1 // SPDX-License-Identifier: GPL-2.0
3 * bcache setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
15 #include "writeback.h"
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
29 unsigned int bch_cutoff_writeback
;
30 unsigned int bch_cutoff_writeback_sync
;
32 static const char bcache_magic
[] = {
33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
37 static const char invalid_uuid
[] = {
38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
42 static struct kobject
*bcache_kobj
;
43 struct mutex bch_register_lock
;
44 bool bcache_is_reboot
;
45 LIST_HEAD(bch_cache_sets
);
46 static LIST_HEAD(uncached_devices
);
48 static int bcache_major
;
49 static DEFINE_IDA(bcache_device_idx
);
50 static wait_queue_head_t unregister_wait
;
51 struct workqueue_struct
*bcache_wq
;
52 struct workqueue_struct
*bch_journal_wq
;
55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS 128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS)
63 static unsigned int get_bucket_size(struct cache_sb
*sb
, struct cache_sb_disk
*s
)
65 unsigned int bucket_size
= le16_to_cpu(s
->bucket_size
);
67 if (sb
->version
>= BCACHE_SB_VERSION_CDEV_WITH_FEATURES
) {
68 if (bch_has_feature_large_bucket(sb
)) {
69 unsigned int max
, order
;
71 max
= sizeof(unsigned int) * BITS_PER_BYTE
- 1;
72 order
= le16_to_cpu(s
->bucket_size
);
74 * bcache tool will make sure the overflow won't
75 * happen, an error message here is enough.
78 pr_err("Bucket size (1 << %u) overflows\n",
80 bucket_size
= 1 << order
;
81 } else if (bch_has_feature_obso_large_bucket(sb
)) {
83 le16_to_cpu(s
->obso_bucket_size_hi
) << 16;
90 static const char *read_super_common(struct cache_sb
*sb
, struct block_device
*bdev
,
91 struct cache_sb_disk
*s
)
96 sb
->first_bucket
= le16_to_cpu(s
->first_bucket
);
97 sb
->nbuckets
= le64_to_cpu(s
->nbuckets
);
98 sb
->bucket_size
= get_bucket_size(sb
, s
);
100 sb
->nr_in_set
= le16_to_cpu(s
->nr_in_set
);
101 sb
->nr_this_dev
= le16_to_cpu(s
->nr_this_dev
);
103 err
= "Too many journal buckets";
104 if (sb
->keys
> SB_JOURNAL_BUCKETS
)
107 err
= "Too many buckets";
108 if (sb
->nbuckets
> LONG_MAX
)
111 err
= "Not enough buckets";
112 if (sb
->nbuckets
< 1 << 7)
115 err
= "Bad block size (not power of 2)";
116 if (!is_power_of_2(sb
->block_size
))
119 err
= "Bad block size (larger than page size)";
120 if (sb
->block_size
> PAGE_SECTORS
)
123 err
= "Bad bucket size (not power of 2)";
124 if (!is_power_of_2(sb
->bucket_size
))
127 err
= "Bad bucket size (smaller than page size)";
128 if (sb
->bucket_size
< PAGE_SECTORS
)
131 err
= "Invalid superblock: device too small";
132 if (get_capacity(bdev
->bd_disk
) <
133 sb
->bucket_size
* sb
->nbuckets
)
137 if (bch_is_zero(sb
->set_uuid
, 16))
140 err
= "Bad cache device number in set";
141 if (!sb
->nr_in_set
||
142 sb
->nr_in_set
<= sb
->nr_this_dev
||
143 sb
->nr_in_set
> MAX_CACHES_PER_SET
)
146 err
= "Journal buckets not sequential";
147 for (i
= 0; i
< sb
->keys
; i
++)
148 if (sb
->d
[i
] != sb
->first_bucket
+ i
)
151 err
= "Too many journal buckets";
152 if (sb
->first_bucket
+ sb
->keys
> sb
->nbuckets
)
155 err
= "Invalid superblock: first bucket comes before end of super";
156 if (sb
->first_bucket
* sb
->bucket_size
< 16)
165 static const char *read_super(struct cache_sb
*sb
, struct block_device
*bdev
,
166 struct cache_sb_disk
**res
)
169 struct cache_sb_disk
*s
;
173 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
174 SB_OFFSET
>> PAGE_SHIFT
, GFP_KERNEL
);
177 s
= page_address(page
) + offset_in_page(SB_OFFSET
);
179 sb
->offset
= le64_to_cpu(s
->offset
);
180 sb
->version
= le64_to_cpu(s
->version
);
182 memcpy(sb
->magic
, s
->magic
, 16);
183 memcpy(sb
->uuid
, s
->uuid
, 16);
184 memcpy(sb
->set_uuid
, s
->set_uuid
, 16);
185 memcpy(sb
->label
, s
->label
, SB_LABEL_SIZE
);
187 sb
->flags
= le64_to_cpu(s
->flags
);
188 sb
->seq
= le64_to_cpu(s
->seq
);
189 sb
->last_mount
= le32_to_cpu(s
->last_mount
);
190 sb
->keys
= le16_to_cpu(s
->keys
);
192 for (i
= 0; i
< SB_JOURNAL_BUCKETS
; i
++)
193 sb
->d
[i
] = le64_to_cpu(s
->d
[i
]);
195 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
196 sb
->version
, sb
->flags
, sb
->seq
, sb
->keys
);
198 err
= "Not a bcache superblock (bad offset)";
199 if (sb
->offset
!= SB_SECTOR
)
202 err
= "Not a bcache superblock (bad magic)";
203 if (memcmp(sb
->magic
, bcache_magic
, 16))
206 err
= "Bad checksum";
207 if (s
->csum
!= csum_set(s
))
211 if (bch_is_zero(sb
->uuid
, 16))
214 sb
->block_size
= le16_to_cpu(s
->block_size
);
216 err
= "Superblock block size smaller than device block size";
217 if (sb
->block_size
<< 9 < bdev_logical_block_size(bdev
))
220 switch (sb
->version
) {
221 case BCACHE_SB_VERSION_BDEV
:
222 sb
->data_offset
= BDEV_DATA_START_DEFAULT
;
224 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET
:
225 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES
:
226 sb
->data_offset
= le64_to_cpu(s
->data_offset
);
228 err
= "Bad data offset";
229 if (sb
->data_offset
< BDEV_DATA_START_DEFAULT
)
233 case BCACHE_SB_VERSION_CDEV
:
234 case BCACHE_SB_VERSION_CDEV_WITH_UUID
:
235 err
= read_super_common(sb
, bdev
, s
);
239 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES
:
241 * Feature bits are needed in read_super_common(),
242 * convert them firstly.
244 sb
->feature_compat
= le64_to_cpu(s
->feature_compat
);
245 sb
->feature_incompat
= le64_to_cpu(s
->feature_incompat
);
246 sb
->feature_ro_compat
= le64_to_cpu(s
->feature_ro_compat
);
248 /* Check incompatible features */
249 err
= "Unsupported compatible feature found";
250 if (bch_has_unknown_compat_features(sb
))
253 err
= "Unsupported read-only compatible feature found";
254 if (bch_has_unknown_ro_compat_features(sb
))
257 err
= "Unsupported incompatible feature found";
258 if (bch_has_unknown_incompat_features(sb
))
261 err
= read_super_common(sb
, bdev
, s
);
266 err
= "Unsupported superblock version";
270 sb
->last_mount
= (u32
)ktime_get_real_seconds();
278 static void write_bdev_super_endio(struct bio
*bio
)
280 struct cached_dev
*dc
= bio
->bi_private
;
283 bch_count_backing_io_errors(dc
, bio
);
285 closure_put(&dc
->sb_write
);
288 static void __write_super(struct cache_sb
*sb
, struct cache_sb_disk
*out
,
293 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_META
;
294 bio
->bi_iter
.bi_sector
= SB_SECTOR
;
295 __bio_add_page(bio
, virt_to_page(out
), SB_SIZE
,
296 offset_in_page(out
));
298 out
->offset
= cpu_to_le64(sb
->offset
);
300 memcpy(out
->uuid
, sb
->uuid
, 16);
301 memcpy(out
->set_uuid
, sb
->set_uuid
, 16);
302 memcpy(out
->label
, sb
->label
, SB_LABEL_SIZE
);
304 out
->flags
= cpu_to_le64(sb
->flags
);
305 out
->seq
= cpu_to_le64(sb
->seq
);
307 out
->last_mount
= cpu_to_le32(sb
->last_mount
);
308 out
->first_bucket
= cpu_to_le16(sb
->first_bucket
);
309 out
->keys
= cpu_to_le16(sb
->keys
);
311 for (i
= 0; i
< sb
->keys
; i
++)
312 out
->d
[i
] = cpu_to_le64(sb
->d
[i
]);
314 if (sb
->version
>= BCACHE_SB_VERSION_CDEV_WITH_FEATURES
) {
315 out
->feature_compat
= cpu_to_le64(sb
->feature_compat
);
316 out
->feature_incompat
= cpu_to_le64(sb
->feature_incompat
);
317 out
->feature_ro_compat
= cpu_to_le64(sb
->feature_ro_compat
);
320 out
->version
= cpu_to_le64(sb
->version
);
321 out
->csum
= csum_set(out
);
323 pr_debug("ver %llu, flags %llu, seq %llu\n",
324 sb
->version
, sb
->flags
, sb
->seq
);
329 static void bch_write_bdev_super_unlock(struct closure
*cl
)
331 struct cached_dev
*dc
= container_of(cl
, struct cached_dev
, sb_write
);
333 up(&dc
->sb_write_mutex
);
336 void bch_write_bdev_super(struct cached_dev
*dc
, struct closure
*parent
)
338 struct closure
*cl
= &dc
->sb_write
;
339 struct bio
*bio
= &dc
->sb_bio
;
341 down(&dc
->sb_write_mutex
);
342 closure_init(cl
, parent
);
344 bio_init(bio
, dc
->sb_bv
, 1);
345 bio_set_dev(bio
, dc
->bdev
);
346 bio
->bi_end_io
= write_bdev_super_endio
;
347 bio
->bi_private
= dc
;
350 /* I/O request sent to backing device */
351 __write_super(&dc
->sb
, dc
->sb_disk
, bio
);
353 closure_return_with_destructor(cl
, bch_write_bdev_super_unlock
);
356 static void write_super_endio(struct bio
*bio
)
358 struct cache
*ca
= bio
->bi_private
;
361 bch_count_io_errors(ca
, bio
->bi_status
, 0,
362 "writing superblock");
363 closure_put(&ca
->set
->sb_write
);
366 static void bcache_write_super_unlock(struct closure
*cl
)
368 struct cache_set
*c
= container_of(cl
, struct cache_set
, sb_write
);
370 up(&c
->sb_write_mutex
);
373 void bcache_write_super(struct cache_set
*c
)
375 struct closure
*cl
= &c
->sb_write
;
376 struct cache
*ca
= c
->cache
;
377 struct bio
*bio
= &ca
->sb_bio
;
378 unsigned int version
= BCACHE_SB_VERSION_CDEV_WITH_UUID
;
380 down(&c
->sb_write_mutex
);
