WIP FPC-III support
[linux/fpc-iii.git] / drivers / mtd / nand / raw / sh_flctl.c
blob13df4bdf792af38dd011be93713bbe76654a9c9a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH FLCTL nand controller
5 * Copyright (c) 2008 Renesas Solutions Corp.
6 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
8 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/completion.h>
14 #include <linux/delay.h>
15 #include <linux/dmaengine.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/sh_dma.h>
24 #include <linux/slab.h>
25 #include <linux/string.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/mtd/sh_flctl.h>
32 static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
33 struct mtd_oob_region *oobregion)
35 struct nand_chip *chip = mtd_to_nand(mtd);
37 if (section)
38 return -ERANGE;
40 oobregion->offset = 0;
41 oobregion->length = chip->ecc.bytes;
43 return 0;
46 static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
47 struct mtd_oob_region *oobregion)
49 if (section)
50 return -ERANGE;
52 oobregion->offset = 12;
53 oobregion->length = 4;
55 return 0;
58 static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
59 .ecc = flctl_4secc_ooblayout_sp_ecc,
60 .free = flctl_4secc_ooblayout_sp_free,
63 static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
64 struct mtd_oob_region *oobregion)
66 struct nand_chip *chip = mtd_to_nand(mtd);
68 if (section >= chip->ecc.steps)
69 return -ERANGE;
71 oobregion->offset = (section * 16) + 6;
72 oobregion->length = chip->ecc.bytes;
74 return 0;
77 static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
78 struct mtd_oob_region *oobregion)
80 struct nand_chip *chip = mtd_to_nand(mtd);
82 if (section >= chip->ecc.steps)
83 return -ERANGE;
85 oobregion->offset = section * 16;
86 oobregion->length = 6;
88 if (!section) {
89 oobregion->offset += 2;
90 oobregion->length -= 2;
93 return 0;
96 static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
97 .ecc = flctl_4secc_ooblayout_lp_ecc,
98 .free = flctl_4secc_ooblayout_lp_free,
101 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
103 static struct nand_bbt_descr flctl_4secc_smallpage = {
104 .offs = 11,
105 .len = 1,
106 .pattern = scan_ff_pattern,
109 static struct nand_bbt_descr flctl_4secc_largepage = {
110 .offs = 0,
111 .len = 2,
112 .pattern = scan_ff_pattern,
115 static void empty_fifo(struct sh_flctl *flctl)
117 writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
118 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
121 static void start_translation(struct sh_flctl *flctl)
123 writeb(TRSTRT, FLTRCR(flctl));
126 static void timeout_error(struct sh_flctl *flctl, const char *str)
128 dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
131 static void wait_completion(struct sh_flctl *flctl)
133 uint32_t timeout = LOOP_TIMEOUT_MAX;
135 while (timeout--) {
136 if (readb(FLTRCR(flctl)) & TREND) {
137 writeb(0x0, FLTRCR(flctl));
138 return;
140 udelay(1);
143 timeout_error(flctl, __func__);
144 writeb(0x0, FLTRCR(flctl));
147 static void flctl_dma_complete(void *param)
149 struct sh_flctl *flctl = param;
151 complete(&flctl->dma_complete);
154 static void flctl_release_dma(struct sh_flctl *flctl)
156 if (flctl->chan_fifo0_rx) {
157 dma_release_channel(flctl->chan_fifo0_rx);
158 flctl->chan_fifo0_rx = NULL;
160 if (flctl->chan_fifo0_tx) {
161 dma_release_channel(flctl->chan_fifo0_tx);
162 flctl->chan_fifo0_tx = NULL;
166 static void flctl_setup_dma(struct sh_flctl *flctl)
168 dma_cap_mask_t mask;
169 struct dma_slave_config cfg;
170 struct platform_device *pdev = flctl->pdev;
171 struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
172 int ret;
174 if (!pdata)
175 return;
177 if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
178 return;
180 /* We can only either use DMA for both Tx and Rx or not use it at all */
181 dma_cap_zero(mask);
182 dma_cap_set(DMA_SLAVE, mask);
184 flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
185 (void *)(uintptr_t)pdata->slave_id_fifo0_tx);
186 dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
187 flctl->chan_fifo0_tx);
189 if (!flctl->chan_fifo0_tx)
