1 // SPDX-License-Identifier: GPL-2.0-only
3 * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
5 * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/i2c.h>
13 #include <linux/mutex.h>
14 #include <asm/div64.h>
16 #include <media/dvb_math.h>
18 #include <media/dvb_frontend.h>
27 #define MAX_NUMBER_OF_FRONTENDS 6
28 /* #define DIB8000_AGC_FREEZE */
31 module_param(debug
, int, 0644);
32 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
34 #define dprintk(fmt, arg...) do { \
36 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
41 struct i2c_adapter
*adap
;
45 struct mutex
*i2c_buffer_lock
;
48 enum param_loop_step
{
53 enum dib8000_autosearch_step
{
61 SYMBOL_DEPENDENT_OFF
= 0,
65 struct dib8000_state
{
66 struct dib8000_config cfg
;
68 struct i2c_device i2c
;
70 struct dibx000_i2c_master i2c_master
;
75 u32 current_bandwidth
;
76 struct dibx000_agc_config
*current_agc
;
85 u8 differential_constellation
;
88 s16 ber_monitored_layer
;
94 enum frontend_tune_state tune_state
;
97 struct dvb_frontend
*fe
[MAX_NUMBER_OF_FRONTENDS
];
99 /* for the I2C transfer */
100 struct i2c_msg msg
[2];
101 u8 i2c_write_buffer
[4];
102 u8 i2c_read_buffer
[2];
103 struct mutex i2c_buffer_lock
;
107 struct i2c_adapter dib8096p_tuner_adap
;
108 u16 current_demod_bw
;
116 u8 channel_parameters_set
;
117 u16 autosearch_state
;
122 unsigned long timeout
;
123 u8 longest_intlv_layer
;
126 /* for DVBv5 stats */
128 unsigned long per_jiffies_stats
;
129 unsigned long ber_jiffies_stats
;
130 unsigned long ber_jiffies_stats_layer
[3];
132 #ifdef DIB8000_AGC_FREEZE
140 enum dib8000_power_mode
{
141 DIB8000_POWER_ALL
= 0,
142 DIB8000_POWER_INTERFACE_ONLY
,
145 static u16
dib8000_i2c_read16(struct i2c_device
*i2c
, u16 reg
)
148 struct i2c_msg msg
[2] = {
149 {.addr
= i2c
->addr
>> 1, .flags
= 0, .len
= 2},
150 {.addr
= i2c
->addr
>> 1, .flags
= I2C_M_RD
, .len
= 2},
153 if (mutex_lock_interruptible(i2c
->i2c_buffer_lock
) < 0) {
154 dprintk("could not acquire lock\n");
158 msg
[0].buf
= i2c
->i2c_write_buffer
;
159 msg
[0].buf
[0] = reg
>> 8;
160 msg
[0].buf
[1] = reg
& 0xff;
161 msg
[1].buf
= i2c
->i2c_read_buffer
;
163 if (i2c_transfer(i2c
->adap
, msg
, 2) != 2)
164 dprintk("i2c read error on %d\n", reg
);
166 ret
= (msg
[1].buf
[0] << 8) | msg
[1].buf
[1];
167 mutex_unlock(i2c
->i2c_buffer_lock
);
171 static u16
__dib8000_read_word(struct dib8000_state
*state
, u16 reg
)
175 state
->i2c_write_buffer
[0] = reg
>> 8;
176 state
->i2c_write_buffer
[1] = reg
& 0xff;
178 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
179 state
->msg
[0].addr
= state
->i2c
.addr
>> 1;
180 state
->msg
[0].flags
= 0;
181 state
->msg
[0].buf
= state
->i2c_write_buffer
;
182 state
->msg
[0].len
= 2;
183 state
->msg
[1].addr
= state
->i2c
.addr
>> 1;
184 state
->msg
[1].flags
= I2C_M_RD
;
185 state
->msg
[1].buf
= state
->i2c_read_buffer
;
186 state
->msg
[1].len
= 2;
188 if (i2c_transfer(state
->i2c
.adap
, state
->msg
, 2) != 2)
189 dprintk("i2c read error on %d\n", reg
);
191 ret
= (state
->i2c_read_buffer
[0] << 8) | state
->i2c_read_buffer
[1];
196 static u16
dib8000_read_word(struct dib8000_state
*state
, u16 reg
)
200 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
201 dprintk("could not acquire lock\n");
205 ret
= __dib8000_read_word(state
, reg
);
207 mutex_unlock(&state
->i2c_buffer_lock
);
212 static u32
dib8000_read32(struct dib8000_state
*state
, u16 reg
)
216 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
217 dprintk("could not acquire lock\n");
221 rw
[0] = __dib8000_read_word(state
, reg
+ 0);
222 rw
[1] = __dib8000_read_word(state
, reg
+ 1);
224 mutex_unlock(&state
->i2c_buffer_lock
);
226 return ((rw
[0] << 16) | (rw
[1]));
229 static int dib8000_i2c_write16(struct i2c_device
*i2c
, u16 reg
, u16 val
)
231 struct i2c_msg msg
= {.addr
= i2c
->addr
>> 1, .flags
= 0, .len
= 4};
234 if (mutex_lock_interruptible(i2c
->i2c_buffer_lock
) < 0) {
235 dprintk("could not acquire lock\n");
239 msg
.buf
= i2c
->i2c_write_buffer
;
240 msg
.buf
[0] = (reg
>> 8) & 0xff;
241 msg
.buf
[1] = reg
& 0xff;
242 msg
.buf
[2] = (val
>> 8) & 0xff;
243 msg
.buf
[3] = val
& 0xff;
245 ret
= i2c_transfer(i2c
->adap
, &msg
, 1) != 1 ? -EREMOTEIO
: 0;
246 mutex_unlock(i2c
->i2c_buffer_lock
);
251 static int dib8000_write_word(struct dib8000_state
*state
, u16 reg
, u16 val
)
255 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
256 dprintk("could not acquire lock\n");
260 state
->i2c_write_buffer
[0] = (reg
>> 8) & 0xff;
261 state
->i2c_write_buffer
[1] = reg
& 0xff;
262 state
->i2c_write_buffer
[2] = (val
>> 8) & 0xff;
263 state
->i2c_write_buffer
[3] = val
& 0xff;
265 memset(&state
->msg
[0], 0, sizeof(struct i2c_msg
));
266 state
->msg
[0].addr
= state
->i2c
.addr
>> 1;
267 state
->msg
[0].flags
= 0;
268 state
->msg
[0].buf
= state
->i2c_write_buffer
;
269 state
->msg
[0].len
= 4;
271 ret
= (i2c_transfer(state
->i2c
.adap
, state
->msg
, 1) != 1 ?
273 mutex_unlock(&state
->i2c_buffer_lock
);
278 static const s16 coeff_2k_sb_1seg_dqpsk
[8] = {
279 (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
283 static const s16 coeff_2k_sb_1seg
[8] = {
284 (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
287 static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk
[8] = {
288 (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
292 static const s16 coeff_2k_sb_3seg_0dqpsk
[8] = {
293 (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
297 static const s16 coeff_2k_sb_3seg_1dqpsk
[8] = {
298 (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
302 static const s16 coeff_2k_sb_3seg
[8] = {
303 (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
307 static const s16 coeff_4k_sb_1seg_dqpsk
[8] = {
308 (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
312 static const s16 coeff_4k_sb_1seg
[8] = {
313 (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
317 static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk
[8] = {
318 (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
322 static const s16 coeff_4k_sb_3seg_0dqpsk
[8] = {
323 (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
327 static const s16 coeff_4k_sb_3seg_1dqpsk
[8] = {
328 (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
332 static const s16 coeff_4k_sb_3seg
[8] = {
333 (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
337 static const s16 coeff_8k_sb_1seg_dqpsk
[8] = {
338 (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
342 static const s16 coeff_8k_sb_1seg
[8] = {
343 (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
347 static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk
[8] = {
348 (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
352 static const s16 coeff_8k_sb_3seg_0dqpsk
[8] = {
353 (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
357 static const s16 coeff_8k_sb_3seg_1dqpsk
[8] = {
358 (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
362 static const s16 coeff_8k_sb_3seg
[8] = {
363 (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
367 static const s16 ana_fe_coeff_3seg
[24] = {
368 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
371 static const s16 ana_fe_coeff_1seg
[24] = {
372 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
375 static const s16 ana_fe_coeff_13seg
[24] = {
376 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
379 static u16
fft_to_mode(struct dib8000_state
*state
)
382 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
383 case TRANSMISSION_MODE_2K
:
386 case TRANSMISSION_MODE_4K
:
390 case TRANSMISSION_MODE_AUTO
:
391 case TRANSMISSION_MODE_8K
:
398 static void dib8000_set_acquisition_mode(struct dib8000_state
*state
)
400 u16 nud
= dib8000_read_word(state
, 298);
401 nud
|= (1 << 3) | (1 << 0);
402 dprintk("acquisition mode activated\n");
403 dib8000_write_word(state
, 298, nud
);
405 static int dib8000_set_output_mode(struct dvb_frontend
*fe
, int mode
)
407 struct dib8000_state
*state
= fe
->demodulator_priv
;
408 u16 outreg
, fifo_threshold
, smo_mode
, sram
= 0x0205; /* by default SDRAM deintlv is enabled */
410 state
->output_mode
= mode
;
412 fifo_threshold
= 1792;
413 smo_mode
= (dib8000_read_word(state
, 299) & 0x0050) | (1 << 1);
415 dprintk("-I- Setting output mode for demod %p to %d\n",
416 &state
->fe
[0], mode
);
419 case OUTMODE_MPEG2_PAR_GATED_CLK
: // STBs with parallel gated clock
420 outreg
= (1 << 10); /* 0x0400 */
422 case OUTMODE_MPEG2_PAR_CONT_CLK
: // STBs with parallel continues clock
423 outreg
= (1 << 10) | (1 << 6); /* 0x0440 */
425 case OUTMODE_MPEG2_SERIAL
: // STBs with serial input
426 outreg
= (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
428 case OUTMODE_DIVERSITY
:
429 if (state
->cfg
.hostbus_diversity
) {
430 outreg
= (1 << 10) | (4 << 6); /* 0x0500 */
435 case OUTMODE_MPEG2_FIFO
: // e.g. USB feeding
436 smo_mode
|= (3 << 1);
437 fifo_threshold
= 512;
438 outreg
= (1 << 10) | (5 << 6);
440 case OUTMODE_HIGH_Z
: // disable
444 case OUTMODE_ANALOG_ADC
:
445 outreg
= (1 << 10) | (3 << 6);
446 dib8000_set_acquisition_mode(state
);
450 dprintk("Unhandled output_mode passed to be set for demod %p\n",
455 if (state
->cfg
.output_mpeg2_in_188_bytes
)
456 smo_mode
|= (1 << 5);
458 dib8000_write_word(state
, 299, smo_mode
);
459 dib8000_write_word(state
, 300, fifo_threshold
); /* synchronous fread */
460 dib8000_write_word(state
, 1286, outreg
);
461 dib8000_write_word(state
, 1291, sram
);
466 static int dib8000_set_diversity_in(struct dvb_frontend
*fe
, int onoff
)
468 struct dib8000_state
*state
= fe
->demodulator_priv
;
469 u16 tmp
, sync_wait
= dib8000_read_word(state
, 273) & 0xfff0;
471 dprintk("set diversity input to %i\n", onoff
);
472 if (!state
->differential_constellation
) {
473 dib8000_write_word(state
, 272, 1 << 9); //dvsy_off_lmod4 = 1
474 dib8000_write_word(state
, 273, sync_wait
| (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
476 dib8000_write_word(state
, 272, 0); //dvsy_off_lmod4 = 0
477 dib8000_write_word(state
, 273, sync_wait
); // sync_enable = 0; comb_mode = 0
479 state
->diversity_onoff
= onoff
;
482 case 0: /* only use the internal way - not the diversity input */
483 dib8000_write_word(state
, 270, 1);
484 dib8000_write_word(state
, 271, 0);
486 case 1: /* both ways */
487 dib8000_write_word(state
, 270, 6);
488 dib8000_write_word(state
, 271, 6);
490 case 2: /* only the diversity input */
491 dib8000_write_word(state
, 270, 0);
492 dib8000_write_word(state
, 271, 1);
496 if (state
->revision
== 0x8002) {
497 tmp
= dib8000_read_word(state
, 903);
498 dib8000_write_word(state
, 903, tmp
& ~(1 << 3));
500 dib8000_write_word(state
, 903, tmp
| (1 << 3));
505 static void dib8000_set_power_mode(struct dib8000_state
*state
, enum dib8000_power_mode mode
)
507 /* by default everything is going to be powered off */
508 u16 reg_774
= 0x3fff, reg_775
= 0xffff, reg_776
= 0xffff,
509 reg_900
= (dib8000_read_word(state
, 900) & 0xfffc) | 0x3,
512 if (state
->revision
!= 0x8090)
513 reg_1280
= (dib8000_read_word(state
, 1280) & 0x00ff) | 0xff00;
515 reg_1280
= (dib8000_read_word(state
, 1280) & 0x707f) | 0x8f80;
517 /* now, depending on the requested mode, we power on */
519 /* power up everything in the demod */
520 case DIB8000_POWER_ALL
:
525 if (state
->revision
!= 0x8090)
530 case DIB8000_POWER_INTERFACE_ONLY
:
531 if (state
->revision
!= 0x8090)
538 dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x\n", reg_774
, reg_775
, reg_776
, reg_900
, reg_1280
);
539 dib8000_write_word(state
, 774, reg_774
);
540 dib8000_write_word(state
, 775, reg_775
);
541 dib8000_write_word(state
, 776, reg_776
);
542 dib8000_write_word(state
, 900, reg_900
);
543 dib8000_write_word(state
, 1280, reg_1280
);
546 static int dib8000_set_adc_state(struct dib8000_state
*state
, enum dibx000_adc_states no
)
549 u16 reg
, reg_907
= dib8000_read_word(state
, 907);
550 u16 reg_908
= dib8000_read_word(state
, 908);
553 case DIBX000_SLOW_ADC_ON
:
554 if (state
->revision
!= 0x8090) {
555 reg_908
|= (1 << 1) | (1 << 0);
556 ret
|= dib8000_write_word(state
, 908, reg_908
);
557 reg_908
&= ~(1 << 1);
559 reg
= dib8000_read_word(state
, 1925);
560 /* en_slowAdc = 1 & reset_sladc = 1 */
561 dib8000_write_word(state
, 1925, reg
|
564 /* read access to make it works... strange ... */
565 reg
= dib8000_read_word(state
, 1925);
567 /* en_slowAdc = 1 & reset_sladc = 0 */
568 dib8000_write_word(state
, 1925, reg
& ~(1<<4));
570 reg
= dib8000_read_word(state
, 921) & ~((0x3 << 14)
572 /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ;
574 dib8000_write_word(state
, 921, reg
| (1 << 14)
579 case DIBX000_SLOW_ADC_OFF
:
580 if (state
->revision
== 0x8090) {
581 reg
= dib8000_read_word(state
, 1925);
582 /* reset_sladc = 1 en_slowAdc = 0 */
583 dib8000_write_word(state
, 1925,
584 (reg
& ~(1<<2)) | (1<<4));
586 reg_908
|= (1 << 1) | (1 << 0);
594 case DIBX000_ADC_OFF
: // leave the VBG voltage on
595 reg_907
= (1 << 13) | (1 << 12);
596 reg_908
= (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1);
599 case DIBX000_VBG_ENABLE
:
600 reg_907
&= ~(1 << 15);
603 case DIBX000_VBG_DISABLE
:
604 reg_907
|= (1 << 15);
611 ret
|= dib8000_write_word(state
, 907, reg_907
);
612 ret
|= dib8000_write_word(state
, 908, reg_908
);
617 static int dib8000_set_bandwidth(struct dvb_frontend
*fe
, u32 bw
)
619 struct dib8000_state
*state
= fe
->demodulator_priv
;
625 if (state
->timf
== 0) {
626 dprintk("using default timf\n");
627 timf
= state
->timf_default
;
629 dprintk("using updated timf\n");
633 dib8000_write_word(state
, 29, (u16
) ((timf
>> 16) & 0xffff));
634 dib8000_write_word(state
, 30, (u16
) ((timf
) & 0xffff));
639 static int dib8000_sad_calib(struct dib8000_state
*state
)
643 if (state
->revision
== 0x8090) {
644 dib8000_write_word(state
, 922, (sad_sel
<< 2));
645 dib8000_write_word(state
, 923, 2048);
647 dib8000_write_word(state
, 922, (sad_sel
<< 2) | 0x1);
648 dib8000_write_word(state
, 922, (sad_sel
<< 2));
651 dib8000_write_word(state
, 923, (0 << 1) | (0 << 0));
652 dib8000_write_word(state
, 924, 776);
654 /* do the calibration */
655 dib8000_write_word(state
, 923, (1 << 0));
656 dib8000_write_word(state
, 923, (0 << 0));
663 static int dib8000_set_wbd_ref(struct dvb_frontend
*fe
, u16 value
)
665 struct dib8000_state
*state
= fe
->demodulator_priv
;
668 state
->wbd_ref
= value
;
669 return dib8000_write_word(state
, 106, value
);
672 static void dib8000_reset_pll_common(struct dib8000_state
*state
, const struct dibx000_bandwidth_config
*bw
)
674 dprintk("ifreq: %d %x, inversion: %d\n", bw
->ifreq
, bw
->ifreq
, bw
->ifreq
>> 25);
675 if (state
->revision
!= 0x8090) {
676 dib8000_write_word(state
, 23,
677 (u16
) (((bw
->internal
* 1000) >> 16) & 0xffff));
678 dib8000_write_word(state
, 24,
679 (u16
) ((bw
->internal
* 1000) & 0xffff));
681 dib8000_write_word(state
, 23, (u16
) (((bw
->internal
/ 2 * 1000) >> 16) & 0xffff));
682 dib8000_write_word(state
, 24,
683 (u16
) ((bw
->internal
/ 2 * 1000) & 0xffff));
685 dib8000_write_word(state
, 27, (u16
) ((bw
->ifreq
>> 16) & 0x01ff));
686 dib8000_write_word(state
, 28, (u16
) (bw
->ifreq
& 0xffff));
687 dib8000_write_word(state
, 26, (u16
) ((bw
->ifreq
>> 25) & 0x0003));
689 if (state
->revision
!= 0x8090)
690 dib8000_write_word(state
, 922, bw
->sad_cfg
);
693 static void dib8000_reset_pll(struct dib8000_state
*state
)
695 const struct dibx000_bandwidth_config
*pll
= state
->cfg
.pll
;
698 if (state
->revision
!= 0x8090) {
699 dib8000_write_word(state
, 901,
700 (pll
->pll_prediv
<< 8) | (pll
->pll_ratio
<< 0));
702 clk_cfg1
= (1 << 10) | (0 << 9) | (pll
->IO_CLK_en_core
<< 8) |
703 (pll
->bypclk_div
<< 5) | (pll
->enable_refdiv
<< 4) |
704 (1 << 3) | (pll
->pll_range
<< 1) |
705 (pll