381 closure_init(cl
, &c
->cl
);
385 if (ca
->sb
.version
< version
)
386 ca
->sb
.version
= version
;
388 bio_init(bio
, ca
->sb_bv
, 1);
389 bio_set_dev(bio
, ca
->bdev
);
390 bio
->bi_end_io
= write_super_endio
;
391 bio
->bi_private
= ca
;
394 __write_super(&ca
->sb
, ca
->sb_disk
, bio
);
396 closure_return_with_destructor(cl
, bcache_write_super_unlock
);
401 static void uuid_endio(struct bio
*bio
)
403 struct closure
*cl
= bio
->bi_private
;
404 struct cache_set
*c
= container_of(cl
, struct cache_set
, uuid_write
);
406 cache_set_err_on(bio
->bi_status
, c
, "accessing uuids");
407 bch_bbio_free(bio
, c
);
411 static void uuid_io_unlock(struct closure
*cl
)
413 struct cache_set
*c
= container_of(cl
, struct cache_set
, uuid_write
);
415 up(&c
->uuid_write_mutex
);
418 static void uuid_io(struct cache_set
*c
, int op
, unsigned long op_flags
,
419 struct bkey
*k
, struct closure
*parent
)
421 struct closure
*cl
= &c
->uuid_write
;
422 struct uuid_entry
*u
;
427 down(&c
->uuid_write_mutex
);
428 closure_init(cl
, parent
);
430 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
431 struct bio
*bio
= bch_bbio_alloc(c
);
433 bio
->bi_opf
= REQ_SYNC
| REQ_META
| op_flags
;
434 bio
->bi_iter
.bi_size
= KEY_SIZE(k
) << 9;
436 bio
->bi_end_io
= uuid_endio
;
437 bio
->bi_private
= cl
;
438 bio_set_op_attrs(bio
, op
, REQ_SYNC
|REQ_META
|op_flags
);
439 bch_bio_map(bio
, c
->uuids
);
441 bch_submit_bbio(bio
, c
, k
, i
);
443 if (op
!= REQ_OP_WRITE
)
447 bch_extent_to_text(buf
, sizeof(buf
), k
);
448 pr_debug("%s UUIDs at %s\n", op
== REQ_OP_WRITE
? "wrote" : "read", buf
);
450 for (u
= c
->uuids
; u
< c
->uuids
+ c
->nr_uuids
; u
++)
451 if (!bch_is_zero(u
->uuid
, 16))
452 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
453 u
- c
->uuids
, u
->uuid
, u
->label
,
454 u
->first_reg
, u
->last_reg
, u
->invalidated
);
456 closure_return_with_destructor(cl
, uuid_io_unlock
);
459 static char *uuid_read(struct cache_set
*c
, struct jset
*j
, struct closure
*cl
)
461 struct bkey
*k
= &j
->uuid_bucket
;
463 if (__bch_btree_ptr_invalid(c
, k
))
464 return "bad uuid pointer";
466 bkey_copy(&c
->uuid_bucket
, k
);
467 uuid_io(c
, REQ_OP_READ
, 0, k
, cl
);
469 if (j
->version
< BCACHE_JSET_VERSION_UUIDv1
) {
470 struct uuid_entry_v0
*u0
= (void *) c
->uuids
;
471 struct uuid_entry
*u1
= (void *) c
->uuids
;
477 * Since the new uuid entry is bigger than the old, we have to
478 * convert starting at the highest memory address and work down
479 * in order to do it in place
482 for (i
= c
->nr_uuids
- 1;
485 memcpy(u1
[i
].uuid
, u0
[i
].uuid
, 16);
486 memcpy(u1
[i
].label
, u0
[i
].label
, 32);
488 u1
[i
].first_reg
= u0
[i
].first_reg
;
489 u1
[i
].last_reg
= u0
[i
].last_reg
;
490 u1
[i
].invalidated
= u0
[i
].invalidated
;
500 static int __uuid_write(struct cache_set
*c
)
504 struct cache
*ca
= c
->cache
;
507 closure_init_stack(&cl
);
508 lockdep_assert_held(&bch_register_lock
);
510 if (bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, true))
513 size
= meta_bucket_pages(&ca
->sb
) * PAGE_SECTORS
;
514 SET_KEY_SIZE(&k
.key
, size
);
515 uuid_io(c
, REQ_OP_WRITE
, 0, &k
.key
, &cl
);
518 /* Only one bucket used for uuid write */
519 atomic_long_add(ca
->sb
.bucket_size
, &ca
->meta_sectors_written
);
521 bkey_copy(&c
->uuid_bucket
, &k
.key
);
526 int bch_uuid_write(struct cache_set
*c
)
528 int ret
= __uuid_write(c
);
531 bch_journal_meta(c
, NULL
);
536 static struct uuid_entry
*uuid_find(struct cache_set
*c
, const char *uuid
)
538 struct uuid_entry
*u
;
541 u
< c
->uuids
+ c
->nr_uuids
; u
++)
542 if (!memcmp(u
->uuid
, uuid
, 16))
548 static struct uuid_entry
*uuid_find_empty(struct cache_set
*c
)
550 static const char zero_uuid
[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
552 return uuid_find(c
, zero_uuid
);
556 * Bucket priorities/gens:
558 * For each bucket, we store on disk its
562 * See alloc.c for an explanation of the gen. The priority is used to implement
563 * lru (and in the future other) cache replacement policies; for most purposes
564 * it's just an opaque integer.
566 * The gens and the priorities don't have a whole lot to do with each other, and
567 * it's actually the gens that must be written out at specific times - it's no
568 * big deal if the priorities don't get written, if we lose them we just reuse
569 * buckets in suboptimal order.
571 * On disk they're stored in a packed array, and in as many buckets are required
572 * to fit them all. The buckets we use to store them form a list; the journal
573 * header points to the first bucket, the first bucket points to the second
576 * This code is used by the allocation code; periodically (whenever it runs out
577 * of buckets to allocate from) the allocation code will invalidate some
578 * buckets, but it can't use those buckets until their new gens are safely on
582 static void prio_endio(struct bio
*bio
)
584 struct cache
*ca
= bio
->bi_private
;
586 cache_set_err_on(bio
->bi_status
, ca
->set
, "accessing priorities");
587 bch_bbio_free(bio
, ca
->set
);
588 closure_put(&ca
->prio
);
591 static void prio_io(struct cache
*ca
, uint64_t bucket
, int op
,
592 unsigned long op_flags
)
594 struct closure
*cl
= &ca
->prio
;
595 struct bio
*bio
= bch_bbio_alloc(ca
->set
);
597 closure_init_stack(cl
);
599 bio
->bi_iter
.bi_sector
= bucket
* ca
->sb
.bucket_size
;
600 bio_set_dev(bio
, ca
->bdev
);
601 bio
->bi_iter
.bi_size
= meta_bucket_bytes(&ca
->sb
);
603 bio
->bi_end_io
= prio_endio
;
604 bio
->bi_private
= ca
;
605 bio_set_op_attrs(bio
, op
, REQ_SYNC
|REQ_META
|op_flags
);
606 bch_bio_map(bio
, ca
->disk_buckets
);
608 closure_bio_submit(ca
->set
, bio
, &ca
->prio
);
612 int bch_prio_write(struct cache
*ca
, bool wait
)
618 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
619 fifo_used(&ca
->free
[RESERVE_PRIO
]),
620 fifo_used(&ca
->free
[RESERVE_NONE
]),
621 fifo_used(&ca
->free_inc
));
624 * Pre-check if there are enough free buckets. In the non-blocking
625 * scenario it's better to fail early rather than starting to allocate
626 * buckets and do a cleanup later in case of failure.
629 size_t avail
= fifo_used(&ca
->free
[RESERVE_PRIO
]) +
630 fifo_used(&ca
->free
[RESERVE_NONE
]);
631 if (prio_buckets(ca
) > avail
)
635 closure_init_stack(&cl
);
637 lockdep_assert_held(&ca
->set
->bucket_lock
);
639 ca
->disk_buckets
->seq
++;
641 atomic_long_add(ca
->sb
.bucket_size
* prio_buckets(ca
),
642 &ca
->meta_sectors_written
);
644 for (i
= prio_buckets(ca
) - 1; i
>= 0; --i
) {
646 struct prio_set
*p
= ca
->disk_buckets
;
647 struct bucket_disk
*d
= p
->data
;
648 struct bucket_disk
*end
= d
+ prios_per_bucket(ca
);
650 for (b
= ca
->buckets
+ i
* prios_per_bucket(ca
);
651 b
< ca
->buckets
+ ca
->sb
.nbuckets
&& d
< end
;
653 d
->prio
= cpu_to_le16(b
->prio
);
657 p
->next_bucket
= ca
->prio_buckets
[i
+ 1];
658 p
->magic
= pset_magic(&ca
->sb
);
659 p
->csum
= bch_crc64(&p
->magic
, meta_bucket_bytes(&ca
->sb
) - 8);
661 bucket
= bch_bucket_alloc(ca
, RESERVE_PRIO
, wait
);
662 BUG_ON(bucket
== -1);
664 mutex_unlock(&ca
->set
->bucket_lock
);
665 prio_io(ca
, bucket
, REQ_OP_WRITE
, 0);
666 mutex_lock(&ca
->set
->bucket_lock
);
668 ca
->prio_buckets
[i
] = bucket
;
669 atomic_dec_bug(&ca
->buckets
[bucket
].pin
);
672 mutex_unlock(&ca
->set
->bucket_lock
);
674 bch_journal_meta(ca
->set
, &cl
);
677 mutex_lock(&ca
->set
->bucket_lock
);
680 * Don't want the old priorities to get garbage collected until after we
681 * finish writing the new ones, and they're journalled
683 for (i
= 0; i
< prio_buckets(ca
); i
++) {
684 if (ca
->prio_last_buckets
[i
])
685 __bch_bucket_free(ca
,
686 &ca
->buckets
[ca
->prio_last_buckets
[i
]]);
688 ca
->prio_last_buckets
[i
] = ca
->prio_buckets
[i
];
693 static int prio_read(struct cache
*ca
, uint64_t bucket
)
695 struct prio_set
*p
= ca
->disk_buckets
;
696 struct bucket_disk
*d
= p
->data
+ prios_per_bucket(ca
), *end
= d
;
698 unsigned int bucket_nr
= 0;
701 for (b
= ca
->buckets
;
702 b
< ca
->buckets
+ ca
->sb
.nbuckets
;
705 ca
->prio_buckets
[bucket_nr
] = bucket
;
706 ca
->prio_last_buckets
[bucket_nr
] = bucket
;
709 prio_io(ca
, bucket
, REQ_OP_READ
, 0);
712 bch_crc64(&p
->magic
, meta_bucket_bytes(&ca
->sb
) - 8)) {
713 pr_warn("bad csum reading priorities\n");
717 if (p
->magic
!= pset_magic(&ca
->sb
)) {
718 pr_warn("bad magic reading priorities\n");
722 bucket
= p
->next_bucket
;
726 b
->prio
= le16_to_cpu(d
->prio
);
727 b
->gen
= b
->last_gc
= d
->gen
;
737 static int open_dev(struct block_device
*b
, fmode_t mode
)
739 struct bcache_device
*d
= b
->bd_disk
->private_data
;
741 if (test_bit(BCACHE_DEV_CLOSING
, &d
->flags
))
748 static void release_dev(struct gendisk
*b
, fmode_t mode
)
