WIP FPC-III support
[linux/fpc-iii.git] / drivers / md / persistent-data / dm-array.c
blob185dc60360b55f8916f0a8f3cc93e0e44104a0fa
1 /*
2 * Copyright (C) 2012 Red Hat, Inc.
4 * This file is released under the GPL.
5 */
7 #include "dm-array.h"
8 #include "dm-space-map.h"
9 #include "dm-transaction-manager.h"
11 #include <linux/export.h>
12 #include <linux/device-mapper.h>
14 #define DM_MSG_PREFIX "array"
16 /*----------------------------------------------------------------*/
19 * The array is implemented as a fully populated btree, which points to
20 * blocks that contain the packed values. This is more space efficient
21 * than just using a btree since we don't store 1 key per value.
23 struct array_block {
24 __le32 csum;
25 __le32 max_entries;
26 __le32 nr_entries;
27 __le32 value_size;
28 __le64 blocknr; /* Block this node is supposed to live in. */
29 } __packed;
31 /*----------------------------------------------------------------*/
34 * Validator methods. As usual we calculate a checksum, and also write the
35 * block location into the header (paranoia about ssds remapping areas by
36 * mistake).
38 #define CSUM_XOR 595846735
40 static void array_block_prepare_for_write(struct dm_block_validator *v,
41 struct dm_block *b,
42 size_t size_of_block)
44 struct array_block *bh_le = dm_block_data(b);
46 bh_le->blocknr = cpu_to_le64(dm_block_location(b));
47 bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
48 size_of_block - sizeof(__le32),
49 CSUM_XOR));
52 static int array_block_check(struct dm_block_validator *v,
53 struct dm_block *b,
54 size_t size_of_block)
56 struct array_block *bh_le = dm_block_data(b);
57 __le32 csum_disk;
59 if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
60 DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
61 (unsigned long long) le64_to_cpu(bh_le->blocknr),
62 (unsigned long long) dm_block_location(b));
63 return -ENOTBLK;
66 csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
67 size_of_block - sizeof(__le32),
68 CSUM_XOR));
69 if (csum_disk != bh_le->csum) {
70 DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
71 (unsigned) le32_to_cpu(csum_disk),
72 (unsigned) le32_to_cpu(bh_le->csum));
73 return -EILSEQ;
76 return 0;
79 static struct dm_block_validator array_validator = {
80 .name = "array",
81 .prepare_for_write = array_block_prepare_for_write,
82 .check = array_block_check
85 /*----------------------------------------------------------------*/
88 * Functions for manipulating the array blocks.
92 * Returns a pointer to a value within an array block.
94 * index - The index into _this_ specific block.
96 static void *element_at(struct dm_array_info *info, struct array_block *ab,
97 unsigned index)
99 unsigned char *entry = (unsigned char *) (ab + 1);
101 entry += index * info->value_type.size;
103 return entry;
107 * Utility function that calls one of the value_type methods on every value
108 * in an array block.
110 static void on_entries(struct dm_array_info *info, struct array_block *ab,
111 void (*fn)(void *, const void *))
113 unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
115 for (i = 0; i < nr_entries; i++)
116 fn(info->value_type.context, element_at(info, ab, i));
120 * Increment every value in an array block.
122 static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
124 struct dm_btree_value_type *vt = &info->value_type;
126 if (vt->inc)
127 on_entries(info, ab, vt->inc);
131 * Decrement every value in an array block.
133 static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
135 struct dm_btree_value_type *vt = &info->value_type;
137 if (vt->dec)
138 on_entries(info, ab, vt->dec);
142 * Each array block can hold this many values.
144 static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
146 return (size_of_block - sizeof(struct array_block)) / value_size;
150 * Allocate a new array block. The caller will need to unlock block.
