WIP FPC-III support
[linux/fpc-iii.git] / drivers / mtd / nand / raw / mxc_nand.c
blobfd705dd1768d23c784064c2c4351c657ee4612e1
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 */
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
25 #define DRIVER_NAME "mxc_nand"
27 /* Addresses for NFC registers */
28 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
29 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
30 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
31 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
32 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
33 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
34 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
35 #define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10)
36 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
37 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
38 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
39 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
40 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
41 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
42 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
43 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
44 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
45 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
46 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
47 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
48 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
49 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
51 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
52 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
53 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
54 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
55 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
56 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
57 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
58 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
59 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
60 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
62 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
65 * Operation modes for the NFC. Valid for v1, v2 and v3
66 * type controllers.
68 #define NFC_CMD (1 << 0)
69 #define NFC_ADDR (1 << 1)
70 #define NFC_INPUT (1 << 2)
71 #define NFC_OUTPUT (1 << 3)
72 #define NFC_ID (1 << 4)
73 #define NFC_STATUS (1 << 5)
75 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
76 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
78 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
79 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
80 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
82 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
84 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
86 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
87 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
88 #define NFC_V3_WRPROT_LOCK (1 << 1)
89 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
90 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
92 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
94 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
95 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
96 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
97 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
98 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
99 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
100 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
101 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
102 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
103 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
104 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
105 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
106 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
107 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
109 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
110 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
111 #define NFC_V3_CONFIG3_FW8 (1 << 3)
112 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
113 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
114 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
115 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
117 #define NFC_V3_IPC (host->regs_ip + 0x2C)
118 #define NFC_V3_IPC_CREQ (1 << 0)
119 #define NFC_V3_IPC_INT (1 << 31)
121 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
123 struct mxc_nand_host;
125 struct mxc_nand_devtype_data {
126 void (*preset)(struct mtd_info *);
127 int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
128 int page);
129 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
130 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
131 void (*send_page)(struct mtd_info *, unsigned int);
132 void (*send_read_id)(struct mxc_nand_host *);
133 uint16_t (*get_dev_status)(struct mxc_nand_host *);
134 int (*check_int)(struct mxc_nand_host *);
135 void (*irq_control)(struct mxc_nand_host *, int);
136 u32 (*get_ecc_status)(struct mxc_nand_host *);
137 const struct mtd_ooblayout_ops *ooblayout;
138 void (*select_chip)(struct nand_chip *chip, int cs);
139 int (*setup_interface)(struct nand_chip *chip, int csline,
140 const struct nand_interface_config *conf);
141 void (*enable_hwecc)(struct nand_chip *chip, bool enable);
144 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
145 * (CONFIG1:INT_MSK is set). To handle this the driver uses
146 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
148 int irqpending_quirk;
149 int needs_ip;
151 size_t regs_offset;
152 size_t spare0_offset;
153 size_t axi_offset;
155 int spare_len;
156 int eccbytes;
157 int eccsize;
158 int ppb_shift;
161 struct mxc_nand_host {
162 struct nand_chip nand;
163 struct device *dev;
165 void __iomem *spare0;
166 void __iomem *main_area0;
168 void __iomem *base;
169 void __iomem *regs;
170 void __iomem *regs_axi;
171 void __iomem *regs_ip;
172 int status_request;
173 struct clk *clk;
174 int clk_act;
175 int irq;
176 int eccsize;
177 int used_oobsize;
178 int active_cs;
180 struct completion op_completion;
182 uint8_t *data_buf;
183 unsigned int buf_start;
185 const struct mxc_nand_devtype_data *devtype_data;
188 static const char * const part_probes[] = {
189 "cmdlinepart", "RedBoot", "ofpart", NULL };
191 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
193 int i;
194 u32 *t = trg;
195 const __iomem u32 *s = src;
197 for (i = 0; i < (size >> 2); i++)
198 *t++ = __raw_readl(s++);
201 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
203 int i;
204 u16 *t = trg;
205 const __iomem u16 *s = src;
207 /* We assume that src (IO) is always 32bit aligned */
208 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
209 memcpy32_fromio(trg, src, size);
210 return;
213 for (i = 0; i < (size >> 1); i++)
214 *t++ = __raw_readw(s++);
217 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
219 /* __iowrite32_copy use 32bit size values so divide by 4 */
220 __iowrite32_copy(trg, src, size / 4);
223 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
225 int i;
226 __iomem u16 *t = trg;
227 const u16 *s = src;
229 /* We assume that trg (IO) is always 32bit aligned */
230 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
231 memcpy32_toio(trg, src, size);
232 return;
235 for (i = 0; i < (size >> 1); i++)
236 __raw_writew(*s++, t++);
240 * The controller splits a page into data chunks of 512 bytes + partial oob.
241 * There are writesize / 512 such chunks, the size of the partial oob parts is
242 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
243 * contains additionally the byte lost by rounding (if any).
244 * This function handles the needed shuffling between host->data_buf (which
245 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
246 * spare) and the NFC buffer.