750 struct bcache_device
*d
= b
->private_data
;
755 static int ioctl_dev(struct block_device
*b
, fmode_t mode
,
756 unsigned int cmd
, unsigned long arg
)
758 struct bcache_device
*d
= b
->bd_disk
->private_data
;
760 return d
->ioctl(d
, mode
, cmd
, arg
);
763 static const struct block_device_operations bcache_cached_ops
= {
764 .submit_bio
= cached_dev_submit_bio
,
766 .release
= release_dev
,
768 .owner
= THIS_MODULE
,
771 static const struct block_device_operations bcache_flash_ops
= {
772 .submit_bio
= flash_dev_submit_bio
,
774 .release
= release_dev
,
776 .owner
= THIS_MODULE
,
779 void bcache_device_stop(struct bcache_device
*d
)
781 if (!test_and_set_bit(BCACHE_DEV_CLOSING
, &d
->flags
))
784 * - cached device: cached_dev_flush()
785 * - flash dev: flash_dev_flush()
787 closure_queue(&d
->cl
);
790 static void bcache_device_unlink(struct bcache_device
*d
)
792 lockdep_assert_held(&bch_register_lock
);
794 if (d
->c
&& !test_and_set_bit(BCACHE_DEV_UNLINK_DONE
, &d
->flags
)) {
795 struct cache
*ca
= d
->c
->cache
;
797 sysfs_remove_link(&d
->c
->kobj
, d
->name
);
798 sysfs_remove_link(&d
->kobj
, "cache");
800 bd_unlink_disk_holder(ca
->bdev
, d
->disk
);
804 static void bcache_device_link(struct bcache_device
*d
, struct cache_set
*c
,
807 struct cache
*ca
= c
->cache
;
810 bd_link_disk_holder(ca
->bdev
, d
->disk
);
812 snprintf(d
->name
, BCACHEDEVNAME_SIZE
,
813 "%s%u", name
, d
->id
);
815 ret
= sysfs_create_link(&d
->kobj
, &c
->kobj
, "cache");
817 pr_err("Couldn't create device -> cache set symlink\n");
819 ret
= sysfs_create_link(&c
->kobj
, &d
->kobj
, d
->name
);
821 pr_err("Couldn't create cache set -> device symlink\n");
823 clear_bit(BCACHE_DEV_UNLINK_DONE
, &d
->flags
);
826 static void bcache_device_detach(struct bcache_device
*d
)
828 lockdep_assert_held(&bch_register_lock
);
830 atomic_dec(&d
->c
->attached_dev_nr
);
832 if (test_bit(BCACHE_DEV_DETACHING
, &d
->flags
)) {
833 struct uuid_entry
*u
= d
->c
->uuids
+ d
->id
;
835 SET_UUID_FLASH_ONLY(u
, 0);
836 memcpy(u
->uuid
, invalid_uuid
, 16);
837 u
->invalidated
= cpu_to_le32((u32
)ktime_get_real_seconds());
838 bch_uuid_write(d
->c
);
841 bcache_device_unlink(d
);
843 d
->c
->devices
[d
->id
] = NULL
;
844 closure_put(&d
->c
->caching
);
848 static void bcache_device_attach(struct bcache_device
*d
, struct cache_set
*c
,
855 if (id
>= c
->devices_max_used
)
856 c
->devices_max_used
= id
+ 1;
858 closure_get(&c
->caching
);
861 static inline int first_minor_to_idx(int first_minor
)
863 return (first_minor
/BCACHE_MINORS
);
866 static inline int idx_to_first_minor(int idx
)
868 return (idx
* BCACHE_MINORS
);
871 static void bcache_device_free(struct bcache_device
*d
)
873 struct gendisk
*disk
= d
->disk
;
875 lockdep_assert_held(&bch_register_lock
);
878 pr_info("%s stopped\n", disk
->disk_name
);
880 pr_err("bcache device (NULL gendisk) stopped\n");
883 bcache_device_detach(d
);
886 bool disk_added
= (disk
->flags
& GENHD_FL_UP
) != 0;
892 blk_cleanup_queue(disk
->queue
);
894 ida_simple_remove(&bcache_device_idx
,
895 first_minor_to_idx(disk
->first_minor
));
900 bioset_exit(&d
->bio_split
);
901 kvfree(d
->full_dirty_stripes
);
902 kvfree(d
->stripe_sectors_dirty
);
904 closure_debug_destroy(&d
->cl
);
907 static int bcache_device_init(struct bcache_device
*d
, unsigned int block_size
,
908 sector_t sectors
, struct block_device
*cached_bdev
,
909 const struct block_device_operations
*ops
)
911 struct request_queue
*q
;
912 const size_t max_stripes
= min_t(size_t, INT_MAX
,
913 SIZE_MAX
/ sizeof(atomic_t
));
918 d
->stripe_size
= 1 << 31;
920 n
= DIV_ROUND_UP_ULL(sectors
, d
->stripe_size
);
921 if (!n
|| n
> max_stripes
) {
922 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
928 n
= d
->nr_stripes
* sizeof(atomic_t
);
929 d
->stripe_sectors_dirty
= kvzalloc(n
, GFP_KERNEL
);
930 if (!d
->stripe_sectors_dirty
)
933 n
= BITS_TO_LONGS(d
->nr_stripes
) * sizeof(unsigned long);
934 d
->full_dirty_stripes
= kvzalloc(n
, GFP_KERNEL
);
935 if (!d
->full_dirty_stripes
)
938 idx
= ida_simple_get(&bcache_device_idx
, 0,
939 BCACHE_DEVICE_IDX_MAX
, GFP_KERNEL
);
943 if (bioset_init(&d
->bio_split
, 4, offsetof(struct bbio
, bio
),
944 BIOSET_NEED_BVECS
|BIOSET_NEED_RESCUER
))
947 d
->disk
= alloc_disk(BCACHE_MINORS
);
951 set_capacity(d
->disk
, sectors
);
952 snprintf(d
->disk
->disk_name
, DISK_NAME_LEN
, "bcache%i", idx
);
954 d
->disk
->major
= bcache_major
;
955 d
->disk
->first_minor
= idx_to_first_minor(idx
);
957 d
->disk
->private_data
= d
;
959 q
= blk_alloc_queue(NUMA_NO_NODE
);
964 q
->limits
.max_hw_sectors
= UINT_MAX
;
965 q
->limits
.max_sectors
= UINT_MAX
;
966 q
->limits
.max_segment_size
= UINT_MAX
;
967 q
->limits
.max_segments
= BIO_MAX_PAGES
;
968 blk_queue_max_discard_sectors(q
, UINT_MAX
);
969 q
->limits
.discard_granularity
= 512;
970 q
->limits
.io_min
= block_size
;
971 q
->limits
.logical_block_size
= block_size
;
972 q
->limits
.physical_block_size
= block_size
;
974 if (q
->limits
.logical_block_size
> PAGE_SIZE
&& cached_bdev
) {
976 * This should only happen with BCACHE_SB_VERSION_BDEV.
977 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
979 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
980 d
->disk
->disk_name
, q
->limits
.logical_block_size
,
981 PAGE_SIZE
, bdev_logical_block_size(cached_bdev
));
983 /* This also adjusts physical block size/min io size if needed */
984 blk_queue_logical_block_size(q
, bdev_logical_block_size(cached_bdev
));
987 blk_queue_flag_set(QUEUE_FLAG_NONROT
, d
->disk
->queue
);
988 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, d
->disk
->queue
);
989 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, d
->disk
->queue
);
991 blk_queue_write_cache(q
, true, true);
996 ida_simple_remove(&bcache_device_idx
, idx
);
1003 static void calc_cached_dev_sectors(struct cache_set
*c
)
1005 uint64_t sectors
= 0;
1006 struct cached_dev
*dc
;
1008 list_for_each_entry(dc
, &c
->cached_devs
, list
)
1009 sectors
+= bdev_sectors(dc
->bdev
);
1011 c
->cached_dev_sectors
= sectors
;
1014 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1015 static int cached_dev_status_update(void *arg
)
1017 struct cached_dev
*dc
= arg
;
1018 struct request_queue
*q
;
1021 * If this delayed worker is stopping outside, directly quit here.
1022 * dc->io_disable might be set via sysfs interface, so check it
1025 while (!kthread_should_stop() && !dc
->io_disable
) {
1026 q
= bdev_get_queue(dc
->bdev
);
1027 if (blk_queue_dying(q
))
1028 dc
->offline_seconds
++;
1030 dc
->offline_seconds
= 0;
1032 if (dc
->offline_seconds
>= BACKING_DEV_OFFLINE_TIMEOUT
) {
1033 pr_err("%s: device offline for %d seconds\n",
1034 dc
->backing_dev_name
,
1035 BACKING_DEV_OFFLINE_TIMEOUT
);
1036 pr_err("%s: disable I/O request due to backing device offline\n",
1038 dc
->io_disable
= true;
1039 /* let others know earlier that io_disable is true */
1041 bcache_device_stop(&dc
->disk
);
1044 schedule_timeout_interruptible(HZ
);
1047 wait_for_kthread_stop();
1052 int bch_cached_dev_run(struct cached_dev
*dc
)
1054 struct bcache_device
*d
= &dc
->disk
;
1055 char *buf
= kmemdup_nul(dc
->sb
.label
, SB_LABEL_SIZE
, GFP_KERNEL
);
1058 kasprintf(GFP_KERNEL
, "CACHED_UUID=%pU", dc
->sb
.uuid
),
1059 kasprintf(GFP_KERNEL
, "CACHED_LABEL=%s", buf
? : ""),
1063 if (dc
->io_disable
) {
1064 pr_err("I/O disabled on cached dev %s\n",
1065 dc
->backing_dev_name
);
1072 if (atomic_xchg(&dc
->running
, 1)) {
1076 pr_info("cached dev %s is running already\n",
1077 dc
->backing_dev_name
);
1082 BDEV_STATE(&dc
->sb
) != BDEV_STATE_NONE
) {
1085 closure_init_stack(&cl
);
1087 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_STALE
);
1088 bch_write_bdev_super(dc
, &cl
);
1093 bd_link_disk_holder(dc
->bdev
, dc
->disk
.disk
);
1095 * won't show up in the uevent file, use udevadm monitor -e instead
1096 * only class / kset properties are persistent
1098 kobject_uevent_env(&disk_to_dev(d
->disk
)->kobj
, KOBJ_CHANGE
, env
);
1103 if (sysfs_create_link(&d
->kobj
, &disk_to_dev(d
->disk
)->kobj
, "dev") ||
1104 sysfs_create_link(&disk_to_dev(d
->disk
)->kobj
,
1105 &d
->kobj
, "bcache")) {
1106 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1110 dc
->status_update_thread
= kthread_run(cached_dev_status_update
,
1111 dc
, "bcache_status_update");
1112 if (IS_ERR(dc
->status_update_thread
)) {
1113 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1120 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1121 * work dc->writeback_rate_update is running. Wait until the routine
1122 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1123 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1124 * seconds, give up waiting here and continue to cancel it too.
