WIP FPC-III support
[linux/fpc-iii.git] / drivers / md / bcache / super.c
blob2047a9cccdb5dee42a081dfa21f3efbc49410129
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
32 static const char bcache_magic[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
37 static const char invalid_uuid[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS 128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
61 /* Superblock */
63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
68 if (bch_has_feature_large_bucket(sb)) {
69 unsigned int max, order;
71 max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
72 order = le16_to_cpu(s->bucket_size);
74 * bcache tool will make sure the overflow won't
75 * happen, an error message here is enough.
77 if (order > max)
78 pr_err("Bucket size (1 << %u) overflows\n",
79 order);
80 bucket_size = 1 << order;
81 } else if (bch_has_feature_obso_large_bucket(sb)) {
82 bucket_size +=
83 le16_to_cpu(s->obso_bucket_size_hi) << 16;
87 return bucket_size;
90 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev,
91 struct cache_sb_disk *s)
93 const char *err;
94 unsigned int i;
96 sb->first_bucket= le16_to_cpu(s->first_bucket);
97 sb->nbuckets = le64_to_cpu(s->nbuckets);
98 sb->bucket_size = get_bucket_size(sb, s);
100 sb->nr_in_set = le16_to_cpu(s->nr_in_set);
101 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
103 err = "Too many journal buckets";
104 if (sb->keys > SB_JOURNAL_BUCKETS)
105 goto err;
107 err = "Too many buckets";
108 if (sb->nbuckets > LONG_MAX)
109 goto err;
111 err = "Not enough buckets";
112 if (sb->nbuckets < 1 << 7)
113 goto err;
115 err = "Bad block size (not power of 2)";
116 if (!is_power_of_2(sb->block_size))
117 goto err;
119 err = "Bad block size (larger than page size)";
120 if (sb->block_size > PAGE_SECTORS)
121 goto err;
123 err = "Bad bucket size (not power of 2)";
124 if (!is_power_of_2(sb->bucket_size))
125 goto err;
127 err = "Bad bucket size (smaller than page size)";
128 if (sb->bucket_size < PAGE_SECTORS)
129 goto err;
131 err = "Invalid superblock: device too small";
132 if (get_capacity(bdev->bd_disk) <
133 sb->bucket_size * sb->nbuckets)
134 goto err;
136 err = "Bad UUID";
137 if (bch_is_zero(sb->set_uuid, 16))
138 goto err;
140 err = "Bad cache device number in set";
141 if (!sb->nr_in_set ||
142 sb->nr_in_set <= sb->nr_this_dev ||
143 sb->nr_in_set > MAX_CACHES_PER_SET)
144 goto err;
146 err = "Journal buckets not sequential";
147 for (i = 0; i < sb->keys; i++)
148 if (sb->d[i] != sb->first_bucket + i)
149 goto err;
151 err = "Too many journal buckets";
152 if (sb->first_bucket + sb->keys > sb->nbuckets)
153 goto err;
155 err = "Invalid superblock: first bucket comes before end of super";
156 if (sb->first_bucket * sb->bucket_size < 16)
157 goto err;
159 err = NULL;
160 err:
161 return err;
165 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
166 struct cache_sb_disk **res)
168 const char *err;
169 struct cache_sb_disk *s;
170 struct page *page;
171 unsigned int i;
173 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
174 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
175 if (IS_ERR(page))
176 return "IO error";
177 s = page_address(page) + offset_in_page(SB_OFFSET);
179 sb->offset = le64_to_cpu(s->offset);
180 sb->version = le64_to_cpu(s->version);
182 memcpy(sb->magic, s->magic, 16);
183 memcpy(sb->uuid, s->uuid, 16);
184 memcpy(sb->set_uuid, s->set_uuid, 16);
185 memcpy(sb->label, s->label, SB_LABEL_SIZE);
187 sb->flags = le64_to_cpu(s->flags);
188 sb->seq = le64_to_cpu(s->seq);
189 sb->last_mount = le32_to_cpu(s->last_mount);
190 sb->keys = le16_to_cpu(s->keys);
192 for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
193 sb->d[i] = le64_to_cpu(s->d[i]);
195 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
196 sb->version, sb->flags, sb->seq, sb->keys);
198 err = "Not a bcache superblock (bad offset)";
199 if (sb->offset != SB_SECTOR)
200 goto err;
202 err = "Not a bcache superblock (bad magic)";
203 if (memcmp(sb->magic, bcache_magic, 16))
204 goto err;
206 err = "Bad checksum";
207 if (s->csum != csum_set(s))
208 goto err;
210 err = "Bad UUID";
211 if (bch_is_zero(sb->uuid, 16))
212 goto err;
214 sb->block_size = le16_to_cpu(s->block_size);
216 err = "Superblock block size smaller than device block size";
217 if (sb->block_size << 9 < bdev_logical_block_size(bdev))
218 goto err;
220 switch (sb->version) {
221 case BCACHE_SB_VERSION_BDEV:
222 sb->data_offset = BDEV_DATA_START_DEFAULT;
223 break;
224 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
225 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
226 sb->data_offset = le64_to_cpu(s->data_offset);
228 err = "Bad data offset";
229 if (sb->data_offset < BDEV_DATA_START_DEFAULT)
230 goto err;
232 break;
233 case BCACHE_SB_VERSION_CDEV:
234 case BCACHE_SB_VERSION_CDEV_WITH_UUID:
235 err = read_super_common(sb, bdev, s);
236 if (err)
237 goto err;
238 break;
239 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 * Feature bits are needed in read_super_common(),
242 * convert them firstly.
244 sb->feature_compat = le64_to_cpu(s->feature_compat);
245 sb->feature_incompat = le64_to_cpu(s->feature_incompat);
246 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248 /* Check incompatible features */
249 err = "Unsupported compatible feature found";
250 if (bch_has_unknown_compat_features(sb))
251 goto err;
253 err = "Unsupported read-only compatible feature found";
254 if (bch_has_unknown_ro_compat_features(sb))
255 goto err;
257 err = "Unsupported incompatible feature found";
258 if (bch_has_unknown_incompat_features(sb))
259 goto err;
261 err = read_super_common(sb, bdev, s);
262 if (err)
263 goto err;
264 break;
265 default:
266 err = "Unsupported superblock version";
267 goto err;
270 sb->last_mount = (u32)ktime_get_real_seconds();
271 *res = s;
272 return NULL;
273 err:
274 put_page(page);
275 return err;
278 static void write_bdev_super_endio(struct bio *bio)
280 struct cached_dev *dc = bio->bi_private;
282 if (bio->bi_status)
283 bch_count_backing_io_errors(dc, bio);
285 closure_put(&dc->sb_write);
288 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
289 struct bio *bio)
291 unsigned int i;
293 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
294 bio->bi_iter.bi_sector = SB_SECTOR;
295 __bio_add_page(bio, virt_to_page(out), SB_SIZE,
296 offset_in_page(out));
298 out->offset = cpu_to_le64(sb->offset);
300 memcpy(out->uuid, sb->uuid, 16);
301 memcpy(out->set_uuid, sb->set_uuid, 16);
302 memcpy(out->label, sb->label, SB_LABEL_SIZE);
304 out->flags = cpu_to_le64(sb->flags);
305 out->seq = cpu_to_le64(sb->seq);
307 out->last_mount = cpu_to_le32(sb->last_mount);
308 out->first_bucket = cpu_to_le16(sb->first_bucket);
309 out->keys = cpu_to_le16(sb->keys);
311 for (i = 0; i < sb->keys; i++)
312 out->d[i] = cpu_to_le64(sb->d[i]);
314 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
315 out->feature_compat = cpu_to_le64(sb->feature_compat);
316 out->feature_incompat = cpu_to_le64(sb->feature_incompat);
317 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
320 out->version = cpu_to_le64(sb->version);
321 out->csum = csum_set(out);
323 pr_debug("ver %llu, flags %llu, seq %llu\n",
324 sb->version, sb->flags, sb->seq);
326 submit_bio(bio);
329 static void bch_write_bdev_super_unlock(struct closure *cl)
331 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333 up(&dc->sb_write_mutex);
336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 struct closure *cl = &dc->sb_write;
339 struct bio *bio = &dc->sb_bio;
341 down(&dc->sb_write_mutex);
342 closure_init(cl, parent);
344 bio_init(bio, dc->sb_bv, 1);
345 bio_set_dev(bio, dc->bdev);
346 bio->bi_end_io = write_bdev_super_endio;
347 bio->bi_private = dc;
349 closure_get(cl);
350 /* I/O request sent to backing device */
351 __write_super(&dc->sb, dc->sb_disk, bio);
353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
356 static void write_super_endio(struct bio *bio)
358 struct cache *ca = bio->bi_private;
360 /* is_read = 0 */
361 bch_count_io_errors(ca, bio->bi_status, 0,
362 "writing superblock");
363 closure_put(&ca->set->sb_write);
366 static void bcache_write_super_unlock(struct closure *cl)
368 struct cache_set *c = container_of(cl, struct cache_set, sb_write);
370 up(&c->sb_write_mutex);
373 void bcache_write_super(struct cache_set *c)
375 struct closure *cl = &c->sb_write;
376 struct cache *ca = c->cache;
377 struct bio *bio = &ca->sb_bio;
378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
380 down(&c->sb_write_mutex);
381 closure_init(cl, &c->cl);
383 ca->sb.seq++;
385 if (ca->sb.version < version)
386 ca->sb.version = version;
388 bio_init(bio, ca->sb_bv, 1);
389 bio_set_dev(bio, ca->bdev);
390 bio->bi_end_io = write_super_endio;
391 bio->bi_private = ca;
393 closure_get(cl);
394 __write_super(&ca->sb, ca->sb_disk, bio);
396 closure_return_with_destructor(cl, bcache_write_super_unlock);
399 /* UUID io */
401 static void uuid_endio(struct bio *bio)
403 struct closure *cl = bio->bi_private;
404 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