->pll_reset
<< 0);
707 dib8000_write_word(state
, 902, clk_cfg1
);
708 clk_cfg1
= (clk_cfg1
& 0xfff7) | (pll
->pll_bypass
<< 3);
709 dib8000_write_word(state
, 902, clk_cfg1
);
711 dprintk("clk_cfg1: 0x%04x\n", clk_cfg1
);
713 /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
714 if (state
->cfg
.pll
->ADClkSrc
== 0)
715 dib8000_write_word(state
, 904,
716 (0 << 15) | (0 << 12) | (0 << 10) |
718 (pll
->ADClkSrc
<< 7) | (0 << 1));
719 else if (state
->cfg
.refclksel
!= 0)
720 dib8000_write_word(state
, 904, (0 << 15) | (1 << 12) |
721 ((state
->cfg
.refclksel
& 0x3) << 10) |
723 (pll
->ADClkSrc
<< 7) | (0 << 1));
725 dib8000_write_word(state
, 904, (0 << 15) | (1 << 12) |
726 (3 << 10) | (pll
->modulo
<< 8) |
727 (pll
->ADClkSrc
<< 7) | (0 << 1));
729 dib8000_write_word(state
, 1856, (!pll
->pll_reset
<<13) |
730 (pll
->pll_range
<<12) | (pll
->pll_ratio
<<6) |
733 reg
= dib8000_read_word(state
, 1857);
734 dib8000_write_word(state
, 1857, reg
|(!pll
->pll_bypass
<<15));
736 reg
= dib8000_read_word(state
, 1858); /* Force clk out pll /2 */
737 dib8000_write_word(state
, 1858, reg
| 1);
739 dib8000_write_word(state
, 904, (pll
->modulo
<< 8));
742 dib8000_reset_pll_common(state
, pll
);
745 static int dib8000_update_pll(struct dvb_frontend
*fe
,
746 struct dibx000_bandwidth_config
*pll
, u32 bw
, u8 ratio
)
748 struct dib8000_state
*state
= fe
->demodulator_priv
;
749 u16 reg_1857
, reg_1856
= dib8000_read_word(state
, 1856);
750 u8 loopdiv
, prediv
, oldprediv
= state
->cfg
.pll
->pll_prediv
;
753 /* get back old values */
754 prediv
= reg_1856
& 0x3f;
755 loopdiv
= (reg_1856
>> 6) & 0x3f;
757 if ((pll
== NULL
) || (pll
->pll_prediv
== prediv
&&
758 pll
->pll_ratio
== loopdiv
))
761 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv
, pll
->pll_prediv
, loopdiv
, pll
->pll_ratio
);
762 if (state
->revision
== 0x8090) {
764 reg_1857
= dib8000_read_word(state
, 1857);
766 dib8000_write_word(state
, 1857, reg_1857
& ~(1 << 15));
768 dib8000_write_word(state
, 1856, reg_1856
|
769 ((pll
->pll_ratio
& 0x3f) << 6) |
770 (pll
->pll_prediv
& 0x3f));
772 /* write new system clk into P_sec_len */
773 internal
= dib8000_read32(state
, 23) / 1000;
774 dprintk("Old Internal = %d\n", internal
);
775 xtal
= 2 * (internal
/ loopdiv
) * prediv
;
776 internal
= 1000 * (xtal
/pll
->pll_prediv
) * pll
->pll_ratio
;
777 dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d\n", xtal
, internal
/1000, internal
/2000, internal
/8000);
778 dprintk("New Internal = %d\n", internal
);
780 dib8000_write_word(state
, 23,
781 (u16
) (((internal
/ 2) >> 16) & 0xffff));
782 dib8000_write_word(state
, 24, (u16
) ((internal
/ 2) & 0xffff));
784 dib8000_write_word(state
, 1857, reg_1857
| (1 << 15));
786 while (((dib8000_read_word(state
, 1856)>>15)&0x1) != 1)
787 dprintk("Waiting for PLL to lock\n");
790 reg_1856
= dib8000_read_word(state
, 1856);
791 dprintk("PLL Updated with prediv = %d and loopdiv = %d\n",
792 reg_1856
&0x3f, (reg_1856
>>6)&0x3f);
794 if (bw
!= state
->current_demod_bw
) {
795 /** Bandwidth change => force PLL update **/
796 dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)\n", state
->current_demod_bw
/ 1000, bw
/ 1000, oldprediv
, state
->cfg
.pll
->pll_prediv
);
798 if (state
->cfg
.pll
->pll_prediv
!= oldprediv
) {
799 /** Full PLL change only if prediv is changed **/
801 /** full update => bypass and reconfigure **/
802 dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)\n", bw
/1000, state
->cfg
.pll
->pll_prediv
, state
->cfg
.pll
->pll_ratio
);
803 dib8000_write_word(state
, 902, dib8000_read_word(state
, 902) | (1<<3)); /* bypass PLL */
804 dib8000_reset_pll(state
);
805 dib8000_write_word(state
, 898, 0x0004); /* sad */
807 ratio
= state
->cfg
.pll
->pll_ratio
;
809 state
->current_demod_bw
= bw
;
813 /** ratio update => only change ratio **/
814 dprintk("PLL: Update ratio (prediv: %d, ratio: %d)\n", state
->cfg
.pll
->pll_prediv
, ratio
);
815 dib8000_write_word(state
, 901, (state
->cfg
.pll
->pll_prediv
<< 8) | (ratio
<< 0)); /* only the PLL ratio is updated. */
822 static int dib8000_reset_gpio(struct dib8000_state
*st
)
824 /* reset the GPIOs */
825 dib8000_write_word(st
, 1029, st
->cfg
.gpio_dir
);
826 dib8000_write_word(st
, 1030, st
->cfg
.gpio_val
);
828 /* TODO 782 is P_gpio_od */
830 dib8000_write_word(st
, 1032, st
->cfg
.gpio_pwm_pos
);
832 dib8000_write_word(st
, 1037, st
->cfg
.pwm_freq_div
);
836 static int dib8000_cfg_gpio(struct dib8000_state
*st
, u8 num
, u8 dir
, u8 val
)
838 st
->cfg
.gpio_dir
= dib8000_read_word(st
, 1029);
839 st
->cfg
.gpio_dir
&= ~(1 << num
); /* reset the direction bit */
840 st
->cfg
.gpio_dir
|= (dir
& 0x1) << num
; /* set the new direction */
841 dib8000_write_word(st
, 1029, st
->cfg
.gpio_dir
);
843 st
->cfg
.gpio_val
= dib8000_read_word(st
, 1030);
844 st
->cfg
.gpio_val
&= ~(1 << num
); /* reset the direction bit */
845 st
->cfg
.gpio_val
|= (val
& 0x01) << num
; /* set the new value */
846 dib8000_write_word(st
, 1030, st
->cfg
.gpio_val
);
848 dprintk("gpio dir: %x: gpio val: %x\n", st
->cfg
.gpio_dir
, st
->cfg
.gpio_val
);
853 static int dib8000_set_gpio(struct dvb_frontend
*fe
, u8 num
, u8 dir
, u8 val
)
855 struct dib8000_state
*state
= fe
->demodulator_priv
;
856 return dib8000_cfg_gpio(state
, num
, dir
, val
);
859 static const u16 dib8000_defaults
[] = {
860 /* auto search configuration - lock0 by default waiting
861 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
882 0x6680 // P_corm_thres Lock algorithms configuration */
884 11, 80, /* set ADC level to -16 */
885 (1 << 13) - 825 - 117,
886 (1 << 13) - 837 - 117,
887 (1 << 13) - 811 - 117,
888 (1 << 13) - 766 - 117,
889 (1 << 13) - 737 - 117,
890 (1 << 13) - 693 - 117,
891 (1 << 13) - 648 - 117,
892 (1 << 13) - 619 - 117,
893 (1 << 13) - 575 - 117,
894 (1 << 13) - 531 - 117,
895 (1 << 13) - 501 - 117,
906 8192, // P_fft_nb_to_cut
909 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
912 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
917 0x0666, // P_pha3_thres
918 0x0000, // P_cti_use_cpe, P_cti_use_prog
921 0x200f, // P_cspu_regul, P_cspu_win_cut
922 0x000f, // P_des_shift_work
925 0x023d, // P_adp_regul_cnt
926 0x00a4, // P_adp_noise_cnt
927 0x00a4, // P_adp_regul_ext
928 0x7ff0, // P_adp_noise_ext
932 0x0000, // P_2d_byp_ti_num
935 0x800, //P_equal_thres_wgn
938 (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
941 0x0001, // P_div_lock0_wait
945 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
948 (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
950 (0 << 9) | /* P_ctrl_pre_freq_inh=0 */
951 (3 << 5) | /* P_ctrl_pre_freq_step=3 */
952 (1 << 0), /* P_pre_freq_win_len=1 */
957 static u16
dib8000_identify(struct i2c_device
*client
)
961 //because of glitches sometimes
962 value
= dib8000_i2c_read16(client
, 896);
964 if ((value
= dib8000_i2c_read16(client
, 896)) != 0x01b3) {
965 dprintk("wrong Vendor ID (read=0x%x)\n", value
);
969 value
= dib8000_i2c_read16(client
, 897);
970 if (value
!= 0x8000 && value
!= 0x8001 &&
971 value
!= 0x8002 && value
!= 0x8090) {
972 dprintk("wrong Device ID (%x)\n", value
);
978 dprintk("found DiB8000A\n");
981 dprintk("found DiB8000B\n");
984 dprintk("found DiB8000C\n");
987 dprintk("found DiB8096P\n");
993 static int dib8000_read_unc_blocks(struct dvb_frontend
*fe
, u32
*unc
);
995 static void dib8000_reset_stats(struct dvb_frontend
*fe
)
997 struct dib8000_state
*state
= fe
->demodulator_priv
;
998 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
1001 memset(&c
->strength
, 0, sizeof(c
->strength
));
1002 memset(&c
->cnr
, 0, sizeof(c
->cnr
));
1003 memset(&c
->post_bit_error
, 0, sizeof(c
->post_bit_error
));
1004 memset(&c
->post_bit_count
, 0, sizeof(c
->post_bit_count
));
1005 memset(&c
->block_error
, 0, sizeof(c
->block_error
));
1007 c
->strength
.len
= 1;
1009 c
->block_error
.len
= 1;
1010 c
->block_count
.len
= 1;
1011 c
->post_bit_error
.len
= 1;
1012 c
->post_bit_count
.len
= 1;
1014 c
->strength
.stat
[0].scale
= FE_SCALE_DECIBEL
;
1015 c
->strength
.stat
[0].uvalue
= 0;
1017 c
->cnr
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1018 c
->block_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1019 c
->block_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1020 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1021 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
1023 dib8000_read_unc_blocks(fe
, &ucb
);
1025 state
->init_ucb
= -ucb
;
1026 state
->ber_jiffies_stats
= 0;
1027 state
->per_jiffies_stats
= 0;
1028 memset(&state
->ber_jiffies_stats_layer
, 0,
1029 sizeof(state
->ber_jiffies_stats_layer
));
1032 static int dib8000_reset(struct dvb_frontend
*fe
)
1034 struct dib8000_state
*state
= fe
->demodulator_priv
;
1036 if ((state
->revision
= dib8000_identify(&state
->i2c
)) == 0)
1039 /* sram lead in, rdy */
1040 if (state
->revision
!= 0x8090)
1041 dib8000_write_word(state
, 1287, 0x0003);
1043 if (state
->revision
== 0x8000)
1044 dprintk("error : dib8000 MA not supported\n");
1046 dibx000_reset_i2c_master(&state
->i2c_master
);
1048 dib8000_set_power_mode(state
, DIB8000_POWER_ALL
);
1050 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
1051 dib8000_set_adc_state(state
, DIBX000_ADC_OFF
);
1053 /* restart all parts */
1054 dib8000_write_word(state
, 770, 0xffff);
1055 dib8000_write_word(state
, 771, 0xffff);
1056 dib8000_write_word(state
, 772, 0xfffc);
1057 dib8000_write_word(state
, 898, 0x000c); /* restart sad */
1058 if (state
->revision
== 0x8090)
1059 dib8000_write_word(state
, 1280, 0x0045);
1061 dib8000_write_word(state
, 1280, 0x004d);
1062 dib8000_write_word(state
, 1281, 0x000c);
1064 dib8000_write_word(state
, 770, 0x0000);
1065 dib8000_write_word(state
, 771, 0x0000);
1066 dib8000_write_word(state
, 772, 0x0000);
1067 dib8000_write_word(state
, 898, 0x0004); // sad
1068 dib8000_write_word(state
, 1280, 0x0000);
1069 dib8000_write_word(state
, 1281, 0x0000);
1072 if (state
->revision
!= 0x8090) {
1073 if (state
->cfg
.drives
)
1074 dib8000_write_word(state
, 906, state
->cfg
.drives
);
1076 dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.\n");
1077 /* min drive SDRAM - not optimal - adjust */
1078 dib8000_write_word(state
, 906, 0x2d98);
1082 dib8000_reset_pll(state
);
1083 if (state
->revision
!= 0x8090)
1084 dib8000_write_word(state
, 898, 0x0004);
1086 if (dib8000_reset_gpio(state
) != 0)
1087 dprintk("GPIO reset was not successful.\n");
1089 if ((state
->revision
!= 0x8090) &&
1090 (dib8000_set_output_mode(fe
, OUTMODE_HIGH_Z
) != 0))
1091 dprintk("OUTPUT_MODE could not be reset.\n");
1093 state
->current_agc
= NULL
;
1095 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
1096 /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
1097 if (state
->cfg
.pll
->ifreq
== 0)
1098 dib8000_write_word(state
, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
1100 dib8000_write_word(state
, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
1105 n
= dib8000_defaults
;
1110 dib8000_write_word(state
, r
, *n
++);
1117 state
->isdbt_cfg_loaded
= 0;
1119 //div_cfg override for special configs
1120 if ((state
->revision
!= 8090) && (state
->cfg
.div_cfg
!= 0))
1121 dib8000_write_word(state
, 903, state
->cfg
.div_cfg
);
1123 /* unforce divstr regardless whether i2c enumeration was done or not */
1124 dib8000_write_word(state
, 1285, dib8000_read_word(state
, 1285) & ~(1 << 1));
1126 dib8000_set_bandwidth(fe
, 6000);
1128 dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_ON
);
1129 dib8000_sad_calib(state
);
1130 if (state
->revision
!= 0x8090)
1131 dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_OFF
);
1133 /* ber_rs_len = 3 */
1134 dib8000_write_word(state
, 285, (dib8000_read_word(state
, 285) & ~0x60) | (3 << 5));
1136 dib8000_set_power_mode(state
, DIB8000_POWER_INTERFACE_ONLY
);
1138 dib8000_reset_stats(fe
);
1143 static void dib8000_restart_agc(struct dib8000_state
*state
)
1145 // P_restart_iqc & P_restart_agc
1146 dib8000_write_word(state
, 770, 0x0a00);
1147 dib8000_write_word(state
, 770, 0x0000);
1150 static int dib8000_update_lna(struct dib8000_state
*state
)
1154 if (state
->cfg
.update_lna
) {
1155 // read dyn_gain here (because it is demod-dependent and not tuner)
1156 dyn_gain
= dib8000_read_word(state
, 390);
1158 if (state
->cfg
.update_lna(state
->fe
[0], dyn_gain
)) {
1159 dib8000_restart_agc(state
);
1166 static int dib8000_set_agc_config(struct dib8000_state
*state
, u8 band
)
1168 struct dibx000_agc_config
*agc
= NULL
;
1172 if (state
->current_band
== band
&& state
->current_agc
!= NULL
)
1174 state
->current_band
= band
;
1176 for (i
= 0; i
< state
->cfg
.agc_config_count
; i
++)
1177 if (state
->cfg
.agc
[i
].band_caps
& band
) {
1178 agc
= &state
->cfg
.agc
[i
];
1183 dprintk("no valid AGC configuration found for band 0x%02x\n", band
);
1187 state
->current_agc
= agc
;
1190 dib8000_write_word(state
, 76, agc
->setup
);
1191 dib8000_write_word(state
, 77, agc
->inv_gain
);
1192 dib8000_write_word(state
, 78, agc
->time_stabiliz
);
1193 dib8000_write_word(state
, 101, (agc
->alpha_level
<< 12) | agc
->thlock
);
1195 // Demod AGC loop configuration
1196 dib8000_write_word(state
, 102, (agc
->alpha_mant
<< 5) | agc
->alpha_exp
);
1197 dib8000_write_word(state
, 103, (agc
->beta_mant
<< 6) | agc
->beta_exp
);
1199 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
1200 state
->wbd_ref
!= 0 ? state
->wbd_ref
: agc
->wbd_ref
, agc
->wbd_sel
, !agc
->perform_agc_softsplit
, agc
->wbd_sel
);
1203 if (state
->wbd_ref
!= 0)
1204 dib8000_write_word(state
, 106, state
->wbd_ref
);
1206 dib8000_write_word(state
, 106, agc
->wbd_ref
);
1208 if (state
->revision
== 0x8090) {
1209 reg
= dib8000_read_word(state
, 922) & (0x3 << 2);
1210 dib8000_write_word(state
, 922, reg
| (agc
->wbd_sel
<< 2));
1213 dib8000_write_word(state
, 107, (agc
->wbd_alpha
<< 9) | (agc
->perform_agc_softsplit
<< 8));
1214 dib8000_write_word(state
, 108, agc
->agc1_max
);
1215 dib8000_write_word(state
, 109, agc
->agc1_min
);
1216 dib8000_write_word(state
, 110, agc
->agc2_max
);
1217 dib8000_write_word(state
, 111, agc
->agc2_min
);
1218 dib8000_write_word(state
, 112, (agc
->agc1_pt1
<< 8) | agc
->agc1_pt2
);
1219 dib8000_write_word(state
, 113, (agc
->agc1_slope1
<< 8) | agc
->agc1_slope2
);
1220 dib8000_write_word(state
, 114, (agc
->agc2_pt1
<< 8) | agc
->agc2_pt2
);
1221 dib8000_write_word(state
, 115, (agc
->agc2_slope1
<< 8) | agc
->agc2_slope2
);
1223 dib8000_write_word(state
, 75, agc
->agc1_pt3
);
1224 if (state
->revision
!= 0x8090)
1225 dib8000_write_word(state
, 923,
1226 (dib8000_read_word(state
, 923) & 0xffe3) |
1227 (agc
->wbd_inv
<< 4) | (agc
->wbd_sel
<< 2));
1232 static void dib8000_pwm_agc_reset(struct dvb_frontend
*fe
)
1234 struct dib8000_state
*state
= fe
->demodulator_priv
;
1235 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
1236 dib8000_set_agc_config(state
, (unsigned char)(BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000)));
1239 static int dib8000_agc_soft_split(struct dib8000_state
*state
)
1241 u16 agc
, split_offset
;
1243 if (!state
->current_agc
|| !state
->current_agc
->perform_agc_softsplit
|| state
->current_agc
->split
.max
== 0)
1247 agc
= dib8000_read_word(state
, 390);
1249 if (agc
> state
->current_agc
->split
.min_thres
)
1250 split_offset
= state
->current_agc
->split
.min
;
1251 else if (agc
< state
->current_agc
->split
.max_thres
)
1252 split_offset
= state
->current_agc
->split
.max
;
1254 split_offset
= state
->current_agc
->split
.max
*
1255 (agc
- state
->current_agc
->split
.min_thres
) /
1256 (state
->current_agc
->split
.max_thres
- state
->current_agc
->split
.min_thres
);
1258 dprintk("AGC split_offset: %d\n", split_offset