1126 static void cancel_writeback_rate_update_dwork(struct cached_dev
*dc
)
1128 int time_out
= WRITEBACK_RATE_UPDATE_SECS_MAX
* HZ
;
1131 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING
,
1135 schedule_timeout_interruptible(1);
1136 } while (time_out
> 0);
1139 pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1141 cancel_delayed_work_sync(&dc
->writeback_rate_update
);
1144 static void cached_dev_detach_finish(struct work_struct
*w
)
1146 struct cached_dev
*dc
= container_of(w
, struct cached_dev
, detach
);
1148 BUG_ON(!test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
));
1149 BUG_ON(refcount_read(&dc
->count
));
1152 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING
, &dc
->disk
.flags
))
1153 cancel_writeback_rate_update_dwork(dc
);
1155 if (!IS_ERR_OR_NULL(dc
->writeback_thread
)) {
1156 kthread_stop(dc
->writeback_thread
);
1157 dc
->writeback_thread
= NULL
;
1160 mutex_lock(&bch_register_lock
);
1162 calc_cached_dev_sectors(dc
->disk
.c
);
1163 bcache_device_detach(&dc
->disk
);
1164 list_move(&dc
->list
, &uncached_devices
);
1166 clear_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
);
1167 clear_bit(BCACHE_DEV_UNLINK_DONE
, &dc
->disk
.flags
);
1169 mutex_unlock(&bch_register_lock
);
1171 pr_info("Caching disabled for %s\n", dc
->backing_dev_name
);
1173 /* Drop ref we took in cached_dev_detach() */
1174 closure_put(&dc
->disk
.cl
);
1177 void bch_cached_dev_detach(struct cached_dev
*dc
)
1179 lockdep_assert_held(&bch_register_lock
);
1181 if (test_bit(BCACHE_DEV_CLOSING
, &dc
->disk
.flags
))
1184 if (test_and_set_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
))
1188 * Block the device from being closed and freed until we're finished
1191 closure_get(&dc
->disk
.cl
);
1193 bch_writeback_queue(dc
);
1198 int bch_cached_dev_attach(struct cached_dev
*dc
, struct cache_set
*c
,
1201 uint32_t rtime
= cpu_to_le32((u32
)ktime_get_real_seconds());
1202 struct uuid_entry
*u
;
1203 struct cached_dev
*exist_dc
, *t
;
1206 if ((set_uuid
&& memcmp(set_uuid
, c
->set_uuid
, 16)) ||
1207 (!set_uuid
&& memcmp(dc
->sb
.set_uuid
, c
->set_uuid
, 16)))
1211 pr_err("Can't attach %s: already attached\n",
1212 dc
->backing_dev_name
);
1216 if (test_bit(CACHE_SET_STOPPING
, &c
->flags
)) {
1217 pr_err("Can't attach %s: shutting down\n",
1218 dc
->backing_dev_name
);
1222 if (dc
->sb
.block_size
< c
->cache
->sb
.block_size
) {
1224 pr_err("Couldn't attach %s: block size less than set's block size\n",
1225 dc
->backing_dev_name
);
1229 /* Check whether already attached */
1230 list_for_each_entry_safe(exist_dc
, t
, &c
->cached_devs
, list
) {
1231 if (!memcmp(dc
->sb
.uuid
, exist_dc
->sb
.uuid
, 16)) {
1232 pr_err("Tried to attach %s but duplicate UUID already attached\n",
1233 dc
->backing_dev_name
);
1239 u
= uuid_find(c
, dc
->sb
.uuid
);
1242 (BDEV_STATE(&dc
->sb
) == BDEV_STATE_STALE
||
1243 BDEV_STATE(&dc
->sb
) == BDEV_STATE_NONE
)) {
1244 memcpy(u
->uuid
, invalid_uuid
, 16);
1245 u
->invalidated
= cpu_to_le32((u32
)ktime_get_real_seconds());
1250 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_DIRTY
) {
1251 pr_err("Couldn't find uuid for %s in set\n",
1252 dc
->backing_dev_name
);
1256 u
= uuid_find_empty(c
);
1258 pr_err("Not caching %s, no room for UUID\n",
1259 dc
->backing_dev_name
);
1265 * Deadlocks since we're called via sysfs...
1266 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1269 if (bch_is_zero(u
->uuid
, 16)) {
1272 closure_init_stack(&cl
);
1274 memcpy(u
->uuid
, dc
->sb
.uuid
, 16);
1275 memcpy(u
->label
, dc
->sb
.label
, SB_LABEL_SIZE
);
1276 u
->first_reg
= u
->last_reg
= rtime
;
1279 memcpy(dc
->sb
.set_uuid
, c
->set_uuid
, 16);
1280 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_CLEAN
);
1282 bch_write_bdev_super(dc
, &cl
);
1285 u
->last_reg
= rtime
;
1289 bcache_device_attach(&dc
->disk
, c
, u
- c
->uuids
);
1290 list_move(&dc
->list
, &c
->cached_devs
);
1291 calc_cached_dev_sectors(c
);
1294 * dc->c must be set before dc->count != 0 - paired with the mb in
1298 refcount_set(&dc
->count
, 1);
1300 /* Block writeback thread, but spawn it */
1301 down_write(&dc
->writeback_lock
);
1302 if (bch_cached_dev_writeback_start(dc
)) {
1303 up_write(&dc
->writeback_lock
);
1304 pr_err("Couldn't start writeback facilities for %s\n",
1305 dc
->disk
.disk
->disk_name
);
1309 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_DIRTY
) {
1310 atomic_set(&dc
->has_dirty
, 1);
1311 bch_writeback_queue(dc
);
1314 bch_sectors_dirty_init(&dc
->disk
);
1316 ret
= bch_cached_dev_run(dc
);
1317 if (ret
&& (ret
!= -EBUSY
)) {
1318 up_write(&dc
->writeback_lock
);
1320 * bch_register_lock is held, bcache_device_stop() is not
1321 * able to be directly called. The kthread and kworker
1322 * created previously in bch_cached_dev_writeback_start()
1323 * have to be stopped manually here.
1325 kthread_stop(dc
->writeback_thread
);
1326 cancel_writeback_rate_update_dwork(dc
);
1327 pr_err("Couldn't run cached device %s\n",
1328 dc
->backing_dev_name
);
1332 bcache_device_link(&dc
->disk
, c
, "bdev");
1333 atomic_inc(&c
->attached_dev_nr
);
1335 if (bch_has_feature_obso_large_bucket(&(c
->cache
->sb
))) {
1336 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1337 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1338 set_disk_ro(dc
->disk
.disk
, 1);
1341 /* Allow the writeback thread to proceed */
1342 up_write(&dc
->writeback_lock
);
1344 pr_info("Caching %s as %s on set %pU\n",
1345 dc
->backing_dev_name
,
1346 dc
->disk
.disk
->disk_name
,
1347 dc
->disk
.c
->set_uuid
);
1351 /* when dc->disk.kobj released */
1352 void bch_cached_dev_release(struct kobject
*kobj
)
1354 struct cached_dev
*dc
= container_of(kobj
, struct cached_dev
,
1357 module_put(THIS_MODULE
);
1360 static void cached_dev_free(struct closure
*cl
)
1362 struct cached_dev
*dc
= container_of(cl
, struct cached_dev
, disk
.cl
);
1364 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING
, &dc
->disk
.flags
))
1365 cancel_writeback_rate_update_dwork(dc
);
1367 if (!IS_ERR_OR_NULL(dc
->writeback_thread
))
1368 kthread_stop(dc
->writeback_thread
);
1369 if (!IS_ERR_OR_NULL(dc
->status_update_thread
))
1370 kthread_stop(dc
->status_update_thread
);
1372 mutex_lock(&bch_register_lock
);
1374 if (atomic_read(&dc
->running
))
1375 bd_unlink_disk_holder(dc
->bdev
, dc
->disk
.disk
);
1376 bcache_device_free(&dc
->disk
);
1377 list_del(&dc
->list
);
1379 mutex_unlock(&bch_register_lock
);
1382 put_page(virt_to_page(dc
->sb_disk
));
1384 if (!IS_ERR_OR_NULL(dc
->bdev
))
1385 blkdev_put(dc
->bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
1387 wake_up(&unregister_wait
);
1389 kobject_put(&dc
->disk
.kobj
);
1392 static void cached_dev_flush(struct closure
*cl
)
1394 struct cached_dev
*dc
= container_of(cl
, struct cached_dev
, disk
.cl
);
1395 struct bcache_device
*d
= &dc
->disk
;
1397 mutex_lock(&bch_register_lock
);
1398 bcache_device_unlink(d
);
1399 mutex_unlock(&bch_register_lock
);
1401 bch_cache_accounting_destroy(&dc
->accounting
);
1402 kobject_del(&d
->kobj
);
1404 continue_at(cl
, cached_dev_free
, system_wq
);
1407 static int cached_dev_init(struct cached_dev
*dc
, unsigned int block_size
)
1411 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1413 __module_get(THIS_MODULE
);
1414 INIT_LIST_HEAD(&dc
->list
);
1415 closure_init(&dc
->disk
.cl
, NULL
);
1416 set_closure_fn(&dc
->disk
.cl
, cached_dev_flush
, system_wq
);
1417 kobject_init(&dc
->disk
.kobj
, &bch_cached_dev_ktype
);
1418 INIT_WORK(&dc
->detach
, cached_dev_detach_finish
);
1419 sema_init(&dc
->sb_write_mutex
, 1);
1420 INIT_LIST_HEAD(&dc
->io_lru
);
1421 spin_lock_init(&dc
->io_lock
);
1422 bch_cache_accounting_init(&dc
->accounting
, &dc
->disk
.cl
);
1424 dc
->sequential_cutoff
= 4 << 20;
1426 for (io
= dc
->io
; io
< dc
->io
+ RECENT_IO
; io
++) {
1427 list_add(&io
->lru
, &dc
->io_lru
);
1428 hlist_add_head(&io
->hash
, dc
->io_hash
+ RECENT_IO
);
1431 dc
->disk
.stripe_size
= q
->limits
.io_opt
>> 9;
1433 if (dc
->disk
.stripe_size
)
1434 dc
->partial_stripes_expensive
=
1435 q
->limits
.raid_partial_stripes_expensive
;
1437 ret
= bcache_device_init(&dc
->disk
, block_size
,
1438 bdev_nr_sectors(dc
->bdev
) - dc
->sb
.data_offset
,
1439 dc
->bdev
, &bcache_cached_ops
);
1443 blk_queue_io_opt(dc
->disk
.disk
->queue
,
1444 max(queue_io_opt(dc
->disk
.disk
->queue
), queue_io_opt(q
)));
1446 atomic_set(&dc
->io_errors
, 0);
1447 dc
->io_disable
= false;
1448 dc
->error_limit
= DEFAULT_CACHED_DEV_ERROR_LIMIT
;
1449 /* default to auto */
1450 dc
->stop_when_cache_set_failed
