1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Synopsys DesignWare Multimedia Card Interface driver
4 * (Based on NXP driver for lpc 31xx)
6 * Copyright (C) 2009 NXP Semiconductors
7 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
10 #include <linux/blkdev.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/iopoll.h>
19 #include <linux/ioport.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 #include <linux/stat.h>
26 #include <linux/delay.h>
27 #include <linux/irq.h>
28 #include <linux/mmc/card.h>
29 #include <linux/mmc/host.h>
30 #include <linux/mmc/mmc.h>
31 #include <linux/mmc/sd.h>
32 #include <linux/mmc/sdio.h>
33 #include <linux/bitops.h>
34 #include <linux/regulator/consumer.h>
36 #include <linux/of_gpio.h>
37 #include <linux/mmc/slot-gpio.h>
41 /* Common flag combinations */
42 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
43 SDMMC_INT_HTO | SDMMC_INT_SBE | \
44 SDMMC_INT_EBE | SDMMC_INT_HLE)
45 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
46 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
47 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
48 DW_MCI_CMD_ERROR_FLAGS)
49 #define DW_MCI_SEND_STATUS 1
50 #define DW_MCI_RECV_STATUS 2
51 #define DW_MCI_DMA_THRESHOLD 16
53 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
54 #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */
56 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
57 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
58 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
61 #define DESC_RING_BUF_SZ PAGE_SIZE
63 struct idmac_desc_64addr
{
64 u32 des0
; /* Control Descriptor */
65 #define IDMAC_OWN_CLR64(x) \
66 !((x) & cpu_to_le32(IDMAC_DES0_OWN))
68 u32 des1
; /* Reserved */
70 u32 des2
; /*Buffer sizes */
71 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
72 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
73 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
75 u32 des3
; /* Reserved */
77 u32 des4
; /* Lower 32-bits of Buffer Address Pointer 1*/
78 u32 des5
; /* Upper 32-bits of Buffer Address Pointer 1*/
80 u32 des6
; /* Lower 32-bits of Next Descriptor Address */
81 u32 des7
; /* Upper 32-bits of Next Descriptor Address */
85 __le32 des0
; /* Control Descriptor */
86 #define IDMAC_DES0_DIC BIT(1)
87 #define IDMAC_DES0_LD BIT(2)
88 #define IDMAC_DES0_FD BIT(3)
89 #define IDMAC_DES0_CH BIT(4)
90 #define IDMAC_DES0_ER BIT(5)
91 #define IDMAC_DES0_CES BIT(30)
92 #define IDMAC_DES0_OWN BIT(31)
94 __le32 des1
; /* Buffer sizes */
95 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
96 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
98 __le32 des2
; /* buffer 1 physical address */
100 __le32 des3
; /* buffer 2 physical address */
103 /* Each descriptor can transfer up to 4KB of data in chained mode */
104 #define DW_MCI_DESC_DATA_LENGTH 0x1000
106 #if defined(CONFIG_DEBUG_FS)
107 static int dw_mci_req_show(struct seq_file
*s
, void *v
)
109 struct dw_mci_slot
*slot
= s
->private;
110 struct mmc_request
*mrq
;
111 struct mmc_command
*cmd
;
112 struct mmc_command
*stop
;
113 struct mmc_data
*data
;
115 /* Make sure we get a consistent snapshot */
116 spin_lock_bh(&slot
->host
->lock
);
126 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
127 cmd
->opcode
, cmd
->arg
, cmd
->flags
,
128 cmd
->resp
[0], cmd
->resp
[1], cmd
->resp
[2],
129 cmd
->resp
[2], cmd
->error
);
131 seq_printf(s
, "DATA %u / %u * %u flg %x err %d\n",
132 data
->bytes_xfered
, data
->blocks
,
133 data
->blksz
, data
->flags
, data
->error
);
136 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
137 stop
->opcode
, stop
->arg
, stop
->flags
,
138 stop
->resp
[0], stop
->resp
[1], stop
->resp
[2],
139 stop
->resp
[2], stop
->error
);
142 spin_unlock_bh(&slot
->host
->lock
);
146 DEFINE_SHOW_ATTRIBUTE(dw_mci_req
);
148 static int dw_mci_regs_show(struct seq_file
*s
, void *v
)
150 struct dw_mci
*host
= s
->private;
152 pm_runtime_get_sync(host
->dev
);
154 seq_printf(s
, "STATUS:\t0x%08x\n", mci_readl(host
, STATUS
));
155 seq_printf(s
, "RINTSTS:\t0x%08x\n", mci_readl(host
, RINTSTS
));
156 seq_printf(s
, "CMD:\t0x%08x\n", mci_readl(host
, CMD
));
157 seq_printf(s
, "CTRL:\t0x%08x\n", mci_readl(host
, CTRL
));
158 seq_printf(s
, "INTMASK:\t0x%08x\n", mci_readl(host
, INTMASK
));
159 seq_printf(s
, "CLKENA:\t0x%08x\n", mci_readl(host
, CLKENA
));
161 pm_runtime_put_autosuspend(host
->dev
);
165 DEFINE_SHOW_ATTRIBUTE(dw_mci_regs
);
167 static void dw_mci_init_debugfs(struct dw_mci_slot
*slot
)
169 struct mmc_host
*mmc
= slot
->mmc
;
170 struct dw_mci
*host
= slot
->host
;
173 root
= mmc
->debugfs_root
;
177 debugfs_create_file("regs", S_IRUSR
, root
, host
, &dw_mci_regs_fops
);
178 debugfs_create_file("req", S_IRUSR
, root
, slot
, &dw_mci_req_fops
);
179 debugfs_create_u32("state", S_IRUSR
, root
, &host
->state
);
180 debugfs_create_xul("pending_events", S_IRUSR
, root
,
181 &host
->pending_events
);
182 debugfs_create_xul("completed_events", S_IRUSR
, root
,
183 &host
->completed_events
);
185 #endif /* defined(CONFIG_DEBUG_FS) */
187 static bool dw_mci_ctrl_reset(struct dw_mci
*host
, u32 reset
)
191 ctrl
= mci_readl(host
, CTRL
);
193 mci_writel(host
, CTRL
, ctrl
);
195 /* wait till resets clear */
196 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_CTRL
, ctrl
,
198 1, 500 * USEC_PER_MSEC
)) {
200 "Timeout resetting block (ctrl reset %#x)\n",
208 static void dw_mci_wait_while_busy(struct dw_mci
*host
, u32 cmd_flags
)
213 * Databook says that before issuing a new data transfer command
214 * we need to check to see if the card is busy. Data transfer commands
215 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
217 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
220 if ((cmd_flags
& SDMMC_CMD_PRV_DAT_WAIT
) &&
221 !(cmd_flags
& SDMMC_CMD_VOLT_SWITCH
)) {
222 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_STATUS
,
224 !(status
& SDMMC_STATUS_BUSY
),
225 10, 500 * USEC_PER_MSEC
))
226 dev_err(host
->dev
, "Busy; trying anyway\n");
230 static void mci_send_cmd(struct dw_mci_slot
*slot
, u32 cmd
, u32 arg
)
232 struct dw_mci
*host
= slot
->host
;
233 unsigned int cmd_status
= 0;
235 mci_writel(host
, CMDARG
, arg
);
236 wmb(); /* drain writebuffer */
237 dw_mci_wait_while_busy(host
, cmd
);
238 mci_writel(host
, CMD
, SDMMC_CMD_START
| cmd
);
240 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_CMD
, cmd_status
,
241 !(cmd_status
& SDMMC_CMD_START
),
242 1, 500 * USEC_PER_MSEC
))
243 dev_err(&slot
->mmc
->class_dev
,
244 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
245 cmd
, arg
, cmd_status
);
248 static u32
dw_mci_prepare_command(struct mmc_host
*mmc
, struct mmc_command
*cmd
)
250 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
251 struct dw_mci
*host
= slot
->host
;
254 cmd
->error
= -EINPROGRESS
;
257 if (cmd
->opcode
== MMC_STOP_TRANSMISSION
||
258 cmd
->opcode
== MMC_GO_IDLE_STATE
||
259 cmd
->opcode
== MMC_GO_INACTIVE_STATE
||
260 (cmd
->opcode
== SD_IO_RW_DIRECT
&&
261 ((cmd
->arg
>> 9) & 0x1FFFF) == SDIO_CCCR_ABORT
))
262 cmdr
|= SDMMC_CMD_STOP
;
263 else if (cmd
->opcode
!= MMC_SEND_STATUS
&& cmd
->data
)
264 cmdr
|= SDMMC_CMD_PRV_DAT_WAIT
;
266 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
269 /* Special bit makes CMD11 not die */
270 cmdr
|= SDMMC_CMD_VOLT_SWITCH
;
272 /* Change state to continue to handle CMD11 weirdness */
273 WARN_ON(slot
->host
->state
!= STATE_SENDING_CMD
);
274 slot
->host
->state
= STATE_SENDING_CMD11
;
277 * We need to disable low power mode (automatic clock stop)
278 * while doing voltage switch so we don't confuse the card,
279 * since stopping the clock is a specific part of the UHS
280 * voltage change dance.
282 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
283 * unconditionally turned back on in dw_mci_setup_bus() if it's
284 * ever called with a non-zero clock. That shouldn't happen
285 * until the voltage change is all done.
287 clk_en_a
= mci_readl(host
, CLKENA
);
288 clk_en_a
&= ~(SDMMC_CLKEN_LOW_PWR
<< slot
->id
);
289 mci_writel(host
, CLKENA
, clk_en_a
);
290 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
291 SDMMC_CMD_PRV_DAT_WAIT
, 0);
294 if (cmd
->flags
& MMC_RSP_PRESENT
) {
295 /* We expect a response, so set this bit */
296 cmdr
|= SDMMC_CMD_RESP_EXP
;
297 if (cmd
->flags
& MMC_RSP_136
)
298 cmdr
|= SDMMC_CMD_RESP_LONG
;
301 if (cmd
->flags
& MMC_RSP_CRC
)
302 cmdr
|= SDMMC_CMD_RESP_CRC
;
305 cmdr
|= SDMMC_CMD_DAT_EXP
;
306 if (cmd
->data
->flags
& MMC_DATA_WRITE
)
307 cmdr
|= SDMMC_CMD_DAT_WR
;
310 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &slot
->flags
))
311 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
316 static u32
dw_mci_prep_stop_abort(struct dw_mci
*host
, struct mmc_command
*cmd
)
318 struct mmc_command
*stop
;
324 stop
= &host
->stop_abort
;
326 memset(stop
, 0, sizeof(struct mmc_command
));
328 if (cmdr
== MMC_READ_SINGLE_BLOCK
||
329 cmdr
== MMC_READ_MULTIPLE_BLOCK
||
330 cmdr
== MMC_WRITE_BLOCK
||
331 cmdr
== MMC_WRITE_MULTIPLE_BLOCK
||
332 cmdr
== MMC_SEND_TUNING_BLOCK
||
333 cmdr
== MMC_SEND_TUNING_BLOCK_HS200
) {
334 stop
->opcode
= MMC_STOP_TRANSMISSION
;
336 stop
->flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
337 } else if (cmdr
== SD_IO_RW_EXTENDED
) {
338 stop
->opcode
= SD_IO_RW_DIRECT
;
339 stop
->arg
|= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT
<< 9) |
340 ((cmd
->arg
>> 28) & 0x7);
341 stop
->flags
= MMC_RSP_SPI_R5
| MMC_RSP_R5
| MMC_CMD_AC
;
346 cmdr
= stop
->opcode
| SDMMC_CMD_STOP
|
347 SDMMC_CMD_RESP_CRC
| SDMMC_CMD_RESP_EXP
;
349 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD
, &host
->slot
->flags
))
350 cmdr
|= SDMMC_CMD_USE_HOLD_REG
;
355 static inline void dw_mci_set_cto(struct dw_mci
*host
)
357 unsigned int cto_clks
;
358 unsigned int cto_div
;
360 unsigned long irqflags
;
362 cto_clks
= mci_readl(host
, TMOUT
) & 0xff;
363 cto_div
= (mci_readl(host
, CLKDIV
) & 0xff) * 2;
367 cto_ms
= DIV_ROUND_UP_ULL((u64
)MSEC_PER_SEC
* cto_clks
* cto_div
,
370 /* add a bit spare time */
374 * The durations we're working with are fairly short so we have to be
375 * extra careful about synchronization here. Specifically in hardware a
376 * command timeout is _at most_ 5.1 ms, so that means we expect an
377 * interrupt (either command done or timeout) to come rather quickly
378 * after the mci_writel. ...but just in case we have a long interrupt
379 * latency let's add a bit of paranoia.