248 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
250 struct nand_chip *this = mtd_to_nand(mtd);
251 struct mxc_nand_host *host = nand_get_controller_data(this);
252 u16 i, oob_chunk_size;
253 u16 num_chunks = mtd->writesize / 512;
255 u8 *d = buf;
256 u8 __iomem *s = host->spare0;
257 u16 sparebuf_size = host->devtype_data->spare_len;
259 /* size of oob chunk for all but possibly the last one */
260 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
262 if (bfrom) {
263 for (i = 0; i < num_chunks - 1; i++)
264 memcpy16_fromio(d + i * oob_chunk_size,
265 s + i * sparebuf_size,
266 oob_chunk_size);
268 /* the last chunk */
269 memcpy16_fromio(d + i * oob_chunk_size,
270 s + i * sparebuf_size,
271 host->used_oobsize - i * oob_chunk_size);
272 } else {
273 for (i = 0; i < num_chunks - 1; i++)
274 memcpy16_toio(&s[i * sparebuf_size],
275 &d[i * oob_chunk_size],
276 oob_chunk_size);
278 /* the last chunk */
279 memcpy16_toio(&s[i * sparebuf_size],
280 &d[i * oob_chunk_size],
281 host->used_oobsize - i * oob_chunk_size);
286 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
287 * the upper layers perform a read/write buf operation, the saved column address
288 * is used to index into the full page. So usually this function is called with
289 * column == 0 (unless no column cycle is needed indicated by column == -1)
291 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
293 struct nand_chip *nand_chip = mtd_to_nand(mtd);
294 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
296 /* Write out column address, if necessary */
297 if (column != -1) {
298 host->devtype_data->send_addr(host, column & 0xff,
299 page_addr == -1);
300 if (mtd->writesize > 512)
301 /* another col addr cycle for 2k page */
302 host->devtype_data->send_addr(host,
303 (column >> 8) & 0xff,
304 false);
307 /* Write out page address, if necessary */
308 if (page_addr != -1) {
309 /* paddr_0 - p_addr_7 */
310 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
312 if (mtd->writesize > 512) {
313 if (mtd->size >= 0x10000000) {
314 /* paddr_8 - paddr_15 */
315 host->devtype_data->send_addr(host,
316 (page_addr >> 8) & 0xff,
317 false);
318 host->devtype_data->send_addr(host,
319 (page_addr >> 16) & 0xff,
320 true);
321 } else
322 /* paddr_8 - paddr_15 */
323 host->devtype_data->send_addr(host,
324 (page_addr >> 8) & 0xff, true);
325 } else {
326 if (nand_chip->options & NAND_ROW_ADDR_3) {
327 /* paddr_8 - paddr_15 */
328 host->devtype_data->send_addr(host,
329 (page_addr >> 8) & 0xff,
330 false);
331 host->devtype_data->send_addr(host,
332 (page_addr >> 16) & 0xff,
333 true);
334 } else
335 /* paddr_8 - paddr_15 */
336 host->devtype_data->send_addr(host,
337 (page_addr >> 8) & 0xff, true);
342 static int check_int_v3(struct mxc_nand_host *host)
344 uint32_t tmp;
346 tmp = readl(NFC_V3_IPC);
347 if (!(tmp & NFC_V3_IPC_INT))
348 return 0;
350 tmp &= ~NFC_V3_IPC_INT;
351 writel(tmp, NFC_V3_IPC);
353 return 1;
356 static int check_int_v1_v2(struct mxc_nand_host *host)
358 uint32_t tmp;
360 tmp = readw(NFC_V1_V2_CONFIG2);
361 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
362 return 0;
364 if (!host->devtype_data->irqpending_quirk)
365 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
367 return 1;
370 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
372 uint16_t tmp;
374 tmp = readw(NFC_V1_V2_CONFIG1);
376 if (activate)
377 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
378 else
379 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
381 writew(tmp, NFC_V1_V2_CONFIG1);
384 static void irq_control_v3(struct mxc_nand_host *host, int activate)
386 uint32_t tmp;
388 tmp = readl(NFC_V3_CONFIG2);
390 if (activate)
391 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
392 else
393 tmp |= NFC_V3_CONFIG2_INT_MSK;
395 writel(tmp, NFC_V3_CONFIG2);
398 static void irq_control(struct mxc_nand_host *host, int activate)
400 if (host->devtype_data->irqpending_quirk) {
401 if (activate)
402 enable_irq(host->irq);
403 else
404 disable_irq_nosync(host->irq);
405 } else {
406 host->devtype_data->irq_control(host, activate);
410 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
412 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
415 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
417 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
420 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
422 return readl(NFC_V3_ECC_STATUS_RESULT);
425 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
427 struct mxc_nand_host *host = dev_id;
429 if (!host->devtype_data->check_int(host))
430 return IRQ_NONE;
432 irq_control(host, 0);
434 complete(&host->op_completion);
436 return IRQ_HANDLED;
439 /* This function polls the NANDFC to wait for the basic operation to
440 * complete by checking the INT bit of config2 register.
442 static int wait_op_done(struct mxc_nand_host *host, int useirq)
444 int ret = 0;
447 * If operation is already complete, don't bother to setup an irq or a
448 * loop.
450 if (host->devtype_data->check_int(host))
451 return 0;
453 if (useirq) {
454 unsigned long timeout;
456 reinit_completion(&host->op_completion);
458 irq_control(host, 1);
460 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
461 if (!timeout && !host->devtype_data->check_int(host)) {
462 dev_dbg(host->dev, "timeout waiting for irq\n");
463 ret = -ETIMEDOUT;
465 } else {
466 int max_retries = 8000;
467 int done;
469 do {
470 udelay(1);
472 done = host->devtype_data->check_int(host);
473 if (done)
474 break;
476 } while (--max_retries);
478 if (!done) {
479 dev_dbg(host->dev, "timeout polling for completion\n");
480 ret = -ETIMEDOUT;
484 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
486 return ret;
489 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
491 /* fill command */
492 writel(cmd, NFC_V3_FLASH_CMD);
494 /* send out command */
495 writel(NFC_CMD, NFC_V3_LAUNCH);
497 /* Wait for operation to complete */
498 wait_op_done(host, useirq);
501 /* This function issues the specified command to the NAND device and
502 * waits for completion. */
503 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
505 dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
507 writew(cmd, NFC_V1_V2_FLASH_CMD);
508 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
510 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
511 int max_retries = 100;
512 /* Reset completion is indicated by NFC_CONFIG2 */
513 /* being set to 0 */
514 while (max_retries-- > 0) {
515 if (readw(NFC_V1_V2_CONFIG2) == 0) {
516 break;
518 udelay(1);
520 if (max_retries < 0)
521 dev_dbg(host->dev, "%s: RESET failed\n", __func__);
522 } else {
523 /* Wait for operation to complete */
524 wait_op_done(host, useirq);
528 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
530 /* fill address */
531 writel(addr, NFC_V3_FLASH_ADDR0);
533 /* send out address */
534 writel(NFC_ADDR, NFC_V3_LAUNCH);
536 wait_op_done(host, 0);
