB_WR_ATOMIC_FETCH_AND_ADD
) {
2696 /* Retry this request. */
2697 if (!(qp
->r_flags
& RVT_R_RDMAR_SEQ
)) {
2698 qp
->r_flags
|= RVT_R_RDMAR_SEQ
;
2699 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
) {
2700 restart_tid_rdma_read_req(rcd
, qp
,
2703 hfi1_restart_rc(qp
, qp
->s_last_psn
+ 1,
2705 if (list_empty(&qp
->rspwait
)) {
2706 qp
->r_flags
|= RVT_R_RSP_SEND
;
2708 list_add_tail(/* wait */
2710 &rcd
->qp_wait_list
);
2715 * No need to process the NAK since we are
2716 * restarting an earlier request.
2721 wqe
= do_rc_completion(qp
, wqe
, ibp
);
2722 if (qp
->s_acked
== qp
->s_tail
)
2726 if (qp
->s_acked
== qp
->s_tail
)
2729 /* Handle the eflags for the request */
2730 if (wqe
->wr
.opcode
!= IB_WR_TID_RDMA_READ
)
2733 req
= wqe_to_tid_req(wqe
);
2734 trace_hfi1_tid_req_read_kdeth_eflags(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
2737 case RHF_RCV_TYPE_EXPECTED
:
2739 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR
:
2741 * On the first occurrence of a Flow Sequence error,
2742 * the flag TID_FLOW_SW_PSN is set.
2744 * After that, the flow is *not* reprogrammed and the
2745 * protocol falls back to SW PSN checking. This is done
2746 * to prevent continuous Flow Sequence errors for any
2747 * packets that could be still in the fabric.
2749 flow
= &req
->flows
[req
->clear_tail
];
2750 trace_hfi1_tid_flow_read_kdeth_eflags(qp
,
2753 if (priv
->s_flags
& HFI1_R_TID_SW_PSN
) {
2755 flow
->flow_state
.r_next_psn
);
2757 /* Drop the packet.*/
2759 } else if (diff
< 0) {
2761 * If a response packet for a restarted
2762 * request has come back, reset the
2765 if (qp
->r_flags
& RVT_R_RDMAR_SEQ
)
2769 /* Drop the packet.*/
2774 * If SW PSN verification is successful and
2775 * this is the last packet in the segment, tell
2776 * the caller to process it as a normal packet.
2778 fpsn
= full_flow_psn(flow
,
2779 flow
->flow_state
.lpsn
);
2780 if (cmp_psn(fpsn
, psn
) == 0) {
2782 if (qp
->r_flags
& RVT_R_RDMAR_SEQ
)
2786 flow
->flow_state
.r_next_psn
=
2791 last_psn
= read_r_next_psn(dd
, rcd
->ctxt
,
2793 flow
->flow_state
.r_next_psn
= last_psn
;
2794 priv
->s_flags
|= HFI1_R_TID_SW_PSN
;
2796 * If no request has been restarted yet,
2797 * restart the current one.
2799 if (!(qp
->r_flags
& RVT_R_RDMAR_SEQ
))
2800 restart_tid_rdma_read_req(rcd
, qp
,
2806 case RHF_RTE_EXPECTED_FLOW_GEN_ERR
:
2808 * Since the TID flow is able to ride through
2809 * generation mismatch, drop this stale packet.
2818 case RHF_RCV_TYPE_ERROR
:
2820 case RHF_RTE_ERROR_OP_CODE_ERR
:
2821 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR
:
2822 case RHF_RTE_ERROR_KHDR_HCRC_ERR
:
2823 case RHF_RTE_ERROR_KHDR_KVER_ERR
:
2824 case RHF_RTE_ERROR_CONTEXT_ERR
:
2825 case RHF_RTE_ERROR_KHDR_TID_ERR
:
2834 spin_unlock(&qp
->s_lock
);
2838 bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata
*rcd
,
2839 struct hfi1_pportdata
*ppd
,
2840 struct hfi1_packet
*packet
)
2842 struct hfi1_ibport
*ibp
= &ppd
->ibport_data
;
2843 struct hfi1_devdata
*dd
= ppd
->dd
;
2844 struct rvt_dev_info
*rdi
= &dd
->verbs_dev
.rdi
;
2845 u8 rcv_type
= rhf_rcv_type(packet
->rhf
);
2846 u8 rte
= rhf_rcv_type_err(packet
->rhf
);
2847 struct ib_header
*hdr
= packet
->hdr
;
2848 struct ib_other_headers
*ohdr
= NULL
;
2849 int lnh
= be16_to_cpu(hdr
->lrh
[0]) & 3;
2850 u16 lid
= be16_to_cpu(hdr
->lrh
[1]);
2852 u32 qp_num
, psn
, ibpsn
;
2854 struct hfi1_qp_priv
*qpriv
;
2855 unsigned long flags
;
2857 struct rvt_ack_entry
*e
;
2858 struct tid_rdma_request
*req
;
2859 struct tid_rdma_flow
*flow
;
2862 trace_hfi1_msg_handle_kdeth_eflags(NULL
, "Kdeth error: rhf ",
2864 if (packet
->rhf
& RHF_ICRC_ERR
)
2867 packet
->ohdr
= &hdr
->u
.oth
;
2868 ohdr
= packet
->ohdr
;
2869 trace_input_ibhdr(rcd
->dd
, packet
, !!(rhf_dc_info(packet
->rhf
)));
2871 /* Get the destination QP number. */
2872 qp_num
= be32_to_cpu(ohdr
->u
.tid_rdma
.r_rsp
.verbs_qp
) &
2874 if (lid
>= be16_to_cpu(IB_MULTICAST_LID_BASE
))
2877 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
2878 opcode
= (be32_to_cpu(ohdr
->bth
[0]) >> 24) & 0xff;
2881 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, qp_num
);
2887 /* Check for valid receive state. */
2888 spin_lock_irqsave(&qp
->r_lock
, flags
);
2889 if (!(ib_rvt_state_ops
[qp
->state
] & RVT_PROCESS_RECV_OK
)) {
2890 ibp
->rvp
.n_pkt_drops
++;
2894 if (packet
->rhf
& RHF_TID_ERR
) {
2895 /* For TIDERR and RC QPs preemptively schedule a NAK */
2896 u32 tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
2898 /* Sanity check packet */
2903 * Check for GRH. We should never get packets with GRH in this
2906 if (lnh
== HFI1_LRH_GRH
)
2909 if (tid_rdma_tid_err(packet
, rcv_type
))
2913 /* handle TID RDMA READ */
2914 if (opcode
== TID_OP(READ_RESP
)) {
2915 ibpsn
= be32_to_cpu(ohdr
->u
.tid_rdma
.r_rsp
.verbs_psn
);
2916 ibpsn
= mask_psn(ibpsn
);
2917 ret
= handle_read_kdeth_eflags(rcd
, packet
, rcv_type
, rte
, psn
,
2923 * qp->s_tail_ack_queue points to the rvt_ack_entry currently being
2924 * processed. These a completed sequentially so we can be sure that
2925 * the pointer will not change until the entire request has completed.
2927 spin_lock(&qp
->s_lock
);
2929 if (qpriv
->r_tid_tail
== HFI1_QP_WQE_INVALID
||
2930 qpriv
->r_tid_tail
== qpriv
->r_tid_head
)
2932 e
= &qp
->s_ack_queue
[qpriv
->r_tid_tail
];
2933 if (e
->opcode
!= TID_OP(WRITE_REQ
))
2935 req
= ack_to_tid_req(e
);
2936 if (req
->comp_seg
== req
->cur_seg
)
2938 flow
= &req
->flows
[req
->clear_tail
];
2939 trace_hfi1_eflags_err_write(qp
, rcv_type
, rte
, psn
);
2940 trace_hfi1_rsp_handle_kdeth_eflags(qp
, psn
);
2941 trace_hfi1_tid_write_rsp_handle_kdeth_eflags(qp
);
2942 trace_hfi1_tid_req_handle_kdeth_eflags(qp
, 0, e
->opcode
, e
->psn
,
2944 trace_hfi1_tid_flow_handle_kdeth_eflags(qp
, req
->clear_tail
, flow
);
2947 case RHF_RCV_TYPE_EXPECTED
:
2949 case RHF_RTE_EXPECTED_FLOW_SEQ_ERR
:
2950 if (!(qpriv
->s_flags
& HFI1_R_TID_SW_PSN
)) {
2951 qpriv
->s_flags
|= HFI1_R_TID_SW_PSN
;
2952 flow
->flow_state
.r_next_psn
=
2953 read_r_next_psn(dd
, rcd
->ctxt
,
2955 qpriv
->r_next_psn_kdeth
=
2956 flow
->flow_state
.r_next_psn
;
2960 * If the received PSN does not match the next
2961 * expected PSN, NAK the packet.
2962 * However, only do that if we know that the a
2963 * NAK has already been sent. Otherwise, this
2964 * mismatch could be due to packets that were
2965 * already in flight.
2968 flow
->flow_state
.r_next_psn
);
2974 qpriv
->s_nak_state
= 0;
2976 * If SW PSN verification is successful and this
2977 * is the last packet in the segment, tell the
2978 * caller to process it as a normal packet.
2980 if (psn
== full_flow_psn(flow
,
2981 flow
->flow_state
.lpsn
))
2983 flow
->flow_state
.r_next_psn
=
2985 qpriv
->r_next_psn_kdeth
=
2986 flow
->flow_state
.r_next_psn
;
2990 case RHF_RTE_EXPECTED_FLOW_GEN_ERR
:
2998 case RHF_RCV_TYPE_ERROR
:
3000 case RHF_RTE_ERROR_OP_CODE_ERR
:
3001 case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR
:
3002 case RHF_RTE_ERROR_KHDR_HCRC_ERR
:
3003 case RHF_RTE_ERROR_KHDR_KVER_ERR
:
3004 case RHF_RTE_ERROR_CONTEXT_ERR
:
3005 case RHF_RTE_ERROR_KHDR_TID_ERR
:
3015 spin_unlock(&qp
->s_lock
);
3017 spin_unlock_irqrestore(&qp
->r_lock
, flags
);
3023 ibp
->rvp
.n_rc_seqnak
++;
3024 if (!qpriv
->s_nak_state
) {
3025 qpriv
->s_nak_state
= IB_NAK_PSN_ERROR
;
3026 /* We are NAK'ing the next expected PSN */
3027 qpriv
->s_nak_psn
= mask_psn(flow
->flow_state
.r_next_psn
);
3028 tid_rdma_trigger_ack(qp
);
3034 * "Rewind" the TID request information.
3035 * This means that we reset the state back to ACTIVE,
3036 * find the proper flow, set the flow index to that flow,
3037 * and reset the flow information.
3039 void hfi1_tid_rdma_restart_req(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
,
3042 struct tid_rdma_request
*req
= wqe_to_tid_req(wqe
);
3043 struct tid_rdma_flow
*flow
;
3044 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3045 int diff
, delta_pkts
;
3049 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
) {
3050 *bth2
= mask_psn(qp
->s_psn
);
3051 flow
= find_flow_ib(req
, *bth2
, &fidx
);
3053 trace_hfi1_msg_tid_restart_req(/* msg */
3054 qp
, "!!!!!! Could not find flow to restart: bth2 ",
3056 trace_hfi1_tid_req_restart_req(qp
, 0, wqe
->wr
.opcode
,
3057 wqe
->psn
, wqe
->lpsn
,
3062 fidx
= req
->acked_tail
;
3063 flow
= &req
->flows
[fidx
];
3064 *bth2
= mask_psn(req
->r_ack_psn
);
3067 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
)
3068 delta_pkts
= delta_psn(*bth2
, flow
->flow_state
.ib_spsn
);
3070 delta_pkts
= delta_psn(*bth2
,
3072 flow
->flow_state
.spsn
));
3074 trace_hfi1_tid_flow_restart_req(qp
, fidx
, flow
);
3075 diff
= delta_pkts
+ flow
->resync_npkts
;
3080 flow
->tid_offset
= 0;
3082 for (tididx
= 0; tididx
< flow
->tidcnt
; tididx
++) {
3083 u32 tidentry
= flow
->tid_entry
[tididx
], tidlen
,
3086 flow
->tid_offset
= 0;
3087 tidlen
= EXP_TID_GET(tidentry
, LEN
) * PAGE_SIZE
;
3088 tidnpkts
= rvt_div_round_up_mtu(qp
, tidlen
);
3089 npkts
= min_t(u32
, diff
, tidnpkts
);
3091 flow
->sent
+= (npkts
== tidnpkts
? tidlen
:
3093 flow
->tid_offset
+= npkts
* qp
->pmtu
;
3099 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_WRITE
) {
3100 rvt_skip_sge(&qpriv
->tid_ss
, (req
->cur_seg
* req
->seg_len
) +
3103 * Packet PSN is based on flow_state.spsn + flow->pkt. However,
3104 * during a RESYNC, the generation is incremented and the
3105 * sequence is reset to 0. Since we've adjusted the npkts in the
3106 * flow and the SGE has been sufficiently advanced, we have to
3107 * adjust flow->pkt in order to calculate the correct PSN.