381 * In general we'll assume that at least an interrupt will be asserted
382 * in hardware by the time the cto_timer runs. ...and if it hasn't
383 * been asserted in hardware by that time then we'll assume it'll never
386 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
387 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
388 mod_timer(&host
->cto_timer
,
389 jiffies
+ msecs_to_jiffies(cto_ms
) + 1);
390 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
393 static void dw_mci_start_command(struct dw_mci
*host
,
394 struct mmc_command
*cmd
, u32 cmd_flags
)
398 "start command: ARGR=0x%08x CMDR=0x%08x\n",
399 cmd
->arg
, cmd_flags
);
401 mci_writel(host
, CMDARG
, cmd
->arg
);
402 wmb(); /* drain writebuffer */
403 dw_mci_wait_while_busy(host
, cmd_flags
);
405 mci_writel(host
, CMD
, cmd_flags
| SDMMC_CMD_START
);
407 /* response expected command only */
408 if (cmd_flags
& SDMMC_CMD_RESP_EXP
)
409 dw_mci_set_cto(host
);
412 static inline void send_stop_abort(struct dw_mci
*host
, struct mmc_data
*data
)
414 struct mmc_command
*stop
= &host
->stop_abort
;
416 dw_mci_start_command(host
, stop
, host
->stop_cmdr
);
419 /* DMA interface functions */
420 static void dw_mci_stop_dma(struct dw_mci
*host
)
422 if (host
->using_dma
) {
423 host
->dma_ops
->stop(host
);
424 host
->dma_ops
->cleanup(host
);
427 /* Data transfer was stopped by the interrupt handler */
428 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
431 static void dw_mci_dma_cleanup(struct dw_mci
*host
)
433 struct mmc_data
*data
= host
->data
;
435 if (data
&& data
->host_cookie
== COOKIE_MAPPED
) {
436 dma_unmap_sg(host
->dev
,
439 mmc_get_dma_dir(data
));
440 data
->host_cookie
= COOKIE_UNMAPPED
;
444 static void dw_mci_idmac_reset(struct dw_mci
*host
)
446 u32 bmod
= mci_readl(host
, BMOD
);
447 /* Software reset of DMA */
448 bmod
|= SDMMC_IDMAC_SWRESET
;
449 mci_writel(host
, BMOD
, bmod
);
452 static void dw_mci_idmac_stop_dma(struct dw_mci
*host
)
456 /* Disable and reset the IDMAC interface */
457 temp
= mci_readl(host
, CTRL
);
458 temp
&= ~SDMMC_CTRL_USE_IDMAC
;
459 temp
|= SDMMC_CTRL_DMA_RESET
;
460 mci_writel(host
, CTRL
, temp
);
462 /* Stop the IDMAC running */
463 temp
= mci_readl(host
, BMOD
);
464 temp
&= ~(SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
);
465 temp
|= SDMMC_IDMAC_SWRESET
;
466 mci_writel(host
, BMOD
, temp
);
469 static void dw_mci_dmac_complete_dma(void *arg
)
471 struct dw_mci
*host
= arg
;
472 struct mmc_data
*data
= host
->data
;
474 dev_vdbg(host
->dev
, "DMA complete\n");
476 if ((host
->use_dma
== TRANS_MODE_EDMAC
) &&
477 data
&& (data
->flags
& MMC_DATA_READ
))
478 /* Invalidate cache after read */
479 dma_sync_sg_for_cpu(mmc_dev(host
->slot
->mmc
),
484 host
->dma_ops
->cleanup(host
);
487 * If the card was removed, data will be NULL. No point in trying to
488 * send the stop command or waiting for NBUSY in this case.
491 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
492 tasklet_schedule(&host
->tasklet
);
496 static int dw_mci_idmac_init(struct dw_mci
*host
)
500 if (host
->dma_64bit_address
== 1) {
501 struct idmac_desc_64addr
*p
;
502 /* Number of descriptors in the ring buffer */
504 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc_64addr
);
506 /* Forward link the descriptor list */
507 for (i
= 0, p
= host
->sg_cpu
; i
< host
->ring_size
- 1;
509 p
->des6
= (host
->sg_dma
+
510 (sizeof(struct idmac_desc_64addr
) *
511 (i
+ 1))) & 0xffffffff;
513 p
->des7
= (u64
)(host
->sg_dma
+
514 (sizeof(struct idmac_desc_64addr
) *
516 /* Initialize reserved and buffer size fields to "0" */
523 /* Set the last descriptor as the end-of-ring descriptor */
524 p
->des6
= host
->sg_dma
& 0xffffffff;
525 p
->des7
= (u64
)host
->sg_dma
>> 32;
526 p
->des0
= IDMAC_DES0_ER
;
529 struct idmac_desc
*p
;
530 /* Number of descriptors in the ring buffer */
532 DESC_RING_BUF_SZ
/ sizeof(struct idmac_desc
);
534 /* Forward link the descriptor list */
535 for (i
= 0, p
= host
->sg_cpu
;
536 i
< host
->ring_size
- 1;
538 p
->des3
= cpu_to_le32(host
->sg_dma
+
539 (sizeof(struct idmac_desc
) * (i
+ 1)));
544 /* Set the last descriptor as the end-of-ring descriptor */
545 p
->des3
= cpu_to_le32(host
->sg_dma
);
546 p
->des0
= cpu_to_le32(IDMAC_DES0_ER
);
549 dw_mci_idmac_reset(host
);
551 if (host
->dma_64bit_address
== 1) {
552 /* Mask out interrupts - get Tx & Rx complete only */
553 mci_writel(host
, IDSTS64
, IDMAC_INT_CLR
);
554 mci_writel(host
, IDINTEN64
, SDMMC_IDMAC_INT_NI
|
555 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
557 /* Set the descriptor base address */
558 mci_writel(host
, DBADDRL
, host
->sg_dma
& 0xffffffff);
559 mci_writel(host
, DBADDRU
, (u64
)host
->sg_dma
>> 32);
562 /* Mask out interrupts - get Tx & Rx complete only */
563 mci_writel(host
, IDSTS
, IDMAC_INT_CLR
);
564 mci_writel(host
, IDINTEN
, SDMMC_IDMAC_INT_NI
|
565 SDMMC_IDMAC_INT_RI
| SDMMC_IDMAC_INT_TI
);
567 /* Set the descriptor base address */
568 mci_writel(host
, DBADDR
, host
->sg_dma
);
574 static inline int dw_mci_prepare_desc64(struct dw_mci
*host
,
575 struct mmc_data
*data
,
578 unsigned int desc_len
;
579 struct idmac_desc_64addr
*desc_first
, *desc_last
, *desc
;
583 desc_first
= desc_last
= desc
= host
->sg_cpu
;
585 for (i
= 0; i
< sg_len
; i
++) {
586 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
588 u64 mem_addr
= sg_dma_address(&data
->sg
[i
]);
590 for ( ; length
; desc
++) {
591 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
592 length
: DW_MCI_DESC_DATA_LENGTH
;
597 * Wait for the former clear OWN bit operation
598 * of IDMAC to make sure that this descriptor
599 * isn't still owned by IDMAC as IDMAC's write
600 * ops and CPU's read ops are asynchronous.
602 if (readl_poll_timeout_atomic(&desc
->des0
, val
,
603 !(val
& IDMAC_DES0_OWN
),
604 10, 100 * USEC_PER_MSEC
))
608 * Set the OWN bit and disable interrupts
609 * for this descriptor
611 desc
->des0
= IDMAC_DES0_OWN
| IDMAC_DES0_DIC
|
615 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc
, desc_len
);
617 /* Physical address to DMA to/from */
618 desc
->des4
= mem_addr
& 0xffffffff;
619 desc
->des5
= mem_addr
>> 32;
621 /* Update physical address for the next desc */
622 mem_addr
+= desc_len
;
624 /* Save pointer to the last descriptor */
629 /* Set first descriptor */
630 desc_first
->des0
|= IDMAC_DES0_FD
;
632 /* Set last descriptor */
633 desc_last
->des0
&= ~(IDMAC_DES0_CH
| IDMAC_DES0_DIC
);
634 desc_last
->des0
|= IDMAC_DES0_LD
;
638 /* restore the descriptor chain as it's polluted */
639 dev_dbg(host
->dev
, "descriptor is still owned by IDMAC.\n");
640 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
641 dw_mci_idmac_init(host
);
646 static inline int dw_mci_prepare_desc32(struct dw_mci
*host
,
647 struct mmc_data
*data
,
650 unsigned int desc_len
;
651 struct idmac_desc
*desc_first
, *desc_last
, *desc
;
655 desc_first
= desc_last
= desc
= host
->sg_cpu
;
657 for (i
= 0; i
< sg_len
; i
++) {
658 unsigned int length
= sg_dma_len(&data
->sg
[i
]);
660 u32 mem_addr
= sg_dma_address(&data
->sg
[i
]);
662 for ( ; length
; desc
++) {
663 desc_len
= (length
<= DW_MCI_DESC_DATA_LENGTH
) ?
664 length
: DW_MCI_DESC_DATA_LENGTH
;
669 * Wait for the former clear OWN bit operation
670 * of IDMAC to make sure that this descriptor
671 * isn't still owned by IDMAC as IDMAC's write
672 * ops and CPU's read ops are asynchronous.
674 if (readl_poll_timeout_atomic(&desc
->des0
, val
,
675 IDMAC_OWN_CLR64(val
),
677 100 * USEC_PER_MSEC
))
681 * Set the OWN bit and disable interrupts
682 * for this descriptor
684 desc
->des0
= cpu_to_le32(IDMAC_DES0_OWN
|
689 IDMAC_SET_BUFFER1_SIZE(desc
, desc_len
);
691 /* Physical address to DMA to/from */
692 desc
->des2
= cpu_to_le32(mem_addr
);
694 /* Update physical address for the next desc */
695 mem_addr
+= desc_len
;
697 /* Save pointer to the last descriptor */
702 /* Set first descriptor */
703 desc_first
->des0
|= cpu_to_le32(IDMAC_DES0_FD
);
705 /* Set last descriptor */
706 desc_last
->des0
&= cpu_to_le32(~(IDMAC_DES0_CH
|
708 desc_last
->des0
|= cpu_to_le32(IDMAC_DES0_LD
);
712 /* restore the descriptor chain as it's polluted */
713 dev_dbg(host
->dev
, "descriptor is still owned by IDMAC.\n");
714 memset(host
->sg_cpu
, 0, DESC_RING_BUF_SZ
);
715 dw_mci_idmac_init(host
);
719 static int dw_mci_idmac_start_dma(struct dw_mci
*host
, unsigned int sg_len
)
724 if (host
->dma_64bit_address
== 1)
725 ret
= dw_mci_prepare_desc64(host
, host
->data
, sg_len
);
727 ret
= dw_mci_prepare_desc32(host
, host
->data
, sg_len
);
732 /* drain writebuffer */
735 /* Make sure to reset DMA in case we did PIO before this */
736 dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
);
737 dw_mci_idmac_reset(host
);
739 /* Select IDMAC interface */
740 temp
= mci_readl(host
, CTRL
);
741 temp
|= SDMMC_CTRL_USE_IDMAC
;
742 mci_writel(host
, CTRL
, temp
);
744 /* drain writebuffer */
747 /* Enable the IDMAC */
748 temp
= mci_readl(host
, BMOD
);
749 temp
|= SDMMC_IDMAC_ENABLE
| SDMMC_IDMAC_FB
;
750 mci_writel(host
, BMOD
, temp
);
752 /* Start it running */
753 mci_writel(host
, PLDMND
, 1);
759 static const struct dw_mci_dma_ops dw_mci_idmac_ops
= {
760 .init
= dw_mci_idmac_init
,
761 .start
= dw_mci_idmac_start_dma
,
762 .stop
= dw_mci_idmac_stop_dma
,
763 .complete
= dw_mci_dmac_complete_dma
,
764 .cleanup
= dw_mci_dma_cleanup
,
767 static void dw_mci_edmac_stop_dma(struct dw_mci
*host
)
769 dmaengine_terminate_async(host
->dms
->ch
);
772 static int dw_mci_edmac_start_dma(struct dw_mci
*host
,
775 struct dma_slave_config cfg
;
776 struct dma_async_tx_descriptor
*desc
= NULL
;
777 struct scatterlist
*sgl
= host
->data
->sg
;
778 static const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
779 u32 sg_elems
= host
->data
->sg_len
;
781 u32 fifo_offset
= host
->fifo_reg
- host
->regs
;
784 /* Set external dma config: burst size, burst width */
785 cfg
.dst_addr
= host
->phy_regs
+ fifo_offset
;
786 cfg
.src_addr
= cfg
.dst_addr
;
787 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
788 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
790 /* Match burst msize with external dma config */
791 fifoth_val
= mci_readl(host
, FIFOTH
);
792 cfg
.dst_maxburst
= mszs
[(fifoth_val
>> 28) & 0x7];
793 cfg
.src_maxburst
= cfg
.dst_maxburst
;
795 if (host
->data
->flags
& MMC_DATA_WRITE
)
796 cfg
.direction
= DMA_MEM_TO_DEV
;
798 cfg
.direction
= DMA_DEV_TO_MEM
;
800 ret
= dmaengine_slave_config(host
->dms
->ch
, &cfg
);
802 dev_err(host
->dev
, "Failed to config edmac.\n");
806 desc
= dmaengine_prep_slave_sg(host
->dms
->ch
, sgl
,
807 sg_len
, cfg
.direction
,
808 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
810 dev_err(host
->dev
, "Can't prepare slave sg.\n");
814 /* Set dw_mci_dmac_complete_dma as callback */
815 desc
->callback
= dw_mci_dmac_complete_dma
;
816 desc
->callback_param
= (void *)host
;
817 dmaengine_submit(desc
);
819 /* Flush cache before write */
820 if (host
->data
->flags
& MMC_DATA_WRITE
)
821 dma_sync_sg_for_device(mmc_dev(host
->slot
->mmc
), sgl
,
822 sg_elems
, DMA_TO_DEVICE
);
824 dma_async_issue_pending(host
->dms
->ch
);
829 static int dw_mci_edmac_init(struct dw_mci
*host
)
831 /* Request external dma channel */
832 host
->dms
= kzalloc(sizeof(struct dw_mci_dma_slave
), GFP_KERNEL
);
836 host
->dms
->ch
= dma_request_chan(host
->dev
, "rx-tx");
837 if (IS_ERR(host
->dms
->ch
)) {
838 int ret
= PTR_ERR(host
->dms
->ch
);
840 dev_err(host
->dev
, "Failed to get external DMA channel.\n");
849 static void dw_mci_edmac_exit(struct dw_mci
*host
)
853 dma_release_channel(host
->dms
->ch
);
854 host
->dms
->ch
= NULL
;
861 static const struct dw_mci_dma_ops dw_mci_edmac_ops
= {
862 .init
= dw_mci_edmac_init
,
863 .exit
= dw_mci_edmac_exit
,
864 .start
= dw_mci_edmac_start_dma
,
865 .stop
= dw_mci_edmac_stop_dma
,
866 .complete
= dw_mci_dmac_complete_dma
,
867 .cleanup
= dw_mci_dma_cleanup
,
870 static int dw_mci_pre_dma_transfer(struct dw_mci
*host
,
871 struct mmc_data
*data
,
874 struct scatterlist
*sg
;
875 unsigned int i
, sg_len
;
877 if (data
->host_cookie
== COOKIE_PRE_MAPPED
)
881 * We don't do DMA on "complex" transfers, i.e. with
882 * non-word-aligned buffers or lengths. Also, we don't bother
883 * with all the DMA setup overhead for short transfers.
