1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
28 #include "writeback.h"
30 static void sort_key_next(struct btree_iter
*iter
,
31 struct btree_iter_set
*i
)
33 i
->k
= bkey_next(i
->k
);
36 *i
= iter
->data
[--iter
->used
];
39 static bool bch_key_sort_cmp(struct btree_iter_set l
,
40 struct btree_iter_set r
)
42 int64_t c
= bkey_cmp(l
.k
, r
.k
);
44 return c
? c
> 0 : l
.k
< r
.k
;
47 static bool __ptr_invalid(struct cache_set
*c
, const struct bkey
*k
)
51 for (i
= 0; i
< KEY_PTRS(k
); i
++)
52 if (ptr_available(c
, k
, i
)) {
53 struct cache
*ca
= PTR_CACHE(c
, k
, i
);
54 size_t bucket
= PTR_BUCKET_NR(c
, k
, i
);
55 size_t r
= bucket_remainder(c
, PTR_OFFSET(k
, i
));
57 if (KEY_SIZE(k
) + r
> c
->cache
->sb
.bucket_size
||
58 bucket
< ca
->sb
.first_bucket
||
59 bucket
>= ca
->sb
.nbuckets
)
66 /* Common among btree and extent ptrs */
68 static const char *bch_ptr_status(struct cache_set
*c
, const struct bkey
*k
)
72 for (i
= 0; i
< KEY_PTRS(k
); i
++)
73 if (ptr_available(c
, k
, i
)) {
74 struct cache
*ca
= PTR_CACHE(c
, k
, i
);
75 size_t bucket
= PTR_BUCKET_NR(c
, k
, i
);
76 size_t r
= bucket_remainder(c
, PTR_OFFSET(k
, i
));
78 if (KEY_SIZE(k
) + r
> c
->cache
->sb
.bucket_size
)
79 return "bad, length too big";
80 if (bucket
< ca
->sb
.first_bucket
)
81 return "bad, short offset";
82 if (bucket
>= ca
->sb
.nbuckets
)
83 return "bad, offset past end of device";
84 if (ptr_stale(c
, k
, i
))
88 if (!bkey_cmp(k
, &ZERO_KEY
))
89 return "bad, null key";
91 return "bad, no pointers";
97 void bch_extent_to_text(char *buf
, size_t size
, const struct bkey
*k
)
100 char *out
= buf
, *end
= buf
+ size
;
102 #define p(...) (out += scnprintf(out, end - out, __VA_ARGS__))
104 p("%llu:%llu len %llu -> [", KEY_INODE(k
), KEY_START(k
), KEY_SIZE(k
));
106 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
110 if (PTR_DEV(k
, i
) == PTR_CHECK_DEV
)
113 p("%llu:%llu gen %llu", PTR_DEV(k
, i
),
114 PTR_OFFSET(k
, i
), PTR_GEN(k
, i
));
122 p(" cs%llu %llx", KEY_CSUM(k
), k
->ptr
[1]);
126 static void bch_bkey_dump(struct btree_keys
*keys
, const struct bkey
*k
)
128 struct btree
*b
= container_of(keys
, struct btree
, keys
);
132 bch_extent_to_text(buf
, sizeof(buf
), k
);
135 for (j
= 0; j
< KEY_PTRS(k
); j
++) {
136 size_t n
= PTR_BUCKET_NR(b
->c
, k
, j
);
138 pr_cont(" bucket %zu", n
);
139 if (n
>= b
->c
->cache
->sb
.first_bucket
&& n
< b
->c
->cache
->sb
.nbuckets
)
141 PTR_BUCKET(b
->c
, k
, j
)->prio
);
144 pr_cont(" %s\n", bch_ptr_status(b
->c
, k
));
149 bool __bch_btree_ptr_invalid(struct cache_set
*c
, const struct bkey
*k
)
153 if (!KEY_PTRS(k
) || !KEY_SIZE(k
) || KEY_DIRTY(k
))
156 if (__ptr_invalid(c
, k
))
161 bch_extent_to_text(buf
, sizeof(buf
), k
);
162 cache_bug(c
, "spotted btree ptr %s: %s", buf
, bch_ptr_status(c
, k
));
166 static bool bch_btree_ptr_invalid(struct btree_keys
*bk
, const struct bkey
*k
)
168 struct btree
*b
= container_of(bk
, struct btree
, keys
);
170 return __bch_btree_ptr_invalid(b
->c
, k
);
173 static bool btree_ptr_bad_expensive(struct btree
*b
, const struct bkey
*k
)
179 if (mutex_trylock(&b
->c
->bucket_lock
