WIP FPC-III support
[linux/fpc-iii.git] / drivers / infiniband / sw / rdmavt / qp.c
blob22fa9bde5419933174da44791d81d1db3b60389b
1 /*
2 * Copyright(c) 2016 - 2020 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
61 #define RVT_RWQ_COUNT_THRESHOLD 16
63 static void rvt_rc_timeout(struct timer_list *t);
64 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
65 enum ib_qp_type type);
68 * Convert the AETH RNR timeout code into the number of microseconds.
70 static const u32 ib_rvt_rnr_table[32] = {
71 655360, /* 00: 655.36 */
72 10, /* 01: .01 */
73 20, /* 02 .02 */
74 30, /* 03: .03 */
75 40, /* 04: .04 */
76 60, /* 05: .06 */
77 80, /* 06: .08 */
78 120, /* 07: .12 */
79 160, /* 08: .16 */
80 240, /* 09: .24 */
81 320, /* 0A: .32 */
82 480, /* 0B: .48 */
83 640, /* 0C: .64 */
84 960, /* 0D: .96 */
85 1280, /* 0E: 1.28 */
86 1920, /* 0F: 1.92 */
87 2560, /* 10: 2.56 */
88 3840, /* 11: 3.84 */
89 5120, /* 12: 5.12 */
90 7680, /* 13: 7.68 */
91 10240, /* 14: 10.24 */
92 15360, /* 15: 15.36 */
93 20480, /* 16: 20.48 */
94 30720, /* 17: 30.72 */
95 40960, /* 18: 40.96 */
96 61440, /* 19: 61.44 */
97 81920, /* 1A: 81.92 */
98 122880, /* 1B: 122.88 */
99 163840, /* 1C: 163.84 */
100 245760, /* 1D: 245.76 */
101 327680, /* 1E: 327.68 */
102 491520 /* 1F: 491.52 */
106 * Note that it is OK to post send work requests in the SQE and ERR
107 * states; rvt_do_send() will process them and generate error
108 * completions as per IB 1.2 C10-96.
110 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
111 [IB_QPS_RESET] = 0,
112 [IB_QPS_INIT] = RVT_POST_RECV_OK,
113 [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
114 [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
115 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
116 RVT_PROCESS_NEXT_SEND_OK,
117 [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
118 RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
119 [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
120 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
121 [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
122 RVT_POST_SEND_OK | RVT_FLUSH_SEND,
124 EXPORT_SYMBOL(ib_rvt_state_ops);
126 /* platform specific: return the last level cache (llc) size, in KiB */
127 static int rvt_wss_llc_size(void)
129 /* assume that the boot CPU value is universal for all CPUs */
130 return boot_cpu_data.x86_cache_size;
133 /* platform specific: cacheless copy */
134 static void cacheless_memcpy(void *dst, void *src, size_t n)
137 * Use the only available X64 cacheless copy. Add a __user cast
138 * to quiet sparse. The src agument is already in the kernel so
139 * there are no security issues. The extra fault recovery machinery
140 * is not invoked.
142 __copy_user_nocache(dst, (void __user *)src, n, 0);
145 void rvt_wss_exit(struct rvt_dev_info *rdi)
147 struct rvt_wss *wss = rdi->wss;
149 if (!wss)
150 return;
152 /* coded to handle partially initialized and repeat callers */
153 kfree(wss->entries);
154 wss->entries = NULL;
155 kfree(rdi->wss);
156 rdi->wss = NULL;
160 * rvt_wss_init - Init wss data structures
162 * Return: 0 on success
164 int rvt_wss_init(struct rvt_dev_info *rdi)
166 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
167 unsigned int wss_threshold = rdi->dparms.wss_threshold;
168 unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
169 long llc_size;
170 long llc_bits;
171 long table_size;
172 long table_bits;
173 struct rvt_wss *wss;
174 int node = rdi->dparms.node;
176 if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
177 rdi->wss = NULL;
178 return 0;
181 rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
182 if (!rdi->wss)
183 return -ENOMEM;
184 wss = rdi->wss;
186 /* check for a valid percent range - default to 80 if none or invalid */
187 if (wss_threshold < 1 || wss_threshold > 100)
188 wss_threshold = 80;
190 /* reject a wildly large period */
191 if (wss_clean_period > 1000000)
192 wss_clean_period = 256;
194 /* reject a zero period */
195 if (wss_clean_period == 0)
196 wss_clean_period = 1;
199 * Calculate the table size - the next power of 2 larger than the
200 * LLC size. LLC size is in KiB.
202 llc_size = rvt_wss_llc_size() * 1024;
203 table_size = roundup_pow_of_two(llc_size);
205 /* one bit per page in rounded up table */
206 llc_bits = llc_size / PAGE_SIZE;
207 table_bits = table_size / PAGE_SIZE;
208 wss->pages_mask = table_bits - 1;
209 wss->num_entries = table_bits / BITS_PER_LONG;
211 wss->threshold = (llc_bits * wss_threshold) / 100;
212 if (wss->threshold == 0)
213 wss->threshold = 1;
215 wss->clean_period = wss_clean_period;
216 atomic_set(&wss->clean_counter, wss_clean_period);
218 wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
219 GFP_KERNEL, node);
220 if (!wss->entries) {
221 rvt_wss_exit(rdi);
222 return -ENOMEM;
225 return 0;
229 * Advance the clean counter. When the clean period has expired,
230 * clean an entry.
232 * This is implemented in atomics to avoid locking. Because multiple
233 * variables are involved, it can be racy which can lead to slightly
234 * inaccurate information. Since this is only a heuristic, this is
235 * OK. Any innaccuracies will clean themselves out as the counter
236 * advances. That said, it is unlikely the entry clean operation will
237 * race - the next possible racer will not start until the next clean
238 * period.
240 * The clean counter is implemented as a decrement to zero. When zero
241 * is reached an entry is cleaned.
243 static void wss_advance_clean_counter(struct rvt_wss *wss)
245 int entry;
246 int weight;
247 unsigned long bits;
249 /* become the cleaner if we decrement the counter to zero */
250 if (atomic_dec_and_test(&wss->clean_counter)) {
252 * Set, not add, the clean period. This avoids an issue
253 * where the counter could decrement below the clean period.
254 * Doing a set can result in lost decrements, slowing the
255 * clean advance. Since this a heuristic, this possible
256 * slowdown is OK.
258 * An alternative is to loop, advancing the counter by a
259 * clean period until the result is > 0. However, this could
260 * lead to several threads keeping another in the clean loop.
261 * This could be mitigated by limiting the number of times
262 * we stay in the loop.
264 atomic_set(&wss->clean_counter, wss->clean_period);
267 * Uniquely grab the entry to clean and move to next.
268 * The current entry is always the lower bits of
269 * wss.clean_entry. The table size, wss.num_entries,
270 * is always a power-of-2.
272 entry = (atomic_inc_return(&wss->clean_entry) - 1)
273 & (wss->num_entries - 1);
275 /* clear the entry and count the bits */
276 bits = xchg(&wss->entries[entry], 0);
277 weight = hweight64((u64)bits);
278 /* only adjust the contended total count if needed */
279 if (weight)
280 atomic_sub(weight, &wss->total_count);
285 * Insert the given address into the working set array.
287 static void wss_insert(struct rvt_wss *wss, void *address)
289 u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
290 u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
291 u32 nr = page & (BITS_PER_LONG - 1);
293 if (!test_and_set_bit(nr, &wss->entries[entry]))
294 atomic_inc(&wss->total_count);
296 wss_advance_clean_counter(wss);
300 * Is the working set larger than the threshold?
302 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
304 return atomic_read(&wss->total_count) >= wss->threshold;
307 static void get_map_page(struct rvt_qpn_table *qpt,
308 struct rvt_qpn_map *map)
310 unsigned long page = get_zeroed_page(GFP_KERNEL);
313 * Free the page if someone raced with us installing it.
316 spin_lock(&qpt->lock);
317 if (map->page)
318 free_page(page);
319 else
320 map->page = (void *)page;
321 spin_unlock(&qpt->lock);
325 * init_qpn_table - initialize the QP number table for a device
326 * @qpt: the QPN table
328 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
330 u32 offset, i;
331 struct rvt_qpn_map *map;
332 int ret = 0;
334 if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
335 return -EINVAL;
337 spin_lock_init(&qpt->lock);
339 qpt->last = rdi->dparms.qpn_start;
340 qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
343 * Drivers may want some QPs beyond what we need for verbs let them use
344 * our qpn table. No need for two. Lets go ahead and mark the bitmaps
345 * for those. The reserved range must be *after* the range which verbs
346 * will pick from.
349 /* Figure out number of bit maps needed before reserved range */
350 qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
352 /* This should always be zero */
353 offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
355 /* Starting with the first reserved bit map */
356 map = &qpt->map[qpt->nmaps];
358 rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
359 rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
360 for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
361 if (!map->page) {
362 get_map_page(qpt, map);
363 if (!map->page) {
364 ret = -ENOMEM;
365 break;
368 set_bit(offset, map->page);
369 offset++;
370 if (offset == RVT_BITS_PER_PAGE) {
371 /* next page */
372 qpt->nmaps++;
373 map++;
374 offset = 0;
377 return ret;
381 * free_qpn_table - free the QP number table for a device
382 * @qpt: the QPN table
384 static void free_qpn_table(struct rvt_qpn_table *qpt)
386 int i;
388 for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
389 free_page((unsigned long)qpt->map[i].page);
393 * rvt_driver_qp_init - Init driver qp resources
394 * @rdi: rvt dev strucutre
396 * Return: 0 on success
398 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
400 int i;
401 int ret = -ENOMEM;
403 if (!rdi->dparms.qp_table_size)
404 return -EINVAL;
407 * If driver is not doing any QP allocation then make sure it is
408 * providing the necessary QP functions.
410 if (!rdi->driver_f.free_all_qps ||
411 !rdi->driver_f.qp_priv_alloc ||
412 !rdi->driver_f.qp_priv_free ||
413 !rdi->driver_f.notify_qp_reset ||
414 !rdi->driver_f.notify_restart_rc)
415 return -EINVAL;
417 /* allocate parent object */
418 rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
419 rdi->dparms.node);
420 if (!rdi->qp_dev)
421 return -ENOMEM;
423 /* allocate hash table */
424 rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
425 rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
426 rdi->qp_dev->qp_table =
427 kmalloc_array_node(rdi->qp_dev->qp_table_size,
428 sizeof(*rdi->qp_dev->qp_table),
429 GFP_KERNEL, rdi->dparms.node);
430 if (!rdi->qp_dev->qp_table)
431 goto no_qp_table;
433 for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
434 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
436 spin_lock_init(&rdi->qp_dev->qpt_lock);
438 /* initialize qpn map */
439 if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
440 goto fail_table;
442 spin_lock_init(&rdi->n_qps_lock);
444 return 0;
446 fail_table:
447 kfree(rdi->qp_dev->qp_table);
448 free_qpn_table(&rdi->qp_dev->qpn_table);
450 no_qp_table:
451 kfree(rdi->qp_dev);
453 return ret;
457 * rvt_free_qp_cb - callback function to reset a qp
458 * @qp: the qp to reset
459 * @v: a 64-bit value
461 * This function resets the qp and removes it from the
462 * qp hash table.
464 static void rvt_free_qp_cb(struct rvt_qp *qp, u64 v)
466 unsigned int *qp_inuse = (unsigned int *)v;
467 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
469 /* Reset the qp and remove it from the qp hash list */
470 rvt_reset_qp(rdi, qp, qp->ibqp.qp_type);
472 /* Increment the qp_inuse count */
473 (*qp_inuse)++;
477 * rvt_free_all_qps - check for QPs still in use
478 * @rdi: rvt device info structure
480 * There should not be any QPs still in use.
481 * Free memory for table.
482 * Return the number of QPs still in use.