539 /* This function sends an address (or partial address) to the
540 * NAND device. The address is used to select the source/destination for
541 * a NAND command. */
542 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
544 dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
546 writew(addr, NFC_V1_V2_FLASH_ADDR);
547 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
549 /* Wait for operation to complete */
550 wait_op_done(host, islast);
553 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
555 struct nand_chip *nand_chip = mtd_to_nand(mtd);
556 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
557 uint32_t tmp;
559 tmp = readl(NFC_V3_CONFIG1);
560 tmp &= ~(7 << 4);
561 writel(tmp, NFC_V3_CONFIG1);
563 /* transfer data from NFC ram to nand */
564 writel(ops, NFC_V3_LAUNCH);
566 wait_op_done(host, false);
569 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
571 struct nand_chip *nand_chip = mtd_to_nand(mtd);
572 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
574 /* NANDFC buffer 0 is used for page read/write */
575 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
577 writew(ops, NFC_V1_V2_CONFIG2);
579 /* Wait for operation to complete */
580 wait_op_done(host, true);
583 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
585 struct nand_chip *nand_chip = mtd_to_nand(mtd);
586 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
587 int bufs, i;
589 if (mtd->writesize > 512)
590 bufs = 4;
591 else
592 bufs = 1;
594 for (i = 0; i < bufs; i++) {
596 /* NANDFC buffer 0 is used for page read/write */
597 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
599 writew(ops, NFC_V1_V2_CONFIG2);
601 /* Wait for operation to complete */
602 wait_op_done(host, true);
606 static void send_read_id_v3(struct mxc_nand_host *host)
608 /* Read ID into main buffer */
609 writel(NFC_ID, NFC_V3_LAUNCH);
611 wait_op_done(host, true);
613 memcpy32_fromio(host->data_buf, host->main_area0, 16);
616 /* Request the NANDFC to perform a read of the NAND device ID. */
617 static void send_read_id_v1_v2(struct mxc_nand_host *host)
619 /* NANDFC buffer 0 is used for device ID output */
620 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
622 writew(NFC_ID, NFC_V1_V2_CONFIG2);
624 /* Wait for operation to complete */
625 wait_op_done(host, true);
627 memcpy32_fromio(host->data_buf, host->main_area0, 16);
630 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
632 writew(NFC_STATUS, NFC_V3_LAUNCH);
633 wait_op_done(host, true);
635 return readl(NFC_V3_CONFIG1) >> 16;
638 /* This function requests the NANDFC to perform a read of the
639 * NAND device status and returns the current status. */
640 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
642 void __iomem *main_buf = host->main_area0;
643 uint32_t store;
644 uint16_t ret;
646 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
649 * The device status is stored in main_area0. To
650 * prevent corruption of the buffer save the value
651 * and restore it afterwards.
653 store = readl(main_buf);
655 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
656 wait_op_done(host, true);
658 ret = readw(main_buf);
660 writel(store, main_buf);
662 return ret;
665 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
667 struct mxc_nand_host *host = nand_get_controller_data(chip);
668 uint16_t config1;
670 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
671 return;
673 config1 = readw(NFC_V1_V2_CONFIG1);
675 if (enable)
676 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
677 else
678 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
680 writew(config1, NFC_V1_V2_CONFIG1);
683 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
685 struct mxc_nand_host *host = nand_get_controller_data(chip);
686 uint32_t config2;
688 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
689 return;
691 config2 = readl(NFC_V3_CONFIG2);
693 if (enable)
694 config2 |= NFC_V3_CONFIG2_ECC_EN;
695 else
696 config2 &= ~NFC_V3_CONFIG2_ECC_EN;
698 writel(config2, NFC_V3_CONFIG2);
701 /* This functions is used by upper layer to checks if device is ready */
702 static int mxc_nand_dev_ready(struct nand_chip *chip)
705 * NFC handles R/B internally. Therefore, this function
706 * always returns status as ready.
708 return 1;
711 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
712 bool ecc, int page)
714 struct mtd_info *mtd = nand_to_mtd(chip);
715 struct mxc_nand_host *host = nand_get_controller_data(chip);
716 unsigned int bitflips_corrected = 0;
717 int no_subpages;
718 int i;
720 host->devtype_data->enable_hwecc(chip, ecc);
722 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
723 mxc_do_addr_cycle(mtd, 0, page);
725 if (mtd->writesize > 512)
726 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
728 no_subpages = mtd->writesize >> 9;
730 for (i = 0; i < no_subpages; i++) {
731 uint16_t ecc_stats;
733 /* NANDFC buffer 0 is used for page read/write */
734 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
736 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
738 /* Wait for operation to complete */
739 wait_op_done(host, true);
741 ecc_stats = get_ecc_status_v1(host);
743 ecc_stats >>= 2;
745 if (buf && ecc) {
746 switch (ecc_stats & 0x3) {
747 case 0:
748 default:
749 break;
750 case 1:
751 mtd->ecc_stats.corrected++;
752 bitflips_corrected = 1;
753 break;
754 case 2:
755 mtd->ecc_stats.failed++;
756 break;
761 if (buf)
762 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
763 if (oob)
764 copy_spare(mtd, true, oob);
766 return bitflips_corrected;
769 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
770 void *oob, bool ecc, int page)
772 struct mtd_info *mtd = nand_to_mtd(chip);
773 struct mxc_nand_host *host = nand_get_controller_data(chip);
774 unsigned int max_bitflips = 0;
775 u32 ecc_stat, err;
776 int no_subpages;
777 u8 ecc_bit_mask, err_limit;
779 host->devtype_data->enable_hwecc(chip, ecc);
781 host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
782 mxc_do_addr_cycle(mtd, 0, page);
784 if (mtd->writesize > 512)
785 host->devtype_data->send_cmd(host,
786 NAND_CMD_READSTART, true);
788 host->devtype_data->send_page(mtd, NFC_OUTPUT);
790 if (buf)
791 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
792 if (oob)
793 copy_spare(mtd, true, oob);
795 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
796 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
798 no_subpages = mtd->writesize >> 9;
800 ecc_stat = host->devtype_data->get_ecc_status(host);
802 do {
803 err = ecc_stat & ecc_bit_mask;
804 if (err > err_limit) {
805 mtd->ecc_stats.failed++;
806 } else {
807 mtd->ecc_stats.corrected += err;
808 max_bitflips = max_t(unsigned int, max_bitflips, err);
811 ecc_stat >>= 4;
812 } while (--no_subpages);
814 return max_bitflips;
817 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
818 int oob_required, int page)
820 struct mxc_nand_host *host = nand_get_controller_data(chip);
