1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2017 Free Electrons
4 * Copyright (C) 2017 NextThing Co
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
9 #include <linux/slab.h>
11 #include "internals.h"
14 * Special Micron status bit 3 indicates that the block has been
15 * corrected by on-die ECC and should be rewritten.
17 #define NAND_ECC_STATUS_WRITE_RECOMMENDED BIT(3)
20 * On chips with 8-bit ECC and additional bit can be used to distinguish
21 * cases where a errors were corrected without needing a rewrite
23 * Bit 4 Bit 3 Bit 0 Description
24 * ----- ----- ----- -----------
26 * 0 0 1 Multiple uncorrected errors
27 * 0 1 0 4 - 6 errors corrected, recommend rewrite
29 * 1 0 0 1 - 3 errors corrected
31 * 1 1 0 7 - 8 errors corrected, recommend rewrite
33 #define NAND_ECC_STATUS_MASK (BIT(4) | BIT(3) | BIT(0))
34 #define NAND_ECC_STATUS_UNCORRECTABLE BIT(0)
35 #define NAND_ECC_STATUS_4_6_CORRECTED BIT(3)
36 #define NAND_ECC_STATUS_1_3_CORRECTED BIT(4)
37 #define NAND_ECC_STATUS_7_8_CORRECTED (BIT(4) | BIT(3))
39 struct nand_onfi_vendor_micron
{
44 u8 dq_imped_num_settings
;
45 u8 dq_imped_feat_addr
;
46 u8 rb_pulldown_strength
;
47 u8 rb_pulldown_strength_feat_addr
;
48 u8 rb_pulldown_strength_num_settings
;
51 u8 otp_data_prot_addr
;
54 u8 read_retry_options
;
59 struct micron_on_die_ecc
{
66 struct micron_on_die_ecc ecc
;
69 static int micron_nand_setup_read_retry(struct nand_chip
*chip
, int retry_mode
)
71 u8 feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
73 return nand_set_features(chip
, ONFI_FEATURE_ADDR_READ_RETRY
, feature
);
77 * Configure chip properties from Micron vendor-specific ONFI table
79 static int micron_nand_onfi_init(struct nand_chip
*chip
)
81 struct nand_parameters
*p
= &chip
->parameters
;
84 struct nand_onfi_vendor_micron
*micron
= (void *)p
->onfi
->vendor
;
86 chip
->read_retries
= micron
->read_retry_options
;
87 chip
->ops
.setup_read_retry
= micron_nand_setup_read_retry
;
90 if (p
->supports_set_get_features
) {
91 set_bit(ONFI_FEATURE_ADDR_READ_RETRY
, p
->set_feature_list
);
92 set_bit(ONFI_FEATURE_ON_DIE_ECC
, p
->set_feature_list
);
93 set_bit(ONFI_FEATURE_ADDR_READ_RETRY
, p
->get_feature_list
);
94 set_bit(ONFI_FEATURE_ON_DIE_ECC
, p
->get_feature_list
);
100 static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info
*mtd
,
102 struct mtd_oob_region
*oobregion
)
107 oobregion
->offset
= (section
* 16) + 8;
108 oobregion
->length
= 8;
113 static int micron_nand_on_die_4_ooblayout_free(struct mtd_info
*mtd
,
115 struct mtd_oob_region
*oobregion
)
120 oobregion
->offset
= (section
* 16) + 2;
121 oobregion
->length
= 6;
126 static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops
= {
127 .ecc
= micron_nand_on_die_4_ooblayout_ecc
,
128 .free
= micron_nand_on_die_4_ooblayout_free
,
131 static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info
*mtd
,
133 struct mtd_oob_region
*oobregion
)
135 struct nand_chip
*chip
= mtd_to_nand(mtd
);
140 oobregion
->offset
= mtd
->oobsize
- chip
->ecc
.total
;
141 oobregion
->length
= chip
->ecc
.total
;
146 static int micron_nand_on_die_8_ooblayout_free(struct mtd_info
*mtd
,
148 struct mtd_oob_region
*oobregion
)
150 struct nand_chip
*chip
= mtd_to_nand(mtd
);
155 oobregion
->offset
= 2;
156 oobregion
->length
= mtd
->oobsize
- chip
->ecc
.total
- 2;
161 static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops
= {
162 .ecc
= micron_nand_on_die_8_ooblayout_ecc
,
163 .free
= micron_nand_on_die_8_ooblayout_free
,
166 static int micron_nand_on_die_ecc_setup(struct nand_chip
*chip
, bool enable
)
168 struct micron_nand
*micron
= nand_get_manufacturer_data(chip
);
169 u8 feature
[ONFI_SUBFEATURE_PARAM_LEN
] = { 0, };
172 if (micron
->ecc
.forced
)
175 if (micron
->ecc
.enabled
== enable
)
179 feature
[0] |= ONFI_FEATURE_ON_DIE_ECC_EN
;
181 ret
= nand_set_features(chip
, ONFI_FEATURE_ON_DIE_ECC
, feature
);
183 micron
->ecc
.enabled
= enable
;
188 static int micron_nand_on_die_ecc_status_4(struct nand_chip
*chip
, u8 status
,
192 struct micron_nand
*micron
= nand_get_manufacturer_data(chip
);
193 struct mtd_info
*mtd
= nand_to_mtd(chip
);
194 unsigned int step
, max_bitflips
= 0;
195 bool use_datain
= false;
198 if (!(status
& NAND_ECC_STATUS_WRITE_RECOMMENDED
)) {
199 if (status
& NAND_STATUS_FAIL
)
200 mtd
->ecc_stats
.failed
++;
206 * The internal ECC doesn't tell us the number of bitflips that have
207 * been corrected, but tells us if it recommends to rewrite the block.