152 static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
153 uint32_t max_entries,
154 struct dm_block **block, struct array_block **ab)
156 int r;
158 r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
159 if (r)
160 return r;
162 (*ab) = dm_block_data(*block);
163 (*ab)->max_entries = cpu_to_le32(max_entries);
164 (*ab)->nr_entries = cpu_to_le32(0);
165 (*ab)->value_size = cpu_to_le32(info->value_type.size);
167 return 0;
171 * Pad an array block out with a particular value. Every instance will
172 * cause an increment of the value_type. new_nr must always be more than
173 * the current number of entries.
175 static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
176 const void *value, unsigned new_nr)
178 unsigned i;
179 uint32_t nr_entries;
180 struct dm_btree_value_type *vt = &info->value_type;
182 BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
183 BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
185 nr_entries = le32_to_cpu(ab->nr_entries);
186 for (i = nr_entries; i < new_nr; i++) {
187 if (vt->inc)
188 vt->inc(vt->context, value);
189 memcpy(element_at(info, ab, i), value, vt->size);
191 ab->nr_entries = cpu_to_le32(new_nr);
195 * Remove some entries from the back of an array block. Every value
196 * removed will be decremented. new_nr must be <= the current number of
197 * entries.
199 static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
200 unsigned new_nr)
202 unsigned i;
203 uint32_t nr_entries;
204 struct dm_btree_value_type *vt = &info->value_type;
206 BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
207 BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
209 nr_entries = le32_to_cpu(ab->nr_entries);
210 for (i = nr_entries; i > new_nr; i--)
211 if (vt->dec)
212 vt->dec(vt->context, element_at(info, ab, i - 1));
213 ab->nr_entries = cpu_to_le32(new_nr);
217 * Read locks a block, and coerces it to an array block. The caller must
218 * unlock 'block' when finished.
220 static int get_ablock(struct dm_array_info *info, dm_block_t b,
221 struct dm_block **block, struct array_block **ab)
223 int r;
225 r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
226 if (r)
227 return r;
229 *ab = dm_block_data(*block);
230 return 0;
234 * Unlocks an array block.
236 static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
238 dm_tm_unlock(info->btree_info.tm, block);
241 /*----------------------------------------------------------------*/
244 * Btree manipulation.
248 * Looks up an array block in the btree, and then read locks it.
250 * index is the index of the index of the array_block, (ie. the array index
251 * / max_entries).
253 static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
254 unsigned index, struct dm_block **block,
255 struct array_block **ab)
257 int r;
258 uint64_t key = index;
259 __le64 block_le;
261 r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
262 if (r)
263 return r;
265 return get_ablock(info, le64_to_cpu(block_le), block, ab);
269 * Insert an array block into the btree. The block is _not_ unlocked.
271 static int insert_ablock(struct dm_array_info *info, uint64_t index,
272 struct dm_block *block, dm_block_t *root)
274 __le64 block_le = cpu_to_le64(dm_block_location(block));
276 __dm_bless_for_disk(block_le);
277 return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
280 /*----------------------------------------------------------------*/
282 static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
283 struct dm_block **block, struct array_block **ab)
285 int inc;
286 int r = dm_tm_shadow_block(info->btree_info.tm, b,
287 &array_validator, block, &inc);
288 if (r)
289 return r;
291 *ab = dm_block_data(*block);
292 if (inc)
293 inc_ablock_entries(info, *ab);
295 return 0;
299 * The shadow op will often be a noop. Only insert if it really
300 * copied data.
302 static int __reinsert_ablock(struct dm_array_info *info, unsigned index,
303 struct dm_block *block, dm_block_t b,
304 dm_block_t *root)
306 int r = 0;
308 if (dm_block_location(block) != b) {
310 * dm_tm_shadow_block will have already decremented the old
311 * block, but it is still referenced by the btree. We
312 * increment to stop the insert decrementing it below zero
313 * when overwriting the old value.
315 dm_tm_inc(info->btree_info.tm, b);
316 r = insert_ablock(info, index, block, root);
319 return r;
323 * Looks up an array block in the btree. Then shadows it, and updates the
324 * btree to point to this new shadow. 'root' is an input/output parameter
325 * for both the current root block, and the new one.