885 if (data
->blocks
* data
->blksz
< DW_MCI_DMA_THRESHOLD
)
891 for_each_sg(data
->sg
, sg
, data
->sg_len
, i
) {
892 if (sg
->offset
& 3 || sg
->length
& 3)
896 sg_len
= dma_map_sg(host
->dev
,
899 mmc_get_dma_dir(data
));
903 data
->host_cookie
= cookie
;
908 static void dw_mci_pre_req(struct mmc_host
*mmc
,
909 struct mmc_request
*mrq
)
911 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
912 struct mmc_data
*data
= mrq
->data
;
914 if (!slot
->host
->use_dma
|| !data
)
917 /* This data might be unmapped at this time */
918 data
->host_cookie
= COOKIE_UNMAPPED
;
920 if (dw_mci_pre_dma_transfer(slot
->host
, mrq
->data
,
921 COOKIE_PRE_MAPPED
) < 0)
922 data
->host_cookie
= COOKIE_UNMAPPED
;
925 static void dw_mci_post_req(struct mmc_host
*mmc
,
926 struct mmc_request
*mrq
,
929 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
930 struct mmc_data
*data
= mrq
->data
;
932 if (!slot
->host
->use_dma
|| !data
)
935 if (data
->host_cookie
!= COOKIE_UNMAPPED
)
936 dma_unmap_sg(slot
->host
->dev
,
939 mmc_get_dma_dir(data
));
940 data
->host_cookie
= COOKIE_UNMAPPED
;
943 static int dw_mci_get_cd(struct mmc_host
*mmc
)
946 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
947 struct dw_mci
*host
= slot
->host
;
948 int gpio_cd
= mmc_gpio_get_cd(mmc
);
950 /* Use platform get_cd function, else try onboard card detect */
951 if (((mmc
->caps
& MMC_CAP_NEEDS_POLL
)
952 || !mmc_card_is_removable(mmc
))) {
955 if (!test_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
)) {
956 if (mmc
->caps
& MMC_CAP_NEEDS_POLL
) {
957 dev_info(&mmc
->class_dev
,
958 "card is polling.\n");
960 dev_info(&mmc
->class_dev
,
961 "card is non-removable.\n");
963 set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
);
967 } else if (gpio_cd
>= 0)
970 present
= (mci_readl(slot
->host
, CDETECT
) & (1 << slot
->id
))
973 spin_lock_bh(&host
->lock
);
974 if (present
&& !test_and_set_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
))
975 dev_dbg(&mmc
->class_dev
, "card is present\n");
977 !test_and_clear_bit(DW_MMC_CARD_PRESENT
, &slot
->flags
))
978 dev_dbg(&mmc
->class_dev
, "card is not present\n");
979 spin_unlock_bh(&host
->lock
);
984 static void dw_mci_adjust_fifoth(struct dw_mci
*host
, struct mmc_data
*data
)
986 unsigned int blksz
= data
->blksz
;
987 static const u32 mszs
[] = {1, 4, 8, 16, 32, 64, 128, 256};
988 u32 fifo_width
= 1 << host
->data_shift
;
989 u32 blksz_depth
= blksz
/ fifo_width
, fifoth_val
;
990 u32 msize
= 0, rx_wmark
= 1, tx_wmark
, tx_wmark_invers
;
991 int idx
= ARRAY_SIZE(mszs
) - 1;
993 /* pio should ship this scenario */
997 tx_wmark
= (host
->fifo_depth
) / 2;
998 tx_wmark_invers
= host
->fifo_depth
- tx_wmark
;
1002 * if blksz is not a multiple of the FIFO width
1004 if (blksz
% fifo_width
)
1008 if (!((blksz_depth
% mszs
[idx
]) ||
1009 (tx_wmark_invers
% mszs
[idx
]))) {
1011 rx_wmark
= mszs
[idx
] - 1;
1014 } while (--idx
> 0);
1016 * If idx is '0', it won't be tried
1017 * Thus, initial values are uesed
1020 fifoth_val
= SDMMC_SET_FIFOTH(msize
, rx_wmark
, tx_wmark
);
1021 mci_writel(host
, FIFOTH
, fifoth_val
);
1024 static void dw_mci_ctrl_thld(struct dw_mci
*host
, struct mmc_data
*data
)
1026 unsigned int blksz
= data
->blksz
;
1027 u32 blksz_depth
, fifo_depth
;
1032 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
1033 * in the FIFO region, so we really shouldn't access it).
1035 if (host
->verid
< DW_MMC_240A
||
1036 (host
->verid
< DW_MMC_280A
&& data
->flags
& MMC_DATA_WRITE
))
1040 * Card write Threshold is introduced since 2.80a
1041 * It's used when HS400 mode is enabled.
1043 if (data
->flags
& MMC_DATA_WRITE
&&
1044 host
->timing
!= MMC_TIMING_MMC_HS400
)
1047 if (data
->flags
& MMC_DATA_WRITE
)
1048 enable
= SDMMC_CARD_WR_THR_EN
;
1050 enable
= SDMMC_CARD_RD_THR_EN
;
1052 if (host
->timing
!= MMC_TIMING_MMC_HS200
&&
1053 host
->timing
!= MMC_TIMING_UHS_SDR104
&&
1054 host
->timing
!= MMC_TIMING_MMC_HS400
)
1057 blksz_depth
= blksz
/ (1 << host
->data_shift
);
1058 fifo_depth
= host
->fifo_depth
;
1060 if (blksz_depth
> fifo_depth
)
1064 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
1065 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
1066 * Currently just choose blksz.
1069 mci_writel(host
, CDTHRCTL
, SDMMC_SET_THLD(thld_size
, enable
));
1073 mci_writel(host
, CDTHRCTL
, 0);
1076 static int dw_mci_submit_data_dma(struct dw_mci
*host
, struct mmc_data
*data
)
1078 unsigned long irqflags
;
1082 host
->using_dma
= 0;
1084 /* If we don't have a channel, we can't do DMA */
1088 sg_len
= dw_mci_pre_dma_transfer(host
, data
, COOKIE_MAPPED
);
1090 host
->dma_ops
->stop(host
);
1094 host
->using_dma
= 1;
1096 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1098 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
1099 (unsigned long)host
->sg_cpu
,
1100 (unsigned long)host
->sg_dma
,
1104 * Decide the MSIZE and RX/TX Watermark.
1105 * If current block size is same with previous size,
1106 * no need to update fifoth.
1108 if (host
->prev_blksz
!= data
->blksz
)
1109 dw_mci_adjust_fifoth(host
, data
);
1111 /* Enable the DMA interface */
1112 temp
= mci_readl(host
, CTRL
);
1113 temp
|= SDMMC_CTRL_DMA_ENABLE
;
1114 mci_writel(host
, CTRL
, temp
);
1116 /* Disable RX/TX IRQs, let DMA handle it */
1117 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1118 temp
= mci_readl(host
, INTMASK
);
1119 temp
&= ~(SDMMC_INT_RXDR
| SDMMC_INT_TXDR
);
1120 mci_writel(host
, INTMASK
, temp
);
1121 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1123 if (host
->dma_ops
->start(host
, sg_len
)) {
1124 host
->dma_ops
->stop(host
);
1125 /* We can't do DMA, try PIO for this one */
1127 "%s: fall back to PIO mode for current transfer\n",
1135 static void dw_mci_submit_data(struct dw_mci
*host
, struct mmc_data
*data
)
1137 unsigned long irqflags
;
1138 int flags
= SG_MITER_ATOMIC
;
1141 data
->error
= -EINPROGRESS
;
1143 WARN_ON(host
->data
);
1147 if (data
->flags
& MMC_DATA_READ
)
1148 host
->dir_status
= DW_MCI_RECV_STATUS
;
1150 host
->dir_status
= DW_MCI_SEND_STATUS
;
1152 dw_mci_ctrl_thld(host
, data
);
1154 if (dw_mci_submit_data_dma(host
, data
)) {
1155 if (host
->data
->flags
& MMC_DATA_READ
)
1156 flags
|= SG_MITER_TO_SG
;
1158 flags
|= SG_MITER_FROM_SG
;
1160 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
1161 host
->sg
= data
->sg
;
1162 host
->part_buf_start
= 0;
1163 host
->part_buf_count
= 0;
1165 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
| SDMMC_INT_RXDR
);
1167 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1168 temp
= mci_readl(host
, INTMASK
);
1169 temp
|= SDMMC_INT_TXDR
| SDMMC_INT_RXDR
;
1170 mci_writel(host
, INTMASK
, temp
);
1171 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1173 temp
= mci_readl(host
, CTRL
);
1174 temp
&= ~SDMMC_CTRL_DMA_ENABLE
;
1175 mci_writel(host
, CTRL
, temp
);
1178 * Use the initial fifoth_val for PIO mode. If wm_algined
1179 * is set, we set watermark same as data size.
1180 * If next issued data may be transfered by DMA mode,
1181 * prev_blksz should be invalidated.
1183 if (host
->wm_aligned
)
1184 dw_mci_adjust_fifoth(host
, data
);
1186 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
1187 host
->prev_blksz
= 0;
1190 * Keep the current block size.
1191 * It will be used to decide whether to update
1192 * fifoth register next time.
1194 host
->prev_blksz
= data
->blksz
;
1198 static void dw_mci_setup_bus(struct dw_mci_slot
*slot
, bool force_clkinit
)
1200 struct dw_mci
*host
= slot
->host
;
1201 unsigned int clock
= slot
->clock
;
1204 u32 sdmmc_cmd_bits
= SDMMC_CMD_UPD_CLK
| SDMMC_CMD_PRV_DAT_WAIT
;
1206 /* We must continue to set bit 28 in CMD until the change is complete */
1207 if (host
->state
== STATE_WAITING_CMD11_DONE
)
1208 sdmmc_cmd_bits
|= SDMMC_CMD_VOLT_SWITCH
;
1210 slot
->mmc
->actual_clock
= 0;
1213 mci_writel(host
, CLKENA
, 0);
1214 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1215 } else if (clock
!= host
->current_speed
|| force_clkinit
) {
1216 div
= host
->bus_hz
/ clock
;
1217 if (host
->bus_hz
% clock
&& host
->bus_hz
> clock
)
1219 * move the + 1 after the divide to prevent
1220 * over-clocking the card.
1224 div
= (host
->bus_hz
!= clock
) ? DIV_ROUND_UP(div
, 2) : 0;
1226 if ((clock
!= slot
->__clk_old
&&
1227 !test_bit(DW_MMC_CARD_NEEDS_POLL
, &slot
->flags
)) ||
1229 /* Silent the verbose log if calling from PM context */
1231 dev_info(&slot
->mmc
->class_dev
,
1232 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1233 slot
->id
, host
->bus_hz
, clock
,
1234 div
? ((host
->bus_hz
/ div
) >> 1) :
1238 * If card is polling, display the message only
1239 * one time at boot time.
1241 if (slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
&&
1242 slot
->mmc
->f_min
== clock
)
1243 set_bit(DW_MMC_CARD_NEEDS_POLL
, &slot
->flags
);
1247 mci_writel(host
, CLKENA
, 0);
1248 mci_writel(host
, CLKSRC
, 0);
1251 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1253 /* set clock to desired speed */
1254 mci_writel(host
, CLKDIV
, div
);
1257 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1259 /* enable clock; only low power if no SDIO */
1260 clk_en_a
= SDMMC_CLKEN_ENABLE
<< slot
->id
;
1261 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
))
1262 clk_en_a
|= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1263 mci_writel(host
, CLKENA
, clk_en_a
);
1266 mci_send_cmd(slot
, sdmmc_cmd_bits
, 0);
1268 /* keep the last clock value that was requested from core */
1269 slot
->__clk_old
= clock
;
1270 slot
->mmc
->actual_clock
= div
? ((host
->bus_hz
/ div
) >> 1) :
1274 host
->current_speed
= clock
;
1276 /* Set the current slot bus width */
1277 mci_writel(host
, CTYPE
, (slot
->ctype
<< slot
->id
));
1280 static void __dw_mci_start_request(struct dw_mci
*host
,
1281 struct dw_mci_slot
*slot
,
1282 struct mmc_command
*cmd
)
1284 struct mmc_request
*mrq
;
1285 struct mmc_data
*data
;
1292 host
->pending_events
= 0;
1293 host
->completed_events
= 0;
1294 host
->cmd_status
= 0;
1295 host
->data_status
= 0;
1296 host
->dir_status
= 0;
1300 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
1301 mci_writel(host
, BYTCNT
, data
->blksz
*data
->blocks
);
1302 mci_writel(host
, BLKSIZ
, data
->blksz
);
1305 cmdflags
= dw_mci_prepare_command(slot
->mmc
, cmd
);
1307 /* this is the first command, send the initialization clock */
1308 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
))
1309 cmdflags
|= SDMMC_CMD_INIT
;
1312 dw_mci_submit_data(host
, data
);
1313 wmb(); /* drain writebuffer */
1316 dw_mci_start_command(host
, cmd
, cmdflags
);
1318 if (cmd
->opcode
== SD_SWITCH_VOLTAGE
) {
1319 unsigned long irqflags
;
1322 * Databook says to fail after 2ms w/ no response, but evidence
1323 * shows that sometimes the cmd11 interrupt takes over 130ms.