406 cache_set_err_on(bio->bi_status, c, "accessing uuids");
407 bch_bbio_free(bio, c);
408 closure_put(cl);
411 static void uuid_io_unlock(struct closure *cl)
413 struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
415 up(&c->uuid_write_mutex);
418 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
419 struct bkey *k, struct closure *parent)
421 struct closure *cl = &c->uuid_write;
422 struct uuid_entry *u;
423 unsigned int i;
424 char buf[80];
426 BUG_ON(!parent);
427 down(&c->uuid_write_mutex);
428 closure_init(cl, parent);
430 for (i = 0; i < KEY_PTRS(k); i++) {
431 struct bio *bio = bch_bbio_alloc(c);
433 bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
434 bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
436 bio->bi_end_io = uuid_endio;
437 bio->bi_private = cl;
438 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
439 bch_bio_map(bio, c->uuids);
441 bch_submit_bbio(bio, c, k, i);
443 if (op != REQ_OP_WRITE)
444 break;
447 bch_extent_to_text(buf, sizeof(buf), k);
448 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
450 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
451 if (!bch_is_zero(u->uuid, 16))
452 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
453 u - c->uuids, u->uuid, u->label,
454 u->first_reg, u->last_reg, u->invalidated);
456 closure_return_with_destructor(cl, uuid_io_unlock);
459 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
461 struct bkey *k = &j->uuid_bucket;
463 if (__bch_btree_ptr_invalid(c, k))
464 return "bad uuid pointer";
466 bkey_copy(&c->uuid_bucket, k);
467 uuid_io(c, REQ_OP_READ, 0, k, cl);
469 if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
470 struct uuid_entry_v0 *u0 = (void *) c->uuids;
471 struct uuid_entry *u1 = (void *) c->uuids;
472 int i;
474 closure_sync(cl);
477 * Since the new uuid entry is bigger than the old, we have to
478 * convert starting at the highest memory address and work down
479 * in order to do it in place
482 for (i = c->nr_uuids - 1;
483 i >= 0;
484 --i) {
485 memcpy(u1[i].uuid, u0[i].uuid, 16);
486 memcpy(u1[i].label, u0[i].label, 32);
488 u1[i].first_reg = u0[i].first_reg;
489 u1[i].last_reg = u0[i].last_reg;
490 u1[i].invalidated = u0[i].invalidated;
492 u1[i].flags = 0;
493 u1[i].sectors = 0;
497 return NULL;
500 static int __uuid_write(struct cache_set *c)
502 BKEY_PADDED(key) k;
503 struct closure cl;
504 struct cache *ca = c->cache;
505 unsigned int size;
507 closure_init_stack(&cl);
508 lockdep_assert_held(&bch_register_lock);
510 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
511 return 1;
513 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
514 SET_KEY_SIZE(&k.key, size);
515 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
516 closure_sync(&cl);
518 /* Only one bucket used for uuid write */
519 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
521 bkey_copy(&c->uuid_bucket, &k.key);
522 bkey_put(c, &k.key);
523 return 0;
526 int bch_uuid_write(struct cache_set *c)
528 int ret = __uuid_write(c);
530 if (!ret)
531 bch_journal_meta(c, NULL);
533 return ret;
536 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
538 struct uuid_entry *u;
540 for (u = c->uuids;
541 u < c->uuids + c->nr_uuids; u++)
542 if (!memcmp(u->uuid, uuid, 16))
543 return u;
545 return NULL;
548 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
550 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
552 return uuid_find(c, zero_uuid);
556 * Bucket priorities/gens:
558 * For each bucket, we store on disk its
559 * 8 bit gen
560 * 16 bit priority
562 * See alloc.c for an explanation of the gen. The priority is used to implement
563 * lru (and in the future other) cache replacement policies; for most purposes
564 * it's just an opaque integer.
566 * The gens and the priorities don't have a whole lot to do with each other, and
567 * it's actually the gens that must be written out at specific times - it's no
568 * big deal if the priorities don't get written, if we lose them we just reuse
569 * buckets in suboptimal order.
571 * On disk they're stored in a packed array, and in as many buckets are required
572 * to fit them all. The buckets we use to store them form a list; the journal
573 * header points to the first bucket, the first bucket points to the second
574 * bucket, et cetera.
576 * This code is used by the allocation code; periodically (whenever it runs out
577 * of buckets to allocate from) the allocation code will invalidate some
578 * buckets, but it can't use those buckets until their new gens are safely on
579 * disk.
582 static void prio_endio(struct bio *bio)
584 struct cache *ca = bio->bi_private;
586 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
587 bch_bbio_free(bio, ca->set);
588 closure_put(&ca->prio);
591 static void prio_io(struct cache *ca, uint64_t bucket, int op,
592 unsigned long op_flags)
594 struct closure *cl = &ca->prio;
595 struct bio *bio = bch_bbio_alloc(ca->set);
597 closure_init_stack(cl);
599 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size;
600 bio_set_dev(bio, ca->bdev);
601 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb);
603 bio->bi_end_io = prio_endio;
604 bio->bi_private = ca;
605 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
606 bch_bio_map(bio, ca->disk_buckets);
608 closure_bio_submit(ca->set, bio, &ca->prio);
609 closure_sync(cl);
612 int bch_prio_write(struct cache *ca, bool wait)
614 int i;
615 struct bucket *b;
616 struct closure cl;
618 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
619 fifo_used(&ca->free[RESERVE_PRIO]),
620 fifo_used(&ca->free[RESERVE_NONE]),
621 fifo_used(&ca->free_inc));
624 * Pre-check if there are enough free buckets. In the non-blocking
625 * scenario it's better to fail early rather than starting to allocate
626 * buckets and do a cleanup later in case of failure.
628 if (!wait) {
629 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
630 fifo_used(&ca->free[RESERVE_NONE]);
631 if (prio_buckets(ca) > avail)
632 return -ENOMEM;
635 closure_init_stack(&cl);
637 lockdep_assert_held(&ca->set->bucket_lock);
639 ca->disk_buckets->seq++;
641 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
642 &ca->meta_sectors_written);
644 for (i = prio_buckets(ca) - 1; i >= 0; --i) {
645 long bucket;
646 struct prio_set *p = ca->disk_buckets;
647 struct bucket_disk *d = p->data;
648 struct bucket_disk *end = d + prios_per_bucket(ca);
650 for (b = ca->buckets + i * prios_per_bucket(ca);
651 b < ca->buckets + ca->sb.nbuckets && d < end;
652 b++, d++) {
653 d->prio = cpu_to_le16(b->prio);
654 d->gen = b->gen;
657 p->next_bucket = ca->prio_buckets[i + 1];
658 p->magic = pset_magic(&ca->sb);
659 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
661 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
662 BUG_ON(bucket == -1);
664 mutex_unlock(&ca->set->bucket_lock);
665 prio_io(ca, bucket, REQ_OP_WRITE, 0);
666 mutex_lock(&ca->set->bucket_lock);
668 ca->prio_buckets[i] = bucket;
669 atomic_dec_bug(&ca->buckets[bucket].pin);
672 mutex_unlock(&ca->set->bucket_lock);
674 bch_journal_meta(ca->set, &cl);
675 closure_sync(&cl);
677 mutex_lock(&ca->set->bucket_lock);
680 * Don't want the old priorities to get garbage collected until after we
681 * finish writing the new ones, and they're journalled
683 for (i = 0; i < prio_buckets(ca); i++) {
684 if (ca->prio_last_buckets[i])
685 __bch_bucket_free(ca,
686 &ca->buckets[ca->prio_last_buckets[i]]);
688 ca->prio_last_buckets[i] = ca->prio_buckets[i];
690 return 0;
693 static int prio_read(struct cache *ca, uint64_t bucket)
695 struct prio_set *p = ca->disk_buckets;
696 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
697 struct bucket *b;
698 unsigned int bucket_nr = 0;
699 int ret = -EIO;
701 for (b = ca->buckets;
702 b < ca->buckets + ca->sb.nbuckets;
703 b++, d++) {
704 if (d == end) {
705 ca->prio_buckets[bucket_nr] = bucket;
706 ca->prio_last_buckets[bucket_nr] = bucket;
707 bucket_nr++;
709 prio_io(ca, bucket, REQ_OP_READ, 0);
711 if (p->csum !=
712 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
713 pr_warn("bad csum reading priorities\n");
714 goto out;
717 if (p->magic != pset_magic(&ca->sb)) {
718 pr_warn("bad magic reading priorities\n");
719 goto out;
722 bucket = p->next_bucket;
723 d = p->data;
726 b->prio = le16_to_cpu(d->prio);
727 b->gen = b->last_gc = d->gen;
730 ret = 0;
731 out:
732 return ret;
735 /* Bcache device */
737 static int open_dev(struct block_device *b, fmode_t mode)
739 struct bcache_device *d = b->bd_disk->private_data;
741 if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
742 return -ENXIO;
744 closure_get(&d->cl);
745 return 0;
748 static void release_dev(struct gendisk *b, fmode_t mode)
750 struct bcache_device *d = b->private_data;
752 closure_put(&d->cl);
755 static int ioctl_dev(struct block_device *b, fmode_t mode,
756 unsigned int cmd, unsigned long arg)
758 struct bcache_device *d = b->bd_disk->private_data;
760 return d->ioctl(d, mode, cmd, arg);
763 static const struct block_device_operations bcache_cached_ops = {
764 .submit_bio = cached_dev_submit_bio,
765 .open = open_dev,
766 .release = release_dev,