= BCH_CACHED_DEV_STOP_AUTO
;
1452 bch_cached_dev_request_init(dc
);
1453 bch_cached_dev_writeback_init(dc
);
1457 /* Cached device - bcache superblock */
1459 static int register_bdev(struct cache_sb
*sb
, struct cache_sb_disk
*sb_disk
,
1460 struct block_device
*bdev
,
1461 struct cached_dev
*dc
)
1463 const char *err
= "cannot allocate memory";
1464 struct cache_set
*c
;
1467 bdevname(bdev
, dc
->backing_dev_name
);
1468 memcpy(&dc
->sb
, sb
, sizeof(struct cache_sb
));
1470 dc
->bdev
->bd_holder
= dc
;
1471 dc
->sb_disk
= sb_disk
;
1473 if (cached_dev_init(dc
, sb
->block_size
<< 9))
1476 err
= "error creating kobject";
1477 if (kobject_add(&dc
->disk
.kobj
, bdev_kobj(bdev
), "bcache"))
1479 if (bch_cache_accounting_add_kobjs(&dc
->accounting
, &dc
->disk
.kobj
))
1482 pr_info("registered backing device %s\n", dc
->backing_dev_name
);
1484 list_add(&dc
->list
, &uncached_devices
);
1485 /* attach to a matched cache set if it exists */
1486 list_for_each_entry(c
, &bch_cache_sets
, list
)
1487 bch_cached_dev_attach(dc
, c
, NULL
);
1489 if (BDEV_STATE(&dc
->sb
) == BDEV_STATE_NONE
||
1490 BDEV_STATE(&dc
->sb
) == BDEV_STATE_STALE
) {
1491 err
= "failed to run cached device";
1492 ret
= bch_cached_dev_run(dc
);
1499 pr_notice("error %s: %s\n", dc
->backing_dev_name
, err
);
1500 bcache_device_stop(&dc
->disk
);
1504 /* Flash only volumes */
1506 /* When d->kobj released */
1507 void bch_flash_dev_release(struct kobject
*kobj
)
1509 struct bcache_device
*d
= container_of(kobj
, struct bcache_device
,
1514 static void flash_dev_free(struct closure
*cl
)
1516 struct bcache_device
*d
= container_of(cl
, struct bcache_device
, cl
);
1518 mutex_lock(&bch_register_lock
);
1519 atomic_long_sub(bcache_dev_sectors_dirty(d
),
1520 &d
->c
->flash_dev_dirty_sectors
);
1521 bcache_device_free(d
);
1522 mutex_unlock(&bch_register_lock
);
1523 kobject_put(&d
->kobj
);
1526 static void flash_dev_flush(struct closure
*cl
)
1528 struct bcache_device
*d
= container_of(cl
, struct bcache_device
, cl
);
1530 mutex_lock(&bch_register_lock
);
1531 bcache_device_unlink(d
);
1532 mutex_unlock(&bch_register_lock
);
1533 kobject_del(&d
->kobj
);
1534 continue_at(cl
, flash_dev_free
, system_wq
);
1537 static int flash_dev_run(struct cache_set
*c
, struct uuid_entry
*u
)
1539 struct bcache_device
*d
= kzalloc(sizeof(struct bcache_device
),
1544 closure_init(&d
->cl
, NULL
);
1545 set_closure_fn(&d
->cl
, flash_dev_flush
, system_wq
);
1547 kobject_init(&d
->kobj
, &bch_flash_dev_ktype
);
1549 if (bcache_device_init(d
, block_bytes(c
->cache
), u
->sectors
,
1550 NULL
, &bcache_flash_ops
))
1553 bcache_device_attach(d
, c
, u
- c
->uuids
);
1554 bch_sectors_dirty_init(d
);
1555 bch_flash_dev_request_init(d
);
1558 if (kobject_add(&d
->kobj
, &disk_to_dev(d
->disk
)->kobj
, "bcache"))
1561 bcache_device_link(d
, c
, "volume");
1563 if (bch_has_feature_obso_large_bucket(&c
->cache
->sb
)) {
1564 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1565 pr_err("Please update to the latest bcache-tools to create the cache device\n");
1566 set_disk_ro(d
->disk
, 1);
1571 kobject_put(&d
->kobj
);
1575 static int flash_devs_run(struct cache_set
*c
)
1578 struct uuid_entry
*u
;
1581 u
< c
->uuids
+ c
->nr_uuids
&& !ret
;
1583 if (UUID_FLASH_ONLY(u
))
1584 ret
= flash_dev_run(c
, u
);
1589 int bch_flash_dev_create(struct cache_set
*c
, uint64_t size
)
1591 struct uuid_entry
*u
;
1593 if (test_bit(CACHE_SET_STOPPING
, &c
->flags
))
1596 if (!test_bit(CACHE_SET_RUNNING
, &c
->flags
))
1599 u
= uuid_find_empty(c
);
1601 pr_err("Can't create volume, no room for UUID\n");
1605 get_random_bytes(u
->uuid
, 16);
1606 memset(u
->label
, 0, 32);
1607 u
->first_reg
= u
->last_reg
= cpu_to_le32((u32
)ktime_get_real_seconds());
1609 SET_UUID_FLASH_ONLY(u
, 1);
1610 u
->sectors
= size
>> 9;
1614 return flash_dev_run(c
, u
);
1617 bool bch_cached_dev_error(struct cached_dev
*dc
)
1619 if (!dc
|| test_bit(BCACHE_DEV_CLOSING
, &dc
->disk
.flags
))
1622 dc
->io_disable
= true;
1623 /* make others know io_disable is true earlier */
1626 pr_err("stop %s: too many IO errors on backing device %s\n",
1627 dc
->disk
.disk
->disk_name
, dc
->backing_dev_name
);
1629 bcache_device_stop(&dc
->disk
);
1636 bool bch_cache_set_error(struct cache_set
*c
, const char *fmt
, ...)
1638 struct va_format vaf
;
1641 if (c
->on_error
!= ON_ERROR_PANIC
&&
1642 test_bit(CACHE_SET_STOPPING
, &c
->flags
))
1645 if (test_and_set_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1646 pr_info("CACHE_SET_IO_DISABLE already set\n");
1649 * XXX: we can be called from atomic context
1650 * acquire_console_sem();
1653 va_start(args
, fmt
);
1658 pr_err("error on %pU: %pV, disabling caching\n",
1663 if (c
->on_error
== ON_ERROR_PANIC
)
1664 panic("panic forced after error\n");
1666 bch_cache_set_unregister(c
);
1670 /* When c->kobj released */
1671 void bch_cache_set_release(struct kobject
*kobj
)
1673 struct cache_set
*c
= container_of(kobj
, struct cache_set
, kobj
);
1676 module_put(THIS_MODULE
);
1679 static void cache_set_free(struct closure
*cl
)
1681 struct cache_set
*c
= container_of(cl
, struct cache_set
, cl
);
1684 debugfs_remove(c
->debug
);
1686 bch_open_buckets_free(c
);
1687 bch_btree_cache_free(c
);
1688 bch_journal_free(c
);
1690 mutex_lock(&bch_register_lock
);
1691 bch_bset_sort_state_free(&c
->sort
);
1692 free_pages((unsigned long) c
->uuids
, ilog2(meta_bucket_pages(&c
->cache
->sb
)));
1698 kobject_put(&ca
->kobj
);
1702 if (c
->moving_gc_wq
)
1703 destroy_workqueue(c
->moving_gc_wq
);
1704 bioset_exit(&c
->bio_split
);
1705 mempool_exit(&c
->fill_iter
);
1706 mempool_exit(&c
->bio_meta
);
1707 mempool_exit(&c
->search
);
1711 mutex_unlock(&bch_register_lock
);
1713 pr_info("Cache set %pU unregistered\n", c
->set_uuid
);
1714 wake_up(&unregister_wait
);
1716 closure_debug_destroy(&c
->cl
);
1717 kobject_put(&c
->kobj
);
1720 static void cache_set_flush(struct closure
*cl
)
1722 struct cache_set
*c
= container_of(cl
, struct cache_set
, caching
);
1723 struct cache
*ca
= c
->cache
;
1726 bch_cache_accounting_destroy(&c
->accounting
);
1728 kobject_put(&c
->internal
);
1729 kobject_del(&c
->kobj
);
1731 if (!IS_ERR_OR_NULL(c
->gc_thread
))
1732 kthread_stop(c
->gc_thread
);
1734 if (!IS_ERR_OR_NULL(c
->root
))
1735 list_add(&c
->root
->list
, &c
->btree_cache
);
1738 * Avoid flushing cached nodes if cache set is retiring
1739 * due to too many I/O errors detected.
1741 if (!test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1742 list_for_each_entry(b
, &c
->btree_cache
, list
) {
1743 mutex_lock(&b
->write_lock
);
1744 if (btree_node_dirty(b
))
1745 __bch_btree_node_write(b
, NULL
);
1746 mutex_unlock(&b
->write_lock
);
1749 if (ca
->alloc_thread
)
1750 kthread_stop(ca
->alloc_thread
);
1752 if (c
->journal
.cur
) {
1753 cancel_delayed_work_sync(&c
->journal
.work
);
1754 /* flush last journal entry if needed */
1755 c
->journal
.work
.work
.func(&c
->journal
.work
.work
);
1762 * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1763 * cache set is unregistering due to too many I/O errors. In this condition,
1764 * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1765 * value and whether the broken cache has dirty data:
1767 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device
1768 * BCH_CACHED_STOP_AUTO 0 NO
1769 * BCH_CACHED_STOP_AUTO 1 YES
1770 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES
1771 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES
1773 * The expected behavior is, if stop_when_cache_set_failed is configured to
1774 * "auto" via sysfs interface, the bcache device will not be stopped if the
1775 * backing device is clean on the broken cache device.
1777 static void conditional_stop_bcache_device(struct cache_set
*c
,
1778 struct bcache_device
*d
,
1779 struct cached_dev
*dc
)
1781 if (dc
->stop_when_cache_set_failed
== BCH_CACHED_DEV_STOP_ALWAYS
) {
1782 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1783 d
->disk
->disk_name
, c
->set_uuid
);
1784 bcache_device_stop(d
);
1785 } else if (atomic_read(&dc
->has_dirty
)) {
1787 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1788 * and dc->has_dirty == 1
1790 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1791 d
->disk
->disk_name
);
1793 * There might be a small time gap that cache set is
1794 * released but bcache device is not. Inside this time
1795 * gap, regular I/O requests will directly go into
1796 * backing device as no cache set attached to. This
1797 * behavior may also introduce potential inconsistence
1798 * data in writeback mode while cache is dirty.
