WIP FPC-III support
[linux/fpc-iii.git] / drivers / mtd / devices / mtd_dataflash.c
blob6d1eefe941069f1eebe89210aa4c3df6cf9d6a8e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
5 * Largely derived from at91_dataflash.c:
6 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 */
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/math64.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/flash.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
25 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
26 * each chip, which may be used for double buffered I/O; but this driver
27 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
29 * Sometimes DataFlash is packaged in MMC-format cards, although the
30 * MMC stack can't (yet?) distinguish between MMC and DataFlash
31 * protocols during enumeration.
34 /* reads can bypass the buffers */
35 #define OP_READ_CONTINUOUS 0xE8
36 #define OP_READ_PAGE 0xD2
38 /* group B requests can run even while status reports "busy" */
39 #define OP_READ_STATUS 0xD7 /* group B */
41 /* move data between host and buffer */
42 #define OP_READ_BUFFER1 0xD4 /* group B */
43 #define OP_READ_BUFFER2 0xD6 /* group B */
44 #define OP_WRITE_BUFFER1 0x84 /* group B */
45 #define OP_WRITE_BUFFER2 0x87 /* group B */
47 /* erasing flash */
48 #define OP_ERASE_PAGE 0x81
49 #define OP_ERASE_BLOCK 0x50
51 /* move data between buffer and flash */
52 #define OP_TRANSFER_BUF1 0x53
53 #define OP_TRANSFER_BUF2 0x55
54 #define OP_MREAD_BUFFER1 0xD4
55 #define OP_MREAD_BUFFER2 0xD6
56 #define OP_MWERASE_BUFFER1 0x83
57 #define OP_MWERASE_BUFFER2 0x86
58 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
59 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
61 /* write to buffer, then write-erase to flash */
62 #define OP_PROGRAM_VIA_BUF1 0x82
63 #define OP_PROGRAM_VIA_BUF2 0x85
65 /* compare buffer to flash */
66 #define OP_COMPARE_BUF1 0x60
67 #define OP_COMPARE_BUF2 0x61
69 /* read flash to buffer, then write-erase to flash */
70 #define OP_REWRITE_VIA_BUF1 0x58
71 #define OP_REWRITE_VIA_BUF2 0x59
73 /* newer chips report JEDEC manufacturer and device IDs; chip
74 * serial number and OTP bits; and per-sector writeprotect.
76 #define OP_READ_ID 0x9F
77 #define OP_READ_SECURITY 0x77
78 #define OP_WRITE_SECURITY_REVC 0x9A
79 #define OP_WRITE_SECURITY 0x9B /* revision D */
81 #define CFI_MFR_ATMEL 0x1F
83 #define DATAFLASH_SHIFT_EXTID 24
84 #define DATAFLASH_SHIFT_ID 40
86 struct dataflash {
87 u8 command[4];
88 char name[24];
90 unsigned short page_offset; /* offset in flash address */
91 unsigned int page_size; /* of bytes per page */
93 struct mutex lock;
94 struct spi_device *spi;
96 struct mtd_info mtd;
99 #ifdef CONFIG_OF
100 static const struct of_device_id dataflash_dt_ids[] = {
101 { .compatible = "atmel,at45", },
102 { .compatible = "atmel,dataflash", },
103 { /* sentinel */ }
105 MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
106 #endif
108 /* ......................................................................... */
111 * Return the status of the DataFlash device.
113 static inline int dataflash_status(struct spi_device *spi)
115 /* NOTE: at45db321c over 25 MHz wants to write
116 * a dummy byte after the opcode...
118 return spi_w8r8(spi, OP_READ_STATUS);
122 * Poll the DataFlash device until it is READY.
123 * This usually takes 5-20 msec or so; more for sector erase.
125 static int dataflash_waitready(struct spi_device *spi)
127 int status;
129 for (;;) {
130 status = dataflash_status(spi);
131 if (status < 0) {
132 dev_dbg(&spi->dev, "status %d?\n", status);
133 status = 0;
136 if (status & (1 << 7)) /* RDY/nBSY */
137 return status;
139 usleep_range(3000, 4000);
143 /* ......................................................................... */
146 * Erase pages of flash.