767 .ioctl = ioctl_dev,
768 .owner = THIS_MODULE,
771 static const struct block_device_operations bcache_flash_ops = {
772 .submit_bio = flash_dev_submit_bio,
773 .open = open_dev,
774 .release = release_dev,
775 .ioctl = ioctl_dev,
776 .owner = THIS_MODULE,
779 void bcache_device_stop(struct bcache_device *d)
781 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
783 * closure_fn set to
784 * - cached device: cached_dev_flush()
785 * - flash dev: flash_dev_flush()
787 closure_queue(&d->cl);
790 static void bcache_device_unlink(struct bcache_device *d)
792 lockdep_assert_held(&bch_register_lock);
794 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
795 struct cache *ca = d->c->cache;
797 sysfs_remove_link(&d->c->kobj, d->name);
798 sysfs_remove_link(&d->kobj, "cache");
800 bd_unlink_disk_holder(ca->bdev, d->disk);
804 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
805 const char *name)
807 struct cache *ca = c->cache;
808 int ret;
810 bd_link_disk_holder(ca->bdev, d->disk);
812 snprintf(d->name, BCACHEDEVNAME_SIZE,
813 "%s%u", name, d->id);
815 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
816 if (ret < 0)
817 pr_err("Couldn't create device -> cache set symlink\n");
819 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
820 if (ret < 0)
821 pr_err("Couldn't create cache set -> device symlink\n");
823 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
826 static void bcache_device_detach(struct bcache_device *d)
828 lockdep_assert_held(&bch_register_lock);
830 atomic_dec(&d->c->attached_dev_nr);
832 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
833 struct uuid_entry *u = d->c->uuids + d->id;
835 SET_UUID_FLASH_ONLY(u, 0);
836 memcpy(u->uuid, invalid_uuid, 16);
837 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
838 bch_uuid_write(d->c);
841 bcache_device_unlink(d);
843 d->c->devices[d->id] = NULL;
844 closure_put(&d->c->caching);
845 d->c = NULL;
848 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
849 unsigned int id)
851 d->id = id;
852 d->c = c;
853 c->devices[id] = d;
855 if (id >= c->devices_max_used)
856 c->devices_max_used = id + 1;
858 closure_get(&c->caching);
861 static inline int first_minor_to_idx(int first_minor)
863 return (first_minor/BCACHE_MINORS);
866 static inline int idx_to_first_minor(int idx)
868 return (idx * BCACHE_MINORS);
871 static void bcache_device_free(struct bcache_device *d)
873 struct gendisk *disk = d->disk;
875 lockdep_assert_held(&bch_register_lock);
877 if (disk)
878 pr_info("%s stopped\n", disk->disk_name);
879 else
880 pr_err("bcache device (NULL gendisk) stopped\n");
882 if (d->c)
883 bcache_device_detach(d);
885 if (disk) {
886 bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
888 if (disk_added)
889 del_gendisk(disk);
891 if (disk->queue)
892 blk_cleanup_queue(disk->queue);
894 ida_simple_remove(&bcache_device_idx,
895 first_minor_to_idx(disk->first_minor));
896 if (disk_added)
897 put_disk(disk);
900 bioset_exit(&d->bio_split);
901 kvfree(d->full_dirty_stripes);
902 kvfree(d->stripe_sectors_dirty);
904 closure_debug_destroy(&d->cl);
907 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
908 sector_t sectors, struct block_device *cached_bdev,
909 const struct block_device_operations *ops)
911 struct request_queue *q;
912 const size_t max_stripes = min_t(size_t, INT_MAX,
913 SIZE_MAX / sizeof(atomic_t));
914 uint64_t n;
915 int idx;
917 if (!d->stripe_size)
918 d->stripe_size = 1 << 31;
920 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
921 if (!n || n > max_stripes) {
922 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
924 return -ENOMEM;
926 d->nr_stripes = n;
928 n = d->nr_stripes * sizeof(atomic_t);
929 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
930 if (!d->stripe_sectors_dirty)
931 return -ENOMEM;
933 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
934 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
935 if (!d->full_dirty_stripes)
936 return -ENOMEM;
938 idx = ida_simple_get(&bcache_device_idx, 0,
939 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
940 if (idx < 0)
941 return idx;
943 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
944 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
945 goto err;
947 d->disk = alloc_disk(BCACHE_MINORS);
948 if (!d->disk)
949 goto err;
951 set_capacity(d->disk, sectors);
952 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
954 d->disk->major = bcache_major;
955 d->disk->first_minor = idx_to_first_minor(idx);
956 d->disk->fops = ops;
957 d->disk->private_data = d;
959 q = blk_alloc_queue(NUMA_NO_NODE);
960 if (!q)
961 return -ENOMEM;
963 d->disk->queue = q;
964 q->limits.max_hw_sectors = UINT_MAX;
965 q->limits.max_sectors = UINT_MAX;
966 q->limits.max_segment_size = UINT_MAX;
967 q->limits.max_segments = BIO_MAX_PAGES;
968 blk_queue_max_discard_sectors(q, UINT_MAX);
969 q->limits.discard_granularity = 512;
970 q->limits.io_min = block_size;
971 q->limits.logical_block_size = block_size;
972 q->limits.physical_block_size = block_size;
974 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
976 * This should only happen with BCACHE_SB_VERSION_BDEV.
977 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
979 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
980 d->disk->disk_name, q->limits.logical_block_size,
981 PAGE_SIZE, bdev_logical_block_size(cached_bdev));
983 /* This also adjusts physical block size/min io size if needed */
984 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
987 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
988 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
989 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
991 blk_queue_write_cache(q, true, true);
993 return 0;
995 err:
996 ida_simple_remove(&bcache_device_idx, idx);
997 return -ENOMEM;
1001 /* Cached device */
1003 static void calc_cached_dev_sectors(struct cache_set *c)
1005 uint64_t sectors = 0;
1006 struct cached_dev *dc;
1008 list_for_each_entry(dc, &c->cached_devs, list)
1009 sectors += bdev_sectors(dc->bdev);
1011 c->cached_dev_sectors = sectors;
1014 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1015 static int cached_dev_status_update(void *arg)
1017 struct cached_dev *dc = arg;
1018 struct request_queue *q;
1021 * If this delayed worker is stopping outside, directly quit here.
1022 * dc->io_disable might be set via sysfs interface, so check it
1023 * here too.
1025 while (!kthread_should_stop() && !dc->io_disable) {
1026 q = bdev_get_queue(dc->bdev);
1027 if (blk_queue_dying(q))
1028 dc->offline_seconds++;
1029 else
1030 dc->offline_seconds = 0;
1032 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1033 pr_err("%s: device offline for %d seconds\n",
1034 dc->backing_dev_name,
1035 BACKING_DEV_OFFLINE_TIMEOUT);
1036 pr_err("%s: disable I/O request due to backing device offline\n",
1037 dc->disk.name);
1038 dc->io_disable = true;
1039 /* let others know earlier that io_disable is true */
1040 smp_mb();
1041 bcache_device_stop(&dc->disk);
1042 break;
1044 schedule_timeout_interruptible(HZ);
1047 wait_for_kthread_stop();
1048 return 0;
1052 int bch_cached_dev_run(struct cached_dev *dc)
1054 struct bcache_device *d = &dc->disk;
1055 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1056 char *env[] = {
1057 "DRIVER=bcache",
1058 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1059 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1060 NULL,
1063 if (dc->io_disable) {
1064 pr_err("I/O disabled on cached dev %s\n",
1065 dc->backing_dev_name);
1066 kfree(env[1]);
1067 kfree(env[2]);
1068 kfree(buf);
1069 return -EIO;
1072 if (atomic_xchg(&dc->running, 1)) {
1073 kfree(env[1]);
1074 kfree(env[2]);
1075 kfree(buf);
1076 pr_info("cached dev %s is running already\n",
1077 dc->backing_dev_name);
1078 return -EBUSY;
1081 if (!d->c &&
1082 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1083 struct closure cl;
1085 closure_init_stack(&cl);
1087 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1088 bch_write_bdev_super(dc, &cl);
1089 closure_sync(&cl);
1092 add_disk(d->disk);
1093 bd_link_disk_holder(dc->bdev, dc->disk.disk);
1095 * won't show up in the uevent file, use udevadm monitor -e instead
1096 * only class / kset properties are persistent
1098 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1099 kfree(env[1]);
1100 kfree(env[2]);
1101 kfree(buf);
1103 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1104 sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1105 &d->kobj, "bcache")) {
1106 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1107 return -ENOMEM;
1110 dc->status_update_thread = kthread_run(cached_dev_status_update,
1111 dc, "bcache_status_update");
1112 if (IS_ERR(dc->status_update_thread)) {
1113 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1116 return 0;
1120 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1121 * work dc->writeback_rate_update is running. Wait until the routine
1122 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1123 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1124 * seconds, give up waiting here and continue to cancel it too.