1324 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1325 * is just about to roll over.
1327 * We do this whole thing under spinlock and only if the
1328 * command hasn't already completed (indicating the the irq
1329 * already ran so we don't want the timeout).
1331 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1332 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1333 mod_timer(&host
->cmd11_timer
,
1334 jiffies
+ msecs_to_jiffies(500) + 1);
1335 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1338 host
->stop_cmdr
= dw_mci_prep_stop_abort(host
, cmd
);
1341 static void dw_mci_start_request(struct dw_mci
*host
,
1342 struct dw_mci_slot
*slot
)
1344 struct mmc_request
*mrq
= slot
->mrq
;
1345 struct mmc_command
*cmd
;
1347 cmd
= mrq
->sbc
? mrq
->sbc
: mrq
->cmd
;
1348 __dw_mci_start_request(host
, slot
, cmd
);
1351 /* must be called with host->lock held */
1352 static void dw_mci_queue_request(struct dw_mci
*host
, struct dw_mci_slot
*slot
,
1353 struct mmc_request
*mrq
)
1355 dev_vdbg(&slot
->mmc
->class_dev
, "queue request: state=%d\n",
1360 if (host
->state
== STATE_WAITING_CMD11_DONE
) {
1361 dev_warn(&slot
->mmc
->class_dev
,
1362 "Voltage change didn't complete\n");
1364 * this case isn't expected to happen, so we can
1365 * either crash here or just try to continue on
1366 * in the closest possible state
1368 host
->state
= STATE_IDLE
;
1371 if (host
->state
== STATE_IDLE
) {
1372 host
->state
= STATE_SENDING_CMD
;
1373 dw_mci_start_request(host
, slot
);
1375 list_add_tail(&slot
->queue_node
, &host
->queue
);
1379 static void dw_mci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1381 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1382 struct dw_mci
*host
= slot
->host
;
1387 * The check for card presence and queueing of the request must be
1388 * atomic, otherwise the card could be removed in between and the
1389 * request wouldn't fail until another card was inserted.
1392 if (!dw_mci_get_cd(mmc
)) {
1393 mrq
->cmd
->error
= -ENOMEDIUM
;
1394 mmc_request_done(mmc
, mrq
);
1398 spin_lock_bh(&host
->lock
);
1400 dw_mci_queue_request(host
, slot
, mrq
);
1402 spin_unlock_bh(&host
->lock
);
1405 static void dw_mci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1407 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1408 const struct dw_mci_drv_data
*drv_data
= slot
->host
->drv_data
;
1412 switch (ios
->bus_width
) {
1413 case MMC_BUS_WIDTH_4
:
1414 slot
->ctype
= SDMMC_CTYPE_4BIT
;
1416 case MMC_BUS_WIDTH_8
:
1417 slot
->ctype
= SDMMC_CTYPE_8BIT
;
1420 /* set default 1 bit mode */
1421 slot
->ctype
= SDMMC_CTYPE_1BIT
;
1424 regs
= mci_readl(slot
->host
, UHS_REG
);
1427 if (ios
->timing
== MMC_TIMING_MMC_DDR52
||
1428 ios
->timing
== MMC_TIMING_UHS_DDR50
||
1429 ios
->timing
== MMC_TIMING_MMC_HS400
)
1430 regs
|= ((0x1 << slot
->id
) << 16);
1432 regs
&= ~((0x1 << slot
->id
) << 16);
1434 mci_writel(slot
->host
, UHS_REG
, regs
);
1435 slot
->host
->timing
= ios
->timing
;
1438 * Use mirror of ios->clock to prevent race with mmc
1439 * core ios update when finding the minimum.
1441 slot
->clock
= ios
->clock
;
1443 if (drv_data
&& drv_data
->set_ios
)
1444 drv_data
->set_ios(slot
->host
, ios
);
1446 switch (ios
->power_mode
) {
1448 if (!IS_ERR(mmc
->supply
.vmmc
)) {
1449 ret
= mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
,
1452 dev_err(slot
->host
->dev
,
1453 "failed to enable vmmc regulator\n");
1454 /*return, if failed turn on vmmc*/
1458 set_bit(DW_MMC_CARD_NEED_INIT
, &slot
->flags
);
1459 regs
= mci_readl(slot
->host
, PWREN
);
1460 regs
|= (1 << slot
->id
);
1461 mci_writel(slot
->host
, PWREN
, regs
);
1464 if (!slot
->host
->vqmmc_enabled
) {
1465 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1466 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1468 dev_err(slot
->host
->dev
,
1469 "failed to enable vqmmc\n");
1471 slot
->host
->vqmmc_enabled
= true;
1474 /* Keep track so we don't reset again */
1475 slot
->host
->vqmmc_enabled
= true;
1478 /* Reset our state machine after powering on */
1479 dw_mci_ctrl_reset(slot
->host
,
1480 SDMMC_CTRL_ALL_RESET_FLAGS
);
1483 /* Adjust clock / bus width after power is up */
1484 dw_mci_setup_bus(slot
, false);
1488 /* Turn clock off before power goes down */
1489 dw_mci_setup_bus(slot
, false);
1491 if (!IS_ERR(mmc
->supply
.vmmc
))
1492 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1494 if (!IS_ERR(mmc
->supply
.vqmmc
) && slot
->host
->vqmmc_enabled
)
1495 regulator_disable(mmc
->supply
.vqmmc
);
1496 slot
->host
->vqmmc_enabled
= false;
1498 regs
= mci_readl(slot
->host
, PWREN
);
1499 regs
&= ~(1 << slot
->id
);
1500 mci_writel(slot
->host
, PWREN
, regs
);
1506 if (slot
->host
->state
== STATE_WAITING_CMD11_DONE
&& ios
->clock
!= 0)
1507 slot
->host
->state
= STATE_IDLE
;
1510 static int dw_mci_card_busy(struct mmc_host
*mmc
)
1512 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1516 * Check the busy bit which is low when DAT[3:0]
1517 * (the data lines) are 0000
1519 status
= mci_readl(slot
->host
, STATUS
);
1521 return !!(status
& SDMMC_STATUS_BUSY
);
1524 static int dw_mci_switch_voltage(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1526 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1527 struct dw_mci
*host
= slot
->host
;
1528 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1530 u32 v18
= SDMMC_UHS_18V
<< slot
->id
;
1533 if (drv_data
&& drv_data
->switch_voltage
)
1534 return drv_data
->switch_voltage(mmc
, ios
);
1537 * Program the voltage. Note that some instances of dw_mmc may use
1538 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1539 * does no harm but you need to set the regulator directly. Try both.
1541 uhs
= mci_readl(host
, UHS_REG
);
1542 if (ios
->signal_voltage
== MMC_SIGNAL_VOLTAGE_330
)
1547 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1548 ret
= mmc_regulator_set_vqmmc(mmc
, ios
);
1550 dev_dbg(&mmc
->class_dev
,
1551 "Regulator set error %d - %s V\n",
1552 ret
, uhs
& v18
? "1.8" : "3.3");
1556 mci_writel(host
, UHS_REG
, uhs
);
1561 static int dw_mci_get_ro(struct mmc_host
*mmc
)
1564 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1565 int gpio_ro
= mmc_gpio_get_ro(mmc
);
1567 /* Use platform get_ro function, else try on board write protect */
1569 read_only
= gpio_ro
;
1572 mci_readl(slot
->host
, WRTPRT
) & (1 << slot
->id
) ? 1 : 0;
1574 dev_dbg(&mmc
->class_dev
, "card is %s\n",
1575 read_only
? "read-only" : "read-write");
1580 static void dw_mci_hw_reset(struct mmc_host
*mmc
)
1582 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1583 struct dw_mci
*host
= slot
->host
;
1586 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1587 dw_mci_idmac_reset(host
);
1589 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_DMA_RESET
|
1590 SDMMC_CTRL_FIFO_RESET
))
1594 * According to eMMC spec, card reset procedure:
1595 * tRstW >= 1us: RST_n pulse width
1596 * tRSCA >= 200us: RST_n to Command time
1597 * tRSTH >= 1us: RST_n high period
1599 reset
= mci_readl(host
, RST_N
);
1600 reset
&= ~(SDMMC_RST_HWACTIVE
<< slot
->id
);
1601 mci_writel(host
, RST_N
, reset
);
1603 reset
|= SDMMC_RST_HWACTIVE
<< slot
->id
;
1604 mci_writel(host
, RST_N
, reset
);
1605 usleep_range(200, 300);
1608 static void dw_mci_init_card(struct mmc_host
*mmc
, struct mmc_card
*card
)
1610 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1611 struct dw_mci
*host
= slot
->host
;
1614 * Low power mode will stop the card clock when idle. According to the
1615 * description of the CLKENA register we should disable low power mode
1616 * for SDIO cards if we need SDIO interrupts to work.
1618 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
) {
1619 const u32 clken_low_pwr
= SDMMC_CLKEN_LOW_PWR
<< slot
->id
;
1623 clk_en_a_old
= mci_readl(host
, CLKENA
);
1625 if (card
->type
== MMC_TYPE_SDIO
||
1626 card
->type
== MMC_TYPE_SD_COMBO
) {
1627 set_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1628 clk_en_a
= clk_en_a_old
& ~clken_low_pwr
;
1630 clear_bit(DW_MMC_CARD_NO_LOW_PWR
, &slot
->flags
);
1631 clk_en_a
= clk_en_a_old
| clken_low_pwr
;
1634 if (clk_en_a
!= clk_en_a_old
) {
1635 mci_writel(host
, CLKENA
, clk_en_a
);
1636 mci_send_cmd(slot
, SDMMC_CMD_UPD_CLK
|
1637 SDMMC_CMD_PRV_DAT_WAIT
, 0);
1642 static void __dw_mci_enable_sdio_irq(struct dw_mci_slot
*slot
, int enb
)
1644 struct dw_mci
*host
= slot
->host
;
1645 unsigned long irqflags
;
1648 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1650 /* Enable/disable Slot Specific SDIO interrupt */
1651 int_mask
= mci_readl(host
, INTMASK
);
1653 int_mask
|= SDMMC_INT_SDIO(slot
->sdio_id
);
1655 int_mask
&= ~SDMMC_INT_SDIO(slot
->sdio_id
);
1656 mci_writel(host
, INTMASK
, int_mask
);
1658 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1661 static void dw_mci_enable_sdio_irq(struct mmc_host
*mmc
, int enb
)
1663 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1664 struct dw_mci
*host
= slot
->host
;
1666 __dw_mci_enable_sdio_irq(slot
, enb
);
1668 /* Avoid runtime suspending the device when SDIO IRQ is enabled */
1670 pm_runtime_get_noresume(host
->dev
);
1672 pm_runtime_put_noidle(host
->dev
);
1675 static void dw_mci_ack_sdio_irq(struct mmc_host
*mmc
)
1677 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1679 __dw_mci_enable_sdio_irq(slot
, 1);
1682 static int dw_mci_execute_tuning(struct mmc_host
*mmc
, u32 opcode
)
1684 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1685 struct dw_mci
*host
= slot
->host
;
1686 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1689 if (drv_data
&& drv_data
->execute_tuning
)
1690 err
= drv_data
->execute_tuning(slot
, opcode
);
1694 static int dw_mci_prepare_hs400_tuning(struct mmc_host
*mmc
,
1695 struct mmc_ios
*ios
)
1697 struct dw_mci_slot
*slot
= mmc_priv(mmc
);
1698 struct dw_mci
*host
= slot
->host
;
1699 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
1701 if (drv_data
&& drv_data
->prepare_hs400_tuning
)
1702 return drv_data
->prepare_hs400_tuning(host
, ios
);
1707 static bool dw_mci_reset(struct dw_mci
*host
)
1709 u32 flags
= SDMMC_CTRL_RESET
| SDMMC_CTRL_FIFO_RESET
;
1714 * Resetting generates a block interrupt, hence setting
1715 * the scatter-gather pointer to NULL.
1718 sg_miter_stop(&host
->sg_miter
);
1723 flags
|= SDMMC_CTRL_DMA_RESET
;
1725 if (dw_mci_ctrl_reset(host
, flags
)) {
1727 * In all cases we clear the RAWINTS
1728 * register to clear any interrupts.
