1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright © 2005-2009 Samsung Electronics
4 * Copyright © 2007 Nokia Corporation
6 * Kyungmin Park <kyungmin.park@samsung.com>
9 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
10 * auto-placement support, read-while load support, various fixes
12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 * Flex-OneNAND support
14 * Amul Kumar Saha <amul.saha at samsung.com>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/jiffies.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/onenand.h>
28 #include <linux/mtd/partitions.h>
33 * Multiblock erase if number of blocks to erase is 2 or more.
34 * Maximum number of blocks for simultaneous erase is 64.
36 #define MB_ERASE_MIN_BLK_COUNT 2
37 #define MB_ERASE_MAX_BLK_COUNT 64
39 /* Default Flex-OneNAND boundary and lock respectively */
40 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
42 module_param_array(flex_bdry
, int, NULL
, 0400);
43 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
44 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 "DIE_BDRY: SLC boundary of the die"
46 "LOCK: Locking information for SLC boundary"
47 " : 0->Set boundary in unlocked status"
48 " : 1->Set boundary in locked status");
50 /* Default OneNAND/Flex-OneNAND OTP options*/
53 module_param(otp
, int, 0400);
54 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
55 "Syntax : otp=LOCK_TYPE"
56 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 " : 0 -> Default (No Blocks Locked)"
58 " : 1 -> OTP Block lock"
59 " : 2 -> 1st Block lock"
60 " : 3 -> BOTH OTP Block and 1st Block lock");
63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64 * For now, we expose only 64 out of 80 ecc bytes
66 static int flexonenand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
67 struct mtd_oob_region
*oobregion
)
72 oobregion
->offset
= (section
* 16) + 6;
73 oobregion
->length
= 10;
78 static int flexonenand_ooblayout_free(struct mtd_info
*mtd
, int section
,
79 struct mtd_oob_region
*oobregion
)
84 oobregion
->offset
= (section
* 16) + 2;
85 oobregion
->length
= 4;
90 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops
= {
91 .ecc
= flexonenand_ooblayout_ecc
,
92 .free
= flexonenand_ooblayout_free
,
96 * onenand_oob_128 - oob info for OneNAND with 4KB page
98 * Based on specification:
99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
102 static int onenand_ooblayout_128_ecc(struct mtd_info
*mtd
, int section
,
103 struct mtd_oob_region
*oobregion
)
108 oobregion
->offset
= (section
* 16) + 7;
109 oobregion
->length
= 9;
114 static int onenand_ooblayout_128_free(struct mtd_info
*mtd
, int section
,
115 struct mtd_oob_region
*oobregion
)
121 * free bytes are using the spare area fields marked as
122 * "Managed by internal ECC logic for Logical Sector Number area"
124 oobregion
->offset
= (section
* 16) + 2;
125 oobregion
->length
= 3;
130 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops
= {
131 .ecc
= onenand_ooblayout_128_ecc
,
132 .free
= onenand_ooblayout_128_free
,
136 * onenand_oob_32_64 - oob info for large (2KB) page
138 static int onenand_ooblayout_32_64_ecc(struct mtd_info
*mtd
, int section
,
139 struct mtd_oob_region
*oobregion
)
144 oobregion
->offset
= (section
* 16) + 8;
145 oobregion
->length
= 5;
150 static int onenand_ooblayout_32_64_free(struct mtd_info
*mtd
, int section
,
151 struct mtd_oob_region
*oobregion
)
153 int sections
= (mtd
->oobsize
/ 32) * 2;
155 if (section
>= sections
)
159 oobregion
->offset
= ((section
- 1) * 16) + 14;
160 oobregion
->length
= 2;
162 oobregion
->offset
= (section
* 16) + 2;
163 oobregion
->length
= 3;
169 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops
= {
170 .ecc
= onenand_ooblayout_32_64_ecc
,
171 .free
= onenand_ooblayout_32_64_free
,
174 static const unsigned char ffchars
[] = {
175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
194 * onenand_readw - [OneNAND Interface] Read OneNAND register
195 * @addr: address to read
197 * Read OneNAND register
199 static unsigned short onenand_readw(void __iomem
*addr
)
205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206 * @value: value to write
207 * @addr: address to write
209 * Write OneNAND register with value
211 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
217 * onenand_block_address - [DEFAULT] Get block address
218 * @this: onenand chip data structure
220 * @return translated block address if DDP, otherwise same
222 * Setup Start Address 1 Register (F100h)
224 static int onenand_block_address(struct onenand_chip
*this, int block
)
226 /* Device Flash Core select, NAND Flash Block Address */
227 if (block
& this->density_mask
)
228 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
235 * @this: onenand chip data structure
237 * @return set DBS value if DDP, otherwise 0
239 * Setup Start Address 2 Register (F101h) for DDP
241 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
243 /* Device BufferRAM Select */
244 if (block
& this->density_mask
)
245 return ONENAND_DDP_CHIP1
;
247 return ONENAND_DDP_CHIP0
;
251 * onenand_page_address - [DEFAULT] Get page address
252 * @page: the page address
253 * @sector: the sector address
254 * @return combined page and sector address
256 * Setup Start Address 8 Register (F107h)
258 static int onenand_page_address(int page
, int sector
)
260 /* Flash Page Address, Flash Sector Address */
263 fpa
= page
& ONENAND_FPA_MASK
;
264 fsa
= sector
& ONENAND_FSA_MASK
;
266 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
270 * onenand_buffer_address - [DEFAULT] Get buffer address
271 * @dataram1: DataRAM index
272 * @sectors: the sector address
273 * @count: the number of sectors
274 * Return: the start buffer value
276 * Setup Start Buffer Register (F200h)
278 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
282 /* BufferRAM Sector Address */
283 bsa
= sectors
& ONENAND_BSA_MASK
;
286 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
288 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
290 /* BufferRAM Sector Count */
291 bsc
= count
& ONENAND_BSC_MASK
;
293 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
297 * flexonenand_block- For given address return block number
298 * @this: - OneNAND device structure
299 * @addr: - Address for which block number is needed
301 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
303 unsigned boundary
, blk
, die
= 0;
305 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
307 addr
-= this->diesize
[0];
310 boundary
= this->boundary
[die
];
312 blk
= addr
>> (this->erase_shift
- 1);
314 blk
= (blk
+ boundary
+ 1) >> 1;
316 blk
+= die
? this->density_mask
: 0;
320 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
322 if (!FLEXONENAND(this))
323 return addr
>> this->erase_shift
;
324 return flexonenand_block(this, addr
);
328 * flexonenand_addr - Return address of the block
329 * @this: OneNAND device structure
330 * @block: Block number on Flex-OneNAND
332 * Return address of the block
334 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
337 int die
= 0, boundary
;
339 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
340 block
-= this->density_mask
;
342 ofs
= this->diesize
[0];
345 boundary
= this->boundary
[die
];
346 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
347 if (block
> (boundary
+ 1))
348 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
352 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
354 if (!FLEXONENAND(this))
355 return (loff_t
)block
<< this->erase_shift
;
356 return flexonenand_addr(this, block
);
358 EXPORT_SYMBOL(onenand_addr
);
361 * onenand_get_density - [DEFAULT] Get OneNAND density
362 * @dev_id: OneNAND device ID
364 * Get OneNAND density from device ID
366 static inline int onenand_get_density(int dev_id
)
368 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
369 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374 * @mtd: MTD device structure
375 * @addr: address whose erase region needs to be identified
377 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
381 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
382 if (addr
< mtd
->eraseregions
[i
].offset
)
386 EXPORT_SYMBOL(flexonenand_region
);
389 * onenand_command - [DEFAULT] Send command to OneNAND device
390 * @mtd: MTD device structure
391 * @cmd: the command to be sent
392 * @addr: offset to read from or write to
393 * @len: number of bytes to read or write
395 * Send command to OneNAND device. This function is used for middle/large page
396 * devices (1KB/2KB Bytes per page)
398 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
400 struct onenand_chip
*this = mtd
->priv
;
401 int value
, block
, page
;
403 /* Address translation */
405 case ONENAND_CMD_UNLOCK
:
406 case ONENAND_CMD_LOCK
:
407 case ONENAND_CMD_LOCK_TIGHT
:
408 case ONENAND_CMD_UNLOCK_ALL
:
413 case FLEXONENAND_CMD_PI_ACCESS
:
414 /* addr contains die index */
415 block
= addr
* this->density_mask
;
419 case ONENAND_CMD_ERASE
:
420 case ONENAND_CMD_MULTIBLOCK_ERASE
:
421 case ONENAND_CMD_ERASE_VERIFY
:
422 case ONENAND_CMD_BUFFERRAM
:
423 case ONENAND_CMD_OTP_ACCESS
:
424 block
= onenand_block(this, addr
);
428 case FLEXONENAND_CMD_READ_PI
:
429 cmd
= ONENAND_CMD_READ
;
430 block
= addr
* this->density_mask
;
435 block
= onenand_block(this, addr
);
436 if (FLEXONENAND(this))
437 page
= (int) (addr
- onenand_addr(this, block
))>>\
440 page
= (int) (addr
>> this->page_shift
);
441 if (ONENAND_IS_2PLANE(this)) {
442 /* Make the even block number */
444 /* Is it the odd plane? */
445 if (addr
& this->writesize
)
449 page
&= this->page_mask
;
453 /* NOTE: The setting order of the registers is very important! */
454 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
455 /* Select DataRAM for DDP */
456 value
= onenand_bufferram_address(this, block
);
457 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
459 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 /* It is always BufferRAM0 */
461 ONENAND_SET_BUFFERRAM0(this);
463 /* Switch to the next data buffer */
464 ONENAND_SET_NEXT_BUFFERRAM(this);
470 /* Write 'DFS, FBA' of Flash */
471 value
= onenand_block_address(this, block
);
472 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
474 /* Select DataRAM for DDP */
475 value
= onenand_bufferram_address(this, block
);
476 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
480 /* Now we use page size operation */
481 int sectors
= 0, count
= 0;
485 case FLEXONENAND_CMD_RECOVER_LSB
:
486 case ONENAND_CMD_READ
:
487 case ONENAND_CMD_READOOB
:
488 if (ONENAND_IS_4KB_PAGE(this))
489 /* It is always BufferRAM0 */
490 dataram
= ONENAND_SET_BUFFERRAM0(this);
492 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
496 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
497 cmd
= ONENAND_CMD_2X_PROG
;
498 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
502 /* Write 'FPA, FSA' of Flash */
503 value
= onenand_page_address(page
, sectors
);
504 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
506 /* Write 'BSA, BSC' of DataRAM */
507 value
= onenand_buffer_address(dataram
, sectors
, count
);
508 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
511 /* Interrupt clear */
512 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
515 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
521 * onenand_read_ecc - return ecc status
522 * @this: onenand chip structure
524 static inline int onenand_read_ecc(struct onenand_chip
*this)
526 int ecc
, i
, result
= 0;
528 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
531 for (i
= 0; i
< 4; i
++) {
532 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
*2);
535 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
536 return ONENAND_ECC_2BIT_ALL
;
538 result
= ONENAND_ECC_1BIT_ALL
;
545 * onenand_wait - [DEFAULT] wait until the command is done
546 * @mtd: MTD device structure
547 * @state: state to select the max. timeout value
549 * Wait for command done. This applies to all OneNAND command
550 * Read can take up to 30us, erase up to 2ms and program up to 350us
551 * according to general OneNAND specs
553 static int onenand_wait(struct mtd_info
*mtd
, int state
)
555 struct onenand_chip
* this = mtd
->priv
;
556 unsigned long timeout
;
557 unsigned int flags
= ONENAND_INT_MASTER
;
558 unsigned int interrupt
= 0;
561 /* The 20 msec is enough */
562 timeout
= jiffies
+ msecs_to_jiffies(20);
563 while (time_before(jiffies
, timeout
)) {
564 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
566 if (interrupt
& flags
)
569 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
572 /* To get correct interrupt status in timeout case */
573 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
575 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
578 * In the Spec. it checks the controller status first
579 * However if you get the correct information in case of
580 * power off recovery (POR) test, it should read ECC status first
582 if (interrupt
& ONENAND_INT_READ
) {
583 int ecc
= onenand_read_ecc(this);
585 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
586 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
588 mtd
->ecc_stats
.failed
++;
590 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
591 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
593 mtd
->ecc_stats
.corrected
++;
596 } else if (state
== FL_READING
) {
597 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 __func__
, ctrl
, interrupt
);
602 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
603 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 __func__
, ctrl
, interrupt
);
608 if (!(interrupt
& ONENAND_INT_MASTER
)) {
609 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 __func__
, ctrl
, interrupt
);
614 /* If there's controller error, it's a real error */
615 if (ctrl
& ONENAND_CTRL_ERROR
) {
616 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
618 if (ctrl
& ONENAND_CTRL_LOCK
)
619 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
628 * @irq: onenand interrupt number
629 * @dev_id: interrupt data
633 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
635 struct onenand_chip
*this = data
;
637 /* To handle shared interrupt */
638 if (!this->complete
.done
)
639 complete(&this->complete
);
645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646 * @mtd: MTD device structure
647 * @state: state to select the max. timeout value
649 * Wait for command done.