1799 * Therefore before calling bcache_device_stop() due
1800 * to a broken cache device, dc->io_disable should be
1801 * explicitly set to true.
1803 dc
->io_disable
= true;
1804 /* make others know io_disable is true earlier */
1806 bcache_device_stop(d
);
1809 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1810 * and dc->has_dirty == 0
1812 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1813 d
->disk
->disk_name
);
1817 static void __cache_set_unregister(struct closure
*cl
)
1819 struct cache_set
*c
= container_of(cl
, struct cache_set
, caching
);
1820 struct cached_dev
*dc
;
1821 struct bcache_device
*d
;
1824 mutex_lock(&bch_register_lock
);
1826 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1831 if (!UUID_FLASH_ONLY(&c
->uuids
[i
]) &&
1832 test_bit(CACHE_SET_UNREGISTERING
, &c
->flags
)) {
1833 dc
= container_of(d
, struct cached_dev
, disk
);
1834 bch_cached_dev_detach(dc
);
1835 if (test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1836 conditional_stop_bcache_device(c
, d
, dc
);
1838 bcache_device_stop(d
);
1842 mutex_unlock(&bch_register_lock
);
1844 continue_at(cl
, cache_set_flush
, system_wq
);
1847 void bch_cache_set_stop(struct cache_set
*c
)
1849 if (!test_and_set_bit(CACHE_SET_STOPPING
, &c
->flags
))
1850 /* closure_fn set to __cache_set_unregister() */
1851 closure_queue(&c
->caching
);
1854 void bch_cache_set_unregister(struct cache_set
*c
)
1856 set_bit(CACHE_SET_UNREGISTERING
, &c
->flags
);
1857 bch_cache_set_stop(c
);
1860 #define alloc_meta_bucket_pages(gfp, sb) \
1861 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1863 struct cache_set
*bch_cache_set_alloc(struct cache_sb
*sb
)
1866 struct cache
*ca
= container_of(sb
, struct cache
, sb
);
1867 struct cache_set
*c
= kzalloc(sizeof(struct cache_set
), GFP_KERNEL
);
1872 __module_get(THIS_MODULE
);
1873 closure_init(&c
->cl
, NULL
);
1874 set_closure_fn(&c
->cl
, cache_set_free
, system_wq
);
1876 closure_init(&c
->caching
, &c
->cl
);
1877 set_closure_fn(&c
->caching
, __cache_set_unregister
, system_wq
);
1879 /* Maybe create continue_at_noreturn() and use it here? */
1880 closure_set_stopped(&c
->cl
);
1881 closure_put(&c
->cl
);
1883 kobject_init(&c
->kobj
, &bch_cache_set_ktype
);
1884 kobject_init(&c
->internal
, &bch_cache_set_internal_ktype
);
1886 bch_cache_accounting_init(&c
->accounting
, &c
->cl
);
1888 memcpy(c
->set_uuid
, sb
->set_uuid
, 16);
1892 c
->bucket_bits
= ilog2(sb
->bucket_size
);
1893 c
->block_bits
= ilog2(sb
->block_size
);
1894 c
->nr_uuids
= meta_bucket_bytes(sb
) / sizeof(struct uuid_entry
);
1895 c
->devices_max_used
= 0;
1896 atomic_set(&c
->attached_dev_nr
, 0);
1897 c
->btree_pages
= meta_bucket_pages(sb
);
1898 if (c
->btree_pages
> BTREE_MAX_PAGES
)
1899 c
->btree_pages
= max_t(int, c
->btree_pages
/ 4,
1902 sema_init(&c
->sb_write_mutex
, 1);
1903 mutex_init(&c
->bucket_lock
);
1904 init_waitqueue_head(&c
->btree_cache_wait
);
1905 spin_lock_init(&c
->btree_cannibalize_lock
);
1906 init_waitqueue_head(&c
->bucket_wait
);
1907 init_waitqueue_head(&c
->gc_wait
);
1908 sema_init(&c
->uuid_write_mutex
, 1);
1910 spin_lock_init(&c
->btree_gc_time
.lock
);
1911 spin_lock_init(&c
->btree_split_time
.lock
);
1912 spin_lock_init(&c
->btree_read_time
.lock
);
1914 bch_moving_init_cache_set(c
);
1916 INIT_LIST_HEAD(&c
->list
);
1917 INIT_LIST_HEAD(&c
->cached_devs
);
1918 INIT_LIST_HEAD(&c
->btree_cache
);
1919 INIT_LIST_HEAD(&c
->btree_cache_freeable
);
1920 INIT_LIST_HEAD(&c
->btree_cache_freed
);
1921 INIT_LIST_HEAD(&c
->data_buckets
);
1923 iter_size
= ((meta_bucket_pages(sb
) * PAGE_SECTORS
) / sb
->block_size
+ 1) *
1924 sizeof(struct btree_iter_set
);
1926 c
->devices
= kcalloc(c
->nr_uuids
, sizeof(void *), GFP_KERNEL
);
1930 if (mempool_init_slab_pool(&c
->search
, 32, bch_search_cache
))
1933 if (mempool_init_kmalloc_pool(&c
->bio_meta
, 2,
1934 sizeof(struct bbio
) +
1935 sizeof(struct bio_vec
) * meta_bucket_pages(sb
)))
1938 if (mempool_init_kmalloc_pool(&c
->fill_iter
, 1, iter_size
))
1941 if (bioset_init(&c
->bio_split
, 4, offsetof(struct bbio
, bio
),
1942 BIOSET_NEED_BVECS
|BIOSET_NEED_RESCUER
))
1945 c
->uuids
= alloc_meta_bucket_pages(GFP_KERNEL
, sb
);
1949 c
->moving_gc_wq
= alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM
, 0);
1950 if (!c
->moving_gc_wq
)
1953 if (bch_journal_alloc(c
))
1956 if (bch_btree_cache_alloc(c
))
1959 if (bch_open_buckets_alloc(c
))
1962 if (bch_bset_sort_state_init(&c
->sort
, ilog2(c
->btree_pages
)))
1965 c
->congested_read_threshold_us
= 2000;
1966 c
->congested_write_threshold_us
= 20000;
1967 c
->error_limit
= DEFAULT_IO_ERROR_LIMIT
;
1968 c
->idle_max_writeback_rate_enabled
= 1;
1969 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE
, &c
->flags
));
1973 bch_cache_set_unregister(c
);
1977 static int run_cache_set(struct cache_set
*c
)
1979 const char *err
= "cannot allocate memory";
1980 struct cached_dev
*dc
, *t
;
1981 struct cache
*ca
= c
->cache
;
1984 struct journal_replay
*l
;
1986 closure_init_stack(&cl
);
1988 c
->nbuckets
= ca
->sb
.nbuckets
;
1991 if (CACHE_SYNC(&c
->cache
->sb
)) {
1995 err
= "cannot allocate memory for journal";
1996 if (bch_journal_read(c
, &journal
))
1999 pr_debug("btree_journal_read() done\n");
2001 err
= "no journal entries found";
2002 if (list_empty(&journal
))
2005 j
= &list_entry(journal
.prev
, struct journal_replay
, list
)->j
;
2007 err
= "IO error reading priorities";
2008 if (prio_read(ca
, j
->prio_bucket
[ca
->sb
.nr_this_dev
]))
2012 * If prio_read() fails it'll call cache_set_error and we'll
2013 * tear everything down right away, but if we perhaps checked
2014 * sooner we could avoid journal replay.
2019 err
= "bad btree root";
2020 if (__bch_btree_ptr_invalid(c
, k
))
2023 err
= "error reading btree root";
2024 c
->root
= bch_btree_node_get(c
, NULL
, k
,
2027 if (IS_ERR_OR_NULL(c
->root
))
2030 list_del_init(&c
->root
->list
);
2031 rw_unlock(true, c
->root
);
2033 err
= uuid_read(c
, j
, &cl
);
2037 err
= "error in recovery";
2038 if (bch_btree_check(c
))
2041 bch_journal_mark(c
, &journal
);
2042 bch_initial_gc_finish(c
);
2043 pr_debug("btree_check() done\n");
2046 * bcache_journal_next() can't happen sooner, or
2047 * btree_gc_finish() will give spurious errors about last_gc >
2048 * gc_gen - this is a hack but oh well.