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
150 struct dataflash *priv = mtd->priv;
151 struct spi_device *spi = priv->spi;
152 struct spi_transfer x = { };
153 struct spi_message msg;
154 unsigned blocksize = priv->page_size << 3;
155 u8 *command;
156 u32 rem;
158 dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n",
159 (long long)instr->addr, (long long)instr->len);
161 div_u64_rem(instr->len, priv->page_size, &rem);
162 if (rem)
163 return -EINVAL;
164 div_u64_rem(instr->addr, priv->page_size, &rem);
165 if (rem)
166 return -EINVAL;
168 spi_message_init(&msg);
170 x.tx_buf = command = priv->command;
171 x.len = 4;
172 spi_message_add_tail(&x, &msg);
174 mutex_lock(&priv->lock);
175 while (instr->len > 0) {
176 unsigned int pageaddr;
177 int status;
178 int do_block;
180 /* Calculate flash page address; use block erase (for speed) if
181 * we're at a block boundary and need to erase the whole block.
183 pageaddr = div_u64(instr->addr, priv->page_size);
184 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
185 pageaddr = pageaddr << priv->page_offset;
187 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
188 command[1] = (u8)(pageaddr >> 16);
189 command[2] = (u8)(pageaddr >> 8);
190 command[3] = 0;
192 dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n",
193 do_block ? "block" : "page",
194 command[0], command[1], command[2], command[3],
195 pageaddr);
197 status = spi_sync(spi, &msg);
198 (void) dataflash_waitready(spi);
200 if (status < 0) {
201 dev_err(&spi->dev, "erase %x, err %d\n",
202 pageaddr, status);
203 /* REVISIT: can retry instr->retries times; or
204 * giveup and instr->fail_addr = instr->addr;
206 continue;
209 if (do_block) {
210 instr->addr += blocksize;
211 instr->len -= blocksize;
212 } else {
213 instr->addr += priv->page_size;
214 instr->len -= priv->page_size;
217 mutex_unlock(&priv->lock);
219 return 0;
223 * Read from the DataFlash device.
224 * from : Start offset in flash device
225 * len : Amount to read
226 * retlen : About of data actually read
227 * buf : Buffer containing the data
229 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
230 size_t *retlen, u_char *buf)
232 struct dataflash *priv = mtd->priv;
233 struct spi_transfer x[2] = { };
234 struct spi_message msg;
235 unsigned int addr;
236 u8 *command;
237 int status;
239 dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n",
240 (unsigned int)from, (unsigned int)(from + len));
242 /* Calculate flash page/byte address */
243 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
244 + ((unsigned)from % priv->page_size);
246 command = priv->command;
248 dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n",
249 command[0], command[1], command[2], command[3]);
251 spi_message_init(&msg);
253 x[0].tx_buf = command;
254 x[0].len = 8;
255 spi_message_add_tail(&x[0], &msg);
257 x[1].rx_buf = buf;
258 x[1].len = len;
259 spi_message_add_tail(&x[1], &msg);
261 mutex_lock(&priv->lock);
263 /* Continuous read, max clock = f(car) which may be less than
264 * the peak rate available. Some chips support commands with
265 * fewer "don't care" bytes. Both buffers stay unchanged.
267 command[0] = OP_READ_CONTINUOUS;
268 command[1] = (u8)(addr >> 16);
269 command[2] = (u8)(addr >> 8);
270 command[3] = (u8)(addr >> 0);
271 /* plus 4 "don't care" bytes */
273 status = spi_sync(priv->spi, &msg);
274 mutex_unlock(&priv->lock);
276 if (status >= 0) {
277 *retlen = msg.actual_length - 8;
278 status = 0;
279 } else
280 dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n",
281 (unsigned)from, (unsigned)(from + len),
282 status);
283 return status;
287 * Write to the DataFlash device.