651 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
653 struct onenand_chip
*this = mtd
->priv
;
655 wait_for_completion(&this->complete
);
657 return onenand_wait(mtd
, state
);
661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662 * @mtd: MTD device structure
663 * @state: state to select the max. timeout value
665 * Try interrupt based wait (It is used one-time)
667 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
669 struct onenand_chip
*this = mtd
->priv
;
670 unsigned long remain
, timeout
;
672 /* We use interrupt wait first */
673 this->wait
= onenand_interrupt_wait
;
675 timeout
= msecs_to_jiffies(100);
676 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
678 printk(KERN_INFO
"OneNAND: There's no interrupt. "
679 "We use the normal wait\n");
681 /* Release the irq */
682 free_irq(this->irq
, this);
684 this->wait
= onenand_wait
;
687 return onenand_wait(mtd
, state
);
691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692 * @mtd: MTD device structure
694 * There's two method to wait onenand work
695 * 1. polling - read interrupt status register
696 * 2. interrupt - use the kernel interrupt method
698 static void onenand_setup_wait(struct mtd_info
*mtd
)
700 struct onenand_chip
*this = mtd
->priv
;
703 init_completion(&this->complete
);
705 if (this->irq
<= 0) {
706 this->wait
= onenand_wait
;
710 if (request_irq(this->irq
, &onenand_interrupt
,
711 IRQF_SHARED
, "onenand", this)) {
712 /* If we can't get irq, use the normal wait */
713 this->wait
= onenand_wait
;
717 /* Enable interrupt */
718 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
719 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
720 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
722 this->wait
= onenand_try_interrupt_wait
;
726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727 * @mtd: MTD data structure
728 * @area: BufferRAM area
729 * @return offset given area
731 * Return BufferRAM offset given area
733 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
735 struct onenand_chip
*this = mtd
->priv
;
737 if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 /* Note: the 'this->writesize' is a real page size */
739 if (area
== ONENAND_DATARAM
)
740 return this->writesize
;
741 if (area
== ONENAND_SPARERAM
)
749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750 * @mtd: MTD data structure
751 * @area: BufferRAM area
752 * @buffer: the databuffer to put/get data
753 * @offset: offset to read from or write to
754 * @count: number of bytes to read/write
756 * Read the BufferRAM area
758 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
759 unsigned char *buffer
, int offset
, size_t count
)
761 struct onenand_chip
*this = mtd
->priv
;
762 void __iomem
*bufferram
;
764 bufferram
= this->base
+ area
;
766 bufferram
+= onenand_bufferram_offset(mtd
, area
);
768 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
771 /* Align with word(16-bit) size */
774 /* Read word and save byte */
775 word
= this->read_word(bufferram
+ offset
+ count
);
776 buffer
[count
] = (word
& 0xff);
779 memcpy(buffer
, bufferram
+ offset
, count
);
785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786 * @mtd: MTD data structure
787 * @area: BufferRAM area
788 * @buffer: the databuffer to put/get data
789 * @offset: offset to read from or write to
790 * @count: number of bytes to read/write
792 * Read the BufferRAM area with Sync. Burst Mode
794 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
795 unsigned char *buffer
, int offset
, size_t count
)
797 struct onenand_chip
*this = mtd
->priv
;
798 void __iomem
*bufferram
;
800 bufferram
= this->base
+ area
;
802 bufferram
+= onenand_bufferram_offset(mtd
, area
);
804 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
806 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
809 /* Align with word(16-bit) size */
812 /* Read word and save byte */
813 word
= this->read_word(bufferram
+ offset
+ count
);
814 buffer
[count
] = (word
& 0xff);
817 memcpy(buffer
, bufferram
+ offset
, count
);
819 this->mmcontrol(mtd
, 0);
825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826 * @mtd: MTD data structure
827 * @area: BufferRAM area
828 * @buffer: the databuffer to put/get data
829 * @offset: offset to read from or write to
830 * @count: number of bytes to read/write
832 * Write the BufferRAM area
834 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
835 const unsigned char *buffer
, int offset
, size_t count
)
837 struct onenand_chip
*this = mtd
->priv
;
838 void __iomem
*bufferram
;
840 bufferram
= this->base
+ area
;
842 bufferram
+= onenand_bufferram_offset(mtd
, area
);
844 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
848 /* Align with word(16-bit) size */
851 /* Calculate byte access offset */
852 byte_offset
= offset
+ count
;
854 /* Read word and save byte */
855 word
= this->read_word(bufferram
+ byte_offset
);
856 word
= (word
& ~0xff) | buffer
[count
];
857 this->write_word(word
, bufferram
+ byte_offset
);
860 memcpy(bufferram
+ offset
, buffer
, count
);
866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867 * @mtd: MTD data structure
868 * @addr: address to check
869 * @return blockpage address
871 * Get blockpage address at 2x program mode
873 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
875 struct onenand_chip
*this = mtd
->priv
;
876 int blockpage
, block
, page
;
878 /* Calculate the even block number */
879 block
= (int) (addr
>> this->erase_shift
) & ~1;
880 /* Is it the odd plane? */
881 if (addr
& this->writesize
)
883 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
884 blockpage
= (block
<< 7) | page
;
890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891 * @mtd: MTD data structure
892 * @addr: address to check
893 * @return 1 if there are valid data, otherwise 0
895 * Check bufferram if there is data we required
897 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
899 struct onenand_chip
*this = mtd
->priv
;
900 int blockpage
, found
= 0;
903 if (ONENAND_IS_2PLANE(this))
904 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
906 blockpage
= (int) (addr
>> this->page_shift
);
908 /* Is there valid data? */
909 i
= ONENAND_CURRENT_BUFFERRAM(this);
910 if (this->bufferram
[i
].blockpage
== blockpage
)
913 /* Check another BufferRAM */
914 i
= ONENAND_NEXT_BUFFERRAM(this);
915 if (this->bufferram
[i
].blockpage
== blockpage
) {
916 ONENAND_SET_NEXT_BUFFERRAM(this);
921 if (found
&& ONENAND_IS_DDP(this)) {
922 /* Select DataRAM for DDP */
923 int block
= onenand_block(this, addr
);
924 int value
= onenand_bufferram_address(this, block
);
925 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933 * @mtd: MTD data structure
934 * @addr: address to update
937 * Update BufferRAM information
939 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
942 struct onenand_chip
*this = mtd
->priv
;
946 if (ONENAND_IS_2PLANE(this))
947 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
949 blockpage
= (int) (addr
>> this->page_shift
);
951 /* Invalidate another BufferRAM */
952 i
= ONENAND_NEXT_BUFFERRAM(this);
953 if (this->bufferram
[i
].blockpage
== blockpage
)
954 this->bufferram
[i
].blockpage
= -1;
956 /* Update BufferRAM */
957 i
= ONENAND_CURRENT_BUFFERRAM(this);
959 this->bufferram
[i
].blockpage
= blockpage
;
961 this->bufferram
[i
].blockpage
= -1;
965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966 * @mtd: MTD data structure
967 * @addr: start address to invalidate
968 * @len: length to invalidate
970 * Invalidate BufferRAM information
972 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
975 struct onenand_chip
*this = mtd
->priv
;
977 loff_t end_addr
= addr
+ len
;
979 /* Invalidate BufferRAM */
980 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
981 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
982 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
983 this->bufferram
[i
].blockpage
= -1;
988 * onenand_get_device - [GENERIC] Get chip for selected access
989 * @mtd: MTD device structure
990 * @new_state: the state which is requested
992 * Get the device and lock it for exclusive access
994 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
996 struct onenand_chip
*this = mtd
->priv
;
997 DECLARE_WAITQUEUE(wait
, current
);
1000 * Grab the lock and see if the device is available
1003 spin_lock(&this->chip_lock
);
1004 if (this->state
== FL_READY
) {
1005 this->state
= new_state
;
1006 spin_unlock(&this->chip_lock
);
1007 if (new_state
!= FL_PM_SUSPENDED
&& this->enable
)
1011 if (new_state
== FL_PM_SUSPENDED
) {
1012 spin_unlock(&this->chip_lock
);
1013 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
1015 set_current_state(TASK_UNINTERRUPTIBLE
);
1016 add_wait_queue(&this->wq
, &wait
);
1017 spin_unlock(&this->chip_lock
);
1019 remove_wait_queue(&this->wq
, &wait
);
1026 * onenand_release_device - [GENERIC] release chip
1027 * @mtd: MTD device structure
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1031 static void onenand_release_device(struct mtd_info
*mtd
)
1033 struct onenand_chip
*this = mtd
->priv
;
1035 if (this->state
!= FL_PM_SUSPENDED
&& this->disable
)
1037 /* Release the chip */
1038 spin_lock(&this->chip_lock
);
1039 this->state
= FL_READY
;
1041 spin_unlock(&this->chip_lock
);
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @mtd: MTD device structure
1047 * @buf: destination address
1048 * @column: oob offset to read from
1049 * @thislen: oob length to read
1051 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
1054 struct onenand_chip
*this = mtd
->priv
;
1056 this->read_bufferram(mtd
, ONENAND_SPARERAM
, this->oob_buf
, 0,
1058 return mtd_ooblayout_get_databytes(mtd
, buf
, this->oob_buf
,
1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064 * @mtd: MTD device structure
1065 * @addr: address to recover
1066 * @status: return value from onenand_wait / onenand_bbt_wait
1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069 * lower page address and MSB page has higher page address in paired pages.