327 static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
328 unsigned index, struct dm_block **block,
329 struct array_block **ab)
331 int r;
332 uint64_t key = index;
333 dm_block_t b;
334 __le64 block_le;
336 r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
337 if (r)
338 return r;
339 b = le64_to_cpu(block_le);
341 r = __shadow_ablock(info, b, block, ab);
342 if (r)
343 return r;
345 return __reinsert_ablock(info, index, *block, b, root);
349 * Allocate an new array block, and fill it with some values.
351 static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
352 uint32_t max_entries,
353 unsigned block_index, uint32_t nr,
354 const void *value, dm_block_t *root)
356 int r;
357 struct dm_block *block;
358 struct array_block *ab;
360 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
361 if (r)
362 return r;
364 fill_ablock(info, ab, value, nr);
365 r = insert_ablock(info, block_index, block, root);
366 unlock_ablock(info, block);
368 return r;
371 static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
372 unsigned begin_block, unsigned end_block,
373 unsigned max_entries, const void *value,
374 dm_block_t *root)
376 int r = 0;
378 for (; !r && begin_block != end_block; begin_block++)
379 r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
381 return r;
385 * There are a bunch of functions involved with resizing an array. This
386 * structure holds information that commonly needed by them. Purely here
387 * to reduce parameter count.
389 struct resize {
391 * Describes the array.
393 struct dm_array_info *info;
396 * The current root of the array. This gets updated.
398 dm_block_t root;
401 * Metadata block size. Used to calculate the nr entries in an
402 * array block.
404 size_t size_of_block;
407 * Maximum nr entries in an array block.
409 unsigned max_entries;
412 * nr of completely full blocks in the array.
414 * 'old' refers to before the resize, 'new' after.
416 unsigned old_nr_full_blocks, new_nr_full_blocks;
419 * Number of entries in the final block. 0 iff only full blocks in
420 * the array.
422 unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
425 * The default value used when growing the array.
427 const void *value;
431 * Removes a consecutive set of array blocks from the btree. The values
432 * in block are decremented as a side effect of the btree remove.
434 * begin_index - the index of the first array block to remove.
435 * end_index - the one-past-the-end value. ie. this block is not removed.
437 static int drop_blocks(struct resize *resize, unsigned begin_index,
438 unsigned end_index)
440 int r;
442 while (begin_index != end_index) {
443 uint64_t key = begin_index++;
444 r = dm_btree_remove(&resize->info->btree_info, resize->root,
445 &key, &resize->root);
446 if (r)
447 return r;
450 return 0;
454 * Calculates how many blocks are needed for the array.
456 static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
457 unsigned nr_entries_in_last_block)
459 return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
463 * Shrink an array.
465 static int shrink(struct resize *resize)
467 int r;
468 unsigned begin, end;
469 struct dm_block *block;
470 struct array_block *ab;
473 * Lose some blocks from the back?
475 if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
476 begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
477 resize->new_nr_entries_in_last_block);
478 end = total_nr_blocks_needed(resize->old_nr_full_blocks,
479 resize->old_nr_entries_in_last_block);
481 r = drop_blocks(resize, begin, end);
482 if (r)
483 return r;
487 * Trim the new tail block
489 if (resize->new_nr_entries_in_last_block) {
490 r = shadow_ablock(resize->info, &resize->root,
491 resize->new_nr_full_blocks, &block, &ab);
492 if (r)
493 return r;
495 trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
496 unlock_ablock(resize->info, block);
499 return 0;
503 * Grow an array.