3109 flow
->pkt
-= flow
->resync_npkts
;
3112 if (flow
->tid_offset
==
3113 EXP_TID_GET(flow
->tid_entry
[tididx
], LEN
) * PAGE_SIZE
) {
3115 flow
->tid_offset
= 0;
3117 flow
->tid_idx
= tididx
;
3118 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
)
3119 /* Move flow_idx to correct index */
3120 req
->flow_idx
= fidx
;
3122 req
->clear_tail
= fidx
;
3124 trace_hfi1_tid_flow_restart_req(qp
, fidx
, flow
);
3125 trace_hfi1_tid_req_restart_req(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
3127 req
->state
= TID_REQUEST_ACTIVE
;
3128 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_WRITE
) {
3129 /* Reset all the flows that we are going to resend */
3130 fidx
= CIRC_NEXT(fidx
, MAX_FLOWS
);
3131 i
= qpriv
->s_tid_tail
;
3133 for (; CIRC_CNT(req
->setup_head
, fidx
, MAX_FLOWS
);
3134 fidx
= CIRC_NEXT(fidx
, MAX_FLOWS
)) {
3135 req
->flows
[fidx
].sent
= 0;
3136 req
->flows
[fidx
].pkt
= 0;
3137 req
->flows
[fidx
].tid_idx
= 0;
3138 req
->flows
[fidx
].tid_offset
= 0;
3139 req
->flows
[fidx
].resync_npkts
= 0;
3141 if (i
== qpriv
->s_tid_cur
)
3144 i
= (++i
== qp
->s_size
? 0 : i
);
3145 wqe
= rvt_get_swqe_ptr(qp
, i
);
3146 } while (wqe
->wr
.opcode
!= IB_WR_TID_RDMA_WRITE
);
3147 req
= wqe_to_tid_req(wqe
);
3148 req
->cur_seg
= req
->ack_seg
;
3149 fidx
= req
->acked_tail
;
3150 /* Pull req->clear_tail back */
3151 req
->clear_tail
= fidx
;
3156 void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp
*qp
)
3159 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3160 struct tid_flow_state
*fs
;
3162 if (qp
->ibqp
.qp_type
!= IB_QPT_RC
|| !HFI1_CAP_IS_KSET(TID_RDMA
))
3166 * First, clear the flow to help prevent any delayed packets from
3169 fs
= &qpriv
->flow_state
;
3170 if (fs
->index
!= RXE_NUM_TID_FLOWS
)
3171 hfi1_kern_clear_hw_flow(qpriv
->rcd
, qp
);
3173 for (i
= qp
->s_acked
; i
!= qp
->s_head
;) {
3174 struct rvt_swqe
*wqe
= rvt_get_swqe_ptr(qp
, i
);
3176 if (++i
== qp
->s_size
)
3178 /* Free only locally allocated TID entries */
3179 if (wqe
->wr
.opcode
!= IB_WR_TID_RDMA_READ
)
3182 struct hfi1_swqe_priv
*priv
= wqe
->priv
;
3184 ret
= hfi1_kern_exp_rcv_clear(&priv
->tid_req
);
3187 for (i
= qp
->s_acked_ack_queue
; i
!= qp
->r_head_ack_queue
;) {
3188 struct rvt_ack_entry
*e
= &qp
->s_ack_queue
[i
];
3190 if (++i
== rvt_max_atomic(ib_to_rvt(qp
->ibqp
.device
)))
3192 /* Free only locally allocated TID entries */
3193 if (e
->opcode
!= TID_OP(WRITE_REQ
))
3196 struct hfi1_ack_priv
*priv
= e
->priv
;
3198 ret
= hfi1_kern_exp_rcv_clear(&priv
->tid_req
);
3203 bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
)
3205 struct rvt_swqe
*prev
;
3206 struct hfi1_qp_priv
*priv
= qp
->priv
;
3208 struct tid_rdma_request
*req
;
3210 s_prev
= (qp
->s_cur
== 0 ? qp
->s_size
: qp
->s_cur
) - 1;
3211 prev
= rvt_get_swqe_ptr(qp
, s_prev
);
3213 switch (wqe
->wr
.opcode
) {
3215 case IB_WR_SEND_WITH_IMM
:
3216 case IB_WR_SEND_WITH_INV
:
3217 case IB_WR_ATOMIC_CMP_AND_SWP
:
3218 case IB_WR_ATOMIC_FETCH_AND_ADD
:
3219 case IB_WR_RDMA_WRITE
:
3220 case IB_WR_RDMA_WRITE_WITH_IMM
:
3221 switch (prev
->wr
.opcode
) {
3222 case IB_WR_TID_RDMA_WRITE
:
3223 req
= wqe_to_tid_req(prev
);
3224 if (req
->ack_seg
!= req
->total_segs
)
3231 case IB_WR_RDMA_READ
:
3232 if (prev
->wr
.opcode
!= IB_WR_TID_RDMA_WRITE
)
3235 case IB_WR_TID_RDMA_READ
:
3236 switch (prev
->wr
.opcode
) {
3237 case IB_WR_RDMA_READ
:
3238 if (qp
->s_acked
!= qp
->s_cur
)
3241 case IB_WR_TID_RDMA_WRITE
:
3242 req
= wqe_to_tid_req(prev
);
3243 if (req
->ack_seg
!= req
->total_segs
)
3256 priv
->s_flags
|= HFI1_S_TID_WAIT_INTERLCK
;
3260 /* Does @sge meet the alignment requirements for tid rdma? */
3261 static inline bool hfi1_check_sge_align(struct rvt_qp
*qp
,
3262 struct rvt_sge
*sge
, int num_sge
)
3266 for (i
= 0; i
< num_sge
; i
++, sge
++) {
3267 trace_hfi1_sge_check_align(qp
, i
, sge
);
3268 if ((u64
)sge
->vaddr
& ~PAGE_MASK
||
3269 sge
->sge_length
& ~PAGE_MASK
)
3275 void setup_tid_rdma_wqe(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
)
3277 struct hfi1_qp_priv
*qpriv
= (struct hfi1_qp_priv
*)qp
->priv
;
3278 struct hfi1_swqe_priv
*priv
= wqe
->priv
;
3279 struct tid_rdma_params
*remote
;
3280 enum ib_wr_opcode new_opcode
;
3281 bool do_tid_rdma
= false;
3282 struct hfi1_pportdata
*ppd
= qpriv
->rcd
->ppd
;
3284 if ((rdma_ah_get_dlid(&qp
->remote_ah_attr
) & ~((1 << ppd
->lmc
) - 1)) ==
3287 if (qpriv
->hdr_type
!= HFI1_PKT_TYPE_9B
)
3291 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
3293 * If TID RDMA is disabled by the negotiation, don't
3299 if (wqe
->wr
.opcode
== IB_WR_RDMA_READ
) {
3300 if (hfi1_check_sge_align(qp
, &wqe
->sg_list
[0],
3302 new_opcode
= IB_WR_TID_RDMA_READ
;
3305 } else if (wqe
->wr
.opcode
== IB_WR_RDMA_WRITE
) {
3307 * TID RDMA is enabled for this RDMA WRITE request iff:
3308 * 1. The remote address is page-aligned,
3309 * 2. The length is larger than the minimum segment size,
3310 * 3. The length is page-multiple.
3312 if (!(wqe
->rdma_wr
.remote_addr
& ~PAGE_MASK
) &&
3313 !(wqe
->length
& ~PAGE_MASK
)) {
3314 new_opcode
= IB_WR_TID_RDMA_WRITE
;
3320 if (hfi1_kern_exp_rcv_alloc_flows(&priv
->tid_req
, GFP_ATOMIC
))
3322 wqe
->wr
.opcode
= new_opcode
;
3323 priv
->tid_req
.seg_len
=
3324 min_t(u32
, remote
->max_len
, wqe
->length
);
3325 priv
->tid_req
.total_segs
=
3326 DIV_ROUND_UP(wqe
->length
, priv
->tid_req
.seg_len
);
3327 /* Compute the last PSN of the request */
3328 wqe
->lpsn
= wqe
->psn
;
3329 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_READ
) {
3330 priv
->tid_req
.n_flows
= remote
->max_read
;
3331 qpriv
->tid_r_reqs
++;
3332 wqe
->lpsn
+= rvt_div_round_up_mtu(qp
, wqe
->length
) - 1;
3334 wqe
->lpsn
+= priv
->tid_req
.total_segs
- 1;
3335 atomic_inc(&qpriv
->n_requests
);
3338 priv
->tid_req
.cur_seg
= 0;
3339 priv
->tid_req
.comp_seg
= 0;
3340 priv
->tid_req
.ack_seg
= 0;
3341 priv
->tid_req
.state
= TID_REQUEST_INACTIVE
;
3344 * TID RDMA READ does not have ACKs so it does not
3345 * update the pointer. We have to reset it so TID RDMA
3346 * WRITE does not get confused.
3348 priv
->tid_req
.acked_tail
= priv
->tid_req
.setup_head
;
3349 trace_hfi1_tid_req_setup_tid_wqe(qp
, 1, wqe
->wr
.opcode
,
3350 wqe
->psn
, wqe
->lpsn
,
3357 /* TID RDMA WRITE functions */
3359 u32
hfi1_build_tid_rdma_write_req(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
,
3360 struct ib_other_headers
*ohdr
,
3361 u32
*bth1
, u32
*bth2
, u32
*len
)
3363 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3364 struct tid_rdma_request
*req
= wqe_to_tid_req(wqe
);
3365 struct tid_rdma_params
*remote
;
3368 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
3370 * Set the number of flow to be used based on negotiated
3373 req
->n_flows
= remote
->max_write
;
3374 req
->state
= TID_REQUEST_ACTIVE
;
3376 KDETH_RESET(ohdr
->u
.tid_rdma
.w_req
.kdeth0
, KVER
, 0x1);
3377 KDETH_RESET(ohdr
->u
.tid_rdma
.w_req
.kdeth1
, JKEY
, remote
->jkey
);
3378 ohdr
->u
.tid_rdma
.w_req
.reth
.vaddr
=
3379 cpu_to_be64(wqe
->rdma_wr
.remote_addr
+ (wqe
->length
- *len
));
3380 ohdr
->u
.tid_rdma
.w_req
.reth
.rkey
=
3381 cpu_to_be32(wqe
->rdma_wr
.rkey
);
3382 ohdr
->u
.tid_rdma
.w_req
.reth
.length
= cpu_to_be32(*len
);
3383 ohdr
->u
.tid_rdma
.w_req
.verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
3384 *bth1
&= ~RVT_QPN_MASK
;
3385 *bth1
|= remote
->qp
;
3386 qp
->s_state
= TID_OP(WRITE_REQ
);
3387 qp
->s_flags
|= HFI1_S_WAIT_TID_RESP
;
3388 *bth2
|= IB_BTH_REQ_ACK
;
3392 return sizeof(ohdr
->u
.tid_rdma
.w_req
) / sizeof(u32
);
3395 static u32
hfi1_compute_tid_rdma_flow_wt(struct rvt_qp
*qp
)
3398 * Heuristic for computing the RNR timeout when waiting on the flow
3399 * queue. Rather than a computationaly expensive exact estimate of when
3400 * a flow will be available, we assume that if a QP is at position N in
3401 * the flow queue it has to wait approximately (N + 1) * (number of
3402 * segments between two sync points). The rationale for this is that
3403 * flows are released and recycled at each sync point.
3405 return (MAX_TID_FLOW_PSN
* qp
->pmtu
) >> TID_RDMA_SEGMENT_SHIFT
;
3408 static u32
position_in_queue(struct hfi1_qp_priv
*qpriv
,
3409 struct tid_queue
*queue
)
3411 return qpriv
->tid_enqueue
- queue
->dequeue
;
3415 * @qp: points to rvt_qp context.
3416 * @to_seg: desired RNR timeout in segments.
3417 * Return: index of the next highest timeout in the ib_hfi1_rnr_table[]
3419 static u32
hfi1_compute_tid_rnr_timeout(struct rvt_qp
*qp
, u32 to_seg
)
3421 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3426 bytes_per_us
= active_egress_rate(qpriv
->rcd
->ppd
) / 8;
3427 timeout
= (to_seg
* TID_RDMA_MAX_SEGMENT_SIZE
) / bytes_per_us
;
3429 * Find the next highest value in the RNR table to the required
3430 * timeout. This gives the responder some padding.
3432 for (i
= 1; i
<= IB_AETH_CREDIT_MASK
; i
++)
3433 if (rvt_rnr_tbl_to_usec(i
) >= timeout
)
3439 * Central place for resource allocation at TID write responder,
3440 * is called from write_req and write_data interrupt handlers as
3441 * well as the send thread when a queued QP is scheduled for
3442 * resource allocation.
3444 * Iterates over (a) segments of a request and then (b) queued requests
3445 * themselves to allocate resources for up to local->max_write
3446 * segments across multiple requests. Stop allocating when we
3447 * hit a sync point, resume allocating after data packets at
3448 * sync point have been received.
3450 * Resource allocation and sending of responses is decoupled. The
3451 * request/segment which are being allocated and sent are as follows.
3452 * Resources are allocated for:
3453 * [request: qpriv->r_tid_alloc, segment: req->alloc_seg]
3454 * The send thread sends:
3455 * [request: qp->s_tail_ack_queue, segment:req->cur_seg]
3457 static void hfi1_tid_write_alloc_resources(struct rvt_qp
*qp
, bool intr_ctx
)
3459 struct tid_rdma_request
*req
;
3460 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3461 struct hfi1_ctxtdata
*rcd
= qpriv
->rcd
;
3462 struct tid_rdma_params
*local
= &qpriv
->tid_rdma
.local
;
3463 struct rvt_ack_entry
*e
;
3468 lockdep_assert_held(&qp
->s_lock
);
3471 trace_hfi1_rsp_tid_write_alloc_res(qp
, 0);
3472 trace_hfi1_tid_write_rsp_alloc_res(qp
);
3474 * Don't allocate more segments if a RNR NAK has already been
3475 * scheduled to avoid messing up qp->r_psn: the RNR NAK will
3476 * be sent only when all allocated segments have been sent.
3477 * However, if more segments are allocated before that, TID RDMA
3478 * WRITE RESP packets will be sent out for these new segments
3479 * before the RNR NAK packet. When the requester receives the
3480 * RNR NAK packet, it will restart with qp->s_last_psn + 1,
3481 * which does not match qp->r_psn and will be dropped.
3482 * Consequently, the requester will exhaust its retries and
3483 * put the qp into error state.