1730 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
1732 if (!host
->use_dma
) {
1737 /* Wait for dma_req to be cleared */
1738 if (readl_poll_timeout_atomic(host
->regs
+ SDMMC_STATUS
,
1740 !(status
& SDMMC_STATUS_DMA_REQ
),
1741 1, 500 * USEC_PER_MSEC
)) {
1743 "%s: Timeout waiting for dma_req to be cleared\n",
1748 /* when using DMA next we reset the fifo again */
1749 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_FIFO_RESET
))
1752 /* if the controller reset bit did clear, then set clock regs */
1753 if (!(mci_readl(host
, CTRL
) & SDMMC_CTRL_RESET
)) {
1755 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
1761 if (host
->use_dma
== TRANS_MODE_IDMAC
)
1762 /* It is also required that we reinit idmac */
1763 dw_mci_idmac_init(host
);
1768 /* After a CTRL reset we need to have CIU set clock registers */
1769 mci_send_cmd(host
->slot
, SDMMC_CMD_UPD_CLK
, 0);
1774 static const struct mmc_host_ops dw_mci_ops
= {
1775 .request
= dw_mci_request
,
1776 .pre_req
= dw_mci_pre_req
,
1777 .post_req
= dw_mci_post_req
,
1778 .set_ios
= dw_mci_set_ios
,
1779 .get_ro
= dw_mci_get_ro
,
1780 .get_cd
= dw_mci_get_cd
,
1781 .hw_reset
= dw_mci_hw_reset
,
1782 .enable_sdio_irq
= dw_mci_enable_sdio_irq
,
1783 .ack_sdio_irq
= dw_mci_ack_sdio_irq
,
1784 .execute_tuning
= dw_mci_execute_tuning
,
1785 .card_busy
= dw_mci_card_busy
,
1786 .start_signal_voltage_switch
= dw_mci_switch_voltage
,
1787 .init_card
= dw_mci_init_card
,
1788 .prepare_hs400_tuning
= dw_mci_prepare_hs400_tuning
,
1791 static void dw_mci_request_end(struct dw_mci
*host
, struct mmc_request
*mrq
)
1792 __releases(&host
->lock
)
1793 __acquires(&host
->lock
)
1795 struct dw_mci_slot
*slot
;
1796 struct mmc_host
*prev_mmc
= host
->slot
->mmc
;
1798 WARN_ON(host
->cmd
|| host
->data
);
1800 host
->slot
->mrq
= NULL
;
1802 if (!list_empty(&host
->queue
)) {
1803 slot
= list_entry(host
->queue
.next
,
1804 struct dw_mci_slot
, queue_node
);
1805 list_del(&slot
->queue_node
);
1806 dev_vdbg(host
->dev
, "list not empty: %s is next\n",
1807 mmc_hostname(slot
->mmc
));
1808 host
->state
= STATE_SENDING_CMD
;
1809 dw_mci_start_request(host
, slot
);
1811 dev_vdbg(host
->dev
, "list empty\n");
1813 if (host
->state
== STATE_SENDING_CMD11
)
1814 host
->state
= STATE_WAITING_CMD11_DONE
;
1816 host
->state
= STATE_IDLE
;
1819 spin_unlock(&host
->lock
);
1820 mmc_request_done(prev_mmc
, mrq
);
1821 spin_lock(&host
->lock
);
1824 static int dw_mci_command_complete(struct dw_mci
*host
, struct mmc_command
*cmd
)
1826 u32 status
= host
->cmd_status
;
1828 host
->cmd_status
= 0;
1830 /* Read the response from the card (up to 16 bytes) */
1831 if (cmd
->flags
& MMC_RSP_PRESENT
) {
1832 if (cmd
->flags
& MMC_RSP_136
) {
1833 cmd
->resp
[3] = mci_readl(host
, RESP0
);
1834 cmd
->resp
[2] = mci_readl(host
, RESP1
);
1835 cmd
->resp
[1] = mci_readl(host
, RESP2
);
1836 cmd
->resp
[0] = mci_readl(host
, RESP3
);
1838 cmd
->resp
[0] = mci_readl(host
, RESP0
);
1845 if (status
& SDMMC_INT_RTO
)
1846 cmd
->error
= -ETIMEDOUT
;
1847 else if ((cmd
->flags
& MMC_RSP_CRC
) && (status
& SDMMC_INT_RCRC
))
1848 cmd
->error
= -EILSEQ
;
1849 else if (status
& SDMMC_INT_RESP_ERR
)
1857 static int dw_mci_data_complete(struct dw_mci
*host
, struct mmc_data
*data
)
1859 u32 status
= host
->data_status
;
1861 if (status
& DW_MCI_DATA_ERROR_FLAGS
) {
1862 if (status
& SDMMC_INT_DRTO
) {
1863 data
->error
= -ETIMEDOUT
;
1864 } else if (status
& SDMMC_INT_DCRC
) {
1865 data
->error
= -EILSEQ
;
1866 } else if (status
& SDMMC_INT_EBE
) {
1867 if (host
->dir_status
==
1868 DW_MCI_SEND_STATUS
) {
1870 * No data CRC status was returned.
1871 * The number of bytes transferred
1872 * will be exaggerated in PIO mode.
1874 data
->bytes_xfered
= 0;
1875 data
->error
= -ETIMEDOUT
;
1876 } else if (host
->dir_status
==
1877 DW_MCI_RECV_STATUS
) {
1878 data
->error
= -EILSEQ
;
1881 /* SDMMC_INT_SBE is included */
1882 data
->error
= -EILSEQ
;
1885 dev_dbg(host
->dev
, "data error, status 0x%08x\n", status
);
1888 * After an error, there may be data lingering
1893 data
->bytes_xfered
= data
->blocks
* data
->blksz
;
1900 static void dw_mci_set_drto(struct dw_mci
*host
)
1902 unsigned int drto_clks
;
1903 unsigned int drto_div
;
1904 unsigned int drto_ms
;
1905 unsigned long irqflags
;
1907 drto_clks
= mci_readl(host
, TMOUT
) >> 8;
1908 drto_div
= (mci_readl(host
, CLKDIV
) & 0xff) * 2;
1912 drto_ms
= DIV_ROUND_UP_ULL((u64
)MSEC_PER_SEC
* drto_clks
* drto_div
,
1915 /* add a bit spare time */
1918 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
1919 if (!test_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
))
1920 mod_timer(&host
->dto_timer
,
1921 jiffies
+ msecs_to_jiffies(drto_ms
));
1922 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
1925 static bool dw_mci_clear_pending_cmd_complete(struct dw_mci
*host
)
1927 if (!test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
))
1931 * Really be certain that the timer has stopped. This is a bit of
1932 * paranoia and could only really happen if we had really bad
1933 * interrupt latency and the interrupt routine and timeout were
1934 * running concurrently so that the del_timer() in the interrupt
1935 * handler couldn't run.
1937 WARN_ON(del_timer_sync(&host
->cto_timer
));
1938 clear_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
1943 static bool dw_mci_clear_pending_data_complete(struct dw_mci
*host
)
1945 if (!test_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
))
1948 /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */
1949 WARN_ON(del_timer_sync(&host
->dto_timer
));
1950 clear_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
1955 static void dw_mci_tasklet_func(unsigned long priv
)
1957 struct dw_mci
*host
= (struct dw_mci
*)priv
;
1958 struct mmc_data
*data
;
1959 struct mmc_command
*cmd
;
1960 struct mmc_request
*mrq
;
1961 enum dw_mci_state state
;
1962 enum dw_mci_state prev_state
;
1965 spin_lock(&host
->lock
);
1967 state
= host
->state
;
1976 case STATE_WAITING_CMD11_DONE
:
1979 case STATE_SENDING_CMD11
:
1980 case STATE_SENDING_CMD
:
1981 if (!dw_mci_clear_pending_cmd_complete(host
))
1986 set_bit(EVENT_CMD_COMPLETE
, &host
->completed_events
);
1987 err
= dw_mci_command_complete(host
, cmd
);
1988 if (cmd
== mrq
->sbc
&& !err
) {
1989 __dw_mci_start_request(host
, host
->slot
,
1994 if (cmd
->data
&& err
) {
1996 * During UHS tuning sequence, sending the stop
1997 * command after the response CRC error would
1998 * throw the system into a confused state
1999 * causing all future tuning phases to report
2002 * In such case controller will move into a data
2003 * transfer state after a response error or
2004 * response CRC error. Let's let that finish
2005 * before trying to send a stop, so we'll go to
2006 * STATE_SENDING_DATA.
2008 * Although letting the data transfer take place
2009 * will waste a bit of time (we already know
2010 * the command was bad), it can't cause any
2011 * errors since it's possible it would have
2012 * taken place anyway if this tasklet got
2013 * delayed. Allowing the transfer to take place
2014 * avoids races and keeps things simple.
2016 if (err
!= -ETIMEDOUT
) {
2017 state
= STATE_SENDING_DATA
;
2021 dw_mci_stop_dma(host
);
2022 send_stop_abort(host
, data
);
2023 state
= STATE_SENDING_STOP
;
2027 if (!cmd
->data
|| err
) {
2028 dw_mci_request_end(host
, mrq
);
2032 prev_state
= state
= STATE_SENDING_DATA
;
2035 case STATE_SENDING_DATA
:
2037 * We could get a data error and never a transfer
2038 * complete so we'd better check for it here.
2040 * Note that we don't really care if we also got a
2041 * transfer complete; stopping the DMA and sending an
2044 if (test_and_clear_bit(EVENT_DATA_ERROR
,
2045 &host
->pending_events
)) {
2046 dw_mci_stop_dma(host
);
2047 if (!(host
->data_status
& (SDMMC_INT_DRTO
|
2049 send_stop_abort(host
, data
);
2050 state
= STATE_DATA_ERROR
;
2054 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2055 &host
->pending_events
)) {
2057 * If all data-related interrupts don't come
2058 * within the given time in reading data state.
2060 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
2061 dw_mci_set_drto(host
);
2065 set_bit(EVENT_XFER_COMPLETE
, &host
->completed_events
);
2068 * Handle an EVENT_DATA_ERROR that might have shown up
2069 * before the transfer completed. This might not have
2070 * been caught by the check above because the interrupt
2071 * could have gone off between the previous check and
2072 * the check for transfer complete.
2074 * Technically this ought not be needed assuming we
2075 * get a DATA_COMPLETE eventually (we'll notice the
2076 * error and end the request), but it shouldn't hurt.
2078 * This has the advantage of sending the stop command.
2080 if (test_and_clear_bit(EVENT_DATA_ERROR
,
2081 &host
->pending_events
)) {
2082 dw_mci_stop_dma(host
);
2083 if (!(host
->data_status
& (SDMMC_INT_DRTO
|
2085 send_stop_abort(host
, data
);
2086 state
= STATE_DATA_ERROR
;
2089 prev_state
= state
= STATE_DATA_BUSY
;
2093 case STATE_DATA_BUSY
:
2094 if (!dw_mci_clear_pending_data_complete(host
)) {
2096 * If data error interrupt comes but data over
2097 * interrupt doesn't come within the given time.
2098 * in reading data state.
2100 if (host
->dir_status
== DW_MCI_RECV_STATUS
)
2101 dw_mci_set_drto(host
);
2106 set_bit(EVENT_DATA_COMPLETE
, &host
->completed_events
);
2107 err
= dw_mci_data_complete(host
, data
);
2110 if (!data
->stop
|| mrq
->sbc
) {
2111 if (mrq
->sbc
&& data
->stop
)
2112 data
->stop
->error
= 0;
2113 dw_mci_request_end(host
, mrq
);
2117 /* stop command for open-ended transfer*/
2119 send_stop_abort(host
, data
);
2122 * If we don't have a command complete now we'll
2123 * never get one since we just reset everything;
2124 * better end the request.
2126 * If we do have a command complete we'll fall
2127 * through to the SENDING_STOP command and
2128 * everything will be peachy keen.
2130 if (!test_bit(EVENT_CMD_COMPLETE
,
2131 &host
->pending_events
)) {
2133 dw_mci_request_end(host
, mrq
);
2139 * If err has non-zero,
2140 * stop-abort command has been already issued.