);
1260 // P_agc_force_split and P_agc_split_offset
1261 dib8000_write_word(state
, 107, (dib8000_read_word(state
, 107) & 0xff00) | split_offset
);
1265 static int dib8000_agc_startup(struct dvb_frontend
*fe
)
1267 struct dib8000_state
*state
= fe
->demodulator_priv
;
1268 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1271 u32 upd_demod_gain_period
= 0x8000;
1273 switch (*tune_state
) {
1275 // set power-up level: interf+analog+AGC
1277 if (state
->revision
!= 0x8090)
1278 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
1280 dib8000_set_power_mode(state
, DIB8000_POWER_ALL
);
1282 reg
= dib8000_read_word(state
, 1947)&0xff00;
1283 dib8000_write_word(state
, 1946,
1284 upd_demod_gain_period
& 0xFFFF);
1285 /* bit 14 = enDemodGain */
1286 dib8000_write_word(state
, 1947, reg
| (1<<14) |
1287 ((upd_demod_gain_period
>> 16) & 0xFF));
1289 /* enable adc i & q */
1290 reg
= dib8000_read_word(state
, 1920);
1291 dib8000_write_word(state
, 1920, (reg
| 0x3) &
1295 if (dib8000_set_agc_config(state
, (unsigned char)(BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000))) != 0) {
1296 *tune_state
= CT_AGC_STOP
;
1297 state
->status
= FE_STATUS_TUNE_FAILED
;
1302 *tune_state
= CT_AGC_STEP_0
;
1306 //AGC initialization
1307 if (state
->cfg
.agc_control
)
1308 state
->cfg
.agc_control(fe
, 1);
1310 dib8000_restart_agc(state
);
1312 // wait AGC rough lock time
1314 *tune_state
= CT_AGC_STEP_1
;
1318 // wait AGC accurate lock time
1321 if (dib8000_update_lna(state
))
1322 // wait only AGC rough lock time
1325 *tune_state
= CT_AGC_STEP_2
;
1329 dib8000_agc_soft_split(state
);
1331 if (state
->cfg
.agc_control
)
1332 state
->cfg
.agc_control(fe
, 0);
1334 *tune_state
= CT_AGC_STOP
;
1337 ret
= dib8000_agc_soft_split(state
);
1344 static void dib8096p_host_bus_drive(struct dib8000_state
*state
, u8 drive
)
1350 /* drive host bus 2, 3, 4 */
1351 reg
= dib8000_read_word(state
, 1798) &
1352 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1353 reg
|= (drive
<<12) | (drive
<<6) | drive
;
1354 dib8000_write_word(state
, 1798, reg
);
1356 /* drive host bus 5,6 */
1357 reg
= dib8000_read_word(state
, 1799) & ~((0x7 << 2) | (0x7 << 8));
1358 reg
|= (drive
<<8) | (drive
<<2);
1359 dib8000_write_word(state
, 1799, reg
);
1361 /* drive host bus 7, 8, 9 */
1362 reg
= dib8000_read_word(state
, 1800) &
1363 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1364 reg
|= (drive
<<12) | (drive
<<6) | drive
;
1365 dib8000_write_word(state
, 1800, reg
);
1367 /* drive host bus 10, 11 */
1368 reg
= dib8000_read_word(state
, 1801) & ~((0x7 << 2) | (0x7 << 8));
1369 reg
|= (drive
<<8) | (drive
<<2);
1370 dib8000_write_word(state
, 1801, reg
);
1372 /* drive host bus 12, 13, 14 */
1373 reg
= dib8000_read_word(state
, 1802) &
1374 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1375 reg
|= (drive
<<12) | (drive
<<6) | drive
;
1376 dib8000_write_word(state
, 1802, reg
);
1379 static u32
dib8096p_calcSyncFreq(u32 P_Kin
, u32 P_Kout
,
1380 u32 insertExtSynchro
, u32 syncSize
)
1383 u32 nom
= (insertExtSynchro
* P_Kin
+syncSize
);
1385 u32 syncFreq
= ((nom
<< quantif
) / denom
);
1387 if ((syncFreq
& ((1 << quantif
) - 1)) != 0)
1388 syncFreq
= (syncFreq
>> quantif
) + 1;
1390 syncFreq
= (syncFreq
>> quantif
);
1393 syncFreq
= syncFreq
- 1;
1398 static void dib8096p_cfg_DibTx(struct dib8000_state
*state
, u32 P_Kin
,
1399 u32 P_Kout
, u32 insertExtSynchro
, u32 synchroMode
,
1400 u32 syncWord
, u32 syncSize
)
1402 dprintk("Configure DibStream Tx\n");
1404 dib8000_write_word(state
, 1615, 1);
1405 dib8000_write_word(state
, 1603, P_Kin
);
1406 dib8000_write_word(state
, 1605, P_Kout
);
1407 dib8000_write_word(state
, 1606, insertExtSynchro
);
1408 dib8000_write_word(state
, 1608, synchroMode
);
1409 dib8000_write_word(state
, 1609, (syncWord
>> 16) & 0xffff);
1410 dib8000_write_word(state
, 1610, syncWord
& 0xffff);
1411 dib8000_write_word(state
, 1612, syncSize
);
1412 dib8000_write_word(state
, 1615, 0);
1415 static void dib8096p_cfg_DibRx(struct dib8000_state
*state
, u32 P_Kin
,
1416 u32 P_Kout
, u32 synchroMode
, u32 insertExtSynchro
,
1417 u32 syncWord
, u32 syncSize
, u32 dataOutRate
)
1421 dprintk("Configure DibStream Rx synchroMode = %d\n", synchroMode
);
1423 if ((P_Kin
!= 0) && (P_Kout
!= 0)) {
1424 syncFreq
= dib8096p_calcSyncFreq(P_Kin
, P_Kout
,
1425 insertExtSynchro
, syncSize
);
1426 dib8000_write_word(state
, 1542, syncFreq
);
1429 dib8000_write_word(state
, 1554, 1);
1430 dib8000_write_word(state
, 1536, P_Kin
);
1431 dib8000_write_word(state
, 1537, P_Kout
);
1432 dib8000_write_word(state
, 1539, synchroMode
);
1433 dib8000_write_word(state
, 1540, (syncWord
>> 16) & 0xffff);
1434 dib8000_write_word(state
, 1541, syncWord
& 0xffff);
1435 dib8000_write_word(state
, 1543, syncSize
);
1436 dib8000_write_word(state
, 1544, dataOutRate
);
1437 dib8000_write_word(state
, 1554, 0);
1440 static void dib8096p_enMpegMux(struct dib8000_state
*state
, int onoff
)
1444 reg_1287
= dib8000_read_word(state
, 1287);
1448 reg_1287
&= ~(1 << 8);
1451 reg_1287
|= (1 << 8);
1455 dib8000_write_word(state
, 1287, reg_1287
);
1458 static void dib8096p_configMpegMux(struct dib8000_state
*state
,
1459 u16 pulseWidth
, u16 enSerialMode
, u16 enSerialClkDiv2
)
1463 dprintk("Enable Mpeg mux\n");
1465 dib8096p_enMpegMux(state
, 0);
1467 /* If the input mode is MPEG do not divide the serial clock */
1468 if ((enSerialMode
== 1) && (state
->input_mode_mpeg
== 1))
1469 enSerialClkDiv2
= 0;
1471 reg_1287
= ((pulseWidth
& 0x1f) << 3) |
1472 ((enSerialMode
& 0x1) << 2) | (enSerialClkDiv2
& 0x1);
1473 dib8000_write_word(state
, 1287, reg_1287
);
1475 dib8096p_enMpegMux(state
, 1);
1478 static void dib8096p_setDibTxMux(struct dib8000_state
*state
, int mode
)
1480 u16 reg_1288
= dib8000_read_word(state
, 1288) & ~(0x7 << 7);
1484 dprintk("SET MPEG ON DIBSTREAM TX\n");
1485 dib8096p_cfg_DibTx(state
, 8, 5, 0, 0, 0, 0);
1486 reg_1288
|= (1 << 9); break;
1488 dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
1489 dib8096p_cfg_DibTx(state
, 5, 5, 0, 0, 0, 0);
1490 reg_1288
|= (1 << 8); break;
1492 dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
1493 dib8096p_cfg_DibTx(state
, 20, 5, 10, 0, 0, 0);
1494 reg_1288
|= (1 << 7); break;
1498 dib8000_write_word(state
, 1288, reg_1288
);
1501 static void dib8096p_setHostBusMux(struct dib8000_state
*state
, int mode
)
1503 u16 reg_1288
= dib8000_read_word(state
, 1288) & ~(0x7 << 4);
1506 case DEMOUT_ON_HOSTBUS
:
1507 dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
1508 dib8096p_enMpegMux(state
, 0);
1509 reg_1288
|= (1 << 6);
1511 case DIBTX_ON_HOSTBUS
:
1512 dprintk("SET DIBSTREAM TX ON HOST BUS\n");
1513 dib8096p_enMpegMux(state
, 0);
1514 reg_1288
|= (1 << 5);
1516 case MPEG_ON_HOSTBUS
:
1517 dprintk("SET MPEG MUX ON HOST BUS\n");
1518 reg_1288
|= (1 << 4);
1523 dib8000_write_word(state
, 1288, reg_1288
);
1526 static int dib8096p_set_diversity_in(struct dvb_frontend
*fe
, int onoff
)
1528 struct dib8000_state
*state
= fe
->demodulator_priv
;
1532 case 0: /* only use the internal way - not the diversity input */
1533 dprintk("%s mode OFF : by default Enable Mpeg INPUT\n",
1535 /* outputRate = 8 */
1536 dib8096p_cfg_DibRx(state
, 8, 5, 0, 0, 0, 8, 0);
1538 /* Do not divide the serial clock of MPEG MUX in
1539 SERIAL MODE in case input mode MPEG is used */
1540 reg_1287
= dib8000_read_word(state
, 1287);
1541 /* enSerialClkDiv2 == 1 ? */
1542 if ((reg_1287
& 0x1) == 1) {
1543 /* force enSerialClkDiv2 = 0 */
1545 dib8000_write_word(state
, 1287, reg_1287
);
1547 state
->input_mode_mpeg
= 1;
1549 case 1: /* both ways */
1550 case 2: /* only the diversity input */
1551 dprintk("%s ON : Enable diversity INPUT\n", __func__
);
1552 dib8096p_cfg_DibRx(state
, 5, 5, 0, 0, 0, 0, 0);
1553 state
->input_mode_mpeg
= 0;
1557 dib8000_set_diversity_in(state
->fe
[0], onoff
);
1561 static int dib8096p_set_output_mode(struct dvb_frontend
*fe
, int mode
)
1563 struct dib8000_state
*state
= fe
->demodulator_priv
;
1564 u16 outreg
, smo_mode
, fifo_threshold
;
1565 u8 prefer_mpeg_mux_use
= 1;
1568 state
->output_mode
= mode
;
1569 dib8096p_host_bus_drive(state
, 1);
1571 fifo_threshold
= 1792;
1572 smo_mode
= (dib8000_read_word(state
, 299) & 0x0050) | (1 << 1);
1573 outreg
= dib8000_read_word(state
, 1286) &
1574 ~((1 << 10) | (0x7 << 6) | (1 << 1));
1577 case OUTMODE_HIGH_Z
:
1581 case OUTMODE_MPEG2_SERIAL
:
1582 if (prefer_mpeg_mux_use
) {
1583 dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux\n");
1584 dib8096p_configMpegMux(state
, 3, 1, 1);
1585 dib8096p_setHostBusMux(state
, MPEG_ON_HOSTBUS
);
1586 } else {/* Use Smooth block */
1587 dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc\n");
1588 dib8096p_setHostBusMux(state
,
1590 outreg
|= (2 << 6) | (0 << 1);
1594 case OUTMODE_MPEG2_PAR_GATED_CLK
:
1595 if (prefer_mpeg_mux_use
) {
1596 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
1597 dib8096p_configMpegMux(state
, 2, 0, 0);
1598 dib8096p_setHostBusMux(state
, MPEG_ON_HOSTBUS
);
1599 } else { /* Use Smooth block */
1600 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block\n");
1601 dib8096p_setHostBusMux(state
,
1607 case OUTMODE_MPEG2_PAR_CONT_CLK
: /* Using Smooth block only */
1608 dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block\n");
1609 dib8096p_setHostBusMux(state
, DEMOUT_ON_HOSTBUS
);
1613 case OUTMODE_MPEG2_FIFO
:
1614 /* Using Smooth block because not supported
1615 by new Mpeg Mux bloc */
1616 dprintk("dib8096P setting output mode TS_FIFO using Smooth block\n");
1617 dib8096p_setHostBusMux(state
, DEMOUT_ON_HOSTBUS
);
1619 smo_mode
|= (3 << 1);
1620 fifo_threshold
= 512;
1623 case OUTMODE_DIVERSITY
:
1624 dprintk("dib8096P setting output mode MODE_DIVERSITY\n");
1625 dib8096p_setDibTxMux(state
, DIV_ON_DIBTX
);
1626 dib8096p_setHostBusMux(state
, DIBTX_ON_HOSTBUS
);
1629 case OUTMODE_ANALOG_ADC
:
1630 dprintk("dib8096P setting output mode MODE_ANALOG_ADC\n");
1631 dib8096p_setDibTxMux(state
, ADC_ON_DIBTX
);
1632 dib8096p_setHostBusMux(state
, DIBTX_ON_HOSTBUS
);
1636 if (mode
!= OUTMODE_HIGH_Z
)
1639 dprintk("output_mpeg2_in_188_bytes = %d\n",
1640 state
->cfg
.output_mpeg2_in_188_bytes
);
1641 if (state
->cfg
.output_mpeg2_in_188_bytes
)
1642 smo_mode
|= (1 << 5);
1644 ret
|= dib8000_write_word(state
, 299, smo_mode
);
1645 /* synchronous fread */
1646 ret
|= dib8000_write_word(state
, 299 + 1, fifo_threshold
);
1647 ret
|= dib8000_write_word(state
, 1286, outreg
);
1652 static int map_addr_to_serpar_number(struct i2c_msg
*msg
)
1654 if (msg
->buf
[0] <= 15)
1656 else if (msg
->buf
[0] == 17)
1658 else if (msg
->buf
[0] == 16)
1660 else if (msg
->buf
[0] == 19)
1662 else if (msg
->buf
[0] >= 21 && msg
->buf
[0] <= 25)
1664 else if (msg
->buf
[0] == 28)
1666 else if (msg
->buf
[0] == 99)
1673 static int dib8096p_tuner_write_serpar(struct i2c_adapter
*i2c_adap
,
1674 struct i2c_msg msg
[], int num
)
1676 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1679 u16 serpar_num
= msg
[0].buf
[0];
1681 while (n_overflow
== 1 && i
) {
1682 n_overflow
= (dib8000_read_word(state
, 1984) >> 1) & 0x1;
1685 dprintk("Tuner ITF: write busy (overflow)\n");
1687 dib8000_write_word(state
, 1985, (1 << 6) | (serpar_num
& 0x3f));
1688 dib8000_write_word(state
, 1986, (msg
[0].buf
[1] << 8) | msg
[0].buf
[2]);
1693 static int dib8096p_tuner_read_serpar(struct i2c_adapter
*i2c_adap
,
1694 struct i2c_msg msg
[], int num
)
1696 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1697 u8 n_overflow
= 1, n_empty
= 1;
1699 u16 serpar_num
= msg
[0].buf
[0];
1702 while (n_overflow
== 1 && i
) {
1703 n_overflow
= (dib8000_read_word(state
, 1984) >> 1) & 0x1;
1706 dprintk("TunerITF: read busy (overflow)\n");
1708 dib8000_write_word(state
, 1985, (0<<6) | (serpar_num
&0x3f));
1711 while (n_empty
== 1 && i
) {
1712 n_empty
= dib8000_read_word(state
, 1984)&0x1;
1715 dprintk("TunerITF: read busy (empty)\n");
1718 read_word
= dib8000_read_word(state
, 1987);
1719 msg
[1].buf
[0] = (read_word
>> 8) & 0xff;
1720 msg
[1].buf
[1] = (read_word
) & 0xff;
1725 static int dib8096p_tuner_rw_serpar(struct i2c_adapter
*i2c_adap
,
1726 struct i2c_msg msg
[], int num
)
1728 if (map_addr_to_serpar_number(&msg
[0]) == 0) {
1729 if (num
== 1) /* write */
1730 return dib8096p_tuner_write_serpar(i2c_adap
, msg
, 1);
1732 return dib8096p_tuner_read_serpar(i2c_adap
, msg
, 2);
1737 static int dib8096p_rw_on_apb(struct i2c_adapter
*i2c_adap
,
1738 struct i2c_msg msg
[], int num
, u16 apb_address
)
1740 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1743 if (num
== 1) { /* write */
1744 dib8000_write_word(state
, apb_address
,
1745 ((msg
[0].buf
[1] << 8) | (msg
[0].buf
[2])));
1747 word
= dib8000_read_word(state
, apb_address
);
1748 msg
[1].buf
[0] = (word
>> 8) & 0xff;
1749 msg
[1].buf
[1] = (word
) & 0xff;
1754 static int dib8096p_tuner_xfer(struct i2c_adapter
*i2c_adap
,
1755 struct i2c_msg msg
[], int num
)
1757 struct dib8000_state
*state
= i2c_get_adapdata(i2c_adap
);
1758 u16 apb_address
= 0, word
;
1761 switch (msg
[0].buf
[0]) {
1847 /* get sad sel request */
1848 i
= ((dib8000_read_word(state
, 921) >> 12)&0x3);
1849 word
= dib8000_read_word(state
, 924+i
);
1850 msg
[1].buf
[0] = (word
>> 8) & 0xff;
1851 msg
[1].buf
[1] = (word
) & 0xff;
1854 if (num
== 1) { /* write */
1855 word
= (u16
) ((msg
[0].buf
[1] << 8) |
1857 /* in the VGAMODE Sel are located on bit 0/1 */
1859 word
= (dib8000_read_word(state
, 921) &
1860 ~(3<<12)) | (word
<<12);
1861 /* Set the proper input */
1862 dib8000_write_word(state
, 921, word
);
1867 if (apb_address
!= 0) /* R/W access via APB */
1868 return dib8096p_rw_on_apb(i2c_adap
, msg
, num
, apb_address
);
1869 else /* R/W access via SERPAR */
1870 return dib8096p_tuner_rw_serpar(i2c_adap
, msg
, num
);
1875 static u32
dib8096p_i2c_func(struct i2c_adapter
*adapter
)
1877 return I2C_FUNC_I2C
;
1880 static const struct i2c_algorithm dib8096p_tuner_xfer_algo
= {
1881 .master_xfer
= dib8096p_tuner_xfer
,
1882 .functionality
= dib8096p_i2c_func
,
1885 static struct i2c_adapter
*dib8096p_get_i2c_tuner(struct dvb_frontend
*fe
)
1887 struct dib8000_state
*st
= fe
->demodulator_priv
;
1888 return &st
->dib8096p_tuner_adap
;
1891 static int dib8096p_tuner_sleep(struct dvb_frontend
*fe
, int onoff
)
1893 struct dib8000_state
*state
= fe
->demodulator_priv
;
1896 dprintk("sleep dib8096p: %d\n", onoff
);
1898 en_cur_state
= dib8000_read_word(state
, 1922);
1900 /* LNAs and MIX are ON and therefore it is a valid configuration */
1901 if (en_cur_state
> 0xff)
1902 state
->tuner_enable
= en_cur_state
;
1905 en_cur_state
&= 0x00ff;
1907 if (state
->tuner_enable
!= 0)
1908 en_cur_state
= state
->tuner_enable
;
1911 dib8000_write_word(state
, 1922, en_cur_state
);
1916 static const s32 lut_1000ln_mant
[] =
1918 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
1921 static s32
dib8000_get_adc_power(struct dvb_frontend
*fe
, u8 mode
)
1923 struct dib8000_state
*state
= fe
->demodulator_priv
;
1924 u32 ix
= 0, tmp_val
= 0, exp
= 0, mant
= 0;
1927 val
= dib8000_read32(state
, 384);
1930 while (tmp_val
>>= 1)
1932 mant
= (val
* 1000 / (1<<exp
));
1933 ix
= (u8
)((mant
-1000)/100); /* index of the LUT */
1934 val
= (lut_1000ln_mant
[ix
] + 693*(exp
-20) - 6908);
1935 val
= (val
*256)/1000;
1940 static int dib8090p_get_dc_power(struct dvb_frontend
*fe
, u8 IQ
)
1942 struct dib8000_state
*state
= fe
->demodulator_priv
;
1947 val
= dib8000_read_word(state
, 403);
1950 val
= dib8000_read_word(state
, 404);
1959 static void dib8000_update_timf(struct dib8000_state
*state
)
1961 u32 timf
= state
->timf
= dib8000_read32(state
, 435);
1963 dib8000_write_word(state
, 29, (u16
) (timf
>> 16));