821 void *oob_buf;
823 if (oob_required)
824 oob_buf = chip->oob_poi;
825 else
826 oob_buf = NULL;
828 return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
831 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
832 int oob_required, int page)
834 struct mxc_nand_host *host = nand_get_controller_data(chip);
835 void *oob_buf;
837 if (oob_required)
838 oob_buf = chip->oob_poi;
839 else
840 oob_buf = NULL;
842 return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
845 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
847 struct mxc_nand_host *host = nand_get_controller_data(chip);
849 return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
850 page);
853 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
854 bool ecc, int page)
856 struct mtd_info *mtd = nand_to_mtd(chip);
857 struct mxc_nand_host *host = nand_get_controller_data(chip);
859 host->devtype_data->enable_hwecc(chip, ecc);
861 host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
862 mxc_do_addr_cycle(mtd, 0, page);
864 memcpy32_toio(host->main_area0, buf, mtd->writesize);
865 copy_spare(mtd, false, chip->oob_poi);
867 host->devtype_data->send_page(mtd, NFC_INPUT);
868 host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
869 mxc_do_addr_cycle(mtd, 0, page);
871 return 0;
874 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
875 int oob_required, int page)
877 return mxc_nand_write_page(chip, buf, true, page);
880 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
881 int oob_required, int page)
883 return mxc_nand_write_page(chip, buf, false, page);
886 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
888 struct mtd_info *mtd = nand_to_mtd(chip);
889 struct mxc_nand_host *host = nand_get_controller_data(chip);
891 memset(host->data_buf, 0xff, mtd->writesize);
893 return mxc_nand_write_page(chip, host->data_buf, false, page);
896 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
898 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
899 uint8_t ret;
901 /* Check for status request */
902 if (host->status_request)
903 return host->devtype_data->get_dev_status(host) & 0xFF;
905 if (nand_chip->options & NAND_BUSWIDTH_16) {
906 /* only take the lower byte of each word */
907 ret = *(uint16_t *)(host->data_buf + host->buf_start);
909 host->buf_start += 2;
910 } else {
911 ret = *(uint8_t *)(host->data_buf + host->buf_start);
912 host->buf_start++;
915 dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
916 return ret;
919 /* Write data of length len to buffer buf. The data to be
920 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
921 * Operation by the NFC, the data is written to NAND Flash */
922 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
923 int len)
925 struct mtd_info *mtd = nand_to_mtd(nand_chip);
926 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
927 u16 col = host->buf_start;
928 int n = mtd->oobsize + mtd->writesize - col;
930 n = min(n, len);
932 memcpy(host->data_buf + col, buf, n);
934 host->buf_start += n;
937 /* Read the data buffer from the NAND Flash. To read the data from NAND
938 * Flash first the data output cycle is initiated by the NFC, which copies
939 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
941 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
942 int len)
944 struct mtd_info *mtd = nand_to_mtd(nand_chip);
945 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
946 u16 col = host->buf_start;
947 int n = mtd->oobsize + mtd->writesize - col;
949 n = min(n, len);
951 memcpy(buf, host->data_buf + col, n);
953 host->buf_start += n;
956 /* This function is used by upper layer for select and
957 * deselect of the NAND chip */
958 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
960 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
962 if (chip == -1) {
963 /* Disable the NFC clock */
964 if (host->clk_act) {
965 clk_disable_unprepare(host->clk);
966 host->clk_act = 0;
968 return;
971 if (!host->clk_act) {
972 /* Enable the NFC clock */
973 clk_prepare_enable(host->clk);
974 host->clk_act = 1;
978 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
980 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
982 if (chip == -1) {
983 /* Disable the NFC clock */
984 if (host->clk_act) {
985 clk_disable_unprepare(host->clk);
986 host->clk_act = 0;
988 return;
991 if (!host->clk_act) {
992 /* Enable the NFC clock */
993 clk_prepare_enable(host->clk);
994 host->clk_act = 1;
997 host->active_cs = chip;
998 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
1001 #define MXC_V1_ECCBYTES 5
1003 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1004 struct mtd_oob_region *oobregion)
1006 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1008 if (section >= nand_chip->ecc.steps)
1009 return -ERANGE;
1011 oobregion->offset = (section * 16) + 6;
1012 oobregion->length = MXC_V1_ECCBYTES;
1014 return 0;
1017 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1018 struct mtd_oob_region *oobregion)
1020 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1022 if (section > nand_chip->ecc.steps)
1023 return -ERANGE;
1025 if (!section) {
1026 if (mtd->writesize <= 512) {
1027 oobregion->offset = 0;
1028 oobregion->length = 5;
1029 } else {
1030 oobregion->offset = 2;
1031 oobregion->length = 4;
1033 } else {
1034 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1035 if (section < nand_chip->ecc.steps)
1036 oobregion->length = (section * 16) + 6 -
1037 oobregion->offset;
1038 else
1039 oobregion->length = mtd->oobsize - oobregion->offset;
1042 return 0;
1045 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1046 .ecc = mxc_v1_ooblayout_ecc,
1047 .free = mxc_v1_ooblayout_free,
1050 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1051 struct mtd_oob_region *oobregion)
1053 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1054 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1056 if (section >= nand_chip->ecc.steps)
1057 return -ERANGE;
1059 oobregion->offset = (section * stepsize) + 7;
1060 oobregion->length = nand_chip->ecc.bytes;
1062 return 0;
1065 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1066 struct mtd_oob_region *oobregion)
1068 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1069 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1071 if (section >= nand_chip->ecc.steps)
1072 return -ERANGE;
1074 if (!section) {
1075 if (mtd->writesize <= 512) {
1076 oobregion->offset = 0;
1077 oobregion->length = 5;
1078 } else {
1079 oobregion->offset = 2;
1080 oobregion->length = 4;
1082 } else {
1083 oobregion->offset = section * stepsize;
1084 oobregion->length = 7;
1087 return 0;
1090 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1091 .ecc = mxc_v2_ooblayout_ecc,
1092 .free = mxc_v2_ooblayout_free,
1096 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1097 * on how much oob the nand chip has. For 8bit ecc we need at least
1098 * 26 bytes of oob data per 512 byte block.