2142 prev_state
= state
= STATE_SENDING_STOP
;
2146 case STATE_SENDING_STOP
:
2147 if (!dw_mci_clear_pending_cmd_complete(host
))
2150 /* CMD error in data command */
2151 if (mrq
->cmd
->error
&& mrq
->data
)
2157 if (!mrq
->sbc
&& mrq
->stop
)
2158 dw_mci_command_complete(host
, mrq
->stop
);
2160 host
->cmd_status
= 0;
2162 dw_mci_request_end(host
, mrq
);
2165 case STATE_DATA_ERROR
:
2166 if (!test_and_clear_bit(EVENT_XFER_COMPLETE
,
2167 &host
->pending_events
))
2170 state
= STATE_DATA_BUSY
;
2173 } while (state
!= prev_state
);
2175 host
->state
= state
;
2177 spin_unlock(&host
->lock
);
2181 /* push final bytes to part_buf, only use during push */
2182 static void dw_mci_set_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2184 memcpy((void *)&host
->part_buf
, buf
, cnt
);
2185 host
->part_buf_count
= cnt
;
2188 /* append bytes to part_buf, only use during push */
2189 static int dw_mci_push_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2191 cnt
= min(cnt
, (1 << host
->data_shift
) - host
->part_buf_count
);
2192 memcpy((void *)&host
->part_buf
+ host
->part_buf_count
, buf
, cnt
);
2193 host
->part_buf_count
+= cnt
;
2197 /* pull first bytes from part_buf, only use during pull */
2198 static int dw_mci_pull_part_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2200 cnt
= min_t(int, cnt
, host
->part_buf_count
);
2202 memcpy(buf
, (void *)&host
->part_buf
+ host
->part_buf_start
,
2204 host
->part_buf_count
-= cnt
;
2205 host
->part_buf_start
+= cnt
;
2210 /* pull final bytes from the part_buf, assuming it's just been filled */
2211 static void dw_mci_pull_final_bytes(struct dw_mci
*host
, void *buf
, int cnt
)
2213 memcpy(buf
, &host
->part_buf
, cnt
);
2214 host
->part_buf_start
= cnt
;
2215 host
->part_buf_count
= (1 << host
->data_shift
) - cnt
;
2218 static void dw_mci_push_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2220 struct mmc_data
*data
= host
->data
;
2223 /* try and push anything in the part_buf */
2224 if (unlikely(host
->part_buf_count
)) {
2225 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2229 if (host
->part_buf_count
== 2) {
2230 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2231 host
->part_buf_count
= 0;
2234 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2235 if (unlikely((unsigned long)buf
& 0x1)) {
2237 u16 aligned_buf
[64];
2238 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2239 int items
= len
>> 1;
2241 /* memcpy from input buffer into aligned buffer */
2242 memcpy(aligned_buf
, buf
, len
);
2245 /* push data from aligned buffer into fifo */
2246 for (i
= 0; i
< items
; ++i
)
2247 mci_fifo_writew(host
->fifo_reg
, aligned_buf
[i
]);
2254 for (; cnt
>= 2; cnt
-= 2)
2255 mci_fifo_writew(host
->fifo_reg
, *pdata
++);
2258 /* put anything remaining in the part_buf */
2260 dw_mci_set_part_bytes(host
, buf
, cnt
);
2261 /* Push data if we have reached the expected data length */
2262 if ((data
->bytes_xfered
+ init_cnt
) ==
2263 (data
->blksz
* data
->blocks
))
2264 mci_fifo_writew(host
->fifo_reg
, host
->part_buf16
);
2268 static void dw_mci_pull_data16(struct dw_mci
*host
, void *buf
, int cnt
)
2270 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2271 if (unlikely((unsigned long)buf
& 0x1)) {
2273 /* pull data from fifo into aligned buffer */
2274 u16 aligned_buf
[64];
2275 int len
= min(cnt
& -2, (int)sizeof(aligned_buf
));
2276 int items
= len
>> 1;
2279 for (i
= 0; i
< items
; ++i
)
2280 aligned_buf
[i
] = mci_fifo_readw(host
->fifo_reg
);
2281 /* memcpy from aligned buffer into output buffer */
2282 memcpy(buf
, aligned_buf
, len
);
2291 for (; cnt
>= 2; cnt
-= 2)
2292 *pdata
++ = mci_fifo_readw(host
->fifo_reg
);
2296 host
->part_buf16
= mci_fifo_readw(host
->fifo_reg
);
2297 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2301 static void dw_mci_push_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2303 struct mmc_data
*data
= host
->data
;
2306 /* try and push anything in the part_buf */
2307 if (unlikely(host
->part_buf_count
)) {
2308 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2312 if (host
->part_buf_count
== 4) {
2313 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2314 host
->part_buf_count
= 0;
2317 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2318 if (unlikely((unsigned long)buf
& 0x3)) {
2320 u32 aligned_buf
[32];
2321 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2322 int items
= len
>> 2;
2324 /* memcpy from input buffer into aligned buffer */
2325 memcpy(aligned_buf
, buf
, len
);
2328 /* push data from aligned buffer into fifo */
2329 for (i
= 0; i
< items
; ++i
)
2330 mci_fifo_writel(host
->fifo_reg
, aligned_buf
[i
]);
2337 for (; cnt
>= 4; cnt
-= 4)
2338 mci_fifo_writel(host
->fifo_reg
, *pdata
++);
2341 /* put anything remaining in the part_buf */
2343 dw_mci_set_part_bytes(host
, buf
, cnt
);
2344 /* Push data if we have reached the expected data length */
2345 if ((data
->bytes_xfered
+ init_cnt
) ==
2346 (data
->blksz
* data
->blocks
))
2347 mci_fifo_writel(host
->fifo_reg
, host
->part_buf32
);
2351 static void dw_mci_pull_data32(struct dw_mci
*host
, void *buf
, int cnt
)
2353 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2354 if (unlikely((unsigned long)buf
& 0x3)) {
2356 /* pull data from fifo into aligned buffer */
2357 u32 aligned_buf
[32];
2358 int len
= min(cnt
& -4, (int)sizeof(aligned_buf
));
2359 int items
= len
>> 2;
2362 for (i
= 0; i
< items
; ++i
)
2363 aligned_buf
[i
] = mci_fifo_readl(host
->fifo_reg
);
2364 /* memcpy from aligned buffer into output buffer */
2365 memcpy(buf
, aligned_buf
, len
);
2374 for (; cnt
>= 4; cnt
-= 4)
2375 *pdata
++ = mci_fifo_readl(host
->fifo_reg
);
2379 host
->part_buf32
= mci_fifo_readl(host
->fifo_reg
);
2380 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2384 static void dw_mci_push_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2386 struct mmc_data
*data
= host
->data
;
2389 /* try and push anything in the part_buf */
2390 if (unlikely(host
->part_buf_count
)) {
2391 int len
= dw_mci_push_part_bytes(host
, buf
, cnt
);
2396 if (host
->part_buf_count
== 8) {
2397 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2398 host
->part_buf_count
= 0;
2401 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2402 if (unlikely((unsigned long)buf
& 0x7)) {
2404 u64 aligned_buf
[16];
2405 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2406 int items
= len
>> 3;
2408 /* memcpy from input buffer into aligned buffer */
2409 memcpy(aligned_buf
, buf
, len
);
2412 /* push data from aligned buffer into fifo */
2413 for (i
= 0; i
< items
; ++i
)
2414 mci_fifo_writeq(host
->fifo_reg
, aligned_buf
[i
]);
2421 for (; cnt
>= 8; cnt
-= 8)
2422 mci_fifo_writeq(host
->fifo_reg
, *pdata
++);
2425 /* put anything remaining in the part_buf */
2427 dw_mci_set_part_bytes(host
, buf
, cnt
);
2428 /* Push data if we have reached the expected data length */
2429 if ((data
->bytes_xfered
+ init_cnt
) ==
2430 (data
->blksz
* data
->blocks
))
2431 mci_fifo_writeq(host
->fifo_reg
, host
->part_buf
);
2435 static void dw_mci_pull_data64(struct dw_mci
*host
, void *buf
, int cnt
)
2437 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2438 if (unlikely((unsigned long)buf
& 0x7)) {
2440 /* pull data from fifo into aligned buffer */
2441 u64 aligned_buf
[16];
2442 int len
= min(cnt
& -8, (int)sizeof(aligned_buf
));
2443 int items
= len
>> 3;
2446 for (i
= 0; i
< items
; ++i
)
2447 aligned_buf
[i
] = mci_fifo_readq(host
->fifo_reg
);
2449 /* memcpy from aligned buffer into output buffer */
2450 memcpy(buf
, aligned_buf
, len
);
2459 for (; cnt
>= 8; cnt
-= 8)
2460 *pdata
++ = mci_fifo_readq(host
->fifo_reg
);
2464 host
->part_buf
= mci_fifo_readq(host
->fifo_reg
);
2465 dw_mci_pull_final_bytes(host
, buf
, cnt
);
2469 static void dw_mci_pull_data(struct dw_mci
*host
, void *buf
, int cnt
)
2473 /* get remaining partial bytes */
2474 len
= dw_mci_pull_part_bytes(host
, buf
, cnt
);
2475 if (unlikely(len
== cnt
))
2480 /* get the rest of the data */
2481 host
->pull_data(host
, buf
, cnt
);
2484 static void dw_mci_read_data_pio(struct dw_mci
*host
, bool dto
)
2486 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2488 unsigned int offset
;
2489 struct mmc_data
*data
= host
->data
;
2490 int shift
= host
->data_shift
;
2493 unsigned int remain
, fcnt
;
2496 if (!sg_miter_next(sg_miter
))
2499 host
->sg
= sg_miter
->piter
.sg
;
2500 buf
= sg_miter
->addr
;
2501 remain
= sg_miter
->length
;
2505 fcnt
= (SDMMC_GET_FCNT(mci_readl(host
, STATUS
))
2506 << shift
) + host
->part_buf_count
;
2507 len
= min(remain
, fcnt
);
2510 dw_mci_pull_data(host
, (void *)(buf
+ offset
), len
);
2511 data
->bytes_xfered
+= len
;
2516 sg_miter
->consumed
= offset
;
2517 status
= mci_readl(host
, MINTSTS
);
2518 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2519 /* if the RXDR is ready read again */
2520 } while ((status
& SDMMC_INT_RXDR
) ||
2521 (dto
&& SDMMC_GET_FCNT(mci_readl(host
, STATUS
))));
2524 if (!sg_miter_next(sg_miter
))
2526 sg_miter
->consumed
= 0;
2528 sg_miter_stop(sg_miter
);
2532 sg_miter_stop(sg_miter
);
2534 smp_wmb(); /* drain writebuffer */
2535 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2538 static void dw_mci_write_data_pio(struct dw_mci
*host
)
2540 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
2542 unsigned int offset
;
2543 struct mmc_data
*data
= host
->data
;
2544 int shift
= host
->data_shift
;
2547 unsigned int fifo_depth
= host
->fifo_depth
;
2548 unsigned int remain
, fcnt
;
2551 if (!sg_miter_next(sg_miter
))
2554 host
->sg
= sg_miter
->piter
.sg
;
2555 buf
= sg_miter
->addr
;
2556 remain
= sg_miter
->length
;
2560 fcnt
= ((fifo_depth
-
2561 SDMMC_GET_FCNT(mci_readl(host
, STATUS
)))
2562 << shift
) - host
->part_buf_count
;
2563 len
= min(remain
, fcnt
);
2566 host
->push_data(host
, (void *)(buf
+ offset
), len
);
2567 data
->bytes_xfered
+= len
;
2572 sg_miter
->consumed
= offset
;
2573 status
= mci_readl(host
, MINTSTS
);
2574 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2575 } while (status
& SDMMC_INT_TXDR
); /* if TXDR write again */
2578 if (!sg_miter_next(sg_miter
))
2580 sg_miter
->consumed
= 0;
2582 sg_miter_stop(sg_miter
);
2586 sg_miter_stop(sg_miter
);
2588 smp_wmb(); /* drain writebuffer */
2589 set_bit(EVENT_XFER_COMPLETE
, &host
->pending_events
);
2592 static void dw_mci_cmd_interrupt(struct dw_mci
*host
, u32 status
)
2594 del_timer(&host
->cto_timer
);
2596 if (!host
->cmd_status
)
2597 host
->cmd_status
= status
;
2599 smp_wmb(); /* drain writebuffer */
2601 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2602 tasklet_schedule(&host
->tasklet
);
2605 static void dw_mci_handle_cd(struct dw_mci
*host
)
2607 struct dw_mci_slot
*slot
= host
->slot
;
2609 if (slot
->mmc
->ops
->card_event
)
2610 slot
->mmc
->ops
->card_event(slot
->mmc
);
2611 mmc_detect_change(slot
->mmc
,
2612 msecs_to_jiffies(host
->pdata
->detect_delay_ms
));
2615 static irqreturn_t
dw_mci_interrupt(int irq
, void *dev_id
)
2617 struct dw_mci
*host
= dev_id
;
2619 struct dw_mci_slot
*slot
= host
->slot
;
2621 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
2624 /* Check volt switch first, since it can look like an error */
2625 if ((host
->state
== STATE_SENDING_CMD11
) &&
2626 (pending
& SDMMC_INT_VOLT_SWITCH
)) {
2627 mci_writel(host
, RINTSTS
, SDMMC_INT_VOLT_SWITCH
);
2628 pending
&= ~SDMMC_INT_VOLT_SWITCH
;
2631 * Hold the lock; we know cmd11_timer can't be kicked
2632 * off after the lock is released, so safe to delete.