1070 * If power off occurs during MSB page program, the paired LSB page data can
1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073 * read after power up, issue LSB page recovery read.
1075 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1077 struct onenand_chip
*this = mtd
->priv
;
1080 /* Recovery is only for Flex-OneNAND */
1081 if (!FLEXONENAND(this))
1084 /* check if we failed due to uncorrectable error */
1085 if (!mtd_is_eccerr(status
) && status
!= ONENAND_BBT_READ_ECC_ERROR
)
1088 /* check if address lies in MLC region */
1089 i
= flexonenand_region(mtd
, addr
);
1090 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1093 /* We are attempting to reread, so decrement stats.failed
1094 * which was incremented by onenand_wait due to read failure
1096 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1098 mtd
->ecc_stats
.failed
--;
1100 /* Issue the LSB page recovery command */
1101 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1102 return this->wait(mtd
, FL_READING
);
1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107 * @mtd: MTD device structure
1108 * @from: offset to read from
1109 * @ops: oob operation description structure
1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112 * So, read-while-load is not present.
1114 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1115 struct mtd_oob_ops
*ops
)
1117 struct onenand_chip
*this = mtd
->priv
;
1118 struct mtd_ecc_stats stats
;
1119 size_t len
= ops
->len
;
1120 size_t ooblen
= ops
->ooblen
;
1121 u_char
*buf
= ops
->datbuf
;
1122 u_char
*oobbuf
= ops
->oobbuf
;
1123 int read
= 0, column
, thislen
;
1124 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1126 int writesize
= this->writesize
;
1128 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1131 oobsize
= mtd_oobavail(mtd
, ops
);
1132 oobcolumn
= from
& (mtd
->oobsize
- 1);
1134 /* Do not allow reads past end of device */
1135 if (from
+ len
> mtd
->size
) {
1136 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1143 stats
= mtd
->ecc_stats
;
1145 while (read
< len
) {
1148 thislen
= min_t(int, writesize
, len
- read
);
1150 column
= from
& (writesize
- 1);
1151 if (column
+ thislen
> writesize
)
1152 thislen
= writesize
- column
;
1154 if (!onenand_check_bufferram(mtd
, from
)) {
1155 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1157 ret
= this->wait(mtd
, FL_READING
);
1159 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1160 onenand_update_bufferram(mtd
, from
, !ret
);
1161 if (mtd_is_eccerr(ret
))
1167 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1169 thisooblen
= oobsize
- oobcolumn
;
1170 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1172 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1173 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1175 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1176 oobread
+= thisooblen
;
1177 oobbuf
+= thisooblen
;
1190 * Return success, if no ECC failures, else -EBADMSG
1191 * fs driver will take care of that, because
1192 * retlen == desired len and result == -EBADMSG
1195 ops
->oobretlen
= oobread
;
1200 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1203 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @mtd: MTD device structure
1210 * @from: offset to read from
1211 * @ops: oob operation description structure
1213 * OneNAND read main and/or out-of-band data
1215 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1216 struct mtd_oob_ops
*ops
)
1218 struct onenand_chip
*this = mtd
->priv
;
1219 struct mtd_ecc_stats stats
;
1220 size_t len
= ops
->len
;
1221 size_t ooblen
= ops
->ooblen
;
1222 u_char
*buf
= ops
->datbuf
;
1223 u_char
*oobbuf
= ops
->oobbuf
;
1224 int read
= 0, column
, thislen
;
1225 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1226 int ret
= 0, boundary
= 0;
1227 int writesize
= this->writesize
;
1229 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1232 oobsize
= mtd_oobavail(mtd
, ops
);
1233 oobcolumn
= from
& (mtd
->oobsize
- 1);
1235 /* Do not allow reads past end of device */
1236 if ((from
+ len
) > mtd
->size
) {
1237 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1244 stats
= mtd
->ecc_stats
;
1246 /* Read-while-load method */
1248 /* Do first load to bufferRAM */
1250 if (!onenand_check_bufferram(mtd
, from
)) {
1251 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1252 ret
= this->wait(mtd
, FL_READING
);
1253 onenand_update_bufferram(mtd
, from
, !ret
);
1254 if (mtd_is_eccerr(ret
))
1259 thislen
= min_t(int, writesize
, len
- read
);
1260 column
= from
& (writesize
- 1);
1261 if (column
+ thislen
> writesize
)
1262 thislen
= writesize
- column
;
1265 /* If there is more to load then start next load */
1267 if (read
+ thislen
< len
) {
1268 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1270 * Chip boundary handling in DDP
1271 * Now we issued chip 1 read and pointed chip 1
1272 * bufferram so we have to point chip 0 bufferram.
1274 if (ONENAND_IS_DDP(this) &&
1275 unlikely(from
== (this->chipsize
>> 1))) {
1276 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1280 ONENAND_SET_PREV_BUFFERRAM(this);
1282 /* While load is going, read from last bufferRAM */
1283 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1285 /* Read oob area if needed */
1287 thisooblen
= oobsize
- oobcolumn
;
1288 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1290 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1291 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1293 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1294 oobread
+= thisooblen
;
1295 oobbuf
+= thisooblen
;
1299 /* See if we are done */
1303 /* Set up for next read from bufferRAM */
1304 if (unlikely(boundary
))
1305 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1306 ONENAND_SET_NEXT_BUFFERRAM(this);
1308 thislen
= min_t(int, writesize
, len
- read
);
1311 /* Now wait for load */
1312 ret
= this->wait(mtd
, FL_READING
);
1313 onenand_update_bufferram(mtd
, from
, !ret
);
1314 if (mtd_is_eccerr(ret
))
1319 * Return success, if no ECC failures, else -EBADMSG
1320 * fs driver will take care of that, because
1321 * retlen == desired len and result == -EBADMSG
1324 ops
->oobretlen
= oobread
;
1329 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1332 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338 * @mtd: MTD device structure
1339 * @from: offset to read from
1340 * @ops: oob operation description structure
1342 * OneNAND read out-of-band data from the spare area
1344 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1345 struct mtd_oob_ops
*ops
)
1347 struct onenand_chip
*this = mtd
->priv
;
1348 struct mtd_ecc_stats stats
;
1349 int read
= 0, thislen
, column
, oobsize
;
1350 size_t len
= ops
->ooblen
;
1351 unsigned int mode
= ops
->mode
;
1352 u_char
*buf
= ops
->oobbuf
;
1353 int ret
= 0, readcmd
;
1355 from
+= ops
->ooboffs
;
1357 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1360 /* Initialize return length value */
1363 if (mode
== MTD_OPS_AUTO_OOB
)
1364 oobsize
= mtd
->oobavail
;
1366 oobsize
= mtd
->oobsize
;
1368 column
= from
& (mtd
->oobsize
- 1);
1370 if (unlikely(column
>= oobsize
)) {
1371 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1376 stats
= mtd
->ecc_stats
;
1378 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1380 while (read
< len
) {
1383 thislen
= oobsize
- column
;
1384 thislen
= min_t(int, thislen
, len
);
1386 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1388 onenand_update_bufferram(mtd
, from
, 0);
1390 ret
= this->wait(mtd
, FL_READING
);
1392 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1394 if (ret
&& !mtd_is_eccerr(ret
)) {
1395 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1400 if (mode
== MTD_OPS_AUTO_OOB
)
1401 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1403 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1415 from
+= mtd
->writesize
;
1420 ops
->oobretlen
= read
;
1425 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433 * @mtd: MTD device structure
1434 * @from: offset to read from
1435 * @ops: oob operation description structure
1437 * Read main and/or out-of-band
1439 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1440 struct mtd_oob_ops
*ops
)
1442 struct onenand_chip
*this = mtd
->priv
;
1445 switch (ops
->mode
) {
1446 case MTD_OPS_PLACE_OOB
:
1447 case MTD_OPS_AUTO_OOB
:
1450 /* Not implemented yet */
1455 onenand_get_device(mtd
, FL_READING
);
1457 ret
= ONENAND_IS_4KB_PAGE(this) ?
1458 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1459 onenand_read_ops_nolock(mtd
, from
, ops
);
1461 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1462 onenand_release_device(mtd
);
1468 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1469 * @mtd: MTD device structure
1470 * @state: state to select the max. timeout value
1472 * Wait for command done.