1100 static int get_eccsize(struct mtd_info *mtd)
1102 int oobbytes_per_512 = 0;
1104 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1106 if (oobbytes_per_512 < 26)
1107 return 4;
1108 else
1109 return 8;
1112 static void preset_v1(struct mtd_info *mtd)
1114 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1115 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1116 uint16_t config1 = 0;
1118 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1119 mtd->writesize)
1120 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1122 if (!host->devtype_data->irqpending_quirk)
1123 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1125 host->eccsize = 1;
1127 writew(config1, NFC_V1_V2_CONFIG1);
1128 /* preset operation */
1130 /* Unlock the internal RAM Buffer */
1131 writew(0x2, NFC_V1_V2_CONFIG);
1133 /* Blocks to be unlocked */
1134 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1135 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1137 /* Unlock Block Command for given address range */
1138 writew(0x4, NFC_V1_V2_WRPROT);
1141 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1142 const struct nand_interface_config *conf)
1144 struct mxc_nand_host *host = nand_get_controller_data(chip);
1145 int tRC_min_ns, tRC_ps, ret;
1146 unsigned long rate, rate_round;
1147 const struct nand_sdr_timings *timings;
1148 u16 config1;
1150 timings = nand_get_sdr_timings(conf);
1151 if (IS_ERR(timings))
1152 return -ENOTSUPP;
1154 config1 = readw(NFC_V1_V2_CONFIG1);
1156 tRC_min_ns = timings->tRC_min / 1000;
1157 rate = 1000000000 / tRC_min_ns;
1160 * For tRC < 30ns we have to use EDO mode. In this case the controller
1161 * does one access per clock cycle. Otherwise the controller does one
1162 * access in two clock cycles, thus we have to double the rate to the
1163 * controller.
1165 if (tRC_min_ns < 30) {
1166 rate_round = clk_round_rate(host->clk, rate);
1167 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1168 tRC_ps = 1000000000 / (rate_round / 1000);
1169 } else {
1170 rate *= 2;
1171 rate_round = clk_round_rate(host->clk, rate);
1172 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1173 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1177 * The timing values compared against are from the i.MX25 Automotive
1178 * datasheet, Table 50. NFC Timing Parameters
1180 if (timings->tCLS_min > tRC_ps - 1000 ||
1181 timings->tCLH_min > tRC_ps - 2000 ||
1182 timings->tCS_min > tRC_ps - 1000 ||
1183 timings->tCH_min > tRC_ps - 2000 ||
1184 timings->tWP_min > tRC_ps - 1500 ||
1185 timings->tALS_min > tRC_ps ||
1186 timings->tALH_min > tRC_ps - 3000 ||
1187 timings->tDS_min > tRC_ps ||
1188 timings->tDH_min > tRC_ps - 5000 ||
1189 timings->tWC_min > 2 * tRC_ps ||
1190 timings->tWH_min > tRC_ps - 2500 ||
1191 timings->tRR_min > 6 * tRC_ps ||
1192 timings->tRP_min > 3 * tRC_ps / 2 ||
1193 timings->tRC_min > 2 * tRC_ps ||
1194 timings->tREH_min > (tRC_ps / 2) - 2500) {
1195 dev_dbg(host->dev, "Timing out of bounds\n");
1196 return -EINVAL;
1199 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1200 return 0;
1202 ret = clk_set_rate(host->clk, rate);
1203 if (ret)
1204 return ret;
1206 writew(config1, NFC_V1_V2_CONFIG1);
1208 dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1209 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1210 "normal");
1212 return 0;
1215 static void preset_v2(struct mtd_info *mtd)
1217 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1218 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1219 uint16_t config1 = 0;
1221 config1 |= NFC_V2_CONFIG1_FP_INT;
1223 if (!host->devtype_data->irqpending_quirk)
1224 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1226 if (mtd->writesize) {
1227 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1229 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1230 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1232 host->eccsize = get_eccsize(mtd);
1233 if (host->eccsize == 4)
1234 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1236 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1237 } else {
1238 host->eccsize = 1;
1241 writew(config1, NFC_V1_V2_CONFIG1);
1242 /* preset operation */
1244 /* spare area size in 16-bit half-words */
1245 writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1247 /* Unlock the internal RAM Buffer */
1248 writew(0x2, NFC_V1_V2_CONFIG);
1250 /* Blocks to be unlocked */
1251 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1252 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1253 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1254 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1255 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1256 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1257 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1258 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1260 /* Unlock Block Command for given address range */
1261 writew(0x4, NFC_V1_V2_WRPROT);
1264 static void preset_v3(struct mtd_info *mtd)
1266 struct nand_chip *chip = mtd_to_nand(mtd);
1267 struct mxc_nand_host *host = nand_get_controller_data(chip);