484 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
486 unsigned int qp_inuse = 0;
488 qp_inuse += rvt_mcast_tree_empty(rdi);
490 rvt_qp_iter(rdi, (u64)&qp_inuse, rvt_free_qp_cb);
492 return qp_inuse;
496 * rvt_qp_exit - clean up qps on device exit
497 * @rdi: rvt dev structure
499 * Check for qp leaks and free resources.
501 void rvt_qp_exit(struct rvt_dev_info *rdi)
503 u32 qps_inuse = rvt_free_all_qps(rdi);
505 if (qps_inuse)
506 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
507 qps_inuse);
508 if (!rdi->qp_dev)
509 return;
511 kfree(rdi->qp_dev->qp_table);
512 free_qpn_table(&rdi->qp_dev->qpn_table);
513 kfree(rdi->qp_dev);
516 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
517 struct rvt_qpn_map *map, unsigned off)
519 return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
523 * alloc_qpn - Allocate the next available qpn or zero/one for QP type
524 * IB_QPT_SMI/IB_QPT_GSI
525 * @rdi: rvt device info structure
526 * @qpt: queue pair number table pointer
527 * @port_num: IB port number, 1 based, comes from core
528 * @exclude_prefix: prefix of special queue pair number being allocated
530 * Return: The queue pair number
532 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
533 enum ib_qp_type type, u8 port_num, u8 exclude_prefix)
535 u32 i, offset, max_scan, qpn;
536 struct rvt_qpn_map *map;
537 u32 ret;
538 u32 max_qpn = exclude_prefix == RVT_AIP_QP_PREFIX ?
539 RVT_AIP_QPN_MAX : RVT_QPN_MAX;
541 if (rdi->driver_f.alloc_qpn)
542 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
544 if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
545 unsigned n;
547 ret = type == IB_QPT_GSI;
548 n = 1 << (ret + 2 * (port_num - 1));
549 spin_lock(&qpt->lock);
550 if (qpt->flags & n)
551 ret = -EINVAL;
552 else
553 qpt->flags |= n;
554 spin_unlock(&qpt->lock);
555 goto bail;
558 qpn = qpt->last + qpt->incr;
559 if (qpn >= max_qpn)
560 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
561 /* offset carries bit 0 */
562 offset = qpn & RVT_BITS_PER_PAGE_MASK;
563 map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
564 max_scan = qpt->nmaps - !offset;
565 for (i = 0;;) {
566 if (unlikely(!map->page)) {
567 get_map_page(qpt, map);
568 if (unlikely(!map->page))
569 break;
571 do {
572 if (!test_and_set_bit(offset, map->page)) {
573 qpt->last = qpn;
574 ret = qpn;
575 goto bail;
577 offset += qpt->incr;
579 * This qpn might be bogus if offset >= BITS_PER_PAGE.
580 * That is OK. It gets re-assigned below
582 qpn = mk_qpn(qpt, map, offset);
583 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
585 * In order to keep the number of pages allocated to a
586 * minimum, we scan the all existing pages before increasing
587 * the size of the bitmap table.
589 if (++i > max_scan) {
590 if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
591 break;
592 map = &qpt->map[qpt->nmaps++];
593 /* start at incr with current bit 0 */
594 offset = qpt->incr | (offset & 1);
595 } else if (map < &qpt->map[qpt->nmaps]) {
596 ++map;
597 /* start at incr with current bit 0 */
598 offset = qpt->incr | (offset & 1);
599 } else {
600 map = &qpt->map[0];
601 /* wrap to first map page, invert bit 0 */
602 offset = qpt->incr | ((offset & 1) ^ 1);
604 /* there can be no set bits in low-order QoS bits */
605 WARN_ON(rdi->dparms.qos_shift > 1 &&
606 offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1));
607 qpn = mk_qpn(qpt, map, offset);
610 ret = -ENOMEM;
612 bail:
613 return ret;
617 * rvt_clear_mr_refs - Drop help mr refs
618 * @qp: rvt qp data structure
619 * @clr_sends: If shoudl clear send side or not
621 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
623 unsigned n;
624 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
626 if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
627 rvt_put_ss(&qp->s_rdma_read_sge);
629 rvt_put_ss(&qp->r_sge);
631 if (clr_sends) {
632 while (qp->s_last != qp->s_head) {
633 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
635 rvt_put_qp_swqe(qp, wqe);
636 if (++qp->s_last >= qp->s_size)
637 qp->s_last = 0;
638 smp_wmb(); /* see qp_set_savail */
640 if (qp->s_rdma_mr) {
641 rvt_put_mr(qp->s_rdma_mr);
642 qp->s_rdma_mr = NULL;
646 for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
647 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
649 if (e->rdma_sge.mr) {
650 rvt_put_mr(e->rdma_sge.mr);
651 e->rdma_sge.mr = NULL;
657 * rvt_swqe_has_lkey - return true if lkey is used by swqe
658 * @wqe - the send wqe
659 * @lkey - the lkey
661 * Test the swqe for using lkey
663 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
665 int i;
667 for (i = 0; i < wqe->wr.num_sge; i++) {
668 struct rvt_sge *sge = &wqe->sg_list[i];
670 if (rvt_mr_has_lkey(sge->mr, lkey))
671 return true;
673 return false;
677 * rvt_qp_sends_has_lkey - return true is qp sends use lkey
678 * @qp - the rvt_qp
679 * @lkey - the lkey
681 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
683 u32 s_last = qp->s_last;
685 while (s_last != qp->s_head) {
686 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
688 if (rvt_swqe_has_lkey(wqe, lkey))
689 return true;
691 if (++s_last >= qp->s_size)
692 s_last = 0;
694 if (qp->s_rdma_mr)
695 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
696 return true;
697 return false;
701 * rvt_qp_acks_has_lkey - return true if acks have lkey
702 * @qp - the qp
703 * @lkey - the lkey
705 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
707 int i;
708 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
710 for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
711 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
713 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
714 return true;
716 return false;
720 * rvt_qp_mr_clean - clean up remote ops for lkey
721 * @qp - the qp
722 * @lkey - the lkey that is being de-registered
724 * This routine checks if the lkey is being used by
725 * the qp.
727 * If so, the qp is put into an error state to elminate
728 * any references from the qp.
730 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
732 bool lastwqe = false;
734 if (qp->ibqp.qp_type == IB_QPT_SMI ||
735 qp->ibqp.qp_type == IB_QPT_GSI)
736 /* avoid special QPs */
737 return;
738 spin_lock_irq(&qp->r_lock);
739 spin_lock(&qp->s_hlock);
740 spin_lock(&qp->s_lock);
742 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
743 goto check_lwqe;
745 if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
746 rvt_qp_sends_has_lkey(qp, lkey) ||
747 rvt_qp_acks_has_lkey(qp, lkey))
748 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
749 check_lwqe:
750 spin_unlock(&qp->s_lock);
751 spin_unlock(&qp->s_hlock);
752 spin_unlock_irq(&qp->r_lock);
753 if (lastwqe) {
754 struct ib_event ev;
756 ev.device = qp->ibqp.device;
757 ev.element.qp = &qp->ibqp;
758 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
759 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
764 * rvt_remove_qp - remove qp form table
765 * @rdi: rvt dev struct
766 * @qp: qp to remove
768 * Remove the QP from the table so it can't be found asynchronously by
769 * the receive routine.
771 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
773 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
774 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
775 unsigned long flags;
776 int removed = 1;
778 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
780 if (rcu_dereference_protected(rvp->qp[0],
781 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
782 RCU_INIT_POINTER(rvp->qp[0], NULL);
783 } else if (rcu_dereference_protected(rvp->qp[1],
784 lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
785 RCU_INIT_POINTER(rvp->qp[1], NULL);
786 } else {
787 struct rvt_qp *q;
788 struct rvt_qp __rcu **qpp;
790 removed = 0;
791 qpp = &rdi->qp_dev->qp_table[n];
792 for (; (q = rcu_dereference_protected(*qpp,
793 lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
794 qpp = &q->next) {
795 if (q == qp) {
796 RCU_INIT_POINTER(*qpp,
797 rcu_dereference_protected(qp->next,
798 lockdep_is_held(&rdi->qp_dev->qpt_lock)));
799 removed = 1;
800 trace_rvt_qpremove(qp, n);
801 break;
806 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
807 if (removed) {
808 synchronize_rcu();
809 rvt_put_qp(qp);
814 * rvt_alloc_rq - allocate memory for user or kernel buffer
815 * @rq: receive queue data structure
816 * @size: number of request queue entries
817 * @node: The NUMA node
818 * @udata: True if user data is available or not false
820 * Return: If memory allocation failed, return -ENONEM
821 * This function is used by both shared receive
822 * queues and non-shared receive queues to allocate
823 * memory.
825 int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node,
826 struct ib_udata *udata)
828 if (udata) {
829 rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size);
830 if (!rq->wq)
831 goto bail;
832 /* need kwq with no buffers */
833 rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node);
834 if (!rq->kwq)
835 goto bail;
836 rq->kwq->curr_wq = rq->wq->wq;
837 } else {
838 /* need kwq with buffers */
839 rq->kwq =
840 vzalloc_node(sizeof(struct rvt_krwq) + size, node);
841 if (!rq->kwq)
842 goto bail;
843 rq->kwq->curr_wq = rq->kwq->wq;
846 spin_lock_init(&rq->kwq->p_lock);
847 spin_lock_init(&rq->kwq->c_lock);
848 return 0;
849 bail:
850 rvt_free_rq(rq);
851 return -ENOMEM;
855 * rvt_init_qp - initialize the QP state to the reset state
856 * @qp: the QP to init or reinit
857 * @type: the QP type
859 * This function is called from both rvt_create_qp() and
860 * rvt_reset_qp(). The difference is that the reset
861 * patch the necessary locks to protect against concurent
862 * access.
864 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
865 enum ib_qp_type type)
867 qp->remote_qpn = 0;
868 qp->qkey = 0;
869 qp->qp_access_flags = 0;
870 qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
871 qp->s_hdrwords = 0;
872 qp->s_wqe = NULL;
873 qp->s_draining = 0;
874 qp->s_next_psn = 0;
875 qp->s_last_psn = 0;
876 qp->s_sending_psn = 0;
877 qp->s_sending_hpsn = 0;
878 qp->s_psn = 0;
879 qp->r_psn = 0;
880 qp->r_msn = 0;
881 if (type == IB_QPT_RC) {
882 qp->s_state = IB_OPCODE_RC_SEND_LAST;
883 qp->r_state = IB_OPCODE_RC_SEND_LAST;
884 } else {
885 qp->s_state = IB_OPCODE_UC_SEND_LAST;
886 qp->r_state = IB_OPCODE_UC_SEND_LAST;
888 qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
889 qp->r_nak_state = 0;
890 qp->r_aflags = 0;
891 qp->r_flags = 0;
892 qp->s_head = 0;
893 qp->s_tail = 0;
894 qp->s_cur = 0;
895 qp->s_acked = 0;
896 qp->s_last = 0;
897 qp->s_ssn = 1;
898 qp->s_lsn = 0;
899 qp->s_mig_state = IB_MIG_MIGRATED;
900 qp->r_head_ack_queue = 0;
901 qp->s_tail_ack_queue = 0;
902 qp->s_acked_ack_queue = 0;
903 qp->s_num_rd_atomic = 0;
904 qp->r_sge.num_sge = 0;
905 atomic_set(&qp->s_reserved_used, 0);
909 * _rvt_reset_qp - initialize the QP state to the reset state
910 * @qp: the QP to reset
911 * @type: the QP type
913 * r_lock, s_hlock, and s_lock are required to be held by the caller
915 static void _rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
916 enum ib_qp_type type)
917 __must_hold(&qp->s_lock)
918 __must_hold(&qp->s_hlock)
919 __must_hold(&qp->r_lock)
921 lockdep_assert_held(&qp->r_lock);
922 lockdep_assert_held(&qp->s_hlock);
923 lockdep_assert_held(&qp->s_lock);
924 if (qp->state != IB_QPS_RESET) {
925 qp->state = IB_QPS_RESET;
927 /* Let drivers flush their waitlist */
928 rdi->driver_f.flush_qp_waiters(qp);
929 rvt_stop_rc_timers(qp);
930 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
931 spin_unlock(&qp->s_lock);
932 spin_unlock(&qp->s_hlock);
933 spin_unlock_irq(&qp->r_lock);
935 /* Stop the send queue and the retry timer */
936 rdi->driver_f.stop_send_queue(qp);
937 rvt_del_timers_sync(qp);
938 /* Wait for things to stop */
939 rdi->driver_f.quiesce_qp(qp);
941 /* take qp out the hash and wait for it to be unused */
942 rvt_remove_qp(rdi, qp);
944 /* grab the lock b/c it was locked at call time */
945 spin_lock_irq(&qp->r_lock);
946 spin_lock(&qp->s_hlock);
947 spin_lock(&qp->s_lock);
949 rvt_clear_mr_refs(qp, 1);
951 * Let the driver do any tear down or re-init it needs to for
952 * a qp that has been reset
954 rdi->driver_f.notify_qp_reset(qp);
956 rvt_init_qp(rdi, qp, type);
957 lockdep_assert_held(&qp->r_lock);
958 lockdep_assert_held(&qp->s_hlock);
959 lockdep_assert_held(&qp->s_lock);
963 * rvt_reset_qp - initialize the QP state to the reset state
964 * @rdi: the device info
965 * @qp: the QP to reset
966 * @type: the QP type
968 * This is the wrapper function to acquire the r_lock, s_hlock, and s_lock
969 * before calling _rvt_reset_qp().