1474 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1476 struct onenand_chip
*this = mtd
->priv
;
1477 unsigned long timeout
;
1478 unsigned int interrupt
, ctrl
, ecc
, addr1
, addr8
;
1480 /* The 20 msec is enough */
1481 timeout
= jiffies
+ msecs_to_jiffies(20);
1482 while (time_before(jiffies
, timeout
)) {
1483 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1484 if (interrupt
& ONENAND_INT_MASTER
)
1487 /* To get correct interrupt status in timeout case */
1488 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1489 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1490 addr1
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS1
);
1491 addr8
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS8
);
1493 if (interrupt
& ONENAND_INT_READ
) {
1494 ecc
= onenand_read_ecc(this);
1495 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1496 printk(KERN_DEBUG
"%s: ecc 0x%04x ctrl 0x%04x "
1497 "intr 0x%04x addr1 %#x addr8 %#x\n",
1498 __func__
, ecc
, ctrl
, interrupt
, addr1
, addr8
);
1499 return ONENAND_BBT_READ_ECC_ERROR
;
1502 printk(KERN_ERR
"%s: read timeout! ctrl 0x%04x "
1503 "intr 0x%04x addr1 %#x addr8 %#x\n",
1504 __func__
, ctrl
, interrupt
, addr1
, addr8
);
1505 return ONENAND_BBT_READ_FATAL_ERROR
;
1508 /* Initial bad block case: 0x2400 or 0x0400 */
1509 if (ctrl
& ONENAND_CTRL_ERROR
) {
1510 printk(KERN_DEBUG
"%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1511 "addr8 %#x\n", __func__
, ctrl
, interrupt
, addr1
, addr8
);
1512 return ONENAND_BBT_READ_ERROR
;
1519 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1520 * @mtd: MTD device structure
1521 * @from: offset to read from
1522 * @ops: oob operation description structure
1524 * OneNAND read out-of-band data from the spare area for bbt scan
1526 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1527 struct mtd_oob_ops
*ops
)
1529 struct onenand_chip
*this = mtd
->priv
;
1530 int read
= 0, thislen
, column
;
1531 int ret
= 0, readcmd
;
1532 size_t len
= ops
->ooblen
;
1533 u_char
*buf
= ops
->oobbuf
;
1535 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__
, (unsigned int)from
,
1538 /* Initialize return value */
1541 /* Do not allow reads past end of device */
1542 if (unlikely((from
+ len
) > mtd
->size
)) {
1543 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1545 return ONENAND_BBT_READ_FATAL_ERROR
;
1548 /* Grab the lock and see if the device is available */
1549 onenand_get_device(mtd
, FL_READING
);
1551 column
= from
& (mtd
->oobsize
- 1);
1553 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1555 while (read
< len
) {
1558 thislen
= mtd
->oobsize
- column
;
1559 thislen
= min_t(int, thislen
, len
);
1561 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1563 onenand_update_bufferram(mtd
, from
, 0);
1565 ret
= this->bbt_wait(mtd
, FL_READING
);
1567 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1572 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1581 /* Update Page size */
1582 from
+= this->writesize
;
1587 /* Deselect and wake up anyone waiting on the device */
1588 onenand_release_device(mtd
);
1590 ops
->oobretlen
= read
;
1594 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1596 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1597 * @mtd: MTD device structure
1598 * @buf: the databuffer to verify
1599 * @to: offset to read from
1601 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1603 struct onenand_chip
*this = mtd
->priv
;
1604 u_char
*oob_buf
= this->oob_buf
;
1605 int status
, i
, readcmd
;
1607 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1609 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1610 onenand_update_bufferram(mtd
, to
, 0);
1611 status
= this->wait(mtd
, FL_READING
);
1615 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1616 for (i
= 0; i
< mtd
->oobsize
; i
++)
1617 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1624 * onenand_verify - [GENERIC] verify the chip contents after a write
1625 * @mtd: MTD device structure
1626 * @buf: the databuffer to verify
1627 * @addr: offset to read from
1628 * @len: number of bytes to read and compare
1630 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1632 struct onenand_chip
*this = mtd
->priv
;
1634 int thislen
, column
;
1636 column
= addr
& (this->writesize
- 1);
1639 thislen
= min_t(int, this->writesize
- column
, len
);
1641 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1643 onenand_update_bufferram(mtd
, addr
, 0);
1645 ret
= this->wait(mtd
, FL_READING
);
1649 onenand_update_bufferram(mtd
, addr
, 1);
1651 this->read_bufferram(mtd
, ONENAND_DATARAM
, this->verify_buf
, 0, mtd
->writesize
);
1653 if (memcmp(buf
, this->verify_buf
+ column
, thislen
))
1665 #define onenand_verify(...) (0)
1666 #define onenand_verify_oob(...) (0)
1669 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1671 static void onenand_panic_wait(struct mtd_info
*mtd
)
1673 struct onenand_chip
*this = mtd
->priv
;
1674 unsigned int interrupt
;
1677 for (i
= 0; i
< 2000; i
++) {
1678 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1679 if (interrupt
& ONENAND_INT_MASTER
)
1686 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1687 * @mtd: MTD device structure
1688 * @to: offset to write to
1689 * @len: number of bytes to write
1690 * @retlen: pointer to variable to store the number of written bytes
1691 * @buf: the data to write
1695 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1696 size_t *retlen
, const u_char
*buf
)
1698 struct onenand_chip
*this = mtd
->priv
;
1699 int column
, subpage
;
1702 if (this->state
== FL_PM_SUSPENDED
)
1705 /* Wait for any existing operation to clear */
1706 onenand_panic_wait(mtd
);
1708 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1711 /* Reject writes, which are not page aligned */
1712 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1713 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1718 column
= to
& (mtd
->writesize
- 1);
1720 /* Loop until all data write */
1721 while (written
< len
) {
1722 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1723 u_char
*wbuf
= (u_char
*) buf
;
1725 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1727 /* Partial page write */
1728 subpage
= thislen
< mtd
->writesize
;
1730 memset(this->page_buf
, 0xff, mtd
->writesize
);
1731 memcpy(this->page_buf
+ column
, buf
, thislen
);
1732 wbuf
= this->page_buf
;
1735 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1736 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1738 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1740 onenand_panic_wait(mtd
);
1742 /* In partial page write we don't update bufferram */
1743 onenand_update_bufferram(mtd
, to
, !subpage
);
1744 if (ONENAND_IS_2PLANE(this)) {
1745 ONENAND_SET_BUFFERRAM1(this);
1746 onenand_update_bufferram(mtd
, to
+ this->writesize
, !subpage
);
1764 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1765 * @mtd: MTD device structure
1766 * @oob_buf: oob buffer
1767 * @buf: source address
1768 * @column: oob offset to write to
1769 * @thislen: oob length to write
1771 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1772 const u_char
*buf
, int column
, int thislen
)
1774 return mtd_ooblayout_set_databytes(mtd
, buf
, oob_buf
, column
, thislen
);
1778 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1779 * @mtd: MTD device structure
1780 * @to: offset to write to
1781 * @ops: oob operation description structure
1783 * Write main and/or oob with ECC
1785 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1786 struct mtd_oob_ops
*ops
)
1788 struct onenand_chip
*this = mtd
->priv
;
1789 int written
= 0, column
, thislen
= 0, subpage
= 0;
1790 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1791 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1792 size_t len
= ops
->len
;
1793 size_t ooblen
= ops
->ooblen
;
1794 const u_char
*buf
= ops
->datbuf
;
1795 const u_char
*oob
= ops
->oobbuf
;
1799 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1802 /* Initialize retlen, in case of early exit */
1806 /* Reject writes, which are not page aligned */
1807 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1808 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1813 /* Check zero length */
1816 oobsize
= mtd_oobavail(mtd
, ops
);
1817 oobcolumn
= to
& (mtd
->oobsize
- 1);
1819 column
= to
& (mtd
->writesize
- 1);
1821 /* Loop until all data write */
1823 if (written
< len
) {
1824 u_char
*wbuf
= (u_char
*) buf
;
1826 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1827 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1831 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1833 /* Partial page write */
1834 subpage
= thislen
< mtd
->writesize
;
1836 memset(this->page_buf
, 0xff, mtd
->writesize
);
1837 memcpy(this->page_buf
+ column
, buf
, thislen
);
1838 wbuf
= this->page_buf
;
1841 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1844 oobbuf
= this->oob_buf
;
1846 /* We send data to spare ram with oobsize
1847 * to prevent byte access */
1848 memset(oobbuf
, 0xff, mtd
->oobsize
);
1849 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1850 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1852 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1854 oobwritten
+= thisooblen
;
1858 oobbuf
= (u_char
*) ffchars
;
1860 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1862 ONENAND_SET_NEXT_BUFFERRAM(this);
1865 * 2 PLANE, MLC, and Flex-OneNAND do not support
1866 * write-while-program feature.
1868 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first
) {
1869 ONENAND_SET_PREV_BUFFERRAM(this);
1871 ret
= this->wait(mtd
, FL_WRITING
);
1873 /* In partial page write we don't update bufferram */
1874 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1877 printk(KERN_ERR
"%s: write failed %d\n",
1882 if (written
== len
) {
1883 /* Only check verify write turn on */
1884 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1886 printk(KERN_ERR
"%s: verify failed %d\n",
1891 ONENAND_SET_NEXT_BUFFERRAM(this);
1895 cmd
= ONENAND_CMD_PROG
;
1897 /* Exclude 1st OTP and OTP blocks for cache program feature */
1898 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1899 likely(onenand_block(this, to
) != 0) &&
1900 ONENAND_IS_4KB_PAGE(this) &&
1901 ((written
+ thislen
) < len
)) {
1902 cmd
= ONENAND_CMD_2X_CACHE_PROG
;
1906 this->command(mtd
, cmd
, to
, mtd
->writesize
);
1909 * 2 PLANE, MLC, and Flex-OneNAND wait here
1911 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1912 ret
= this->wait(mtd
, FL_WRITING
);
1914 /* In partial page write we don't update bufferram */
1915 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1917 printk(KERN_ERR
"%s: write failed %d\n",
1922 /* Only check verify write turn on */
1923 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1925 printk(KERN_ERR
"%s: verify failed %d\n",
1939 prev_subpage
= subpage
;
1947 /* In error case, clear all bufferrams */
1949 onenand_invalidate_bufferram(mtd
, 0, -1);
1951 ops
->retlen
= written
;
1952 ops
->oobretlen
= oobwritten
;
1959 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1960 * @mtd: MTD device structure
1961 * @to: offset to write to
1962 * @ops: oob operation description structure
1964 * OneNAND write out-of-band
1966 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
1967 struct mtd_oob_ops
*ops
)
1969 struct onenand_chip
*this = mtd
->priv
;
1970 int column
, ret
= 0, oobsize
;
1971 int written
= 0, oobcmd
;
1973 size_t len
= ops
->ooblen
;
1974 const u_char
*buf
= ops
->oobbuf
;
1975 unsigned int mode
= ops
->mode
;
1979 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1982 /* Initialize retlen, in case of early exit */
1985 if (mode
== MTD_OPS_AUTO_OOB
)
1986 oobsize
= mtd
->oobavail
;
1988 oobsize
= mtd
->oobsize
;
1990 column
= to
& (mtd
->oobsize
- 1);
1992 if (unlikely(column
>= oobsize
)) {
1993 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
1998 /* For compatibility with NAND: Do not allow write past end of page */
1999 if (unlikely(column
+ len
> oobsize
)) {
2000 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2005 oobbuf
= this->oob_buf
;
2007 oobcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2009 /* Loop until all data write */
2010 while (written
< len
) {
2011 int thislen
= min_t(int, oobsize
, len
- written
);
2015 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2017 /* We send data to spare ram with oobsize
2018 * to prevent byte access */
2019 memset(oobbuf
, 0xff, mtd
->oobsize
);
2020 if (mode
== MTD_OPS_AUTO_OOB
)
2021 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2023 memcpy(oobbuf
+ column
, buf
, thislen
);
2024 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2026 if (ONENAND_IS_4KB_PAGE(this)) {
2027 /* Set main area of DataRAM to 0xff*/
2028 memset(this->page_buf
, 0xff, mtd
->writesize
);
2029 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2030 this->page_buf
, 0, mtd
->writesize
);
2033 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2035 onenand_update_bufferram(mtd
, to
, 0);
2036 if (ONENAND_IS_2PLANE(this)) {
2037 ONENAND_SET_BUFFERRAM1(this);
2038 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2041 ret
= this->wait(mtd
, FL_WRITING
);
2043 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2047 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2049 printk(KERN_ERR
"%s: verify failed %d\n",
2058 to
+= mtd
->writesize
;
2063 ops
->oobretlen
= written
;
2069 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2070 * @mtd: MTD device structure
2071 * @to: offset to write
2072 * @ops: oob operation description structure
2074 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2075 struct mtd_oob_ops
*ops
)
2079 switch (ops
->mode
) {
2080 case MTD_OPS_PLACE_OOB
:
2081 case MTD_OPS_AUTO_OOB
:
2084 /* Not implemented yet */
2089 onenand_get_device(mtd
, FL_WRITING
);
2091 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2093 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2094 onenand_release_device(mtd
);
2100 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2101 * @mtd: MTD device structure
2102 * @ofs: offset from device start
2103 * @allowbbt: 1, if its allowed to access the bbt area
2105 * Check, if the block is bad. Either by reading the bad block table or
2106 * calling of the scan function.