1268 uint32_t config2, config3;
1269 int i, addr_phases;
1271 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1272 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1274 /* Unlock the internal RAM Buffer */
1275 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1276 NFC_V3_WRPROT);
1278 /* Blocks to be unlocked */
1279 for (i = 0; i < NAND_MAX_CHIPS; i++)
1280 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1282 writel(0, NFC_V3_IPC);
1284 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1285 NFC_V3_CONFIG2_2CMD_PHASES |
1286 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1287 NFC_V3_CONFIG2_ST_CMD(0x70) |
1288 NFC_V3_CONFIG2_INT_MSK |
1289 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1291 addr_phases = fls(chip->pagemask) >> 3;
1293 if (mtd->writesize == 2048) {
1294 config2 |= NFC_V3_CONFIG2_PS_2048;
1295 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1296 } else if (mtd->writesize == 4096) {
1297 config2 |= NFC_V3_CONFIG2_PS_4096;
1298 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1299 } else {
1300 config2 |= NFC_V3_CONFIG2_PS_512;
1301 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1304 if (mtd->writesize) {
1305 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1306 config2 |= NFC_V3_CONFIG2_ECC_EN;
1308 config2 |= NFC_V3_CONFIG2_PPB(
1309 ffs(mtd->erasesize / mtd->writesize) - 6,
1310 host->devtype_data->ppb_shift);
1311 host->eccsize = get_eccsize(mtd);
1312 if (host->eccsize == 8)
1313 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1316 writel(config2, NFC_V3_CONFIG2);
1318 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1319 NFC_V3_CONFIG3_NO_SDMA |
1320 NFC_V3_CONFIG3_RBB_MODE |
1321 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1322 NFC_V3_CONFIG3_ADD_OP(0);
1324 if (!(chip->options & NAND_BUSWIDTH_16))
1325 config3 |= NFC_V3_CONFIG3_FW8;
1327 writel(config3, NFC_V3_CONFIG3);
1329 writel(0, NFC_V3_DELAY_LINE);
1332 /* Used by the upper layer to write command to NAND Flash for
1333 * different operations to be carried out on NAND Flash */
1334 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1335 int column, int page_addr)
1337 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1338 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1340 dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1341 command, column, page_addr);
1343 /* Reset command state information */
1344 host->status_request = false;
1346 /* Command pre-processing step */
1347 switch (command) {
1348 case NAND_CMD_RESET:
1349 host->devtype_data->preset(mtd);
1350 host->devtype_data->send_cmd(host, command, false);
1351 break;
1353 case NAND_CMD_STATUS:
1354 host->buf_start = 0;
1355 host->status_request = true;
1357 host->devtype_data->send_cmd(host, command, true);
1358 WARN_ONCE(column != -1 || page_addr != -1,
1359 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1360 command, column, page_addr);
1361 mxc_do_addr_cycle(mtd, column, page_addr);
1362 break;
1364 case NAND_CMD_READID:
1365 host->devtype_data->send_cmd(host, command, true);
1366 mxc_do_addr_cycle(mtd, column, page_addr);
1367 host->devtype_data->send_read_id(host);
1368 host->buf_start = 0;
1369 break;
1371 case NAND_CMD_ERASE1:
1372 case NAND_CMD_ERASE2:
1373 host->devtype_data->send_cmd(host, command, false);
1374 WARN_ONCE(column != -1,
1375 "Unexpected column value (cmd=%u, col=%d)\n",
1376 command, column);
1377 mxc_do_addr_cycle(mtd, column, page_addr);
1379 break;
1380 case NAND_CMD_PARAM:
1381 host->devtype_data->send_cmd(host, command, false);
1382 mxc_do_addr_cycle(mtd, column, page_addr);
1383 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1384 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1385 host->buf_start = 0;
1386 break;
1387 default:
1388 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1389 command);
1390 break;
1394 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1395 u8 *subfeature_param)
1397 struct mtd_info *mtd = nand_to_mtd(chip);
1398 struct mxc_nand_host *host = nand_get_controller_data(chip);
1399 int i;
1401 host->buf_start = 0;
1403 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1404 chip->legacy.write_byte(chip, subfeature_param[i]);
1406 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1407 host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1408 mxc_do_addr_cycle(mtd, addr, -1);
1409 host->devtype_data->send_page(mtd, NFC_INPUT);
1411 return 0;
1414 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1415 u8 *subfeature_param)
1417 struct mtd_info *mtd = nand_to_mtd(chip);
1418 struct mxc_nand_host *host = nand_get_controller_data(chip);
1419 int i;
1421 host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1422 mxc_do_addr_cycle(mtd, addr, -1);
1423 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1424 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1425 host->buf_start = 0;
1427 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1428 *subfeature_param++ = chip->legacy.read_byte(chip);
1430 return 0;
1434 * The generic flash bbt descriptors overlap with our ecc
1435 * hardware, so define some i.MX specific ones.