2634 spin_lock(&host
->irq_lock
);
2635 dw_mci_cmd_interrupt(host
, pending
);
2636 spin_unlock(&host
->irq_lock
);
2638 del_timer(&host
->cmd11_timer
);
2641 if (pending
& DW_MCI_CMD_ERROR_FLAGS
) {
2642 spin_lock(&host
->irq_lock
);
2644 del_timer(&host
->cto_timer
);
2645 mci_writel(host
, RINTSTS
, DW_MCI_CMD_ERROR_FLAGS
);
2646 host
->cmd_status
= pending
;
2647 smp_wmb(); /* drain writebuffer */
2648 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2650 spin_unlock(&host
->irq_lock
);
2653 if (pending
& DW_MCI_DATA_ERROR_FLAGS
) {
2654 /* if there is an error report DATA_ERROR */
2655 mci_writel(host
, RINTSTS
, DW_MCI_DATA_ERROR_FLAGS
);
2656 host
->data_status
= pending
;
2657 smp_wmb(); /* drain writebuffer */
2658 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
2659 tasklet_schedule(&host
->tasklet
);
2662 if (pending
& SDMMC_INT_DATA_OVER
) {
2663 spin_lock(&host
->irq_lock
);
2665 del_timer(&host
->dto_timer
);
2667 mci_writel(host
, RINTSTS
, SDMMC_INT_DATA_OVER
);
2668 if (!host
->data_status
)
2669 host
->data_status
= pending
;
2670 smp_wmb(); /* drain writebuffer */
2671 if (host
->dir_status
== DW_MCI_RECV_STATUS
) {
2672 if (host
->sg
!= NULL
)
2673 dw_mci_read_data_pio(host
, true);
2675 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
2676 tasklet_schedule(&host
->tasklet
);
2678 spin_unlock(&host
->irq_lock
);
2681 if (pending
& SDMMC_INT_RXDR
) {
2682 mci_writel(host
, RINTSTS
, SDMMC_INT_RXDR
);
2683 if (host
->dir_status
== DW_MCI_RECV_STATUS
&& host
->sg
)
2684 dw_mci_read_data_pio(host
, false);
2687 if (pending
& SDMMC_INT_TXDR
) {
2688 mci_writel(host
, RINTSTS
, SDMMC_INT_TXDR
);
2689 if (host
->dir_status
== DW_MCI_SEND_STATUS
&& host
->sg
)
2690 dw_mci_write_data_pio(host
);
2693 if (pending
& SDMMC_INT_CMD_DONE
) {
2694 spin_lock(&host
->irq_lock
);
2696 mci_writel(host
, RINTSTS
, SDMMC_INT_CMD_DONE
);
2697 dw_mci_cmd_interrupt(host
, pending
);
2699 spin_unlock(&host
->irq_lock
);
2702 if (pending
& SDMMC_INT_CD
) {
2703 mci_writel(host
, RINTSTS
, SDMMC_INT_CD
);
2704 dw_mci_handle_cd(host
);
2707 if (pending
& SDMMC_INT_SDIO(slot
->sdio_id
)) {
2708 mci_writel(host
, RINTSTS
,
2709 SDMMC_INT_SDIO(slot
->sdio_id
));
2710 __dw_mci_enable_sdio_irq(slot
, 0);
2711 sdio_signal_irq(slot
->mmc
);
2716 if (host
->use_dma
!= TRANS_MODE_IDMAC
)
2719 /* Handle IDMA interrupts */
2720 if (host
->dma_64bit_address
== 1) {
2721 pending
= mci_readl(host
, IDSTS64
);
2722 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2723 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_TI
|
2724 SDMMC_IDMAC_INT_RI
);
2725 mci_writel(host
, IDSTS64
, SDMMC_IDMAC_INT_NI
);
2726 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2727 host
->dma_ops
->complete((void *)host
);
2730 pending
= mci_readl(host
, IDSTS
);
2731 if (pending
& (SDMMC_IDMAC_INT_TI
| SDMMC_IDMAC_INT_RI
)) {
2732 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_TI
|
2733 SDMMC_IDMAC_INT_RI
);
2734 mci_writel(host
, IDSTS
, SDMMC_IDMAC_INT_NI
);
2735 if (!test_bit(EVENT_DATA_ERROR
, &host
->pending_events
))
2736 host
->dma_ops
->complete((void *)host
);
2743 static int dw_mci_init_slot_caps(struct dw_mci_slot
*slot
)
2745 struct dw_mci
*host
= slot
->host
;
2746 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
2747 struct mmc_host
*mmc
= slot
->mmc
;
2750 if (host
->pdata
->caps
)
2751 mmc
->caps
= host
->pdata
->caps
;
2753 if (host
->pdata
->pm_caps
)
2754 mmc
->pm_caps
= host
->pdata
->pm_caps
;
2756 if (host
->dev
->of_node
) {
2757 ctrl_id
= of_alias_get_id(host
->dev
->of_node
, "mshc");
2761 ctrl_id
= to_platform_device(host
->dev
)->id
;
2764 if (drv_data
&& drv_data
->caps
) {
2765 if (ctrl_id
>= drv_data
->num_caps
) {
2766 dev_err(host
->dev
, "invalid controller id %d\n",
2770 mmc
->caps
|= drv_data
->caps
[ctrl_id
];
2773 if (host
->pdata
->caps2
)
2774 mmc
->caps2
= host
->pdata
->caps2
;
2776 mmc
->f_min
= DW_MCI_FREQ_MIN
;
2778 mmc
->f_max
= DW_MCI_FREQ_MAX
;
2780 /* Process SDIO IRQs through the sdio_irq_work. */
2781 if (mmc
->caps
& MMC_CAP_SDIO_IRQ
)
2782 mmc
->caps2
|= MMC_CAP2_SDIO_IRQ_NOTHREAD
;
2787 static int dw_mci_init_slot(struct dw_mci
*host
)
2789 struct mmc_host
*mmc
;
2790 struct dw_mci_slot
*slot
;
2793 mmc
= mmc_alloc_host(sizeof(struct dw_mci_slot
), host
->dev
);
2797 slot
= mmc_priv(mmc
);
2799 slot
->sdio_id
= host
->sdio_id0
+ slot
->id
;
2804 mmc
->ops
= &dw_mci_ops
;
2806 /*if there are external regulators, get them*/
2807 ret
= mmc_regulator_get_supply(mmc
);
2809 goto err_host_allocated
;
2811 if (!mmc
->ocr_avail
)
2812 mmc
->ocr_avail
= MMC_VDD_32_33
| MMC_VDD_33_34
;
2814 ret
= mmc_of_parse(mmc
);
2816 goto err_host_allocated
;
2818 ret
= dw_mci_init_slot_caps(slot
);
2820 goto err_host_allocated
;
2822 /* Useful defaults if platform data is unset. */
2823 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2824 mmc
->max_segs
= host
->ring_size
;
2825 mmc
->max_blk_size
= 65535;
2826 mmc
->max_seg_size
= 0x1000;
2827 mmc
->max_req_size
= mmc
->max_seg_size
* host
->ring_size
;
2828 mmc
->max_blk_count
= mmc
->max_req_size
/ 512;
2829 } else if (host
->use_dma
== TRANS_MODE_EDMAC
) {
2831 mmc
->max_blk_size
= 65535;
2832 mmc
->max_blk_count
= 65535;
2834 mmc
->max_blk_size
* mmc
->max_blk_count
;
2835 mmc
->max_seg_size
= mmc
->max_req_size
;
2837 /* TRANS_MODE_PIO */
2839 mmc
->max_blk_size
= 65535; /* BLKSIZ is 16 bits */
2840 mmc
->max_blk_count
= 512;
2841 mmc
->max_req_size
= mmc
->max_blk_size
*
2843 mmc
->max_seg_size
= mmc
->max_req_size
;
2848 ret
= mmc_add_host(mmc
);
2850 goto err_host_allocated
;
2852 #if defined(CONFIG_DEBUG_FS)
2853 dw_mci_init_debugfs(slot
);
2863 static void dw_mci_cleanup_slot(struct dw_mci_slot
*slot
)
2865 /* Debugfs stuff is cleaned up by mmc core */
2866 mmc_remove_host(slot
->mmc
);
2867 slot
->host
->slot
= NULL
;
2868 mmc_free_host(slot
->mmc
);
2871 static void dw_mci_init_dma(struct dw_mci
*host
)
2874 struct device
*dev
= host
->dev
;
2877 * Check tansfer mode from HCON[17:16]
2878 * Clear the ambiguous description of dw_mmc databook:
2879 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2880 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2881 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2882 * 2b'11: Non DW DMA Interface -> pio only
2883 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2884 * simpler request/acknowledge handshake mechanism and both of them
2885 * are regarded as external dma master for dw_mmc.
2887 host
->use_dma
= SDMMC_GET_TRANS_MODE(mci_readl(host
, HCON
));
2888 if (host
->use_dma
== DMA_INTERFACE_IDMA
) {
2889 host
->use_dma
= TRANS_MODE_IDMAC
;
2890 } else if (host
->use_dma
== DMA_INTERFACE_DWDMA
||
2891 host
->use_dma
== DMA_INTERFACE_GDMA
) {
2892 host
->use_dma
= TRANS_MODE_EDMAC
;
2897 /* Determine which DMA interface to use */
2898 if (host
->use_dma
== TRANS_MODE_IDMAC
) {
2900 * Check ADDR_CONFIG bit in HCON to find
2901 * IDMAC address bus width
2903 addr_config
= SDMMC_GET_ADDR_CONFIG(mci_readl(host
, HCON
));
2905 if (addr_config
== 1) {
2906 /* host supports IDMAC in 64-bit address mode */
2907 host
->dma_64bit_address
= 1;
2909 "IDMAC supports 64-bit address mode.\n");
2910 if (!dma_set_mask(host
->dev
, DMA_BIT_MASK(64)))
2911 dma_set_coherent_mask(host
->dev
,
2914 /* host supports IDMAC in 32-bit address mode */
2915 host
->dma_64bit_address
= 0;
2917 "IDMAC supports 32-bit address mode.\n");
2920 /* Alloc memory for sg translation */
2921 host
->sg_cpu
= dmam_alloc_coherent(host
->dev
,
2923 &host
->sg_dma
, GFP_KERNEL
);
2924 if (!host
->sg_cpu
) {
2926 "%s: could not alloc DMA memory\n",
2931 host
->dma_ops
= &dw_mci_idmac_ops
;
2932 dev_info(host
->dev
, "Using internal DMA controller.\n");
2934 /* TRANS_MODE_EDMAC: check dma bindings again */
2935 if ((device_property_read_string_array(dev
, "dma-names",
2937 !device_property_present(dev
, "dmas")) {
2940 host
->dma_ops
= &dw_mci_edmac_ops
;
2941 dev_info(host
->dev
, "Using external DMA controller.\n");
2944 if (host
->dma_ops
->init
&& host
->dma_ops
->start
&&
2945 host
->dma_ops
->stop
&& host
->dma_ops
->cleanup
) {
2946 if (host
->dma_ops
->init(host
)) {
2947 dev_err(host
->dev
, "%s: Unable to initialize DMA Controller.\n",
2952 dev_err(host
->dev
, "DMA initialization not found.\n");
2959 dev_info(host
->dev
, "Using PIO mode.\n");
2960 host
->use_dma
= TRANS_MODE_PIO
;
2963 static void dw_mci_cmd11_timer(struct timer_list
*t
)
2965 struct dw_mci
*host
= from_timer(host
, t
, cmd11_timer
);
2967 if (host
->state
!= STATE_SENDING_CMD11
) {
2968 dev_warn(host
->dev
, "Unexpected CMD11 timeout\n");
2972 host
->cmd_status
= SDMMC_INT_RTO
;
2973 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
2974 tasklet_schedule(&host
->tasklet
);
2977 static void dw_mci_cto_timer(struct timer_list
*t
)
2979 struct dw_mci
*host
= from_timer(host
, t
, cto_timer
);
2980 unsigned long irqflags
;
2983 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
2986 * If somehow we have very bad interrupt latency it's remotely possible
2987 * that the timer could fire while the interrupt is still pending or
2988 * while the interrupt is midway through running. Let's be paranoid
2989 * and detect those two cases. Note that this is paranoia is somewhat
2990 * justified because in this function we don't actually cancel the
2991 * pending command in the controller--we just assume it will never come.
2993 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
2994 if (pending
& (DW_MCI_CMD_ERROR_FLAGS
| SDMMC_INT_CMD_DONE
)) {
2995 /* The interrupt should fire; no need to act but we can warn */
2996 dev_warn(host
->dev
, "Unexpected interrupt latency\n");
2999 if (test_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
)) {
3000 /* Presumably interrupt handler couldn't delete the timer */
3001 dev_warn(host
->dev
, "CTO timeout when already completed\n");
3006 * Continued paranoia to make sure we're in the state we expect.
3007 * This paranoia isn't really justified but it seems good to be safe.
3009 switch (host
->state
) {
3010 case STATE_SENDING_CMD11
:
3011 case STATE_SENDING_CMD
:
3012 case STATE_SENDING_STOP
:
3014 * If CMD_DONE interrupt does NOT come in sending command
3015 * state, we should notify the driver to terminate current
3016 * transfer and report a command timeout to the core.
3018 host
->cmd_status
= SDMMC_INT_RTO
;
3019 set_bit(EVENT_CMD_COMPLETE
, &host
->pending_events
);
3020 tasklet_schedule(&host
->tasklet
);
3023 dev_warn(host
->dev
, "Unexpected command timeout, state %d\n",
3029 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3032 static void dw_mci_dto_timer(struct timer_list
*t
)
3034 struct dw_mci
*host
= from_timer(host
, t
, dto_timer
);
3035 unsigned long irqflags
;
3038 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3041 * The DTO timer is much longer than the CTO timer, so it's even less
3042 * likely that we'll these cases, but it pays to be paranoid.
3044 pending
= mci_readl(host
, MINTSTS
); /* read-only mask reg */
3045 if (pending
& SDMMC_INT_DATA_OVER
) {
3046 /* The interrupt should fire; no need to act but we can warn */
3047 dev_warn(host
->dev
, "Unexpected data interrupt latency\n");
3050 if (test_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
)) {
3051 /* Presumably interrupt handler couldn't delete the timer */
3052 dev_warn(host
->dev
, "DTO timeout when already completed\n");
3057 * Continued paranoia to make sure we're in the state we expect.
3058 * This paranoia isn't really justified but it seems good to be safe.
3060 switch (host
->state
) {
3061 case STATE_SENDING_DATA
:
3062 case STATE_DATA_BUSY
:
3064 * If DTO interrupt does NOT come in sending data state,
3065 * we should notify the driver to terminate current transfer
3066 * and report a data timeout to the core.