3485 if (qpriv
->rnr_nak_state
== TID_RNR_NAK_SEND
)
3488 /* No requests left to process */
3489 if (qpriv
->r_tid_alloc
== qpriv
->r_tid_head
) {
3490 /* If all data has been received, clear the flow */
3491 if (qpriv
->flow_state
.index
< RXE_NUM_TID_FLOWS
&&
3492 !qpriv
->alloc_w_segs
) {
3493 hfi1_kern_clear_hw_flow(rcd
, qp
);
3494 qpriv
->s_flags
&= ~HFI1_R_TID_SW_PSN
;
3499 e
= &qp
->s_ack_queue
[qpriv
->r_tid_alloc
];
3500 if (e
->opcode
!= TID_OP(WRITE_REQ
))
3502 req
= ack_to_tid_req(e
);
3503 trace_hfi1_tid_req_write_alloc_res(qp
, 0, e
->opcode
, e
->psn
,
3505 /* Finished allocating for all segments of this request */
3506 if (req
->alloc_seg
>= req
->total_segs
)
3509 /* Can allocate only a maximum of local->max_write for a QP */
3510 if (qpriv
->alloc_w_segs
>= local
->max_write
)
3513 /* Don't allocate at a sync point with data packets pending */
3514 if (qpriv
->sync_pt
&& qpriv
->alloc_w_segs
)
3517 /* All data received at the sync point, continue */
3518 if (qpriv
->sync_pt
&& !qpriv
->alloc_w_segs
) {
3519 hfi1_kern_clear_hw_flow(rcd
, qp
);
3520 qpriv
->sync_pt
= false;
3521 qpriv
->s_flags
&= ~HFI1_R_TID_SW_PSN
;
3524 /* Allocate flow if we don't have one */
3525 if (qpriv
->flow_state
.index
>= RXE_NUM_TID_FLOWS
) {
3526 ret
= hfi1_kern_setup_hw_flow(qpriv
->rcd
, qp
);
3528 to_seg
= hfi1_compute_tid_rdma_flow_wt(qp
) *
3529 position_in_queue(qpriv
,
3535 npkts
= rvt_div_round_up_mtu(qp
, req
->seg_len
);
3538 * We are at a sync point if we run out of KDETH PSN space.
3539 * Last PSN of every generation is reserved for RESYNC.
3541 if (qpriv
->flow_state
.psn
+ npkts
> MAX_TID_FLOW_PSN
- 1) {
3542 qpriv
->sync_pt
= true;
3547 * If overtaking req->acked_tail, send an RNR NAK. Because the
3548 * QP is not queued in this case, and the issue can only be
3549 * caused by a delay in scheduling the second leg which we
3550 * cannot estimate, we use a rather arbitrary RNR timeout of
3551 * (MAX_FLOWS / 2) segments
3553 if (!CIRC_SPACE(req
->setup_head
, req
->acked_tail
,
3556 to_seg
= MAX_FLOWS
>> 1;
3557 tid_rdma_trigger_ack(qp
);
3561 /* Try to allocate rcv array / TID entries */
3562 ret
= hfi1_kern_exp_rcv_setup(req
, &req
->ss
, &last
);
3564 to_seg
= position_in_queue(qpriv
, &rcd
->rarr_queue
);
3568 qpriv
->alloc_w_segs
++;
3572 /* Begin processing the next request */
3573 if (++qpriv
->r_tid_alloc
>
3574 rvt_size_atomic(ib_to_rvt(qp
->ibqp
.device
)))
3575 qpriv
->r_tid_alloc
= 0;
3579 * Schedule an RNR NAK to be sent if (a) flow or rcv array allocation
3580 * has failed (b) we are called from the rcv handler interrupt context
3581 * (c) an RNR NAK has not already been scheduled
3583 if (ret
== -EAGAIN
&& intr_ctx
&& !qp
->r_nak_state
)
3589 lockdep_assert_held(&qp
->r_lock
);
3591 /* Set r_nak_state to prevent unrelated events from generating NAK's */
3592 qp
->r_nak_state
= hfi1_compute_tid_rnr_timeout(qp
, to_seg
) | IB_RNR_NAK
;
3594 /* Pull back r_psn to the segment being RNR NAK'd */
3595 qp
->r_psn
= e
->psn
+ req
->alloc_seg
;
3596 qp
->r_ack_psn
= qp
->r_psn
;
3598 * Pull back r_head_ack_queue to the ack entry following the request
3599 * being RNR NAK'd. This allows resources to be allocated to the request
3600 * if the queued QP is scheduled.
3602 qp
->r_head_ack_queue
= qpriv
->r_tid_alloc
+ 1;
3603 if (qp
->r_head_ack_queue
> rvt_size_atomic(ib_to_rvt(qp
->ibqp
.device
)))
3604 qp
->r_head_ack_queue
= 0;
3605 qpriv
->r_tid_head
= qp
->r_head_ack_queue
;
3607 * These send side fields are used in make_rc_ack(). They are set in
3608 * hfi1_send_rc_ack() but must be set here before dropping qp->s_lock
3611 qp
->s_nak_state
= qp
->r_nak_state
;
3612 qp
->s_ack_psn
= qp
->r_ack_psn
;
3614 * Clear the ACK PENDING flag to prevent unwanted ACK because we
3615 * have modified qp->s_ack_psn here.
3617 qp
->s_flags
&= ~(RVT_S_ACK_PENDING
);
3619 trace_hfi1_rsp_tid_write_alloc_res(qp
, qp
->r_psn
);
3621 * qpriv->rnr_nak_state is used to determine when the scheduled RNR NAK
3622 * has actually been sent. qp->s_flags RVT_S_ACK_PENDING bit cannot be
3623 * used for this because qp->s_lock is dropped before calling
3624 * hfi1_send_rc_ack() leading to inconsistency between the receive
3625 * interrupt handlers and the send thread in make_rc_ack()
3627 qpriv
->rnr_nak_state
= TID_RNR_NAK_SEND
;
3630 * Schedule RNR NAK to be sent. RNR NAK's are scheduled from the receive
3631 * interrupt handlers but will be sent from the send engine behind any
3632 * previous responses that may have been scheduled
3634 rc_defered_ack(rcd
, qp
);
3637 void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet
*packet
)
3639 /* HANDLER FOR TID RDMA WRITE REQUEST packet (Responder side)*/
3642 * 1. Verify TID RDMA WRITE REQ as per IB_OPCODE_RC_RDMA_WRITE_FIRST
3643 * (see hfi1_rc_rcv())
3644 * - Don't allow 0-length requests.
3645 * 2. Put TID RDMA WRITE REQ into the response queueu (s_ack_queue)
3646 * - Setup struct tid_rdma_req with request info
3647 * - Prepare struct tid_rdma_flow array?
3648 * 3. Set the qp->s_ack_state as state diagram in design doc.
3649 * 4. Set RVT_S_RESP_PENDING in s_flags.
3650 * 5. Kick the send engine (hfi1_schedule_send())
3652 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
3653 struct rvt_qp
*qp
= packet
->qp
;
3654 struct hfi1_ibport
*ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
3655 struct ib_other_headers
*ohdr
= packet
->ohdr
;
3656 struct rvt_ack_entry
*e
;
3657 unsigned long flags
;
3658 struct ib_reth
*reth
;
3659 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3660 struct tid_rdma_request
*req
;
3661 u32 bth0
, psn
, len
, rkey
, num_segs
;
3667 bth0
= be32_to_cpu(ohdr
->bth
[0]);
3668 if (hfi1_ruc_check_hdr(ibp
, packet
))
3671 fecn
= process_ecn(qp
, packet
);
3672 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
3673 trace_hfi1_rsp_rcv_tid_write_req(qp
, psn
);
3675 if (qp
->state
== IB_QPS_RTR
&& !(qp
->r_flags
& RVT_R_COMM_EST
))
3678 if (unlikely(!(qp
->qp_access_flags
& IB_ACCESS_REMOTE_WRITE
)))
3681 reth
= &ohdr
->u
.tid_rdma
.w_req
.reth
;
3682 vaddr
= be64_to_cpu(reth
->vaddr
);
3683 len
= be32_to_cpu(reth
->length
);
3685 num_segs
= DIV_ROUND_UP(len
, qpriv
->tid_rdma
.local
.max_len
);
3686 diff
= delta_psn(psn
, qp
->r_psn
);
3687 if (unlikely(diff
)) {
3688 tid_rdma_rcv_err(packet
, ohdr
, qp
, psn
, diff
, fecn
);
3693 * The resent request which was previously RNR NAK'd is inserted at the
3694 * location of the original request, which is one entry behind
3697 if (qpriv
->rnr_nak_state
)
3698 qp
->r_head_ack_queue
= qp
->r_head_ack_queue
?
3699 qp
->r_head_ack_queue
- 1 :
3700 rvt_size_atomic(ib_to_rvt(qp
->ibqp
.device
));
3702 /* We've verified the request, insert it into the ack queue. */
3703 next
= qp
->r_head_ack_queue
+ 1;
3704 if (next
> rvt_size_atomic(ib_to_rvt(qp
->ibqp
.device
)))
3706 spin_lock_irqsave(&qp
->s_lock
, flags
);
3707 if (unlikely(next
== qp
->s_acked_ack_queue
)) {
3708 if (!qp
->s_ack_queue
[next
].sent
)
3709 goto nack_inv_unlock
;
3710 update_ack_queue(qp
, next
);
3712 e
= &qp
->s_ack_queue
[qp
->r_head_ack_queue
];
3713 req
= ack_to_tid_req(e
);
3715 /* Bring previously RNR NAK'd request back to life */
3716 if (qpriv
->rnr_nak_state
) {
3717 qp
->r_nak_state
= 0;
3718 qp
->s_nak_state
= 0;
3719 qpriv
->rnr_nak_state
= TID_RNR_NAK_INIT
;
3720 qp
->r_psn
= e
->lpsn
+ 1;
3721 req
->state
= TID_REQUEST_INIT
;
3725 release_rdma_sge_mr(e
);
3727 /* The length needs to be in multiples of PAGE_SIZE */
3728 if (!len
|| len
& ~PAGE_MASK
)
3729 goto nack_inv_unlock
;
3731 rkey
= be32_to_cpu(reth
->rkey
);
3734 if (e
->opcode
== TID_OP(WRITE_REQ
) &&
3735 (req
->setup_head
!= req
->clear_tail
||
3736 req
->clear_tail
!= req
->acked_tail
))
3737 goto nack_inv_unlock
;
3739 if (unlikely(!rvt_rkey_ok(qp
, &e
->rdma_sge
, qp
->r_len
, vaddr
,
3740 rkey
, IB_ACCESS_REMOTE_WRITE
)))
3743 qp
->r_psn
+= num_segs
- 1;
3745 e
->opcode
= (bth0
>> 24) & 0xff;
3747 e
->lpsn
= qp
->r_psn
;
3750 req
->n_flows
= min_t(u16
, num_segs
, qpriv
->tid_rdma
.local
.max_write
);
3751 req
->state
= TID_REQUEST_INIT
;
3757 req
->seg_len
= qpriv
->tid_rdma
.local
.max_len
;
3758 req
->total_len
= len
;
3759 req
->total_segs
= num_segs
;
3760 req
->r_flow_psn
= e
->psn
;
3761 req
->ss
.sge
= e
->rdma_sge
;
3762 req
->ss
.num_sge
= 1;
3764 req
->flow_idx
= req
->setup_head
;
3765 req
->clear_tail
= req
->setup_head
;
3766 req
->acked_tail
= req
->setup_head
;
3768 qp
->r_state
= e
->opcode
;
3769 qp
->r_nak_state
= 0;
3771 * We need to increment the MSN here instead of when we
3772 * finish sending the result since a duplicate request would
3773 * increment it more than once.
3778 trace_hfi1_tid_req_rcv_write_req(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
,
3781 if (qpriv
->r_tid_tail
== HFI1_QP_WQE_INVALID
) {
3782 qpriv
->r_tid_tail
= qp
->r_head_ack_queue
;
3783 } else if (qpriv
->r_tid_tail
== qpriv
->r_tid_head
) {
3784 struct tid_rdma_request
*ptr
;
3786 e
= &qp
->s_ack_queue
[qpriv
->r_tid_tail
];
3787 ptr
= ack_to_tid_req(e
);
3789 if (e
->opcode
!= TID_OP(WRITE_REQ
) ||
3790 ptr
->comp_seg
== ptr
->total_segs
) {
3791 if (qpriv
->r_tid_tail
== qpriv
->r_tid_ack
)
3792 qpriv
->r_tid_ack
= qp
->r_head_ack_queue
;
3793 qpriv
->r_tid_tail
= qp
->r_head_ack_queue
;
3797 qp
->r_head_ack_queue
= next
;
3798 qpriv
->r_tid_head
= qp
->r_head_ack_queue
;
3800 hfi1_tid_write_alloc_resources(qp
, true);
3801 trace_hfi1_tid_write_rsp_rcv_req(qp
);
3803 /* Schedule the send tasklet. */
3804 qp
->s_flags
|= RVT_S_RESP_PENDING
;
3806 qp
->s_flags
|= RVT_S_ECN
;
3807 hfi1_schedule_send(qp
);
3809 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
3813 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
3815 rvt_rc_error(qp
, IB_WC_LOC_QP_OP_ERR
);
3816 qp
->r_nak_state
= IB_NAK_INVALID_REQUEST
;
3817 qp
->r_ack_psn
= qp
->r_psn
;
3818 /* Queue NAK for later */
3819 rc_defered_ack(rcd
, qp
);
3822 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
3823 rvt_rc_error(qp
, IB_WC_LOC_PROT_ERR
);
3824 qp
->r_nak_state
= IB_NAK_REMOTE_ACCESS_ERROR
;
3825 qp
->r_ack_psn
= qp
->r_psn
;
3828 u32
hfi1_build_tid_rdma_write_resp(struct rvt_qp
*qp
, struct rvt_ack_entry
*e
,
3829 struct ib_other_headers
*ohdr
, u32
*bth1
,
3831 struct rvt_sge_state
**ss
)
3833 struct hfi1_ack_priv
*epriv
= e
->priv
;
3834 struct tid_rdma_request
*req
= &epriv
->tid_req
;
3835 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3836 struct tid_rdma_flow
*flow
= NULL
;
3837 u32 resp_len
= 0, hdwords
= 0;
3838 void *resp_addr
= NULL
;
3839 struct tid_rdma_params
*remote
;
3841 trace_hfi1_tid_req_build_write_resp(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
,
3843 trace_hfi1_tid_write_rsp_build_resp(qp
);
3844 trace_hfi1_rsp_build_tid_write_resp(qp
, bth2
);
3845 flow
= &req
->flows
[req
->flow_idx
];
3846 switch (req
->state
) {
3849 * Try to allocate resources here in case QP was queued and was
3850 * later scheduled when resources became available
3852 hfi1_tid_write_alloc_resources(qp
, false);
3854 /* We've already sent everything which is ready */
3855 if (req
->cur_seg
>= req
->alloc_seg
)
3859 * Resources can be assigned but responses cannot be sent in
3860 * rnr_nak state, till the resent request is received
3862 if (qpriv
->rnr_nak_state
== TID_RNR_NAK_SENT
)
3865 req
->state
= TID_REQUEST_ACTIVE
;
3866 trace_hfi1_tid_flow_build_write_resp(qp
, req
->flow_idx
, flow
);
3867 req
->flow_idx
= CIRC_NEXT(req
->flow_idx
, MAX_FLOWS
);
3868 hfi1_add_tid_reap_timer(qp
);
3871 case TID_REQUEST_RESEND_ACTIVE
:
3872 case TID_REQUEST_RESEND
:
3873 trace_hfi1_tid_flow_build_write_resp(qp
, req
->flow_idx
, flow
);
3874 req
->flow_idx
= CIRC_NEXT(req
->flow_idx
, MAX_FLOWS
);
3875 if (!CIRC_CNT(req
->setup_head
, req
->flow_idx
, MAX_FLOWS
))
3876 req
->state
= TID_REQUEST_ACTIVE
;
3878 hfi1_mod_tid_reap_timer(qp
);
3881 flow
->flow_state
.resp_ib_psn
= bth2
;
3882 resp_addr
= (void *)flow
->tid_entry
;
3883 resp_len
= sizeof(*flow
->tid_entry
) * flow
->tidcnt
;
3886 memset(&ohdr
->u
.tid_rdma
.w_rsp
, 0, sizeof(ohdr
->u
.tid_rdma
.w_rsp
));
3887 epriv
->ss
.sge
.vaddr
= resp_addr
;
3888 epriv
->ss
.sge
.sge_length
= resp_len
;
3889 epriv
->ss
.sge
.length
= epriv
->ss
.sge
.sge_length
;
3891 * We can safely zero these out. Since the first SGE covers the
3892 * entire packet, nothing else should even look at the MR.