971 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
972 enum ib_qp_type type)
974 spin_lock_irq(&qp->r_lock);
975 spin_lock(&qp->s_hlock);
976 spin_lock(&qp->s_lock);
977 _rvt_reset_qp(rdi, qp, type);
978 spin_unlock(&qp->s_lock);
979 spin_unlock(&qp->s_hlock);
980 spin_unlock_irq(&qp->r_lock);
983 /** rvt_free_qpn - Free a qpn from the bit map
984 * @qpt: QP table
985 * @qpn: queue pair number to free
987 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
989 struct rvt_qpn_map *map;
991 if ((qpn & RVT_AIP_QP_PREFIX_MASK) == RVT_AIP_QP_BASE)
992 qpn &= RVT_AIP_QP_SUFFIX;
994 map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
995 if (map->page)
996 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
1000 * get_allowed_ops - Given a QP type return the appropriate allowed OP
1001 * @type: valid, supported, QP type
1003 static u8 get_allowed_ops(enum ib_qp_type type)
1005 return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ?
1006 IB_OPCODE_UC : IB_OPCODE_UD;
1010 * free_ud_wq_attr - Clean up AH attribute cache for UD QPs
1011 * @qp: Valid QP with allowed_ops set
1013 * The rvt_swqe data structure being used is a union, so this is
1014 * only valid for UD QPs.
1016 static void free_ud_wq_attr(struct rvt_qp *qp)
1018 struct rvt_swqe *wqe;
1019 int i;
1021 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1022 wqe = rvt_get_swqe_ptr(qp, i);
1023 kfree(wqe->ud_wr.attr);
1024 wqe->ud_wr.attr = NULL;
1029 * alloc_ud_wq_attr - AH attribute cache for UD QPs
1030 * @qp: Valid QP with allowed_ops set
1031 * @node: Numa node for allocation
1033 * The rvt_swqe data structure being used is a union, so this is
1034 * only valid for UD QPs.
1036 static int alloc_ud_wq_attr(struct rvt_qp *qp, int node)
1038 struct rvt_swqe *wqe;
1039 int i;
1041 for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) {
1042 wqe = rvt_get_swqe_ptr(qp, i);
1043 wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr),
1044 GFP_KERNEL, node);
1045 if (!wqe->ud_wr.attr) {
1046 free_ud_wq_attr(qp);
1047 return -ENOMEM;
1051 return 0;
1055 * rvt_create_qp - create a queue pair for a device
1056 * @ibpd: the protection domain who's device we create the queue pair for
1057 * @init_attr: the attributes of the queue pair
1058 * @udata: user data for libibverbs.so
1060 * Queue pair creation is mostly an rvt issue. However, drivers have their own
1061 * unique idea of what queue pair numbers mean. For instance there is a reserved
1062 * range for PSM.
1064 * Return: the queue pair on success, otherwise returns an errno.
1066 * Called by the ib_create_qp() core verbs function.
1068 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
1069 struct ib_qp_init_attr *init_attr,
1070 struct ib_udata *udata)
1072 struct rvt_qp *qp;
1073 int err;
1074 struct rvt_swqe *swq = NULL;
1075 size_t sz;
1076 size_t sg_list_sz;
1077 struct ib_qp *ret = ERR_PTR(-ENOMEM);
1078 struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
1079 void *priv = NULL;
1080 size_t sqsize;
1081 u8 exclude_prefix = 0;
1083 if (!rdi)
1084 return ERR_PTR(-EINVAL);
1086 if (init_attr->create_flags & ~IB_QP_CREATE_NETDEV_USE)
1087 return ERR_PTR(-EOPNOTSUPP);
1089 if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
1090 init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr)
1091 return ERR_PTR(-EINVAL);
1093 /* Check receive queue parameters if no SRQ is specified. */
1094 if (!init_attr->srq) {
1095 if (init_attr->cap.max_recv_sge >
1096 rdi->dparms.props.max_recv_sge ||
1097 init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
1098 return ERR_PTR(-EINVAL);
1100 if (init_attr->cap.max_send_sge +
1101 init_attr->cap.max_send_wr +
1102 init_attr->cap.max_recv_sge +
1103 init_attr->cap.max_recv_wr == 0)
1104 return ERR_PTR(-EINVAL);
1106 sqsize =
1107 init_attr->cap.max_send_wr + 1 +
1108 rdi->dparms.reserved_operations;
1109 switch (init_attr->qp_type) {
1110 case IB_QPT_SMI:
1111 case IB_QPT_GSI:
1112 if (init_attr->port_num == 0 ||
1113 init_attr->port_num > ibpd->device->phys_port_cnt)
1114 return ERR_PTR(-EINVAL);
1115 fallthrough;
1116 case IB_QPT_UC:
1117 case IB_QPT_RC:
1118 case IB_QPT_UD:
1119 sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge);
1120 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1121 if (!swq)
1122 return ERR_PTR(-ENOMEM);
1124 sz = sizeof(*qp);
1125 sg_list_sz = 0;
1126 if (init_attr->srq) {
1127 struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1129 if (srq->rq.max_sge > 1)
1130 sg_list_sz = sizeof(*qp->r_sg_list) *
1131 (srq->rq.max_sge - 1);
1132 } else if (init_attr->cap.max_recv_sge > 1)
1133 sg_list_sz = sizeof(*qp->r_sg_list) *
1134 (init_attr->cap.max_recv_sge - 1);
1135 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1136 rdi->dparms.node);
1137 if (!qp)
1138 goto bail_swq;
1139 qp->allowed_ops = get_allowed_ops(init_attr->qp_type);
1141 RCU_INIT_POINTER(qp->next, NULL);
1142 if (init_attr->qp_type == IB_QPT_RC) {
1143 qp->s_ack_queue =
1144 kcalloc_node(rvt_max_atomic(rdi),
1145 sizeof(*qp->s_ack_queue),
1146 GFP_KERNEL,
1147 rdi->dparms.node);
1148 if (!qp->s_ack_queue)
1149 goto bail_qp;
1151 /* initialize timers needed for rc qp */
1152 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1153 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1154 HRTIMER_MODE_REL);
1155 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1158 * Driver needs to set up it's private QP structure and do any
1159 * initialization that is needed.
1161 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1162 if (IS_ERR(priv)) {
1163 ret = priv;
1164 goto bail_qp;
1166 qp->priv = priv;
1167 qp->timeout_jiffies =
1168 usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1169 1000UL);
1170 if (init_attr->srq) {
1171 sz = 0;
1172 } else {
1173 qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1174 qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1175 sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1176 sizeof(struct rvt_rwqe);
1177 err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz,
1178 rdi->dparms.node, udata);
1179 if (err) {
1180 ret = ERR_PTR(err);
1181 goto bail_driver_priv;
1186 * ib_create_qp() will initialize qp->ibqp
1187 * except for qp->ibqp.qp_num.
1189 spin_lock_init(&qp->r_lock);
1190 spin_lock_init(&qp->s_hlock);
1191 spin_lock_init(&qp->s_lock);
1192 atomic_set(&qp->refcount, 0);
1193 atomic_set(&qp->local_ops_pending, 0);
1194 init_waitqueue_head(&qp->wait);
1195 INIT_LIST_HEAD(&qp->rspwait);
1196 qp->state = IB_QPS_RESET;
1197 qp->s_wq = swq;
1198 qp->s_size = sqsize;
1199 qp->s_avail = init_attr->cap.max_send_wr;
1200 qp->s_max_sge = init_attr->cap.max_send_sge;
1201 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1202 qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1203 err = alloc_ud_wq_attr(qp, rdi->dparms.node);
1204 if (err) {
1205 ret = (ERR_PTR(err));
1206 goto bail_rq_rvt;
1209 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1210 exclude_prefix = RVT_AIP_QP_PREFIX;
1212 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1213 init_attr->qp_type,
1214 init_attr->port_num,
1215 exclude_prefix);
1216 if (err < 0) {
1217 ret = ERR_PTR(err);
1218 goto bail_rq_wq;
1220 qp->ibqp.qp_num = err;
1221 if (init_attr->create_flags & IB_QP_CREATE_NETDEV_USE)
1222 qp->ibqp.qp_num |= RVT_AIP_QP_BASE;
1223 qp->port_num = init_attr->port_num;
1224 rvt_init_qp(rdi, qp, init_attr->qp_type);
1225 if (rdi->driver_f.qp_priv_init) {
1226 err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1227 if (err) {
1228 ret = ERR_PTR(err);
1229 goto bail_rq_wq;
1232 break;
1234 default:
1235 /* Don't support raw QPs */
1236 return ERR_PTR(-EOPNOTSUPP);
1239 init_attr->cap.max_inline_data = 0;
1242 * Return the address of the RWQ as the offset to mmap.
1243 * See rvt_mmap() for details.
1245 if (udata && udata->outlen >= sizeof(__u64)) {
1246 if (!qp->r_rq.wq) {
1247 __u64 offset = 0;
1249 err = ib_copy_to_udata(udata, &offset,
1250 sizeof(offset));
1251 if (err) {
1252 ret = ERR_PTR(err);
1253 goto bail_qpn;
1255 } else {
1256 u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1258 qp->ip = rvt_create_mmap_info(rdi, s, udata,
1259 qp->r_rq.wq);
1260 if (IS_ERR(qp->ip)) {
1261 ret = ERR_CAST(qp->ip);
1262 goto bail_qpn;
1265 err = ib_copy_to_udata(udata, &qp->ip->offset,
1266 sizeof(qp->ip->offset));
1267 if (err) {
1268 ret = ERR_PTR(err);
1269 goto bail_ip;
1272 qp->pid = current->pid;
1275 spin_lock(&rdi->n_qps_lock);
1276 if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1277 spin_unlock(&rdi->n_qps_lock);
1278 ret = ERR_PTR(-ENOMEM);
1279 goto bail_ip;
1282 rdi->n_qps_allocated++;
1284 * Maintain a busy_jiffies variable that will be added to the timeout
1285 * period in mod_retry_timer and add_retry_timer. This busy jiffies
1286 * is scaled by the number of rc qps created for the device to reduce
1287 * the number of timeouts occurring when there is a large number of
1288 * qps. busy_jiffies is incremented every rc qp scaling interval.