)) {
180 for (i
= 0; i
< KEY_PTRS(k
); i
++)
181 if (ptr_available(b
->c
, k
, i
)) {
182 g
= PTR_BUCKET(b
->c
, k
, i
);
185 g
->prio
!= BTREE_PRIO
||
186 (b
->c
->gc_mark_valid
&&
187 GC_MARK(g
) != GC_MARK_METADATA
))
191 mutex_unlock(&b
->c
->bucket_lock
);
196 mutex_unlock(&b
->c
->bucket_lock
);
197 bch_extent_to_text(buf
, sizeof(buf
), k
);
199 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
200 buf
, PTR_BUCKET_NR(b
->c
, k
, i
), atomic_read(&g
->pin
),
201 g
->prio
, g
->gen
, g
->last_gc
, GC_MARK(g
));
205 static bool bch_btree_ptr_bad(struct btree_keys
*bk
, const struct bkey
*k
)
207 struct btree
*b
= container_of(bk
, struct btree
, keys
);
210 if (!bkey_cmp(k
, &ZERO_KEY
) ||
212 bch_ptr_invalid(bk
, k
))
215 for (i
= 0; i
< KEY_PTRS(k
); i
++)
216 if (!ptr_available(b
->c
, k
, i
) ||
217 ptr_stale(b
->c
, k
, i
))
220 if (expensive_debug_checks(b
->c
) &&
221 btree_ptr_bad_expensive(b
, k
))
227 static bool bch_btree_ptr_insert_fixup(struct btree_keys
*bk
,
229 struct btree_iter
*iter
,
230 struct bkey
*replace_key
)
232 struct btree
*b
= container_of(bk
, struct btree
, keys
);
234 if (!KEY_OFFSET(insert
))
235 btree_current_write(b
)->prio_blocked
++;
240 const struct btree_keys_ops bch_btree_keys_ops
= {
241 .sort_cmp
= bch_key_sort_cmp
,
242 .insert_fixup
= bch_btree_ptr_insert_fixup
,
243 .key_invalid
= bch_btree_ptr_invalid
,
244 .key_bad
= bch_btree_ptr_bad
,
245 .key_to_text
= bch_extent_to_text
,
246 .key_dump
= bch_bkey_dump
,
252 * Returns true if l > r - unless l == r, in which case returns true if l is
255 * Necessary for btree_sort_fixup() - if there are multiple keys that compare
256 * equal in different sets, we have to process them newest to oldest.
258 static bool bch_extent_sort_cmp(struct btree_iter_set l
,
259 struct btree_iter_set r
)
261 int64_t c
= bkey_cmp(&START_KEY(l
.k
), &START_KEY(r
.k
));
263 return c
? c
> 0 : l
.k
< r
.k
;
266 static struct bkey
*bch_extent_sort_fixup(struct btree_iter
*iter
,
269 while (iter
->used
> 1) {
270 struct btree_iter_set
*top
= iter
->data
, *i
= top
+ 1;
272 if (iter
->used
> 2 &&
273 bch_extent_sort_cmp(i
[0], i
[1]))
276 if (bkey_cmp(top
->k
, &START_KEY(i
->k
)) <= 0)
279 if (!KEY_SIZE(i
->k
)) {
280 sort_key_next(iter
, i
);
281 heap_sift(iter
, i
- top
, bch_extent_sort_cmp
);
286 if (bkey_cmp(top
->k
, i
->k
) >= 0)
287 sort_key_next(iter
, i
);
289 bch_cut_front(top
->k
, i
->k
);
291 heap_sift(iter
, i
- top
, bch_extent_sort_cmp
);
293 /* can't happen because of comparison func */
294 BUG_ON(!bkey_cmp(&START_KEY(top
->k
), &START_KEY(i
->k
)));
296 if (bkey_cmp(i
->k
, top
->k
) < 0) {
297 bkey_copy(tmp
, top
->k
);
299 bch_cut_back(&START_KEY(i
->k
), tmp
);
300 bch_cut_front(i
->k
, top
->k
);
301 heap_sift(iter
, 0, bch_extent_sort_cmp
);
305 bch_cut_back(&START_KEY(i
->k
), top
->k
);
313 static void bch_subtract_dirty(struct bkey
*k
,
319 bcache_dev_sectors_dirty_add(c
, KEY_INODE(k
),
323 static bool bch_extent_insert_fixup(struct btree_keys
*b
,
325 struct btree_iter
*iter
,
326 struct bkey
*replace_key
)
328 struct cache_set
*c
= container_of(b
, struct btree