1964 dib8000_write_word(state
, 30, (u16
) (timf
& 0xffff));
1965 dprintk("Updated timing frequency: %d (default: %d)\n", state
->timf
, state
->timf_default
);
1968 static u32
dib8000_ctrl_timf(struct dvb_frontend
*fe
, uint8_t op
, uint32_t timf
)
1970 struct dib8000_state
*state
= fe
->demodulator_priv
;
1973 case DEMOD_TIMF_SET
:
1976 case DEMOD_TIMF_UPDATE
:
1977 dib8000_update_timf(state
);
1979 case DEMOD_TIMF_GET
:
1982 dib8000_set_bandwidth(state
->fe
[0], 6000);
1987 static const u16 adc_target_16dB
[11] = {
1988 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574
1991 static const u8 permu_seg
[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
1993 static u16
dib8000_set_layer(struct dib8000_state
*state
, u8 layer_index
, u16 max_constellation
)
1995 u8 cr
, constellation
, time_intlv
;
1996 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
1998 switch (c
->layer
[layer_index
].modulation
) {
2014 switch (c
->layer
[layer_index
].fec
) {
2033 time_intlv
= fls(c
->layer
[layer_index
].interleaving
);
2034 if (time_intlv
> 3 && !(time_intlv
== 4 && c
->isdbt_sb_mode
== 1))
2037 dib8000_write_word(state
, 2 + layer_index
, (constellation
<< 10) | ((c
->layer
[layer_index
].segment_count
& 0xf) << 6) | (cr
<< 3) | time_intlv
);
2038 if (c
->layer
[layer_index
].segment_count
> 0) {
2039 switch (max_constellation
) {
2042 if (c
->layer
[layer_index
].modulation
== QAM_16
|| c
->layer
[layer_index
].modulation
== QAM_64
)
2043 max_constellation
= c
->layer
[layer_index
].modulation
;
2046 if (c
->layer
[layer_index
].modulation
== QAM_64
)
2047 max_constellation
= c
->layer
[layer_index
].modulation
;
2052 return max_constellation
;
2055 static const u16 adp_Q64
[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */
2056 static const u16 adp_Q16
[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */
2057 static const u16 adp_Qdefault
[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */
2058 static u16
dib8000_adp_fine_tune(struct dib8000_state
*state
, u16 max_constellation
)
2060 u16 i
, ana_gain
= 0;
2063 /* channel estimation fine configuration */
2064 switch (max_constellation
) {
2075 adp
= &adp_Qdefault
[0];
2079 for (i
= 0; i
< 4; i
++)
2080 dib8000_write_word(state
, 215 + i
, adp
[i
]);
2085 static void dib8000_update_ana_gain(struct dib8000_state
*state
, u16 ana_gain
)
2089 dib8000_write_word(state
, 116, ana_gain
);
2091 /* update ADC target depending on ana_gain */
2092 if (ana_gain
) { /* set -16dB ADC target for ana_gain=-1 */
2093 for (i
= 0; i
< 10; i
++)
2094 dib8000_write_word(state
, 80 + i
, adc_target_16dB
[i
]);
2095 } else { /* set -22dB ADC target for ana_gain=0 */
2096 for (i
= 0; i
< 10; i
++)
2097 dib8000_write_word(state
, 80 + i
, adc_target_16dB
[i
] - 355);
2101 static void dib8000_load_ana_fe_coefs(struct dib8000_state
*state
, const s16
*ana_fe
)
2105 if (state
->isdbt_cfg_loaded
== 0)
2106 for (mode
= 0; mode
< 24; mode
++)
2107 dib8000_write_word(state
, 117 + mode
, ana_fe
[mode
]);
2110 static const u16 lut_prbs_2k
[14] = {
2111 0, 0x423, 0x009, 0x5C7, 0x7A6, 0x3D8, 0x527, 0x7FF, 0x79B, 0x3D6, 0x3A2, 0x53B, 0x2F4, 0x213
2113 static const u16 lut_prbs_4k
[14] = {
2114 0, 0x208, 0x0C3, 0x7B9, 0x423, 0x5C7, 0x3D8, 0x7FF, 0x3D6, 0x53B, 0x213, 0x029, 0x0D0, 0x48E
2116 static const u16 lut_prbs_8k
[14] = {
2117 0, 0x740, 0x069, 0x7DD, 0x208, 0x7B9, 0x5C7, 0x7FF, 0x53B, 0x029, 0x48E, 0x4C4, 0x367, 0x684
2120 static u16
dib8000_get_init_prbs(struct dib8000_state
*state
, u16 subchannel
)
2122 int sub_channel_prbs_group
= 0;
2124 sub_channel_prbs_group
= (subchannel
/ 3) + 1;
2125 dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x\n", sub_channel_prbs_group
, subchannel
, lut_prbs_8k
[sub_channel_prbs_group
]);
2127 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
2128 case TRANSMISSION_MODE_2K
:
2129 return lut_prbs_2k
[sub_channel_prbs_group
];
2130 case TRANSMISSION_MODE_4K
:
2131 return lut_prbs_4k
[sub_channel_prbs_group
];
2133 case TRANSMISSION_MODE_8K
:
2134 return lut_prbs_8k
[sub_channel_prbs_group
];
2138 static void dib8000_set_13seg_channel(struct dib8000_state
*state
)
2141 u16 coff_pow
= 0x2800;
2143 state
->seg_mask
= 0x1fff; /* All 13 segments enabled */
2145 /* ---- COFF ---- Carloff, the most robust --- */
2146 if (state
->isdbt_cfg_loaded
== 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */
2147 dib8000_write_word(state
, 180, (16 << 6) | 9);
2148 dib8000_write_word(state
, 187, (4 << 12) | (8 << 5) | 0x2);
2150 for (i
= 0; i
< 6; i
++)
2151 dib8000_write_word(state
, 181+i
, coff_pow
);
2153 /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */
2154 /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */
2155 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
2157 /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */
2158 dib8000_write_word(state
, 340, (8 << 6) | (6 << 0));
2159 /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */
2160 dib8000_write_word(state
, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
2162 dib8000_write_word(state
, 228, 0); /* default value */
2163 dib8000_write_word(state
, 265, 31); /* default value */
2164 dib8000_write_word(state
, 205, 0x200f); /* init value */
2168 * make the cpil_coff_lock more robust but slower p_coff_winlen
2169 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2172 if (state
->cfg
.pll
->ifreq
== 0)
2173 dib8000_write_word(state
, 266, ~state
->seg_mask
| state
->seg_diff_mask
| 0x40); /* P_equal_noise_seg_inh */
2175 dib8000_load_ana_fe_coefs(state
, ana_fe_coeff_13seg
);
2178 static void dib8000_set_subchannel_prbs(struct dib8000_state
*state
, u16 init_prbs
)
2182 reg_1
= dib8000_read_word(state
, 1);
2183 dib8000_write_word(state
, 1, (init_prbs
<< 2) | (reg_1
& 0x3)); /* ADDR 1 */
2186 static void dib8000_small_fine_tune(struct dib8000_state
*state
)
2190 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2192 dib8000_write_word(state
, 352, state
->seg_diff_mask
);
2193 dib8000_write_word(state
, 353, state
->seg_mask
);
2195 /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */
2196 dib8000_write_word(state
, 351, (c
->isdbt_sb_mode
<< 9) | (c
->isdbt_sb_mode
<< 8) | (13 << 4) | 5);
2198 if (c
->isdbt_sb_mode
) {
2199 /* ---- SMALL ---- */
2200 switch (c
->transmission_mode
) {
2201 case TRANSMISSION_MODE_2K
:
2202 if (c
->isdbt_partial_reception
== 0) { /* 1-seg */
2203 if (c
->layer
[0].modulation
== DQPSK
) /* DQPSK */
2204 ncoeff
= coeff_2k_sb_1seg_dqpsk
;
2205 else /* QPSK or QAM */
2206 ncoeff
= coeff_2k_sb_1seg
;
2207 } else { /* 3-segments */
2208 if (c
->layer
[0].modulation
== DQPSK
) { /* DQPSK on central segment */
2209 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2210 ncoeff
= coeff_2k_sb_3seg_0dqpsk_1dqpsk
;
2211 else /* QPSK or QAM on external segments */
2212 ncoeff
= coeff_2k_sb_3seg_0dqpsk
;
2213 } else { /* QPSK or QAM on central segment */
2214 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2215 ncoeff
= coeff_2k_sb_3seg_1dqpsk
;
2216 else /* QPSK or QAM on external segments */
2217 ncoeff
= coeff_2k_sb_3seg
;
2221 case TRANSMISSION_MODE_4K
:
2222 if (c
->isdbt_partial_reception
== 0) { /* 1-seg */
2223 if (c
->layer
[0].modulation
== DQPSK
) /* DQPSK */
2224 ncoeff
= coeff_4k_sb_1seg_dqpsk
;
2225 else /* QPSK or QAM */
2226 ncoeff
= coeff_4k_sb_1seg
;
2227 } else { /* 3-segments */
2228 if (c
->layer
[0].modulation
== DQPSK
) { /* DQPSK on central segment */
2229 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2230 ncoeff
= coeff_4k_sb_3seg_0dqpsk_1dqpsk
;
2231 else /* QPSK or QAM on external segments */
2232 ncoeff
= coeff_4k_sb_3seg_0dqpsk
;
2233 } else { /* QPSK or QAM on central segment */
2234 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2235 ncoeff
= coeff_4k_sb_3seg_1dqpsk
;
2236 else /* QPSK or QAM on external segments */
2237 ncoeff
= coeff_4k_sb_3seg
;
2241 case TRANSMISSION_MODE_AUTO
:
2242 case TRANSMISSION_MODE_8K
:
2244 if (c
->isdbt_partial_reception
== 0) { /* 1-seg */
2245 if (c
->layer
[0].modulation
== DQPSK
) /* DQPSK */
2246 ncoeff
= coeff_8k_sb_1seg_dqpsk
;
2247 else /* QPSK or QAM */
2248 ncoeff
= coeff_8k_sb_1seg
;
2249 } else { /* 3-segments */
2250 if (c
->layer
[0].modulation
== DQPSK
) { /* DQPSK on central segment */
2251 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2252 ncoeff
= coeff_8k_sb_3seg_0dqpsk_1dqpsk
;
2253 else /* QPSK or QAM on external segments */
2254 ncoeff
= coeff_8k_sb_3seg_0dqpsk
;
2255 } else { /* QPSK or QAM on central segment */
2256 if (c
->layer
[1].modulation
== DQPSK
) /* DQPSK on external segments */
2257 ncoeff
= coeff_8k_sb_3seg_1dqpsk
;
2258 else /* QPSK or QAM on external segments */
2259 ncoeff
= coeff_8k_sb_3seg
;
2265 for (i
= 0; i
< 8; i
++)
2266 dib8000_write_word(state
, 343 + i
, ncoeff
[i
]);
2270 static const u16 coff_thres_1seg
[3] = {300, 150, 80};
2271 static const u16 coff_thres_3seg
[3] = {350, 300, 250};
2272 static void dib8000_set_sb_channel(struct dib8000_state
*state
)
2274 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2278 if (c
->transmission_mode
== TRANSMISSION_MODE_2K
|| c
->transmission_mode
== TRANSMISSION_MODE_4K
) {
2279 dib8000_write_word(state
, 219, dib8000_read_word(state
, 219) | 0x1); /* adp_pass =1 */
2280 dib8000_write_word(state
, 190, dib8000_read_word(state
, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */
2282 dib8000_write_word(state
, 219, dib8000_read_word(state
, 219) & 0xfffe); /* adp_pass =0 */
2283 dib8000_write_word(state
, 190, dib8000_read_word(state
, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */
2286 if (c
->isdbt_partial_reception
== 1) /* 3-segments */
2287 state
->seg_mask
= 0x00E0;
2288 else /* 1-segment */
2289 state
->seg_mask
= 0x0040;
2291 dib8000_write_word(state
, 268, (dib8000_read_word(state
, 268) & 0xF9FF) | 0x0200);
2293 /* ---- COFF ---- Carloff, the most robust --- */
2294 /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */
2295 dib8000_write_word(state
, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c
->isdbt_partial_reception
& 1) << 2) | 0x3);
2297 dib8000_write_word(state
, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */
2298 dib8000_write_word(state
, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */
2300 /* Sound Broadcasting mode 1 seg */
2301 if (c
->isdbt_partial_reception
== 0) {
2302 /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */
2303 if (state
->mode
== 3)
2304 dib8000_write_word(state
, 180, 0x1fcf | ((state
->mode
- 1) << 14));
2306 dib8000_write_word(state
, 180, 0x0fcf | ((state
->mode
- 1) << 14));
2308 /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */
2309 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
2310 coff
= &coff_thres_1seg
[0];
2311 } else { /* Sound Broadcasting mode 3 seg */
2312 dib8000_write_word(state
, 180, 0x1fcf | (1 << 14));
2313 /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */
2314 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
2315 coff
= &coff_thres_3seg
[0];
2318 dib8000_write_word(state
, 228, 1); /* P_2d_mode_byp=1 */
2319 dib8000_write_word(state
, 205, dib8000_read_word(state
, 205) & 0xfff0); /* P_cspu_win_cut = 0 */
2321 if (c
->isdbt_partial_reception
== 0 && c
->transmission_mode
== TRANSMISSION_MODE_2K
)
2322 dib8000_write_word(state
, 265, 15); /* P_equal_noise_sel = 15 */
2324 /* Write COFF thres */
2325 for (i
= 0 ; i
< 3; i
++) {
2326 dib8000_write_word(state
, 181+i
, coff
[i
]);
2327 dib8000_write_word(state
, 184+i
, coff
[i
]);
2331 * make the cpil_coff_lock more robust but slower p_coff_winlen
2332 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2335 dib8000_write_word(state
, 266, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_equal_noise_seg_inh */
2337 if (c
->isdbt_partial_reception
== 0)
2338 dib8000_write_word(state
, 178, 64); /* P_fft_powrange = 64 */
2340 dib8000_write_word(state
, 178, 32); /* P_fft_powrange = 32 */
2343 static void dib8000_set_isdbt_common_channel(struct dib8000_state
*state
, u8 seq
, u8 autosearching
)
2345 u16 p_cfr_left_edge
= 0, p_cfr_right_edge
= 0;
2346 u16 tmcc_pow
= 0, ana_gain
= 0, tmp
= 0, i
= 0, nbseg_diff
= 0 ;
2347 u16 max_constellation
= DQPSK
;
2349 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2352 c
->isdbt_partial_reception
= 1;
2355 dib8000_write_word(state
, 10, (seq
<< 4));
2358 state
->mode
= fft_to_mode(state
);
2361 tmp
= dib8000_read_word(state
, 1);
2362 dib8000_write_word(state
, 1, (tmp
&0xfffc) | (c
->guard_interval
& 0x3));
2364 dib8000_write_word(state
, 274, (dib8000_read_word(state
, 274) & 0xffcf) | ((c
->isdbt_partial_reception
& 1) << 5) | ((c
->isdbt_sb_mode
& 1) << 4));
2366 /* signal optimization parameter */
2367 if (c
->isdbt_partial_reception
) {
2368 state
->seg_diff_mask
= (c
->layer
[0].modulation
== DQPSK
) << permu_seg
[0];
2369 for (i
= 1; i
< 3; i
++)
2370 nbseg_diff
+= (c
->layer
[i
].modulation
== DQPSK
) * c
->layer
[i
].segment_count
;
2371 for (i
= 0; i
< nbseg_diff
; i
++)
2372 state
->seg_diff_mask
|= 1 << permu_seg
[i
+1];
2374 for (i
= 0; i
< 3; i
++)
2375 nbseg_diff
+= (c
->layer
[i
].modulation
== DQPSK
) * c
->layer
[i
].segment_count
;
2376 for (i
= 0; i
< nbseg_diff
; i
++)
2377 state
->seg_diff_mask
|= 1 << permu_seg
[i
];
2380 if (state
->seg_diff_mask
)
2381 dib8000_write_word(state
, 268, (dib8000_read_word(state
, 268) & 0xF9FF) | 0x0200);
2383 dib8000_write_word(state
, 268, (2 << 9) | 39); /*init value */
2385 for (i
= 0; i
< 3; i
++)
2386 max_constellation
= dib8000_set_layer(state
, i
, max_constellation
);
2387 if (autosearching
== 0) {
2388 state
->layer_b_nb_seg
= c
->layer
[1].segment_count
;
2389 state
->layer_c_nb_seg
= c
->layer
[2].segment_count
;
2392 /* WRITE: Mode & Diff mask */
2393 dib8000_write_word(state
, 0, (state
->mode
<< 13) | state
->seg_diff_mask
);
2395 state
->differential_constellation
= (state
->seg_diff_mask
!= 0);
2397 /* channel estimation fine configuration */
2398 ana_gain
= dib8000_adp_fine_tune(state
, max_constellation
);
2400 /* update ana_gain depending on max constellation */
2401 dib8000_update_ana_gain(state
, ana_gain
);
2403 /* ---- ANA_FE ---- */
2404 if (c
->isdbt_partial_reception
) /* 3-segments */
2405 dib8000_load_ana_fe_coefs(state
, ana_fe_coeff_3seg
);
2407 dib8000_load_ana_fe_coefs(state
, ana_fe_coeff_1seg
); /* 1-segment */
2409 /* TSB or ISDBT ? apply it now */
2410 if (c
->isdbt_sb_mode
) {
2411 dib8000_set_sb_channel(state
);
2412 if (c
->isdbt_sb_subchannel
< 14)
2413 init_prbs
= dib8000_get_init_prbs(state
, c
->isdbt_sb_subchannel
);
2417 dib8000_set_13seg_channel(state
);
2422 dib8000_small_fine_tune(state
);
2424 dib8000_set_subchannel_prbs(state
, init_prbs
);
2426 /* ---- CHAN_BLK ---- */
2427 for (i
= 0; i
< 13; i
++) {
2428 if ((((~state
->seg_diff_mask
) >> i
) & 1) == 1) {
2429 p_cfr_left_edge
+= (1 << i
) * ((i
== 0) || ((((state
->seg_mask
& (~state
->seg_diff_mask
)) >> (i
- 1)) & 1) == 0));
2430 p_cfr_right_edge
+= (1 << i
) * ((i
== 12) || ((((state
->seg_mask
& (~state
->seg_diff_mask
)) >> (i
+ 1)) & 1) == 0));
2433 dib8000_write_word(state
, 222, p_cfr_left_edge
); /* p_cfr_left_edge */
2434 dib8000_write_word(state
, 223, p_cfr_right_edge
); /* p_cfr_right_edge */
2435 /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */
2437 dib8000_write_word(state
, 189, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_lmod4_seg_inh */
2438 dib8000_write_word(state
, 192, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_pha3_seg_inh */
2439 dib8000_write_word(state
, 225, ~state
->seg_mask
| state
->seg_diff_mask
); /* P_tac_seg_inh */
2442 dib8000_write_word(state
, 288, (~state
->seg_mask
| state
->seg_diff_mask
) & 0x1fff); /* P_tmcc_seg_eq_inh */