1289 * The scaling interval is selected based on extensive performance
1290 * evaluation of targeted workloads.
1292 if (init_attr->qp_type == IB_QPT_RC) {
1293 rdi->n_rc_qps++;
1294 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1296 spin_unlock(&rdi->n_qps_lock);
1298 if (qp->ip) {
1299 spin_lock_irq(&rdi->pending_lock);
1300 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1301 spin_unlock_irq(&rdi->pending_lock);
1304 ret = &qp->ibqp;
1306 return ret;
1308 bail_ip:
1309 if (qp->ip)
1310 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1312 bail_qpn:
1313 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1315 bail_rq_wq:
1316 free_ud_wq_attr(qp);
1318 bail_rq_rvt:
1319 rvt_free_rq(&qp->r_rq);
1321 bail_driver_priv:
1322 rdi->driver_f.qp_priv_free(rdi, qp);
1324 bail_qp:
1325 kfree(qp->s_ack_queue);
1326 kfree(qp);
1328 bail_swq:
1329 vfree(swq);
1331 return ret;
1335 * rvt_error_qp - put a QP into the error state
1336 * @qp: the QP to put into the error state
1337 * @err: the receive completion error to signal if a RWQE is active
1339 * Flushes both send and receive work queues.
1341 * Return: true if last WQE event should be generated.
1342 * The QP r_lock and s_lock should be held and interrupts disabled.
1343 * If we are already in error state, just return.
1345 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1347 struct ib_wc wc;
1348 int ret = 0;
1349 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1351 lockdep_assert_held(&qp->r_lock);
1352 lockdep_assert_held(&qp->s_lock);
1353 if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1354 goto bail;
1356 qp->state = IB_QPS_ERR;
1358 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1359 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1360 del_timer(&qp->s_timer);
1363 if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1364 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1366 rdi->driver_f.notify_error_qp(qp);
1368 /* Schedule the sending tasklet to drain the send work queue. */
1369 if (READ_ONCE(qp->s_last) != qp->s_head)
1370 rdi->driver_f.schedule_send(qp);
1372 rvt_clear_mr_refs(qp, 0);
1374 memset(&wc, 0, sizeof(wc));
1375 wc.qp = &qp->ibqp;
1376 wc.opcode = IB_WC_RECV;
1378 if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1379 wc.wr_id = qp->r_wr_id;
1380 wc.status = err;
1381 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1383 wc.status = IB_WC_WR_FLUSH_ERR;
1385 if (qp->r_rq.kwq) {
1386 u32 head;
1387 u32 tail;
1388 struct rvt_rwq *wq = NULL;
1389 struct rvt_krwq *kwq = NULL;
1391 spin_lock(&qp->r_rq.kwq->c_lock);
1392 /* qp->ip used to validate if there is a user buffer mmaped */
1393 if (qp->ip) {
1394 wq = qp->r_rq.wq;
1395 head = RDMA_READ_UAPI_ATOMIC(wq->head);
1396 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
1397 } else {
1398 kwq = qp->r_rq.kwq;
1399 head = kwq->head;
1400 tail = kwq->tail;
1402 /* sanity check pointers before trusting them */
1403 if (head >= qp->r_rq.size)
1404 head = 0;
1405 if (tail >= qp->r_rq.size)
1406 tail = 0;
1407 while (tail != head) {
1408 wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1409 if (++tail >= qp->r_rq.size)
1410 tail = 0;
1411 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1413 if (qp->ip)
1414 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
1415 else
1416 kwq->tail = tail;
1417 spin_unlock(&qp->r_rq.kwq->c_lock);
1418 } else if (qp->ibqp.event_handler) {
1419 ret = 1;
1422 bail:
1423 return ret;
1425 EXPORT_SYMBOL(rvt_error_qp);
1428 * Put the QP into the hash table.
1429 * The hash table holds a reference to the QP.
1431 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1433 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1434 unsigned long flags;
1436 rvt_get_qp(qp);
1437 spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1439 if (qp->ibqp.qp_num <= 1) {
1440 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1441 } else {
1442 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1444 qp->next = rdi->qp_dev->qp_table[n];
1445 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1446 trace_rvt_qpinsert(qp, n);
1449 spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1453 * rvt_modify_qp - modify the attributes of a queue pair
1454 * @ibqp: the queue pair who's attributes we're modifying
1455 * @attr: the new attributes
1456 * @attr_mask: the mask of attributes to modify
1457 * @udata: user data for libibverbs.so
1459 * Return: 0 on success, otherwise returns an errno.
1461 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1462 int attr_mask, struct ib_udata *udata)
1464 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1465 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1466 enum ib_qp_state cur_state, new_state;
1467 struct ib_event ev;
1468 int lastwqe = 0;
1469 int mig = 0;
1470 int pmtu = 0; /* for gcc warning only */
1471 int opa_ah;
1473 if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
1474 return -EOPNOTSUPP;
1476 spin_lock_irq(&qp->r_lock);
1477 spin_lock(&qp->s_hlock);
1478 spin_lock(&qp->s_lock);
1480 cur_state = attr_mask & IB_QP_CUR_STATE ?
1481 attr->cur_qp_state : qp->state;
1482 new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1483 opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1485 if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1486 attr_mask))
1487 goto inval;
1489 if (rdi->driver_f.check_modify_qp &&
1490 rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1491 goto inval;
1493 if (attr_mask & IB_QP_AV) {
1494 if (opa_ah) {
1495 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1496 opa_get_mcast_base(OPA_MCAST_NR))
1497 goto inval;
1498 } else {
1499 if (rdma_ah_get_dlid(&attr->ah_attr) >=
1500 be16_to_cpu(IB_MULTICAST_LID_BASE))
1501 goto inval;
1504 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1505 goto inval;
1508 if (attr_mask & IB_QP_ALT_PATH) {
1509 if (opa_ah) {
1510 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1511 opa_get_mcast_base(OPA_MCAST_NR))
1512 goto inval;
1513 } else {
1514 if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1515 be16_to_cpu(IB_MULTICAST_LID_BASE))
1516 goto inval;
1519 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1520 goto inval;
1521 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1522 goto inval;
1525 if (attr_mask & IB_QP_PKEY_INDEX)
1526 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1527 goto inval;
1529 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1530 if (attr->min_rnr_timer > 31)
1531 goto inval;
1533 if (attr_mask & IB_QP_PORT)
1534 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1535 qp->ibqp.qp_type == IB_QPT_GSI ||
1536 attr->port_num == 0 ||
1537 attr->port_num > ibqp->device->phys_port_cnt)
1538 goto inval;
1540 if (attr_mask & IB_QP_DEST_QPN)
1541 if (attr->dest_qp_num > RVT_QPN_MASK)
1542 goto inval;
1544 if (attr_mask & IB_QP_RETRY_CNT)
1545 if (attr->retry_cnt > 7)
1546 goto inval;
1548 if (attr_mask & IB_QP_RNR_RETRY)
1549 if (attr->rnr_retry > 7)
1550 goto inval;
1553 * Don't allow invalid path_mtu values. OK to set greater
1554 * than the active mtu (or even the max_cap, if we have tuned
1555 * that to a small mtu. We'll set qp->path_mtu
1556 * to the lesser of requested attribute mtu and active,
1557 * for packetizing messages.
1558 * Note that the QP port has to be set in INIT and MTU in RTR.
1560 if (attr_mask & IB_QP_PATH_MTU) {
1561 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1562 if (pmtu < 0)
1563 goto inval;
1566 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1567 if (attr->path_mig_state == IB_MIG_REARM) {
1568 if (qp->s_mig_state == IB_MIG_ARMED)
1569 goto inval;
1570 if (new_state != IB_QPS_RTS)
1571 goto inval;
1572 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1573 if (qp->s_mig_state == IB_MIG_REARM)
1574 goto inval;
1575 if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1576 goto inval;
1577 if (qp->s_mig_state == IB_MIG_ARMED)
1578 mig = 1;
1579 } else {
1580 goto inval;
1584 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1585 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1586 goto inval;
1588 switch (new_state) {
1589 case IB_QPS_RESET:
1590 if (qp->state != IB_QPS_RESET)
1591 _rvt_reset_qp(rdi, qp, ibqp->qp_type);
1592 break;
1594 case IB_QPS_RTR:
1595 /* Allow event to re-trigger if QP set to RTR more than once */
1596 qp->r_flags &= ~RVT_R_COMM_EST;
1597 qp->state = new_state;
1598 break;
1600 case IB_QPS_SQD:
1601 qp->s_draining = qp->s_last != qp->s_cur;
1602 qp->state = new_state;
1603 break;
1605 case IB_QPS_SQE:
1606 if (qp->ibqp.qp_type == IB_QPT_RC)
1607 goto inval;
1608 qp->state = new_state;
1609 break;
1611 case IB_QPS_ERR:
1612 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1613 break;
1615 default:
1616 qp->state = new_state;
1617 break;
1620 if (attr_mask & IB_QP_PKEY_INDEX)
1621 qp->s_pkey_index = attr->pkey_index;
1623 if (attr_mask & IB_QP_PORT)
1624 qp->port_num = attr->port_num;
1626 if (attr_mask & IB_QP_DEST_QPN)
1627 qp->remote_qpn = attr->dest_qp_num;
1629 if (attr_mask & IB_QP_SQ_PSN) {
1630 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1631 qp->s_psn = qp->s_next_psn;
1632 qp->s_sending_psn = qp->s_next_psn;
1633 qp->s_last_psn = qp->s_next_psn - 1;
1634 qp->s_sending_hpsn = qp->s_last_psn;
1637 if (attr_mask & IB_QP_RQ_PSN)
1638 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1640 if (attr_mask & IB_QP_ACCESS_FLAGS)
1641 qp->qp_access_flags = attr->qp_access_flags;
1643 if (attr_mask & IB_QP_AV) {
1644 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1645 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1646 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1649 if (attr_mask & IB_QP_ALT_PATH) {
1650 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1651 qp->s_alt_pkey_index = attr->alt_pkey_index;
1654 if (attr_mask & IB_QP_PATH_MIG_STATE) {
1655 qp->s_mig_state = attr->path_mig_state;
1656 if (mig) {
1657 qp->remote_ah_attr = qp->alt_ah_attr;
1658 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1659 qp->s_pkey_index = qp->s_alt_pkey_index;
1663 if (attr_mask & IB_QP_PATH_MTU) {
1664 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1665 qp->log_pmtu = ilog2(qp->pmtu);
1668 if (attr_mask & IB_QP_RETRY_CNT) {
1669 qp->s_retry_cnt = attr->retry_cnt;
1670 qp->s_retry = attr->retry_cnt;
1673 if (attr_mask & IB_QP_RNR_RETRY) {
1674 qp->s_rnr_retry_cnt = attr->rnr_retry;
1675 qp->s_rnr_retry = attr->rnr_retry;
1678 if (attr_mask & IB_QP_MIN_RNR_TIMER)
1679 qp->r_min_rnr_timer = attr->min_rnr_timer;
1681 if (attr_mask & IB_QP_TIMEOUT) {
1682 qp->timeout = attr->timeout;
1683 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1686 if (attr_mask & IB_QP_QKEY)
1687 qp->qkey = attr->qkey;
1689 if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1690 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1692 if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1693 qp->s_max_rd_atomic = attr->max_rd_atomic;
1695 if (rdi->driver_f.modify_qp)
1696 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1698 spin_unlock(&qp->s_lock);
1699 spin_unlock(&qp->s_hlock);
1700 spin_unlock_irq(&qp->r_lock);
1702 if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1703 rvt_insert_qp(rdi, qp);
1705 if (lastwqe) {
1706 ev.device = qp->ibqp.device;
1707 ev.element.qp = &qp->ibqp;
1708 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1709 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1711 if (mig) {
1712 ev.device = qp->ibqp.device;
1713 ev.element.qp = &qp->ibqp;
1714 ev.event = IB_EVENT_PATH_MIG;
1715 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1717 return 0;
1719 inval:
1720 spin_unlock(&qp->s_lock);
1721 spin_unlock(&qp->s_hlock);
1722 spin_unlock_irq(&qp->r_lock);
1723 return -EINVAL;
1727 * rvt_destroy_qp - destroy a queue pair
1728 * @ibqp: the queue pair to destroy
1730 * Note that this can be called while the QP is actively sending or
1731 * receiving!