, keys
)->c
;
331 unsigned int old_size
, sectors_found
= 0;
333 BUG_ON(!KEY_OFFSET(insert
));
334 BUG_ON(!KEY_SIZE(insert
));
337 struct bkey
*k
= bch_btree_iter_next(iter
);
342 if (bkey_cmp(&START_KEY(k
), insert
) >= 0) {
349 if (bkey_cmp(k
, &START_KEY(insert
)) <= 0)
352 old_offset
= KEY_START(k
);
353 old_size
= KEY_SIZE(k
);
356 * We might overlap with 0 size extents; we can't skip these
357 * because if they're in the set we're inserting to we have to
358 * adjust them so they don't overlap with the key we're
359 * inserting. But we don't want to check them for replace
363 if (replace_key
&& KEY_SIZE(k
)) {
365 * k might have been split since we inserted/found the
366 * key we're replacing
369 uint64_t offset
= KEY_START(k
) -
370 KEY_START(replace_key
);
372 /* But it must be a subset of the replace key */
373 if (KEY_START(k
) < KEY_START(replace_key
) ||
374 KEY_OFFSET(k
) > KEY_OFFSET(replace_key
))
377 /* We didn't find a key that we were supposed to */
378 if (KEY_START(k
) > KEY_START(insert
) + sectors_found
)
381 if (!bch_bkey_equal_header(k
, replace_key
))
387 BUG_ON(!KEY_PTRS(replace_key
));
389 for (i
= 0; i
< KEY_PTRS(replace_key
); i
++)
390 if (k
->ptr
[i
] != replace_key
->ptr
[i
] + offset
)
393 sectors_found
= KEY_OFFSET(k
) - KEY_START(insert
);
396 if (bkey_cmp(insert
, k
) < 0 &&
397 bkey_cmp(&START_KEY(insert
), &START_KEY(k
)) > 0) {
399 * We overlapped in the middle of an existing key: that
400 * means we have to split the old key. But we have to do
401 * slightly different things depending on whether the
402 * old key has been written out yet.
407 bch_subtract_dirty(k
, c
, KEY_START(insert
),
410 if (bkey_written(b
, k
)) {
412 * We insert a new key to cover the top of the
413 * old key, and the old key is modified in place
414 * to represent the bottom split.
416 * It's completely arbitrary whether the new key
417 * is the top or the bottom, but it has to match
418 * up with what btree_sort_fixup() does - it
419 * doesn't check for this kind of overlap, it
420 * depends on us inserting a new key for the top
423 top
= bch_bset_search(b
, bset_tree_last(b
),
425 bch_bset_insert(b
, top
, k
);
427 BKEY_PADDED(key
) temp
;
428 bkey_copy(&temp
.key
, k
);
429 bch_bset_insert(b
, k
, &temp
.key
);
433 bch_cut_front(insert
, top
);
434 bch_cut_back(&START_KEY(insert
), k
);
435 bch_bset_fix_invalidated_key(b
, k
);
439 if (bkey_cmp(insert
, k
) < 0) {
440 bch_cut_front(insert
, k
);
442 if (bkey_cmp(&START_KEY(insert
), &START_KEY(k
)) > 0)
443 old_offset
= KEY_START(insert
);
445 if (bkey_written(b
, k
) &&
446 bkey_cmp(&START_KEY(insert
), &START_KEY(k
)) <= 0) {
448 * Completely overwrote, so we don't have to
449 * invalidate the binary search tree
453 __bch_cut_back(&START_KEY(insert
), k
);
454 bch_bset_fix_invalidated_key(b
, k
);
458 bch_subtract_dirty(k
, c
, old_offset
, old_size
- KEY_SIZE(k
));
463 if (!sectors_found
) {
465 } else if (sectors_found
< KEY_SIZE(insert
)) {
466 SET_KEY_OFFSET(insert
, KEY_OFFSET(insert
) -
467 (KEY_SIZE(insert
) - sectors_found
));
468 SET_KEY_SIZE(insert
, sectors_found
);
472 if (KEY_DIRTY(insert