2050 bch_journal_next(&c
->journal
);
2052 err
= "error starting allocator thread";
2053 if (bch_cache_allocator_start(ca
))
2057 * First place it's safe to allocate: btree_check() and
2058 * btree_gc_finish() have to run before we have buckets to
2059 * allocate, and bch_bucket_alloc_set() might cause a journal
2060 * entry to be written so bcache_journal_next() has to be called
2063 * If the uuids were in the old format we have to rewrite them
2064 * before the next journal entry is written:
2066 if (j
->version
< BCACHE_JSET_VERSION_UUID
)
2069 err
= "bcache: replay journal failed";
2070 if (bch_journal_replay(c
, &journal
))
2075 pr_notice("invalidating existing data\n");
2076 ca
->sb
.keys
= clamp_t(int, ca
->sb
.nbuckets
>> 7,
2077 2, SB_JOURNAL_BUCKETS
);
2079 for (j
= 0; j
< ca
->sb
.keys
; j
++)
2080 ca
->sb
.d
[j
] = ca
->sb
.first_bucket
+ j
;
2082 bch_initial_gc_finish(c
);
2084 err
= "error starting allocator thread";
2085 if (bch_cache_allocator_start(ca
))
2088 mutex_lock(&c
->bucket_lock
);
2089 bch_prio_write(ca
, true);
2090 mutex_unlock(&c
->bucket_lock
);
2092 err
= "cannot allocate new UUID bucket";
2093 if (__uuid_write(c
))
2096 err
= "cannot allocate new btree root";
2097 c
->root
= __bch_btree_node_alloc(c
, NULL
, 0, true, NULL
);
2098 if (IS_ERR_OR_NULL(c
->root
))
2101 mutex_lock(&c
->root
->write_lock
);
2102 bkey_copy_key(&c
->root
->key
, &MAX_KEY
);
2103 bch_btree_node_write(c
->root
, &cl
);
2104 mutex_unlock(&c
->root
->write_lock
);
2106 bch_btree_set_root(c
->root
);
2107 rw_unlock(true, c
->root
);
2110 * We don't want to write the first journal entry until
2111 * everything is set up - fortunately journal entries won't be
2112 * written until the SET_CACHE_SYNC() here:
2114 SET_CACHE_SYNC(&c
->cache
->sb
, true);
2116 bch_journal_next(&c
->journal
);
2117 bch_journal_meta(c
, &cl
);
2120 err
= "error starting gc thread";
2121 if (bch_gc_thread_start(c
))
2125 c
->cache
->sb
.last_mount
= (u32
)ktime_get_real_seconds();
2126 bcache_write_super(c
);
2128 if (bch_has_feature_obso_large_bucket(&c
->cache
->sb
))
2129 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2131 list_for_each_entry_safe(dc
, t
, &uncached_devices
, list
)
2132 bch_cached_dev_attach(dc
, c
, NULL
);
2136 set_bit(CACHE_SET_RUNNING
, &c
->flags
);
2139 while (!list_empty(&journal
)) {
2140 l
= list_first_entry(&journal
, struct journal_replay
, list
);
2147 bch_cache_set_error(c
, "%s", err
);
2152 static const char *register_cache_set(struct cache
*ca
)
2155 const char *err
= "cannot allocate memory";
2156 struct cache_set
*c
;
2158 list_for_each_entry(c
, &bch_cache_sets
, list
)
2159 if (!memcmp(c
->set_uuid
, ca
->sb
.set_uuid
, 16)) {
2161 return "duplicate cache set member";
2166 c
= bch_cache_set_alloc(&ca
->sb
);
2170 err
= "error creating kobject";
2171 if (kobject_add(&c
->kobj
, bcache_kobj
, "%pU", c
->set_uuid
) ||
2172 kobject_add(&c
->internal
, &c
->kobj
, "internal"))
2175 if (bch_cache_accounting_add_kobjs(&c
->accounting
, &c
->kobj
))
2178 bch_debug_init_cache_set(c
);
2180 list_add(&c
->list
, &bch_cache_sets
);
2182 sprintf(buf
, "cache%i", ca
->sb
.nr_this_dev
);
2183 if (sysfs_create_link(&ca
->kobj
, &c
->kobj
, "set") ||
2184 sysfs_create_link(&c
->kobj
, &ca
->kobj
, buf
))
2187 kobject_get(&ca
->kobj
);
2189 ca
->set
->cache
= ca
;
2191 err
= "failed to run cache set";
2192 if (run_cache_set(c
) < 0)
2197 bch_cache_set_unregister(c
);
2203 /* When ca->kobj released */
2204 void bch_cache_release(struct kobject
*kobj
)
2206 struct cache
*ca
= container_of(kobj
, struct cache
, kobj
);
2210 BUG_ON(ca
->set
->cache
!= ca
);
2211 ca
->set
->cache
= NULL
;
2214 free_pages((unsigned long) ca
->disk_buckets
, ilog2(meta_bucket_pages(&ca
->sb
)));
2215 kfree(ca
->prio_buckets
);
2218 free_heap(&ca
->heap
);
2219 free_fifo(&ca
->free_inc
);
2221 for (i
= 0; i
< RESERVE_NR
; i
++)
2222 free_fifo(&ca
->free
[i
]);
2225 put_page(virt_to_page(ca
->sb_disk
));
2227 if (!IS_ERR_OR_NULL(ca
->bdev
))
2228 blkdev_put(ca
->bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
2231 module_put(THIS_MODULE
);
2234 static int cache_alloc(struct cache
*ca
)
2237 size_t btree_buckets
;
2240 const char *err
= NULL
;
2242 __module_get(THIS_MODULE
);
2243 kobject_init(&ca
->kobj
, &bch_cache_ktype
);
2245 bio_init(&ca
->journal
.bio
, ca
->journal
.bio
.bi_inline_vecs
, 8);
2248 * when ca->sb.njournal_buckets is not zero, journal exists,
2249 * and in bch_journal_replay(), tree node may split,
2250 * so bucket of RESERVE_BTREE type is needed,
2251 * the worst situation is all journal buckets are valid journal,
2252 * and all the keys need to replay,
2253 * so the number of RESERVE_BTREE type buckets should be as much
2254 * as journal buckets
2256 btree_buckets
= ca
->sb
.njournal_buckets
?: 8;
2257 free
= roundup_pow_of_two(ca
->sb
.nbuckets
) >> 10;
2260 err
= "ca->sb.nbuckets is too small";
2264 if (!init_fifo(&ca
->free
[RESERVE_BTREE
], btree_buckets
,
2266 err
= "ca->free[RESERVE_BTREE] alloc failed";
2267 goto err_btree_alloc
;
2270 if (!init_fifo_exact(&ca
->free
[RESERVE_PRIO
], prio_buckets(ca
),
2272 err
= "ca->free[RESERVE_PRIO] alloc failed";
2273 goto err_prio_alloc
;
2276 if (!init_fifo(&ca
->free
[RESERVE_MOVINGGC
], free
, GFP_KERNEL
)) {
2277 err
= "ca->free[RESERVE_MOVINGGC] alloc failed";
2278 goto err_movinggc_alloc
;
2281 if (!init_fifo(&ca
->free
[RESERVE_NONE
], free
, GFP_KERNEL
)) {
2282 err
= "ca->free[RESERVE_NONE] alloc failed";
2283 goto err_none_alloc
;
2286 if (!init_fifo(&ca
->free_inc
, free
<< 2, GFP_KERNEL
)) {
2287 err
= "ca->free_inc alloc failed";
2288 goto err_free_inc_alloc
;
2291 if (!init_heap(&ca
->heap
, free
<< 3, GFP_KERNEL
)) {
2292 err
= "ca->heap alloc failed";
2293 goto err_heap_alloc
;
2296 ca
->buckets
= vzalloc(array_size(sizeof(struct bucket
),
2299 err
= "ca->buckets alloc failed";
2300 goto err_buckets_alloc
;
2303 ca
->prio_buckets
= kzalloc(array3_size(sizeof(uint64_t),
2304 prio_buckets(ca
), 2),
2306 if (!ca
->prio_buckets
) {
2307 err
= "ca->prio_buckets alloc failed";
2308 goto err_prio_buckets_alloc
;
2311 ca
->disk_buckets
= alloc_meta_bucket_pages(GFP_KERNEL
, &ca
->sb
);
2312 if (!ca
->disk_buckets
) {
2313 err
= "ca->disk_buckets alloc failed";
2314 goto err_disk_buckets_alloc
;
2317 ca
->prio_last_buckets
= ca
->prio_buckets
+ prio_buckets(ca
);
2319 for_each_bucket(b
, ca
)
2320 atomic_set(&b
->pin
, 0);
2323 err_disk_buckets_alloc
:
2324 kfree(ca
->prio_buckets
);
2325 err_prio_buckets_alloc
:
2328 free_heap(&ca
->heap
);
2330 free_fifo(&ca
->free_inc
);
2332 free_fifo(&ca
->free
[RESERVE_NONE
]);
2334 free_fifo(&ca
->free
[RESERVE_MOVINGGC
]);
2336 free_fifo(&ca
->free
[RESERVE_PRIO
]);
2338 free_fifo(&ca
->free
[RESERVE_BTREE
]);
2341 module_put(THIS_MODULE
);
2343 pr_notice("error %s: %s\n", ca
->cache_dev_name
, err
);
2347 static int register_cache(struct cache_sb
*sb
, struct cache_sb_disk
*sb_disk
,
2348 struct block_device
*bdev
, struct cache
*ca
)
2350 const char *err
= NULL
; /* must be set for any error case */
2353 bdevname(bdev
, ca
->cache_dev_name
);
2354 memcpy(&ca
->sb
, sb
, sizeof(struct cache_sb
));
2356 ca
->bdev
->bd_holder
= ca
;
2357 ca
->sb_disk
= sb_disk
;
2359 if (blk_queue_discard(bdev_get_queue(bdev
)))
2360 ca
->discard
= CACHE_DISCARD(&ca
->sb
);
2362 ret
= cache_alloc(ca
);
2365 * If we failed here, it means ca->kobj is not initialized yet,
2366 * kobject_put() won't be called and there is no chance to
2367 * call blkdev_put() to bdev in bch_cache_release(). So we
2368 * explicitly call blkdev_put() here.
2370 blkdev_put(bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
2372 err
= "cache_alloc(): -ENOMEM";
2373 else if (ret
== -EPERM
)
2374 err
= "cache_alloc(): cache device is too small";
2376 err
= "cache_alloc(): unknown error";
2380 if (kobject_add(&ca
->kobj
, bdev_kobj(bdev
), "bcache")) {
2381 err
= "error calling kobject_add";
2386 mutex_lock(&bch_register_lock
);
2387 err
= register_cache_set(ca
);
2388 mutex_unlock(&bch_register_lock
);
2395 pr_info("registered cache device %s\n", ca
->cache_dev_name
);
2398 kobject_put(&ca
->kobj
);
2402 pr_notice("error %s: %s\n", ca
->cache_dev_name
, err
);
2407 /* Global interfaces/init */
2409 static ssize_t
register_bcache(struct kobject
*k
, struct kobj_attribute
*attr
,
2410 const char *buffer
, size_t size
);
2411 static ssize_t
bch_pending_bdevs_cleanup(struct kobject
*k
,
2412 struct kobj_attribute
*attr
,
2413 const char *buffer
, size_t size
);
2415 kobj_attribute_write(register, register_bcache
);
2416 kobj_attribute_write(register_quiet
, register_bcache
);
2417 kobj_attribute_write(pendings_cleanup
, bch_pending_bdevs_cleanup
);
2419 static bool bch_is_open_backing(dev_t dev
)
2421 struct cache_set
*c
, *tc
;
2422 struct cached_dev
*dc
, *t
;
2424 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2425 list_for_each_entry_safe(dc
, t
, &c
->cached_devs
, list
)
2426 if (dc
->bdev
->bd_dev
== dev
)
2428 list_for_each_entry_safe(dc
, t
, &uncached_devices
, list
)
2429 if (dc
->bdev
->bd_dev
== dev
)
2434 static bool bch_is_open_cache(dev_t dev
)
2436 struct cache_set
*c
, *tc
;
2438 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
) {
2439 struct cache
*ca
= c
->cache
;
2441 if (ca
->bdev
->bd_dev
== dev
)
2448 static bool bch_is_open(dev_t dev
)
2450 return bch_is_open_cache(dev
) || bch_is_open_backing(dev
);
2453 struct async_reg_args
{
2454 struct delayed_work reg_work
;
2456 struct cache_sb
*sb
;
2457 struct cache_sb_disk
*sb_disk
;
2458 struct block_device
*bdev
;
2461 static void register_bdev_worker(struct work_struct
*work
)
2464 struct async_reg_args
*args
=
2465 container_of(work
, struct async_reg_args
, reg_work
.work
);
2466 struct cached_dev
*dc
;
2468 dc
= kzalloc(sizeof(*dc