2444 dib8000_write_word(state
, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */
2446 dib8000_write_word(state
, 211, state
->seg_mask
& (~state
->seg_diff_mask
)); /* P_des_seg_enabled */
2447 dib8000_write_word(state
, 287, ~state
->seg_mask
| 0x1000); /* P_tmcc_seg_inh */
2449 dib8000_write_word(state
, 178, 32); /* P_fft_powrange = 32 */
2451 /* ---- TMCC ---- */
2452 for (i
= 0; i
< 3; i
++)
2453 tmcc_pow
+= (((c
->layer
[i
].modulation
== DQPSK
) * 4 + 1) * c
->layer
[i
].segment_count
) ;
2455 /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */
2456 /* Threshold is set at 1/4 of max power. */
2457 tmcc_pow
*= (1 << (9-2));
2458 dib8000_write_word(state
, 290, tmcc_pow
); /* P_tmcc_dec_thres_2k */
2459 dib8000_write_word(state
, 291, tmcc_pow
); /* P_tmcc_dec_thres_4k */
2460 dib8000_write_word(state
, 292, tmcc_pow
); /* P_tmcc_dec_thres_8k */
2461 /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */
2463 /* ---- PHA3 ---- */
2464 if (state
->isdbt_cfg_loaded
== 0)
2465 dib8000_write_word(state
, 250, 3285); /* p_2d_hspeed_thr0 */
2467 state
->isdbt_cfg_loaded
= 0;
2470 static u32
dib8000_wait_lock(struct dib8000_state
*state
, u32 internal
,
2471 u32 wait0_ms
, u32 wait1_ms
, u32 wait2_ms
)
2473 u32 value
= 0; /* P_search_end0 wait time */
2474 u16 reg
= 11; /* P_search_end0 start addr */
2476 for (reg
= 11; reg
< 16; reg
+= 2) {
2478 if (state
->revision
== 0x8090)
2479 value
= internal
* wait1_ms
;
2481 value
= internal
* wait0_ms
;
2482 } else if (reg
== 13)
2483 value
= internal
* wait1_ms
;
2485 value
= internal
* wait2_ms
;
2486 dib8000_write_word(state
, reg
, (u16
)((value
>> 16) & 0xffff));
2487 dib8000_write_word(state
, (reg
+ 1), (u16
)(value
& 0xffff));
2492 static int dib8000_autosearch_start(struct dvb_frontend
*fe
)
2494 struct dib8000_state
*state
= fe
->demodulator_priv
;
2495 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2497 u32 value
, internal
= state
->cfg
.pll
->internal
;
2499 if (state
->revision
== 0x8090)
2500 internal
= dib8000_read32(state
, 23) / 1000;
2502 if ((state
->revision
>= 0x8002) &&
2503 (state
->autosearch_state
== AS_SEARCHING_FFT
)) {
2504 dib8000_write_word(state
, 37, 0x0065); /* P_ctrl_pha_off_max default values */
2505 dib8000_write_word(state
, 116, 0x0000); /* P_ana_gain to 0 */
2507 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */
2508 dib8000_write_word(state
, 1, (dib8000_read_word(state
, 1) & 0xfffc) | 0); /* P_guard = 0 */
2509 dib8000_write_word(state
, 6, 0); /* P_lock0_mask = 0 */
2510 dib8000_write_word(state
, 7, 0); /* P_lock1_mask = 0 */
2511 dib8000_write_word(state
, 8, 0); /* P_lock2_mask = 0 */
2512 dib8000_write_word(state
, 10, (dib8000_read_word(state
, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */
2514 if (state
->revision
== 0x8090)
2515 value
= dib8000_wait_lock(state
, internal
, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2517 value
= dib8000_wait_lock(state
, internal
, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2519 dib8000_write_word(state
, 17, 0);
2520 dib8000_write_word(state
, 18, 200); /* P_search_rstst = 200 */
2521 dib8000_write_word(state
, 19, 0);
2522 dib8000_write_word(state
, 20, 400); /* P_search_rstend = 400 */
2523 dib8000_write_word(state
, 21, (value
>> 16) & 0xffff); /* P_search_checkst */
2524 dib8000_write_word(state
, 22, value
& 0xffff);
2526 if (state
->revision
== 0x8090)
2527 dib8000_write_word(state
, 32, (dib8000_read_word(state
, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */
2529 dib8000_write_word(state
, 32, (dib8000_read_word(state
, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */
2530 dib8000_write_word(state
, 355, 2); /* P_search_param_max = 2 */
2532 /* P_search_param_select = (1 | 1<<4 | 1 << 8) */
2533 dib8000_write_word(state
, 356, 0);
2534 dib8000_write_word(state
, 357, 0x111);
2536 dib8000_write_word(state
, 770, (dib8000_read_word(state
, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */
2537 dib8000_write_word(state
, 770, (dib8000_read_word(state
, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */
2538 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */
2539 } else if ((state
->revision
>= 0x8002) &&
2540 (state
->autosearch_state
== AS_SEARCHING_GUARD
)) {
2541 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
2542 c
->guard_interval
= GUARD_INTERVAL_1_8
;
2544 c
->layer
[0].modulation
= QAM_64
;
2545 c
->layer
[0].fec
= FEC_2_3
;
2546 c
->layer
[0].interleaving
= 0;
2547 c
->layer
[0].segment_count
= 13;
2550 c
->transmission_mode
= state
->found_nfft
;
2552 dib8000_set_isdbt_common_channel(state
, slist
, 1);
2554 /* set lock_mask values */
2555 dib8000_write_word(state
, 6, 0x4);
2556 if (state
->revision
== 0x8090)
2557 dib8000_write_word(state
, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */
2559 dib8000_write_word(state
, 7, 0x8);
2560 dib8000_write_word(state
, 8, 0x1000);
2562 /* set lock_mask wait time values */
2563 if (state
->revision
== 0x8090)
2564 dib8000_wait_lock(state
, internal
, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2566 dib8000_wait_lock(state
, internal
, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2568 dib8000_write_word(state
, 355, 3); /* P_search_param_max = 3 */
2570 /* P_search_param_select = 0xf; look for the 4 different guard intervals */
2571 dib8000_write_word(state
, 356, 0);
2572 dib8000_write_word(state
, 357, 0xf);
2574 value
= dib8000_read_word(state
, 0);
2575 dib8000_write_word(state
, 0, (u16
)((1 << 15) | value
));
2576 dib8000_read_word(state
, 1284); /* reset the INT. n_irq_pending */
2577 dib8000_write_word(state
, 0, (u16
)value
);
2580 c
->layer
[0].modulation
= QAM_64
;
2581 c
->layer
[0].fec
= FEC_2_3
;
2582 c
->layer
[0].interleaving
= 0;
2583 c
->layer
[0].segment_count
= 13;
2584 if (!c
->isdbt_sb_mode
)
2585 c
->layer
[0].segment_count
= 13;
2587 /* choose the right list, in sb, always do everything */
2588 if (c
->isdbt_sb_mode
) {
2590 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13));
2592 if (c
->guard_interval
== GUARD_INTERVAL_AUTO
) {
2593 if (c
->transmission_mode
== TRANSMISSION_MODE_AUTO
) {
2594 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
2595 c
->guard_interval
= GUARD_INTERVAL_1_8
;
2597 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */
2599 c
->guard_interval
= GUARD_INTERVAL_1_8
;
2603 if (c
->transmission_mode
== TRANSMISSION_MODE_AUTO
) {
2604 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
2606 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */
2611 dprintk("Using list for autosearch : %d\n", slist
);
2613 dib8000_set_isdbt_common_channel(state
, slist
, 1);
2615 /* set lock_mask values */
2616 dib8000_write_word(state
, 6, 0x4);
2617 if (state
->revision
== 0x8090)
2618 dib8000_write_word(state
, 7, (1 << 12) | (1 << 11) | (1 << 10));
2620 dib8000_write_word(state
, 7, 0x8);
2621 dib8000_write_word(state
, 8, 0x1000);
2623 /* set lock_mask wait time values */
2624 if (state
->revision
== 0x8090)
2625 dib8000_wait_lock(state
, internal
, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2627 dib8000_wait_lock(state
, internal
, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2629 value
= dib8000_read_word(state
, 0);
2630 dib8000_write_word(state
, 0, (u16
)((1 << 15) | value
));
2631 dib8000_read_word(state
, 1284); /* reset the INT. n_irq_pending */
2632 dib8000_write_word(state
, 0, (u16
)value
);
2637 static int dib8000_autosearch_irq(struct dvb_frontend
*fe
)
2639 struct dib8000_state
*state
= fe
->demodulator_priv
;
2640 u16 irq_pending
= dib8000_read_word(state
, 1284);
2642 if ((state
->revision
>= 0x8002) &&
2643 (state
->autosearch_state
== AS_SEARCHING_FFT
)) {
2644 if (irq_pending
& 0x1) {
2645 dprintk("dib8000_autosearch_irq: max correlation result available\n");
2649 if (irq_pending
& 0x1) { /* failed */
2650 dprintk("dib8000_autosearch_irq failed\n");
2654 if (irq_pending
& 0x2) { /* succeeded */
2655 dprintk("dib8000_autosearch_irq succeeded\n");
2660 return 0; // still pending
2663 static void dib8000_viterbi_state(struct dib8000_state
*state
, u8 onoff
)
2667 tmp
= dib8000_read_word(state
, 771);
2668 if (onoff
) /* start P_restart_chd : channel_decoder */
2669 dib8000_write_word(state
, 771, tmp
& 0xfffd);
2670 else /* stop P_restart_chd : channel_decoder */
2671 dib8000_write_word(state
, 771, tmp
| (1<<1));
2674 static void dib8000_set_dds(struct dib8000_state
*state
, s32 offset_khz
)
2676 s16 unit_khz_dds_val
;
2677 u32 abs_offset_khz
= abs(offset_khz
);
2678 u32 dds
= state
->cfg
.pll
->ifreq
& 0x1ffffff;
2679 u8 invert
= !!(state
->cfg
.pll
->ifreq
& (1 << 25));
2682 if (state
->revision
== 0x8090) {
2684 unit_khz_dds_val
= (1<<26) / (dib8000_read32(state
, 23) / 1000);
2686 dds
= (1 << 26) - (abs_offset_khz
* unit_khz_dds_val
);
2688 dds
= (abs_offset_khz
* unit_khz_dds_val
);
2691 dds
= (1<<26) - dds
;
2694 unit_khz_dds_val
= (u16
) (67108864 / state
->cfg
.pll
->internal
);
2697 unit_khz_dds_val
*= -1;
2701 dds
-= abs_offset_khz
* unit_khz_dds_val
;
2703 dds
+= abs_offset_khz
* unit_khz_dds_val
;
2706 dprintk("setting a DDS frequency offset of %c%dkHz\n", invert
? '-' : ' ', dds
/ unit_khz_dds_val
);
2708 if (abs_offset_khz
<= (state
->cfg
.pll
->internal
/ ratio
)) {
2709 /* Max dds offset is the half of the demod freq */
2710 dib8000_write_word(state
, 26, invert
);
2711 dib8000_write_word(state
, 27, (u16
)(dds
>> 16) & 0x1ff);
2712 dib8000_write_word(state
, 28, (u16
)(dds
& 0xffff));
2716 static void dib8000_set_frequency_offset(struct dib8000_state
*state
)
2718 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2721 int total_dds_offset_khz
;
2723 if (state
->fe
[0]->ops
.tuner_ops
.get_frequency
)
2724 state
->fe
[0]->ops
.tuner_ops
.get_frequency(state
->fe
[0], ¤t_rf
);
2726 current_rf
= c
->frequency
;
2728 total_dds_offset_khz
= (int)current_rf
- (int)c
->frequency
/ 1000;
2730 if (c
->isdbt_sb_mode
) {
2731 state
->subchannel
= c
->isdbt_sb_subchannel
;
2733 i
= dib8000_read_word(state
, 26) & 1; /* P_dds_invspec */
2734 dib8000_write_word(state
, 26, c
->inversion
^ i
);
2736 if (state
->cfg
.pll
->ifreq
== 0) { /* low if tuner */
2737 if ((c
->inversion
^ i
) == 0)
2738 dib8000_write_word(state
, 26, dib8000_read_word(state
, 26) | 1);
2740 if ((c
->inversion
^ i
) == 0)
2741 total_dds_offset_khz
*= -1;
2745 dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d\n", c
->frequency
- current_rf
, c
->frequency
, current_rf
, total_dds_offset_khz
);
2747 /* apply dds offset now */
2748 dib8000_set_dds(state
, total_dds_offset_khz
);
2751 static u16 LUT_isdbt_symbol_duration
[4] = { 26, 101, 63 };
2753 static u32
dib8000_get_symbol_duration(struct dib8000_state
*state
)
2755 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2758 switch (c
->transmission_mode
) {
2759 case TRANSMISSION_MODE_2K
:
2762 case TRANSMISSION_MODE_4K
:
2766 case TRANSMISSION_MODE_AUTO
:
2767 case TRANSMISSION_MODE_8K
:
2772 return (LUT_isdbt_symbol_duration
[i
] / (c
->bandwidth_hz
/ 1000)) + 1;
2775 static void dib8000_set_isdbt_loop_params(struct dib8000_state
*state
, enum param_loop_step loop_step
)
2777 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2778 u16 reg_32
= 0, reg_37
= 0;
2780 switch (loop_step
) {
2782 if (c
->isdbt_sb_mode
) {
2783 if (c
->isdbt_partial_reception
== 0) {
2784 reg_32
= ((11 - state
->mode
) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */
2785 reg_37
= (3 << 5) | (0 << 4) | (10 - state
->mode
); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
2786 } else { /* Sound Broadcasting mode 3 seg */
2787 reg_32
= ((10 - state
->mode
) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */
2788 reg_37
= (3 << 5) | (0 << 4) | (9 - state
->mode
); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */
2790 } else { /* 13-seg start conf offset loop parameters */
2791 reg_32
= ((9 - state
->mode
) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
2792 reg_37
= (3 << 5) | (0 << 4) | (8 - state
->mode
); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
2796 if (c
->isdbt_sb_mode
) {
2797 if (c
->isdbt_partial_reception
== 0) { /* Sound Broadcasting mode 1 seg */
2798 reg_32
= ((13-state
->mode
) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/
2799 reg_37
= (12-state
->mode
) | ((5 + state
->mode
) << 5);
2800 } else { /* Sound Broadcasting mode 3 seg */
2801 reg_32
= ((12-state
->mode
) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */
2802 reg_37
= (11-state
->mode
) | ((5 + state
->mode
) << 5);
2804 } else { /* 13 seg */
2805 reg_32
= ((11-state
->mode
) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */
2806 reg_37
= ((5+state
->mode
) << 5) | (10 - state
->mode
);
2810 dib8000_write_word(state
, 32, reg_32
);
2811 dib8000_write_word(state
, 37, reg_37
);
2814 static void dib8000_demod_restart(struct dib8000_state
*state
)
2816 dib8000_write_word(state
, 770, 0x4000);
2817 dib8000_write_word(state
, 770, 0x0000);
2821 static void dib8000_set_sync_wait(struct dib8000_state
*state
)
2823 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
2826 /* P_dvsy_sync_wait - reuse mode */
2827 switch (c
->transmission_mode
) {
2828 case TRANSMISSION_MODE_8K
:
2831 case TRANSMISSION_MODE_4K
:
2835 case TRANSMISSION_MODE_2K
:
2840 if (state
->cfg
.diversity_delay
== 0)
2841 sync_wait
= (sync_wait
* (1 << (c
->guard_interval
)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */
2843 sync_wait
= (sync_wait
* (1 << (c
->guard_interval
)) * 3) / 2 + state
->cfg
.diversity_delay
; /* add 50% SFN margin + compensate for DVSY-fifo */
2845 dib8000_write_word(state
, 273, (dib8000_read_word(state
, 273) & 0x000f) | (sync_wait
<< 4));
2848 static unsigned long dib8000_get_timeout(struct dib8000_state
*state
, u32 delay
, enum timeout_mode mode
)
2850 if (mode
== SYMBOL_DEPENDENT_ON
)
2851 delay
*= state
->symbol_duration
;
2853 return jiffies
+ usecs_to_jiffies(delay
* 100);
2856 static s32
dib8000_get_status(struct dvb_frontend
*fe
)
2858 struct dib8000_state
*state
= fe
->demodulator_priv
;
2859 return state
->status
;
2862 static enum frontend_tune_state
dib8000_get_tune_state(struct dvb_frontend
*fe
)
2864 struct dib8000_state
*state
= fe
->demodulator_priv
;
2865 return state
->tune_state
;
2868 static int dib8000_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2870 struct dib8000_state
*state
= fe
->demodulator_priv
;
2872 state
->tune_state
= tune_state
;
2876 static int dib8000_tune_restart_from_demod(struct dvb_frontend
*fe
)
2878 struct dib8000_state
*state
= fe
->demodulator_priv
;
2880 state
->status
= FE_STATUS_TUNE_PENDING
;
2881 state
->tune_state
= CT_DEMOD_START
;
2885 static u16
dib8000_read_lock(struct dvb_frontend
*fe
)
2887 struct dib8000_state
*state
= fe
->demodulator_priv
;
2889 if (state
->revision
== 0x8090)
2890 return dib8000_read_word(state
, 570);
2891 return dib8000_read_word(state
, 568);
2894 static int dib8090p_init_sdram(struct dib8000_state
*state
)
2897 dprintk("init sdram\n");
2899 reg
= dib8000_read_word(state
, 274) & 0xfff0;
2900 dib8000_write_word(state
, 274, reg
| 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */
2902 dib8000_write_word(state
, 1803, (7 << 2));
2904 reg
= dib8000_read_word(state
, 1280);
2905 dib8000_write_word(state
, 1280, reg
| (1 << 2)); /* force restart P_restart_sdram */
2906 dib8000_write_word(state
, 1280, reg
); /* release restart P_restart_sdram */
2912 * is_manual_mode - Check if TMCC should be used for parameters settings
2913 * @c: struct dvb_frontend_properties
2915 * By default, TMCC table should be used for parameter settings on most
2916 * usercases. However, sometimes it is desirable to lock the demod to
2917 * use the manual parameters.