288 * to : Start offset in flash device
289 * len : Amount to write
290 * retlen : Amount of data actually written
291 * buf : Buffer containing the data
293 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
294 size_t * retlen, const u_char * buf)
296 struct dataflash *priv = mtd->priv;
297 struct spi_device *spi = priv->spi;
298 struct spi_transfer x[2] = { };
299 struct spi_message msg;
300 unsigned int pageaddr, addr, offset, writelen;
301 size_t remaining = len;
302 u_char *writebuf = (u_char *) buf;
303 int status = -EINVAL;
304 u8 *command;
306 dev_dbg(&spi->dev, "write 0x%x..0x%x\n",
307 (unsigned int)to, (unsigned int)(to + len));
309 spi_message_init(&msg);
311 x[0].tx_buf = command = priv->command;
312 x[0].len = 4;
313 spi_message_add_tail(&x[0], &msg);
315 pageaddr = ((unsigned)to / priv->page_size);
316 offset = ((unsigned)to % priv->page_size);
317 if (offset + len > priv->page_size)
318 writelen = priv->page_size - offset;
319 else
320 writelen = len;
322 mutex_lock(&priv->lock);
323 while (remaining > 0) {
324 dev_dbg(&spi->dev, "write @ %i:%i len=%i\n",
325 pageaddr, offset, writelen);
327 /* REVISIT:
328 * (a) each page in a sector must be rewritten at least
329 * once every 10K sibling erase/program operations.
330 * (b) for pages that are already erased, we could
331 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
332 * (c) WRITE to buffer could be done while waiting for
333 * a previous MWRITE/MWERASE to complete ...
334 * (d) error handling here seems to be mostly missing.
336 * Two persistent bits per page, plus a per-sector counter,
337 * could support (a) and (b) ... we might consider using
338 * the second half of sector zero, which is just one block,
339 * to track that state. (On AT91, that sector should also
340 * support boot-from-DataFlash.)
343 addr = pageaddr << priv->page_offset;
345 /* (1) Maybe transfer partial page to Buffer1 */
346 if (writelen != priv->page_size) {
347 command[0] = OP_TRANSFER_BUF1;
348 command[1] = (addr & 0x00FF0000) >> 16;
349 command[2] = (addr & 0x0000FF00) >> 8;
350 command[3] = 0;
352 dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n",
353 command[0], command[1], command[2], command[3]);
355 status = spi_sync(spi, &msg);
356 if (status < 0)
357 dev_dbg(&spi->dev, "xfer %u -> %d\n",
358 addr, status);
360 (void) dataflash_waitready(priv->spi);
363 /* (2) Program full page via Buffer1 */
364 addr += offset;
365 command[0] = OP_PROGRAM_VIA_BUF1;
366 command[1] = (addr & 0x00FF0000) >> 16;
367 command[2] = (addr & 0x0000FF00) >> 8;
368 command[3] = (addr & 0x000000FF);
370 dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n",
371 command[0], command[1], command[2], command[3]);
373 x[1].tx_buf = writebuf;
374 x[1].len = writelen;
375 spi_message_add_tail(x + 1, &msg);
376 status = spi_sync(spi, &msg);
377 spi_transfer_del(x + 1);
378 if (status < 0)
379 dev_dbg(&spi->dev, "pgm %u/%u -> %d\n",
380 addr, writelen, status);
382 (void) dataflash_waitready(priv->spi);
385 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
387 /* (3) Compare to Buffer1 */
388 addr = pageaddr << priv->page_offset;
389 command[0] = OP_COMPARE_BUF1;
390 command[1] = (addr & 0x00FF0000) >> 16;
391 command[2] = (addr & 0x0000FF00) >> 8;
392 command[3] = 0;
394 dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n",
395 command[0], command[1], command[2], command[3]);
397 status = spi_sync(spi, &msg);
398 if (status < 0)
399 dev_dbg(&spi->dev, "compare %u -> %d\n",
400 addr, status);
402 status = dataflash_waitready(priv->spi);
404 /* Check result of the compare operation */
405 if (status & (1 << 6)) {
406 dev_err(&spi->dev, "compare page %u, err %d\n",
407 pageaddr, status);
408 remaining = 0;
409 status = -EIO;
410 break;
411 } else
412 status = 0;
414 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
416 remaining = remaining - writelen;
417 pageaddr++;
418 offset = 0;
419 writebuf += writelen;
420 *retlen += writelen;
422 if (remaining > priv->page_size)
423 writelen = priv->page_size;
424 else
425 writelen = remaining;
427 mutex_unlock(&priv->lock);
429 return status;
432 /* ......................................................................... */
434 #ifdef CONFIG_MTD_DATAFLASH_OTP
436 static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
437 size_t *retlen, struct otp_info *info)
439 /* Report both blocks as identical: bytes 0..64, locked.
440 * Unless the user block changed from all-ones, we can't
441 * tell whether it's still writable; so we assume it isn't.