1733 * Return: 0 on success.
1735 int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata)
1737 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1738 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1740 rvt_reset_qp(rdi, qp, ibqp->qp_type);
1742 wait_event(qp->wait, !atomic_read(&qp->refcount));
1743 /* qpn is now available for use again */
1744 rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1746 spin_lock(&rdi->n_qps_lock);
1747 rdi->n_qps_allocated--;
1748 if (qp->ibqp.qp_type == IB_QPT_RC) {
1749 rdi->n_rc_qps--;
1750 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1752 spin_unlock(&rdi->n_qps_lock);
1754 if (qp->ip)
1755 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1756 kvfree(qp->r_rq.kwq);
1757 rdi->driver_f.qp_priv_free(rdi, qp);
1758 kfree(qp->s_ack_queue);
1759 rdma_destroy_ah_attr(&qp->remote_ah_attr);
1760 rdma_destroy_ah_attr(&qp->alt_ah_attr);
1761 free_ud_wq_attr(qp);
1762 vfree(qp->s_wq);
1763 kfree(qp);
1764 return 0;
1768 * rvt_query_qp - query an ipbq
1769 * @ibqp: IB qp to query
1770 * @attr: attr struct to fill in
1771 * @attr_mask: attr mask ignored
1772 * @init_attr: struct to fill in
1774 * Return: always 0
1776 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1777 int attr_mask, struct ib_qp_init_attr *init_attr)
1779 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1780 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1782 attr->qp_state = qp->state;
1783 attr->cur_qp_state = attr->qp_state;
1784 attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1785 attr->path_mig_state = qp->s_mig_state;
1786 attr->qkey = qp->qkey;
1787 attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1788 attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1789 attr->dest_qp_num = qp->remote_qpn;
1790 attr->qp_access_flags = qp->qp_access_flags;
1791 attr->cap.max_send_wr = qp->s_size - 1 -
1792 rdi->dparms.reserved_operations;
1793 attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1794 attr->cap.max_send_sge = qp->s_max_sge;
1795 attr->cap.max_recv_sge = qp->r_rq.max_sge;
1796 attr->cap.max_inline_data = 0;
1797 attr->ah_attr = qp->remote_ah_attr;
1798 attr->alt_ah_attr = qp->alt_ah_attr;
1799 attr->pkey_index = qp->s_pkey_index;
1800 attr->alt_pkey_index = qp->s_alt_pkey_index;
1801 attr->en_sqd_async_notify = 0;
1802 attr->sq_draining = qp->s_draining;
1803 attr->max_rd_atomic = qp->s_max_rd_atomic;
1804 attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1805 attr->min_rnr_timer = qp->r_min_rnr_timer;
1806 attr->port_num = qp->port_num;
1807 attr->timeout = qp->timeout;
1808 attr->retry_cnt = qp->s_retry_cnt;
1809 attr->rnr_retry = qp->s_rnr_retry_cnt;
1810 attr->alt_port_num =
1811 rdma_ah_get_port_num(&qp->alt_ah_attr);
1812 attr->alt_timeout = qp->alt_timeout;
1814 init_attr->event_handler = qp->ibqp.event_handler;
1815 init_attr->qp_context = qp->ibqp.qp_context;
1816 init_attr->send_cq = qp->ibqp.send_cq;
1817 init_attr->recv_cq = qp->ibqp.recv_cq;
1818 init_attr->srq = qp->ibqp.srq;
1819 init_attr->cap = attr->cap;
1820 if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1821 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1822 else
1823 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1824 init_attr->qp_type = qp->ibqp.qp_type;
1825 init_attr->port_num = qp->port_num;
1826 return 0;
1830 * rvt_post_recv - post a receive on a QP
1831 * @ibqp: the QP to post the receive on
1832 * @wr: the WR to post
1833 * @bad_wr: the first bad WR is put here
1835 * This may be called from interrupt context.
1837 * Return: 0 on success otherwise errno
1839 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1840 const struct ib_recv_wr **bad_wr)
1842 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1843 struct rvt_krwq *wq = qp->r_rq.kwq;
1844 unsigned long flags;
1845 int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1846 !qp->ibqp.srq;
1848 /* Check that state is OK to post receive. */
1849 if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1850 *bad_wr = wr;
1851 return -EINVAL;
1854 for (; wr; wr = wr->next) {
1855 struct rvt_rwqe *wqe;
1856 u32 next;
1857 int i;
1859 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1860 *bad_wr = wr;
1861 return -EINVAL;
1864 spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags);
1865 next = wq->head + 1;
1866 if (next >= qp->r_rq.size)
1867 next = 0;
1868 if (next == READ_ONCE(wq->tail)) {
1869 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1870 *bad_wr = wr;
1871 return -ENOMEM;
1873 if (unlikely(qp_err_flush)) {
1874 struct ib_wc wc;
1876 memset(&wc, 0, sizeof(wc));
1877 wc.qp = &qp->ibqp;
1878 wc.opcode = IB_WC_RECV;
1879 wc.wr_id = wr->wr_id;
1880 wc.status = IB_WC_WR_FLUSH_ERR;
1881 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1882 } else {
1883 wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1884 wqe->wr_id = wr->wr_id;
1885 wqe->num_sge = wr->num_sge;
1886 for (i = 0; i < wr->num_sge; i++) {
1887 wqe->sg_list[i].addr = wr->sg_list[i].addr;
1888 wqe->sg_list[i].length = wr->sg_list[i].length;
1889 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
1892 * Make sure queue entry is written
1893 * before the head index.
1895 smp_store_release(&wq->head, next);
1897 spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags);
1899 return 0;
1903 * rvt_qp_valid_operation - validate post send wr request
1904 * @qp - the qp
1905 * @post-parms - the post send table for the driver
1906 * @wr - the work request
1908 * The routine validates the operation based on the
1909 * validation table an returns the length of the operation
1910 * which can extend beyond the ib_send_bw. Operation
1911 * dependent flags key atomic operation validation.
1913 * There is an exception for UD qps that validates the pd and
1914 * overrides the length to include the additional UD specific
1915 * length.
1917 * Returns a negative error or the length of the work request
1918 * for building the swqe.
1920 static inline int rvt_qp_valid_operation(
1921 struct rvt_qp *qp,
1922 const struct rvt_operation_params *post_parms,
1923 const struct ib_send_wr *wr)
1925 int len;
1927 if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1928 return -EINVAL;
1929 if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1930 return -EINVAL;
1931 if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1932 ibpd_to_rvtpd(qp->ibqp.pd)->user)
1933 return -EINVAL;
1934 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1935 (wr->num_sge == 0 ||
1936 wr->sg_list[0].length < sizeof(u64) ||
1937 wr->sg_list[0].addr & (sizeof(u64) - 1)))
1938 return -EINVAL;
1939 if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1940 !qp->s_max_rd_atomic)
1941 return -EINVAL;
1942 len = post_parms[wr->opcode].length;
1943 /* UD specific */
1944 if (qp->ibqp.qp_type != IB_QPT_UC &&
1945 qp->ibqp.qp_type != IB_QPT_RC) {
1946 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1947 return -EINVAL;
1948 len = sizeof(struct ib_ud_wr);
1950 return len;
1954 * rvt_qp_is_avail - determine queue capacity
1955 * @qp: the qp
1956 * @rdi: the rdmavt device
1957 * @reserved_op: is reserved operation
1959 * This assumes the s_hlock is held but the s_last
1960 * qp variable is uncontrolled.
1962 * For non reserved operations, the qp->s_avail
1963 * may be changed.
1965 * The return value is zero or a -ENOMEM.
1967 static inline int rvt_qp_is_avail(
1968 struct rvt_qp *qp,
1969 struct rvt_dev_info *rdi,
1970 bool reserved_op)
1972 u32 slast;
1973 u32 avail;
1974 u32 reserved_used;
1976 /* see rvt_qp_wqe_unreserve() */
1977 smp_mb__before_atomic();
1978 if (unlikely(reserved_op)) {
1979 /* see rvt_qp_wqe_unreserve() */
1980 reserved_used = atomic_read(&qp->s_reserved_used);
1981 if (reserved_used >= rdi->dparms.reserved_operations)
1982 return -ENOMEM;
1983 return 0;
1985 /* non-reserved operations */
1986 if (likely(qp->s_avail))
1987 return 0;
1988 /* See rvt_qp_complete_swqe() */
1989 slast = smp_load_acquire(&qp->s_last);
1990 if (qp->s_head >= slast)
1991 avail = qp->s_size - (qp->s_head - slast);
1992 else
1993 avail = slast - qp->s_head;
1995 reserved_used = atomic_read(&qp->s_reserved_used);
1996 avail = avail - 1 -
1997 (rdi->dparms.reserved_operations - reserved_used);
1998 /* insure we don't assign a negative s_avail */
1999 if ((s32)avail <= 0)
2000 return -ENOMEM;
2001 qp->s_avail = avail;
2002 if (WARN_ON(qp->s_avail >
2003 (qp->s_size - 1 - rdi->dparms.reserved_operations)))
2004 rvt_pr_err(rdi,
2005 "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
2006 qp->ibqp.qp_num, qp->s_size, qp->s_avail,
2007 qp->s_head, qp->s_tail, qp->s_cur,
2008 qp->s_acked, qp->s_last);
2009 return 0;
2013 * rvt_post_one_wr - post one RC, UC, or UD send work request
2014 * @qp: the QP to post on
2015 * @wr: the work request to send
2017 static int rvt_post_one_wr(struct rvt_qp *qp,
2018 const struct ib_send_wr *wr,
2019 bool *call_send)
2021 struct rvt_swqe *wqe;
2022 u32 next;
2023 int i;
2024 int j;
2025 int acc;
2026 struct rvt_lkey_table *rkt;
2027 struct rvt_pd *pd;
2028 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2029 u8 log_pmtu;
2030 int ret;
2031 size_t cplen;
2032 bool reserved_op;
2033 int local_ops_delayed = 0;
2035 BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
2037 /* IB spec says that num_sge == 0 is OK. */
2038 if (unlikely(wr->num_sge > qp->s_max_sge))
2039 return -EINVAL;
2041 ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
2042 if (ret < 0)
2043 return ret;
2044 cplen = ret;
2047 * Local operations include fast register and local invalidate.
2048 * Fast register needs to be processed immediately because the
2049 * registered lkey may be used by following work requests and the
2050 * lkey needs to be valid at the time those requests are posted.
2051 * Local invalidate can be processed immediately if fencing is
2052 * not required and no previous local invalidate ops are pending.
2053 * Signaled local operations that have been processed immediately
2054 * need to have requests with "completion only" flags set posted
2055 * to the send queue in order to generate completions.