190 return;
192 memset(&cfg, 0, sizeof(cfg));
193 cfg.direction = DMA_MEM_TO_DEV;
194 cfg.dst_addr = flctl->fifo;
195 cfg.src_addr = 0;
196 ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
197 if (ret < 0)
198 goto err;
200 flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
201 (void *)(uintptr_t)pdata->slave_id_fifo0_rx);
202 dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
203 flctl->chan_fifo0_rx);
205 if (!flctl->chan_fifo0_rx)
206 goto err;
208 cfg.direction = DMA_DEV_TO_MEM;
209 cfg.dst_addr = 0;
210 cfg.src_addr = flctl->fifo;
211 ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
212 if (ret < 0)
213 goto err;
215 init_completion(&flctl->dma_complete);
217 return;
219 err:
220 flctl_release_dma(flctl);
223 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
225 struct sh_flctl *flctl = mtd_to_flctl(mtd);
226 uint32_t addr = 0;
228 if (column == -1) {
229 addr = page_addr; /* ERASE1 */
230 } else if (page_addr != -1) {
231 /* SEQIN, READ0, etc.. */
232 if (flctl->chip.options & NAND_BUSWIDTH_16)
233 column >>= 1;
234 if (flctl->page_size) {
235 addr = column & 0x0FFF;
236 addr |= (page_addr & 0xff) << 16;
237 addr |= ((page_addr >> 8) & 0xff) << 24;
238 /* big than 128MB */
239 if (flctl->rw_ADRCNT == ADRCNT2_E) {
240 uint32_t addr2;
241 addr2 = (page_addr >> 16) & 0xff;
242 writel(addr2, FLADR2(flctl));
244 } else {
245 addr = column;
246 addr |= (page_addr & 0xff) << 8;
247 addr |= ((page_addr >> 8) & 0xff) << 16;
248 addr |= ((page_addr >> 16) & 0xff) << 24;
251 writel(addr, FLADR(flctl));
254 static void wait_rfifo_ready(struct sh_flctl *flctl)
256 uint32_t timeout = LOOP_TIMEOUT_MAX;
258 while (timeout--) {
259 uint32_t val;
260 /* check FIFO */
261 val = readl(FLDTCNTR(flctl)) >> 16;
262 if (val & 0xFF)
263 return;
264 udelay(1);
266 timeout_error(flctl, __func__);
269 static void wait_wfifo_ready(struct sh_flctl *flctl)
271 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
273 while (timeout--) {
274 /* check FIFO */
275 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
276 if (len >= 4)
277 return;
278 udelay(1);
280 timeout_error(flctl, __func__);
283 static enum flctl_ecc_res_t wait_recfifo_ready
284 (struct sh_flctl *flctl, int sector_number)
286 uint32_t timeout = LOOP_TIMEOUT_MAX;
287 void __iomem *ecc_reg[4];
288 int i;
289 int state = FL_SUCCESS;
290 uint32_t data, size;
293 * First this loops checks in FLDTCNTR if we are ready to read out the
294 * oob data. This is the case if either all went fine without errors or
295 * if the bottom part of the loop corrected the errors or marked them as
296 * uncorrectable and the controller is given time to push the data into
297 * the FIFO.
299 while (timeout--) {
300 /* check if all is ok and we can read out the OOB */
301 size = readl(FLDTCNTR(flctl)) >> 24;
302 if ((size & 0xFF) == 4)
303 return state;
305 /* check if a correction code has been calculated */
306 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
308 * either we wait for the fifo to be filled or a
309 * correction pattern is being generated
311 udelay(1);
312 continue;
315 /* check for an uncorrectable error */
316 if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
317 /* check if we face a non-empty page */
318 for (i = 0; i < 512; i++) {
319 if (flctl->done_buff[i] != 0xff) {
320 state = FL_ERROR; /* can't correct */
321 break;
325 if (state == FL_SUCCESS)
326 dev_dbg(&flctl->pdev->dev,
327 "reading empty sector %d, ecc error ignored\n",
328 sector_number);
330 writel(0, FL4ECCCR(flctl));
331 continue;
334 /* start error correction */
335 ecc_reg[0] = FL4ECCRESULT0(flctl);
336 ecc_reg[1] = FL4ECCRESULT1(flctl);
337 ecc_reg[2] = FL4ECCRESULT2(flctl);
338 ecc_reg[3] = FL4ECCRESULT3(flctl);
340 for (i = 0; i < 3; i++) {
341 uint8_t org;
342 unsigned int index;
344 data = readl(ecc_reg[i]);
346 if (flctl->page_size)
347 index = (512 * sector_number) +
348 (data >> 16);
349 else
350 index = data >> 16;
352 org = flctl->done_buff[index];
353 flctl->done_buff[index] = org ^ (data & 0xFF);
355 state = FL_REPAIRABLE;
356 writel(0, FL4ECCCR(flctl));