2919 * On manual mode, the current dib8000_tune state machine is very restrict:
2920 * It requires that both per-layer and per-transponder parameters to be
2921 * properly specified, otherwise the device won't lock.
2923 * Check if all those conditions are properly satisfied before allowing
2924 * the device to use the manual frequency lock mode.
2926 static int is_manual_mode(struct dtv_frontend_properties
*c
)
2930 /* Use auto mode on DVB-T compat mode */
2931 if (c
->delivery_system
!= SYS_ISDBT
)
2935 * Transmission mode is only detected on auto mode, currently
2937 if (c
->transmission_mode
== TRANSMISSION_MODE_AUTO
) {
2938 dprintk("transmission mode auto\n");
2943 * Guard interval is only detected on auto mode, currently
2945 if (c
->guard_interval
== GUARD_INTERVAL_AUTO
) {
2946 dprintk("guard interval auto\n");
2951 * If no layer is enabled, assume auto mode, as at least one
2952 * layer should be enabled
2954 if (!c
->isdbt_layer_enabled
) {
2955 dprintk("no layer modulation specified\n");
2960 * Check if the per-layer parameters aren't auto and
2961 * disable a layer if segment count is 0 or invalid.
2963 for (i
= 0; i
< 3; i
++) {
2964 if (!(c
->isdbt_layer_enabled
& 1 << i
))
2967 if ((c
->layer
[i
].segment_count
> 13) ||
2968 (c
->layer
[i
].segment_count
== 0)) {
2969 c
->isdbt_layer_enabled
&= ~(1 << i
);
2973 n_segs
+= c
->layer
[i
].segment_count
;
2975 if ((c
->layer
[i
].modulation
== QAM_AUTO
) ||
2976 (c
->layer
[i
].fec
== FEC_AUTO
)) {
2977 dprintk("layer %c has either modulation or FEC auto\n",
2984 * Userspace specified a wrong number of segments.
2985 * fallback to auto mode.
2987 if (n_segs
== 0 || n_segs
> 13) {
2988 dprintk("number of segments is invalid\n");
2992 /* Everything looks ok for manual mode */
2996 static int dib8000_tune(struct dvb_frontend
*fe
)
2998 struct dib8000_state
*state
= fe
->demodulator_priv
;
2999 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
3000 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
3002 u16 locks
, deeper_interleaver
= 0, i
;
3003 int ret
= 1; /* 1 symbol duration (in 100us unit) delay most of the time */
3005 unsigned long *timeout
= &state
->timeout
;
3006 unsigned long now
= jiffies
;
3007 #ifdef DIB8000_AGC_FREEZE
3011 u32 corm
[4] = {0, 0, 0, 0};
3012 u8 find_index
, max_value
;
3015 if (*tune_state
< CT_DEMOD_STOP
)
3016 dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu\n",
3017 state
->channel_parameters_set
, *tune_state
, state
->autosearch_state
, now
);
3020 switch (*tune_state
) {
3021 case CT_DEMOD_START
: /* 30 */
3022 dib8000_reset_stats(fe
);
3024 if (state
->revision
== 0x8090)
3025 dib8090p_init_sdram(state
);
3026 state
->status
= FE_STATUS_TUNE_PENDING
;
3027 state
->channel_parameters_set
= is_manual_mode(c
);
3029 dprintk("Tuning channel on %s search mode\n",
3030 state
->channel_parameters_set
? "manual" : "auto");
3032 dib8000_viterbi_state(state
, 0); /* force chan dec in restart */
3035 dib8000_write_word(state
, 285, dib8000_read_word(state
, 285) & 0x60);
3037 dib8000_set_frequency_offset(state
);
3038 dib8000_set_bandwidth(fe
, c
->bandwidth_hz
/ 1000);
3040 if (state
->channel_parameters_set
== 0) { /* The channel struct is unknown, search it ! */
3041 #ifdef DIB8000_AGC_FREEZE
3042 if (state
->revision
!= 0x8090) {
3043 state
->agc1_max
= dib8000_read_word(state
, 108);
3044 state
->agc1_min
= dib8000_read_word(state
, 109);
3045 state
->agc2_max
= dib8000_read_word(state
, 110);
3046 state
->agc2_min
= dib8000_read_word(state
, 111);
3047 agc1
= dib8000_read_word(state
, 388);
3048 agc2
= dib8000_read_word(state
, 389);
3049 dib8000_write_word(state
, 108, agc1
);
3050 dib8000_write_word(state
, 109, agc1
);
3051 dib8000_write_word(state
, 110, agc2
);
3052 dib8000_write_word(state
, 111, agc2
);
3055 state
->autosearch_state
= AS_SEARCHING_FFT
;
3056 state
->found_nfft
= TRANSMISSION_MODE_AUTO
;
3057 state
->found_guard
= GUARD_INTERVAL_AUTO
;
3058 *tune_state
= CT_DEMOD_SEARCH_NEXT
;
3059 } else { /* we already know the channel struct so TUNE only ! */
3060 state
->autosearch_state
= AS_DONE
;
3061 *tune_state
= CT_DEMOD_STEP_3
;
3063 state
->symbol_duration
= dib8000_get_symbol_duration(state
);
3066 case CT_DEMOD_SEARCH_NEXT
: /* 51 */
3067 dib8000_autosearch_start(fe
);
3068 if (state
->revision
== 0x8090)
3072 *tune_state
= CT_DEMOD_STEP_1
;
3075 case CT_DEMOD_STEP_1
: /* 31 */
3076 switch (dib8000_autosearch_irq(fe
)) {
3078 state
->status
= FE_STATUS_TUNE_FAILED
;
3079 state
->autosearch_state
= AS_DONE
;
3080 *tune_state
= CT_DEMOD_STOP
; /* else we are done here */
3082 case 2: /* Success */
3083 state
->status
= FE_STATUS_FFT_SUCCESS
; /* signal to the upper layer, that there was a channel found and the parameters can be read */
3084 *tune_state
= CT_DEMOD_STEP_3
;
3085 if (state
->autosearch_state
== AS_SEARCHING_GUARD
)
3086 *tune_state
= CT_DEMOD_STEP_2
;
3088 state
->autosearch_state
= AS_DONE
;
3090 case 3: /* Autosearch FFT max correlation endded */
3091 *tune_state
= CT_DEMOD_STEP_2
;
3096 case CT_DEMOD_STEP_2
:
3097 switch (state
->autosearch_state
) {
3098 case AS_SEARCHING_FFT
:
3099 /* searching for the correct FFT */
3100 if (state
->revision
== 0x8090) {
3101 corm
[2] = (dib8000_read_word(state
, 596) << 16) | (dib8000_read_word(state
, 597));
3102 corm
[1] = (dib8000_read_word(state
, 598) << 16) | (dib8000_read_word(state
, 599));
3103 corm
[0] = (dib8000_read_word(state
, 600) << 16) | (dib8000_read_word(state
, 601));
3105 corm
[2] = (dib8000_read_word(state
, 594) << 16) | (dib8000_read_word(state
, 595));
3106 corm
[1] = (dib8000_read_word(state
, 596) << 16) | (dib8000_read_word(state
, 597));
3107 corm
[0] = (dib8000_read_word(state
, 598) << 16) | (dib8000_read_word(state
, 599));
3109 /* dprintk("corm fft: %u %u %u\n", corm[0], corm[1], corm[2]); */
3112 for (find_index
= 1 ; find_index
< 3 ; find_index
++) {
3113 if (corm
[max_value
] < corm
[find_index
])
3114 max_value
= find_index
;
3117 switch (max_value
) {
3119 state
->found_nfft
= TRANSMISSION_MODE_2K
;
3122 state
->found_nfft
= TRANSMISSION_MODE_4K
;
3126 state
->found_nfft
= TRANSMISSION_MODE_8K
;
3129 /* dprintk("Autosearch FFT has found Mode %d\n", max_value + 1); */
3131 *tune_state
= CT_DEMOD_SEARCH_NEXT
;
3132 state
->autosearch_state
= AS_SEARCHING_GUARD
;
3133 if (state
->revision
== 0x8090)
3138 case AS_SEARCHING_GUARD
:
3139 /* searching for the correct guard interval */
3140 if (state
->revision
== 0x8090)
3141 state
->found_guard
= dib8000_read_word(state
, 572) & 0x3;
3143 state
->found_guard
= dib8000_read_word(state
, 570) & 0x3;
3144 /* dprintk("guard interval found=%i\n", state->found_guard); */
3146 *tune_state
= CT_DEMOD_STEP_3
;
3149 /* the demod should never be in this state */
3150 state
->status
= FE_STATUS_TUNE_FAILED
;
3151 state
->autosearch_state
= AS_DONE
;
3152 *tune_state
= CT_DEMOD_STOP
; /* else we are done here */
3157 case CT_DEMOD_STEP_3
: /* 33 */
3158 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_1
);
3159 dib8000_set_isdbt_common_channel(state
, 0, 0);/* setting the known channel parameters here */
3160 *tune_state
= CT_DEMOD_STEP_4
;
3163 case CT_DEMOD_STEP_4
: /* (34) */
3164 dib8000_demod_restart(state
);
3166 dib8000_set_sync_wait(state
);
3167 dib8000_set_diversity_in(state
->fe
[0], state
->diversity_onoff
);
3169 locks
= (dib8000_read_word(state
, 180) >> 6) & 0x3f; /* P_coff_winlen ? */
3170 /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */
3171 *timeout
= dib8000_get_timeout(state
, 2 * locks
, SYMBOL_DEPENDENT_ON
);
3172 *tune_state
= CT_DEMOD_STEP_5
;
3175 case CT_DEMOD_STEP_5
: /* (35) */
3176 locks
= dib8000_read_lock(fe
);
3177 if (locks
& (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */
3178 dib8000_update_timf(state
); /* we achieved a coff_cpil_lock - it's time to update the timf */
3179 if (!state
->differential_constellation
) {
3180 /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */
3181 *timeout
= dib8000_get_timeout(state
, (20 * ((dib8000_read_word(state
, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON
);
3182 *tune_state
= CT_DEMOD_STEP_7
;
3184 *tune_state
= CT_DEMOD_STEP_8
;
3186 } else if (time_after(now
, *timeout
)) {
3187 *tune_state
= CT_DEMOD_STEP_6
; /* goto check for diversity input connection */
3191 case CT_DEMOD_STEP_6
: /* (36) if there is an input (diversity) */
3192 if ((state
->fe
[1] != NULL
) && (state
->output_mode
!= OUTMODE_DIVERSITY
)) {
3193 /* if there is a diversity fe in input and this fe is has not already failed : wait here until this this fe has succedeed or failed */
3194 if (dib8000_get_status(state
->fe
[1]) <= FE_STATUS_STD_SUCCESS
) /* Something is locked on the input fe */
3195 *tune_state
= CT_DEMOD_STEP_8
; /* go for mpeg */
3196 else if (dib8000_get_status(state
->fe
[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT
) { /* fe in input failed also, break the current one */
3197 *tune_state
= CT_DEMOD_STOP
; /* else we are done here ; step 8 will close the loops and exit */
3198 dib8000_viterbi_state(state
, 1); /* start viterbi chandec */
3199 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_2
);
3200 state
->status
= FE_STATUS_TUNE_FAILED
;
3203 dib8000_viterbi_state(state
, 1); /* start viterbi chandec */
3204 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_2
);
3205 *tune_state
= CT_DEMOD_STOP
; /* else we are done here ; step 8 will close the loops and exit */
3206 state
->status
= FE_STATUS_TUNE_FAILED
;
3210 case CT_DEMOD_STEP_7
: /* 37 */
3211 locks
= dib8000_read_lock(fe
);
3212 if (locks
& (1<<10)) { /* lmod4_lock */
3213 ret
= 14; /* wait for 14 symbols */
3214 *tune_state
= CT_DEMOD_STEP_8
;
3215 } else if (time_after(now
, *timeout
))
3216 *tune_state
= CT_DEMOD_STEP_6
; /* goto check for diversity input connection */
3219 case CT_DEMOD_STEP_8
: /* 38 */
3220 dib8000_viterbi_state(state
, 1); /* start viterbi chandec */
3221 dib8000_set_isdbt_loop_params(state
, LOOP_TUNE_2
);
3223 /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/
3224 if (c
->isdbt_sb_mode
3225 && c
->isdbt_sb_subchannel
< 14
3226 && !state
->differential_constellation
) {
3227 state
->subchannel
= 0;
3228 *tune_state
= CT_DEMOD_STEP_11
;
3230 *tune_state
= CT_DEMOD_STEP_9
;
3231 state
->status
= FE_STATUS_LOCKED
;
3235 case CT_DEMOD_STEP_9
: /* 39 */
3236 if ((state
->revision
== 0x8090) || ((dib8000_read_word(state
, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */
3237 /* defines timeout for mpeg lock depending on interleaver length of longest layer */
3238 for (i
= 0; i
< 3; i
++) {
3239 if (c
->layer
[i
].interleaving
>= deeper_interleaver
) {
3240 dprintk("layer%i: time interleaver = %d\n", i
, c
->layer
[i
].interleaving
);
3241 if (c
->layer
[i
].segment_count
> 0) { /* valid layer */
3242 deeper_interleaver
= c
->layer
[0].interleaving
;
3243 state
->longest_intlv_layer
= i
;
3248 if (deeper_interleaver
== 0)
3249 locks
= 2; /* locks is the tmp local variable name */
3250 else if (deeper_interleaver
== 3)
3253 locks
= 2 * deeper_interleaver
;
3255 if (state
->diversity_onoff
!= 0) /* because of diversity sync */
3258 *timeout
= now
+ msecs_to_jiffies(200 * locks
); /* give the mpeg lock 800ms if sram is present */
3259 dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld\n",
3260 deeper_interleaver
, state
->longest_intlv_layer
, locks
, *timeout
);
3262 *tune_state
= CT_DEMOD_STEP_10
;
3264 *tune_state
= CT_DEMOD_STOP
;
3267 case CT_DEMOD_STEP_10
: /* 40 */
3268 locks
= dib8000_read_lock(fe
);
3269 if (locks
&(1<<(7-state
->longest_intlv_layer
))) { /* mpeg lock : check the longest one */
3270 dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s\n",
3271 c
->layer
[0].segment_count
? (locks
>> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3272 c
->layer
[1].segment_count
? (locks
>> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3273 c
->layer
[2].segment_count
? (locks
>> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3274 if (c
->isdbt_sb_mode
3275 && c
->isdbt_sb_subchannel
< 14
3276 && !state
->differential_constellation
)
3277 /* signal to the upper layer, that there was a channel found and the parameters can be read */
3278 state
->status
= FE_STATUS_DEMOD_SUCCESS
;
3280 state
->status
= FE_STATUS_DATA_LOCKED
;
3281 *tune_state
= CT_DEMOD_STOP
;
3282 } else if (time_after(now
, *timeout
)) {
3283 if (c
->isdbt_sb_mode
3284 && c
->isdbt_sb_subchannel
< 14
3285 && !state
->differential_constellation
) { /* continue to try init prbs autosearch */
3286 state
->subchannel
+= 3;
3287 *tune_state
= CT_DEMOD_STEP_11
;
3288 } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */
3289 if (locks
& (0x7 << 5)) {
3290 dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s\n",
3291 jiffies_to_msecs(now
- *timeout
),
3292 c
->layer
[0].segment_count
? (locks
>> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3293 c
->layer
[1].segment_count
? (locks
>> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3294 c
->layer
[2].segment_count
? (locks
>> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3296 state
->status
= FE_STATUS_DATA_LOCKED
;
3298 state
->status
= FE_STATUS_TUNE_FAILED
;
3299 *tune_state
= CT_DEMOD_STOP
;
3304 case CT_DEMOD_STEP_11
: /* 41 : init prbs autosearch */
3305 if (state
->subchannel
<= 41) {
3306 dib8000_set_subchannel_prbs(state
, dib8000_get_init_prbs(state
, state
->subchannel
));
3307 *tune_state
= CT_DEMOD_STEP_9
;
3309 *tune_state
= CT_DEMOD_STOP
;
3310 state
->status
= FE_STATUS_TUNE_FAILED
;
3318 /* tuning is finished - cleanup the demod */
3319 switch (*tune_state
) {
3320 case CT_DEMOD_STOP
: /* (42) */
3321 #ifdef DIB8000_AGC_FREEZE
3322 if ((state
->revision
!= 0x8090) && (state
->agc1_max
!= 0)) {
3323 dib8000_write_word(state
, 108, state
->agc1_max
);
3324 dib8000_write_word(state
, 109, state
->agc1_min
);
3325 dib8000_write_word(state
, 110, state
->agc2_max
);
3326 dib8000_write_word(state
, 111, state
->agc2_min
);
3327 state
->agc1_max
= 0;
3328 state
->agc1_min
= 0;
3329 state
->agc2_max
= 0;
3330 state
->agc2_min
= 0;
3339 if ((ret
> 0) && (*tune_state
> CT_DEMOD_STEP_3
))
3340 return ret
* state
->symbol_duration
;
3341 if ((ret
> 0) && (ret
< state
->symbol_duration
))
3342 return state
->symbol_duration
; /* at least one symbol */
3346 static int dib8000_wakeup(struct dvb_frontend
*fe
)
3348 struct dib8000_state
*state
= fe
->demodulator_priv
;
3352 dib8000_set_power_mode(state
, DIB8000_POWER_ALL
);
3353 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
3354 if (dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_ON
) != 0)
3355 dprintk("could not start Slow ADC\n");
3357 if (state
->revision
== 0x8090)
3358 dib8000_sad_calib(state
);
3360 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3361 ret
= state
->fe
[index_frontend
]->ops
.init(state
->fe
[index_frontend
]);
3369 static int dib8000_sleep(struct dvb_frontend
*fe
)
3371 struct dib8000_state
*state
= fe
->demodulator_priv
;
3375 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3376 ret
= state
->fe
[index_frontend
]->ops
.sleep(state
->fe
[index_frontend
]);
3381 if (state
->revision
!= 0x8090)
3382 dib8000_set_output_mode(fe
, OUTMODE_HIGH_Z
);
3383 dib8000_set_power_mode(state
, DIB8000_POWER_INTERFACE_ONLY
);
3384 return dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_OFF
) | dib8000_set_adc_state(state
, DIBX000_ADC_OFF
);
3387 static int dib8000_read_status(struct dvb_frontend
*fe
, enum fe_status
*stat
);
3389 static int dib8000_get_frontend(struct dvb_frontend
*fe
,
3390 struct dtv_frontend_properties
*c
)
3392 struct dib8000_state
*state
= fe
->demodulator_priv
;
3394 enum fe_status stat
= 0;
3395 u8 index_frontend
, sub_index_frontend
;
3397 c
->bandwidth_hz
= 6000000;
3400 * If called to early, get_frontend makes dib8000_tune to either
3401 * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail.