1437 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1438 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1440 static struct nand_bbt_descr bbt_main_descr = {
1441 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1442 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1443 .offs = 0,
1444 .len = 4,
1445 .veroffs = 4,
1446 .maxblocks = 4,
1447 .pattern = bbt_pattern,
1450 static struct nand_bbt_descr bbt_mirror_descr = {
1451 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1452 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1453 .offs = 0,
1454 .len = 4,
1455 .veroffs = 4,
1456 .maxblocks = 4,
1457 .pattern = mirror_pattern,
1460 /* v1 + irqpending_quirk: i.MX21 */
1461 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1462 .preset = preset_v1,
1463 .read_page = mxc_nand_read_page_v1,
1464 .send_cmd = send_cmd_v1_v2,
1465 .send_addr = send_addr_v1_v2,
1466 .send_page = send_page_v1,
1467 .send_read_id = send_read_id_v1_v2,
1468 .get_dev_status = get_dev_status_v1_v2,
1469 .check_int = check_int_v1_v2,
1470 .irq_control = irq_control_v1_v2,
1471 .get_ecc_status = get_ecc_status_v1,
1472 .ooblayout = &mxc_v1_ooblayout_ops,
1473 .select_chip = mxc_nand_select_chip_v1_v3,
1474 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1475 .irqpending_quirk = 1,
1476 .needs_ip = 0,
1477 .regs_offset = 0xe00,
1478 .spare0_offset = 0x800,
1479 .spare_len = 16,
1480 .eccbytes = 3,
1481 .eccsize = 1,
1484 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1485 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1486 .preset = preset_v1,
1487 .read_page = mxc_nand_read_page_v1,
1488 .send_cmd = send_cmd_v1_v2,
1489 .send_addr = send_addr_v1_v2,
1490 .send_page = send_page_v1,
1491 .send_read_id = send_read_id_v1_v2,
1492 .get_dev_status = get_dev_status_v1_v2,
1493 .check_int = check_int_v1_v2,
1494 .irq_control = irq_control_v1_v2,
1495 .get_ecc_status = get_ecc_status_v1,
1496 .ooblayout = &mxc_v1_ooblayout_ops,
1497 .select_chip = mxc_nand_select_chip_v1_v3,
1498 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1499 .irqpending_quirk = 0,
1500 .needs_ip = 0,
1501 .regs_offset = 0xe00,
1502 .spare0_offset = 0x800,
1503 .axi_offset = 0,
1504 .spare_len = 16,
1505 .eccbytes = 3,
1506 .eccsize = 1,
1509 /* v21: i.MX25, i.MX35 */
1510 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1511 .preset = preset_v2,
1512 .read_page = mxc_nand_read_page_v2_v3,
1513 .send_cmd = send_cmd_v1_v2,
1514 .send_addr = send_addr_v1_v2,
1515 .send_page = send_page_v2,
1516 .send_read_id = send_read_id_v1_v2,
1517 .get_dev_status = get_dev_status_v1_v2,
1518 .check_int = check_int_v1_v2,
1519 .irq_control = irq_control_v1_v2,
1520 .get_ecc_status = get_ecc_status_v2,
1521 .ooblayout = &mxc_v2_ooblayout_ops,
1522 .select_chip = mxc_nand_select_chip_v2,
1523 .setup_interface = mxc_nand_v2_setup_interface,
1524 .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1525 .irqpending_quirk = 0,
1526 .needs_ip = 0,
1527 .regs_offset = 0x1e00,
1528 .spare0_offset = 0x1000,
1529 .axi_offset = 0,
1530 .spare_len = 64,
1531 .eccbytes = 9,
1532 .eccsize = 0,
1535 /* v3.2a: i.MX51 */
1536 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1537 .preset = preset_v3,
1538 .read_page = mxc_nand_read_page_v2_v3,
1539 .send_cmd = send_cmd_v3,
1540 .send_addr = send_addr_v3,
1541 .send_page = send_page_v3,
1542 .send_read_id = send_read_id_v3,
1543 .get_dev_status = get_dev_status_v3,
1544 .check_int = check_int_v3,
1545 .irq_control = irq_control_v3,
1546 .get_ecc_status = get_ecc_status_v3,
1547 .ooblayout = &mxc_v2_ooblayout_ops,
1548 .select_chip = mxc_nand_select_chip_v1_v3,
1549 .enable_hwecc = mxc_nand_enable_hwecc_v3,
1550 .irqpending_quirk = 0,
1551 .needs_ip = 1,
1552 .regs_offset = 0,
1553 .spare0_offset = 0x1000,
1554 .axi_offset = 0x1e00,
1555 .spare_len = 64,
1556 .eccbytes = 0,
1557 .eccsize = 0,
1558 .ppb_shift = 7,
1561 /* v3.2b: i.MX53 */
1562 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1563 .preset = preset_v3,
1564 .read_page = mxc_nand_read_page_v2_v3,
1565 .send_cmd = send_cmd_v3,
1566 .send_addr = send_addr_v3,
1567 .send_page = send_page_v3,
1568 .send_read_id = send_read_id_v3,
1569 .get_dev_status = get_dev_status_v3,
1570 .check_int = check_int_v3,
1571 .irq_control = irq_control_v3,
1572 .get_ecc_status = get_ecc_status_v3,
1573 .ooblayout = &mxc_v2_ooblayout_ops,
1574 .select_chip = mxc_nand_select_chip_v1_v3,
1575 .enable_hwecc = mxc_nand_enable_hwecc_v3,
1576 .irqpending_quirk = 0,
1577 .needs_ip = 1,
1578 .regs_offset = 0,
1579 .spare0_offset = 0x1000,
1580 .axi_offset = 0x1e00,
1581 .spare_len = 64,
1582 .eccbytes = 0,
1583 .eccsize = 0,
1584 .ppb_shift = 8,
1587 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1589 return host->devtype_data == &imx21_nand_devtype_data;
1592 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1594 return host->devtype_data == &imx27_nand_devtype_data;
1597 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1599 return host->devtype_data == &imx25_nand_devtype_data;
1602 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1604 return host->devtype_data == &imx51_nand_devtype_data;
1607 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1609 return host->devtype_data == &imx53_nand_devtype_data;
1612 static const struct of_device_id mxcnd_dt_ids[] = {
1613 { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1614 { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1615 { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1616 { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1617 { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1618 { /* sentinel */ }
1620 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1622 static int mxcnd_attach_chip(struct nand_chip *chip)
1624 struct mtd_info *mtd = nand_to_mtd(chip);
1625 struct mxc_nand_host *host = nand_get_controller_data(chip);
1626 struct device *dev = mtd->dev.parent;
1628 chip->ecc.bytes = host->devtype_data->eccbytes;
1629 host->eccsize = host->devtype_data->eccsize;
1630 chip->ecc.size = 512;
1631 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1633 switch (chip->ecc.engine_type) {
1634 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1635 chip->ecc.read_page = mxc_nand_read_page;
1636 chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1637 chip->ecc.read_oob = mxc_nand_read_oob;
1638 chip->ecc.write_page = mxc_nand_write_page_ecc;
1639 chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1640 chip->ecc.write_oob = mxc_nand_write_oob;
1641 break;
1643 case NAND_ECC_ENGINE_TYPE_SOFT:
1644 break;
1646 default:
1647 return -EINVAL;
1650 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1651 chip->bbt_td = &bbt_main_descr;
1652 chip->bbt_md = &bbt_mirror_descr;
1655 /* Allocate the right size buffer now */
1656 devm_kfree(dev, (void *)host->data_buf);
1657 host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1658 GFP_KERNEL);
1659 if (!host->data_buf)
1660 return -ENOMEM;
1662 /* Call preset again, with correct writesize chip time */
1663 host->devtype_data->preset(mtd);
1665 if (!chip->ecc.bytes) {
1666 if (host->eccsize == 8)
1667 chip->ecc.bytes = 18;
1668 else if (host->eccsize == 4)
1669 chip->ecc.bytes = 9;
1673 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1674 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1675 * into copying invalid data to/from the spare IO buffer, as this
1676 * might cause ECC data corruption when doing sub-page write to a
1677 * partially written page.