3068 host
->data_status
= SDMMC_INT_DRTO
;
3069 set_bit(EVENT_DATA_ERROR
, &host
->pending_events
);
3070 set_bit(EVENT_DATA_COMPLETE
, &host
->pending_events
);
3071 tasklet_schedule(&host
->tasklet
);
3074 dev_warn(host
->dev
, "Unexpected data timeout, state %d\n",
3080 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3084 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
3086 struct dw_mci_board
*pdata
;
3087 struct device
*dev
= host
->dev
;
3088 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3090 u32 clock_frequency
;
3092 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
3094 return ERR_PTR(-ENOMEM
);
3096 /* find reset controller when exist */
3097 pdata
->rstc
= devm_reset_control_get_optional_exclusive(dev
, "reset");
3098 if (IS_ERR(pdata
->rstc
)) {
3099 if (PTR_ERR(pdata
->rstc
) == -EPROBE_DEFER
)
3100 return ERR_PTR(-EPROBE_DEFER
);
3103 if (device_property_read_u32(dev
, "fifo-depth", &pdata
->fifo_depth
))
3105 "fifo-depth property not found, using value of FIFOTH register as default\n");
3107 device_property_read_u32(dev
, "card-detect-delay",
3108 &pdata
->detect_delay_ms
);
3110 device_property_read_u32(dev
, "data-addr", &host
->data_addr_override
);
3112 if (device_property_present(dev
, "fifo-watermark-aligned"))
3113 host
->wm_aligned
= true;
3115 if (!device_property_read_u32(dev
, "clock-frequency", &clock_frequency
))
3116 pdata
->bus_hz
= clock_frequency
;
3118 if (drv_data
&& drv_data
->parse_dt
) {
3119 ret
= drv_data
->parse_dt(host
);
3121 return ERR_PTR(ret
);
3127 #else /* CONFIG_OF */
3128 static struct dw_mci_board
*dw_mci_parse_dt(struct dw_mci
*host
)
3130 return ERR_PTR(-EINVAL
);
3132 #endif /* CONFIG_OF */
3134 static void dw_mci_enable_cd(struct dw_mci
*host
)
3136 unsigned long irqflags
;
3140 * No need for CD if all slots have a non-error GPIO
3141 * as well as broken card detection is found.
3143 if (host
->slot
->mmc
->caps
& MMC_CAP_NEEDS_POLL
)
3146 if (mmc_gpio_get_cd(host
->slot
->mmc
) < 0) {
3147 spin_lock_irqsave(&host
->irq_lock
, irqflags
);
3148 temp
= mci_readl(host
, INTMASK
);
3149 temp
|= SDMMC_INT_CD
;
3150 mci_writel(host
, INTMASK
, temp
);
3151 spin_unlock_irqrestore(&host
->irq_lock
, irqflags
);
3155 int dw_mci_probe(struct dw_mci
*host
)
3157 const struct dw_mci_drv_data
*drv_data
= host
->drv_data
;
3158 int width
, i
, ret
= 0;
3162 host
->pdata
= dw_mci_parse_dt(host
);
3163 if (IS_ERR(host
->pdata
))
3164 return dev_err_probe(host
->dev
, PTR_ERR(host
->pdata
),
3165 "platform data not available\n");
3168 host
->biu_clk
= devm_clk_get(host
->dev
, "biu");
3169 if (IS_ERR(host
->biu_clk
)) {
3170 dev_dbg(host
->dev
, "biu clock not available\n");
3172 ret
= clk_prepare_enable(host
->biu_clk
);
3174 dev_err(host
->dev
, "failed to enable biu clock\n");
3179 host
->ciu_clk
= devm_clk_get(host
->dev
, "ciu");
3180 if (IS_ERR(host
->ciu_clk
)) {
3181 dev_dbg(host
->dev
, "ciu clock not available\n");
3182 host
->bus_hz
= host
->pdata
->bus_hz
;
3184 ret
= clk_prepare_enable(host
->ciu_clk
);
3186 dev_err(host
->dev
, "failed to enable ciu clock\n");
3190 if (host
->pdata
->bus_hz
) {
3191 ret
= clk_set_rate(host
->ciu_clk
, host
->pdata
->bus_hz
);
3194 "Unable to set bus rate to %uHz\n",
3195 host
->pdata
->bus_hz
);
3197 host
->bus_hz
= clk_get_rate(host
->ciu_clk
);
3200 if (!host
->bus_hz
) {
3202 "Platform data must supply bus speed\n");
3207 if (!IS_ERR(host
->pdata
->rstc
)) {
3208 reset_control_assert(host
->pdata
->rstc
);
3209 usleep_range(10, 50);
3210 reset_control_deassert(host
->pdata
->rstc
);
3213 if (drv_data
&& drv_data
->init
) {
3214 ret
= drv_data
->init(host
);
3217 "implementation specific init failed\n");
3222 timer_setup(&host
->cmd11_timer
, dw_mci_cmd11_timer
, 0);
3223 timer_setup(&host
->cto_timer
, dw_mci_cto_timer
, 0);
3224 timer_setup(&host
->dto_timer
, dw_mci_dto_timer
, 0);
3226 spin_lock_init(&host
->lock
);
3227 spin_lock_init(&host
->irq_lock
);
3228 INIT_LIST_HEAD(&host
->queue
);
3231 * Get the host data width - this assumes that HCON has been set with
3232 * the correct values.
3234 i
= SDMMC_GET_HDATA_WIDTH(mci_readl(host
, HCON
));
3236 host
->push_data
= dw_mci_push_data16
;
3237 host
->pull_data
= dw_mci_pull_data16
;
3239 host
->data_shift
= 1;
3240 } else if (i
== 2) {
3241 host
->push_data
= dw_mci_push_data64
;
3242 host
->pull_data
= dw_mci_pull_data64
;
3244 host
->data_shift
= 3;
3246 /* Check for a reserved value, and warn if it is */
3248 "HCON reports a reserved host data width!\n"
3249 "Defaulting to 32-bit access.\n");
3250 host
->push_data
= dw_mci_push_data32
;
3251 host
->pull_data
= dw_mci_pull_data32
;
3253 host
->data_shift
= 2;
3256 /* Reset all blocks */
3257 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3262 host
->dma_ops
= host
->pdata
->dma_ops
;
3263 dw_mci_init_dma(host
);
3265 /* Clear the interrupts for the host controller */
3266 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3267 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3269 /* Put in max timeout */
3270 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3273 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3274 * Tx Mark = fifo_size / 2 DMA Size = 8
3276 if (!host
->pdata
->fifo_depth
) {
3278 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3279 * have been overwritten by the bootloader, just like we're
3280 * about to do, so if you know the value for your hardware, you
3281 * should put it in the platform data.
3283 fifo_size
= mci_readl(host
, FIFOTH
);
3284 fifo_size
= 1 + ((fifo_size
>> 16) & 0xfff);
3286 fifo_size
= host
->pdata
->fifo_depth
;
3288 host
->fifo_depth
= fifo_size
;
3290 SDMMC_SET_FIFOTH(0x2, fifo_size
/ 2 - 1, fifo_size
/ 2);
3291 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3293 /* disable clock to CIU */
3294 mci_writel(host
, CLKENA
, 0);
3295 mci_writel(host
, CLKSRC
, 0);
3298 * In 2.40a spec, Data offset is changed.
3299 * Need to check the version-id and set data-offset for DATA register.
3301 host
->verid
= SDMMC_GET_VERID(mci_readl(host
, VERID
));
3302 dev_info(host
->dev
, "Version ID is %04x\n", host
->verid
);
3304 if (host
->data_addr_override
)
3305 host
->fifo_reg
= host
->regs
+ host
->data_addr_override
;
3306 else if (host
->verid
< DW_MMC_240A
)
3307 host
->fifo_reg
= host
->regs
+ DATA_OFFSET
;
3309 host
->fifo_reg
= host
->regs
+ DATA_240A_OFFSET
;
3311 tasklet_init(&host
->tasklet
, dw_mci_tasklet_func
, (unsigned long)host
);
3312 ret
= devm_request_irq(host
->dev
, host
->irq
, dw_mci_interrupt
,
3313 host
->irq_flags
, "dw-mci", host
);
3318 * Enable interrupts for command done, data over, data empty,
3319 * receive ready and error such as transmit, receive timeout, crc error
3321 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3322 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3323 DW_MCI_ERROR_FLAGS
);
3324 /* Enable mci interrupt */
3325 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3328 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3329 host
->irq
, width
, fifo_size
);
3331 /* We need at least one slot to succeed */
3332 ret
= dw_mci_init_slot(host
);
3334 dev_dbg(host
->dev
, "slot %d init failed\n", i
);
3338 /* Now that slots are all setup, we can enable card detect */
3339 dw_mci_enable_cd(host
);
3344 if (host
->use_dma
&& host
->dma_ops
->exit
)
3345 host
->dma_ops
->exit(host
);
3347 if (!IS_ERR(host
->pdata
->rstc
))
3348 reset_control_assert(host
->pdata
->rstc
);
3351 clk_disable_unprepare(host
->ciu_clk
);
3354 clk_disable_unprepare(host
->biu_clk
);
3358 EXPORT_SYMBOL(dw_mci_probe
);
3360 void dw_mci_remove(struct dw_mci
*host
)
3362 dev_dbg(host
->dev
, "remove slot\n");
3364 dw_mci_cleanup_slot(host
->slot
);
3366 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3367 mci_writel(host
, INTMASK
, 0); /* disable all mmc interrupt first */
3369 /* disable clock to CIU */
3370 mci_writel(host
, CLKENA
, 0);
3371 mci_writel(host
, CLKSRC
, 0);
3373 if (host
->use_dma
&& host
->dma_ops
->exit
)
3374 host
->dma_ops
->exit(host
);
3376 if (!IS_ERR(host
->pdata
->rstc
))
3377 reset_control_assert(host
->pdata
->rstc
);
3379 clk_disable_unprepare(host
->ciu_clk
);
3380 clk_disable_unprepare(host
->biu_clk
);
3382 EXPORT_SYMBOL(dw_mci_remove
);
3387 int dw_mci_runtime_suspend(struct device
*dev
)
3389 struct dw_mci
*host
= dev_get_drvdata(dev
);
3391 if (host
->use_dma
&& host
->dma_ops
->exit
)
3392 host
->dma_ops
->exit(host
);
3394 clk_disable_unprepare(host
->ciu_clk
);
3397 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3398 !mmc_card_is_removable(host
->slot
->mmc
)))
3399 clk_disable_unprepare(host
->biu_clk
);
3403 EXPORT_SYMBOL(dw_mci_runtime_suspend
);
3405 int dw_mci_runtime_resume(struct device
*dev
)
3408 struct dw_mci
*host
= dev_get_drvdata(dev
);
3411 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3412 !mmc_card_is_removable(host
->slot
->mmc
))) {
3413 ret
= clk_prepare_enable(host
->biu_clk
);
3418 ret
= clk_prepare_enable(host
->ciu_clk
);
3422 if (!dw_mci_ctrl_reset(host
, SDMMC_CTRL_ALL_RESET_FLAGS
)) {
3423 clk_disable_unprepare(host
->ciu_clk
);
3428 if (host
->use_dma
&& host
->dma_ops
->init
)
3429 host
->dma_ops
->init(host
);
3432 * Restore the initial value at FIFOTH register
3433 * And Invalidate the prev_blksz with zero
3435 mci_writel(host
, FIFOTH
, host
->fifoth_val
);
3436 host
->prev_blksz
= 0;
3438 /* Put in max timeout */
3439 mci_writel(host
, TMOUT
, 0xFFFFFFFF);
3441 mci_writel(host
, RINTSTS
, 0xFFFFFFFF);
3442 mci_writel(host
, INTMASK
, SDMMC_INT_CMD_DONE
| SDMMC_INT_DATA_OVER
|
3443 SDMMC_INT_TXDR
| SDMMC_INT_RXDR
|
3444 DW_MCI_ERROR_FLAGS
);
3445 mci_writel(host
, CTRL
, SDMMC_CTRL_INT_ENABLE
);
3448 if (host
->slot
->mmc
->pm_flags
& MMC_PM_KEEP_POWER
)
3449 dw_mci_set_ios(host
->slot
->mmc
, &host
->slot
->mmc
->ios
);
3451 /* Force setup bus to guarantee available clock output */
3452 dw_mci_setup_bus(host
->slot
, true);
3454 /* Re-enable SDIO interrupts. */
3455 if (sdio_irq_claimed(host
->slot
->mmc
))
3456 __dw_mci_enable_sdio_irq(host
->slot
, 1);
3458 /* Now that slots are all setup, we can enable card detect */
3459 dw_mci_enable_cd(host
);
3465 (mmc_can_gpio_cd(host
->slot
->mmc
) ||
3466 !mmc_card_is_removable(host
->slot
->mmc
)))
3467 clk_disable_unprepare(host
->biu_clk
);
3471 EXPORT_SYMBOL(dw_mci_runtime_resume
);
3472 #endif /* CONFIG_PM */
3474 static int __init
dw_mci_init(void)
3476 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3480 static void __exit
dw_mci_exit(void)
3484 module_init(dw_mci_init
);
3485 module_exit(dw_mci_exit
);
3487 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3488 MODULE_AUTHOR("NXP Semiconductor VietNam");
3489 MODULE_AUTHOR("Imagination Technologies Ltd");
3490 MODULE_LICENSE("GPL v2");