WIP FPC-III support
[linux/fpc-iii.git] / drivers / media / dvb-frontends / stv6111.c
blobd5035dac4574a0b1bbfdecf9136cd947e12deaf7
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the ST STV6111 tuner
5 * Copyright (C) 2014 Digital Devices GmbH
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 only, as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/firmware.h>
23 #include <linux/i2c.h>
24 #include <asm/div64.h>
26 #include "stv6111.h"
28 #include <media/dvb_frontend.h>
30 struct stv {
31 struct i2c_adapter *i2c;
32 u8 adr;
34 u8 reg[11];
35 u32 ref_freq;
36 u32 frequency;
39 struct slookup {
40 s16 value;
41 u16 reg_value;
44 static const struct slookup lnagain_nf_lookup[] = {
45 /* Gain *100dB // Reg */
46 { 2572, 0 },
47 { 2575, 1 },
48 { 2580, 2 },
49 { 2588, 3 },
50 { 2596, 4 },
51 { 2611, 5 },
52 { 2633, 6 },
53 { 2664, 7 },
54 { 2701, 8 },
55 { 2753, 9 },
56 { 2816, 10 },
57 { 2902, 11 },
58 { 2995, 12 },
59 { 3104, 13 },
60 { 3215, 14 },
61 { 3337, 15 },
62 { 3492, 16 },
63 { 3614, 17 },
64 { 3731, 18 },
65 { 3861, 19 },
66 { 3988, 20 },
67 { 4124, 21 },
68 { 4253, 22 },
69 { 4386, 23 },
70 { 4505, 24 },
71 { 4623, 25 },
72 { 4726, 26 },
73 { 4821, 27 },
74 { 4903, 28 },
75 { 4979, 29 },
76 { 5045, 30 },
77 { 5102, 31 }
80 static const struct slookup lnagain_iip3_lookup[] = {
81 /* Gain *100dB // reg */
82 { 1548, 0 },
83 { 1552, 1 },
84 { 1569, 2 },
85 { 1565, 3 },
86 { 1577, 4 },
87 { 1594, 5 },
88 { 1627, 6 },
89 { 1656, 7 },
90 { 1700, 8 },
91 { 1748, 9 },
92 { 1805, 10 },
93 { 1896, 11 },
94 { 1995, 12 },
95 { 2113, 13 },
96 { 2233, 14 },
97 { 2366, 15 },
98 { 2543, 16 },
99 { 2687, 17 },
100 { 2842, 18 },
101 { 2999, 19 },
102 { 3167, 20 },
103 { 3342, 21 },
104 { 3507, 22 },
105 { 3679, 23 },
106 { 3827, 24 },
107 { 3970, 25 },
108 { 4094, 26 },
109 { 4210, 27 },
110 { 4308, 28 },
111 { 4396, 29 },
112 { 4468, 30 },
113 { 4535, 31 }
116 static const struct slookup gain_rfagc_lookup[] = {
117 /* Gain *100dB // reg */
118 { 4870, 0x3000 },
119 { 4850, 0x3C00 },
120 { 4800, 0x4500 },
121 { 4750, 0x4800 },
122 { 4700, 0x4B00 },
123 { 4650, 0x4D00 },
124 { 4600, 0x4F00 },
125 { 4550, 0x5100 },
126 { 4500, 0x5200 },
127 { 4420, 0x5500 },
128 { 4316, 0x5800 },
129 { 4200, 0x5B00 },
130 { 4119, 0x5D00 },
131 { 3999, 0x6000 },
132 { 3950, 0x6100 },
133 { 3876, 0x6300 },
134 { 3755, 0x6600 },
135 { 3641, 0x6900 },
136 { 3567, 0x6B00 },
137 { 3425, 0x6F00 },
138 { 3350, 0x7100 },
139 { 3236, 0x7400 },
140 { 3118, 0x7700 },
141 { 3004, 0x7A00 },
142 { 2917, 0x7C00 },
143 { 2776, 0x7F00 },
144 { 2635, 0x8200 },
145 { 2516, 0x8500 },
146 { 2406, 0x8800 },
147 { 2290, 0x8B00 },
148 { 2170, 0x8E00 },
149 { 2073, 0x9100 },
150 { 1949, 0x9400 },
151 { 1836, 0x9700 },
152 { 1712, 0x9A00 },
153 { 1631, 0x9C00 },
154 { 1515, 0x9F00 },
155 { 1400, 0xA200 },
156 { 1323, 0xA400 },
157 { 1203, 0xA700 },
158 { 1091, 0xAA00 },
159 { 1011, 0xAC00 },
160 { 904, 0xAF00 },
161 { 787, 0xB200 },
162 { 685, 0xB500 },
163 { 571, 0xB800 },
164 { 464, 0xBB00 },
165 { 374, 0xBE00 },
166 { 275, 0xC200 },