208 * If it's the case, we need to read the page in raw mode and compare
209 * its content to the corrected version to extract the actual number of
211 * But before we do that, we must make sure we have all OOB bytes read
212 * in non-raw mode, even if the user did not request those bytes.
216 * We first check which operation is supported by the controller
217 * before running it. This trick makes it possible to support
218 * all controllers, even the most constraints, without almost
219 * any performance hit.
221 * TODO: could be enhanced to avoid repeating the same check
222 * over and over in the fast path.
224 if (!nand_has_exec_op(chip
) ||
225 !nand_read_data_op(chip
, chip
->oob_poi
, mtd
->oobsize
, false,
230 ret
= nand_read_data_op(chip
, chip
->oob_poi
,
231 mtd
->oobsize
, false, false);
233 ret
= nand_change_read_column_op(chip
, mtd
->writesize
,
235 mtd
->oobsize
, false);
240 micron_nand_on_die_ecc_setup(chip
, false);
242 ret
= nand_read_page_op(chip
, page
, 0, micron
->ecc
.rawbuf
,
243 mtd
->writesize
+ mtd
->oobsize
);
247 for (step
= 0; step
< chip
->ecc
.steps
; step
++) {
248 unsigned int offs
, i
, nbitflips
= 0;
249 u8
*rawbuf
, *corrbuf
;
251 offs
= step
* chip
->ecc
.size
;
252 rawbuf
= micron
->ecc
.rawbuf
+ offs
;
253 corrbuf
= buf
+ offs
;
255 for (i
= 0; i
< chip
->ecc
.size
; i
++)
256 nbitflips
+= hweight8(corrbuf
[i
] ^ rawbuf
[i
]);
258 offs
= (step
* 16) + 4;
259 rawbuf
= micron
->ecc
.rawbuf
+ mtd
->writesize
+ offs
;
260 corrbuf
= chip
->oob_poi
+ offs
;
262 for (i
= 0; i
< chip
->ecc
.bytes
+ 4; i
++)
263 nbitflips
+= hweight8(corrbuf
[i
] ^ rawbuf
[i
]);
265 if (WARN_ON(nbitflips
> chip
->ecc
.strength
))
268 max_bitflips
= max(nbitflips
, max_bitflips
);
269 mtd
->ecc_stats
.corrected
+= nbitflips
;
275 static int micron_nand_on_die_ecc_status_8(struct nand_chip
*chip
, u8 status
)
277 struct mtd_info
*mtd
= nand_to_mtd(chip
);
280 * With 8/512 we have more information but still don't know precisely
281 * how many bit-flips were seen.
283 switch (status
& NAND_ECC_STATUS_MASK
) {
284 case NAND_ECC_STATUS_UNCORRECTABLE
:
285 mtd
->ecc_stats
.failed
++;
287 case NAND_ECC_STATUS_1_3_CORRECTED
:
288 mtd
->ecc_stats
.corrected
+= 3;
290 case NAND_ECC_STATUS_4_6_CORRECTED
:
291 mtd
->ecc_stats
.corrected
+= 6;
292 /* rewrite recommended */
294 case NAND_ECC_STATUS_7_8_CORRECTED
:
295 mtd
->ecc_stats
.corrected
+= 8;
296 /* rewrite recommended */
304 micron_nand_read_page_on_die_ecc(struct nand_chip
*chip
, uint8_t *buf
,
305 int oob_required
, int page
)
307 struct mtd_info
*mtd
= nand_to_mtd(chip
);
308 bool use_datain
= false;
310 int ret
, max_bitflips
= 0;
312 ret
= micron_nand_on_die_ecc_setup(chip
, true);
316 ret
= nand_read_page_op(chip
, page
, 0, NULL
, 0);
320 ret
= nand_status_op(chip
, &status
);
325 * We first check which operation is supported by the controller before
326 * running it. This trick makes it possible to support all controllers,
327 * even the most constraints, without almost any performance hit.