2108 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2110 struct onenand_chip
*this = mtd
->priv
;
2111 struct bbm_info
*bbm
= this->bbm
;
2113 /* Return info from the table */
2114 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2118 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2119 struct erase_info
*instr
)
2121 struct onenand_chip
*this = mtd
->priv
;
2122 loff_t addr
= instr
->addr
;
2123 int len
= instr
->len
;
2124 unsigned int block_size
= (1 << this->erase_shift
);
2128 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2129 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2131 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2132 __func__
, onenand_block(this, addr
));
2133 instr
->fail_addr
= addr
;
2143 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2144 * @mtd: MTD device structure
2145 * @instr: erase instruction
2146 * @block_size: block size
2148 * Erase one or more blocks up to 64 block at a time
2150 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2151 struct erase_info
*instr
,
2152 unsigned int block_size
)
2154 struct onenand_chip
*this = mtd
->priv
;
2155 loff_t addr
= instr
->addr
;
2156 int len
= instr
->len
;
2161 if (ONENAND_IS_DDP(this)) {
2162 loff_t bdry_addr
= this->chipsize
>> 1;
2163 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2164 bdry_block
= bdry_addr
>> this->erase_shift
;
2169 /* Check if we have a bad block, we do not erase bad blocks */
2170 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2171 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2172 "at addr 0x%012llx\n",
2173 __func__
, (unsigned long long) addr
);
2183 /* loop over 64 eb batches */
2185 struct erase_info verify_instr
= *instr
;
2186 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2188 verify_instr
.addr
= addr
;
2189 verify_instr
.len
= 0;
2191 /* do not cross chip boundary */
2193 int this_block
= (addr
>> this->erase_shift
);
2195 if (this_block
< bdry_block
) {
2196 max_eb_count
= min(max_eb_count
,
2197 (bdry_block
- this_block
));
2203 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2204 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2206 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2208 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2210 printk(KERN_ERR
"%s: Failed multiblock erase, "
2211 "block %d\n", __func__
,
2212 onenand_block(this, addr
));
2213 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2222 /* last block of 64-eb series */
2224 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2225 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2227 ret
= this->wait(mtd
, FL_ERASING
);
2228 /* Check if it is write protected */
2230 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2231 __func__
, onenand_block(this, addr
));
2232 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2241 verify_instr
.len
= eb_count
* block_size
;
2242 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2243 instr
->fail_addr
= verify_instr
.fail_addr
;
2253 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2254 * @mtd: MTD device structure
2255 * @instr: erase instruction
2256 * @region: erase region
2257 * @block_size: erase block size
2259 * Erase one or more blocks one block at a time
2261 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2262 struct erase_info
*instr
,
2263 struct mtd_erase_region_info
*region
,
2264 unsigned int block_size
)
2266 struct onenand_chip
*this = mtd
->priv
;
2267 loff_t addr
= instr
->addr
;
2268 int len
= instr
->len
;
2269 loff_t region_end
= 0;
2273 /* region is set for Flex-OneNAND */
2274 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2277 /* Loop through the blocks */
2281 /* Check if we have a bad block, we do not erase bad blocks */
2282 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2283 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2284 "at addr 0x%012llx\n",
2285 __func__
, (unsigned long long) addr
);
2289 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2291 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2293 ret
= this->wait(mtd
, FL_ERASING
);
2294 /* Check, if it is write protected */
2296 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2297 __func__
, onenand_block(this, addr
));
2298 instr
->fail_addr
= addr
;
2305 if (region
&& addr
== region_end
) {
2310 block_size
= region
->erasesize
;
2311 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2313 if (len
& (block_size
- 1)) {
2314 /* FIXME: This should be handled at MTD partitioning level. */
2315 printk(KERN_ERR
"%s: Unaligned address\n",
2325 * onenand_erase - [MTD Interface] erase block(s)
2326 * @mtd: MTD device structure
2327 * @instr: erase instruction
2329 * Erase one or more blocks
2331 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2333 struct onenand_chip
*this = mtd
->priv
;
2334 unsigned int block_size
;
2335 loff_t addr
= instr
->addr
;
2336 loff_t len
= instr
->len
;
2338 struct mtd_erase_region_info
*region
= NULL
;
2339 loff_t region_offset
= 0;
2341 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__
,
2342 (unsigned long long)instr
->addr
,
2343 (unsigned long long)instr
->len
);
2345 if (FLEXONENAND(this)) {
2346 /* Find the eraseregion of this address */
2347 int i
= flexonenand_region(mtd
, addr
);
2349 region
= &mtd
->eraseregions
[i
];
2350 block_size
= region
->erasesize
;
2352 /* Start address within region must align on block boundary.
2353 * Erase region's start offset is always block start address.
2355 region_offset
= region
->offset
;
2357 block_size
= 1 << this->erase_shift
;
2359 /* Start address must align on block boundary */
2360 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2361 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2365 /* Length must align on block boundary */
2366 if (unlikely(len
& (block_size
- 1))) {
2367 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2371 /* Grab the lock and see if the device is available */
2372 onenand_get_device(mtd
, FL_ERASING
);
2374 if (ONENAND_IS_4KB_PAGE(this) || region
||
2375 instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2376 /* region is set for Flex-OneNAND (no mb erase) */
2377 ret
= onenand_block_by_block_erase(mtd
, instr
,
2378 region
, block_size
);
2380 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2383 /* Deselect and wake up anyone waiting on the device */
2384 onenand_release_device(mtd
);
2390 * onenand_sync - [MTD Interface] sync
2391 * @mtd: MTD device structure
2393 * Sync is actually a wait for chip ready function
2395 static void onenand_sync(struct mtd_info
*mtd
)
2397 pr_debug("%s: called\n", __func__
);
2399 /* Grab the lock and see if the device is available */
2400 onenand_get_device(mtd
, FL_SYNCING
);
2402 /* Release it and go back */
2403 onenand_release_device(mtd
);
2407 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2408 * @mtd: MTD device structure
2409 * @ofs: offset relative to mtd start
2411 * Check whether the block is bad
2413 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2417 onenand_get_device(mtd
, FL_READING
);
2418 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2419 onenand_release_device(mtd
);
2424 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2425 * @mtd: MTD device structure
2426 * @ofs: offset from device start
2428 * This is the default implementation, which can be overridden by
2429 * a hardware specific driver.
2431 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2433 struct onenand_chip
*this = mtd
->priv
;
2434 struct bbm_info
*bbm
= this->bbm
;
2435 u_char buf
[2] = {0, 0};
2436 struct mtd_oob_ops ops
= {
2437 .mode
= MTD_OPS_PLACE_OOB
,
2444 /* Get block number */
2445 block
= onenand_block(this, ofs
);
2447 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2449 /* We write two bytes, so we don't have to mess with 16-bit access */
2450 ofs
+= mtd
->oobsize
+ (this->badblockpos
& ~0x01);
2451 /* FIXME : What to do when marking SLC block in partition
2452 * with MLC erasesize? For now, it is not advisable to
2453 * create partitions containing both SLC and MLC regions.