1126 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1128 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1130 do {
1131 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1132 &dc->disk.flags))
1133 break;
1134 time_out--;
1135 schedule_timeout_interruptible(1);
1136 } while (time_out > 0);
1138 if (time_out == 0)
1139 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1141 cancel_delayed_work_sync(&dc->writeback_rate_update);
1144 static void cached_dev_detach_finish(struct work_struct *w)
1146 struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1148 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1149 BUG_ON(refcount_read(&dc->count));
1152 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1153 cancel_writeback_rate_update_dwork(dc);
1155 if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1156 kthread_stop(dc->writeback_thread);
1157 dc->writeback_thread = NULL;
1160 mutex_lock(&bch_register_lock);
1162 calc_cached_dev_sectors(dc->disk.c);
1163 bcache_device_detach(&dc->disk);
1164 list_move(&dc->list, &uncached_devices);
1166 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1167 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1169 mutex_unlock(&bch_register_lock);
1171 pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1173 /* Drop ref we took in cached_dev_detach() */
1174 closure_put(&dc->disk.cl);
1177 void bch_cached_dev_detach(struct cached_dev *dc)
1179 lockdep_assert_held(&bch_register_lock);
1181 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1182 return;
1184 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1185 return;
1188 * Block the device from being closed and freed until we're finished
1189 * detaching
1191 closure_get(&dc->disk.cl);
1193 bch_writeback_queue(dc);
1195 cached_dev_put(dc);
1198 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1199 uint8_t *set_uuid)
1201 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1202 struct uuid_entry *u;
1203 struct cached_dev *exist_dc, *t;
1204 int ret = 0;
1206 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1207 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1208 return -ENOENT;
1210 if (dc->disk.c) {
1211 pr_err("Can't attach %s: already attached\n",
1212 dc->backing_dev_name);
1213 return -EINVAL;
1216 if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1217 pr_err("Can't attach %s: shutting down\n",
1218 dc->backing_dev_name);
1219 return -EINVAL;
1222 if (dc->sb.block_size < c->cache->sb.block_size) {
1223 /* Will die */
1224 pr_err("Couldn't attach %s: block size less than set's block size\n",
1225 dc->backing_dev_name);
1226 return -EINVAL;
1229 /* Check whether already attached */
1230 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1231 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1232 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1233 dc->backing_dev_name);
1235 return -EINVAL;
1239 u = uuid_find(c, dc->sb.uuid);
1241 if (u &&
1242 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1243 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1244 memcpy(u->uuid, invalid_uuid, 16);
1245 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1246 u = NULL;
1249 if (!u) {
1250 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1251 pr_err("Couldn't find uuid for %s in set\n",
1252 dc->backing_dev_name);
1253 return -ENOENT;
1256 u = uuid_find_empty(c);
1257 if (!u) {
1258 pr_err("Not caching %s, no room for UUID\n",
1259 dc->backing_dev_name);
1260 return -EINVAL;
1265 * Deadlocks since we're called via sysfs...
1266 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1269 if (bch_is_zero(u->uuid, 16)) {
1270 struct closure cl;
1272 closure_init_stack(&cl);
1274 memcpy(u->uuid, dc->sb.uuid, 16);
1275 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1276 u->first_reg = u->last_reg = rtime;
1277 bch_uuid_write(c);
1279 memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1280 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1282 bch_write_bdev_super(dc, &cl);
1283 closure_sync(&cl);
1284 } else {
1285 u->last_reg = rtime;
1286 bch_uuid_write(c);
1289 bcache_device_attach(&dc->disk, c, u - c->uuids);
1290 list_move(&dc->list, &c->cached_devs);
1291 calc_cached_dev_sectors(c);
1294 * dc->c must be set before dc->count != 0 - paired with the mb in
1295 * cached_dev_get()
1297 smp_wmb();
1298 refcount_set(&dc->count, 1);
1300 /* Block writeback thread, but spawn it */
1301 down_write(&dc->writeback_lock);
1302 if (bch_cached_dev_writeback_start(dc)) {
1303 up_write(&dc->writeback_lock);
1304 pr_err("Couldn't start writeback facilities for %s\n",
1305 dc->disk.disk->disk_name);
1306 return -ENOMEM;
1309 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1310 atomic_set(&dc->has_dirty, 1);
1311 bch_writeback_queue(dc);
1314 bch_sectors_dirty_init(&dc->disk);
1316 ret = bch_cached_dev_run(dc);
1317 if (ret && (ret != -EBUSY)) {
1318 up_write(&dc->writeback_lock);
1320 * bch_register_lock is held, bcache_device_stop() is not
1321 * able to be directly called. The kthread and kworker
1322 * created previously in bch_cached_dev_writeback_start()
1323 * have to be stopped manually here.
1325 kthread_stop(dc->writeback_thread);
1326 cancel_writeback_rate_update_dwork(dc);
1327 pr_err("Couldn't run cached device %s\n",
1328 dc->backing_dev_name);
1329 return ret;
1332 bcache_device_link(&dc->disk, c, "bdev");
1333 atomic_inc(&c->attached_dev_nr);
1335 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1336 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1337 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1338 set_disk_ro(dc->disk.disk, 1);
1341 /* Allow the writeback thread to proceed */
1342 up_write(&dc->writeback_lock);
1344 pr_info("Caching %s as %s on set %pU\n",
1345 dc->backing_dev_name,
1346 dc->disk.disk->disk_name,
1347 dc->disk.c->set_uuid);
1348 return 0;
1351 /* when dc->disk.kobj released */
1352 void bch_cached_dev_release(struct kobject *kobj)
1354 struct cached_dev *dc = container_of(kobj, struct cached_dev,
1355 disk.kobj);
1356 kfree(dc);
1357 module_put(THIS_MODULE);
1360 static void cached_dev_free(struct closure *cl)
1362 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1364 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1365 cancel_writeback_rate_update_dwork(dc);
1367 if (!IS_ERR_OR_NULL(dc->writeback_thread))
1368 kthread_stop(dc->writeback_thread);
1369 if (!IS_ERR_OR_NULL(dc->status_update_thread))
1370 kthread_stop(dc->status_update_thread);
1372 mutex_lock(&bch_register_lock);
1374 if (atomic_read(&dc->running))
1375 bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1376 bcache_device_free(&dc->disk);
1377 list_del(&dc->list);
1379 mutex_unlock(&bch_register_lock);
1381 if (dc->sb_disk)
1382 put_page(virt_to_page(dc->sb_disk));
1384 if (!IS_ERR_OR_NULL(dc->bdev))
1385 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1387 wake_up(&unregister_wait);
1389 kobject_put(&dc->disk.kobj);
1392 static void cached_dev_flush(struct closure *cl)
1394 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1395 struct bcache_device *d = &dc->disk;
1397 mutex_lock(&bch_register_lock);
1398 bcache_device_unlink(d);
1399 mutex_unlock(&bch_register_lock);
1401 bch_cache_accounting_destroy(&dc->accounting);
1402 kobject_del(&d->kobj);
1404 continue_at(cl, cached_dev_free, system_wq);
1407 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1409 int ret;
1410 struct io *io;
1411 struct request_queue *q = bdev_get_queue(dc->bdev);
1413 __module_get(THIS_MODULE);
1414 INIT_LIST_HEAD(&dc->list);
1415 closure_init(&dc->disk.cl, NULL);
1416 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1417 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1418 INIT_WORK(&dc->detach, cached_dev_detach_finish);
1419 sema_init(&dc->sb_write_mutex, 1);
1420 INIT_LIST_HEAD(&dc->io_lru);
1421 spin_lock_init(&dc->io_lock);
1422 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1424 dc->sequential_cutoff = 4 << 20;
1426 for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1427 list_add(&io->lru, &dc->io_lru);
1428 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1431 dc->disk.stripe_size = q->limits.io_opt >> 9;
1433 if (dc->disk.stripe_size)
1434 dc->partial_stripes_expensive =
1435 q->limits.raid_partial_stripes_expensive;
1437 ret = bcache_device_init(&dc->disk, block_size,
1438 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1439 dc->bdev, &bcache_cached_ops);
1440 if (ret)
1441 return ret;
1443 blk_queue_io_opt(dc->disk.disk->queue,
1444 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1446 atomic_set(&dc->io_errors, 0);
1447 dc->io_disable = false;
1448 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1449 /* default to auto */
1450 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1452 bch_cached_dev_request_init(dc);
1453 bch_cached_dev_writeback_init(dc);
1454 return 0;
1457 /* Cached device - bcache superblock */
1459 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1460 struct block_device *bdev,