), GFP_KERNEL
);
2471 put_page(virt_to_page(args
->sb_disk
));
2472 blkdev_put(args
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2476 mutex_lock(&bch_register_lock
);
2477 if (register_bdev(args
->sb
, args
->sb_disk
, args
->bdev
, dc
) < 0)
2479 mutex_unlock(&bch_register_lock
);
2483 pr_info("error %s: fail to register backing device\n",
2488 module_put(THIS_MODULE
);
2491 static void register_cache_worker(struct work_struct
*work
)
2494 struct async_reg_args
*args
=
2495 container_of(work
, struct async_reg_args
, reg_work
.work
);
2498 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2501 put_page(virt_to_page(args
->sb_disk
));
2502 blkdev_put(args
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2506 /* blkdev_put() will be called in bch_cache_release() */
2507 if (register_cache(args
->sb
, args
->sb_disk
, args
->bdev
, ca
) != 0)
2512 pr_info("error %s: fail to register cache device\n",
2517 module_put(THIS_MODULE
);
2520 static void register_device_aync(struct async_reg_args
*args
)
2522 if (SB_IS_BDEV(args
->sb
))
2523 INIT_DELAYED_WORK(&args
->reg_work
, register_bdev_worker
);
2525 INIT_DELAYED_WORK(&args
->reg_work
, register_cache_worker
);
2527 /* 10 jiffies is enough for a delay */
2528 queue_delayed_work(system_wq
, &args
->reg_work
, 10);
2531 static ssize_t
register_bcache(struct kobject
*k
, struct kobj_attribute
*attr
,
2532 const char *buffer
, size_t size
)
2536 struct cache_sb
*sb
;
2537 struct cache_sb_disk
*sb_disk
;
2538 struct block_device
*bdev
;
2540 bool async_registration
= false;
2542 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2543 async_registration
= true;
2547 err
= "failed to reference bcache module";
2548 if (!try_module_get(THIS_MODULE
))
2551 /* For latest state of bcache_is_reboot */
2553 err
= "bcache is in reboot";
2554 if (bcache_is_reboot
)
2555 goto out_module_put
;
2558 err
= "cannot allocate memory";
2559 path
= kstrndup(buffer
, size
, GFP_KERNEL
);
2561 goto out_module_put
;
2563 sb
= kmalloc(sizeof(struct cache_sb
), GFP_KERNEL
);
2568 err
= "failed to open device";
2569 bdev
= blkdev_get_by_path(strim(path
),
2570 FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
,
2573 if (bdev
== ERR_PTR(-EBUSY
)) {
2576 mutex_lock(&bch_register_lock
);
2577 if (lookup_bdev(strim(path
), &dev
) == 0 &&
2579 err
= "device already registered";
2581 err
= "device busy";
2582 mutex_unlock(&bch_register_lock
);
2583 if (attr
== &ksysfs_register_quiet
)
2589 err
= "failed to set blocksize";
2590 if (set_blocksize(bdev
, 4096))
2591 goto out_blkdev_put
;
2593 err
= read_super(sb
, bdev
, &sb_disk
);
2595 goto out_blkdev_put
;
2597 err
= "failed to register device";
2599 if (async_registration
) {
2600 /* register in asynchronous way */
2601 struct async_reg_args
*args
=
2602 kzalloc(sizeof(struct async_reg_args
), GFP_KERNEL
);
2606 err
= "cannot allocate memory";
2607 goto out_put_sb_page
;
2612 args
->sb_disk
= sb_disk
;
2614 register_device_aync(args
);
2615 /* No wait and returns to user space */
2619 if (SB_IS_BDEV(sb
)) {
2620 struct cached_dev
*dc
= kzalloc(sizeof(*dc
), GFP_KERNEL
);
2623 goto out_put_sb_page
;
2625 mutex_lock(&bch_register_lock
);
2626 ret
= register_bdev(sb
, sb_disk
, bdev
, dc
);
2627 mutex_unlock(&bch_register_lock
);
2628 /* blkdev_put() will be called in cached_dev_free() */
2632 struct cache
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2635 goto out_put_sb_page
;
2637 /* blkdev_put() will be called in bch_cache_release() */
2638 if (register_cache(sb
, sb_disk
, bdev
, ca
) != 0)
2645 module_put(THIS_MODULE
);
2650 put_page(virt_to_page(sb_disk
));
2652 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2659 module_put(THIS_MODULE
);
2661 pr_info("error %s: %s\n", path
?path
:"", err
);
2667 struct list_head list
;
2668 struct cached_dev
*dc
;
2671 static ssize_t
bch_pending_bdevs_cleanup(struct kobject
*k
,
2672 struct kobj_attribute
*attr
,
2676 LIST_HEAD(pending_devs
);
2678 struct cached_dev
*dc
, *tdc
;
2679 struct pdev
*pdev
, *tpdev
;
2680 struct cache_set
*c
, *tc
;
2682 mutex_lock(&bch_register_lock
);
2683 list_for_each_entry_safe(dc
, tdc
, &uncached_devices
, list
) {
2684 pdev
= kmalloc(sizeof(struct pdev
), GFP_KERNEL
);
2688 list_add(&pdev
->list
, &pending_devs
);
2691 list_for_each_entry_safe(pdev
, tpdev
, &pending_devs
, list
) {
2692 char *pdev_set_uuid
= pdev
->dc
->sb
.set_uuid
;
2693 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
) {
2694 char *set_uuid
= c
->set_uuid
;
2696 if (!memcmp(pdev_set_uuid
, set_uuid
, 16)) {
2697 list_del(&pdev
->list
);
2703 mutex_unlock(&bch_register_lock
);
2705 list_for_each_entry_safe(pdev
, tpdev
, &pending_devs
, list
) {
2706 pr_info("delete pdev %p\n", pdev
);
2707 list_del(&pdev
->list
);
2708 bcache_device_stop(&pdev
->dc
->disk
);
2715 static int bcache_reboot(struct notifier_block
*n
, unsigned long code
, void *x
)
2717 if (bcache_is_reboot
)
2720 if (code
== SYS_DOWN
||
2722 code
== SYS_POWER_OFF
) {
2724 unsigned long start
= jiffies
;
2725 bool stopped
= false;
2727 struct cache_set
*c
, *tc
;
2728 struct cached_dev
*dc
, *tdc
;
2730 mutex_lock(&bch_register_lock
);
2732 if (bcache_is_reboot
)
2735 /* New registration is rejected since now */
2736 bcache_is_reboot
= true;
2738 * Make registering caller (if there is) on other CPU
2739 * core know bcache_is_reboot set to true earlier
2743 if (list_empty(&bch_cache_sets
) &&
2744 list_empty(&uncached_devices
))
2747 mutex_unlock(&bch_register_lock
);
2749 pr_info("Stopping all devices:\n");
2752 * The reason bch_register_lock is not held to call
2753 * bch_cache_set_stop() and bcache_device_stop() is to
2754 * avoid potential deadlock during reboot, because cache
2755 * set or bcache device stopping process will acqurie
2756 * bch_register_lock too.
2758 * We are safe here because bcache_is_reboot sets to
2759 * true already, register_bcache() will reject new
2760 * registration now. bcache_is_reboot also makes sure
2761 * bcache_reboot() won't be re-entered on by other thread,
2762 * so there is no race in following list iteration by
2763 * list_for_each_entry_safe().
2765 list_for_each_entry_safe(c
, tc
, &bch_cache_sets
, list
)
2766 bch_cache_set_stop(c
);
2768 list_for_each_entry_safe(dc
, tdc
, &uncached_devices
, list
)
2769 bcache_device_stop(&dc
->disk
);
2773 * Give an early chance for other kthreads and
2774 * kworkers to stop themselves
2778 /* What's a condition variable? */
2780 long timeout
= start
+ 10 * HZ
- jiffies
;
2782 mutex_lock(&bch_register_lock
);
2783 stopped
= list_empty(&bch_cache_sets
) &&
2784 list_empty(&uncached_devices
);
2786 if (timeout
< 0 || stopped
)
2789 prepare_to_wait(&unregister_wait
, &wait
,
2790 TASK_UNINTERRUPTIBLE
);
2792 mutex_unlock(&bch_register_lock
);
2793 schedule_timeout(timeout
);
2796 finish_wait(&unregister_wait
, &wait
);
2799 pr_info("All devices stopped\n");
2801 pr_notice("Timeout waiting for devices to be closed\n");
2803 mutex_unlock(&bch_register_lock
);
2809 static struct notifier_block reboot
= {
2810 .notifier_call
= bcache_reboot
,
2811 .priority
= INT_MAX
, /* before any real devices */
2814 static void bcache_exit(void)
2819 kobject_put(bcache_kobj
);
2821 destroy_workqueue(bcache_wq
);
2823 destroy_workqueue(bch_journal_wq
);
2826 unregister_blkdev(bcache_major
, "bcache");
2827 unregister_reboot_notifier(&reboot
);
2828 mutex_destroy(&bch_register_lock
);
2831 /* Check and fixup module parameters */
2832 static void check_module_parameters(void)
2834 if (bch_cutoff_writeback_sync
== 0)
2835 bch_cutoff_writeback_sync
= CUTOFF_WRITEBACK_SYNC
;
2836 else if (bch_cutoff_writeback_sync
> CUTOFF_WRITEBACK_SYNC_MAX
) {
2837 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2838 bch_cutoff_writeback_sync
, CUTOFF_WRITEBACK_SYNC_MAX
);
2839 bch_cutoff_writeback_sync
= CUTOFF_WRITEBACK_SYNC_MAX
;
2842 if (bch_cutoff_writeback
== 0)
2843 bch_cutoff_writeback
= CUTOFF_WRITEBACK
;
2844 else if (bch_cutoff_writeback
> CUTOFF_WRITEBACK_MAX
) {
2845 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2846 bch_cutoff_writeback
, CUTOFF_WRITEBACK_MAX
);
2847 bch_cutoff_writeback
= CUTOFF_WRITEBACK_MAX
;
2850 if (bch_cutoff_writeback
> bch_cutoff_writeback_sync
) {
2851 pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2852 bch_cutoff_writeback
, bch_cutoff_writeback_sync
);
2853 bch_cutoff_writeback
= bch_cutoff_writeback_sync
;
2857 static int __init
bcache_init(void)
2859 static const struct attribute
*files
[] = {
2860 &ksysfs_register
.attr
,
2861 &ksysfs_register_quiet
.attr
,
2862 &ksysfs_pendings_cleanup
.attr
,
2866 check_module_parameters();
2868 mutex_init(&bch_register_lock
);
2869 init_waitqueue_head(&unregister_wait
);
2870 register_reboot_notifier(&reboot
);
2872 bcache_major
= register_blkdev(0, "bcache");
2873 if (bcache_major
< 0) {
2874 unregister_reboot_notifier(&reboot
);
2875 mutex_destroy(&bch_register_lock
);
2876 return bcache_major
;
2879 bcache_wq
= alloc_workqueue("bcache", WQ_MEM_RECLAIM
, 0);
2883 bch_journal_wq
= alloc_workqueue("bch_journal", WQ_MEM_RECLAIM
, 0);
2884 if (!bch_journal_wq
)
2887 bcache_kobj
= kobject_create_and_add("bcache", fs_kobj
);
2891 if (bch_request_init() ||
2892 sysfs_create_files(bcache_kobj
, files
))
2896 closure_debug_init();
2898 bcache_is_reboot
= false;
2909 module_exit(bcache_exit
);
2910 module_init(bcache_init
);
2912 module_param(bch_cutoff_writeback
, uint
, 0);
2913 MODULE_PARM_DESC(bch_cutoff_writeback
, "threshold to cutoff writeback");
2915 module_param(bch_cutoff_writeback_sync
, uint
, 0);
2916 MODULE_PARM_DESC(bch_cutoff_writeback_sync
, "hard threshold to cutoff writeback");
2918 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2919 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2920 MODULE_LICENSE("GPL");