1679 host->used_oobsize = min(mtd->oobsize, 218U);
1681 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1682 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1683 chip->ecc.strength = 1;
1684 else
1685 chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1688 return 0;
1691 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1692 const struct nand_interface_config *conf)
1694 struct mxc_nand_host *host = nand_get_controller_data(chip);
1696 return host->devtype_data->setup_interface(chip, chipnr, conf);
1699 static const struct nand_controller_ops mxcnd_controller_ops = {
1700 .attach_chip = mxcnd_attach_chip,
1701 .setup_interface = mxcnd_setup_interface,
1704 static int mxcnd_probe(struct platform_device *pdev)
1706 struct nand_chip *this;
1707 struct mtd_info *mtd;
1708 struct mxc_nand_host *host;
1709 struct resource *res;
1710 int err = 0;
1712 /* Allocate memory for MTD device structure and private data */
1713 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1714 GFP_KERNEL);
1715 if (!host)
1716 return -ENOMEM;
1718 /* allocate a temporary buffer for the nand_scan_ident() */
1719 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1720 if (!host->data_buf)
1721 return -ENOMEM;
1723 host->dev = &pdev->dev;
1724 /* structures must be linked */
1725 this = &host->nand;
1726 mtd = nand_to_mtd(this);
1727 mtd->dev.parent = &pdev->dev;
1728 mtd->name = DRIVER_NAME;
1730 /* 50 us command delay time */
1731 this->legacy.chip_delay = 5;
1733 nand_set_controller_data(this, host);
1734 nand_set_flash_node(this, pdev->dev.of_node),
1735 this->legacy.dev_ready = mxc_nand_dev_ready;
1736 this->legacy.cmdfunc = mxc_nand_command;
1737 this->legacy.read_byte = mxc_nand_read_byte;
1738 this->legacy.write_buf = mxc_nand_write_buf;
1739 this->legacy.read_buf = mxc_nand_read_buf;
1740 this->legacy.set_features = mxc_nand_set_features;
1741 this->legacy.get_features = mxc_nand_get_features;
1743 host->clk = devm_clk_get(&pdev->dev, NULL);
1744 if (IS_ERR(host->clk))
1745 return PTR_ERR(host->clk);
1747 host->devtype_data = device_get_match_data(&pdev->dev);
1749 if (!host->devtype_data->setup_interface)
1750 this->options |= NAND_KEEP_TIMINGS;
1752 if (host->devtype_data->needs_ip) {
1753 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1754 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1755 if (IS_ERR(host->regs_ip))
1756 return PTR_ERR(host->regs_ip);
1758 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1759 } else {
1760 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1763 host->base = devm_ioremap_resource(&pdev->dev, res);
1764 if (IS_ERR(host->base))
1765 return PTR_ERR(host->base);
1767 host->main_area0 = host->base;
1769 if (host->devtype_data->regs_offset)
1770 host->regs = host->base + host->devtype_data->regs_offset;
1771 host->spare0 = host->base + host->devtype_data->spare0_offset;
1772 if (host->devtype_data->axi_offset)
1773 host->regs_axi = host->base + host->devtype_data->axi_offset;
1775 this->legacy.select_chip = host->devtype_data->select_chip;
1777 init_completion(&host->op_completion);
1779 host->irq = platform_get_irq(pdev, 0);
1780 if (host->irq < 0)
1781 return host->irq;
1784 * Use host->devtype_data->irq_control() here instead of irq_control()
1785 * because we must not disable_irq_nosync without having requested the
1786 * irq.
1788 host->devtype_data->irq_control(host, 0);
1790 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1791 0, DRIVER_NAME, host);
1792 if (err)
1793 return err;
1795 err = clk_prepare_enable(host->clk);
1796 if (err)
1797 return err;
1798 host->clk_act = 1;
1801 * Now that we "own" the interrupt make sure the interrupt mask bit is
1802 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1803 * on this machine.
1805 if (host->devtype_data->irqpending_quirk) {
1806 disable_irq_nosync(host->irq);
1807 host->devtype_data->irq_control(host, 1);
1810 /* Scan the NAND device */
1811 this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1812 err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1813 if (err)
1814 goto escan;
1816 /* Register the partitions */
1817 err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1818 if (err)
1819 goto cleanup_nand;
1821 platform_set_drvdata(pdev, host);
1823 return 0;
1825 cleanup_nand:
1826 nand_cleanup(this);
1827 escan:
1828 if (host->clk_act)
1829 clk_disable_unprepare(host->clk);
1831 return err;
1834 static int mxcnd_remove(struct platform_device *pdev)
1836 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1837 struct nand_chip *chip = &host->nand;
1838 int ret;
1840 ret = mtd_device_unregister(nand_to_mtd(chip));
1841 WARN_ON(ret);
1842 nand_cleanup(chip);
1843 if (host->clk_act)
1844 clk_disable_unprepare(host->clk);
1846 return 0;
1849 static struct platform_driver mxcnd_driver = {
1850 .driver = {
1851 .name = DRIVER_NAME,
1852 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1854 .probe = mxcnd_probe,
1855 .remove = mxcnd_remove,
1857 module_platform_driver(mxcnd_driver);
1859 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1860 MODULE_DESCRIPTION("MXC NAND MTD driver");
1861 MODULE_LICENSE("GPL");