329 * TODO: could be enhanced to avoid repeating the same check over and
330 * over in the fast path.
332 if (!nand_has_exec_op(chip
) ||
333 !nand_read_data_op(chip
, buf
, mtd
->writesize
, false, true))
337 ret
= nand_exit_status_op(chip
);
341 ret
= nand_read_data_op(chip
, buf
, mtd
->writesize
, false,
343 if (!ret
&& oob_required
)
344 ret
= nand_read_data_op(chip
, chip
->oob_poi
,
345 mtd
->oobsize
, false, false);
347 ret
= nand_change_read_column_op(chip
, 0, buf
, mtd
->writesize
,
349 if (!ret
&& oob_required
)
350 ret
= nand_change_read_column_op(chip
, mtd
->writesize
,
352 mtd
->oobsize
, false);
355 if (chip
->ecc
.strength
== 4)
356 max_bitflips
= micron_nand_on_die_ecc_status_4(chip
, status
,
360 max_bitflips
= micron_nand_on_die_ecc_status_8(chip
, status
);
363 micron_nand_on_die_ecc_setup(chip
, false);
365 return ret
? ret
: max_bitflips
;
369 micron_nand_write_page_on_die_ecc(struct nand_chip
*chip
, const uint8_t *buf
,
370 int oob_required
, int page
)
374 ret
= micron_nand_on_die_ecc_setup(chip
, true);
378 ret
= nand_write_page_raw(chip
, buf
, oob_required
, page
);
379 micron_nand_on_die_ecc_setup(chip
, false);
385 /* The NAND flash doesn't support on-die ECC */
386 MICRON_ON_DIE_UNSUPPORTED
,
389 * The NAND flash supports on-die ECC and it can be
390 * enabled/disabled by a set features command.
392 MICRON_ON_DIE_SUPPORTED
,
395 * The NAND flash supports on-die ECC, and it cannot be
398 MICRON_ON_DIE_MANDATORY
,
401 #define MICRON_ID_INTERNAL_ECC_MASK GENMASK(1, 0)
402 #define MICRON_ID_ECC_ENABLED BIT(7)
405 * Try to detect if the NAND support on-die ECC. To do this, we enable
406 * the feature, and read back if it has been enabled as expected. We
407 * also check if it can be disabled, because some Micron NANDs do not
408 * allow disabling the on-die ECC and we don't support such NANDs for
411 * This function also has the side effect of disabling on-die ECC if
412 * it had been left enabled by the firmware/bootloader.
414 static int micron_supports_on_die_ecc(struct nand_chip
*chip
)
416 const struct nand_ecc_props
*requirements
=
417 nanddev_get_ecc_requirements(&chip
->base
);
421 if (!chip
->parameters
.onfi
)
422 return MICRON_ON_DIE_UNSUPPORTED
;
424 if (nanddev_bits_per_cell(&chip
->base
) != 1)
425 return MICRON_ON_DIE_UNSUPPORTED
;
428 * We only support on-die ECC of 4/512 or 8/512
430 if (requirements
->strength
!= 4 && requirements
->strength
!= 8)
431 return MICRON_ON_DIE_UNSUPPORTED
;
433 /* 0x2 means on-die ECC is available. */
434 if (chip
->id
.len
!= 5 ||
435 (chip
->id
.data
[4] & MICRON_ID_INTERNAL_ECC_MASK
) != 0x2)
436 return MICRON_ON_DIE_UNSUPPORTED
;
439 * It seems that there are devices which do not support ECC officially.
440 * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
441 * enabling the ECC feature but don't reflect that to the READ_ID table.
442 * So we have to guarantee that we disable the ECC feature directly
443 * after we did the READ_ID table command. Later we can evaluate the
444 * ECC_ENABLE support.