443 info->start = 0;
444 info->length = 64;
445 info->locked = 1;
446 *retlen = sizeof(*info);
447 return 0;
450 static ssize_t otp_read(struct spi_device *spi, unsigned base,
451 u8 *buf, loff_t off, size_t len)
453 struct spi_message m;
454 size_t l;
455 u8 *scratch;
456 struct spi_transfer t;
457 int status;
459 if (off > 64)
460 return -EINVAL;
462 if ((off + len) > 64)
463 len = 64 - off;
465 spi_message_init(&m);
467 l = 4 + base + off + len;
468 scratch = kzalloc(l, GFP_KERNEL);
469 if (!scratch)
470 return -ENOMEM;
472 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
473 * IN: ignore 4 bytes, data bytes 0..N (max 127)
475 scratch[0] = OP_READ_SECURITY;
477 memset(&t, 0, sizeof t);
478 t.tx_buf = scratch;
479 t.rx_buf = scratch;
480 t.len = l;
481 spi_message_add_tail(&t, &m);
483 dataflash_waitready(spi);
485 status = spi_sync(spi, &m);
486 if (status >= 0) {
487 memcpy(buf, scratch + 4 + base + off, len);
488 status = len;
491 kfree(scratch);
492 return status;
495 static int dataflash_read_fact_otp(struct mtd_info *mtd,
496 loff_t from, size_t len, size_t *retlen, u_char *buf)
498 struct dataflash *priv = mtd->priv;
499 int status;
501 /* 64 bytes, from 0..63 ... start at 64 on-chip */
502 mutex_lock(&priv->lock);
503 status = otp_read(priv->spi, 64, buf, from, len);
504 mutex_unlock(&priv->lock);
506 if (status < 0)
507 return status;
508 *retlen = status;
509 return 0;
512 static int dataflash_read_user_otp(struct mtd_info *mtd,
513 loff_t from, size_t len, size_t *retlen, u_char *buf)
515 struct dataflash *priv = mtd->priv;
516 int status;
518 /* 64 bytes, from 0..63 ... start at 0 on-chip */
519 mutex_lock(&priv->lock);
520 status = otp_read(priv->spi, 0, buf, from, len);
521 mutex_unlock(&priv->lock);
523 if (status < 0)
524 return status;
525 *retlen = status;
526 return 0;
529 static int dataflash_write_user_otp(struct mtd_info *mtd,
530 loff_t from, size_t len, size_t *retlen, u_char *buf)
532 struct spi_message m;
533 const size_t l = 4 + 64;
534 u8 *scratch;
535 struct spi_transfer t;
536 struct dataflash *priv = mtd->priv;
537 int status;
539 if (from >= 64) {
541 * Attempting to write beyond the end of OTP memory,
542 * no data can be written.
544 *retlen = 0;
545 return 0;
548 /* Truncate the write to fit into OTP memory. */
549 if ((from + len) > 64)
550 len = 64 - from;
552 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
553 * IN: ignore all
555 scratch = kzalloc(l, GFP_KERNEL);
556 if (!scratch)
557 return -ENOMEM;
558 scratch[0] = OP_WRITE_SECURITY;
559 memcpy(scratch + 4 + from, buf, len);
561 spi_message_init(&m);
563 memset(&t, 0, sizeof t);
564 t.tx_buf = scratch;
565 t.len = l;
566 spi_message_add_tail(&t, &m);
568 /* Write the OTP bits, if they've not yet been written.
569 * This modifies SRAM buffer1.
571 mutex_lock(&priv->lock);
572 dataflash_waitready(priv->spi);
573 status = spi_sync(priv->spi, &m);
574 mutex_unlock(&priv->lock);
576 kfree(scratch);
578 if (status >= 0) {
579 status = 0;
580 *retlen = len;
582 return status;
585 static char *otp_setup(struct mtd_info *device, char revision)
587 device->_get_fact_prot_info = dataflash_get_otp_info;
588 device->_read_fact_prot_reg = dataflash_read_fact_otp;
589 device->_get_user_prot_info = dataflash_get_otp_info;
590 device->_read_user_prot_reg = dataflash_read_user_otp;
592 /* rev c parts (at45db321c and at45db1281 only!) use a
593 * different write procedure; not (yet?) implemented.