359 timeout_error(flctl, __func__);
360 return FL_TIMEOUT; /* timeout */
363 static void wait_wecfifo_ready(struct sh_flctl *flctl)
365 uint32_t timeout = LOOP_TIMEOUT_MAX;
366 uint32_t len;
368 while (timeout--) {
369 /* check FLECFIFO */
370 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
371 if (len >= 4)
372 return;
373 udelay(1);
375 timeout_error(flctl, __func__);
378 static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
379 int len, enum dma_data_direction dir)
381 struct dma_async_tx_descriptor *desc = NULL;
382 struct dma_chan *chan;
383 enum dma_transfer_direction tr_dir;
384 dma_addr_t dma_addr;
385 dma_cookie_t cookie;
386 uint32_t reg;
387 int ret;
389 if (dir == DMA_FROM_DEVICE) {
390 chan = flctl->chan_fifo0_rx;
391 tr_dir = DMA_DEV_TO_MEM;
392 } else {
393 chan = flctl->chan_fifo0_tx;
394 tr_dir = DMA_MEM_TO_DEV;
397 dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
399 if (!dma_mapping_error(chan->device->dev, dma_addr))
400 desc = dmaengine_prep_slave_single(chan, dma_addr, len,
401 tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
403 if (desc) {
404 reg = readl(FLINTDMACR(flctl));
405 reg |= DREQ0EN;
406 writel(reg, FLINTDMACR(flctl));
408 desc->callback = flctl_dma_complete;
409 desc->callback_param = flctl;
410 cookie = dmaengine_submit(desc);
411 if (dma_submit_error(cookie)) {
412 ret = dma_submit_error(cookie);
413 dev_warn(&flctl->pdev->dev,
414 "DMA submit failed, falling back to PIO\n");
415 goto out;
418 dma_async_issue_pending(chan);
419 } else {
420 /* DMA failed, fall back to PIO */
421 flctl_release_dma(flctl);
422 dev_warn(&flctl->pdev->dev,
423 "DMA failed, falling back to PIO\n");
424 ret = -EIO;
425 goto out;
428 ret =
429 wait_for_completion_timeout(&flctl->dma_complete,
430 msecs_to_jiffies(3000));
432 if (ret <= 0) {
433 dmaengine_terminate_all(chan);
434 dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
437 out:
438 reg = readl(FLINTDMACR(flctl));
439 reg &= ~DREQ0EN;
440 writel(reg, FLINTDMACR(flctl));
442 dma_unmap_single(chan->device->dev, dma_addr, len, dir);
444 /* ret > 0 is success */
445 return ret;
448 static void read_datareg(struct sh_flctl *flctl, int offset)
450 unsigned long data;
451 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
453 wait_completion(flctl);
455 data = readl(FLDATAR(flctl));
456 *buf = le32_to_cpu(data);
459 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
461 int i, len_4align;
462 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
464 len_4align = (rlen + 3) / 4;
466 /* initiate DMA transfer */
467 if (flctl->chan_fifo0_rx && rlen >= 32 &&
468 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE) > 0)
469 goto convert; /* DMA success */
471 /* do polling transfer */
472 for (i = 0; i < len_4align; i++) {
473 wait_rfifo_ready(flctl);
474 buf[i] = readl(FLDTFIFO(flctl));
477 convert:
478 for (i = 0; i < len_4align; i++)
479 buf[i] = be32_to_cpu(buf[i]);
482 static enum flctl_ecc_res_t read_ecfiforeg
483 (struct sh_flctl *flctl, uint8_t *buff, int sector)
485 int i;
486 enum flctl_ecc_res_t res;
487 unsigned long *ecc_buf = (unsigned long *)buff;
489 res = wait_recfifo_ready(flctl , sector);
491 if (res != FL_ERROR) {
492 for (i = 0; i < 4; i++) {
493 ecc_buf[i] = readl(FLECFIFO(flctl));
494 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
498 return res;
501 static void write_fiforeg(struct sh_flctl *flctl, int rlen,
502 unsigned int offset)
504 int i, len_4align;
505 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
507 len_4align = (rlen + 3) / 4;
508 for (i = 0; i < len_4align; i++) {
509 wait_wfifo_ready(flctl);
510 writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
514 static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
515 unsigned int offset)
517 int i, len_4align;
518 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
520 len_4align = (rlen + 3) / 4;
522 for (i = 0; i < len_4align; i++)
523 buf[i] = cpu_to_be32(buf[i]);
525 /* initiate DMA transfer */
526 if (flctl->chan_fifo0_tx && rlen >= 32 &&
527 flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE) > 0)