505 static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
507 int r;
508 struct dm_block *block;
509 struct array_block *ab;
511 r = shadow_ablock(resize->info, &resize->root,
512 resize->old_nr_full_blocks, &block, &ab);
513 if (r)
514 return r;
516 fill_ablock(resize->info, ab, resize->value, new_nr_entries);
517 unlock_ablock(resize->info, block);
519 return r;
522 static int grow_add_tail_block(struct resize *resize)
524 return insert_new_ablock(resize->info, resize->size_of_block,
525 resize->max_entries,
526 resize->new_nr_full_blocks,
527 resize->new_nr_entries_in_last_block,
528 resize->value, &resize->root);
531 static int grow_needs_more_blocks(struct resize *resize)
533 int r;
534 unsigned old_nr_blocks = resize->old_nr_full_blocks;
536 if (resize->old_nr_entries_in_last_block > 0) {
537 old_nr_blocks++;
539 r = grow_extend_tail_block(resize, resize->max_entries);
540 if (r)
541 return r;
544 r = insert_full_ablocks(resize->info, resize->size_of_block,
545 old_nr_blocks,
546 resize->new_nr_full_blocks,
547 resize->max_entries, resize->value,
548 &resize->root);
549 if (r)
550 return r;
552 if (resize->new_nr_entries_in_last_block)
553 r = grow_add_tail_block(resize);
555 return r;
558 static int grow(struct resize *resize)
560 if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
561 return grow_needs_more_blocks(resize);
563 else if (resize->old_nr_entries_in_last_block)
564 return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
566 else
567 return grow_add_tail_block(resize);
570 /*----------------------------------------------------------------*/
573 * These are the value_type functions for the btree elements, which point
574 * to array blocks.
576 static void block_inc(void *context, const void *value)
578 __le64 block_le;
579 struct dm_array_info *info = context;
581 memcpy(&block_le, value, sizeof(block_le));
582 dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
585 static void block_dec(void *context, const void *value)
587 int r;
588 uint64_t b;
589 __le64 block_le;
590 uint32_t ref_count;
591 struct dm_block *block;
592 struct array_block *ab;
593 struct dm_array_info *info = context;
595 memcpy(&block_le, value, sizeof(block_le));
596 b = le64_to_cpu(block_le);
598 r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
599 if (r) {
600 DMERR_LIMIT("couldn't get reference count for block %llu",
601 (unsigned long long) b);
602 return;
605 if (ref_count == 1) {
607 * We're about to drop the last reference to this ablock.
608 * So we need to decrement the ref count of the contents.
610 r = get_ablock(info, b, &block, &ab);
611 if (r) {
612 DMERR_LIMIT("couldn't get array block %llu",
613 (unsigned long long) b);
614 return;
617 dec_ablock_entries(info, ab);
618 unlock_ablock(info, block);
621 dm_tm_dec(info->btree_info.tm, b);
624 static int block_equal(void *context, const void *value1, const void *value2)
626 return !memcmp(value1, value2, sizeof(__le64));
629 /*----------------------------------------------------------------*/
631 void dm_array_info_init(struct dm_array_info *info,
632 struct dm_transaction_manager *tm,
633 struct dm_btree_value_type *vt)
635 struct dm_btree_value_type *bvt = &info->btree_info.value_type;
637 memcpy(&info->value_type, vt, sizeof(info->value_type));
638 info->btree_info.tm = tm;
639 info->btree_info.levels = 1;
641 bvt->context = info;
642 bvt->size = sizeof(__le64);
643 bvt->inc = block_inc;
644 bvt->dec = block_dec;
645 bvt->equal = block_equal;
647 EXPORT_SYMBOL_GPL(dm_array_info_init);
649 int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
651 return dm_btree_empty(&info->btree_info, root);
653 EXPORT_SYMBOL_GPL(dm_array_empty);
655 static int array_resize(struct dm_array_info *info, dm_block_t root,
656 uint32_t old_size, uint32_t new_size,
657 const void *value, dm_block_t *new_root)
659 int r;
660 struct resize resize;
662 if (old_size == new_size) {
663 *new_root = root;
664 return 0;
667 resize.info = info;