3894 epriv
->ss
.sge
.mr
= NULL
;
3895 epriv
->ss
.sge
.m
= 0;
3896 epriv
->ss
.sge
.n
= 0;
3898 epriv
->ss
.sg_list
= NULL
;
3899 epriv
->ss
.total_len
= epriv
->ss
.sge
.sge_length
;
3900 epriv
->ss
.num_sge
= 1;
3903 *len
= epriv
->ss
.total_len
;
3905 /* Construct the TID RDMA WRITE RESP packet header */
3907 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
3909 KDETH_RESET(ohdr
->u
.tid_rdma
.w_rsp
.kdeth0
, KVER
, 0x1);
3910 KDETH_RESET(ohdr
->u
.tid_rdma
.w_rsp
.kdeth1
, JKEY
, remote
->jkey
);
3911 ohdr
->u
.tid_rdma
.w_rsp
.aeth
= rvt_compute_aeth(qp
);
3912 ohdr
->u
.tid_rdma
.w_rsp
.tid_flow_psn
=
3913 cpu_to_be32((flow
->flow_state
.generation
<<
3914 HFI1_KDETH_BTH_SEQ_SHIFT
) |
3915 (flow
->flow_state
.spsn
&
3916 HFI1_KDETH_BTH_SEQ_MASK
));
3917 ohdr
->u
.tid_rdma
.w_rsp
.tid_flow_qp
=
3918 cpu_to_be32(qpriv
->tid_rdma
.local
.qp
|
3919 ((flow
->idx
& TID_RDMA_DESTQP_FLOW_MASK
) <<
3920 TID_RDMA_DESTQP_FLOW_SHIFT
) |
3922 ohdr
->u
.tid_rdma
.w_rsp
.verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
3925 hdwords
= sizeof(ohdr
->u
.tid_rdma
.w_rsp
) / sizeof(u32
);
3926 qpriv
->pending_tid_w_segs
++;
3931 static void hfi1_add_tid_reap_timer(struct rvt_qp
*qp
)
3933 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3935 lockdep_assert_held(&qp
->s_lock
);
3936 if (!(qpriv
->s_flags
& HFI1_R_TID_RSC_TIMER
)) {
3937 qpriv
->s_flags
|= HFI1_R_TID_RSC_TIMER
;
3938 qpriv
->s_tid_timer
.expires
= jiffies
+
3939 qpriv
->tid_timer_timeout_jiffies
;
3940 add_timer(&qpriv
->s_tid_timer
);
3944 static void hfi1_mod_tid_reap_timer(struct rvt_qp
*qp
)
3946 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3948 lockdep_assert_held(&qp
->s_lock
);
3949 qpriv
->s_flags
|= HFI1_R_TID_RSC_TIMER
;
3950 mod_timer(&qpriv
->s_tid_timer
, jiffies
+
3951 qpriv
->tid_timer_timeout_jiffies
);
3954 static int hfi1_stop_tid_reap_timer(struct rvt_qp
*qp
)
3956 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3959 lockdep_assert_held(&qp
->s_lock
);
3960 if (qpriv
->s_flags
& HFI1_R_TID_RSC_TIMER
) {
3961 rval
= del_timer(&qpriv
->s_tid_timer
);
3962 qpriv
->s_flags
&= ~HFI1_R_TID_RSC_TIMER
;
3967 void hfi1_del_tid_reap_timer(struct rvt_qp
*qp
)
3969 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
3971 del_timer_sync(&qpriv
->s_tid_timer
);
3972 qpriv
->s_flags
&= ~HFI1_R_TID_RSC_TIMER
;
3975 static void hfi1_tid_timeout(struct timer_list
*t
)
3977 struct hfi1_qp_priv
*qpriv
= from_timer(qpriv
, t
, s_tid_timer
);
3978 struct rvt_qp
*qp
= qpriv
->owner
;
3979 struct rvt_dev_info
*rdi
= ib_to_rvt(qp
->ibqp
.device
);
3980 unsigned long flags
;
3983 spin_lock_irqsave(&qp
->r_lock
, flags
);
3984 spin_lock(&qp
->s_lock
);
3985 if (qpriv
->s_flags
& HFI1_R_TID_RSC_TIMER
) {
3986 dd_dev_warn(dd_from_ibdev(qp
->ibqp
.device
), "[QP%u] %s %d\n",
3987 qp
->ibqp
.qp_num
, __func__
, __LINE__
);
3988 trace_hfi1_msg_tid_timeout(/* msg */
3989 qp
, "resource timeout = ",
3990 (u64
)qpriv
->tid_timer_timeout_jiffies
);
3991 hfi1_stop_tid_reap_timer(qp
);
3993 * Go though the entire ack queue and clear any outstanding
3994 * HW flow and RcvArray resources.
3996 hfi1_kern_clear_hw_flow(qpriv
->rcd
, qp
);
3997 for (i
= 0; i
< rvt_max_atomic(rdi
); i
++) {
3998 struct tid_rdma_request
*req
=
3999 ack_to_tid_req(&qp
->s_ack_queue
[i
]);
4001 hfi1_kern_exp_rcv_clear_all(req
);
4003 spin_unlock(&qp
->s_lock
);
4004 if (qp
->ibqp
.event_handler
) {
4007 ev
.device
= qp
->ibqp
.device
;
4008 ev
.element
.qp
= &qp
->ibqp
;
4009 ev
.event
= IB_EVENT_QP_FATAL
;
4010 qp
->ibqp
.event_handler(&ev
, qp
->ibqp
.qp_context
);
4012 rvt_rc_error(qp
, IB_WC_RESP_TIMEOUT_ERR
);
4015 spin_unlock(&qp
->s_lock
);
4017 spin_unlock_irqrestore(&qp
->r_lock
, flags
);
4020 void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet
*packet
)
4022 /* HANDLER FOR TID RDMA WRITE RESPONSE packet (Requestor side */
4025 * 1. Find matching SWQE
4026 * 2. Check that TIDENTRY array has enough space for a complete
4027 * segment. If not, put QP in error state.
4028 * 3. Save response data in struct tid_rdma_req and struct tid_rdma_flow
4029 * 4. Remove HFI1_S_WAIT_TID_RESP from s_flags.
4030 * 5. Set qp->s_state
4031 * 6. Kick the send engine (hfi1_schedule_send())
4033 struct ib_other_headers
*ohdr
= packet
->ohdr
;
4034 struct rvt_qp
*qp
= packet
->qp
;
4035 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
4036 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
4037 struct rvt_swqe
*wqe
;
4038 struct tid_rdma_request
*req
;
4039 struct tid_rdma_flow
*flow
;
4040 enum ib_wc_status status
;
4041 u32 opcode
, aeth
, psn
, flow_psn
, i
, tidlen
= 0, pktlen
;
4043 unsigned long flags
;
4045 fecn
= process_ecn(qp
, packet
);
4046 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
4047 aeth
= be32_to_cpu(ohdr
->u
.tid_rdma
.w_rsp
.aeth
);
4048 opcode
= (be32_to_cpu(ohdr
->bth
[0]) >> 24) & 0xff;
4050 spin_lock_irqsave(&qp
->s_lock
, flags
);
4052 /* Ignore invalid responses */
4053 if (cmp_psn(psn
, qp
->s_next_psn
) >= 0)
4056 /* Ignore duplicate responses. */
4057 if (unlikely(cmp_psn(psn
, qp
->s_last_psn
) <= 0))
4060 if (unlikely(qp
->s_acked
== qp
->s_tail
))
4064 * If we are waiting for a particular packet sequence number
4065 * due to a request being resent, check for it. Otherwise,
4066 * ensure that we haven't missed anything.
4068 if (qp
->r_flags
& RVT_R_RDMAR_SEQ
) {
4069 if (cmp_psn(psn
, qp
->s_last_psn
+ 1) != 0)
4071 qp
->r_flags
&= ~RVT_R_RDMAR_SEQ
;
4074 wqe
= rvt_get_swqe_ptr(qp
, qpriv
->s_tid_cur
);
4075 if (unlikely(wqe
->wr
.opcode
!= IB_WR_TID_RDMA_WRITE
))
4078 req
= wqe_to_tid_req(wqe
);
4080 * If we've lost ACKs and our acked_tail pointer is too far
4081 * behind, don't overwrite segments. Just drop the packet and
4082 * let the reliability protocol take care of it.
4084 if (!CIRC_SPACE(req
->setup_head
, req
->acked_tail
, MAX_FLOWS
))
4088 * The call to do_rc_ack() should be last in the chain of
4089 * packet checks because it will end up updating the QP state.
4090 * Therefore, anything that would prevent the packet from
4091 * being accepted as a successful response should be prior
4094 if (!do_rc_ack(qp
, aeth
, psn
, opcode
, 0, rcd
))
4097 trace_hfi1_ack(qp
, psn
);
4099 flow
= &req
->flows
[req
->setup_head
];
4102 flow
->tid_offset
= 0;
4104 flow
->resync_npkts
= 0;
4105 flow
->tid_qpn
= be32_to_cpu(ohdr
->u
.tid_rdma
.w_rsp
.tid_flow_qp
);
4106 flow
->idx
= (flow
->tid_qpn
>> TID_RDMA_DESTQP_FLOW_SHIFT
) &
4107 TID_RDMA_DESTQP_FLOW_MASK
;
4108 flow_psn
= mask_psn(be32_to_cpu(ohdr
->u
.tid_rdma
.w_rsp
.tid_flow_psn
));
4109 flow
->flow_state
.generation
= flow_psn
>> HFI1_KDETH_BTH_SEQ_SHIFT
;
4110 flow
->flow_state
.spsn
= flow_psn
& HFI1_KDETH_BTH_SEQ_MASK
;
4111 flow
->flow_state
.resp_ib_psn
= psn
;
4112 flow
->length
= min_t(u32
, req
->seg_len
,
4113 (wqe
->length
- (req
->comp_seg
* req
->seg_len
)));
4115 flow
->npkts
= rvt_div_round_up_mtu(qp
, flow
->length
);
4116 flow
->flow_state
.lpsn
= flow
->flow_state
.spsn
+
4118 /* payload length = packet length - (header length + ICRC length) */
4119 pktlen
= packet
->tlen
- (packet
->hlen
+ 4);
4120 if (pktlen
> sizeof(flow
->tid_entry
)) {
4121 status
= IB_WC_LOC_LEN_ERR
;
4124 memcpy(flow
->tid_entry
, packet
->ebuf
, pktlen
);
4125 flow
->tidcnt
= pktlen
/ sizeof(*flow
->tid_entry
);
4126 trace_hfi1_tid_flow_rcv_write_resp(qp
, req
->setup_head
, flow
);
4129 trace_hfi1_tid_write_sender_rcv_resp(qp
, 0);
4131 * Walk the TID_ENTRY list to make sure we have enough space for a
4134 for (i
= 0; i
< flow
->tidcnt
; i
++) {
4135 trace_hfi1_tid_entry_rcv_write_resp(/* entry */
4136 qp
, i
, flow
->tid_entry
[i
]);
4137 if (!EXP_TID_GET(flow
->tid_entry
[i
], LEN
)) {
4138 status
= IB_WC_LOC_LEN_ERR
;
4141 tidlen
+= EXP_TID_GET(flow
->tid_entry
[i
], LEN
);
4143 if (tidlen
* PAGE_SIZE
< flow
->length
) {
4144 status
= IB_WC_LOC_LEN_ERR
;
4148 trace_hfi1_tid_req_rcv_write_resp(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
4151 * If this is the first response for this request, set the initial
4152 * flow index to the current flow.
4154 if (!cmp_psn(psn
, wqe
->psn
)) {
4155 req
->r_last_acked
= mask_psn(wqe
->psn
- 1);
4156 /* Set acked flow index to head index */
4157 req
->acked_tail
= req
->setup_head
;
4160 /* advance circular buffer head */
4161 req
->setup_head
= CIRC_NEXT(req
->setup_head
, MAX_FLOWS
);
4162 req
->state
= TID_REQUEST_ACTIVE
;
4165 * If all responses for this TID RDMA WRITE request have been received
4166 * advance the pointer to the next one.
4167 * Since TID RDMA requests could be mixed in with regular IB requests,
4168 * they might not appear sequentially in the queue. Therefore, the
4169 * next request needs to be "found".