2057 if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
2058 switch (wr->opcode) {
2059 case IB_WR_REG_MR:
2060 ret = rvt_fast_reg_mr(qp,
2061 reg_wr(wr)->mr,
2062 reg_wr(wr)->key,
2063 reg_wr(wr)->access);
2064 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2065 return ret;
2066 break;
2067 case IB_WR_LOCAL_INV:
2068 if ((wr->send_flags & IB_SEND_FENCE) ||
2069 atomic_read(&qp->local_ops_pending)) {
2070 local_ops_delayed = 1;
2071 } else {
2072 ret = rvt_invalidate_rkey(
2073 qp, wr->ex.invalidate_rkey);
2074 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
2075 return ret;
2077 break;
2078 default:
2079 return -EINVAL;
2083 reserved_op = rdi->post_parms[wr->opcode].flags &
2084 RVT_OPERATION_USE_RESERVE;
2085 /* check for avail */
2086 ret = rvt_qp_is_avail(qp, rdi, reserved_op);
2087 if (ret)
2088 return ret;
2089 next = qp->s_head + 1;
2090 if (next >= qp->s_size)
2091 next = 0;
2093 rkt = &rdi->lkey_table;
2094 pd = ibpd_to_rvtpd(qp->ibqp.pd);
2095 wqe = rvt_get_swqe_ptr(qp, qp->s_head);
2097 /* cplen has length from above */
2098 memcpy(&wqe->wr, wr, cplen);
2100 wqe->length = 0;
2101 j = 0;
2102 if (wr->num_sge) {
2103 struct rvt_sge *last_sge = NULL;
2105 acc = wr->opcode >= IB_WR_RDMA_READ ?
2106 IB_ACCESS_LOCAL_WRITE : 0;
2107 for (i = 0; i < wr->num_sge; i++) {
2108 u32 length = wr->sg_list[i].length;
2110 if (length == 0)
2111 continue;
2112 ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2113 &wr->sg_list[i], acc);
2114 if (unlikely(ret < 0))
2115 goto bail_inval_free;
2116 wqe->length += length;
2117 if (ret)
2118 last_sge = &wqe->sg_list[j];
2119 j += ret;
2121 wqe->wr.num_sge = j;
2125 * Calculate and set SWQE PSN values prior to handing it off
2126 * to the driver's check routine. This give the driver the
2127 * opportunity to adjust PSN values based on internal checks.
2129 log_pmtu = qp->log_pmtu;
2130 if (qp->allowed_ops == IB_OPCODE_UD) {
2131 struct rvt_ah *ah = rvt_get_swqe_ah(wqe);
2133 log_pmtu = ah->log_pmtu;
2134 rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr);
2137 if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2138 if (local_ops_delayed)
2139 atomic_inc(&qp->local_ops_pending);
2140 else
2141 wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2142 wqe->ssn = 0;
2143 wqe->psn = 0;
2144 wqe->lpsn = 0;
2145 } else {
2146 wqe->ssn = qp->s_ssn++;
2147 wqe->psn = qp->s_next_psn;
2148 wqe->lpsn = wqe->psn +
2149 (wqe->length ?
2150 ((wqe->length - 1) >> log_pmtu) :
2154 /* general part of wqe valid - allow for driver checks */
2155 if (rdi->driver_f.setup_wqe) {
2156 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2157 if (ret < 0)
2158 goto bail_inval_free_ref;
2161 if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2162 qp->s_next_psn = wqe->lpsn + 1;
2164 if (unlikely(reserved_op)) {
2165 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2166 rvt_qp_wqe_reserve(qp, wqe);
2167 } else {
2168 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2169 qp->s_avail--;
2171 trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2172 smp_wmb(); /* see request builders */
2173 qp->s_head = next;
2175 return 0;
2177 bail_inval_free_ref:
2178 if (qp->allowed_ops == IB_OPCODE_UD)
2179 rdma_destroy_ah_attr(wqe->ud_wr.attr);
2180 bail_inval_free:
2181 /* release mr holds */
2182 while (j) {
2183 struct rvt_sge *sge = &wqe->sg_list[--j];
2185 rvt_put_mr(sge->mr);
2187 return ret;
2191 * rvt_post_send - post a send on a QP
2192 * @ibqp: the QP to post the send on
2193 * @wr: the list of work requests to post
2194 * @bad_wr: the first bad WR is put here
2196 * This may be called from interrupt context.
2198 * Return: 0 on success else errno
2200 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2201 const struct ib_send_wr **bad_wr)
2203 struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2204 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2205 unsigned long flags = 0;
2206 bool call_send;
2207 unsigned nreq = 0;
2208 int err = 0;
2210 spin_lock_irqsave(&qp->s_hlock, flags);
2213 * Ensure QP state is such that we can send. If not bail out early,
2214 * there is no need to do this every time we post a send.
2216 if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2217 spin_unlock_irqrestore(&qp->s_hlock, flags);
2218 return -EINVAL;
2222 * If the send queue is empty, and we only have a single WR then just go
2223 * ahead and kick the send engine into gear. Otherwise we will always
2224 * just schedule the send to happen later.
2226 call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2228 for (; wr; wr = wr->next) {
2229 err = rvt_post_one_wr(qp, wr, &call_send);
2230 if (unlikely(err)) {
2231 *bad_wr = wr;
2232 goto bail;
2234 nreq++;
2236 bail:
2237 spin_unlock_irqrestore(&qp->s_hlock, flags);
2238 if (nreq) {
2240 * Only call do_send if there is exactly one packet, and the
2241 * driver said it was ok.
2243 if (nreq == 1 && call_send)
2244 rdi->driver_f.do_send(qp);
2245 else
2246 rdi->driver_f.schedule_send_no_lock(qp);
2248 return err;
2252 * rvt_post_srq_recv - post a receive on a shared receive queue
2253 * @ibsrq: the SRQ to post the receive on
2254 * @wr: the list of work requests to post
2255 * @bad_wr: A pointer to the first WR to cause a problem is put here
2257 * This may be called from interrupt context.
2259 * Return: 0 on success else errno
2261 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2262 const struct ib_recv_wr **bad_wr)
2264 struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2265 struct rvt_krwq *wq;
2266 unsigned long flags;
2268 for (; wr; wr = wr->next) {
2269 struct rvt_rwqe *wqe;
2270 u32 next;
2271 int i;
2273 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2274 *bad_wr = wr;
2275 return -EINVAL;
2278 spin_lock_irqsave(&srq->rq.kwq->p_lock, flags);
2279 wq = srq->rq.kwq;
2280 next = wq->head + 1;
2281 if (next >= srq->rq.size)
2282 next = 0;
2283 if (next == READ_ONCE(wq->tail)) {
2284 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2285 *bad_wr = wr;
2286 return -ENOMEM;
2289 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2290 wqe->wr_id = wr->wr_id;
2291 wqe->num_sge = wr->num_sge;
2292 for (i = 0; i < wr->num_sge; i++) {
2293 wqe->sg_list[i].addr = wr->sg_list[i].addr;
2294 wqe->sg_list[i].length = wr->sg_list[i].length;
2295 wqe->sg_list[i].lkey = wr->sg_list[i].lkey;
2297 /* Make sure queue entry is written before the head index. */
2298 smp_store_release(&wq->head, next);
2299 spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags);
2301 return 0;
2305 * rvt used the internal kernel struct as part of its ABI, for now make sure
2306 * the kernel struct does not change layout. FIXME: rvt should never cast the
2307 * user struct to a kernel struct.
2309 static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge)
2311 BUILD_BUG_ON(offsetof(struct ib_sge, addr) !=
2312 offsetof(struct rvt_wqe_sge, addr));
2313 BUILD_BUG_ON(offsetof(struct ib_sge, length) !=
2314 offsetof(struct rvt_wqe_sge, length));
2315 BUILD_BUG_ON(offsetof(struct ib_sge, lkey) !=
2316 offsetof(struct rvt_wqe_sge, lkey));
2317 return (struct ib_sge *)sge;
2321 * Validate a RWQE and fill in the SGE state.
2322 * Return 1 if OK.
2324 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2326 int i, j, ret;
2327 struct ib_wc wc;
2328 struct rvt_lkey_table *rkt;
2329 struct rvt_pd *pd;
2330 struct rvt_sge_state *ss;
2331 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2333 rkt = &rdi->lkey_table;
2334 pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2335 ss = &qp->r_sge;
2336 ss->sg_list = qp->r_sg_list;
2337 qp->r_len = 0;
2338 for (i = j = 0; i < wqe->num_sge; i++) {
2339 if (wqe->sg_list[i].length == 0)
2340 continue;
2341 /* Check LKEY */
2342 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2343 NULL, rvt_cast_sge(&wqe->sg_list[i]),
2344 IB_ACCESS_LOCAL_WRITE);
2345 if (unlikely(ret <= 0))
2346 goto bad_lkey;
2347 qp->r_len += wqe->sg_list[i].length;
2348 j++;
2350 ss->num_sge = j;
2351 ss->total_len = qp->r_len;
2352 return 1;
2354 bad_lkey:
2355 while (j) {
2356 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2358 rvt_put_mr(sge->mr);
2360 ss->num_sge = 0;
2361 memset(&wc, 0, sizeof(wc));
2362 wc.wr_id = wqe->wr_id;
2363 wc.status = IB_WC_LOC_PROT_ERR;
2364 wc.opcode = IB_WC_RECV;
2365 wc.qp = &qp->ibqp;
2366 /* Signal solicited completion event. */
2367 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2368 return 0;
2372 * get_rvt_head - get head indices of the circular buffer
2373 * @rq: data structure for request queue entry
2374 * @ip: the QP
2376 * Return - head index value
2378 static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip)
2380 u32 head;
2382 if (ip)
2383 head = RDMA_READ_UAPI_ATOMIC(rq->wq->head);
2384 else
2385 head = rq->kwq->head;
2387 return head;
2391 * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2392 * @qp: the QP
2393 * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2395 * Return -1 if there is a local error, 0 if no RWQE is available,
2396 * otherwise return 1.
2398 * Can be called from interrupt level.
2400 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2402 unsigned long flags;
2403 struct rvt_rq *rq;
2404 struct rvt_krwq *kwq = NULL;
2405 struct rvt_rwq *wq;
2406 struct rvt_srq *srq;
2407 struct rvt_rwqe *wqe;
2408 void (*handler)(struct ib_event *, void *);
2409 u32 tail;
2410 u32 head;
2411 int ret;
2412 void *ip = NULL;
2414 if (qp->ibqp.srq) {
2415 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2416 handler = srq->ibsrq.event_handler;
2417 rq = &srq->rq;
2418 ip = srq->ip;
2419 } else {
2420 srq = NULL;
2421 handler = NULL;
2422 rq = &qp->r_rq;
2423 ip = qp->ip;
2426 spin_lock_irqsave(&rq->kwq->c_lock, flags);
2427 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2428 ret = 0;
2429 goto unlock;
2431 kwq = rq->kwq;
2432 if (ip) {
2433 wq = rq->wq;
2434 tail = RDMA_READ_UAPI_ATOMIC(wq->tail);
2435 } else {
2436 tail = kwq->tail;
2439 /* Validate tail before using it since it is user writable. */
2440 if (tail >= rq->size)
2441 tail = 0;
2443 if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) {
2444 head = get_rvt_head(rq, ip);
2445 kwq->count = rvt_get_rq_count(rq, head, tail);
2447 if (unlikely(kwq->count == 0)) {
2448 ret = 0;
2449 goto unlock;
2451 /* Make sure entry is read after the count is read. */
2452 smp_rmb();
2453 wqe = rvt_get_rwqe_ptr(rq, tail);
2455 * Even though we update the tail index in memory, the verbs
2456 * consumer is not supposed to post more entries until a
2457 * completion is generated.
2459 if (++tail >= rq->size)
2460 tail = 0;
2461 if (ip)
2462 RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail);
2463 else
2464 kwq->tail = tail;
2465 if (!wr_id_only && !init_sge(qp, wqe)) {
2466 ret = -1;
2467 goto unlock;
2469 qp->r_wr_id = wqe->wr_id;
2471 kwq->count--;
2472 ret = 1;
2473 set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2474 if (handler) {
2476 * Validate head pointer value and compute
2477 * the number of remaining WQEs.
