WIP FPC-III support
[linux/fpc-iii.git] / drivers / mtd / nand / raw / au1550nd.c
blob99116896cfd6c6d95b90b2fa02f40ee2d8231a6d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2004 Embedded Edge, LLC
4 */
6 #include <linux/delay.h>
7 #include <linux/slab.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/mtd/mtd.h>
11 #include <linux/mtd/rawnand.h>
12 #include <linux/mtd/partitions.h>
13 #include <linux/platform_device.h>
14 #include <asm/io.h>
15 #include <asm/mach-au1x00/au1000.h>
16 #include <asm/mach-au1x00/au1550nd.h>
19 struct au1550nd_ctx {
20 struct nand_controller controller;
21 struct nand_chip chip;
23 int cs;
24 void __iomem *base;
27 static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this)
29 return container_of(this, struct au1550nd_ctx, chip);
32 /**
33 * au_write_buf - write buffer to chip
34 * @this: NAND chip object
35 * @buf: data buffer
36 * @len: number of bytes to write
38 * write function for 8bit buswidth
40 static void au_write_buf(struct nand_chip *this, const void *buf,
41 unsigned int len)
43 struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
44 const u8 *p = buf;
45 int i;
47 for (i = 0; i < len; i++) {
48 writeb(p[i], ctx->base + MEM_STNAND_DATA);
49 wmb(); /* drain writebuffer */
53 /**
54 * au_read_buf - read chip data into buffer
55 * @this: NAND chip object
56 * @buf: buffer to store date
57 * @len: number of bytes to read
59 * read function for 8bit buswidth
61 static void au_read_buf(struct nand_chip *this, void *buf,
62 unsigned int len)
64 struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
65 u8 *p = buf;
66 int i;
68 for (i = 0; i < len; i++) {
69 p[i] = readb(ctx->base + MEM_STNAND_DATA);
70 wmb(); /* drain writebuffer */
74 /**
75 * au_write_buf16 - write buffer to chip
76 * @this: NAND chip object
77 * @buf: data buffer
78 * @len: number of bytes to write
80 * write function for 16bit buswidth
82 static void au_write_buf16(struct nand_chip *this, const void *buf,
83 unsigned int len)
85 struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
86 const u16 *p = buf;
87 unsigned int i;
89 len >>= 1;
90 for (i = 0; i < len; i++) {
91 writew(p[i], ctx->base + MEM_STNAND_DATA);
92 wmb(); /* drain writebuffer */
96 /**
97 * au_read_buf16 - read chip data into buffer
98 * @this: NAND chip object
99 * @buf: buffer to store date
100 * @len: number of bytes to read
102 * read function for 16bit buswidth
104 static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len)
106 struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
107 unsigned int i;
108 u16 *p = buf;
110 len >>= 1;
111 for (i = 0; i < len; i++) {
112 p[i] = readw(ctx->base + MEM_STNAND_DATA);
113 wmb(); /* drain writebuffer */
117 static int find_nand_cs(unsigned long nand_base)
119 void __iomem *base =
120 (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
121 unsigned long addr, staddr, start, mask, end;
122 int i;
124 for (i = 0; i < 4; i++) {
125 addr = 0x1000 + (i * 0x10); /* CSx */
126 staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
127 /* figure out the decoded range of this CS */
128 start = (staddr << 4) & 0xfffc0000;
129 mask = (staddr << 18) & 0xfffc0000;
130 end = (start | (start - 1)) & ~(start ^ mask);
131 if ((nand_base >= start) && (nand_base < end))
132 return i;
135 return -ENODEV;
138 static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms)
140 unsigned long timeout_jiffies = jiffies;
142 timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1;
143 do {
144 if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1)
145 return 0;
147 usleep_range(10, 100);
148 } while (time_before(jiffies, timeout_jiffies));
150 return -ETIMEDOUT;
153 static int au1550nd_exec_instr(struct nand_chip *this,
154 const struct nand_op_instr *instr)
156 struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
157 unsigned int i;
158 int ret = 0;
160 switch (instr->type) {
161 case NAND_OP_CMD_INSTR:
162 writeb(instr->ctx.cmd.opcode,
163 ctx->base + MEM_STNAND_CMD);
164 /* Drain the writebuffer */
165 wmb();
166 break;
168 case NAND_OP_ADDR_INSTR:
169 for (i = 0; i < instr->ctx.addr.naddrs; i++) {
170 writeb(instr->ctx.addr.addrs[i],
171 ctx->base + MEM_STNAND_ADDR);
172 /* Drain the writebuffer */
173 wmb();
175 break;
177 case NAND_OP_DATA_IN_INSTR:
178 if ((this->options & NAND_BUSWIDTH_16) &&
179 !instr->ctx.data.force_8bit)
180 au_read_buf16(this, instr->ctx.data.buf.in,
181 instr->ctx.data.len);
182 else
183 au_read_buf(this, instr->ctx.data.buf.in,
184 instr->ctx.data.len);
185 break;
187 case NAND_OP_DATA_OUT_INSTR:
188 if ((this->options & NAND_BUSWIDTH_16) &&
189 !instr->ctx.data.force_8bit)
190 au_write_buf16(this, instr->ctx.data.buf.out,
191 instr->ctx.data.len);
192 else
193 au_write_buf(this, instr->ctx.data.buf.out,
194 instr->ctx.data.len);
195 break;
197 case NAND_OP_WAITRDY_INSTR:
198 ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms);
199 break;
200 default:
201 return -EINVAL;
204 if (instr->delay_ns)
205 ndelay(instr->delay_ns);
207 return ret;
210 static int au1550nd_exec_op(struct nand_chip *this,
211 const struct nand_operation *op,
212 bool check_only)
214 struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
215 unsigned int i;
216 int ret;
218 if (check_only)
219 return 0;
221 /* assert (force assert) chip enable */
222 alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
223 /* Drain the writebuffer */
224 wmb();
226 for (i = 0; i < op->ninstrs; i++) {
227 ret = au1550nd_exec_instr(this, &op->instrs[i]);
228 if (ret)
229 break;
232 /* deassert chip enable */
233 alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
234 /* Drain the writebuffer */
235 wmb();
237 return ret;
240 static int au1550nd_attach_chip(struct nand_chip *chip)
242 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
244 if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
245 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
247 return 0;
250 static const struct nand_controller_ops au1550nd_ops = {
251 .exec_op = au1550nd_exec_op,
252 .attach_chip = au1550nd_attach_chip,
255 static int au1550nd_probe(struct platform_device *pdev)
257 struct au1550nd_platdata *pd;
258 struct au1550nd_ctx *ctx;
259 struct nand_chip *this;
260 struct mtd_info *mtd;
261 struct resource *r;
262 int ret, cs;
264 pd = dev_get_platdata(&pdev->dev);
265 if (!pd) {
266 dev_err(&pdev->dev, "missing platform data\n");
267 return -ENODEV;
270 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
271 if (!ctx)
272 return -ENOMEM;
274 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
275 if (!r) {
276 dev_err(&pdev->dev, "no NAND memory resource\n");
277 ret = -ENODEV;
278 goto out1;
280 if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
281 dev_err(&pdev->dev, "cannot claim NAND memory area\n");
282 ret = -ENOMEM;
283 goto out1;
286 ctx->base = ioremap(r->start, 0x1000);
287 if (!ctx->base) {
288 dev_err(&pdev->dev, "cannot remap NAND memory area\n");
289 ret = -ENODEV;
290 goto out2;
293 this = &ctx->chip;
294 mtd = nand_to_mtd(this);
295 mtd->dev.parent = &pdev->dev;
297 /* figure out which CS# r->start belongs to */
298 cs = find_nand_cs(r->start);
299 if (cs < 0) {
300 dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
301 ret = -ENODEV;
302 goto out3;
304 ctx->cs = cs;
306 nand_controller_init(&ctx->controller);
307 ctx->controller.ops = &au1550nd_ops;
308 this->controller = &ctx->controller;
310 if (pd->devwidth)
311 this->options |= NAND_BUSWIDTH_16;
313 ret = nand_scan(this, 1);
314 if (ret) {
315 dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
316 goto out3;
319 mtd_device_register(mtd, pd->parts, pd->num_parts);
321 platform_set_drvdata(pdev, ctx);
323 return 0;
325 out3:
326 iounmap(ctx->base);
327 out2:
328 release_mem_region(r->start, resource_size(r));
329 out1:
330 kfree(ctx);
331 return ret;
334 static int au1550nd_remove(struct platform_device *pdev)
336 struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
337 struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
338 struct nand_chip *chip = &ctx->chip;
339 int ret;
341 ret = mtd_device_unregister(nand_to_mtd(chip));
342 WARN_ON(ret);
343 nand_cleanup(chip);
344 iounmap(ctx->base);
345 release_mem_region(r->start, 0x1000);
346 kfree(ctx);
347 return 0;
350 static struct platform_driver au1550nd_driver = {
351 .driver = {
352 .name = "au1550-nand",
354 .probe = au1550nd_probe,
355 .remove = au1550nd_remove,
358 module_platform_driver(au1550nd_driver);
360 MODULE_LICENSE("GPL");
361 MODULE_AUTHOR("Embedded Edge, LLC");
362 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");