167 { 181, 0xC600 },
168 { 102, 0xCC00 },
169 { 49, 0xD900 }
173 * This table is 6 dB too low comapred to the others (probably created with
174 * a different BB_MAG setting)
176 static const struct slookup gain_channel_agc_nf_lookup[] = {
177 /* Gain *100dB // reg */
178 { 7082, 0x3000 },
179 { 7052, 0x4000 },
180 { 7007, 0x4600 },
181 { 6954, 0x4A00 },
182 { 6909, 0x4D00 },
183 { 6833, 0x5100 },
184 { 6753, 0x5400 },
185 { 6659, 0x5700 },
186 { 6561, 0x5A00 },
187 { 6472, 0x5C00 },
188 { 6366, 0x5F00 },
189 { 6259, 0x6100 },
190 { 6151, 0x6400 },
191 { 6026, 0x6700 },
192 { 5920, 0x6900 },
193 { 5835, 0x6B00 },
194 { 5770, 0x6C00 },
195 { 5681, 0x6E00 },
196 { 5596, 0x7000 },
197 { 5503, 0x7200 },
198 { 5429, 0x7300 },
199 { 5319, 0x7500 },
200 { 5220, 0x7700 },
201 { 5111, 0x7900 },
202 { 4983, 0x7B00 },
203 { 4876, 0x7D00 },
204 { 4755, 0x7F00 },
205 { 4635, 0x8100 },
206 { 4499, 0x8300 },
207 { 4405, 0x8500 },
208 { 4323, 0x8600 },
209 { 4233, 0x8800 },
210 { 4156, 0x8A00 },
211 { 4038, 0x8C00 },
212 { 3935, 0x8E00 },
213 { 3823, 0x9000 },
214 { 3712, 0x9200 },
215 { 3601, 0x9500 },
216 { 3511, 0x9700 },
217 { 3413, 0x9900 },
218 { 3309, 0x9B00 },
219 { 3213, 0x9D00 },
220 { 3088, 0x9F00 },
221 { 2992, 0xA100 },
222 { 2878, 0xA400 },
223 { 2769, 0xA700 },
224 { 2645, 0xAA00 },
225 { 2538, 0xAD00 },
226 { 2441, 0xB000 },
227 { 2350, 0xB600 },
228 { 2237, 0xBA00 },
229 { 2137, 0xBF00 },
230 { 2039, 0xC500 },
231 { 1938, 0xDF00 },
232 { 1927, 0xFF00 }
235 static const struct slookup gain_channel_agc_iip3_lookup[] = {
236 /* Gain *100dB // reg */
237 { 7070, 0x3000 },
238 { 7028, 0x4000 },
239 { 7019, 0x4600 },
240 { 6900, 0x4A00 },
241 { 6811, 0x4D00 },
242 { 6763, 0x5100 },
243 { 6690, 0x5400 },
244 { 6644, 0x5700 },
245 { 6617, 0x5A00 },
246 { 6598, 0x5C00 },
247 { 6462, 0x5F00 },
248 { 6348, 0x6100 },
249 { 6197, 0x6400 },
250 { 6154, 0x6700 },
251 { 6098, 0x6900 },
252 { 5893, 0x6B00 },
253 { 5812, 0x6C00 },
254 { 5773, 0x6E00 },
255 { 5723, 0x7000 },
256 { 5661, 0x7200 },
257 { 5579, 0x7300 },
258 { 5460, 0x7500 },
259 { 5308, 0x7700 },
260 { 5099, 0x7900 },
261 { 4910, 0x7B00 },
262 { 4800, 0x7D00 },
263 { 4785, 0x7F00 },
264 { 4635, 0x8100 },
265 { 4466, 0x8300 },
266 { 4314, 0x8500 },
267 { 4295, 0x8600 },
268 { 4144, 0x8800 },
269 { 3920, 0x8A00 },
270 { 3889, 0x8C00 },
271 { 3771, 0x8E00 },
272 { 3655, 0x9000 },
273 { 3446, 0x9200 },
274 { 3298, 0x9500 },
275 { 3083, 0x9700 },
276 { 3015, 0x9900 },
277 { 2833, 0x9B00 },
278 { 2746, 0x9D00 },
279 { 2632, 0x9F00 },
280 { 2598, 0xA100 },
281 { 2480, 0xA400 },
282 { 2236, 0xA700 },
283 { 2171, 0xAA00 },
284 { 2060, 0xAD00 },
285 { 1999, 0xB000 },
286 { 1974, 0xB600 },
287 { 1820, 0xBA00 },
288 { 1741, 0xBF00 },
289 { 1655, 0xC500 },
290 { 1444, 0xDF00 },
291 { 1325, 0xFF00 },
294 static inline u32 muldiv32(u32 a, u32 b, u32 c)
296 u64 tmp64;
298 tmp64 = (u64)a * (u64)b;
299 do_div(tmp64, c);
301 return (u32)tmp64;
304 static int i2c_read(struct i2c_adapter *adap,
305 u8 adr, u8 *msg, int len, u8 *answ, int alen)