))
473 bcache_dev_sectors_dirty_add(c
, KEY_INODE(insert
),
480 bool __bch_extent_invalid(struct cache_set
*c
, const struct bkey
*k
)
487 if (KEY_SIZE(k
) > KEY_OFFSET(k
))
490 if (__ptr_invalid(c
, k
))
495 bch_extent_to_text(buf
, sizeof(buf
), k
);
496 cache_bug(c
, "spotted extent %s: %s", buf
, bch_ptr_status(c
, k
));
500 static bool bch_extent_invalid(struct btree_keys
*bk
, const struct bkey
*k
)
502 struct btree
*b
= container_of(bk
, struct btree
, keys
);
504 return __bch_extent_invalid(b
->c
, k
);
507 static bool bch_extent_bad_expensive(struct btree
*b
, const struct bkey
*k
,
510 struct bucket
*g
= PTR_BUCKET(b
->c
, k
, ptr
);
513 if (mutex_trylock(&b
->c
->bucket_lock
)) {
514 if (b
->c
->gc_mark_valid
&&
516 GC_MARK(g
) == GC_MARK_METADATA
||
517 (GC_MARK(g
) != GC_MARK_DIRTY
&& KEY_DIRTY(k
))))
520 if (g
->prio
== BTREE_PRIO
)
523 mutex_unlock(&b
->c
->bucket_lock
);
528 mutex_unlock(&b
->c
->bucket_lock
);
529 bch_extent_to_text(buf
, sizeof(buf
), k
);
531 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
532 buf
, PTR_BUCKET_NR(b
->c
, k
, ptr
), atomic_read(&g
->pin
),
533 g
->prio
, g
->gen
, g
->last_gc
, GC_MARK(g
));
537 static bool bch_extent_bad(struct btree_keys
*bk
, const struct bkey
*k
)
539 struct btree
*b
= container_of(bk
, struct btree
, keys
);
540 unsigned int i
, stale
;
544 bch_extent_invalid(bk
, k
))
547 for (i
= 0; i
< KEY_PTRS(k
); i
++)
548 if (!ptr_available(b
->c
, k
, i
))
551 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
552 stale
= ptr_stale(b
->c
, k
, i
);
554 if (stale
&& KEY_DIRTY(k
)) {
555 bch_extent_to_text(buf
, sizeof(buf
), k
);
556 pr_info("stale dirty pointer, stale %u, key: %s\n",
560 btree_bug_on(stale
> BUCKET_GC_GEN_MAX
, b
,
561 "key too stale: %i, need_gc %u",
562 stale
, b
->c
->need_gc
);
567 if (expensive_debug_checks(b
->c
) &&
568 bch_extent_bad_expensive(b
, k
, i
))
575 static uint64_t merge_chksums(struct bkey
*l
, struct bkey
*r
)
577 return (l
->ptr
[KEY_PTRS(l
)] + r
->ptr
[KEY_PTRS(r
)]) &
578 ~((uint64_t)1 << 63);
581 static bool bch_extent_merge(struct btree_keys
*bk
,
585 struct btree
*b
= container_of(bk
, struct btree
, keys
);
588 if (key_merging_disabled(b
->c
))
591 for (i
= 0; i
< KEY_PTRS(l
); i
++)
592 if (l
->ptr
[i
] + MAKE_PTR(0, KEY_SIZE(l
), 0) != r
->ptr
[i
] ||
593 PTR_BUCKET_NR(b
->c
, l
, i
) != PTR_BUCKET_NR(b
->c
, r
, i
))
596 /* Keys with no pointers aren't restricted to one bucket and could
599 if (KEY_SIZE(l
) + KEY_SIZE(r
) > USHRT_MAX
) {
600 SET_KEY_OFFSET(l
, KEY_OFFSET(l
) + USHRT_MAX
- KEY_SIZE(l
));
601 SET_KEY_SIZE(l
, USHRT_MAX
);
609 l
->ptr
[KEY_PTRS(l
)] = merge_chksums(l
, r
);
614 SET_KEY_OFFSET(l
, KEY_OFFSET(l
) + KEY_SIZE(r
));
615 SET_KEY_SIZE(l
, KEY_SIZE(l
) + KEY_SIZE(r
));
620 const struct btree_keys_ops bch_extent_keys_ops
= {
621 .sort_cmp
= bch_extent_sort_cmp
,
622 .sort_fixup
= bch_extent_sort_fixup
,
623 .insert_fixup
= bch_extent_insert_fixup
,
624 .key_invalid
= bch_extent_invalid
,
625 .key_bad
= bch_extent_bad
,
626 .key_merge
= bch_extent_merge
,
627 .key_to_text
= bch_extent_to_text
,
628 .key_dump
= bch_bkey_dump
,