1461 struct cached_dev *dc)
1463 const char *err = "cannot allocate memory";
1464 struct cache_set *c;
1465 int ret = -ENOMEM;
1467 bdevname(bdev, dc->backing_dev_name);
1468 memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1469 dc->bdev = bdev;
1470 dc->bdev->bd_holder = dc;
1471 dc->sb_disk = sb_disk;
1473 if (cached_dev_init(dc, sb->block_size << 9))
1474 goto err;
1476 err = "error creating kobject";
1477 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1478 goto err;
1479 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1480 goto err;
1482 pr_info("registered backing device %s\n", dc->backing_dev_name);
1484 list_add(&dc->list, &uncached_devices);
1485 /* attach to a matched cache set if it exists */
1486 list_for_each_entry(c, &bch_cache_sets, list)
1487 bch_cached_dev_attach(dc, c, NULL);
1489 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1490 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1491 err = "failed to run cached device";
1492 ret = bch_cached_dev_run(dc);
1493 if (ret)
1494 goto err;
1497 return 0;
1498 err:
1499 pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1500 bcache_device_stop(&dc->disk);
1501 return ret;
1504 /* Flash only volumes */
1506 /* When d->kobj released */
1507 void bch_flash_dev_release(struct kobject *kobj)
1509 struct bcache_device *d = container_of(kobj, struct bcache_device,
1510 kobj);
1511 kfree(d);
1514 static void flash_dev_free(struct closure *cl)
1516 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1518 mutex_lock(&bch_register_lock);
1519 atomic_long_sub(bcache_dev_sectors_dirty(d),
1520 &d->c->flash_dev_dirty_sectors);
1521 bcache_device_free(d);
1522 mutex_unlock(&bch_register_lock);
1523 kobject_put(&d->kobj);
1526 static void flash_dev_flush(struct closure *cl)
1528 struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1530 mutex_lock(&bch_register_lock);
1531 bcache_device_unlink(d);
1532 mutex_unlock(&bch_register_lock);
1533 kobject_del(&d->kobj);
1534 continue_at(cl, flash_dev_free, system_wq);
1537 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1539 struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1540 GFP_KERNEL);
1541 if (!d)
1542 return -ENOMEM;
1544 closure_init(&d->cl, NULL);
1545 set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1547 kobject_init(&d->kobj, &bch_flash_dev_ktype);
1549 if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1550 NULL, &bcache_flash_ops))
1551 goto err;
1553 bcache_device_attach(d, c, u - c->uuids);
1554 bch_sectors_dirty_init(d);
1555 bch_flash_dev_request_init(d);
1556 add_disk(d->disk);
1558 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1559 goto err;
1561 bcache_device_link(d, c, "volume");
1563 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1564 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1565 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1566 set_disk_ro(d->disk, 1);
1569 return 0;
1570 err:
1571 kobject_put(&d->kobj);
1572 return -ENOMEM;
1575 static int flash_devs_run(struct cache_set *c)
1577 int ret = 0;
1578 struct uuid_entry *u;
1580 for (u = c->uuids;
1581 u < c->uuids + c->nr_uuids && !ret;
1582 u++)
1583 if (UUID_FLASH_ONLY(u))
1584 ret = flash_dev_run(c, u);
1586 return ret;
1589 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1591 struct uuid_entry *u;
1593 if (test_bit(CACHE_SET_STOPPING, &c->flags))
1594 return -EINTR;
1596 if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1597 return -EPERM;
1599 u = uuid_find_empty(c);
1600 if (!u) {
1601 pr_err("Can't create volume, no room for UUID\n");
1602 return -EINVAL;
1605 get_random_bytes(u->uuid, 16);
1606 memset(u->label, 0, 32);
1607 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1609 SET_UUID_FLASH_ONLY(u, 1);
1610 u->sectors = size >> 9;
1612 bch_uuid_write(c);
1614 return flash_dev_run(c, u);
1617 bool bch_cached_dev_error(struct cached_dev *dc)
1619 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1620 return false;
1622 dc->io_disable = true;
1623 /* make others know io_disable is true earlier */
1624 smp_mb();
1626 pr_err("stop %s: too many IO errors on backing device %s\n",
1627 dc->disk.disk->disk_name, dc->backing_dev_name);
1629 bcache_device_stop(&dc->disk);
1630 return true;
1633 /* Cache set */
1635 __printf(2, 3)
1636 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1638 struct va_format vaf;
1639 va_list args;
1641 if (c->on_error != ON_ERROR_PANIC &&
1642 test_bit(CACHE_SET_STOPPING, &c->flags))
1643 return false;
1645 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1646 pr_info("CACHE_SET_IO_DISABLE already set\n");
1649 * XXX: we can be called from atomic context
1650 * acquire_console_sem();
1653 va_start(args, fmt);
1655 vaf.fmt = fmt;
1656 vaf.va = &args;
1658 pr_err("error on %pU: %pV, disabling caching\n",
1659 c->set_uuid, &vaf);
1661 va_end(args);
1663 if (c->on_error == ON_ERROR_PANIC)
1664 panic("panic forced after error\n");
1666 bch_cache_set_unregister(c);
1667 return true;
1670 /* When c->kobj released */
1671 void bch_cache_set_release(struct kobject *kobj)
1673 struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1675 kfree(c);
1676 module_put(THIS_MODULE);
1679 static void cache_set_free(struct closure *cl)
1681 struct cache_set *c = container_of(cl, struct cache_set, cl);
1682 struct cache *ca;
1684 debugfs_remove(c->debug);
1686 bch_open_buckets_free(c);
1687 bch_btree_cache_free(c);
1688 bch_journal_free(c);
1690 mutex_lock(&bch_register_lock);
1691 bch_bset_sort_state_free(&c->sort);
1692 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1694 ca = c->cache;
1695 if (ca) {
1696 ca->set = NULL;
1697 c->cache = NULL;
1698 kobject_put(&ca->kobj);
1702 if (c->moving_gc_wq)
1703 destroy_workqueue(c->moving_gc_wq);
1704 bioset_exit(&c->bio_split);
1705 mempool_exit(&c->fill_iter);
1706 mempool_exit(&c->bio_meta);
1707 mempool_exit(&c->search);
1708 kfree(c->devices);
1710 list_del(&c->list);
1711 mutex_unlock(&bch_register_lock);
1713 pr_info("Cache set %pU unregistered\n", c->set_uuid);
1714 wake_up(&unregister_wait);
1716 closure_debug_destroy(&c->cl);
1717 kobject_put(&c->kobj);
1720 static void cache_set_flush(struct closure *cl)
1722 struct cache_set *c = container_of(cl, struct cache_set, caching);
1723 struct cache *ca = c->cache;
1724 struct btree *b;
1726 bch_cache_accounting_destroy(&c->accounting);
1728 kobject_put(&c->internal);
1729 kobject_del(&c->kobj);
1731 if (!IS_ERR_OR_NULL(c->gc_thread))
1732 kthread_stop(c->gc_thread);
1734 if (!IS_ERR_OR_NULL(c->root))
1735 list_add(&c->root->list, &c->btree_cache);
1738 * Avoid flushing cached nodes if cache set is retiring
1739 * due to too many I/O errors detected.
1741 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1742 list_for_each_entry(b, &c->btree_cache, list) {
1743 mutex_lock(&b->write_lock);
1744 if (btree_node_dirty(b))
1745 __bch_btree_node_write(b, NULL);
1746 mutex_unlock(&b->write_lock);
1749 if (ca->alloc_thread)
1750 kthread_stop(ca->alloc_thread);
1752 if (c->journal.cur) {
1753 cancel_delayed_work_sync(&c->journal.work);
1754 /* flush last journal entry if needed */
1755 c->journal.work.work.func(&c->journal.work.work);
1758 closure_return(cl);
1762 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1763 * cache set is unregistering due to too many I/O errors. In this condition,
1764 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1765 * value and whether the broken cache has dirty data:
1767 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1768 * BCH_CACHED_STOP_AUTO 0 NO
1769 * BCH_CACHED_STOP_AUTO 1 YES
1770 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1771 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1773 * The expected behavior is, if stop_when_cache_set_failed is configured to
1774 * "auto" via sysfs interface, the bcache device will not be stopped if the
1775 * backing device is clean on the broken cache device.
1777 static void conditional_stop_bcache_device(struct cache_set *c,
1778 struct bcache_device *d,
1779 struct cached_dev *dc)
1781 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1782 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1783 d->disk->disk_name, c->set_uuid);
1784 bcache_device_stop(d);
1785 } else if (atomic_read(&dc->has_dirty)) {
1787 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1788 * and dc->has_dirty == 1
1790 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1791 d->disk->disk_name);
1793 * There might be a small time gap that cache set is
1794 * released but bcache device is not. Inside this time
1795 * gap, regular I/O requests will directly go into
1796 * backing device as no cache set attached to. This
1797 * behavior may also introduce potential inconsistence
1798 * data in writeback mode while cache is dirty.
1799 * Therefore before calling bcache_device_stop() due
1800 * to a broken cache device, dc->io_disable should be
1801 * explicitly set to true.