4171 if (qpriv
->s_tid_cur
!= qpriv
->s_tid_head
&&
4172 req
->comp_seg
== req
->total_segs
) {
4173 for (i
= qpriv
->s_tid_cur
+ 1; ; i
++) {
4174 if (i
== qp
->s_size
)
4176 wqe
= rvt_get_swqe_ptr(qp
, i
);
4177 if (i
== qpriv
->s_tid_head
)
4179 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_WRITE
)
4182 qpriv
->s_tid_cur
= i
;
4184 qp
->s_flags
&= ~HFI1_S_WAIT_TID_RESP
;
4185 hfi1_schedule_tid_send(qp
);
4189 status
= IB_WC_LOC_QP_OP_ERR
;
4191 rvt_error_qp(qp
, status
);
4194 qp
->s_flags
|= RVT_S_ECN
;
4195 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
4198 bool hfi1_build_tid_rdma_packet(struct rvt_swqe
*wqe
,
4199 struct ib_other_headers
*ohdr
,
4200 u32
*bth1
, u32
*bth2
, u32
*len
)
4202 struct tid_rdma_request
*req
= wqe_to_tid_req(wqe
);
4203 struct tid_rdma_flow
*flow
= &req
->flows
[req
->clear_tail
];
4204 struct tid_rdma_params
*remote
;
4205 struct rvt_qp
*qp
= req
->qp
;
4206 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
4207 u32 tidentry
= flow
->tid_entry
[flow
->tid_idx
];
4208 u32 tidlen
= EXP_TID_GET(tidentry
, LEN
) << PAGE_SHIFT
;
4209 struct tid_rdma_write_data
*wd
= &ohdr
->u
.tid_rdma
.w_data
;
4210 u32 next_offset
, om
= KDETH_OM_LARGE
;
4214 hfi1_trdma_send_complete(qp
, wqe
, IB_WC_REM_INV_RD_REQ_ERR
);
4215 rvt_error_qp(qp
, IB_WC_REM_INV_RD_REQ_ERR
);
4218 *len
= min_t(u32
, qp
->pmtu
, tidlen
- flow
->tid_offset
);
4220 next_offset
= flow
->tid_offset
+ *len
;
4221 last_pkt
= (flow
->tid_idx
== (flow
->tidcnt
- 1) &&
4222 next_offset
>= tidlen
) || (flow
->sent
>= flow
->length
);
4223 trace_hfi1_tid_entry_build_write_data(qp
, flow
->tid_idx
, tidentry
);
4224 trace_hfi1_tid_flow_build_write_data(qp
, req
->clear_tail
, flow
);
4227 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
4228 KDETH_RESET(wd
->kdeth0
, KVER
, 0x1);
4229 KDETH_SET(wd
->kdeth0
, SH
, !last_pkt
);
4230 KDETH_SET(wd
->kdeth0
, INTR
, !!(!last_pkt
&& remote
->urg
));
4231 KDETH_SET(wd
->kdeth0
, TIDCTRL
, EXP_TID_GET(tidentry
, CTRL
));
4232 KDETH_SET(wd
->kdeth0
, TID
, EXP_TID_GET(tidentry
, IDX
));
4233 KDETH_SET(wd
->kdeth0
, OM
, om
== KDETH_OM_LARGE
);
4234 KDETH_SET(wd
->kdeth0
, OFFSET
, flow
->tid_offset
/ om
);
4235 KDETH_RESET(wd
->kdeth1
, JKEY
, remote
->jkey
);
4236 wd
->verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
4239 *bth1
= flow
->tid_qpn
;
4240 *bth2
= mask_psn(((flow
->flow_state
.spsn
+ flow
->pkt
++) &
4241 HFI1_KDETH_BTH_SEQ_MASK
) |
4242 (flow
->flow_state
.generation
<<
4243 HFI1_KDETH_BTH_SEQ_SHIFT
));
4245 /* PSNs are zero-based, so +1 to count number of packets */
4246 if (flow
->flow_state
.lpsn
+ 1 +
4247 rvt_div_round_up_mtu(qp
, req
->seg_len
) >
4249 req
->state
= TID_REQUEST_SYNC
;
4250 *bth2
|= IB_BTH_REQ_ACK
;
4253 if (next_offset
>= tidlen
) {
4254 flow
->tid_offset
= 0;
4257 flow
->tid_offset
= next_offset
;
4262 void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet
*packet
)
4264 struct rvt_qp
*qp
= packet
->qp
;
4265 struct hfi1_qp_priv
*priv
= qp
->priv
;
4266 struct hfi1_ctxtdata
*rcd
= priv
->rcd
;
4267 struct ib_other_headers
*ohdr
= packet
->ohdr
;
4268 struct rvt_ack_entry
*e
;
4269 struct tid_rdma_request
*req
;
4270 struct tid_rdma_flow
*flow
;
4271 struct hfi1_ibdev
*dev
= to_idev(qp
->ibqp
.device
);
4272 unsigned long flags
;
4277 fecn
= process_ecn(qp
, packet
);
4278 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
4279 opcode
= (be32_to_cpu(ohdr
->bth
[0]) >> 24) & 0xff;
4282 * All error handling should be done by now. If we are here, the packet
4283 * is either good or been accepted by the error handler.
4285 spin_lock_irqsave(&qp
->s_lock
, flags
);
4286 e
= &qp
->s_ack_queue
[priv
->r_tid_tail
];
4287 req
= ack_to_tid_req(e
);
4288 flow
= &req
->flows
[req
->clear_tail
];
4289 if (cmp_psn(psn
, full_flow_psn(flow
, flow
->flow_state
.lpsn
))) {
4290 update_r_next_psn_fecn(packet
, priv
, rcd
, flow
, fecn
);
4292 if (cmp_psn(psn
, flow
->flow_state
.r_next_psn
))
4295 flow
->flow_state
.r_next_psn
= mask_psn(psn
+ 1);
4297 * Copy the payload to destination buffer if this packet is
4298 * delivered as an eager packet due to RSM rule and FECN.
4299 * The RSM rule selects FECN bit in BTH and SH bit in
4300 * KDETH header and therefore will not match the last
4301 * packet of each segment that has SH bit cleared.
4303 if (fecn
&& packet
->etype
== RHF_RCV_TYPE_EAGER
) {
4304 struct rvt_sge_state ss
;
4306 u32 tlen
= packet
->tlen
;
4307 u16 hdrsize
= packet
->hlen
;
4308 u8 pad
= packet
->pad
;
4309 u8 extra_bytes
= pad
+ packet
->extra_byte
+
4311 u32 pmtu
= qp
->pmtu
;
4313 if (unlikely(tlen
!= (hdrsize
+ pmtu
+ extra_bytes
)))
4315 len
= req
->comp_seg
* req
->seg_len
;
4316 len
+= delta_psn(psn
,
4317 full_flow_psn(flow
, flow
->flow_state
.spsn
)) *
4319 if (unlikely(req
->total_len
- len
< pmtu
))
4323 * The e->rdma_sge field is set when TID RDMA WRITE REQ
4324 * is first received and is never modified thereafter.
4326 ss
.sge
= e
->rdma_sge
;
4329 ss
.total_len
= req
->total_len
;
4330 rvt_skip_sge(&ss
, len
, false);
4331 rvt_copy_sge(qp
, &ss
, packet
->payload
, pmtu
, false,
4333 /* Raise the sw sequence check flag for next packet */
4334 priv
->r_next_psn_kdeth
= mask_psn(psn
+ 1);
4335 priv
->s_flags
|= HFI1_R_TID_SW_PSN
;
4339 flow
->flow_state
.r_next_psn
= mask_psn(psn
+ 1);
4340 hfi1_kern_exp_rcv_clear(req
);
4341 priv
->alloc_w_segs
--;
4342 rcd
->flows
[flow
->idx
].psn
= psn
& HFI1_KDETH_BTH_SEQ_MASK
;
4344 priv
->s_nak_state
= 0;
4347 * Release the flow if one of the following conditions has been met:
4348 * - The request has reached a sync point AND all outstanding
4349 * segments have been completed, or
4350 * - The entire request is complete and there are no more requests
4351 * (of any kind) in the queue.
4353 trace_hfi1_rsp_rcv_tid_write_data(qp
, psn
);
4354 trace_hfi1_tid_req_rcv_write_data(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
,
4356 trace_hfi1_tid_write_rsp_rcv_data(qp
);
4357 validate_r_tid_ack(priv
);
4359 if (opcode
== TID_OP(WRITE_DATA_LAST
)) {
4360 release_rdma_sge_mr(e
);
4361 for (next
= priv
->r_tid_tail
+ 1; ; next
++) {
4362 if (next
> rvt_size_atomic(&dev
->rdi
))
4364 if (next
== priv
->r_tid_head
)
4366 e
= &qp
->s_ack_queue
[next
];
4367 if (e
->opcode
== TID_OP(WRITE_REQ
))
4370 priv
->r_tid_tail
= next
;
4371 if (++qp
->s_acked_ack_queue
> rvt_size_atomic(&dev
->rdi
))
4372 qp
->s_acked_ack_queue
= 0;
4375 hfi1_tid_write_alloc_resources(qp
, true);
4378 * If we need to generate more responses, schedule the
4381 if (req
->cur_seg
< req
->total_segs
||
4382 qp
->s_tail_ack_queue
!= qp
->r_head_ack_queue
) {
4383 qp
->s_flags
|= RVT_S_RESP_PENDING
;
4384 hfi1_schedule_send(qp
);
4387 priv
->pending_tid_w_segs
--;
4388 if (priv
->s_flags
& HFI1_R_TID_RSC_TIMER
) {
4389 if (priv
->pending_tid_w_segs
)
4390 hfi1_mod_tid_reap_timer(req
->qp
);
4392 hfi1_stop_tid_reap_timer(req
->qp
);
4396 tid_rdma_schedule_ack(qp
);
4398 priv
->r_next_psn_kdeth
= flow
->flow_state
.r_next_psn
;
4400 qp
->s_flags
|= RVT_S_ECN
;
4401 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
4405 if (!priv
->s_nak_state
) {
4406 priv
->s_nak_state
= IB_NAK_PSN_ERROR
;
4407 priv
->s_nak_psn
= flow
->flow_state
.r_next_psn
;
4408 tid_rdma_trigger_ack(qp
);
4413 static bool hfi1_tid_rdma_is_resync_psn(u32 psn
)
4415 return (bool)((psn
& HFI1_KDETH_BTH_SEQ_MASK
) ==
4416 HFI1_KDETH_BTH_SEQ_MASK
);
4419 u32
hfi1_build_tid_rdma_write_ack(struct rvt_qp
*qp
, struct rvt_ack_entry
*e
,
4420 struct ib_other_headers
*ohdr
, u16 iflow
,
4421 u32
*bth1
, u32
*bth2
)
4423 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
4424 struct tid_flow_state
*fs
= &qpriv
->flow_state
;
4425 struct tid_rdma_request
*req
= ack_to_tid_req(e
);
4426 struct tid_rdma_flow
*flow
= &req
->flows
[iflow
];
4427 struct tid_rdma_params
*remote
;
4430 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
4431 KDETH_RESET(ohdr
->u
.tid_rdma
.ack
.kdeth1
, JKEY
, remote
->jkey
);
4432 ohdr
->u
.tid_rdma
.ack
.verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
4436 if (qpriv
->resync
) {
4437 *bth2
= mask_psn((fs
->generation
<<
4438 HFI1_KDETH_BTH_SEQ_SHIFT
) - 1);
4439 ohdr
->u
.tid_rdma
.ack
.aeth
= rvt_compute_aeth(qp
);
4440 } else if (qpriv
->s_nak_state
) {
4441 *bth2
= mask_psn(qpriv
->s_nak_psn
);
4442 ohdr
->u
.tid_rdma
.ack
.aeth
=
4443 cpu_to_be32((qp
->r_msn
& IB_MSN_MASK
) |
4444 (qpriv
->s_nak_state
<<
4445 IB_AETH_CREDIT_SHIFT
));
4447 *bth2
= full_flow_psn(flow
, flow
->flow_state
.lpsn
);
4448 ohdr
->u
.tid_rdma
.ack
.aeth
= rvt_compute_aeth(qp
);
4450 KDETH_RESET(ohdr
->u
.tid_rdma
.ack
.kdeth0
, KVER
, 0x1);
4451 ohdr
->u
.tid_rdma
.ack
.tid_flow_qp
=
4452 cpu_to_be32(qpriv
->tid_rdma
.local
.qp
|
4453 ((flow
->idx
& TID_RDMA_DESTQP_FLOW_MASK
) <<
4454 TID_RDMA_DESTQP_FLOW_SHIFT
) |
4457 ohdr
->u
.tid_rdma
.ack
.tid_flow_psn
= 0;
4458 ohdr
->u
.tid_rdma
.ack
.verbs_psn
=
4459 cpu_to_be32(flow
->flow_state
.resp_ib_psn
);
4461 if (qpriv
->resync
) {
4463 * If the PSN before the current expect KDETH PSN is the
4464 * RESYNC PSN, then we never received a good TID RDMA WRITE
4465 * DATA packet after a previous RESYNC.
4466 * In this case, the next expected KDETH PSN stays the same.
4468 if (hfi1_tid_rdma_is_resync_psn(qpriv
->r_next_psn_kdeth
- 1)) {
4469 ohdr
->u
.tid_rdma
.ack
.tid_flow_psn
=
4470 cpu_to_be32(qpriv
->r_next_psn_kdeth_save
);
4473 * Because the KDETH PSNs jump during a RESYNC, it's
4474 * not possible to infer (or compute) the previous value
4475 * of r_next_psn_kdeth in the case of back-to-back
4476 * RESYNC packets. Therefore, we save it.