2455 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2459 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2460 * @mtd: MTD device structure
2461 * @ofs: offset relative to mtd start
2463 * Mark the block as bad
2465 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2467 struct onenand_chip
*this = mtd
->priv
;
2470 ret
= onenand_block_isbad(mtd
, ofs
);
2472 /* If it was bad already, return success and do nothing */
2478 onenand_get_device(mtd
, FL_WRITING
);
2479 ret
= this->block_markbad(mtd
, ofs
);
2480 onenand_release_device(mtd
);
2485 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2486 * @mtd: MTD device structure
2487 * @ofs: offset relative to mtd start
2488 * @len: number of bytes to lock or unlock
2489 * @cmd: lock or unlock command
2491 * Lock or unlock one or more blocks
2493 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2495 struct onenand_chip
*this = mtd
->priv
;
2496 int start
, end
, block
, value
, status
;
2499 start
= onenand_block(this, ofs
);
2500 end
= onenand_block(this, ofs
+ len
) - 1;
2502 if (cmd
== ONENAND_CMD_LOCK
)
2503 wp_status_mask
= ONENAND_WP_LS
;
2505 wp_status_mask
= ONENAND_WP_US
;
2507 /* Continuous lock scheme */
2508 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2509 /* Set start block address */
2510 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2511 /* Set end block address */
2512 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2513 /* Write lock command */
2514 this->command(mtd
, cmd
, 0, 0);
2516 /* There's no return value */
2517 this->wait(mtd
, FL_LOCKING
);
2520 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2521 & ONENAND_CTRL_ONGO
)
2524 /* Check lock status */
2525 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2526 if (!(status
& wp_status_mask
))
2527 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2533 /* Block lock scheme */
2534 for (block
= start
; block
< end
+ 1; block
++) {
2535 /* Set block address */
2536 value
= onenand_block_address(this, block
);
2537 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2538 /* Select DataRAM for DDP */
2539 value
= onenand_bufferram_address(this, block
);
2540 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2541 /* Set start block address */
2542 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2543 /* Write lock command */
2544 this->command(mtd
, cmd
, 0, 0);
2546 /* There's no return value */
2547 this->wait(mtd
, FL_LOCKING
);
2550 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2551 & ONENAND_CTRL_ONGO
)
2554 /* Check lock status */
2555 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2556 if (!(status
& wp_status_mask
))
2557 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2558 __func__
, block
, status
);
2565 * onenand_lock - [MTD Interface] Lock block(s)
2566 * @mtd: MTD device structure
2567 * @ofs: offset relative to mtd start
2568 * @len: number of bytes to unlock
2570 * Lock one or more blocks
2572 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2576 onenand_get_device(mtd
, FL_LOCKING
);
2577 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2578 onenand_release_device(mtd
);
2583 * onenand_unlock - [MTD Interface] Unlock block(s)
2584 * @mtd: MTD device structure
2585 * @ofs: offset relative to mtd start
2586 * @len: number of bytes to unlock
2588 * Unlock one or more blocks
2590 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2594 onenand_get_device(mtd
, FL_LOCKING
);
2595 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2596 onenand_release_device(mtd
);
2601 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2602 * @this: onenand chip data structure
2606 static int onenand_check_lock_status(struct onenand_chip
*this)
2608 unsigned int value
, block
, status
;
2611 end
= this->chipsize
>> this->erase_shift
;
2612 for (block
= 0; block
< end
; block
++) {
2613 /* Set block address */
2614 value
= onenand_block_address(this, block
);
2615 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2616 /* Select DataRAM for DDP */
2617 value
= onenand_bufferram_address(this, block
);
2618 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2619 /* Set start block address */
2620 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2622 /* Check lock status */
2623 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2624 if (!(status
& ONENAND_WP_US
)) {
2625 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2626 __func__
, block
, status
);
2635 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2636 * @mtd: MTD device structure
2640 static void onenand_unlock_all(struct mtd_info
*mtd
)
2642 struct onenand_chip
*this = mtd
->priv
;
2644 loff_t len
= mtd
->size
;
2646 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2647 /* Set start block address */
2648 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2649 /* Write unlock command */
2650 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2652 /* There's no return value */
2653 this->wait(mtd
, FL_LOCKING
);
2656 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2657 & ONENAND_CTRL_ONGO
)
2660 /* Don't check lock status */
2661 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2664 /* Check lock status */
2665 if (onenand_check_lock_status(this))
2668 /* Workaround for all block unlock in DDP */
2669 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2670 /* All blocks on another chip */
2671 ofs
= this->chipsize
>> 1;
2672 len
= this->chipsize
>> 1;
2676 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2679 #ifdef CONFIG_MTD_ONENAND_OTP
2682 * onenand_otp_command - Send OTP specific command to OneNAND device
2683 * @mtd: MTD device structure
2684 * @cmd: the command to be sent
2685 * @addr: offset to read from or write to
2686 * @len: number of bytes to read or write
2688 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2691 struct onenand_chip
*this = mtd
->priv
;
2692 int value
, block
, page
;
2694 /* Address translation */
2696 case ONENAND_CMD_OTP_ACCESS
:
2697 block
= (int) (addr
>> this->erase_shift
);
2702 block
= (int) (addr
>> this->erase_shift
);
2703 page
= (int) (addr
>> this->page_shift
);
2705 if (ONENAND_IS_2PLANE(this)) {
2706 /* Make the even block number */
2708 /* Is it the odd plane? */
2709 if (addr
& this->writesize
)
2713 page
&= this->page_mask
;
2718 /* Write 'DFS, FBA' of Flash */
2719 value
= onenand_block_address(this, block
);
2720 this->write_word(value
, this->base
+
2721 ONENAND_REG_START_ADDRESS1
);
2725 /* Now we use page size operation */
2726 int sectors
= 4, count
= 4;
2731 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2732 cmd
= ONENAND_CMD_2X_PROG
;
2733 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2737 /* Write 'FPA, FSA' of Flash */
2738 value
= onenand_page_address(page
, sectors
);
2739 this->write_word(value
, this->base
+
2740 ONENAND_REG_START_ADDRESS8
);
2742 /* Write 'BSA, BSC' of DataRAM */
2743 value
= onenand_buffer_address(dataram
, sectors
, count
);
2744 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2747 /* Interrupt clear */
2748 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2751 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2757 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2758 * @mtd: MTD device structure
2759 * @to: offset to write to
2760 * @ops: oob operation description structure
2762 * OneNAND write out-of-band only for OTP
2764 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2765 struct mtd_oob_ops
*ops
)
2767 struct onenand_chip
*this = mtd
->priv
;
2768 int column
, ret
= 0, oobsize
;
2771 size_t len
= ops
->ooblen
;
2772 const u_char
*buf
= ops
->oobbuf
;
2773 int block
, value
, status
;
2777 /* Initialize retlen, in case of early exit */
2780 oobsize
= mtd
->oobsize
;
2782 column
= to
& (mtd
->oobsize
- 1);
2784 oobbuf
= this->oob_buf
;
2786 /* Loop until all data write */
2787 while (written
< len
) {
2788 int thislen
= min_t(int, oobsize
, len
- written
);
2792 block
= (int) (to
>> this->erase_shift
);
2794 * Write 'DFS, FBA' of Flash
2795 * Add: F100h DQ=DFS, FBA
2798 value
= onenand_block_address(this, block
);
2799 this->write_word(value
, this->base
+
2800 ONENAND_REG_START_ADDRESS1
);
2803 * Select DataRAM for DDP
2807 value
= onenand_bufferram_address(this, block
);
2808 this->write_word(value
, this->base
+
2809 ONENAND_REG_START_ADDRESS2
);
2810 ONENAND_SET_NEXT_BUFFERRAM(this);
2813 * Enter OTP access mode
2815 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2816 this->wait(mtd
, FL_OTPING
);
2818 /* We send data to spare ram with oobsize
2819 * to prevent byte access */
2820 memcpy(oobbuf
+ column
, buf
, thislen
);
2823 * Write Data into DataRAM
2825 * in sector0/spare/page0
2828 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2829 oobbuf
, 0, mtd
->oobsize
);
2831 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2832 onenand_update_bufferram(mtd
, to
, 0);
2833 if (ONENAND_IS_2PLANE(this)) {
2834 ONENAND_SET_BUFFERRAM1(this);
2835 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2838 ret
= this->wait(mtd
, FL_WRITING
);
2840 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2844 /* Exit OTP access mode */
2845 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2846 this->wait(mtd
, FL_RESETTING
);
2848 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2851 if (status
== 0x60) {
2852 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2853 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2854 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2855 } else if (status
== 0x20) {
2856 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2857 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2858 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2859 } else if (status
== 0x40) {
2860 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2861 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2862 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2864 printk(KERN_DEBUG
"Reboot to check\n");
2871 to
+= mtd
->writesize
;
2876 ops
->oobretlen
= written
;
2881 /* Internal OTP operation */
2882 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
2883 size_t *retlen
, u_char
*buf
);
2886 * do_otp_read - [DEFAULT] Read OTP block area
2887 * @mtd: MTD device structure
2888 * @from: The offset to read
2889 * @len: number of bytes to read
2890 * @retlen: pointer to variable to store the number of readbytes
2891 * @buf: the databuffer to put/get data
2893 * Read OTP block area.
2895 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2896 size_t *retlen
, u_char
*buf
)
2898 struct onenand_chip
*this = mtd
->priv
;
2899 struct mtd_oob_ops ops
= {
2907 /* Enter OTP access mode */
2908 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2909 this->wait(mtd
, FL_OTPING
);
2911 ret
= ONENAND_IS_4KB_PAGE(this) ?
2912 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
2913 onenand_read_ops_nolock(mtd
, from
, &ops
);
2915 /* Exit OTP access mode */
2916 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2917 this->wait(mtd
, FL_RESETTING
);
2923 * do_otp_write - [DEFAULT] Write OTP block area
2924 * @mtd: MTD device structure
2925 * @to: The offset to write
2926 * @len: number of bytes to write
2927 * @retlen: pointer to variable to store the number of write bytes
2928 * @buf: the databuffer to put/get data
2930 * Write OTP block area.
2932 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2933 size_t *retlen
, u_char
*buf
)
2935 struct onenand_chip
*this = mtd
->priv
;
2936 unsigned char *pbuf
= buf
;
2938 struct mtd_oob_ops ops
;
2940 /* Force buffer page aligned */
2941 if (len
< mtd
->writesize
) {
2942 memcpy(this->page_buf
, buf
, len
);
2943 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
2944 pbuf
= this->page_buf
;
2945 len
= mtd
->writesize
;
2948 /* Enter OTP access mode */
2949 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2950 this->wait(mtd
, FL_OTPING
);
2956 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2957 *retlen
= ops
.retlen
;
2959 /* Exit OTP access mode */
2960 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2961 this->wait(mtd
, FL_RESETTING
);
2967 * do_otp_lock - [DEFAULT] Lock OTP block area
2968 * @mtd: MTD device structure
2969 * @from: The offset to lock
2970 * @len: number of bytes to lock
2971 * @retlen: pointer to variable to store the number of lock bytes
2972 * @buf: the databuffer to put/get data
2974 * Lock OTP block area.
2976 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
2977 size_t *retlen
, u_char
*buf
)
2979 struct onenand_chip
*this = mtd
->priv
;
2980 struct mtd_oob_ops ops
;
2983 if (FLEXONENAND(this)) {
2985 /* Enter OTP access mode */
2986 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2987 this->wait(mtd
, FL_OTPING
);
2989 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
2990 * main area of page 49.
2992 ops
.len
= mtd
->writesize
;
2996 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
2997 *retlen
= ops
.retlen
;
2999 /* Exit OTP access mode */
3000 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3001 this->wait(mtd
, FL_RESETTING
);
3003 ops
.mode
= MTD_OPS_PLACE_OOB
;
3007 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3008 *retlen
= ops
.oobretlen
;
3015 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3016 * @mtd: MTD device structure
3017 * @from: The offset to read/write
3018 * @len: number of bytes to read/write
3019 * @retlen: pointer to variable to store the number of read bytes
3020 * @buf: the databuffer to put/get data
3021 * @action: do given action
3022 * @mode: specify user and factory
3024 * Handle OTP operation.
3026 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3027 size_t *retlen
, u_char
*buf
,
3028 otp_op_t action
, int mode
)
3030 struct onenand_chip
*this = mtd
->priv
;
3037 density
= onenand_get_density(this->device_id
);
3038 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3043 if (mode
== MTD_OTP_FACTORY
) {
3044 from
+= mtd
->writesize
* otp_pages
;
3045 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3048 /* Check User/Factory boundary */
3049 if (mode
== MTD_OTP_USER
) {
3050 if (mtd
->writesize
* otp_pages
< from
+ len
)
3053 if (mtd
->writesize
* otp_pages
< len
)
3057 onenand_get_device(mtd
, FL_OTPING
);
3058 while (len
> 0 && otp_pages
> 0) {
3059 if (!action
) { /* OTP Info functions */
3060 struct otp_info
*otpinfo
;
3062 len
-= sizeof(struct otp_info
);
3068 otpinfo
= (struct otp_info
*) buf
;
3069 otpinfo
->start
= from
;
3070 otpinfo
->length
= mtd
->writesize
;
3071 otpinfo
->locked
= 0;
3073 from
+= mtd
->writesize
;
3074 buf
+= sizeof(struct otp_info
);
3075 *retlen
+= sizeof(struct otp_info
);
3079 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3085 *retlen
+= tmp_retlen
;
3090 onenand_release_device(mtd
);
3096 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3097 * @mtd: MTD device structure
3098 * @len: number of bytes to read
3099 * @retlen: pointer to variable to store the number of read bytes
3100 * @buf: the databuffer to put/get data
3102 * Read factory OTP info.
3104 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
3105 size_t *retlen
, struct otp_info
*buf
)
3107 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3112 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3113 * @mtd: MTD device structure
3114 * @from: The offset to read
3115 * @len: number of bytes to read
3116 * @retlen: pointer to variable to store the number of read bytes
3117 * @buf: the databuffer to put/get data
3119 * Read factory OTP area.