1803 dc->io_disable = true;
1804 /* make others know io_disable is true earlier */
1805 smp_mb();
1806 bcache_device_stop(d);
1807 } else {
1809 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1810 * and dc->has_dirty == 0
1812 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1813 d->disk->disk_name);
1817 static void __cache_set_unregister(struct closure *cl)
1819 struct cache_set *c = container_of(cl, struct cache_set, caching);
1820 struct cached_dev *dc;
1821 struct bcache_device *d;
1822 size_t i;
1824 mutex_lock(&bch_register_lock);
1826 for (i = 0; i < c->devices_max_used; i++) {
1827 d = c->devices[i];
1828 if (!d)
1829 continue;
1831 if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1832 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1833 dc = container_of(d, struct cached_dev, disk);
1834 bch_cached_dev_detach(dc);
1835 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1836 conditional_stop_bcache_device(c, d, dc);
1837 } else {
1838 bcache_device_stop(d);
1842 mutex_unlock(&bch_register_lock);
1844 continue_at(cl, cache_set_flush, system_wq);
1847 void bch_cache_set_stop(struct cache_set *c)
1849 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1850 /* closure_fn set to __cache_set_unregister() */
1851 closure_queue(&c->caching);
1854 void bch_cache_set_unregister(struct cache_set *c)
1856 set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1857 bch_cache_set_stop(c);
1860 #define alloc_meta_bucket_pages(gfp, sb) \
1861 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1863 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1865 int iter_size;
1866 struct cache *ca = container_of(sb, struct cache, sb);
1867 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1869 if (!c)
1870 return NULL;
1872 __module_get(THIS_MODULE);
1873 closure_init(&c->cl, NULL);
1874 set_closure_fn(&c->cl, cache_set_free, system_wq);
1876 closure_init(&c->caching, &c->cl);
1877 set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1879 /* Maybe create continue_at_noreturn() and use it here? */
1880 closure_set_stopped(&c->cl);
1881 closure_put(&c->cl);
1883 kobject_init(&c->kobj, &bch_cache_set_ktype);
1884 kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1886 bch_cache_accounting_init(&c->accounting, &c->cl);
1888 memcpy(c->set_uuid, sb->set_uuid, 16);
1890 c->cache = ca;
1891 c->cache->set = c;
1892 c->bucket_bits = ilog2(sb->bucket_size);
1893 c->block_bits = ilog2(sb->block_size);
1894 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1895 c->devices_max_used = 0;
1896 atomic_set(&c->attached_dev_nr, 0);
1897 c->btree_pages = meta_bucket_pages(sb);
1898 if (c->btree_pages > BTREE_MAX_PAGES)
1899 c->btree_pages = max_t(int, c->btree_pages / 4,
1900 BTREE_MAX_PAGES);
1902 sema_init(&c->sb_write_mutex, 1);
1903 mutex_init(&c->bucket_lock);
1904 init_waitqueue_head(&c->btree_cache_wait);
1905 spin_lock_init(&c->btree_cannibalize_lock);
1906 init_waitqueue_head(&c->bucket_wait);
1907 init_waitqueue_head(&c->gc_wait);
1908 sema_init(&c->uuid_write_mutex, 1);
1910 spin_lock_init(&c->btree_gc_time.lock);
1911 spin_lock_init(&c->btree_split_time.lock);
1912 spin_lock_init(&c->btree_read_time.lock);
1914 bch_moving_init_cache_set(c);
1916 INIT_LIST_HEAD(&c->list);
1917 INIT_LIST_HEAD(&c->cached_devs);
1918 INIT_LIST_HEAD(&c->btree_cache);
1919 INIT_LIST_HEAD(&c->btree_cache_freeable);
1920 INIT_LIST_HEAD(&c->btree_cache_freed);
1921 INIT_LIST_HEAD(&c->data_buckets);
1923 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1924 sizeof(struct btree_iter_set);
1926 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1927 if (!c->devices)
1928 goto err;
1930 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1931 goto err;
1933 if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1934 sizeof(struct bbio) +
1935 sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1936 goto err;
1938 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1939 goto err;
1941 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1942 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1943 goto err;
1945 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1946 if (!c->uuids)
1947 goto err;
1949 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1950 if (!c->moving_gc_wq)
1951 goto err;
1953 if (bch_journal_alloc(c))
1954 goto err;
1956 if (bch_btree_cache_alloc(c))
1957 goto err;
1959 if (bch_open_buckets_alloc(c))
1960 goto err;
1962 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1963 goto err;
1965 c->congested_read_threshold_us = 2000;
1966 c->congested_write_threshold_us = 20000;
1967 c->error_limit = DEFAULT_IO_ERROR_LIMIT;
1968 c->idle_max_writeback_rate_enabled = 1;
1969 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1971 return c;
1972 err:
1973 bch_cache_set_unregister(c);
1974 return NULL;
1977 static int run_cache_set(struct cache_set *c)
1979 const char *err = "cannot allocate memory";
1980 struct cached_dev *dc, *t;
1981 struct cache *ca = c->cache;
1982 struct closure cl;
1983 LIST_HEAD(journal);
1984 struct journal_replay *l;
1986 closure_init_stack(&cl);
1988 c->nbuckets = ca->sb.nbuckets;
1989 set_gc_sectors(c);
1991 if (CACHE_SYNC(&c->cache->sb)) {
1992 struct bkey *k;
1993 struct jset *j;
1995 err = "cannot allocate memory for journal";
1996 if (bch_journal_read(c, &journal))
1997 goto err;
1999 pr_debug("btree_journal_read() done\n");
2001 err = "no journal entries found";
2002 if (list_empty(&journal))
2003 goto err;
2005 j = &list_entry(journal.prev, struct journal_replay, list)->j;
2007 err = "IO error reading priorities";
2008 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2009 goto err;
2012 * If prio_read() fails it'll call cache_set_error and we'll
2013 * tear everything down right away, but if we perhaps checked
2014 * sooner we could avoid journal replay.
2017 k = &j->btree_root;
2019 err = "bad btree root";
2020 if (__bch_btree_ptr_invalid(c, k))
2021 goto err;
2023 err = "error reading btree root";
2024 c->root = bch_btree_node_get(c, NULL, k,
2025 j->btree_level,
2026 true, NULL);
2027 if (IS_ERR_OR_NULL(c->root))
2028 goto err;
2030 list_del_init(&c->root->list);
2031 rw_unlock(true, c->root);
2033 err = uuid_read(c, j, &cl);
2034 if (err)
2035 goto err;
2037 err = "error in recovery";
2038 if (bch_btree_check(c))
2039 goto err;
2041 bch_journal_mark(c, &journal);
2042 bch_initial_gc_finish(c);
2043 pr_debug("btree_check() done\n");
2046 * bcache_journal_next() can't happen sooner, or
2047 * btree_gc_finish() will give spurious errors about last_gc >
2048 * gc_gen - this is a hack but oh well.
2050 bch_journal_next(&c->journal);
2052 err = "error starting allocator thread";
2053 if (bch_cache_allocator_start(ca))
2054 goto err;
2057 * First place it's safe to allocate: btree_check() and
2058 * btree_gc_finish() have to run before we have buckets to
2059 * allocate, and bch_bucket_alloc_set() might cause a journal
2060 * entry to be written so bcache_journal_next() has to be called
2061 * first.
2063 * If the uuids were in the old format we have to rewrite them
2064 * before the next journal entry is written:
2066 if (j->version < BCACHE_JSET_VERSION_UUID)
2067 __uuid_write(c);
2069 err = "bcache: replay journal failed";
2070 if (bch_journal_replay(c, &journal))
2071 goto err;
2072 } else {
2073 unsigned int j;
2075 pr_notice("invalidating existing data\n");
2076 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2077 2, SB_JOURNAL_BUCKETS);
2079 for (j = 0; j < ca->sb.keys; j++)
2080 ca->sb.d[j] = ca->sb.first_bucket + j;
2082 bch_initial_gc_finish(c);
2084 err = "error starting allocator thread";
2085 if (bch_cache_allocator_start(ca))
2086 goto err;
2088 mutex_lock(&c->bucket_lock);
2089 bch_prio_write(ca, true);
2090 mutex_unlock(&c->bucket_lock);
2092 err = "cannot allocate new UUID bucket";
2093 if (__uuid_write(c))
2094 goto err;
2096 err = "cannot allocate new btree root";
2097 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2098 if (IS_ERR_OR_NULL(c->root))
2099 goto err;
2101 mutex_lock(&c->root->write_lock);
2102 bkey_copy_key(&c->root->key, &MAX_KEY);
2103 bch_btree_node_write(c->root, &cl);
2104 mutex_unlock(&c->root->write_lock);
2106 bch_btree_set_root(c->root);
2107 rw_unlock(true, c->root);
2110 * We don't want to write the first journal entry until
2111 * everything is set up - fortunately journal entries won't be
2112 * written until the SET_CACHE_SYNC() here:
2114 SET_CACHE_SYNC(&c->cache->sb, true);
2116 bch_journal_next(&c->journal);
2117 bch_journal_meta(c, &cl);
2120 err = "error starting gc thread";
2121 if (bch_gc_thread_start(c))
2122 goto err;
2124 closure_sync(&cl);
2125 c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2126 bcache_write_super(c);
2128 if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2129 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2131 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2132 bch_cached_dev_attach(dc, c, NULL);
2134 flash_devs_run(c);
2136 set_bit(CACHE_SET_RUNNING, &c->flags);
2137 return 0;
2138 err:
2139 while (!list_empty(&journal)) {
2140 l = list_first_entry(&journal, struct journal_replay, list);
2141 list_del(&l->list);
2142 kfree(l);
2145 closure_sync(&cl);
2147 bch_cache_set_error(c, "%s", err);
2149 return -EIO;
2152 static const char *register_cache_set(struct cache *ca)
2154 char buf[12];
2155 const char *err = "cannot allocate memory";
2156 struct cache_set *c;
2158 list_for_each_entry(c, &bch_cache_sets, list)
2159 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2160 if (c->cache)
2161 return "duplicate cache set member";