4478 qpriv
->r_next_psn_kdeth_save
=
4479 qpriv
->r_next_psn_kdeth
- 1;
4480 ohdr
->u
.tid_rdma
.ack
.tid_flow_psn
=
4481 cpu_to_be32(qpriv
->r_next_psn_kdeth_save
);
4482 qpriv
->r_next_psn_kdeth
= mask_psn(*bth2
+ 1);
4484 qpriv
->resync
= false;
4487 return sizeof(ohdr
->u
.tid_rdma
.ack
) / sizeof(u32
);
4490 void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet
*packet
)
4492 struct ib_other_headers
*ohdr
= packet
->ohdr
;
4493 struct rvt_qp
*qp
= packet
->qp
;
4494 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
4495 struct rvt_swqe
*wqe
;
4496 struct tid_rdma_request
*req
;
4497 struct tid_rdma_flow
*flow
;
4498 u32 aeth
, psn
, req_psn
, ack_psn
, flpsn
, resync_psn
, ack_kpsn
;
4499 unsigned long flags
;
4502 trace_hfi1_tid_write_sender_rcv_tid_ack(qp
, 0);
4503 process_ecn(qp
, packet
);
4504 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
4505 aeth
= be32_to_cpu(ohdr
->u
.tid_rdma
.ack
.aeth
);
4506 req_psn
= mask_psn(be32_to_cpu(ohdr
->u
.tid_rdma
.ack
.verbs_psn
));
4507 resync_psn
= mask_psn(be32_to_cpu(ohdr
->u
.tid_rdma
.ack
.tid_flow_psn
));
4509 spin_lock_irqsave(&qp
->s_lock
, flags
);
4510 trace_hfi1_rcv_tid_ack(qp
, aeth
, psn
, req_psn
, resync_psn
);
4512 /* If we are waiting for an ACK to RESYNC, drop any other packets */
4513 if ((qp
->s_flags
& HFI1_S_WAIT_HALT
) &&
4514 cmp_psn(psn
, qpriv
->s_resync_psn
))
4518 if (hfi1_tid_rdma_is_resync_psn(psn
))
4519 ack_kpsn
= resync_psn
;
4527 if (unlikely(qp
->s_acked
== qp
->s_tail
))
4530 wqe
= rvt_get_swqe_ptr(qp
, qp
->s_acked
);
4532 if (wqe
->wr
.opcode
!= IB_WR_TID_RDMA_WRITE
)
4535 req
= wqe_to_tid_req(wqe
);
4536 trace_hfi1_tid_req_rcv_tid_ack(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
4538 flow
= &req
->flows
[req
->acked_tail
];
4539 trace_hfi1_tid_flow_rcv_tid_ack(qp
, req
->acked_tail
, flow
);
4541 /* Drop stale ACK/NAK */
4542 if (cmp_psn(psn
, full_flow_psn(flow
, flow
->flow_state
.spsn
)) < 0 ||
4543 cmp_psn(req_psn
, flow
->flow_state
.resp_ib_psn
) < 0)
4546 while (cmp_psn(ack_kpsn
,
4547 full_flow_psn(flow
, flow
->flow_state
.lpsn
)) >= 0 &&
4548 req
->ack_seg
< req
->cur_seg
) {
4550 /* advance acked segment pointer */
4551 req
->acked_tail
= CIRC_NEXT(req
->acked_tail
, MAX_FLOWS
);
4552 req
->r_last_acked
= flow
->flow_state
.resp_ib_psn
;
4553 trace_hfi1_tid_req_rcv_tid_ack(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
4555 if (req
->ack_seg
== req
->total_segs
) {
4556 req
->state
= TID_REQUEST_COMPLETE
;
4557 wqe
= do_rc_completion(qp
, wqe
,
4558 to_iport(qp
->ibqp
.device
,
4560 trace_hfi1_sender_rcv_tid_ack(qp
);
4561 atomic_dec(&qpriv
->n_tid_requests
);
4562 if (qp
->s_acked
== qp
->s_tail
)
4564 if (wqe
->wr
.opcode
!= IB_WR_TID_RDMA_WRITE
)
4566 req
= wqe_to_tid_req(wqe
);
4568 flow
= &req
->flows
[req
->acked_tail
];
4569 trace_hfi1_tid_flow_rcv_tid_ack(qp
, req
->acked_tail
, flow
);
4572 trace_hfi1_tid_req_rcv_tid_ack(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
4574 switch (aeth
>> 29) {
4576 if (qpriv
->s_flags
& RVT_S_WAIT_ACK
)
4577 qpriv
->s_flags
&= ~RVT_S_WAIT_ACK
;
4578 if (!hfi1_tid_rdma_is_resync_psn(psn
)) {
4579 /* Check if there is any pending TID ACK */
4580 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_WRITE
&&
4581 req
->ack_seg
< req
->cur_seg
)
4582 hfi1_mod_tid_retry_timer(qp
);
4584 hfi1_stop_tid_retry_timer(qp
);
4585 hfi1_schedule_send(qp
);
4587 u32 spsn
, fpsn
, last_acked
, generation
;
4588 struct tid_rdma_request
*rptr
;
4591 hfi1_stop_tid_retry_timer(qp
);
4592 /* Allow new requests (see hfi1_make_tid_rdma_pkt) */
4593 qp
->s_flags
&= ~HFI1_S_WAIT_HALT
;
4595 * Clear RVT_S_SEND_ONE flag in case that the TID RDMA
4596 * ACK is received after the TID retry timer is fired
4597 * again. In this case, do not send any more TID
4598 * RESYNC request or wait for any more TID ACK packet.
4600 qpriv
->s_flags
&= ~RVT_S_SEND_ONE
;
4601 hfi1_schedule_send(qp
);
4603 if ((qp
->s_acked
== qpriv
->s_tid_tail
&&
4604 req
->ack_seg
== req
->total_segs
) ||
4605 qp
->s_acked
== qp
->s_tail
) {
4606 qpriv
->s_state
= TID_OP(WRITE_DATA_LAST
);
4610 if (req
->ack_seg
== req
->comp_seg
) {
4611 qpriv
->s_state
= TID_OP(WRITE_DATA
);
4616 * The PSN to start with is the next PSN after the
4619 psn
= mask_psn(psn
+ 1);
4620 generation
= psn
>> HFI1_KDETH_BTH_SEQ_SHIFT
;
4624 * Update to the correct WQE when we get an ACK(RESYNC)
4625 * in the middle of a request.
4627 if (delta_psn(ack_psn
, wqe
->lpsn
))
4628 wqe
= rvt_get_swqe_ptr(qp
, qp
->s_acked
);
4629 req
= wqe_to_tid_req(wqe
);
4630 flow
= &req
->flows
[req
->acked_tail
];
4632 * RESYNC re-numbers the PSN ranges of all remaining
4633 * segments. Also, PSN's start from 0 in the middle of a
4634 * segment and the first segment size is less than the
4635 * default number of packets. flow->resync_npkts is used
4636 * to track the number of packets from the start of the
4637 * real segment to the point of 0 PSN after the RESYNC
4638 * in order to later correctly rewind the SGE.
4640 fpsn
= full_flow_psn(flow
, flow
->flow_state
.spsn
);
4641 req
->r_ack_psn
= psn
;
4643 * If resync_psn points to the last flow PSN for a
4644 * segment and the new segment (likely from a new
4645 * request) starts with a new generation number, we
4646 * need to adjust resync_psn accordingly.
4648 if (flow
->flow_state
.generation
!=
4649 (resync_psn
>> HFI1_KDETH_BTH_SEQ_SHIFT
))
4650 resync_psn
= mask_psn(fpsn
- 1);
4651 flow
->resync_npkts
+=
4652 delta_psn(mask_psn(resync_psn
+ 1), fpsn
);
4654 * Renumber all packet sequence number ranges
4655 * based on the new generation.
4657 last_acked
= qp
->s_acked
;
4660 /* start from last acked segment */
4661 for (fidx
= rptr
->acked_tail
;
4662 CIRC_CNT(rptr
->setup_head
, fidx
,
4664 fidx
= CIRC_NEXT(fidx
, MAX_FLOWS
)) {
4668 flow
= &rptr
->flows
[fidx
];
4669 gen
= flow
->flow_state
.generation
;
4670 if (WARN_ON(gen
== generation
&&
4671 flow
->flow_state
.spsn
!=
4674 lpsn
= flow
->flow_state
.lpsn
;
4675 lpsn
= full_flow_psn(flow
, lpsn
);
4678 mask_psn(resync_psn
)
4680 flow
->flow_state
.generation
=
4682 flow
->flow_state
.spsn
= spsn
;
4683 flow
->flow_state
.lpsn
=
4684 flow
->flow_state
.spsn
+
4687 spsn
+= flow
->npkts
;
4688 resync_psn
+= flow
->npkts
;
4689 trace_hfi1_tid_flow_rcv_tid_ack(qp
,
4693 if (++last_acked
== qpriv
->s_tid_cur
+ 1)
4695 if (last_acked
== qp
->s_size
)
4697 wqe
= rvt_get_swqe_ptr(qp
, last_acked
);
4698 rptr
= wqe_to_tid_req(wqe
);
4700 req
->cur_seg
= req
->ack_seg
;
4701 qpriv
->s_tid_tail
= qp
->s_acked
;
4702 qpriv
->s_state
= TID_OP(WRITE_REQ
);
4703 hfi1_schedule_tid_send(qp
);
4706 qpriv
->s_retry
= qp
->s_retry_cnt
;
4710 hfi1_stop_tid_retry_timer(qp
);
4711 switch ((aeth
>> IB_AETH_CREDIT_SHIFT
) &
4712 IB_AETH_CREDIT_MASK
) {
4713 case 0: /* PSN sequence error */
4716 flow
= &req
->flows
[req
->acked_tail
];
4717 flpsn
= full_flow_psn(flow
, flow
->flow_state
.lpsn
);
4718 if (cmp_psn(psn
, flpsn
) > 0)
4720 trace_hfi1_tid_flow_rcv_tid_ack(qp
, req
->acked_tail
,
4722 req
->r_ack_psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
4723 req
->cur_seg
= req
->ack_seg
;
4724 qpriv
->s_tid_tail
= qp
->s_acked
;
4725 qpriv
->s_state
= TID_OP(WRITE_REQ
);
4726 qpriv
->s_retry
= qp
->s_retry_cnt
;
4727 hfi1_schedule_tid_send(qp
);
4740 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
4743 void hfi1_add_tid_retry_timer(struct rvt_qp
*qp
)
4745 struct hfi1_qp_priv
*priv
= qp
->priv
;
4746 struct ib_qp
*ibqp
= &qp
->ibqp
;
4747 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
4749 lockdep_assert_held(&qp
->s_lock
);
4750 if (!(priv
->s_flags
& HFI1_S_TID_RETRY_TIMER
)) {
4751 priv
->s_flags
|= HFI1_S_TID_RETRY_TIMER
;
4752 priv
->s_tid_retry_timer
.expires
= jiffies
+
4753 priv
->tid_retry_timeout_jiffies
+ rdi
->busy_jiffies
;
4754 add_timer(&priv
->s_tid_retry_timer
);
4758 static void hfi1_mod_tid_retry_timer(struct rvt_qp
*qp
)
4760 struct hfi1_qp_priv
*priv
= qp
->priv
;
4761 struct ib_qp
*ibqp
= &qp
->ibqp
;
4762 struct rvt_dev_info
*rdi
= ib_to_rvt(ibqp
->device
);
4764 lockdep_assert_held(&qp
->s_lock
);
4765 priv
->s_flags
|= HFI1_S_TID_RETRY_TIMER
;
4766 mod_timer(&priv
->s_tid_retry_timer
, jiffies
+
4767 priv
->tid_retry_timeout_jiffies
+ rdi
->busy_jiffies
);
4770 static int hfi1_stop_tid_retry_timer(struct rvt_qp
*qp
)
4772 struct hfi1_qp_priv
*priv
= qp
->priv
;
4775 lockdep_assert_held(&qp
->s_lock
);
4776 if (priv
->s_flags
& HFI1_S_TID_RETRY_TIMER
) {
4777 rval
= del_timer(&priv
->s_tid_retry_timer
);
4778 priv
->s_flags
&= ~HFI1_S_TID_RETRY_TIMER
;
4783 void hfi1_del_tid_retry_timer(struct rvt_qp
*qp
)
4785 struct hfi1_qp_priv
*priv
= qp
->priv
;
4787 del_timer_sync(&priv
->s_tid_retry_timer
);
4788 priv
->s_flags
&= ~HFI1_S_TID_RETRY_TIMER
;
4791 static void hfi1_tid_retry_timeout(struct timer_list
*t
)
4793 struct hfi1_qp_priv
*priv
= from_timer(priv
, t
, s_tid_retry_timer
);
4794 struct rvt_qp
*qp
= priv
->owner
;
4795 struct rvt_swqe
*wqe
;
4796 unsigned long flags
;
4797 struct tid_rdma_request
*req
;
4799 spin_lock_irqsave(&qp
->r_lock
, flags
);
4800 spin_lock(&qp
->s_lock
);
4801 trace_hfi1_tid_write_sender_retry_timeout(qp
, 0);
4802 if (priv
->s_flags
& HFI1_S_TID_RETRY_TIMER
) {
4803 hfi1_stop_tid_retry_timer(qp
);
4804 if (!priv
->s_retry
) {
4805 trace_hfi1_msg_tid_retry_timeout(/* msg */
4807 "Exhausted retries. Tid retry timeout = ",
4808 (u64
)priv
->tid_retry_timeout_jiffies
);
4810 wqe
= rvt_get_swqe_ptr(qp
, qp
->s_acked
);
4811 hfi1_trdma_send_complete(qp
, wqe
, IB_WC_RETRY_EXC_ERR
);
4812 rvt_error_qp(qp
, IB_WC_WR_FLUSH_ERR
);
4814 wqe
= rvt_get_swqe_ptr(qp
, qp
->s_acked
);
4815 req
= wqe_to_tid_req(wqe
);
4816 trace_hfi1_tid_req_tid_retry_timeout(/* req */
4817 qp
, 0, wqe
->wr
.opcode
, wqe
->psn
, wqe
->lpsn
, req
);
4819 priv
->s_flags
&= ~RVT_S_WAIT_ACK
;
4820 /* Only send one packet (the RESYNC) */
4821 priv
->s_flags
|= RVT_S_SEND_ONE
;
4823 * No additional request shall be made by this QP until
4824 * the RESYNC has been complete.