3121 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3122 size_t len
, size_t *retlen
, u_char
*buf
)
3124 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3128 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3129 * @mtd: MTD device structure
3130 * @retlen: pointer to variable to store the number of read bytes
3131 * @len: number of bytes to read
3132 * @buf: the databuffer to put/get data
3134 * Read user OTP info.
3136 static int onenand_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
3137 size_t *retlen
, struct otp_info
*buf
)
3139 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3144 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3145 * @mtd: MTD device structure
3146 * @from: The offset to read
3147 * @len: number of bytes to read
3148 * @retlen: pointer to variable to store the number of read bytes
3149 * @buf: the databuffer to put/get data
3151 * Read user OTP area.
3153 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3154 size_t len
, size_t *retlen
, u_char
*buf
)
3156 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3160 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3161 * @mtd: MTD device structure
3162 * @from: The offset to write
3163 * @len: number of bytes to write
3164 * @retlen: pointer to variable to store the number of write bytes
3165 * @buf: the databuffer to put/get data
3167 * Write user OTP area.
3169 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3170 size_t len
, size_t *retlen
, u_char
*buf
)
3172 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3176 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3177 * @mtd: MTD device structure
3178 * @from: The offset to lock
3179 * @len: number of bytes to unlock
3181 * Write lock mark on spare area in page 0 in OTP block
3183 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3186 struct onenand_chip
*this = mtd
->priv
;
3187 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3190 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3192 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3195 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3196 * We write 16 bytes spare area instead of 2 bytes.
3197 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3198 * main area of page 49.
3202 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3205 * Note: OTP lock operation
3206 * OTP block : 0xXXFC XX 1111 1100
3207 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3208 * Both : 0xXXF0 (If chip support) XX 1111 0000
3210 if (FLEXONENAND(this))
3211 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3213 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3215 buf
[otp_lock_offset
] = 0xFC;
3217 buf
[otp_lock_offset
] = 0xF3;
3219 buf
[otp_lock_offset
] = 0xF0;
3221 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3223 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3225 return ret
? : retlen
;
3228 #endif /* CONFIG_MTD_ONENAND_OTP */
3231 * onenand_check_features - Check and set OneNAND features
3232 * @mtd: MTD data structure
3234 * Check and set OneNAND features
3238 static void onenand_check_features(struct mtd_info
*mtd
)
3240 struct onenand_chip
*this = mtd
->priv
;
3241 unsigned int density
, process
, numbufs
;
3243 /* Lock scheme depends on density and process */
3244 density
= onenand_get_density(this->device_id
);
3245 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3246 numbufs
= this->read_word(this->base
+ ONENAND_REG_NUM_BUFFERS
) >> 8;
3250 case ONENAND_DEVICE_DENSITY_8Gb
:
3251 this->options
|= ONENAND_HAS_NOP_1
;
3253 case ONENAND_DEVICE_DENSITY_4Gb
:
3254 if (ONENAND_IS_DDP(this))
3255 this->options
|= ONENAND_HAS_2PLANE
;
3256 else if (numbufs
== 1) {
3257 this->options
|= ONENAND_HAS_4KB_PAGE
;
3258 this->options
|= ONENAND_HAS_CACHE_PROGRAM
;
3260 * There are two different 4KiB pagesize chips
3261 * and no way to detect it by H/W config values.
3263 * To detect the correct NOP for each chips,
3264 * It should check the version ID as workaround.
3266 * Now it has as following
3267 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3268 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3270 if ((this->version_id
& 0xf) == 0xe)
3271 this->options
|= ONENAND_HAS_NOP_1
;
3273 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3276 case ONENAND_DEVICE_DENSITY_2Gb
:
3277 /* 2Gb DDP does not have 2 plane */
3278 if (!ONENAND_IS_DDP(this))
3279 this->options
|= ONENAND_HAS_2PLANE
;
3280 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3283 case ONENAND_DEVICE_DENSITY_1Gb
:
3284 /* A-Die has all block unlock */
3286 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3290 /* Some OneNAND has continuous lock scheme */
3292 this->options
|= ONENAND_HAS_CONT_LOCK
;
3296 /* The MLC has 4KiB pagesize. */
3297 if (ONENAND_IS_MLC(this))
3298 this->options
|= ONENAND_HAS_4KB_PAGE
;
3300 if (ONENAND_IS_4KB_PAGE(this))
3301 this->options
&= ~ONENAND_HAS_2PLANE
;
3303 if (FLEXONENAND(this)) {
3304 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3305 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3308 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3309 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3310 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3311 printk(KERN_DEBUG
"Chip support all block unlock\n");
3312 if (this->options
& ONENAND_HAS_2PLANE
)
3313 printk(KERN_DEBUG
"Chip has 2 plane\n");
3314 if (this->options
& ONENAND_HAS_4KB_PAGE
)
3315 printk(KERN_DEBUG
"Chip has 4KiB pagesize\n");
3316 if (this->options
& ONENAND_HAS_CACHE_PROGRAM
)
3317 printk(KERN_DEBUG
"Chip has cache program feature\n");
3321 * onenand_print_device_info - Print device & version ID
3322 * @device: device ID
3323 * @version: version ID
3325 * Print device & version ID
3327 static void onenand_print_device_info(int device
, int version
)
3329 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3331 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3332 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3333 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3334 density
= onenand_get_density(device
);
3335 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3336 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3337 demuxed
? "" : "Muxed ",
3338 flexonenand
? "Flex-" : "",
3341 vcc
? "2.65/3.3" : "1.8",
3343 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3346 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3347 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3348 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3352 * onenand_check_maf - Check manufacturer ID
3353 * @manuf: manufacturer ID
3355 * Check manufacturer ID
3357 static int onenand_check_maf(int manuf
)
3359 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3363 for (i
= 0; i
< size
; i
++)
3364 if (manuf
== onenand_manuf_ids
[i
].id
)
3368 name
= onenand_manuf_ids
[i
].name
;
3372 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3378 * flexonenand_get_boundary - Reads the SLC boundary
3379 * @mtd: MTD data structure
3381 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3383 struct onenand_chip
*this = mtd
->priv
;
3388 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3389 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3391 for (die
= 0; die
< this->dies
; die
++) {
3392 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3393 this->wait(mtd
, FL_SYNCING
);
3395 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3396 this->wait(mtd
, FL_READING
);
3398 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3399 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3403 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3405 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3406 this->wait(mtd
, FL_RESETTING
);
3408 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3409 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3413 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3418 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3419 * boundary[], diesize[], mtd->size, mtd->erasesize
3420 * @mtd: - MTD device structure
3422 static void flexonenand_get_size(struct mtd_info
*mtd
)
3424 struct onenand_chip
*this = mtd
->priv
;
3425 int die
, i
, eraseshift
, density
;
3426 int blksperdie
, maxbdry
;
3429 density
= onenand_get_density(this->device_id
);
3430 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3431 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3432 maxbdry
= blksperdie
- 1;
3433 eraseshift
= this->erase_shift
- 1;
3435 mtd
->numeraseregions
= this->dies
<< 1;
3437 /* This fills up the device boundary */
3438 flexonenand_get_boundary(mtd
);
3441 for (; die
< this->dies
; die
++) {
3442 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3444 mtd
->eraseregions
[i
].offset
= ofs
;
3445 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3446 mtd
->eraseregions
[i
].numblocks
=
3447 this->boundary
[die
] + 1;
3448 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3451 mtd
->numeraseregions
-= 1;
3452 mtd
->eraseregions
[i
].numblocks
+=
3453 this->boundary
[die
] + 1;
3454 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3456 if (this->boundary
[die
] != maxbdry
) {
3458 mtd
->eraseregions
[i
].offset
= ofs
;
3459 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3460 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3461 this->boundary
[die
];
3462 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3465 mtd
->numeraseregions
-= 1;
3468 /* Expose MLC erase size except when all blocks are SLC */
3469 mtd
->erasesize
= 1 << this->erase_shift
;
3470 if (mtd
->numeraseregions
== 1)
3471 mtd
->erasesize
>>= 1;
3473 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3474 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3475 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3476 " numblocks: %04u]\n",
3477 (unsigned int) mtd
->eraseregions
[i
].offset
,
3478 mtd
->eraseregions
[i
].erasesize
,
3479 mtd
->eraseregions
[i
].numblocks
);
3481 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3482 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3483 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3484 << (this->erase_shift
- 1);
3485 mtd
->size
+= this->diesize
[die
];
3490 * flexonenand_check_blocks_erased - Check if blocks are erased
3491 * @mtd: mtd info structure
3492 * @start: first erase block to check
3493 * @end: last erase block to check
3495 * Converting an unerased block from MLC to SLC
3496 * causes byte values to change. Since both data and its ECC
3497 * have changed, reads on the block give uncorrectable error.
3498 * This might lead to the block being detected as bad.
3500 * Avoid this by ensuring that the block to be converted is
3503 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3505 struct onenand_chip
*this = mtd
->priv
;
3508 struct mtd_oob_ops ops
= {
3509 .mode
= MTD_OPS_PLACE_OOB
,
3511 .ooblen
= mtd
->oobsize
,
3513 .oobbuf
= this->oob_buf
,
3517 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3519 for (block
= start
; block
<= end
; block
++) {
3520 addr
= flexonenand_addr(this, block
);
3521 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3525 * Since main area write results in ECC write to spare,
3526 * it is sufficient to check only ECC bytes for change.