2163 goto found;
2166 c = bch_cache_set_alloc(&ca->sb);
2167 if (!c)
2168 return err;
2170 err = "error creating kobject";
2171 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2172 kobject_add(&c->internal, &c->kobj, "internal"))
2173 goto err;
2175 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2176 goto err;
2178 bch_debug_init_cache_set(c);
2180 list_add(&c->list, &bch_cache_sets);
2181 found:
2182 sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2183 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2184 sysfs_create_link(&c->kobj, &ca->kobj, buf))
2185 goto err;
2187 kobject_get(&ca->kobj);
2188 ca->set = c;
2189 ca->set->cache = ca;
2191 err = "failed to run cache set";
2192 if (run_cache_set(c) < 0)
2193 goto err;
2195 return NULL;
2196 err:
2197 bch_cache_set_unregister(c);
2198 return err;
2201 /* Cache device */
2203 /* When ca->kobj released */
2204 void bch_cache_release(struct kobject *kobj)
2206 struct cache *ca = container_of(kobj, struct cache, kobj);
2207 unsigned int i;
2209 if (ca->set) {
2210 BUG_ON(ca->set->cache != ca);
2211 ca->set->cache = NULL;
2214 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2215 kfree(ca->prio_buckets);
2216 vfree(ca->buckets);
2218 free_heap(&ca->heap);
2219 free_fifo(&ca->free_inc);
2221 for (i = 0; i < RESERVE_NR; i++)
2222 free_fifo(&ca->free[i]);
2224 if (ca->sb_disk)
2225 put_page(virt_to_page(ca->sb_disk));
2227 if (!IS_ERR_OR_NULL(ca->bdev))
2228 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2230 kfree(ca);
2231 module_put(THIS_MODULE);
2234 static int cache_alloc(struct cache *ca)
2236 size_t free;
2237 size_t btree_buckets;
2238 struct bucket *b;
2239 int ret = -ENOMEM;
2240 const char *err = NULL;
2242 __module_get(THIS_MODULE);
2243 kobject_init(&ca->kobj, &bch_cache_ktype);
2245 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2248 * when ca->sb.njournal_buckets is not zero, journal exists,
2249 * and in bch_journal_replay(), tree node may split,
2250 * so bucket of RESERVE_BTREE type is needed,
2251 * the worst situation is all journal buckets are valid journal,
2252 * and all the keys need to replay,
2253 * so the number of RESERVE_BTREE type buckets should be as much
2254 * as journal buckets
2256 btree_buckets = ca->sb.njournal_buckets ?: 8;
2257 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2258 if (!free) {
2259 ret = -EPERM;
2260 err = "ca->sb.nbuckets is too small";
2261 goto err_free;
2264 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2265 GFP_KERNEL)) {
2266 err = "ca->free[RESERVE_BTREE] alloc failed";
2267 goto err_btree_alloc;
2270 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2271 GFP_KERNEL)) {
2272 err = "ca->free[RESERVE_PRIO] alloc failed";
2273 goto err_prio_alloc;
2276 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2277 err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2278 goto err_movinggc_alloc;
2281 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2282 err = "ca->free[RESERVE_NONE] alloc failed";
2283 goto err_none_alloc;
2286 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2287 err = "ca->free_inc alloc failed";
2288 goto err_free_inc_alloc;
2291 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2292 err = "ca->heap alloc failed";
2293 goto err_heap_alloc;
2296 ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2297 ca->sb.nbuckets));
2298 if (!ca->buckets) {
2299 err = "ca->buckets alloc failed";
2300 goto err_buckets_alloc;
2303 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2304 prio_buckets(ca), 2),
2305 GFP_KERNEL);
2306 if (!ca->prio_buckets) {
2307 err = "ca->prio_buckets alloc failed";
2308 goto err_prio_buckets_alloc;
2311 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2312 if (!ca->disk_buckets) {
2313 err = "ca->disk_buckets alloc failed";
2314 goto err_disk_buckets_alloc;
2317 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2319 for_each_bucket(b, ca)
2320 atomic_set(&b->pin, 0);
2321 return 0;
2323 err_disk_buckets_alloc:
2324 kfree(ca->prio_buckets);
2325 err_prio_buckets_alloc:
2326 vfree(ca->buckets);
2327 err_buckets_alloc:
2328 free_heap(&ca->heap);
2329 err_heap_alloc:
2330 free_fifo(&ca->free_inc);
2331 err_free_inc_alloc:
2332 free_fifo(&ca->free[RESERVE_NONE]);
2333 err_none_alloc:
2334 free_fifo(&ca->free[RESERVE_MOVINGGC]);
2335 err_movinggc_alloc:
2336 free_fifo(&ca->free[RESERVE_PRIO]);
2337 err_prio_alloc:
2338 free_fifo(&ca->free[RESERVE_BTREE]);
2339 err_btree_alloc:
2340 err_free:
2341 module_put(THIS_MODULE);
2342 if (err)
2343 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2344 return ret;
2347 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2348 struct block_device *bdev, struct cache *ca)
2350 const char *err = NULL; /* must be set for any error case */
2351 int ret = 0;
2353 bdevname(bdev, ca->cache_dev_name);
2354 memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2355 ca->bdev = bdev;
2356 ca->bdev->bd_holder = ca;
2357 ca->sb_disk = sb_disk;
2359 if (blk_queue_discard(bdev_get_queue(bdev)))
2360 ca->discard = CACHE_DISCARD(&ca->sb);
2362 ret = cache_alloc(ca);
2363 if (ret != 0) {
2365 * If we failed here, it means ca->kobj is not initialized yet,
2366 * kobject_put() won't be called and there is no chance to
2367 * call blkdev_put() to bdev in bch_cache_release(). So we
2368 * explicitly call blkdev_put() here.
2370 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2371 if (ret == -ENOMEM)
2372 err = "cache_alloc(): -ENOMEM";
2373 else if (ret == -EPERM)
2374 err = "cache_alloc(): cache device is too small";
2375 else
2376 err = "cache_alloc(): unknown error";
2377 goto err;
2380 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2381 err = "error calling kobject_add";
2382 ret = -ENOMEM;
2383 goto out;
2386 mutex_lock(&bch_register_lock);
2387 err = register_cache_set(ca);
2388 mutex_unlock(&bch_register_lock);
2390 if (err) {
2391 ret = -ENODEV;
2392 goto out;
2395 pr_info("registered cache device %s\n", ca->cache_dev_name);
2397 out:
2398 kobject_put(&ca->kobj);
2400 err:
2401 if (err)
2402 pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2404 return ret;
2407 /* Global interfaces/init */
2409 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2410 const char *buffer, size_t size);
2411 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2412 struct kobj_attribute *attr,
2413 const char *buffer, size_t size);
2415 kobj_attribute_write(register, register_bcache);
2416 kobj_attribute_write(register_quiet, register_bcache);
2417 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup);
2419 static bool bch_is_open_backing(dev_t dev)
2421 struct cache_set *c, *tc;
2422 struct cached_dev *dc, *t;
2424 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2425 list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2426 if (dc->bdev->bd_dev == dev)
2427 return true;
2428 list_for_each_entry_safe(dc, t, &uncached_devices, list)
2429 if (dc->bdev->bd_dev == dev)
2430 return true;
2431 return false;
2434 static bool bch_is_open_cache(dev_t dev)
2436 struct cache_set *c, *tc;
2438 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2439 struct cache *ca = c->cache;
2441 if (ca->bdev->bd_dev == dev)
2442 return true;
2445 return false;
2448 static bool bch_is_open(dev_t dev)
2450 return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2453 struct async_reg_args {
2454 struct delayed_work reg_work;
2455 char *path;
2456 struct cache_sb *sb;
2457 struct cache_sb_disk *sb_disk;
2458 struct block_device *bdev;
2461 static void register_bdev_worker(struct work_struct *work)
2463 int fail = false;
2464 struct async_reg_args *args =
2465 container_of(work, struct async_reg_args, reg_work.work);
2466 struct cached_dev *dc;
2468 dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2469 if (!dc) {
2470 fail = true;
2471 put_page(virt_to_page(args->sb_disk));
2472 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2473 goto out;
2476 mutex_lock(&bch_register_lock);
2477 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2478 fail = true;
2479 mutex_unlock(&bch_register_lock);
2481 out:
2482 if (fail)
2483 pr_info("error %s: fail to register backing device\n",
2484 args->path);
2485 kfree(args->sb);
2486 kfree(args->path);
2487 kfree(args);
2488 module_put(THIS_MODULE);
2491 static void register_cache_worker(struct work_struct *work)
2493 int fail = false;
2494 struct async_reg_args *args =
2495 container_of(work, struct async_reg_args, reg_work.work);
2496 struct cache *ca;
2498 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2499 if (!ca) {
2500 fail = true;
2501 put_page(virt_to_page(args->sb_disk));
2502 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2503 goto out;
2506 /* blkdev_put() will be called in bch_cache_release() */
2507 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2508 fail = true;
2510 out:
2511 if (fail)
2512 pr_info("error %s: fail to register cache device\n",
2513 args->path);
2514 kfree(args->sb);
2515 kfree(args->path);
2516 kfree(args);
2517 module_put(THIS_MODULE);
2520 static void register_device_aync(struct async_reg_args *args)
2522 if (SB_IS_BDEV(args->sb))
2523 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2524 else
2525 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2527 /* 10 jiffies is enough for a delay */
2528 queue_delayed_work(system_wq, &args->reg_work, 10);
2531 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2532 const char *buffer, size_t size)
2534 const char *err;
2535 char *path = NULL;
2536 struct cache_sb *sb;
2537 struct cache_sb_disk *sb_disk;