307 struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
308 .buf = msg, .len = len},
309 { .addr = adr, .flags = I2C_M_RD,
310 .buf = answ, .len = alen } };
311 if (i2c_transfer(adap, msgs, 2) != 2) {
312 dev_err(&adap->dev, "i2c read error\n");
313 return -EIO;
315 return 0;
318 static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
320 struct i2c_msg msg = {.addr = adr, .flags = 0,
321 .buf = data, .len = len};
323 if (i2c_transfer(adap, &msg, 1) != 1) {
324 dev_err(&adap->dev, "i2c write error\n");
325 return -EIO;
327 return 0;
330 static int write_regs(struct stv *state, int reg, int len)
332 u8 d[12];
334 memcpy(&d[1], &state->reg[reg], len);
335 d[0] = reg;
336 return i2c_write(state->i2c, state->adr, d, len + 1);
339 static int write_reg(struct stv *state, u8 reg, u8 val)
341 u8 d[2] = {reg, val};
343 return i2c_write(state->i2c, state->adr, d, 2);
346 static int read_reg(struct stv *state, u8 reg, u8 *val)
348 return i2c_read(state->i2c, state->adr, &reg, 1, val, 1);
351 static int wait_for_call_done(struct stv *state, u8 mask)
353 int status = 0;
354 u32 lock_retry_count = 10;
356 while (lock_retry_count > 0) {
357 u8 regval;
359 status = read_reg(state, 9, &regval);
360 if (status < 0)
361 return status;
363 if ((regval & mask) == 0)
364 break;
365 usleep_range(4000, 6000);
366 lock_retry_count -= 1;
368 status = -EIO;
370 return status;
373 static void init_state(struct stv *state)
375 u32 clkdiv = 0;
376 u32 agcmode = 0;
377 u32 agcref = 2;
378 u32 agcset = 0xffffffff;
379 u32 bbmode = 0xffffffff;
381 state->reg[0] = 0x08;
382 state->reg[1] = 0x41;
383 state->reg[2] = 0x8f;
384 state->reg[3] = 0x00;
385 state->reg[4] = 0xce;
386 state->reg[5] = 0x54;
387 state->reg[6] = 0x55;
388 state->reg[7] = 0x45;
389 state->reg[8] = 0x46;
390 state->reg[9] = 0xbd;
391 state->reg[10] = 0x11;
393 state->ref_freq = 16000;
395 if (clkdiv <= 3)
396 state->reg[0x00] |= (clkdiv & 0x03);
397 if (agcmode <= 3) {
398 state->reg[0x03] |= (agcmode << 5);
399 if (agcmode == 0x01)
400 state->reg[0x01] |= 0x30;
402 if (bbmode <= 3)
403 state->reg[0x01] = (state->reg[0x01] & ~0x30) | (bbmode << 4);
404 if (agcref <= 7)
405 state->reg[0x03] |= agcref;
406 if (agcset <= 31)
407 state->reg[0x02] = (state->reg[0x02] & ~0x1F) | agcset | 0x40;
410 static int attach_init(struct stv *state)
412 if (write_regs(state, 0, 11))
413 return -ENODEV;
414 return 0;
417 static void release(struct dvb_frontend *fe)
419 kfree(fe->tuner_priv);
420 fe->tuner_priv = NULL;
423 static int set_bandwidth(struct dvb_frontend *fe, u32 cutoff_frequency)
425 struct stv *state = fe->tuner_priv;
426 u32 index = (cutoff_frequency + 999999) / 1000000;
427 int stat = 0;
429 if (index < 6)
430 index = 6;
431 if (index > 50)
432 index = 50;
433 if ((state->reg[0x08] & ~0xFC) == ((index - 6) << 2))
434 return 0;
436 state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2);
437 state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x08;
438 if (fe->ops.i2c_gate_ctrl)
439 stat = fe->ops.i2c_gate_ctrl(fe, 1);
440 if (!stat) {
441 write_regs(state, 0x08, 2);