3528 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3532 for (i
= 0; i
< mtd
->oobsize
; i
++)
3533 if (this->oob_buf
[i
] != 0xff)
3536 if (i
!= mtd
->oobsize
) {
3537 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3547 * flexonenand_set_boundary - Writes the SLC boundary
3549 static int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3550 int boundary
, int lock
)
3552 struct onenand_chip
*this = mtd
->priv
;
3553 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3556 /* Change only once for SDP Flex-OneNAND */
3557 if (die
&& (!ONENAND_IS_DDP(this)))
3560 /* boundary value of -1 indicates no required change */
3561 if (boundary
< 0 || boundary
== this->boundary
[die
])
3564 density
= onenand_get_density(this->device_id
);
3565 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3566 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3568 if (boundary
>= blksperdie
) {
3569 printk(KERN_ERR
"%s: Invalid boundary value. "
3570 "Boundary not changed.\n", __func__
);
3574 /* Check if converting blocks are erased */
3575 old
= this->boundary
[die
] + (die
* this->density_mask
);
3576 new = boundary
+ (die
* this->density_mask
);
3577 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3579 printk(KERN_ERR
"%s: Please erase blocks "
3580 "before boundary change\n", __func__
);
3584 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3585 this->wait(mtd
, FL_SYNCING
);
3587 /* Check is boundary is locked */
3588 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3589 this->wait(mtd
, FL_READING
);
3591 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3592 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3593 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3598 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3599 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3601 addr
= die
? this->diesize
[0] : 0;
3603 boundary
&= FLEXONENAND_PI_MASK
;
3604 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3606 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3607 ret
= this->wait(mtd
, FL_ERASING
);
3609 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3614 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3615 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3616 ret
= this->wait(mtd
, FL_WRITING
);
3618 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3623 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3624 ret
= this->wait(mtd
, FL_WRITING
);
3626 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3627 this->wait(mtd
, FL_RESETTING
);
3629 /* Recalculate device size on boundary change*/
3630 flexonenand_get_size(mtd
);
3636 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3637 * @mtd: MTD device structure
3639 * OneNAND detection method:
3640 * Compare the values from command with ones from register
3642 static int onenand_chip_probe(struct mtd_info
*mtd
)
3644 struct onenand_chip
*this = mtd
->priv
;
3645 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
;
3648 /* Save system configuration 1 */
3649 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3650 /* Clear Sync. Burst Read mode to read BootRAM */
3651 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3653 /* Send the command for reading device ID from BootRAM */
3654 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3656 /* Read manufacturer and device IDs from BootRAM */
3657 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3658 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3660 /* Reset OneNAND to read default register values */
3661 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3663 this->wait(mtd
, FL_RESETTING
);
3665 /* Restore system configuration 1 */
3666 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3668 /* Check manufacturer ID */
3669 if (onenand_check_maf(bram_maf_id
))
3672 /* Read manufacturer and device IDs from Register */
3673 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3674 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3676 /* Check OneNAND device */
3677 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3684 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3685 * @mtd: MTD device structure
3687 static int onenand_probe(struct mtd_info
*mtd
)
3689 struct onenand_chip
*this = mtd
->priv
;
3694 ret
= this->chip_probe(mtd
);
3698 /* Device and version IDs from Register */
3699 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3700 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3701 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3703 /* Flash device information */
3704 onenand_print_device_info(dev_id
, ver_id
);
3705 this->device_id
= dev_id
;
3706 this->version_id
= ver_id
;
3708 /* Check OneNAND features */
3709 onenand_check_features(mtd
);
3711 density
= onenand_get_density(dev_id
);
3712 if (FLEXONENAND(this)) {
3713 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3714 /* Maximum possible erase regions */
3715 mtd
->numeraseregions
= this->dies
<< 1;
3717 kcalloc(this->dies
<< 1,
3718 sizeof(struct mtd_erase_region_info
),
3720 if (!mtd
->eraseregions
)
3725 * For Flex-OneNAND, chipsize represents maximum possible device size.
3726 * mtd->size represents the actual device size.
3728 this->chipsize
= (16 << density
) << 20;
3730 /* OneNAND page size & block size */
3731 /* The data buffer size is equal to page size */
3732 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3733 /* We use the full BufferRAM */
3734 if (ONENAND_IS_4KB_PAGE(this))
3735 mtd
->writesize
<<= 1;
3737 mtd
->oobsize
= mtd
->writesize
>> 5;
3738 /* Pages per a block are always 64 in OneNAND */
3739 mtd
->erasesize
= mtd
->writesize
<< 6;
3741 * Flex-OneNAND SLC area has 64 pages per block.
3742 * Flex-OneNAND MLC area has 128 pages per block.
3743 * Expose MLC erase size to find erase_shift and page_mask.
3745 if (FLEXONENAND(this))
3746 mtd
->erasesize
<<= 1;
3748 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3749 this->page_shift
= ffs(mtd
->writesize
) - 1;
3750 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3751 /* Set density mask. it is used for DDP */
3752 if (ONENAND_IS_DDP(this))
3753 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3754 /* It's real page size */
3755 this->writesize
= mtd
->writesize
;
3757 /* REVISIT: Multichip handling */
3759 if (FLEXONENAND(this))
3760 flexonenand_get_size(mtd
);
3762 mtd
->size
= this->chipsize
;
3765 * We emulate the 4KiB page and 256KiB erase block size
3766 * But oobsize is still 64 bytes.
3767 * It is only valid if you turn on 2X program support,
3768 * Otherwise it will be ignored by compiler.
3770 if (ONENAND_IS_2PLANE(this)) {
3771 mtd
->writesize
<<= 1;
3772 mtd
->erasesize
<<= 1;
3779 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3780 * @mtd: MTD device structure
3782 static int onenand_suspend(struct mtd_info
*mtd
)
3784 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3788 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3789 * @mtd: MTD device structure
3791 static void onenand_resume(struct mtd_info
*mtd
)
3793 struct onenand_chip
*this = mtd
->priv
;
3795 if (this->state
== FL_PM_SUSPENDED
)
3796 onenand_release_device(mtd
);
3798 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3799 "in suspended state\n", __func__
);
3803 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3804 * @mtd: MTD device structure
3805 * @maxchips: Number of chips to scan for
3807 * This fills out all the not initialized function pointers
3808 * with the defaults.
3809 * The flash ID is read and the mtd/chip structures are
3810 * filled with the appropriate values.
3812 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3815 struct onenand_chip
*this = mtd
->priv
;
3817 if (!this->read_word
)
3818 this->read_word
= onenand_readw
;
3819 if (!this->write_word
)
3820 this->write_word
= onenand_writew
;
3823 this->command
= onenand_command
;
3825 onenand_setup_wait(mtd
);
3826 if (!this->bbt_wait
)
3827 this->bbt_wait
= onenand_bbt_wait
;
3828 if (!this->unlock_all
)
3829 this->unlock_all
= onenand_unlock_all
;
3831 if (!this->chip_probe
)
3832 this->chip_probe
= onenand_chip_probe
;
3834 if (!this->read_bufferram
)
3835 this->read_bufferram
= onenand_read_bufferram
;
3836 if (!this->write_bufferram
)
3837 this->write_bufferram
= onenand_write_bufferram
;
3839 if (!this->block_markbad
)
3840 this->block_markbad
= onenand_default_block_markbad
;
3841 if (!this->scan_bbt
)
3842 this->scan_bbt
= onenand_default_bbt
;
3844 if (onenand_probe(mtd
))
3847 /* Set Sync. Burst Read after probing */
3848 if (this->mmcontrol
) {
3849 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3850 this->read_bufferram
= onenand_sync_read_bufferram
;
3853 /* Allocate buffers, if necessary */
3854 if (!this->page_buf
) {
3855 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3856 if (!this->page_buf
)
3858 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3859 this->verify_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3860 if (!this->verify_buf
) {
3861 kfree(this->page_buf
);
3865 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3867 if (!this->oob_buf
) {
3868 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3869 if (!this->oob_buf
) {
3870 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3871 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3872 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3873 kfree(this->verify_buf
);
3875 kfree(this->page_buf
);
3879 this->options
|= ONENAND_OOBBUF_ALLOC
;
3882 this->state
= FL_READY
;
3883 init_waitqueue_head(&this->wq
);
3884 spin_lock_init(&this->chip_lock
);
3887 * Allow subpage writes up to oobsize.
3889 switch (mtd
->oobsize
) {
3891 if (FLEXONENAND(this)) {
3892 mtd_set_ooblayout(mtd
, &flexonenand_ooblayout_ops
);
3893 mtd
->subpage_sft
= 0;
3895 mtd_set_ooblayout(mtd
, &onenand_oob_128_ooblayout_ops
);
3896 mtd
->subpage_sft
= 2;
3898 if (ONENAND_IS_NOP_1(this))
3899 mtd
->subpage_sft
= 0;
3902 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3903 mtd
->subpage_sft
= 2;
3907 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3908 mtd
->subpage_sft
= 1;
3912 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
3913 __func__
, mtd
->oobsize
);
3914 mtd
->subpage_sft
= 0;
3915 /* To prevent kernel oops */
3916 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
3920 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3923 * The number of bytes available for a client to place data into
3924 * the out of band area
3926 ret
= mtd_ooblayout_count_freebytes(mtd
);
3930 mtd
->oobavail
= ret
;
3932 mtd
->ecc_strength
= 1;
3934 /* Fill in remaining MTD driver data */
3935 mtd
->type
= ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH
: MTD_NANDFLASH
;
3936 mtd
->flags
= MTD_CAP_NANDFLASH
;
3937 mtd
->_erase
= onenand_erase
;
3939 mtd
->_unpoint
= NULL
;
3940 mtd
->_read_oob
= onenand_read_oob
;
3941 mtd
->_write_oob
= onenand_write_oob
;
3942 mtd
->_panic_write
= onenand_panic_write
;
3943 #ifdef CONFIG_MTD_ONENAND_OTP
3944 mtd
->_get_fact_prot_info
= onenand_get_fact_prot_info
;
3945 mtd
->_read_fact_prot_reg
= onenand_read_fact_prot_reg
;
3946 mtd
->_get_user_prot_info
= onenand_get_user_prot_info
;
3947 mtd
->_read_user_prot_reg
= onenand_read_user_prot_reg
;
3948 mtd
->_write_user_prot_reg
= onenand_write_user_prot_reg
;
3949 mtd
->_lock_user_prot_reg
= onenand_lock_user_prot_reg
;
3951 mtd
->_sync
= onenand_sync
;
3952 mtd
->_lock
= onenand_lock
;
3953 mtd
->_unlock
= onenand_unlock
;
3954 mtd
->_suspend
= onenand_suspend
;
3955 mtd
->_resume
= onenand_resume
;
3956 mtd
->_block_isbad
= onenand_block_isbad
;
3957 mtd
->_block_markbad
= onenand_block_markbad
;
3958 mtd
->owner
= THIS_MODULE
;
3959 mtd
->writebufsize
= mtd
->writesize
;
3961 /* Unlock whole block */
3962 if (!(this->options
& ONENAND_SKIP_INITIAL_UNLOCKING
))
3963 this->unlock_all(mtd
);
3965 /* Set the bad block marker position */
3966 this->badblockpos
= ONENAND_BADBLOCK_POS
;
3968 ret
= this->scan_bbt(mtd
);
3969 if ((!FLEXONENAND(this)) || ret
)
3972 /* Change Flex-OneNAND boundaries if required */
3973 for (i
= 0; i
< MAX_DIES
; i
++)
3974 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
3975 flex_bdry
[(2 * i
) + 1]);
3981 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3982 * @mtd: MTD device structure
3984 void onenand_release(struct mtd_info
*mtd
)
3986 struct onenand_chip
*this = mtd
->priv
;
3988 /* Deregister partitions */
3989 mtd_device_unregister(mtd
);
3991 /* Free bad block table memory, if allocated */
3993 struct bbm_info
*bbm
= this->bbm
;
3997 /* Buffers allocated by onenand_scan */
3998 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3999 kfree(this->page_buf
);
4000 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4001 kfree(this->verify_buf
);
4004 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4005 kfree(this->oob_buf
);
4006 kfree(mtd
->eraseregions
);
4009 EXPORT_SYMBOL_GPL(onenand_scan
);
4010 EXPORT_SYMBOL_GPL(onenand_release
);
4012 MODULE_LICENSE("GPL");
4013 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4014 MODULE_DESCRIPTION("Generic OneNAND flash driver code");