668 resize.root = root;
669 resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
670 resize.max_entries = calc_max_entries(info->value_type.size,
671 resize.size_of_block);
673 resize.old_nr_full_blocks = old_size / resize.max_entries;
674 resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
675 resize.new_nr_full_blocks = new_size / resize.max_entries;
676 resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
677 resize.value = value;
679 r = ((new_size > old_size) ? grow : shrink)(&resize);
680 if (r)
681 return r;
683 *new_root = resize.root;
684 return 0;
687 int dm_array_resize(struct dm_array_info *info, dm_block_t root,
688 uint32_t old_size, uint32_t new_size,
689 const void *value, dm_block_t *new_root)
690 __dm_written_to_disk(value)
692 int r = array_resize(info, root, old_size, new_size, value, new_root);
693 __dm_unbless_for_disk(value);
694 return r;
696 EXPORT_SYMBOL_GPL(dm_array_resize);
698 static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
699 value_fn fn, void *context, unsigned base, unsigned new_nr)
701 int r;
702 unsigned i;
703 struct dm_btree_value_type *vt = &info->value_type;
705 BUG_ON(le32_to_cpu(ab->nr_entries));
706 BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
708 for (i = 0; i < new_nr; i++) {
709 r = fn(base + i, element_at(info, ab, i), context);
710 if (r)
711 return r;
713 if (vt->inc)
714 vt->inc(vt->context, element_at(info, ab, i));
717 ab->nr_entries = cpu_to_le32(new_nr);
718 return 0;
721 int dm_array_new(struct dm_array_info *info, dm_block_t *root,
722 uint32_t size, value_fn fn, void *context)
724 int r;
725 struct dm_block *block;
726 struct array_block *ab;
727 unsigned block_index, end_block, size_of_block, max_entries;
729 r = dm_array_empty(info, root);
730 if (r)
731 return r;
733 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
734 max_entries = calc_max_entries(info->value_type.size, size_of_block);
735 end_block = dm_div_up(size, max_entries);
737 for (block_index = 0; block_index != end_block; block_index++) {
738 r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
739 if (r)
740 break;
742 r = populate_ablock_with_values(info, ab, fn, context,
743 block_index * max_entries,
744 min(max_entries, size));
745 if (r) {
746 unlock_ablock(info, block);
747 break;
750 r = insert_ablock(info, block_index, block, root);
751 unlock_ablock(info, block);
752 if (r)
753 break;
755 size -= max_entries;
758 return r;
760 EXPORT_SYMBOL_GPL(dm_array_new);
762 int dm_array_del(struct dm_array_info *info, dm_block_t root)
764 return dm_btree_del(&info->btree_info, root);
766 EXPORT_SYMBOL_GPL(dm_array_del);
768 int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
769 uint32_t index, void *value_le)
771 int r;
772 struct dm_block *block;
773 struct array_block *ab;
774 size_t size_of_block;
775 unsigned entry, max_entries;
777 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
778 max_entries = calc_max_entries(info->value_type.size, size_of_block);
780 r = lookup_ablock(info, root, index / max_entries, &block, &ab);
781 if (r)
782 return r;
784 entry = index % max_entries;
785 if (entry >= le32_to_cpu(ab->nr_entries))
786 r = -ENODATA;
787 else
788 memcpy(value_le, element_at(info, ab, entry),
789 info->value_type.size);
791 unlock_ablock(info, block);
792 return r;
794 EXPORT_SYMBOL_GPL(dm_array_get_value);
796 static int array_set_value(struct dm_array_info *info, dm_block_t root,
797 uint32_t index, const void *value, dm_block_t *new_root)
799 int r;
800 struct dm_block *block;
801 struct array_block *ab;
802 size_t size_of_block;
803 unsigned max_entries;
804 unsigned entry;
805 void *old_value;
806 struct dm_btree_value_type *vt = &info->value_type;
808 size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
809 max_entries = calc_max_entries(info->value_type.size, size_of_block);
811 r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
812 if (r)
813 return r;
814 *new_root = root;
816 entry = index % max_entries;