2538 struct block_device *bdev;
2539 ssize_t ret;
2540 bool async_registration = false;
2542 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2543 async_registration = true;
2544 #endif
2546 ret = -EBUSY;
2547 err = "failed to reference bcache module";
2548 if (!try_module_get(THIS_MODULE))
2549 goto out;
2551 /* For latest state of bcache_is_reboot */
2552 smp_mb();
2553 err = "bcache is in reboot";
2554 if (bcache_is_reboot)
2555 goto out_module_put;
2557 ret = -ENOMEM;
2558 err = "cannot allocate memory";
2559 path = kstrndup(buffer, size, GFP_KERNEL);
2560 if (!path)
2561 goto out_module_put;
2563 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2564 if (!sb)
2565 goto out_free_path;
2567 ret = -EINVAL;
2568 err = "failed to open device";
2569 bdev = blkdev_get_by_path(strim(path),
2570 FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2571 sb);
2572 if (IS_ERR(bdev)) {
2573 if (bdev == ERR_PTR(-EBUSY)) {
2574 dev_t dev;
2576 mutex_lock(&bch_register_lock);
2577 if (lookup_bdev(strim(path), &dev) == 0 &&
2578 bch_is_open(dev))
2579 err = "device already registered";
2580 else
2581 err = "device busy";
2582 mutex_unlock(&bch_register_lock);
2583 if (attr == &ksysfs_register_quiet)
2584 goto done;
2586 goto out_free_sb;
2589 err = "failed to set blocksize";
2590 if (set_blocksize(bdev, 4096))
2591 goto out_blkdev_put;
2593 err = read_super(sb, bdev, &sb_disk);
2594 if (err)
2595 goto out_blkdev_put;
2597 err = "failed to register device";
2599 if (async_registration) {
2600 /* register in asynchronous way */
2601 struct async_reg_args *args =
2602 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2604 if (!args) {
2605 ret = -ENOMEM;
2606 err = "cannot allocate memory";
2607 goto out_put_sb_page;
2610 args->path = path;
2611 args->sb = sb;
2612 args->sb_disk = sb_disk;
2613 args->bdev = bdev;
2614 register_device_aync(args);
2615 /* No wait and returns to user space */
2616 goto async_done;
2619 if (SB_IS_BDEV(sb)) {
2620 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2622 if (!dc)
2623 goto out_put_sb_page;
2625 mutex_lock(&bch_register_lock);
2626 ret = register_bdev(sb, sb_disk, bdev, dc);
2627 mutex_unlock(&bch_register_lock);
2628 /* blkdev_put() will be called in cached_dev_free() */
2629 if (ret < 0)
2630 goto out_free_sb;
2631 } else {
2632 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2634 if (!ca)
2635 goto out_put_sb_page;
2637 /* blkdev_put() will be called in bch_cache_release() */
2638 if (register_cache(sb, sb_disk, bdev, ca) != 0)
2639 goto out_free_sb;
2642 done:
2643 kfree(sb);
2644 kfree(path);
2645 module_put(THIS_MODULE);
2646 async_done:
2647 return size;
2649 out_put_sb_page:
2650 put_page(virt_to_page(sb_disk));
2651 out_blkdev_put:
2652 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2653 out_free_sb:
2654 kfree(sb);
2655 out_free_path:
2656 kfree(path);
2657 path = NULL;
2658 out_module_put:
2659 module_put(THIS_MODULE);
2660 out:
2661 pr_info("error %s: %s\n", path?path:"", err);
2662 return ret;
2666 struct pdev {
2667 struct list_head list;
2668 struct cached_dev *dc;
2671 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2672 struct kobj_attribute *attr,
2673 const char *buffer,
2674 size_t size)
2676 LIST_HEAD(pending_devs);
2677 ssize_t ret = size;
2678 struct cached_dev *dc, *tdc;
2679 struct pdev *pdev, *tpdev;
2680 struct cache_set *c, *tc;
2682 mutex_lock(&bch_register_lock);
2683 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2684 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2685 if (!pdev)
2686 break;
2687 pdev->dc = dc;
2688 list_add(&pdev->list, &pending_devs);
2691 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2692 char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2693 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2694 char *set_uuid = c->set_uuid;
2696 if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2697 list_del(&pdev->list);
2698 kfree(pdev);
2699 break;
2703 mutex_unlock(&bch_register_lock);
2705 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2706 pr_info("delete pdev %p\n", pdev);
2707 list_del(&pdev->list);
2708 bcache_device_stop(&pdev->dc->disk);
2709 kfree(pdev);
2712 return ret;
2715 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2717 if (bcache_is_reboot)
2718 return NOTIFY_DONE;
2720 if (code == SYS_DOWN ||
2721 code == SYS_HALT ||
2722 code == SYS_POWER_OFF) {
2723 DEFINE_WAIT(wait);
2724 unsigned long start = jiffies;
2725 bool stopped = false;
2727 struct cache_set *c, *tc;
2728 struct cached_dev *dc, *tdc;
2730 mutex_lock(&bch_register_lock);
2732 if (bcache_is_reboot)
2733 goto out;
2735 /* New registration is rejected since now */
2736 bcache_is_reboot = true;
2738 * Make registering caller (if there is) on other CPU
2739 * core know bcache_is_reboot set to true earlier
2741 smp_mb();
2743 if (list_empty(&bch_cache_sets) &&
2744 list_empty(&uncached_devices))
2745 goto out;
2747 mutex_unlock(&bch_register_lock);
2749 pr_info("Stopping all devices:\n");
2752 * The reason bch_register_lock is not held to call
2753 * bch_cache_set_stop() and bcache_device_stop() is to
2754 * avoid potential deadlock during reboot, because cache
2755 * set or bcache device stopping process will acqurie
2756 * bch_register_lock too.
2758 * We are safe here because bcache_is_reboot sets to
2759 * true already, register_bcache() will reject new
2760 * registration now. bcache_is_reboot also makes sure
2761 * bcache_reboot() won't be re-entered on by other thread,
2762 * so there is no race in following list iteration by
2763 * list_for_each_entry_safe().
2765 list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2766 bch_cache_set_stop(c);
2768 list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2769 bcache_device_stop(&dc->disk);
2773 * Give an early chance for other kthreads and
2774 * kworkers to stop themselves
2776 schedule();
2778 /* What's a condition variable? */
2779 while (1) {
2780 long timeout = start + 10 * HZ - jiffies;
2782 mutex_lock(&bch_register_lock);
2783 stopped = list_empty(&bch_cache_sets) &&
2784 list_empty(&uncached_devices);
2786 if (timeout < 0 || stopped)
2787 break;
2789 prepare_to_wait(&unregister_wait, &wait,
2790 TASK_UNINTERRUPTIBLE);
2792 mutex_unlock(&bch_register_lock);
2793 schedule_timeout(timeout);
2796 finish_wait(&unregister_wait, &wait);
2798 if (stopped)
2799 pr_info("All devices stopped\n");
2800 else
2801 pr_notice("Timeout waiting for devices to be closed\n");
2802 out:
2803 mutex_unlock(&bch_register_lock);
2806 return NOTIFY_DONE;
2809 static struct notifier_block reboot = {
2810 .notifier_call = bcache_reboot,
2811 .priority = INT_MAX, /* before any real devices */
2814 static void bcache_exit(void)
2816 bch_debug_exit();
2817 bch_request_exit();
2818 if (bcache_kobj)
2819 kobject_put(bcache_kobj);
2820 if (bcache_wq)
2821 destroy_workqueue(bcache_wq);
2822 if (bch_journal_wq)
2823 destroy_workqueue(bch_journal_wq);
2825 if (bcache_major)
2826 unregister_blkdev(bcache_major, "bcache");
2827 unregister_reboot_notifier(&reboot);
2828 mutex_destroy(&bch_register_lock);
2831 /* Check and fixup module parameters */
2832 static void check_module_parameters(void)
2834 if (bch_cutoff_writeback_sync == 0)
2835 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2836 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2837 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2838 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2839 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2842 if (bch_cutoff_writeback == 0)
2843 bch_cutoff_writeback = CUTOFF_WRITEBACK;
2844 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2845 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2846 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2847 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2850 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2851 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2852 bch_cutoff_writeback, bch_cutoff_writeback_sync);
2853 bch_cutoff_writeback = bch_cutoff_writeback_sync;
2857 static int __init bcache_init(void)
2859 static const struct attribute *files[] = {
2860 &ksysfs_register.attr,
2861 &ksysfs_register_quiet.attr,
2862 &ksysfs_pendings_cleanup.attr,
2863 NULL
2866 check_module_parameters();
2868 mutex_init(&bch_register_lock);
2869 init_waitqueue_head(&unregister_wait);
2870 register_reboot_notifier(&reboot);
2872 bcache_major = register_blkdev(0, "bcache");
2873 if (bcache_major < 0) {
2874 unregister_reboot_notifier(&reboot);
2875 mutex_destroy(&bch_register_lock);
2876 return bcache_major;
2879 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2880 if (!bcache_wq)
2881 goto err;
2883 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2884 if (!bch_journal_wq)
2885 goto err;
2887 bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2888 if (!bcache_kobj)
2889 goto err;
2891 if (bch_request_init() ||
2892 sysfs_create_files(bcache_kobj, files))
2893 goto err;
2895 bch_debug_init();
2896 closure_debug_init();
2898 bcache_is_reboot = false;
2900 return 0;
2901 err:
2902 bcache_exit();
2903 return -ENOMEM;
2907 * Module hooks
2909 module_exit(bcache_exit);
2910 module_init(bcache_init);
2912 module_param(bch_cutoff_writeback, uint, 0);
2913 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2915 module_param(bch_cutoff_writeback_sync, uint, 0);
2916 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2918 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2919 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2920 MODULE_LICENSE("GPL");