442 wait_for_call_done(state, 0x08);
444 if (fe->ops.i2c_gate_ctrl && !stat)
445 fe->ops.i2c_gate_ctrl(fe, 0);
446 return stat;
449 static int set_lof(struct stv *state, u32 local_frequency, u32 cutoff_frequency)
451 u32 index = (cutoff_frequency + 999999) / 1000000;
452 u32 frequency = (local_frequency + 500) / 1000;
453 u32 p = 1, psel = 0, fvco, div, frac;
454 u8 icp, tmp;
456 if (index < 6)
457 index = 6;
458 if (index > 50)
459 index = 50;
461 if (frequency <= 1300000) {
462 p = 4;
463 psel = 1;
464 } else {
465 p = 2;
466 psel = 0;
468 fvco = frequency * p;
469 div = fvco / state->ref_freq;
470 frac = fvco % state->ref_freq;
471 frac = muldiv32(frac, 0x40000, state->ref_freq);
473 icp = 0;
474 if (fvco < 2700000)
475 icp = 0;
476 else if (fvco < 2950000)
477 icp = 1;
478 else if (fvco < 3300000)
479 icp = 2;
480 else if (fvco < 3700000)
481 icp = 3;
482 else if (fvco < 4200000)
483 icp = 5;
484 else if (fvco < 4800000)
485 icp = 6;
486 else
487 icp = 7;
489 state->reg[0x02] |= 0x80; /* LNA IIP3 Mode */
491 state->reg[0x03] = (state->reg[0x03] & ~0x80) | (psel << 7);
492 state->reg[0x04] = (div & 0xFF);
493 state->reg[0x05] = (((div >> 8) & 0x01) | ((frac & 0x7F) << 1)) & 0xff;
494 state->reg[0x06] = ((frac >> 7) & 0xFF);
495 state->reg[0x07] = (state->reg[0x07] & ~0x07) | ((frac >> 15) & 0x07);
496 state->reg[0x07] = (state->reg[0x07] & ~0xE0) | (icp << 5);
498 state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2);
499 /* Start cal vco,CF */
500 state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x0C;
501 write_regs(state, 2, 8);
503 wait_for_call_done(state, 0x0C);
505 usleep_range(10000, 12000);
507 read_reg(state, 0x03, &tmp);
508 if (tmp & 0x10) {
509 state->reg[0x02] &= ~0x80; /* LNA NF Mode */
510 write_regs(state, 2, 1);
512 read_reg(state, 0x08, &tmp);
514 state->frequency = frequency;
516 return 0;
519 static int set_params(struct dvb_frontend *fe)
521 struct stv *state = fe->tuner_priv;
522 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
523 u32 freq, cutoff;
524 int stat = 0;
526 if (p->delivery_system != SYS_DVBS && p->delivery_system != SYS_DVBS2)
527 return -EINVAL;
529 freq = p->frequency * 1000;
530 cutoff = 5000000 + muldiv32(p->symbol_rate, 135, 200);
532 if (fe->ops.i2c_gate_ctrl)
533 stat = fe->ops.i2c_gate_ctrl(fe, 1);
534 if (!stat)
535 set_lof(state, freq, cutoff);
536 if (fe->ops.i2c_gate_ctrl && !stat)
537 fe->ops.i2c_gate_ctrl(fe, 0);
538 return 0;
541 static s32 table_lookup(const struct slookup *table,
542 int table_size, u16 reg_value)
544 s32 gain;
545 s32 reg_diff;
546 int imin = 0;
547 int imax = table_size - 1;
548 int i;
550 /* Assumes Table[0].RegValue < Table[imax].RegValue */
551 if (reg_value <= table[0].reg_value) {
552 gain = table[0].value;
553 } else if (reg_value >= table[imax].reg_value) {
554 gain = table[imax].value;
555 } else {
556 while ((imax - imin) > 1) {
557 i = (imax + imin) / 2;
558 if ((table[imin].reg_value <= reg_value) &&
559 (reg_value <= table[i].reg_value))
560 imax = i;
561 else
562 imin = i;