595 if (revision > 'c')
596 device->_write_user_prot_reg = dataflash_write_user_otp;
598 return ", OTP";
601 #else
603 static char *otp_setup(struct mtd_info *device, char revision)
605 return " (OTP)";
608 #endif
610 /* ......................................................................... */
613 * Register DataFlash device with MTD subsystem.
615 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
616 int pagesize, int pageoffset, char revision)
618 struct dataflash *priv;
619 struct mtd_info *device;
620 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
621 char *otp_tag = "";
622 int err = 0;
624 priv = kzalloc(sizeof *priv, GFP_KERNEL);
625 if (!priv)
626 return -ENOMEM;
628 mutex_init(&priv->lock);
629 priv->spi = spi;
630 priv->page_size = pagesize;
631 priv->page_offset = pageoffset;
633 /* name must be usable with cmdlinepart */
634 sprintf(priv->name, "spi%d.%d-%s",
635 spi->master->bus_num, spi->chip_select,
636 name);
638 device = &priv->mtd;
639 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
640 device->size = nr_pages * pagesize;
641 device->erasesize = pagesize;
642 device->writesize = pagesize;
643 device->type = MTD_DATAFLASH;
644 device->flags = MTD_WRITEABLE;
645 device->_erase = dataflash_erase;
646 device->_read = dataflash_read;
647 device->_write = dataflash_write;
648 device->priv = priv;
650 device->dev.parent = &spi->dev;
651 mtd_set_of_node(device, spi->dev.of_node);
653 if (revision >= 'c')
654 otp_tag = otp_setup(device, revision);
656 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
657 name, (long long)((device->size + 1023) >> 10),
658 pagesize, otp_tag);
659 spi_set_drvdata(spi, priv);
661 err = mtd_device_register(device,
662 pdata ? pdata->parts : NULL,
663 pdata ? pdata->nr_parts : 0);
665 if (!err)
666 return 0;
668 kfree(priv);
669 return err;
672 static inline int add_dataflash(struct spi_device *spi, char *name,
673 int nr_pages, int pagesize, int pageoffset)
675 return add_dataflash_otp(spi, name, nr_pages, pagesize,
676 pageoffset, 0);
679 struct flash_info {
680 char *name;
682 /* JEDEC id has a high byte of zero plus three data bytes:
683 * the manufacturer id, then a two byte device id.
685 u64 jedec_id;
687 /* The size listed here is what works with OP_ERASE_PAGE. */
688 unsigned nr_pages;
689 u16 pagesize;
690 u16 pageoffset;
692 u16 flags;
693 #define SUP_EXTID 0x0004 /* supports extended ID data */
694 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
695 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
698 static struct flash_info dataflash_data[] = {
701 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
702 * one with IS_POW2PS and the other without. The entry with the
703 * non-2^N byte page size can't name exact chip revisions without
704 * losing backwards compatibility for cmdlinepart.
706 * These newer chips also support 128-byte security registers (with
707 * 64 bytes one-time-programmable) and software write-protection.
709 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
710 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
712 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
713 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
715 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
716 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
718 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
719 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
721 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
722 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
724 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
726 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
727 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
729 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
730 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
732 { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS},
733 { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS},
736 static struct flash_info *jedec_lookup(struct spi_device *spi,
737 u64 jedec, bool use_extid)
739 struct flash_info *info;
740 int status;
742 for (info = dataflash_data;
743 info < dataflash_data + ARRAY_SIZE(dataflash_data);
744 info++) {
745 if (use_extid && !(info->flags & SUP_EXTID))
746 continue;
748 if (info->jedec_id == jedec) {
749 dev_dbg(&spi->dev, "OTP, sector protect%s\n",
750 (info->flags & SUP_POW2PS) ?
751 ", binary pagesize" : "");
752 if (info->flags & SUP_POW2PS) {
753 status = dataflash_status(spi);
754 if (status < 0) {
755 dev_dbg(&spi->dev, "status error %d\n",
756 status);
757 return ERR_PTR(status);
759 if (status & 0x1) {
760 if (info->flags & IS_POW2PS)
761 return info;
762 } else {
763 if (!(info->flags & IS_POW2PS))
764 return info;
766 } else
767 return info;
771 return ERR_PTR(-ENODEV);
774 static struct flash_info *jedec_probe(struct spi_device *spi)
776 int ret;
777 u8 code = OP_READ_ID;
778 u64 jedec;
779 u8 id[sizeof(jedec)] = {0};
780 const unsigned int id_size = 5;
781 struct flash_info *info;
784 * JEDEC also defines an optional "extended device information"
785 * string for after vendor-specific data, after the three bytes
786 * we use here. Supporting some chips might require using it.