817 if (entry >= le32_to_cpu(ab->nr_entries)) {
818 r = -ENODATA;
819 goto out;
822 old_value = element_at(info, ab, entry);
823 if (vt->dec &&
824 (!vt->equal || !vt->equal(vt->context, old_value, value))) {
825 vt->dec(vt->context, old_value);
826 if (vt->inc)
827 vt->inc(vt->context, value);
830 memcpy(old_value, value, info->value_type.size);
832 out:
833 unlock_ablock(info, block);
834 return r;
837 int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
838 uint32_t index, const void *value, dm_block_t *new_root)
839 __dm_written_to_disk(value)
841 int r;
843 r = array_set_value(info, root, index, value, new_root);
844 __dm_unbless_for_disk(value);
845 return r;
847 EXPORT_SYMBOL_GPL(dm_array_set_value);
849 struct walk_info {
850 struct dm_array_info *info;
851 int (*fn)(void *context, uint64_t key, void *leaf);
852 void *context;
855 static int walk_ablock(void *context, uint64_t *keys, void *leaf)
857 struct walk_info *wi = context;
859 int r;
860 unsigned i;
861 __le64 block_le;
862 unsigned nr_entries, max_entries;
863 struct dm_block *block;
864 struct array_block *ab;
866 memcpy(&block_le, leaf, sizeof(block_le));
867 r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
868 if (r)
869 return r;
871 max_entries = le32_to_cpu(ab->max_entries);
872 nr_entries = le32_to_cpu(ab->nr_entries);
873 for (i = 0; i < nr_entries; i++) {
874 r = wi->fn(wi->context, keys[0] * max_entries + i,
875 element_at(wi->info, ab, i));
877 if (r)
878 break;
881 unlock_ablock(wi->info, block);
882 return r;
885 int dm_array_walk(struct dm_array_info *info, dm_block_t root,
886 int (*fn)(void *, uint64_t key, void *leaf),
887 void *context)
889 struct walk_info wi;
891 wi.info = info;
892 wi.fn = fn;
893 wi.context = context;
895 return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
897 EXPORT_SYMBOL_GPL(dm_array_walk);
899 /*----------------------------------------------------------------*/
901 static int load_ablock(struct dm_array_cursor *c)
903 int r;
904 __le64 value_le;
905 uint64_t key;
907 if (c->block)
908 unlock_ablock(c->info, c->block);
910 c->block = NULL;
911 c->ab = NULL;
912 c->index = 0;
914 r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
915 if (r) {
916 DMERR("dm_btree_cursor_get_value failed");
917 dm_btree_cursor_end(&c->cursor);
919 } else {
920 r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
921 if (r) {
922 DMERR("get_ablock failed");
923 dm_btree_cursor_end(&c->cursor);
927 return r;
930 int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
931 struct dm_array_cursor *c)
933 int r;
935 memset(c, 0, sizeof(*c));
936 c->info = info;
937 r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
938 if (r) {
939 DMERR("couldn't create btree cursor");
940 return r;
943 return load_ablock(c);
945 EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
947 void dm_array_cursor_end(struct dm_array_cursor *c)
949 if (c->block) {
950 unlock_ablock(c->info, c->block);
951 dm_btree_cursor_end(&c->cursor);
954 EXPORT_SYMBOL_GPL(dm_array_cursor_end);
956 int dm_array_cursor_next(struct dm_array_cursor *c)
958 int r;
960 if (!c->block)
961 return -ENODATA;
963 c->index++;
965 if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
966 r = dm_btree_cursor_next(&c->cursor);
967 if (r)
968 return r;
970 r = load_ablock(c);
971 if (r)
972 return r;
975 return 0;
977 EXPORT_SYMBOL_GPL(dm_array_cursor_next);
979 int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
981 int r;
983 do {
984 uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
986 if (count < remaining) {
987 c->index += count;
988 return 0;
991 count -= remaining;
992 r = dm_array_cursor_next(c);
994 } while (!r);
996 return r;
998 EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
1000 void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
1002 *value_le = element_at(c->info, c->ab, c->index);
1004 EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
1006 /*----------------------------------------------------------------*/