3402 * So, let's just return if frontend 0 has not locked.
3404 dib8000_read_status(fe
, &stat
);
3405 if (!(stat
& FE_HAS_SYNC
))
3408 dprintk("dib8000_get_frontend: TMCC lock\n");
3409 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3410 state
->fe
[index_frontend
]->ops
.read_status(state
->fe
[index_frontend
], &stat
);
3411 if (stat
&FE_HAS_SYNC
) {
3412 dprintk("TMCC lock on the slave%i\n", index_frontend
);
3413 /* synchronize the cache with the other frontends */
3414 state
->fe
[index_frontend
]->ops
.get_frontend(state
->fe
[index_frontend
], c
);
3415 for (sub_index_frontend
= 0; (sub_index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[sub_index_frontend
] != NULL
); sub_index_frontend
++) {
3416 if (sub_index_frontend
!= index_frontend
) {
3417 state
->fe
[sub_index_frontend
]->dtv_property_cache
.isdbt_sb_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
;
3418 state
->fe
[sub_index_frontend
]->dtv_property_cache
.inversion
= state
->fe
[index_frontend
]->dtv_property_cache
.inversion
;
3419 state
->fe
[sub_index_frontend
]->dtv_property_cache
.transmission_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
;
3420 state
->fe
[sub_index_frontend
]->dtv_property_cache
.guard_interval
= state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
;
3421 state
->fe
[sub_index_frontend
]->dtv_property_cache
.isdbt_partial_reception
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
;
3422 for (i
= 0; i
< 3; i
++) {
3423 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
;
3424 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
;
3425 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].fec
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
;
3426 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].modulation
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
;
3434 c
->isdbt_sb_mode
= dib8000_read_word(state
, 508) & 0x1;
3436 if (state
->revision
== 0x8090)
3437 val
= dib8000_read_word(state
, 572);
3439 val
= dib8000_read_word(state
, 570);
3440 c
->inversion
= (val
& 0x40) >> 6;
3441 switch ((val
& 0x30) >> 4) {
3443 c
->transmission_mode
= TRANSMISSION_MODE_2K
;
3444 dprintk("dib8000_get_frontend: transmission mode 2K\n");
3447 c
->transmission_mode
= TRANSMISSION_MODE_4K
;
3448 dprintk("dib8000_get_frontend: transmission mode 4K\n");
3452 c
->transmission_mode
= TRANSMISSION_MODE_8K
;
3453 dprintk("dib8000_get_frontend: transmission mode 8K\n");
3457 switch (val
& 0x3) {
3459 c
->guard_interval
= GUARD_INTERVAL_1_32
;
3460 dprintk("dib8000_get_frontend: Guard Interval = 1/32\n");
3463 c
->guard_interval
= GUARD_INTERVAL_1_16
;
3464 dprintk("dib8000_get_frontend: Guard Interval = 1/16\n");
3467 dprintk("dib8000_get_frontend: Guard Interval = 1/8\n");
3468 c
->guard_interval
= GUARD_INTERVAL_1_8
;
3471 dprintk("dib8000_get_frontend: Guard Interval = 1/4\n");
3472 c
->guard_interval
= GUARD_INTERVAL_1_4
;
3476 val
= dib8000_read_word(state
, 505);
3477 c
->isdbt_partial_reception
= val
& 1;
3478 dprintk("dib8000_get_frontend: partial_reception = %d\n", c
->isdbt_partial_reception
);
3480 for (i
= 0; i
< 3; i
++) {
3483 val
= dib8000_read_word(state
, 493 + i
) & 0x0f;
3484 c
->layer
[i
].segment_count
= val
;
3486 if (val
== 0 || val
> 13)
3492 dprintk("dib8000_get_frontend: Layer %d segments = %d\n",
3493 i
, c
->layer
[i
].segment_count
);
3495 val
= dib8000_read_word(state
, 499 + i
) & 0x3;
3496 /* Interleaving can be 0, 1, 2 or 4 */
3499 c
->layer
[i
].interleaving
= val
;
3501 dprintk("dib8000_get_frontend: Layer %d time_intlv = %d\n",
3502 i
, c
->layer
[i
].interleaving
);
3504 val
= dib8000_read_word(state
, 481 + i
);
3505 switch (val
& 0x7) {
3507 c
->layer
[i
].fec
= FEC_1_2
;
3509 dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2\n", i
);
3512 c
->layer
[i
].fec
= FEC_2_3
;
3514 dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3\n", i
);
3517 c
->layer
[i
].fec
= FEC_3_4
;
3519 dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4\n", i
);
3522 c
->layer
[i
].fec
= FEC_5_6
;
3524 dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6\n", i
);
3527 c
->layer
[i
].fec
= FEC_7_8
;
3529 dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8\n", i
);
3533 val
= dib8000_read_word(state
, 487 + i
);
3534 switch (val
& 0x3) {
3536 c
->layer
[i
].modulation
= DQPSK
;
3538 dprintk("dib8000_get_frontend: Layer %d DQPSK\n", i
);
3541 c
->layer
[i
].modulation
= QPSK
;
3543 dprintk("dib8000_get_frontend: Layer %d QPSK\n", i
);
3546 c
->layer
[i
].modulation
= QAM_16
;
3548 dprintk("dib8000_get_frontend: Layer %d QAM16\n", i
);
3552 c
->layer
[i
].modulation
= QAM_64
;
3554 dprintk("dib8000_get_frontend: Layer %d QAM64\n", i
);
3559 /* synchronize the cache with the other frontends */
3560 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3561 state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
= c
->isdbt_sb_mode
;
3562 state
->fe
[index_frontend
]->dtv_property_cache
.inversion
= c
->inversion
;
3563 state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
= c
->transmission_mode
;
3564 state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
= c
->guard_interval
;
3565 state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
= c
->isdbt_partial_reception
;
3566 for (i
= 0; i
< 3; i
++) {
3567 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
= c
->layer
[i
].segment_count
;
3568 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
= c
->layer
[i
].interleaving
;
3569 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
= c
->layer
[i
].fec
;
3570 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
= c
->layer
[i
].modulation
;
3576 static int dib8000_set_frontend(struct dvb_frontend
*fe
)
3578 struct dib8000_state
*state
= fe
->demodulator_priv
;
3579 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
3580 int l
, i
, active
, time
, time_slave
= 0;
3581 u8 exit_condition
, index_frontend
;
3582 unsigned long delay
, callback_time
;
3584 if (c
->frequency
== 0) {
3585 dprintk("dib8000: must at least specify frequency\n");
3589 if (c
->bandwidth_hz
== 0) {
3590 dprintk("dib8000: no bandwidth specified, set to default\n");
3591 c
->bandwidth_hz
= 6000000;
3594 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3595 /* synchronization of the cache */
3596 state
->fe
[index_frontend
]->dtv_property_cache
.delivery_system
= SYS_ISDBT
;
3597 memcpy(&state
->fe
[index_frontend
]->dtv_property_cache
, &fe
->dtv_property_cache
, sizeof(struct dtv_frontend_properties
));
3599 /* set output mode and diversity input */
3600 if (state
->revision
!= 0x8090) {
3601 dib8000_set_diversity_in(state
->fe
[index_frontend
], 1);
3602 if (index_frontend
!= 0)
3603 dib8000_set_output_mode(state
->fe
[index_frontend
],
3606 dib8000_set_output_mode(state
->fe
[0], OUTMODE_HIGH_Z
);
3608 dib8096p_set_diversity_in(state
->fe
[index_frontend
], 1);
3609 if (index_frontend
!= 0)
3610 dib8096p_set_output_mode(state
->fe
[index_frontend
],
3613 dib8096p_set_output_mode(state
->fe
[0], OUTMODE_HIGH_Z
);
3616 /* tune the tuner */
3617 if (state
->fe
[index_frontend
]->ops
.tuner_ops
.set_params
)
3618 state
->fe
[index_frontend
]->ops
.tuner_ops
.set_params(state
->fe
[index_frontend
]);
3620 dib8000_set_tune_state(state
->fe
[index_frontend
], CT_AGC_START
);
3623 /* turn off the diversity of the last chip */
3624 if (state
->revision
!= 0x8090)
3625 dib8000_set_diversity_in(state
->fe
[index_frontend
- 1], 0);
3627 dib8096p_set_diversity_in(state
->fe
[index_frontend
- 1], 0);
3629 /* start up the AGC */
3631 time
= dib8000_agc_startup(state
->fe
[0]);
3632 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3633 time_slave
= dib8000_agc_startup(state
->fe
[index_frontend
]);
3636 else if ((time_slave
!= 0) && (time_slave
> time
))
3643 * Despite dib8000_agc_startup returns time at a 0.1 ms range,
3644 * the actual sleep time depends on CONFIG_HZ. The worse case
3645 * is when CONFIG_HZ=100. In such case, the minimum granularity
3646 * is 10ms. On some real field tests, the tuner sometimes don't
3647 * lock when this timer is lower than 10ms. So, enforce a 10ms
3650 time
= 10 * (time
+ 99)/100;
3651 usleep_range(time
* 1000, (time
+ 1) * 1000);
3653 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3654 if (dib8000_get_tune_state(state
->fe
[index_frontend
]) != CT_AGC_STOP
) {
3659 } while (exit_condition
== 0);
3661 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
3662 dib8000_set_tune_state(state
->fe
[index_frontend
], CT_DEMOD_START
);
3667 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3668 delay
= dib8000_tune(state
->fe
[index_frontend
]);
3670 delay
= jiffies
+ usecs_to_jiffies(100 * delay
);
3671 if (!callback_time
|| delay
< callback_time
)
3672 callback_time
= delay
;
3675 /* we are in autosearch */
3676 if (state
->channel_parameters_set
== 0) { /* searching */
3677 if ((dib8000_get_status(state
->fe
[index_frontend
]) == FE_STATUS_DEMOD_SUCCESS
) || (dib8000_get_status(state
->fe
[index_frontend
]) == FE_STATUS_FFT_SUCCESS
)) {
3678 dprintk("autosearch succeeded on fe%i\n", index_frontend
);
3679 dib8000_get_frontend(state
->fe
[index_frontend
], c
); /* we read the channel parameters from the frontend which was successful */
3680 state
->channel_parameters_set
= 1;
3682 for (l
= 0; (l
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[l
] != NULL
); l
++) {
3683 if (l
!= index_frontend
) { /* and for all frontend except the successful one */
3684 dprintk("Restarting frontend %d\n", l
);
3685 dib8000_tune_restart_from_demod(state
->fe
[l
]);
3687 state
->fe
[l
]->dtv_property_cache
.isdbt_sb_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
;
3688 state
->fe
[l
]->dtv_property_cache
.inversion
= state
->fe
[index_frontend
]->dtv_property_cache
.inversion
;
3689 state
->fe
[l
]->dtv_property_cache
.transmission_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
;
3690 state
->fe
[l
]->dtv_property_cache
.guard_interval
= state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
;
3691 state
->fe
[l
]->dtv_property_cache
.isdbt_partial_reception
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
;
3692 for (i
= 0; i
< 3; i
++) {
3693 state
->fe
[l
]->dtv_property_cache
.layer
[i
].segment_count
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
;
3694 state
->fe
[l
]->dtv_property_cache
.layer
[i
].interleaving
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
;
3695 state
->fe
[l
]->dtv_property_cache
.layer
[i
].fec
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
;
3696 state
->fe
[l
]->dtv_property_cache
.layer
[i
].modulation
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
;
3704 /* tuning is done when the master frontend is done (failed or success) */
3705 if (dib8000_get_status(state
->fe
[0]) == FE_STATUS_TUNE_FAILED
||
3706 dib8000_get_status(state
->fe
[0]) == FE_STATUS_LOCKED
||
3707 dib8000_get_status(state
->fe
[0]) == FE_STATUS_DATA_LOCKED
) {
3709 /* we need to wait for all frontends to be finished */
3710 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3711 if (dib8000_get_tune_state(state
->fe
[index_frontend
]) != CT_DEMOD_STOP
)
3715 dprintk("tuning done with status %d\n", dib8000_get_status(state
->fe
[0]));
3718 if ((active
== 1) && (callback_time
== 0)) {
3719 dprintk("strange callback time something went wrong\n");
3723 while ((active
== 1) && (time_before(jiffies
, callback_time
)))
3727 /* set output mode */
3728 if (state
->revision
!= 0x8090)
3729 dib8000_set_output_mode(state
->fe
[0], state
->cfg
.output_mode
);
3731 dib8096p_set_output_mode(state
->fe
[0], state
->cfg
.output_mode
);
3732 if (state
->cfg
.enMpegOutput
== 0) {
3733 dib8096p_setDibTxMux(state
, MPEG_ON_DIBTX
);
3734 dib8096p_setHostBusMux(state
, DIBTX_ON_HOSTBUS
);
3741 static int dib8000_get_stats(struct dvb_frontend
*fe
, enum fe_status stat
);
3743 static int dib8000_read_status(struct dvb_frontend
*fe
, enum fe_status
*stat
)
3745 struct dib8000_state
*state
= fe
->demodulator_priv
;
3746 u16 lock_slave
= 0, lock
;
3749 lock
= dib8000_read_lock(fe
);
3750 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
3751 lock_slave
|= dib8000_read_lock(state
->fe
[index_frontend
]);
3755 if (((lock
>> 13) & 1) || ((lock_slave
>> 13) & 1))
3756 *stat
|= FE_HAS_SIGNAL
;
3758 if (((lock
>> 8) & 1) || ((lock_slave
>> 8) & 1)) /* Equal */
3759 *stat
|= FE_HAS_CARRIER
;
3761 if ((((lock
>> 1) & 0xf) == 0xf) || (((lock_slave
>> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
3762 *stat
|= FE_HAS_SYNC
;
3764 if ((((lock
>> 12) & 1) || ((lock_slave
>> 12) & 1)) && ((lock
>> 5) & 7)) /* FEC MPEG */
3765 *stat
|= FE_HAS_LOCK
;
3767 if (((lock
>> 12) & 1) || ((lock_slave
>> 12) & 1)) {
3768 lock
= dib8000_read_word(state
, 554); /* Viterbi Layer A */
3770 *stat
|= FE_HAS_VITERBI
;
3772 lock
= dib8000_read_word(state
, 555); /* Viterbi Layer B */
3774 *stat
|= FE_HAS_VITERBI
;
3776 lock
= dib8000_read_word(state
, 556); /* Viterbi Layer C */
3778 *stat
|= FE_HAS_VITERBI
;
3780 dib8000_get_stats(fe
, *stat
);
3785 static int dib8000_read_ber(struct dvb_frontend
*fe
, u32
* ber
)
3787 struct dib8000_state
*state
= fe
->demodulator_priv
;
3790 if (state
->revision
== 0x8090)
3791 *ber
= (dib8000_read_word(state
, 562) << 16) |
3792 dib8000_read_word(state
, 563);
3794 *ber
= (dib8000_read_word(state
, 560) << 16) |
3795 dib8000_read_word(state
, 561);
3799 static int dib8000_read_unc_blocks(struct dvb_frontend
*fe
, u32
* unc
)
3801 struct dib8000_state
*state
= fe
->demodulator_priv
;
3803 /* packet error on 13 seg */
3804 if (state
->revision
== 0x8090)
3805 *unc
= dib8000_read_word(state
, 567);
3807 *unc
= dib8000_read_word(state
, 565);
3811 static int dib8000_read_signal_strength(struct dvb_frontend
*fe
, u16
* strength
)
3813 struct dib8000_state
*state
= fe
->demodulator_priv
;
3818 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
3819 state
->fe
[index_frontend
]->ops
.read_signal_strength(state
->fe
[index_frontend
], &val
);
3820 if (val
> 65535 - *strength
)
3826 val
= 65535 - dib8000_read_word(state
, 390);
3827 if (val
> 65535 - *strength
)
3834 static u32
dib8000_get_snr(struct dvb_frontend
*fe
)
3836 struct dib8000_state
*state
= fe
->demodulator_priv
;
3840 if (state
->revision
!= 0x8090)
3841 val
= dib8000_read_word(state
, 542);
3843 val
= dib8000_read_word(state
, 544);
3844 n
= (val
>> 6) & 0xff;
3846 if ((exp
& 0x20) != 0)
3850 if (state
->revision
!= 0x8090)
3851 val
= dib8000_read_word(state
, 543);
3853 val
= dib8000_read_word(state
, 545);
3854 s
= (val
>> 6) & 0xff;
3856 if ((exp
& 0x20) != 0)
3861 u32 t
= (s
/n
) << 16;
3862 return t
+ ((s
<< 16) - n
*t
) / n
;
3867 static int dib8000_read_snr(struct dvb_frontend
*fe
, u16
* snr
)
3869 struct dib8000_state
*state
= fe
->demodulator_priv
;
3873 snr_master
= dib8000_get_snr(fe
);
3874 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
3875 snr_master
+= dib8000_get_snr(state
->fe
[index_frontend
]);
3877 if ((snr_master
>> 16) != 0) {
3878 snr_master
= 10*intlog10(snr_master
>>16);
3879 *snr
= snr_master
/ ((1 << 24) / 10);
3887 struct per_layer_regs
{
3891 static const struct per_layer_regs per_layer_regs
[] = {
3897 struct linear_segments
{
3903 * Table to estimate signal strength in dBm.
3904 * This table was empirically determinated by measuring the signal
3905 * strength generated by a DTA-2111 RF generator directly connected into
3906 * a dib8076 device (a PixelView PV-D231U stick), using a good quality
3907 * 3 meters RC6 cable and good RC6 connectors.
3908 * The real value can actually be different on other devices, depending
3909 * on several factors, like if LNA is enabled or not, if diversity is
3910 * enabled, type of connectors, etc.
3911 * Yet, it is better to use this measure in dB than a random non-linear
3912 * percentage value, especially for antenna adjustments.
3913 * On my tests, the precision of the measure using this table is about
3914 * 0.5 dB, with sounds reasonable enough.