564 reg_diff = table[imax].reg_value - table[imin].reg_value;
565 gain = table[imin].value;
566 if (reg_diff != 0)
567 gain += ((s32)(reg_value - table[imin].reg_value) *
568 (s32)(table[imax].value
569 - table[imin].value)) / reg_diff;
571 return gain;
574 static int get_rf_strength(struct dvb_frontend *fe, u16 *st)
576 struct stv *state = fe->tuner_priv;
577 u16 rfagc = *st;
578 s32 gain;
580 if ((state->reg[0x03] & 0x60) == 0) {
581 /* RF Mode, Read AGC ADC */
582 u8 reg = 0;
583 int stat = 0;
585 if (fe->ops.i2c_gate_ctrl)
586 stat = fe->ops.i2c_gate_ctrl(fe, 1);
587 if (!stat) {
588 write_reg(state, 0x02, state->reg[0x02] | 0x20);
589 read_reg(state, 2, &reg);
590 if (reg & 0x20)
591 read_reg(state, 2, &reg);
593 if (fe->ops.i2c_gate_ctrl && !stat)
594 fe->ops.i2c_gate_ctrl(fe, 0);
596 if ((state->reg[0x02] & 0x80) == 0)
597 /* NF */
598 gain = table_lookup(lnagain_nf_lookup,
599 ARRAY_SIZE(lnagain_nf_lookup),
600 reg & 0x1F);
601 else
602 /* IIP3 */
603 gain = table_lookup(lnagain_iip3_lookup,
604 ARRAY_SIZE(lnagain_iip3_lookup),
605 reg & 0x1F);
607 gain += table_lookup(gain_rfagc_lookup,
608 ARRAY_SIZE(gain_rfagc_lookup), rfagc);
610 gain -= 2400;
611 } else {
612 /* Channel Mode */
613 if ((state->reg[0x02] & 0x80) == 0) {
614 /* NF */
615 gain = table_lookup(
616 gain_channel_agc_nf_lookup,
617 ARRAY_SIZE(gain_channel_agc_nf_lookup), rfagc);
619 gain += 600;
620 } else {
621 /* IIP3 */
622 gain = table_lookup(
623 gain_channel_agc_iip3_lookup,
624 ARRAY_SIZE(gain_channel_agc_iip3_lookup),
625 rfagc);
629 if (state->frequency > 0)
630 /* Tilt correction ( 0.00016 dB/MHz ) */
631 gain -= ((((s32)(state->frequency / 1000) - 1550) * 2) / 12);
633 /* + (BBGain * 10); */
634 gain += (s32)((state->reg[0x01] & 0xC0) >> 6) * 600 - 1300;
636 if (gain < 0)
637 gain = 0;
638 else if (gain > 10000)
639 gain = 10000;
641 *st = 10000 - gain;
643 return 0;
646 static const struct dvb_tuner_ops tuner_ops = {
647 .info = {
648 .name = "ST STV6111",
649 .frequency_min_hz = 950 * MHz,
650 .frequency_max_hz = 2150 * MHz,
652 .set_params = set_params,
653 .release = release,
654 .get_rf_strength = get_rf_strength,
655 .set_bandwidth = set_bandwidth,
658 struct dvb_frontend *stv6111_attach(struct dvb_frontend *fe,
659 struct i2c_adapter *i2c, u8 adr)
661 struct stv *state;
662 int stat = -ENODEV;
663 int gatestat = 0;
665 state = kzalloc(sizeof(*state), GFP_KERNEL);
666 if (!state)
667 return NULL;
668 state->adr = adr;
669 state->i2c = i2c;
670 memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
671 init_state(state);
673 if (fe->ops.i2c_gate_ctrl)
674 gatestat = fe->ops.i2c_gate_ctrl(fe, 1);
675 if (!gatestat)
676 stat = attach_init(state);
677 if (fe->ops.i2c_gate_ctrl && !gatestat)
678 fe->ops.i2c_gate_ctrl(fe, 0);
679 if (stat < 0) {
680 kfree(state);
681 return NULL;
683 fe->tuner_priv = state;
684 return fe;
686 EXPORT_SYMBOL_GPL(stv6111_attach);
688 MODULE_DESCRIPTION("ST STV6111 satellite tuner driver");
689 MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel");
690 MODULE_LICENSE("GPL v2");