446 ret
= micron_nand_on_die_ecc_setup(chip
, true);
448 return MICRON_ON_DIE_UNSUPPORTED
;
450 ret
= nand_readid_op(chip
, 0, id
, sizeof(id
));
452 return MICRON_ON_DIE_UNSUPPORTED
;
454 ret
= micron_nand_on_die_ecc_setup(chip
, false);
456 return MICRON_ON_DIE_UNSUPPORTED
;
458 if (!(id
[4] & MICRON_ID_ECC_ENABLED
))
459 return MICRON_ON_DIE_UNSUPPORTED
;
461 ret
= nand_readid_op(chip
, 0, id
, sizeof(id
));
463 return MICRON_ON_DIE_UNSUPPORTED
;
465 if (id
[4] & MICRON_ID_ECC_ENABLED
)
466 return MICRON_ON_DIE_MANDATORY
;
469 * We only support on-die ECC of 4/512 or 8/512
471 if (requirements
->strength
!= 4 && requirements
->strength
!= 8)
472 return MICRON_ON_DIE_UNSUPPORTED
;
474 return MICRON_ON_DIE_SUPPORTED
;
477 static int micron_nand_init(struct nand_chip
*chip
)
479 struct nand_device
*base
= &chip
->base
;
480 const struct nand_ecc_props
*requirements
=
481 nanddev_get_ecc_requirements(base
);
482 struct mtd_info
*mtd
= nand_to_mtd(chip
);
483 struct micron_nand
*micron
;
487 micron
= kzalloc(sizeof(*micron
), GFP_KERNEL
);
491 nand_set_manufacturer_data(chip
, micron
);
493 ret
= micron_nand_onfi_init(chip
);
495 goto err_free_manuf_data
;
497 chip
->options
|= NAND_BBM_FIRSTPAGE
;
499 if (mtd
->writesize
== 2048)
500 chip
->options
|= NAND_BBM_SECONDPAGE
;
502 ondie
= micron_supports_on_die_ecc(chip
);
504 if (ondie
== MICRON_ON_DIE_MANDATORY
&&
505 chip
->ecc
.engine_type
!= NAND_ECC_ENGINE_TYPE_ON_DIE
) {
506 pr_err("On-die ECC forcefully enabled, not supported\n");
508 goto err_free_manuf_data
;
511 if (chip
->ecc
.engine_type
== NAND_ECC_ENGINE_TYPE_ON_DIE
) {
512 if (ondie
== MICRON_ON_DIE_UNSUPPORTED
) {
513 pr_err("On-die ECC selected but not supported\n");
515 goto err_free_manuf_data
;
518 if (ondie
== MICRON_ON_DIE_MANDATORY
) {
519 micron
->ecc
.forced
= true;
520 micron
->ecc
.enabled
= true;
524 * In case of 4bit on-die ECC, we need a buffer to store a
525 * page dumped in raw mode so that we can compare its content
526 * to the same page after ECC correction happened and extract
527 * the real number of bitflips from this comparison.
528 * That's not needed for 8-bit ECC, because the status expose
529 * a better approximation of the number of bitflips in a page.
531 if (requirements
->strength
== 4) {
532 micron
->ecc
.rawbuf
= kmalloc(mtd
->writesize
+
535 if (!micron
->ecc
.rawbuf
) {
537 goto err_free_manuf_data
;
541 if (requirements
->strength
== 4)
542 mtd_set_ooblayout(mtd
,
543 µn_nand_on_die_4_ooblayout_ops
);
545 mtd_set_ooblayout(mtd
,
546 µn_nand_on_die_8_ooblayout_ops
);
548 chip
->ecc
.bytes
= requirements
->strength
* 2;
549 chip
->ecc
.size
= 512;
550 chip
->ecc
.strength
= requirements
->strength
;
551 chip
->ecc
.algo
= NAND_ECC_ALGO_BCH
;
552 chip
->ecc
.read_page
= micron_nand_read_page_on_die_ecc
;
553 chip
->ecc
.write_page
= micron_nand_write_page_on_die_ecc
;
555 if (ondie
== MICRON_ON_DIE_MANDATORY
) {
556 chip
->ecc
.read_page_raw
= nand_read_page_raw_notsupp
;
557 chip
->ecc
.write_page_raw
= nand_write_page_raw_notsupp
;
559 if (!chip
->ecc
.read_page_raw
)
560 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
561 if (!chip
->ecc
.write_page_raw
)
562 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
569 kfree(micron
->ecc
.rawbuf
);
575 static void micron_nand_cleanup(struct nand_chip
*chip
)
577 struct micron_nand
*micron
= nand_get_manufacturer_data(chip
);
579 kfree(micron
->ecc
.rawbuf
);
583 static void micron_fixup_onfi_param_page(struct nand_chip
*chip
,
584 struct nand_onfi_params
*p
)
587 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
588 * revision number field of the ONFI parameter page. Assume ONFI
589 * version 1.0 if the revision number is 00 00.
591 if (le16_to_cpu(p
->revision
) == 0)
592 p
->revision
= cpu_to_le16(ONFI_VERSION_1_0
);
595 const struct nand_manufacturer_ops micron_nand_manuf_ops
= {
596 .init
= micron_nand_init
,
597 .cleanup
= micron_nand_cleanup
,
598 .fixup_onfi_param_page
= micron_fixup_onfi_param_page
,