3916 static struct linear_segments strength_to_db_table
[] = {
3917 { 55953, 108500 }, /* -22.5 dBm */
3930 { 50117, 96000 }, /* -35 dBm */
3946 { 42010, 80000 }, /* -51 dBm */
3950 static u32
interpolate_value(u32 value
, struct linear_segments
*segments
,
3958 if (value
>= segments
[0].x
)
3959 return segments
[0].y
;
3960 if (value
< segments
[len
-1].x
)
3961 return segments
[len
-1].y
;
3963 for (i
= 1; i
< len
- 1; i
++) {
3964 /* If value is identical, no need to interpolate */
3965 if (value
== segments
[i
].x
)
3966 return segments
[i
].y
;
3967 if (value
> segments
[i
].x
)
3971 /* Linear interpolation between the two (x,y) points */
3972 dy
= segments
[i
- 1].y
- segments
[i
].y
;
3973 dx
= segments
[i
- 1].x
- segments
[i
].x
;
3975 tmp64
= value
- segments
[i
].x
;
3978 ret
= segments
[i
].y
+ tmp64
;
3983 static u32
dib8000_get_time_us(struct dvb_frontend
*fe
, int layer
)
3985 struct dib8000_state
*state
= fe
->demodulator_priv
;
3986 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
3987 int ini_layer
, end_layer
, i
;
3990 int guard
, rate_num
, rate_denum
= 1, bits_per_symbol
, nsegs
;
3991 int interleaving
= 0, fft_div
;
3995 end_layer
= layer
+ 1;
4001 switch (c
->guard_interval
) {
4002 case GUARD_INTERVAL_1_4
:
4005 case GUARD_INTERVAL_1_8
:
4008 case GUARD_INTERVAL_1_16
:
4012 case GUARD_INTERVAL_1_32
:
4017 switch (c
->transmission_mode
) {
4018 case TRANSMISSION_MODE_2K
:
4021 case TRANSMISSION_MODE_4K
:
4025 case TRANSMISSION_MODE_8K
:
4031 for (i
= ini_layer
; i
< end_layer
; i
++) {
4032 nsegs
= c
->layer
[i
].segment_count
;
4033 if (nsegs
== 0 || nsegs
> 13)
4036 switch (c
->layer
[i
].modulation
) {
4039 bits_per_symbol
= 2;
4042 bits_per_symbol
= 4;
4046 bits_per_symbol
= 6;
4050 switch (c
->layer
[i
].fec
) {
4074 interleaving
= c
->layer
[i
].interleaving
;
4076 denom
+= bits_per_symbol
* rate_num
* fft_div
* nsegs
* 384;
4079 /* If all goes wrong, wait for 1s for the next stats */
4083 /* Estimate the period for the total bit rate */
4084 time_us
= rate_denum
* (1008 * 1562500L);
4086 do_div(tmp64
, guard
);
4087 time_us
= time_us
+ tmp64
;
4088 time_us
+= denom
/ 2;
4089 do_div(time_us
, denom
);
4091 tmp
= 1008 * 96 * interleaving
;
4092 time_us
+= tmp
+ tmp
/ guard
;
4097 static int dib8000_get_stats(struct dvb_frontend
*fe
, enum fe_status stat
)
4099 struct dib8000_state
*state
= fe
->demodulator_priv
;
4100 struct dtv_frontend_properties
*c
= &state
->fe
[0]->dtv_property_cache
;
4102 int show_per_stats
= 0;
4103 u32 time_us
= 0, snr
, val
;
4108 /* Get Signal strength */
4109 dib8000_read_signal_strength(fe
, &strength
);
4111 db
= interpolate_value(val
,
4112 strength_to_db_table
,
4113 ARRAY_SIZE(strength_to_db_table
)) - 131000;
4114 c
->strength
.stat
[0].svalue
= db
;
4116 /* UCB/BER/CNR measures require lock */
4117 if (!(stat
& FE_HAS_LOCK
)) {
4119 c
->block_count
.len
= 1;
4120 c
->block_error
.len
= 1;
4121 c
->post_bit_error
.len
= 1;
4122 c
->post_bit_count
.len
= 1;
4123 c
->cnr
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4124 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4125 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4126 c
->block_error
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4127 c
->block_count
.stat
[0].scale
= FE_SCALE_NOT_AVAILABLE
;
4131 /* Check if time for stats was elapsed */
4132 if (time_after(jiffies
, state
->per_jiffies_stats
)) {
4133 state
->per_jiffies_stats
= jiffies
+ msecs_to_jiffies(1000);
4136 snr
= dib8000_get_snr(fe
);
4137 for (i
= 1; i
< MAX_NUMBER_OF_FRONTENDS
; i
++) {
4139 snr
+= dib8000_get_snr(state
->fe
[i
]);
4144 snr
= 10 * intlog10(snr
);
4145 snr
= (1000L * snr
) >> 24;
4149 c
->cnr
.stat
[0].svalue
= snr
;
4150 c
->cnr
.stat
[0].scale
= FE_SCALE_DECIBEL
;
4152 /* Get UCB measures */
4153 dib8000_read_unc_blocks(fe
, &val
);
4154 if (val
< state
->init_ucb
)
4155 state
->init_ucb
+= 0x100000000LL
;
4157 c
->block_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
4158 c
->block_error
.stat
[0].uvalue
= val
+ state
->init_ucb
;
4160 /* Estimate the number of packets based on bitrate */
4162 time_us
= dib8000_get_time_us(fe
, -1);
4165 blocks
= 1250000ULL * 1000000ULL;
4166 do_div(blocks
, time_us
* 8 * 204);
4167 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
4168 c
->block_count
.stat
[0].uvalue
+= blocks
;
4174 /* Get post-BER measures */
4175 if (time_after(jiffies
, state
->ber_jiffies_stats
)) {
4176 time_us
= dib8000_get_time_us(fe
, -1);
4177 state
->ber_jiffies_stats
= jiffies
+ msecs_to_jiffies((time_us
+ 500) / 1000);
4179 dprintk("Next all layers stats available in %u us.\n", time_us
);
4181 dib8000_read_ber(fe
, &val
);
4182 c
->post_bit_error
.stat
[0].scale
= FE_SCALE_COUNTER
;
4183 c
->post_bit_error
.stat
[0].uvalue
+= val
;
4185 c
->post_bit_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
4186 c
->post_bit_count
.stat
[0].uvalue
+= 100000000;
4189 if (state
->revision
< 0x8002)
4192 c
->block_error
.len
= 4;
4193 c
->post_bit_error
.len
= 4;
4194 c
->post_bit_count
.len
= 4;
4196 for (i
= 0; i
< 3; i
++) {
4197 unsigned nsegs
= c
->layer
[i
].segment_count
;
4199 if (nsegs
== 0 || nsegs
> 13)
4204 if (time_after(jiffies
, state
->ber_jiffies_stats_layer
[i
])) {
4205 time_us
= dib8000_get_time_us(fe
, i
);
4207 state
->ber_jiffies_stats_layer
[i
] = jiffies
+ msecs_to_jiffies((time_us
+ 500) / 1000);
4208 dprintk("Next layer %c stats will be available in %u us\n",
4211 val
= dib8000_read_word(state
, per_layer_regs
[i
].ber
);
4212 c
->post_bit_error
.stat
[1 + i
].scale
= FE_SCALE_COUNTER
;
4213 c
->post_bit_error
.stat
[1 + i
].uvalue
+= val
;
4215 c
->post_bit_count
.stat
[1 + i
].scale
= FE_SCALE_COUNTER
;
4216 c
->post_bit_count
.stat
[1 + i
].uvalue
+= 100000000;
4219 if (show_per_stats
) {
4220 val
= dib8000_read_word(state
, per_layer_regs
[i
].per
);
4222 c
->block_error
.stat
[1 + i
].scale
= FE_SCALE_COUNTER
;
4223 c
->block_error
.stat
[1 + i
].uvalue
+= val
;
4226 time_us
= dib8000_get_time_us(fe
, i
);
4228 blocks
= 1250000ULL * 1000000ULL;
4229 do_div(blocks
, time_us
* 8 * 204);
4230 c
->block_count
.stat
[0].scale
= FE_SCALE_COUNTER
;
4231 c
->block_count
.stat
[0].uvalue
+= blocks
;
4238 static int dib8000_set_slave_frontend(struct dvb_frontend
*fe
, struct dvb_frontend
*fe_slave
)
4240 struct dib8000_state
*state
= fe
->demodulator_priv
;
4241 u8 index_frontend
= 1;
4243 while ((index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
))
4245 if (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) {
4246 dprintk("set slave fe %p to index %i\n", fe_slave
, index_frontend
);
4247 state
->fe
[index_frontend
] = fe_slave
;
4251 dprintk("too many slave frontend\n");
4255 static struct dvb_frontend
*dib8000_get_slave_frontend(struct dvb_frontend
*fe
, int slave_index
)
4257 struct dib8000_state
*state
= fe
->demodulator_priv
;
4259 if (slave_index
>= MAX_NUMBER_OF_FRONTENDS
)
4261 return state
->fe
[slave_index
];
4264 static int dib8000_i2c_enumeration(struct i2c_adapter
*host
, int no_of_demods
,
4265 u8 default_addr
, u8 first_addr
, u8 is_dib8096p
)
4269 struct i2c_device client
= {.adap
= host
};
4271 client
.i2c_write_buffer
= kzalloc(4, GFP_KERNEL
);
4272 if (!client
.i2c_write_buffer
) {
4273 dprintk("%s: not enough memory\n", __func__
);
4276 client
.i2c_read_buffer
= kzalloc(4, GFP_KERNEL
);
4277 if (!client
.i2c_read_buffer
) {
4278 dprintk("%s: not enough memory\n", __func__
);
4280 goto error_memory_read
;
4282 client
.i2c_buffer_lock
= kzalloc(sizeof(struct mutex
), GFP_KERNEL
);
4283 if (!client
.i2c_buffer_lock
) {
4284 dprintk("%s: not enough memory\n", __func__
);
4286 goto error_memory_lock
;
4288 mutex_init(client
.i2c_buffer_lock
);
4290 for (k
= no_of_demods
- 1; k
>= 0; k
--) {
4291 /* designated i2c address */
4292 new_addr
= first_addr
+ (k
<< 1);
4294 client
.addr
= new_addr
;
4296 dib8000_i2c_write16(&client
, 1287, 0x0003); /* sram lead in, rdy */
4297 if (dib8000_identify(&client
) == 0) {
4298 /* sram lead in, rdy */
4300 dib8000_i2c_write16(&client
, 1287, 0x0003);
4301 client
.addr
= default_addr
;
4302 if (dib8000_identify(&client
) == 0) {
4303 dprintk("#%d: not identified\n", k
);
4309 /* start diversity to pull_down div_str - just for i2c-enumeration */
4310 dib8000_i2c_write16(&client
, 1286, (1 << 10) | (4 << 6));
4312 /* set new i2c address and force divstart */
4313 dib8000_i2c_write16(&client
, 1285, (new_addr
<< 2) | 0x2);
4314 client
.addr
= new_addr
;
4315 dib8000_identify(&client
);
4317 dprintk("IC %d initialized (to i2c_address 0x%x)\n", k
, new_addr
);
4320 for (k
= 0; k
< no_of_demods
; k
++) {
4321 new_addr
= first_addr
| (k
<< 1);
4322 client
.addr
= new_addr
;
4325 dib8000_i2c_write16(&client
, 1285, new_addr
<< 2);
4327 /* deactivate div - it was just for i2c-enumeration */
4328 dib8000_i2c_write16(&client
, 1286, 0);
4332 kfree(client
.i2c_buffer_lock
);
4334 kfree(client
.i2c_read_buffer
);
4336 kfree(client
.i2c_write_buffer
);
4341 static int dib8000_fe_get_tune_settings(struct dvb_frontend
*fe
, struct dvb_frontend_tune_settings
*tune
)
4343 tune
->min_delay_ms
= 1000;
4344 tune
->step_size
= 0;
4345 tune
->max_drift
= 0;
4349 static void dib8000_release(struct dvb_frontend
*fe
)
4351 struct dib8000_state
*st
= fe
->demodulator_priv
;
4354 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (st
->fe
[index_frontend
] != NULL
); index_frontend
++)
4355 dvb_frontend_detach(st
->fe
[index_frontend
]);
4357 dibx000_exit_i2c_master(&st
->i2c_master
);
4358 i2c_del_adapter(&st
->dib8096p_tuner_adap
);
4363 static struct i2c_adapter
*dib8000_get_i2c_master(struct dvb_frontend
*fe
, enum dibx000_i2c_interface intf
, int gating
)
4365 struct dib8000_state
*st
= fe
->demodulator_priv
;
4366 return dibx000_get_i2c_adapter(&st
->i2c_master
, intf
, gating
);
4369 static int dib8000_pid_filter_ctrl(struct dvb_frontend
*fe
, u8 onoff
)
4371 struct dib8000_state
*st
= fe
->demodulator_priv
;
4372 u16 val
= dib8000_read_word(st
, 299) & 0xffef;
4373 val
|= (onoff
& 0x1) << 4;
4375 dprintk("pid filter enabled %d\n", onoff
);
4376 return dib8000_write_word(st
, 299, val
);
4379 static int dib8000_pid_filter(struct dvb_frontend
*fe
, u8 id
, u16 pid
, u8 onoff
)
4381 struct dib8000_state
*st
= fe
->demodulator_priv
;
4382 dprintk("Index %x, PID %d, OnOff %d\n", id
, pid
, onoff
);
4383 return dib8000_write_word(st
, 305 + id
, onoff
? (1 << 13) | pid
: 0);
4386 static const struct dvb_frontend_ops dib8000_ops
= {
4387 .delsys
= { SYS_ISDBT
},
4389 .name
= "DiBcom 8000 ISDB-T",
4390 .frequency_min_hz
= 44250 * kHz
,
4391 .frequency_max_hz
= 867250 * kHz
,
4392 .frequency_stepsize_hz
= 62500,
4393 .caps
= FE_CAN_INVERSION_AUTO
|
4394 FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
| FE_CAN_FEC_3_4
|
4395 FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
| FE_CAN_FEC_AUTO
|
4396 FE_CAN_QPSK
| FE_CAN_QAM_16
| FE_CAN_QAM_64
| FE_CAN_QAM_AUTO
|
4397 FE_CAN_TRANSMISSION_MODE_AUTO
| FE_CAN_GUARD_INTERVAL_AUTO
| FE_CAN_RECOVER
| FE_CAN_HIERARCHY_AUTO
,
4400 .release
= dib8000_release
,
4402 .init
= dib8000_wakeup
,
4403 .sleep
= dib8000_sleep
,
4405 .set_frontend
= dib8000_set_frontend
,
4406 .get_tune_settings
= dib8000_fe_get_tune_settings
,
4407 .get_frontend
= dib8000_get_frontend
,
4409 .read_status
= dib8000_read_status
,
4410 .read_ber
= dib8000_read_ber
,
4411 .read_signal_strength
= dib8000_read_signal_strength
,
4412 .read_snr
= dib8000_read_snr
,
4413 .read_ucblocks
= dib8000_read_unc_blocks
,
4416 static struct dvb_frontend
*dib8000_init(struct i2c_adapter
*i2c_adap
, u8 i2c_addr
, struct dib8000_config
*cfg
)
4418 struct dvb_frontend
*fe
;
4419 struct dib8000_state
*state
;
4421 dprintk("dib8000_init\n");
4423 state
= kzalloc(sizeof(struct dib8000_state
), GFP_KERNEL
);
4426 fe
= kzalloc(sizeof(struct dvb_frontend
), GFP_KERNEL
);
4430 memcpy(&state
->cfg
, cfg
, sizeof(struct dib8000_config
));
4431 state
->i2c
.adap
= i2c_adap
;
4432 state
->i2c
.addr
= i2c_addr
;
4433 state
->i2c
.i2c_write_buffer
= state
->i2c_write_buffer
;
4434 state
->i2c
.i2c_read_buffer
= state
->i2c_read_buffer
;
4435 mutex_init(&state
->i2c_buffer_lock
);
4436 state
->i2c
.i2c_buffer_lock
= &state
->i2c_buffer_lock
;
4437 state
->gpio_val
= cfg
->gpio_val
;
4438 state
->gpio_dir
= cfg
->gpio_dir
;
4440 /* Ensure the output mode remains at the previous default if it's
4441 * not specifically set by the caller.
4443 if ((state
->cfg
.output_mode
!= OUTMODE_MPEG2_SERIAL
) && (state
->cfg
.output_mode
!= OUTMODE_MPEG2_PAR_GATED_CLK
))
4444 state
->cfg
.output_mode
= OUTMODE_MPEG2_FIFO
;
4447 fe
->demodulator_priv
= state
;
4448 memcpy(&state
->fe
[0]->ops
, &dib8000_ops
, sizeof(struct dvb_frontend_ops
));
4450 state
->timf_default
= cfg
->pll
->timf
;
4452 if (dib8000_identify(&state
->i2c
) == 0)
4455 dibx000_init_i2c_master(&state
->i2c_master
, DIB8000
, state
->i2c
.adap
, state
->i2c
.addr
);
4457 /* init 8096p tuner adapter */
4458 strscpy(state
->dib8096p_tuner_adap
.name
, "DiB8096P tuner interface",
4459 sizeof(state
->dib8096p_tuner_adap
.name
));
4460 state
->dib8096p_tuner_adap
.algo
= &dib8096p_tuner_xfer_algo
;
4461 state
->dib8096p_tuner_adap
.algo_data
= NULL
;
4462 state
->dib8096p_tuner_adap
.dev
.parent
= state
->i2c
.adap
->dev
.parent
;
4463 i2c_set_adapdata(&state
->dib8096p_tuner_adap
, state
);
4464 i2c_add_adapter(&state
->dib8096p_tuner_adap
);
4468 dib8000_write_word(state
, 285, (dib8000_read_word(state
, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
4469 state
->current_demod_bw
= 6000;
4478 void *dib8000_attach(struct dib8000_ops
*ops
)
4483 ops
->pwm_agc_reset
= dib8000_pwm_agc_reset
;
4484 ops
->get_dc_power
= dib8090p_get_dc_power
;
4485 ops
->set_gpio
= dib8000_set_gpio
;
4486 ops
->get_slave_frontend
= dib8000_get_slave_frontend
;
4487 ops
->set_tune_state
= dib8000_set_tune_state
;
4488 ops
->pid_filter_ctrl
= dib8000_pid_filter_ctrl
;
4489 ops
->get_adc_power
= dib8000_get_adc_power
;
4490 ops
->update_pll
= dib8000_update_pll
;
4491 ops
->tuner_sleep
= dib8096p_tuner_sleep
;
4492 ops
->get_tune_state
= dib8000_get_tune_state
;
4493 ops
->get_i2c_tuner
= dib8096p_get_i2c_tuner
;
4494 ops
->set_slave_frontend
= dib8000_set_slave_frontend
;
4495 ops
->pid_filter
= dib8000_pid_filter
;
4496 ops
->ctrl_timf
= dib8000_ctrl_timf
;
4497 ops
->init
= dib8000_init
;
4498 ops
->get_i2c_master
= dib8000_get_i2c_master
;
4499 ops
->i2c_enumeration
= dib8000_i2c_enumeration
;
4500 ops
->set_wbd_ref
= dib8000_set_wbd_ref
;
4504 EXPORT_SYMBOL(dib8000_attach
);
4506 MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>");
4507 MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
4508 MODULE_LICENSE("GPL");