2479 if (kwq->count < srq->limit) {
2480 kwq->count =
2481 rvt_get_rq_count(rq,
2482 get_rvt_head(rq, ip), tail);
2483 if (kwq->count < srq->limit) {
2484 struct ib_event ev;
2486 srq->limit = 0;
2487 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2488 ev.device = qp->ibqp.device;
2489 ev.element.srq = qp->ibqp.srq;
2490 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2491 handler(&ev, srq->ibsrq.srq_context);
2492 goto bail;
2496 unlock:
2497 spin_unlock_irqrestore(&rq->kwq->c_lock, flags);
2498 bail:
2499 return ret;
2501 EXPORT_SYMBOL(rvt_get_rwqe);
2504 * rvt_comm_est - handle trap with QP established
2505 * @qp: the QP
2507 void rvt_comm_est(struct rvt_qp *qp)
2509 qp->r_flags |= RVT_R_COMM_EST;
2510 if (qp->ibqp.event_handler) {
2511 struct ib_event ev;
2513 ev.device = qp->ibqp.device;
2514 ev.element.qp = &qp->ibqp;
2515 ev.event = IB_EVENT_COMM_EST;
2516 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2519 EXPORT_SYMBOL(rvt_comm_est);
2521 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2523 unsigned long flags;
2524 int lastwqe;
2526 spin_lock_irqsave(&qp->s_lock, flags);
2527 lastwqe = rvt_error_qp(qp, err);
2528 spin_unlock_irqrestore(&qp->s_lock, flags);
2530 if (lastwqe) {
2531 struct ib_event ev;
2533 ev.device = qp->ibqp.device;
2534 ev.element.qp = &qp->ibqp;
2535 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2536 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2539 EXPORT_SYMBOL(rvt_rc_error);
2542 * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2543 * @index - the index
2544 * return usec from an index into ib_rvt_rnr_table
2546 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2548 return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2550 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2552 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2554 return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2555 IB_AETH_CREDIT_MASK];
2559 * rvt_add_retry_timer_ext - add/start a retry timer
2560 * @qp - the QP
2561 * @shift - timeout shift to wait for multiple packets
2562 * add a retry timer on the QP
2564 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2566 struct ib_qp *ibqp = &qp->ibqp;
2567 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2569 lockdep_assert_held(&qp->s_lock);
2570 qp->s_flags |= RVT_S_TIMER;
2571 /* 4.096 usec. * (1 << qp->timeout) */
2572 qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2573 (qp->timeout_jiffies << shift);
2574 add_timer(&qp->s_timer);
2576 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2579 * rvt_add_rnr_timer - add/start an rnr timer on the QP
2580 * @qp: the QP
2581 * @aeth: aeth of RNR timeout, simulated aeth for loopback
2583 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2585 u32 to;
2587 lockdep_assert_held(&qp->s_lock);
2588 qp->s_flags |= RVT_S_WAIT_RNR;
2589 to = rvt_aeth_to_usec(aeth);
2590 trace_rvt_rnrnak_add(qp, to);
2591 hrtimer_start(&qp->s_rnr_timer,
2592 ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2594 EXPORT_SYMBOL(rvt_add_rnr_timer);
2597 * rvt_stop_rc_timers - stop all timers
2598 * @qp: the QP
2599 * stop any pending timers
2601 void rvt_stop_rc_timers(struct rvt_qp *qp)
2603 lockdep_assert_held(&qp->s_lock);
2604 /* Remove QP from all timers */
2605 if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2606 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2607 del_timer(&qp->s_timer);
2608 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2611 EXPORT_SYMBOL(rvt_stop_rc_timers);
2614 * rvt_stop_rnr_timer - stop an rnr timer
2615 * @qp - the QP
2617 * stop an rnr timer and return if the timer
2618 * had been pending.
2620 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2622 lockdep_assert_held(&qp->s_lock);
2623 /* Remove QP from rnr timer */
2624 if (qp->s_flags & RVT_S_WAIT_RNR) {
2625 qp->s_flags &= ~RVT_S_WAIT_RNR;
2626 trace_rvt_rnrnak_stop(qp, 0);
2631 * rvt_del_timers_sync - wait for any timeout routines to exit
2632 * @qp: the QP
2634 void rvt_del_timers_sync(struct rvt_qp *qp)
2636 del_timer_sync(&qp->s_timer);
2637 hrtimer_cancel(&qp->s_rnr_timer);
2639 EXPORT_SYMBOL(rvt_del_timers_sync);
2642 * This is called from s_timer for missing responses.
2644 static void rvt_rc_timeout(struct timer_list *t)
2646 struct rvt_qp *qp = from_timer(qp, t, s_timer);
2647 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2648 unsigned long flags;
2650 spin_lock_irqsave(&qp->r_lock, flags);
2651 spin_lock(&qp->s_lock);
2652 if (qp->s_flags & RVT_S_TIMER) {
2653 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2655 qp->s_flags &= ~RVT_S_TIMER;
2656 rvp->n_rc_timeouts++;
2657 del_timer(&qp->s_timer);
2658 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2659 if (rdi->driver_f.notify_restart_rc)
2660 rdi->driver_f.notify_restart_rc(qp,
2661 qp->s_last_psn + 1,
2663 rdi->driver_f.schedule_send(qp);
2665 spin_unlock(&qp->s_lock);
2666 spin_unlock_irqrestore(&qp->r_lock, flags);
2670 * This is called from s_timer for RNR timeouts.
2672 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2674 struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2675 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2676 unsigned long flags;
2678 spin_lock_irqsave(&qp->s_lock, flags);
2679 rvt_stop_rnr_timer(qp);
2680 trace_rvt_rnrnak_timeout(qp, 0);
2681 rdi->driver_f.schedule_send(qp);
2682 spin_unlock_irqrestore(&qp->s_lock, flags);
2683 return HRTIMER_NORESTART;
2685 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2688 * rvt_qp_iter_init - initial for QP iteration
2689 * @rdi: rvt devinfo
2690 * @v: u64 value
2691 * @cb: user-defined callback
2693 * This returns an iterator suitable for iterating QPs
2694 * in the system.
2696 * The @cb is a user-defined callback and @v is a 64-bit
2697 * value passed to and relevant for processing in the
2698 * @cb. An example use case would be to alter QP processing
2699 * based on criteria not part of the rvt_qp.
2701 * Use cases that require memory allocation to succeed
2702 * must preallocate appropriately.
2704 * Return: a pointer to an rvt_qp_iter or NULL
2706 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2707 u64 v,
2708 void (*cb)(struct rvt_qp *qp, u64 v))
2710 struct rvt_qp_iter *i;
2712 i = kzalloc(sizeof(*i), GFP_KERNEL);
2713 if (!i)
2714 return NULL;
2716 i->rdi = rdi;
2717 /* number of special QPs (SMI/GSI) for device */
2718 i->specials = rdi->ibdev.phys_port_cnt * 2;
2719 i->v = v;
2720 i->cb = cb;
2722 return i;
2724 EXPORT_SYMBOL(rvt_qp_iter_init);
2727 * rvt_qp_iter_next - return the next QP in iter
2728 * @iter: the iterator
2730 * Fine grained QP iterator suitable for use
2731 * with debugfs seq_file mechanisms.
2733 * Updates iter->qp with the current QP when the return
2734 * value is 0.
2736 * Return: 0 - iter->qp is valid 1 - no more QPs
2738 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2739 __must_hold(RCU)
2741 int n = iter->n;
2742 int ret = 1;
2743 struct rvt_qp *pqp = iter->qp;
2744 struct rvt_qp *qp;
2745 struct rvt_dev_info *rdi = iter->rdi;
2748 * The approach is to consider the special qps
2749 * as additional table entries before the
2750 * real hash table. Since the qp code sets
2751 * the qp->next hash link to NULL, this works just fine.
2753 * iter->specials is 2 * # ports
2755 * n = 0..iter->specials is the special qp indices
2757 * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2758 * the potential hash bucket entries
2761 for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
2762 if (pqp) {
2763 qp = rcu_dereference(pqp->next);
2764 } else {
2765 if (n < iter->specials) {
2766 struct rvt_ibport *rvp;
2767 int pidx;
2769 pidx = n % rdi->ibdev.phys_port_cnt;
2770 rvp = rdi->ports[pidx];
2771 qp = rcu_dereference(rvp->qp[n & 1]);
2772 } else {
2773 qp = rcu_dereference(
2774 rdi->qp_dev->qp_table[
2775 (n - iter->specials)]);
2778 pqp = qp;
2779 if (qp) {
2780 iter->qp = qp;
2781 iter->n = n;
2782 return 0;
2785 return ret;
2787 EXPORT_SYMBOL(rvt_qp_iter_next);
2790 * rvt_qp_iter - iterate all QPs
2791 * @rdi: rvt devinfo
2792 * @v: a 64-bit value
2793 * @cb: a callback
2795 * This provides a way for iterating all QPs.
2797 * The @cb is a user-defined callback and @v is a 64-bit
2798 * value passed to and relevant for processing in the
2799 * cb. An example use case would be to alter QP processing
2800 * based on criteria not part of the rvt_qp.
2802 * The code has an internal iterator to simplify
2803 * non seq_file use cases.
2805 void rvt_qp_iter(struct rvt_dev_info *rdi,
2806 u64 v,
2807 void (*cb)(struct rvt_qp *qp, u64 v))
2809 int ret;
2810 struct rvt_qp_iter i = {
2811 .rdi = rdi,
2812 .specials = rdi->ibdev.phys_port_cnt * 2,
2813 .v = v,
2814 .cb = cb
2817 rcu_read_lock();
2818 do {
2819 ret = rvt_qp_iter_next(&i);
2820 if (!ret) {
2821 rvt_get_qp(i.qp);
2822 rcu_read_unlock();
2823 i.cb(i.qp, i.v);
2824 rcu_read_lock();
2825 rvt_put_qp(i.qp);
2827 } while (!ret);
2828 rcu_read_unlock();
2830 EXPORT_SYMBOL(rvt_qp_iter);
2833 * This should be called with s_lock held.
2835 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2836 enum ib_wc_status status)
2838 u32 old_last, last;
2839 struct rvt_dev_info *rdi;
2841 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2842 return;
2843 rdi = ib_to_rvt(qp->ibqp.device);
2845 old_last = qp->s_last;
2846 trace_rvt_qp_send_completion(qp, wqe, old_last);
2847 last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode],
2848 status);
2849 if (qp->s_acked == old_last)
2850 qp->s_acked = last;
2851 if (qp->s_cur == old_last)
2852 qp->s_cur = last;
2853 if (qp->s_tail == old_last)
2854 qp->s_tail = last;
2855 if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2856 qp->s_draining = 0;
2858 EXPORT_SYMBOL(rvt_send_complete);
2861 * rvt_copy_sge - copy data to SGE memory
2862 * @qp: associated QP
2863 * @ss: the SGE state
2864 * @data: the data to copy
2865 * @length: the length of the data
2866 * @release: boolean to release MR
2867 * @copy_last: do a separate copy of the last 8 bytes
2869 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2870 void *data, u32 length,
2871 bool release, bool copy_last)
2873 struct rvt_sge *sge = &ss->sge;
2874 int i;
2875 bool in_last = false;
2876 bool cacheless_copy = false;
2877 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2878 struct rvt_wss *wss = rdi->wss;
2879 unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2881 if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2882 cacheless_copy = length >= PAGE_SIZE;
2883 } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2884 if (length >= PAGE_SIZE) {
2886 * NOTE: this *assumes*:
2887 * o The first vaddr is the dest.
2888 * o If multiple pages, then vaddr is sequential.