4826 qp
->s_flags
|= HFI1_S_WAIT_HALT
;
4827 priv
->s_state
= TID_OP(RESYNC
);
4829 hfi1_schedule_tid_send(qp
);
4832 spin_unlock(&qp
->s_lock
);
4833 spin_unlock_irqrestore(&qp
->r_lock
, flags
);
4836 u32
hfi1_build_tid_rdma_resync(struct rvt_qp
*qp
, struct rvt_swqe
*wqe
,
4837 struct ib_other_headers
*ohdr
, u32
*bth1
,
4838 u32
*bth2
, u16 fidx
)
4840 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
4841 struct tid_rdma_params
*remote
;
4842 struct tid_rdma_request
*req
= wqe_to_tid_req(wqe
);
4843 struct tid_rdma_flow
*flow
= &req
->flows
[fidx
];
4847 remote
= rcu_dereference(qpriv
->tid_rdma
.remote
);
4848 KDETH_RESET(ohdr
->u
.tid_rdma
.ack
.kdeth1
, JKEY
, remote
->jkey
);
4849 ohdr
->u
.tid_rdma
.ack
.verbs_qp
= cpu_to_be32(qp
->remote_qpn
);
4853 generation
= kern_flow_generation_next(flow
->flow_state
.generation
);
4854 *bth2
= mask_psn((generation
<< HFI1_KDETH_BTH_SEQ_SHIFT
) - 1);
4855 qpriv
->s_resync_psn
= *bth2
;
4856 *bth2
|= IB_BTH_REQ_ACK
;
4857 KDETH_RESET(ohdr
->u
.tid_rdma
.ack
.kdeth0
, KVER
, 0x1);
4859 return sizeof(ohdr
->u
.tid_rdma
.resync
) / sizeof(u32
);
4862 void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet
*packet
)
4864 struct ib_other_headers
*ohdr
= packet
->ohdr
;
4865 struct rvt_qp
*qp
= packet
->qp
;
4866 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
4867 struct hfi1_ctxtdata
*rcd
= qpriv
->rcd
;
4868 struct hfi1_ibdev
*dev
= to_idev(qp
->ibqp
.device
);
4869 struct rvt_ack_entry
*e
;
4870 struct tid_rdma_request
*req
;
4871 struct tid_rdma_flow
*flow
;
4872 struct tid_flow_state
*fs
= &qpriv
->flow_state
;
4873 u32 psn
, generation
, idx
, gen_next
;
4875 unsigned long flags
;
4877 fecn
= process_ecn(qp
, packet
);
4878 psn
= mask_psn(be32_to_cpu(ohdr
->bth
[2]));
4880 generation
= mask_psn(psn
+ 1) >> HFI1_KDETH_BTH_SEQ_SHIFT
;
4881 spin_lock_irqsave(&qp
->s_lock
, flags
);
4883 gen_next
= (fs
->generation
== KERN_GENERATION_RESERVED
) ?
4884 generation
: kern_flow_generation_next(fs
->generation
);
4886 * RESYNC packet contains the "next" generation and can only be
4887 * from the current or previous generations
4889 if (generation
!= mask_generation(gen_next
- 1) &&
4890 generation
!= gen_next
)
4892 /* Already processing a resync */
4896 spin_lock(&rcd
->exp_lock
);
4897 if (fs
->index
>= RXE_NUM_TID_FLOWS
) {
4899 * If we don't have a flow, save the generation so it can be
4900 * applied when a new flow is allocated
4902 fs
->generation
= generation
;
4904 /* Reprogram the QP flow with new generation */
4905 rcd
->flows
[fs
->index
].generation
= generation
;
4906 fs
->generation
= kern_setup_hw_flow(rcd
, fs
->index
);
4910 * Disable SW PSN checking since a RESYNC is equivalent to a
4911 * sync point and the flow has/will be reprogrammed
4913 qpriv
->s_flags
&= ~HFI1_R_TID_SW_PSN
;
4914 trace_hfi1_tid_write_rsp_rcv_resync(qp
);
4917 * Reset all TID flow information with the new generation.
4918 * This is done for all requests and segments after the
4919 * last received segment
4921 for (idx
= qpriv
->r_tid_tail
; ; idx
++) {
4924 if (idx
> rvt_size_atomic(&dev
->rdi
))
4926 e
= &qp
->s_ack_queue
[idx
];
4927 if (e
->opcode
== TID_OP(WRITE_REQ
)) {
4928 req
= ack_to_tid_req(e
);
4929 trace_hfi1_tid_req_rcv_resync(qp
, 0, e
->opcode
, e
->psn
,
4932 /* start from last unacked segment */
4933 for (flow_idx
= req
->clear_tail
;
4934 CIRC_CNT(req
->setup_head
, flow_idx
,
4936 flow_idx
= CIRC_NEXT(flow_idx
, MAX_FLOWS
)) {
4940 flow
= &req
->flows
[flow_idx
];
4941 lpsn
= full_flow_psn(flow
,
4942 flow
->flow_state
.lpsn
);
4943 next
= flow
->flow_state
.r_next_psn
;
4944 flow
->npkts
= delta_psn(lpsn
, next
- 1);
4945 flow
->flow_state
.generation
= fs
->generation
;
4946 flow
->flow_state
.spsn
= fs
->psn
;
4947 flow
->flow_state
.lpsn
=
4948 flow
->flow_state
.spsn
+ flow
->npkts
- 1;
4949 flow
->flow_state
.r_next_psn
=
4951 flow
->flow_state
.spsn
);
4952 fs
->psn
+= flow
->npkts
;
4953 trace_hfi1_tid_flow_rcv_resync(qp
, flow_idx
,
4957 if (idx
== qp
->s_tail_ack_queue
)
4961 spin_unlock(&rcd
->exp_lock
);
4962 qpriv
->resync
= true;
4963 /* RESYNC request always gets a TID RDMA ACK. */
4964 qpriv
->s_nak_state
= 0;
4965 tid_rdma_trigger_ack(qp
);
4968 qp
->s_flags
|= RVT_S_ECN
;
4969 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
4973 * Call this function when the last TID RDMA WRITE DATA packet for a request
4976 static void update_tid_tail(struct rvt_qp
*qp
)
4977 __must_hold(&qp
->s_lock
)
4979 struct hfi1_qp_priv
*priv
= qp
->priv
;
4981 struct rvt_swqe
*wqe
;
4983 lockdep_assert_held(&qp
->s_lock
);
4984 /* Can't move beyond s_tid_cur */
4985 if (priv
->s_tid_tail
== priv
->s_tid_cur
)
4987 for (i
= priv
->s_tid_tail
+ 1; ; i
++) {
4988 if (i
== qp
->s_size
)
4991 if (i
== priv
->s_tid_cur
)
4993 wqe
= rvt_get_swqe_ptr(qp
, i
);
4994 if (wqe
->wr
.opcode
== IB_WR_TID_RDMA_WRITE
)
4997 priv
->s_tid_tail
= i
;
4998 priv
->s_state
= TID_OP(WRITE_RESP
);
5001 int hfi1_make_tid_rdma_pkt(struct rvt_qp
*qp
, struct hfi1_pkt_state
*ps
)
5002 __must_hold(&qp
->s_lock
)
5004 struct hfi1_qp_priv
*priv
= qp
->priv
;
5005 struct rvt_swqe
*wqe
;
5006 u32 bth1
= 0, bth2
= 0, hwords
= 5, len
, middle
= 0;
5007 struct ib_other_headers
*ohdr
;
5008 struct rvt_sge_state
*ss
= &qp
->s_sge
;
5009 struct rvt_ack_entry
*e
= &qp
->s_ack_queue
[qp
->s_tail_ack_queue
];
5010 struct tid_rdma_request
*req
= ack_to_tid_req(e
);
5012 u8 opcode
= TID_OP(WRITE_DATA
);
5014 lockdep_assert_held(&qp
->s_lock
);
5015 trace_hfi1_tid_write_sender_make_tid_pkt(qp
, 0);
5017 * Prioritize the sending of the requests and responses over the
5018 * sending of the TID RDMA data packets.
5020 if (((atomic_read(&priv
->n_tid_requests
) < HFI1_TID_RDMA_WRITE_CNT
) &&
5021 atomic_read(&priv
->n_requests
) &&
5022 !(qp
->s_flags
& (RVT_S_BUSY
| RVT_S_WAIT_ACK
|
5023 HFI1_S_ANY_WAIT_IO
))) ||
5024 (e
->opcode
== TID_OP(WRITE_REQ
) && req
->cur_seg
< req
->alloc_seg
&&
5025 !(qp
->s_flags
& (RVT_S_BUSY
| HFI1_S_ANY_WAIT_IO
)))) {
5026 struct iowait_work
*iowork
;
5028 iowork
= iowait_get_ib_work(&priv
->s_iowait
);
5029 ps
->s_txreq
= get_waiting_verbs_txreq(iowork
);
5030 if (ps
->s_txreq
|| hfi1_make_rc_req(qp
, ps
)) {
5031 priv
->s_flags
|= HFI1_S_TID_BUSY_SET
;
5036 ps
->s_txreq
= get_txreq(ps
->dev
, qp
);
5040 ohdr
= &ps
->s_txreq
->phdr
.hdr
.ibh
.u
.oth
;
5042 if ((priv
->s_flags
& RVT_S_ACK_PENDING
) &&
5043 make_tid_rdma_ack(qp
, ohdr
, ps
))
5047 * Bail out if we can't send data.
5048 * Be reminded that this check must been done after the call to
5049 * make_tid_rdma_ack() because the responding QP could be in
5050 * RTR state where it can send TID RDMA ACK, not TID RDMA WRITE DATA.
5052 if (!(ib_rvt_state_ops
[qp
->state
] & RVT_PROCESS_SEND_OK
))
5055 if (priv
->s_flags
& RVT_S_WAIT_ACK
)
5058 /* Check whether there is anything to do. */
5059 if (priv
->s_tid_tail
== HFI1_QP_WQE_INVALID
)
5061 wqe
= rvt_get_swqe_ptr(qp
, priv
->s_tid_tail
);
5062 req
= wqe_to_tid_req(wqe
);
5063 trace_hfi1_tid_req_make_tid_pkt(qp
, 0, wqe
->wr
.opcode
, wqe
->psn
,
5065 switch (priv
->s_state
) {
5066 case TID_OP(WRITE_REQ
):
5067 case TID_OP(WRITE_RESP
):
5068 priv
->tid_ss
.sge
= wqe
->sg_list
[0];
5069 priv
->tid_ss
.sg_list
= wqe
->sg_list
+ 1;
5070 priv
->tid_ss
.num_sge
= wqe
->wr
.num_sge
;
5071 priv
->tid_ss
.total_len
= wqe
->length
;
5073 if (priv
->s_state
== TID_OP(WRITE_REQ
))
5074 hfi1_tid_rdma_restart_req(qp
, wqe
, &bth2
);
5075 priv
->s_state
= TID_OP(WRITE_DATA
);
5078 case TID_OP(WRITE_DATA
):
5080 * 1. Check whether TID RDMA WRITE RESP available.
5082 * 2.1 If have more segments and no TID RDMA WRITE RESP,
5083 * set HFI1_S_WAIT_TID_RESP
5084 * 2.2 Return indicating no progress made.
5086 * 3.1 Build TID RDMA WRITE DATA packet.
5087 * 3.2 If last packet in segment:
5088 * 3.2.1 Change KDETH header bits
5089 * 3.2.2 Advance RESP pointers.
5090 * 3.3 Return indicating progress made.
5092 trace_hfi1_sender_make_tid_pkt(qp
);
5093 trace_hfi1_tid_write_sender_make_tid_pkt(qp
, 0);
5094 wqe
= rvt_get_swqe_ptr(qp
, priv
->s_tid_tail
);
5095 req
= wqe_to_tid_req(wqe
);
5098 if (!req
->comp_seg
|| req
->cur_seg
== req
->comp_seg
)
5101 trace_hfi1_tid_req_make_tid_pkt(qp
, 0, wqe
->wr
.opcode
,
5102 wqe
->psn
, wqe
->lpsn
, req
);
5103 last
= hfi1_build_tid_rdma_packet(wqe
, ohdr
, &bth1
, &bth2
,
5107 /* move pointer to next flow */
5108 req
->clear_tail
= CIRC_NEXT(req
->clear_tail
,
5110 if (++req
->cur_seg
< req
->total_segs
) {
5111 if (!CIRC_CNT(req
->setup_head
, req
->clear_tail
,
5113 qp
->s_flags
|= HFI1_S_WAIT_TID_RESP
;
5115 priv
->s_state
= TID_OP(WRITE_DATA_LAST
);
5116 opcode
= TID_OP(WRITE_DATA_LAST
);
5118 /* Advance the s_tid_tail now */
5119 update_tid_tail(qp
);
5122 hwords
+= sizeof(ohdr
->u
.tid_rdma
.w_data
) / sizeof(u32
);
5126 case TID_OP(RESYNC
):
5127 trace_hfi1_sender_make_tid_pkt(qp
);
5128 /* Use generation from the most recently received response */
5129 wqe
= rvt_get_swqe_ptr(qp
, priv
->s_tid_cur
);
5130 req
= wqe_to_tid_req(wqe
);
5131 /* If no responses for this WQE look at the previous one */
5132 if (!req
->comp_seg
) {
5133 wqe
= rvt_get_swqe_ptr(qp
,
5134 (!priv
->s_tid_cur
? qp
->s_size
:
5135 priv
->s_tid_cur
) - 1);
5136 req
= wqe_to_tid_req(wqe
);
5138 hwords
+= hfi1_build_tid_rdma_resync(qp
, wqe
, ohdr
, &bth1
,
5140 CIRC_PREV(req
->setup_head
,
5144 opcode
= TID_OP(RESYNC
);
5150 if (priv
->s_flags
& RVT_S_SEND_ONE
) {
5151 priv
->s_flags
&= ~RVT_S_SEND_ONE
;
5152 priv
->s_flags
|= RVT_S_WAIT_ACK
;
5153 bth2
|= IB_BTH_REQ_ACK
;
5156 ps
->s_txreq
->hdr_dwords
= hwords
;
5157 ps
->s_txreq
->sde
= priv
->s_sde
;
5158 ps
->s_txreq
->ss
= ss
;
5159 ps
->s_txreq
->s_cur_size
= len
;
5160 hfi1_make_ruc_header(qp
, ohdr
, (opcode
<< 24), bth1
, bth2
,
5164 hfi1_put_txreq(ps
->s_txreq
);
5167 priv
->s_flags
&= ~RVT_S_BUSY
;
5169 * If we didn't get a txreq, the QP will be woken up later to try
5170 * again, set the flags to the the wake up which work item to wake
5172 * (A better algorithm should be found to do this and generalize the
5173 * sleep/wakeup flags.)