788 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
789 * That's not an error; only rev C and newer chips handle it, and
790 * only Atmel sells these chips.
792 ret = spi_write_then_read(spi, &code, 1, id, id_size);
793 if (ret < 0) {
794 dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret);
795 return ERR_PTR(ret);
798 if (id[0] != CFI_MFR_ATMEL)
799 return NULL;
801 jedec = be64_to_cpup((__be64 *)id);
804 * First, try to match device using extended device
805 * information
807 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true);
808 if (!IS_ERR(info))
809 return info;
811 * If that fails, make another pass using regular ID
812 * information
814 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false);
815 if (!IS_ERR(info))
816 return info;
818 * Treat other chips as errors ... we won't know the right page
819 * size (it might be binary) even when we can tell which density
820 * class is involved (legacy chip id scheme).
822 dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec);
823 return ERR_PTR(-ENODEV);
827 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
828 * or else the ID code embedded in the status bits:
830 * Device Density ID code #Pages PageSize Offset
831 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
832 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
833 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
834 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
835 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
836 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
837 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
838 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
840 static int dataflash_probe(struct spi_device *spi)
842 int status;
843 struct flash_info *info;
846 * Try to detect dataflash by JEDEC ID.
847 * If it succeeds we know we have either a C or D part.
848 * D will support power of 2 pagesize option.
849 * Both support the security register, though with different
850 * write procedures.
852 info = jedec_probe(spi);
853 if (IS_ERR(info))
854 return PTR_ERR(info);
855 if (info != NULL)
856 return add_dataflash_otp(spi, info->name, info->nr_pages,
857 info->pagesize, info->pageoffset,
858 (info->flags & SUP_POW2PS) ? 'd' : 'c');
861 * Older chips support only legacy commands, identifing
862 * capacity using bits in the status byte.
864 status = dataflash_status(spi);
865 if (status <= 0 || status == 0xff) {
866 dev_dbg(&spi->dev, "status error %d\n", status);
867 if (status == 0 || status == 0xff)
868 status = -ENODEV;
869 return status;
872 /* if there's a device there, assume it's dataflash.
873 * board setup should have set spi->max_speed_max to
874 * match f(car) for continuous reads, mode 0 or 3.
876 switch (status & 0x3c) {
877 case 0x0c: /* 0 0 1 1 x x */
878 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
879 break;
880 case 0x14: /* 0 1 0 1 x x */
881 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
882 break;
883 case 0x1c: /* 0 1 1 1 x x */
884 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
885 break;
886 case 0x24: /* 1 0 0 1 x x */
887 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
888 break;
889 case 0x2c: /* 1 0 1 1 x x */
890 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
891 break;
892 case 0x34: /* 1 1 0 1 x x */
893 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
894 break;
895 case 0x38: /* 1 1 1 x x x */
896 case 0x3c:
897 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
898 break;
899 /* obsolete AT45DB1282 not (yet?) supported */
900 default:
901 dev_info(&spi->dev, "unsupported device (%x)\n",
902 status & 0x3c);
903 status = -ENODEV;
906 if (status < 0)
907 dev_dbg(&spi->dev, "add_dataflash --> %d\n", status);
909 return status;
912 static int dataflash_remove(struct spi_device *spi)
914 struct dataflash *flash = spi_get_drvdata(spi);
915 int status;
917 dev_dbg(&spi->dev, "remove\n");
919 status = mtd_device_unregister(&flash->mtd);
920 if (status == 0)
921 kfree(flash);
922 return status;
925 static struct spi_driver dataflash_driver = {
926 .driver = {
927 .name = "mtd_dataflash",
928 .of_match_table = of_match_ptr(dataflash_dt_ids),
931 .probe = dataflash_probe,
932 .remove = dataflash_remove,
934 /* FIXME: investigate suspend and resume... */
937 module_spi_driver(dataflash_driver);
939 MODULE_LICENSE("GPL");
940 MODULE_AUTHOR("Andrew Victor, David Brownell");
941 MODULE_DESCRIPTION("MTD DataFlash driver");
942 MODULE_ALIAS("spi:mtd_dataflash");