2890 wss_insert(wss, sge->vaddr);
2891 if (length >= (2 * PAGE_SIZE))
2892 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2894 cacheless_copy = wss_exceeds_threshold(wss);
2895 } else {
2896 wss_advance_clean_counter(wss);
2900 if (copy_last) {
2901 if (length > 8) {
2902 length -= 8;
2903 } else {
2904 copy_last = false;
2905 in_last = true;
2909 again:
2910 while (length) {
2911 u32 len = rvt_get_sge_length(sge, length);
2913 WARN_ON_ONCE(len == 0);
2914 if (unlikely(in_last)) {
2915 /* enforce byte transfer ordering */
2916 for (i = 0; i < len; i++)
2917 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2918 } else if (cacheless_copy) {
2919 cacheless_memcpy(sge->vaddr, data, len);
2920 } else {
2921 memcpy(sge->vaddr, data, len);
2923 rvt_update_sge(ss, len, release);
2924 data += len;
2925 length -= len;
2928 if (copy_last) {
2929 copy_last = false;
2930 in_last = true;
2931 length = 8;
2932 goto again;
2935 EXPORT_SYMBOL(rvt_copy_sge);
2937 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2938 struct rvt_qp *sqp)
2940 rvp->n_pkt_drops++;
2942 * For RC, the requester would timeout and retry so
2943 * shortcut the timeouts and just signal too many retries.
2945 return sqp->ibqp.qp_type == IB_QPT_RC ?
2946 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2950 * rvt_ruc_loopback - handle UC and RC loopback requests
2951 * @sqp: the sending QP
2953 * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2954 * Note that although we are single threaded due to the send engine, we still
2955 * have to protect against post_send(). We don't have to worry about
2956 * receive interrupts since this is a connected protocol and all packets
2957 * will pass through here.
2959 void rvt_ruc_loopback(struct rvt_qp *sqp)
2961 struct rvt_ibport *rvp = NULL;
2962 struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2963 struct rvt_qp *qp;
2964 struct rvt_swqe *wqe;
2965 struct rvt_sge *sge;
2966 unsigned long flags;
2967 struct ib_wc wc;
2968 u64 sdata;
2969 atomic64_t *maddr;
2970 enum ib_wc_status send_status;
2971 bool release;
2972 int ret;
2973 bool copy_last = false;
2974 int local_ops = 0;
2976 rcu_read_lock();
2977 rvp = rdi->ports[sqp->port_num - 1];
2980 * Note that we check the responder QP state after
2981 * checking the requester's state.
2984 qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2985 sqp->remote_qpn);
2987 spin_lock_irqsave(&sqp->s_lock, flags);
2989 /* Return if we are already busy processing a work request. */
2990 if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2991 !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2992 goto unlock;
2994 sqp->s_flags |= RVT_S_BUSY;
2996 again:
2997 if (sqp->s_last == READ_ONCE(sqp->s_head))
2998 goto clr_busy;
2999 wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
3001 /* Return if it is not OK to start a new work request. */
3002 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
3003 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
3004 goto clr_busy;
3005 /* We are in the error state, flush the work request. */
3006 send_status = IB_WC_WR_FLUSH_ERR;
3007 goto flush_send;
3011 * We can rely on the entry not changing without the s_lock
3012 * being held until we update s_last.
3013 * We increment s_cur to indicate s_last is in progress.
3015 if (sqp->s_last == sqp->s_cur) {
3016 if (++sqp->s_cur >= sqp->s_size)
3017 sqp->s_cur = 0;
3019 spin_unlock_irqrestore(&sqp->s_lock, flags);
3021 if (!qp) {
3022 send_status = loopback_qp_drop(rvp, sqp);
3023 goto serr_no_r_lock;
3025 spin_lock_irqsave(&qp->r_lock, flags);
3026 if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
3027 qp->ibqp.qp_type != sqp->ibqp.qp_type) {
3028 send_status = loopback_qp_drop(rvp, sqp);
3029 goto serr;
3032 memset(&wc, 0, sizeof(wc));
3033 send_status = IB_WC_SUCCESS;
3035 release = true;
3036 sqp->s_sge.sge = wqe->sg_list[0];
3037 sqp->s_sge.sg_list = wqe->sg_list + 1;
3038 sqp->s_sge.num_sge = wqe->wr.num_sge;
3039 sqp->s_len = wqe->length;
3040 switch (wqe->wr.opcode) {
3041 case IB_WR_REG_MR:
3042 goto send_comp;
3044 case IB_WR_LOCAL_INV:
3045 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
3046 if (rvt_invalidate_rkey(sqp,
3047 wqe->wr.ex.invalidate_rkey))
3048 send_status = IB_WC_LOC_PROT_ERR;
3049 local_ops = 1;
3051 goto send_comp;
3053 case IB_WR_SEND_WITH_INV:
3054 case IB_WR_SEND_WITH_IMM:
3055 case IB_WR_SEND:
3056 ret = rvt_get_rwqe(qp, false);
3057 if (ret < 0)
3058 goto op_err;
3059 if (!ret)
3060 goto rnr_nak;
3061 if (wqe->length > qp->r_len)
3062 goto inv_err;
3063 switch (wqe->wr.opcode) {
3064 case IB_WR_SEND_WITH_INV:
3065 if (!rvt_invalidate_rkey(qp,
3066 wqe->wr.ex.invalidate_rkey)) {
3067 wc.wc_flags = IB_WC_WITH_INVALIDATE;
3068 wc.ex.invalidate_rkey =
3069 wqe->wr.ex.invalidate_rkey;
3071 break;
3072 case IB_WR_SEND_WITH_IMM:
3073 wc.wc_flags = IB_WC_WITH_IMM;
3074 wc.ex.imm_data = wqe->wr.ex.imm_data;
3075 break;
3076 default:
3077 break;
3079 break;
3081 case IB_WR_RDMA_WRITE_WITH_IMM:
3082 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3083 goto inv_err;
3084 wc.wc_flags = IB_WC_WITH_IMM;
3085 wc.ex.imm_data = wqe->wr.ex.imm_data;
3086 ret = rvt_get_rwqe(qp, true);
3087 if (ret < 0)
3088 goto op_err;
3089 if (!ret)
3090 goto rnr_nak;
3091 /* skip copy_last set and qp_access_flags recheck */
3092 goto do_write;
3093 case IB_WR_RDMA_WRITE:
3094 copy_last = rvt_is_user_qp(qp);
3095 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
3096 goto inv_err;
3097 do_write:
3098 if (wqe->length == 0)
3099 break;
3100 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
3101 wqe->rdma_wr.remote_addr,
3102 wqe->rdma_wr.rkey,
3103 IB_ACCESS_REMOTE_WRITE)))
3104 goto acc_err;
3105 qp->r_sge.sg_list = NULL;
3106 qp->r_sge.num_sge = 1;
3107 qp->r_sge.total_len = wqe->length;
3108 break;
3110 case IB_WR_RDMA_READ:
3111 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
3112 goto inv_err;
3113 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
3114 wqe->rdma_wr.remote_addr,
3115 wqe->rdma_wr.rkey,
3116 IB_ACCESS_REMOTE_READ)))
3117 goto acc_err;
3118 release = false;
3119 sqp->s_sge.sg_list = NULL;
3120 sqp->s_sge.num_sge = 1;
3121 qp->r_sge.sge = wqe->sg_list[0];
3122 qp->r_sge.sg_list = wqe->sg_list + 1;
3123 qp->r_sge.num_sge = wqe->wr.num_sge;
3124 qp->r_sge.total_len = wqe->length;
3125 break;
3127 case IB_WR_ATOMIC_CMP_AND_SWP:
3128 case IB_WR_ATOMIC_FETCH_AND_ADD:
3129 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
3130 goto inv_err;
3131 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
3132 wqe->atomic_wr.remote_addr,
3133 wqe->atomic_wr.rkey,
3134 IB_ACCESS_REMOTE_ATOMIC)))
3135 goto acc_err;
3136 /* Perform atomic OP and save result. */
3137 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
3138 sdata = wqe->atomic_wr.compare_add;
3139 *(u64 *)sqp->s_sge.sge.vaddr =
3140 (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
3141 (u64)atomic64_add_return(sdata, maddr) - sdata :
3142 (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
3143 sdata, wqe->atomic_wr.swap);
3144 rvt_put_mr(qp->r_sge.sge.mr);
3145 qp->r_sge.num_sge = 0;
3146 goto send_comp;
3148 default:
3149 send_status = IB_WC_LOC_QP_OP_ERR;
3150 goto serr;
3153 sge = &sqp->s_sge.sge;
3154 while (sqp->s_len) {
3155 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3157 WARN_ON_ONCE(len == 0);
3158 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3159 len, release, copy_last);
3160 rvt_update_sge(&sqp->s_sge, len, !release);
3161 sqp->s_len -= len;
3163 if (release)
3164 rvt_put_ss(&qp->r_sge);
3166 if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3167 goto send_comp;
3169 if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3170 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3171 else
3172 wc.opcode = IB_WC_RECV;
3173 wc.wr_id = qp->r_wr_id;
3174 wc.status = IB_WC_SUCCESS;
3175 wc.byte_len = wqe->length;
3176 wc.qp = &qp->ibqp;
3177 wc.src_qp = qp->remote_qpn;
3178 wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3179 wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3180 wc.port_num = 1;
3181 /* Signal completion event if the solicited bit is set. */
3182 rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED);
3184 send_comp:
3185 spin_unlock_irqrestore(&qp->r_lock, flags);
3186 spin_lock_irqsave(&sqp->s_lock, flags);
3187 rvp->n_loop_pkts++;
3188 flush_send:
3189 sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3190 rvt_send_complete(sqp, wqe, send_status);
3191 if (local_ops) {
3192 atomic_dec(&sqp->local_ops_pending);
3193 local_ops = 0;
3195 goto again;
3197 rnr_nak:
3198 /* Handle RNR NAK */
3199 if (qp->ibqp.qp_type == IB_QPT_UC)
3200 goto send_comp;
3201 rvp->n_rnr_naks++;
3203 * Note: we don't need the s_lock held since the BUSY flag
3204 * makes this single threaded.
3206 if (sqp->s_rnr_retry == 0) {
3207 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3208 goto serr;
3210 if (sqp->s_rnr_retry_cnt < 7)
3211 sqp->s_rnr_retry--;
3212 spin_unlock_irqrestore(&qp->r_lock, flags);
3213 spin_lock_irqsave(&sqp->s_lock, flags);
3214 if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3215 goto clr_busy;
3216 rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3217 IB_AETH_CREDIT_SHIFT);
3218 goto clr_busy;
3220 op_err:
3221 send_status = IB_WC_REM_OP_ERR;
3222 wc.status = IB_WC_LOC_QP_OP_ERR;
3223 goto err;
3225 inv_err:
3226 send_status =
3227 sqp->ibqp.qp_type == IB_QPT_RC ?
3228 IB_WC_REM_INV_REQ_ERR :
3229 IB_WC_SUCCESS;
3230 wc.status = IB_WC_LOC_QP_OP_ERR;
3231 goto err;
3233 acc_err:
3234 send_status = IB_WC_REM_ACCESS_ERR;
3235 wc.status = IB_WC_LOC_PROT_ERR;
3236 err:
3237 /* responder goes to error state */
3238 rvt_rc_error(qp, wc.status);
3240 serr:
3241 spin_unlock_irqrestore(&qp->r_lock, flags);
3242 serr_no_r_lock:
3243 spin_lock_irqsave(&sqp->s_lock, flags);
3244 rvt_send_complete(sqp, wqe, send_status);
3245 if (sqp->ibqp.qp_type == IB_QPT_RC) {
3246 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3248 sqp->s_flags &= ~RVT_S_BUSY;
3249 spin_unlock_irqrestore(&sqp->s_lock, flags);
3250 if (lastwqe) {
3251 struct ib_event ev;
3253 ev.device = sqp->ibqp.device;
3254 ev.element.qp = &sqp->ibqp;
3255 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3256 sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3258 goto done;
3260 clr_busy:
3261 sqp->s_flags &= ~RVT_S_BUSY;
3262 unlock:
3263 spin_unlock_irqrestore(&sqp->s_lock, flags);
3264 done:
3265 rcu_read_unlock();
3267 EXPORT_SYMBOL(rvt_ruc_loopback);