5175 iowait_set_flag(&priv
->s_iowait
, IOWAIT_PENDING_TID
);
5179 static int make_tid_rdma_ack(struct rvt_qp
*qp
,
5180 struct ib_other_headers
*ohdr
,
5181 struct hfi1_pkt_state
*ps
)
5183 struct rvt_ack_entry
*e
;
5184 struct hfi1_qp_priv
*qpriv
= qp
->priv
;
5185 struct hfi1_ibdev
*dev
= to_idev(qp
->ibqp
.device
);
5188 u32 bth1
= 0, bth2
= 0;
5191 struct tid_rdma_request
*req
, *nreq
;
5193 trace_hfi1_tid_write_rsp_make_tid_ack(qp
);
5194 /* Don't send an ACK if we aren't supposed to. */
5195 if (!(ib_rvt_state_ops
[qp
->state
] & RVT_PROCESS_RECV_OK
))
5198 /* header size in 32-bit words LRH+BTH = (8+12)/4. */
5201 e
= &qp
->s_ack_queue
[qpriv
->r_tid_ack
];
5202 req
= ack_to_tid_req(e
);
5204 * In the RESYNC case, we are exactly one segment past the
5205 * previously sent ack or at the previously sent NAK. So to send
5206 * the resync ack, we go back one segment (which might be part of
5207 * the previous request) and let the do-while loop execute again.
5208 * The advantage of executing the do-while loop is that any data
5209 * received after the previous ack is automatically acked in the
5210 * RESYNC ack. It turns out that for the do-while loop we only need
5211 * to pull back qpriv->r_tid_ack, not the segment
5212 * indices/counters. The scheme works even if the previous request
5213 * was not a TID WRITE request.
5215 if (qpriv
->resync
) {
5216 if (!req
->ack_seg
|| req
->ack_seg
== req
->total_segs
)
5217 qpriv
->r_tid_ack
= !qpriv
->r_tid_ack
?
5218 rvt_size_atomic(&dev
->rdi
) :
5219 qpriv
->r_tid_ack
- 1;
5220 e
= &qp
->s_ack_queue
[qpriv
->r_tid_ack
];
5221 req
= ack_to_tid_req(e
);
5224 trace_hfi1_rsp_make_tid_ack(qp
, e
->psn
);
5225 trace_hfi1_tid_req_make_tid_ack(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
,
5228 * If we've sent all the ACKs that we can, we are done
5229 * until we get more segments...
5231 if (!qpriv
->s_nak_state
&& !qpriv
->resync
&&
5232 req
->ack_seg
== req
->comp_seg
)
5237 * To deal with coalesced ACKs, the acked_tail pointer
5238 * into the flow array is used. The distance between it
5239 * and the clear_tail is the number of flows that are
5243 /* Get up-to-date value */
5244 CIRC_CNT(req
->clear_tail
, req
->acked_tail
,
5246 /* Advance acked index */
5247 req
->acked_tail
= req
->clear_tail
;
5250 * req->clear_tail points to the segment currently being
5251 * received. So, when sending an ACK, the previous
5252 * segment is being ACK'ed.
5254 flow
= CIRC_PREV(req
->acked_tail
, MAX_FLOWS
);
5255 if (req
->ack_seg
!= req
->total_segs
)
5257 req
->state
= TID_REQUEST_COMPLETE
;
5259 next
= qpriv
->r_tid_ack
+ 1;
5260 if (next
> rvt_size_atomic(&dev
->rdi
))
5262 qpriv
->r_tid_ack
= next
;
5263 if (qp
->s_ack_queue
[next
].opcode
!= TID_OP(WRITE_REQ
))
5265 nreq
= ack_to_tid_req(&qp
->s_ack_queue
[next
]);
5266 if (!nreq
->comp_seg
|| nreq
->ack_seg
== nreq
->comp_seg
)
5269 /* Move to the next ack entry now */
5270 e
= &qp
->s_ack_queue
[qpriv
->r_tid_ack
];
5271 req
= ack_to_tid_req(e
);
5275 * At this point qpriv->r_tid_ack == qpriv->r_tid_tail but e and
5276 * req could be pointing at the previous ack queue entry
5278 if (qpriv
->s_nak_state
||
5280 !hfi1_tid_rdma_is_resync_psn(qpriv
->r_next_psn_kdeth
- 1) &&
5281 (cmp_psn(qpriv
->r_next_psn_kdeth
- 1,
5282 full_flow_psn(&req
->flows
[flow
],
5283 req
->flows
[flow
].flow_state
.lpsn
)) > 0))) {
5285 * A NAK will implicitly acknowledge all previous TID RDMA
5286 * requests. Therefore, we NAK with the req->acked_tail
5287 * segment for the request at qpriv->r_tid_ack (same at
5288 * this point as the req->clear_tail segment for the
5289 * qpriv->r_tid_tail request)
5291 e
= &qp
->s_ack_queue
[qpriv
->r_tid_ack
];
5292 req
= ack_to_tid_req(e
);
5293 flow
= req
->acked_tail
;
5294 } else if (req
->ack_seg
== req
->total_segs
&&
5295 qpriv
->s_flags
& HFI1_R_TID_WAIT_INTERLCK
)
5296 qpriv
->s_flags
&= ~HFI1_R_TID_WAIT_INTERLCK
;
5298 trace_hfi1_tid_write_rsp_make_tid_ack(qp
);
5299 trace_hfi1_tid_req_make_tid_ack(qp
, 0, e
->opcode
, e
->psn
, e
->lpsn
,
5301 hwords
+= hfi1_build_tid_rdma_write_ack(qp
, e
, ohdr
, flow
, &bth1
,
5304 qpriv
->s_flags
&= ~RVT_S_ACK_PENDING
;
5305 ps
->s_txreq
->hdr_dwords
= hwords
;
5306 ps
->s_txreq
->sde
= qpriv
->s_sde
;
5307 ps
->s_txreq
->s_cur_size
= len
;
5308 ps
->s_txreq
->ss
= NULL
;
5309 hfi1_make_ruc_header(qp
, ohdr
, (TID_OP(ACK
) << 24), bth1
, bth2
, middle
,
5311 ps
->s_txreq
->txreq
.flags
|= SDMA_TXREQ_F_VIP
;
5315 * Ensure s_rdma_ack_cnt changes are committed prior to resetting
5316 * RVT_S_RESP_PENDING
5319 qpriv
->s_flags
&= ~RVT_S_ACK_PENDING
;
5323 static int hfi1_send_tid_ok(struct rvt_qp
*qp
)
5325 struct hfi1_qp_priv
*priv
= qp
->priv
;
5327 return !(priv
->s_flags
& RVT_S_BUSY
||
5328 qp
->s_flags
& HFI1_S_ANY_WAIT_IO
) &&
5329 (verbs_txreq_queued(iowait_get_tid_work(&priv
->s_iowait
)) ||
5330 (priv
->s_flags
& RVT_S_RESP_PENDING
) ||
5331 !(qp
->s_flags
& HFI1_S_ANY_TID_WAIT_SEND
));
5334 void _hfi1_do_tid_send(struct work_struct
*work
)
5336 struct iowait_work
*w
= container_of(work
, struct iowait_work
, iowork
);
5337 struct rvt_qp
*qp
= iowait_to_qp(w
->iow
);
5339 hfi1_do_tid_send(qp
);
5342 static void hfi1_do_tid_send(struct rvt_qp
*qp
)
5344 struct hfi1_pkt_state ps
;
5345 struct hfi1_qp_priv
*priv
= qp
->priv
;
5347 ps
.dev
= to_idev(qp
->ibqp
.device
);
5348 ps
.ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
5349 ps
.ppd
= ppd_from_ibp(ps
.ibp
);
5350 ps
.wait
= iowait_get_tid_work(&priv
->s_iowait
);
5351 ps
.in_thread
= false;
5352 ps
.timeout_int
= qp
->timeout_jiffies
/ 8;
5354 trace_hfi1_rc_do_tid_send(qp
, false);
5355 spin_lock_irqsave(&qp
->s_lock
, ps
.flags
);
5357 /* Return if we are already busy processing a work request. */
5358 if (!hfi1_send_tid_ok(qp
)) {
5359 if (qp
->s_flags
& HFI1_S_ANY_WAIT_IO
)
5360 iowait_set_flag(&priv
->s_iowait
, IOWAIT_PENDING_TID
);
5361 spin_unlock_irqrestore(&qp
->s_lock
, ps
.flags
);
5365 priv
->s_flags
|= RVT_S_BUSY
;
5367 ps
.timeout
= jiffies
+ ps
.timeout_int
;
5368 ps
.cpu
= priv
->s_sde
? priv
->s_sde
->cpu
:
5369 cpumask_first(cpumask_of_node(ps
.ppd
->dd
->node
));
5370 ps
.pkts_sent
= false;
5372 /* insure a pre-built packet is handled */
5373 ps
.s_txreq
= get_waiting_verbs_txreq(ps
.wait
);
5375 /* Check for a constructed packet to be sent. */
5377 if (priv
->s_flags
& HFI1_S_TID_BUSY_SET
) {
5378 qp
->s_flags
|= RVT_S_BUSY
;
5379 ps
.wait
= iowait_get_ib_work(&priv
->s_iowait
);
5381 spin_unlock_irqrestore(&qp
->s_lock
, ps
.flags
);
5384 * If the packet cannot be sent now, return and
5385 * the send tasklet will be woken up later.
5387 if (hfi1_verbs_send(qp
, &ps
))
5390 /* allow other tasks to run */
5391 if (hfi1_schedule_send_yield(qp
, &ps
, true))
5394 spin_lock_irqsave(&qp
->s_lock
, ps
.flags
);
5395 if (priv
->s_flags
& HFI1_S_TID_BUSY_SET
) {
5396 qp
->s_flags
&= ~RVT_S_BUSY
;
5397 priv
->s_flags
&= ~HFI1_S_TID_BUSY_SET
;
5398 ps
.wait
= iowait_get_tid_work(&priv
->s_iowait
);
5399 if (iowait_flag_set(&priv
->s_iowait
,
5401 hfi1_schedule_send(qp
);
5404 } while (hfi1_make_tid_rdma_pkt(qp
, &ps
));
5405 iowait_starve_clear(ps
.pkts_sent
, &priv
->s_iowait
);
5406 spin_unlock_irqrestore(&qp
->s_lock
, ps
.flags
);
5409 static bool _hfi1_schedule_tid_send(struct rvt_qp
*qp
)
5411 struct hfi1_qp_priv
*priv
= qp
->priv
;
5412 struct hfi1_ibport
*ibp
=
5413 to_iport(qp
->ibqp
.device
, qp
->port_num
);
5414 struct hfi1_pportdata
*ppd
= ppd_from_ibp(ibp
);
5415 struct hfi1_devdata
*dd
= ppd
->dd
;
5417 if ((dd
->flags
& HFI1_SHUTDOWN
))
5420 return iowait_tid_schedule(&priv
->s_iowait
, ppd
->hfi1_wq
,
5423 cpumask_first(cpumask_of_node(dd
->node
)));
5427 * hfi1_schedule_tid_send - schedule progress on TID RDMA state machine
5430 * This schedules qp progress on the TID RDMA state machine. Caller
5431 * should hold the s_lock.
5432 * Unlike hfi1_schedule_send(), this cannot use hfi1_send_ok() because
5433 * the two state machines can step on each other with respect to the
5435 * Therefore, a modified test is used.
5436 * @return true if the second leg is scheduled;
5437 * false if the second leg is not scheduled.
5439 bool hfi1_schedule_tid_send(struct rvt_qp
*qp
)
5441 lockdep_assert_held(&qp
->s_lock
);
5442 if (hfi1_send_tid_ok(qp
)) {
5444 * The following call returns true if the qp is not on the
5445 * queue and false if the qp is already on the queue before
5446 * this call. Either way, the qp will be on the queue when the
5449 _hfi1_schedule_tid_send(qp
);
5452 if (qp
->s_flags
& HFI1_S_ANY_WAIT_IO
)
5453 iowait_set_flag(&((struct hfi1_qp_priv
*)qp
->priv
)->s_iowait
,
5454 IOWAIT_PENDING_TID
);
5458 bool hfi1_tid_rdma_ack_interlock(struct rvt_qp
*qp
, struct rvt_ack_entry
*e
)
5460 struct rvt_ack_entry
*prev
;
5461 struct tid_rdma_request
*req
;
5462 struct hfi1_ibdev
*dev
= to_idev(qp
->ibqp
.device
);
5463 struct hfi1_qp_priv
*priv
= qp
->priv
;
5466 s_prev
= qp
->s_tail_ack_queue
== 0 ? rvt_size_atomic(&dev
->rdi
) :
5467 (qp
->s_tail_ack_queue
- 1);
5468 prev
= &qp
->s_ack_queue
[s_prev
];
5470 if ((e
->opcode
== TID_OP(READ_REQ
) ||
5471 e
->opcode
== OP(RDMA_READ_REQUEST
)) &&
5472 prev
->opcode
== TID_OP(WRITE_REQ
)) {
5473 req
= ack_to_tid_req(prev
);
5474 if (req
->ack_seg
!= req
->total_segs
) {
5475 priv
->s_flags
|= HFI1_R_TID_WAIT_INTERLCK
;
5482 static u32
read_r_next_psn(struct hfi1_devdata
*dd
, u8 ctxt
, u8 fidx
)
5487 * The only sane way to get the amount of
5488 * progress is to read the HW flow state.
5490 reg
= read_uctxt_csr(dd
, ctxt
, RCV_TID_FLOW_TABLE
+ (8 * fidx
));
5491 return mask_psn(reg
);
5494 static void tid_rdma_rcv_err(struct hfi1_packet
*packet
,
5495 struct ib_other_headers
*ohdr
,
5496 struct rvt_qp
*qp
, u32 psn
, int diff
, bool fecn
)
5498 unsigned long flags
;
5500 tid_rdma_rcv_error(packet
, ohdr
, qp
, psn
, diff
);
5502 spin_lock_irqsave(&qp
->s_lock
, flags
);
5503 qp
->s_flags
|= RVT_S_ECN
;
5504 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
5508 static void update_r_next_psn_fecn(struct hfi1_packet
*packet
,
5509 struct hfi1_qp_priv
*priv
,
5510 struct hfi1_ctxtdata
*rcd
,
5511 struct tid_rdma_flow
*flow
,
5515 * If a start/middle packet is delivered here due to
5516 * RSM rule and FECN, we need to update the r_next_psn.
5518 if (fecn
&& packet
->etype
== RHF_RCV_TYPE_EAGER
&&
5519 !(priv
->s_flags
& HFI1_R_TID_SW_PSN
)) {
5520 struct hfi1_devdata
*dd
= rcd
->dd
;
5522 flow
->flow_state
.r_next_psn
=
5523 read_r_next_psn(dd
, rcd
->ctxt
, flow
->idx
);