528 return; /* DMA success */
530 /* do polling transfer */
531 for (i = 0; i < len_4align; i++) {
532 wait_wecfifo_ready(flctl);
533 writel(buf[i], FLECFIFO(flctl));
537 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
539 struct sh_flctl *flctl = mtd_to_flctl(mtd);
540 uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
541 uint32_t flcmdcr_val, addr_len_bytes = 0;
543 /* Set SNAND bit if page size is 2048byte */
544 if (flctl->page_size)
545 flcmncr_val |= SNAND_E;
546 else
547 flcmncr_val &= ~SNAND_E;
549 /* default FLCMDCR val */
550 flcmdcr_val = DOCMD1_E | DOADR_E;
552 /* Set for FLCMDCR */
553 switch (cmd) {
554 case NAND_CMD_ERASE1:
555 addr_len_bytes = flctl->erase_ADRCNT;
556 flcmdcr_val |= DOCMD2_E;
557 break;
558 case NAND_CMD_READ0:
559 case NAND_CMD_READOOB:
560 case NAND_CMD_RNDOUT:
561 addr_len_bytes = flctl->rw_ADRCNT;
562 flcmdcr_val |= CDSRC_E;
563 if (flctl->chip.options & NAND_BUSWIDTH_16)
564 flcmncr_val |= SEL_16BIT;
565 break;
566 case NAND_CMD_SEQIN:
567 /* This case is that cmd is READ0 or READ1 or READ00 */
568 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
569 break;
570 case NAND_CMD_PAGEPROG:
571 addr_len_bytes = flctl->rw_ADRCNT;
572 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
573 if (flctl->chip.options & NAND_BUSWIDTH_16)
574 flcmncr_val |= SEL_16BIT;
575 break;
576 case NAND_CMD_READID:
577 flcmncr_val &= ~SNAND_E;
578 flcmdcr_val |= CDSRC_E;
579 addr_len_bytes = ADRCNT_1;
580 break;
581 case NAND_CMD_STATUS:
582 case NAND_CMD_RESET:
583 flcmncr_val &= ~SNAND_E;
584 flcmdcr_val &= ~(DOADR_E | DOSR_E);
585 break;
586 default:
587 break;
590 /* Set address bytes parameter */
591 flcmdcr_val |= addr_len_bytes;
593 /* Now actually write */
594 writel(flcmncr_val, FLCMNCR(flctl));
595 writel(flcmdcr_val, FLCMDCR(flctl));
596 writel(flcmcdr_val, FLCMCDR(flctl));
599 static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
600 int oob_required, int page)
602 struct mtd_info *mtd = nand_to_mtd(chip);
604 nand_read_page_op(chip, page, 0, buf, mtd->writesize);
605 if (oob_required)
606 chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
607 return 0;
610 static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
611 int oob_required, int page)
613 struct mtd_info *mtd = nand_to_mtd(chip);
615 nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
616 chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
617 return nand_prog_page_end_op(chip);
620 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
622 struct sh_flctl *flctl = mtd_to_flctl(mtd);
623 int sector, page_sectors;
624 enum flctl_ecc_res_t ecc_result;
626 page_sectors = flctl->page_size ? 4 : 1;
628 set_cmd_regs(mtd, NAND_CMD_READ0,
629 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
631 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
632 FLCMNCR(flctl));
633 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
634 writel(page_addr << 2, FLADR(flctl));
636 empty_fifo(flctl);
637 start_translation(flctl);
639 for (sector = 0; sector < page_sectors; sector++) {
640 read_fiforeg(flctl, 512, 512 * sector);
642 ecc_result = read_ecfiforeg(flctl,
643 &flctl->done_buff[mtd->writesize + 16 * sector],
644 sector);
646 switch (ecc_result) {
647 case FL_REPAIRABLE:
648 dev_info(&flctl->pdev->dev,
649 "applied ecc on page 0x%x", page_addr);
650 mtd->ecc_stats.corrected++;
651 break;
652 case FL_ERROR:
653 dev_warn(&flctl->pdev->dev,
654 "page 0x%x contains corrupted data\n",
655 page_addr);
656 mtd->ecc_stats.failed++;
657 break;
658 default:
663 wait_completion(flctl);
665 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
666 FLCMNCR(flctl));
669 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
671 struct sh_flctl *flctl = mtd_to_flctl(mtd);
672 int page_sectors = flctl->page_size ? 4 : 1;
673 int i;
675 set_cmd_regs(mtd, NAND_CMD_READ0,
676 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
678 empty_fifo(flctl);
680 for (i = 0; i < page_sectors; i++) {
681 set_addr(mtd, (512 + 16) * i + 512 , page_addr);
682 writel(16, FLDTCNTR(flctl));
684 start_translation(flctl);
685 read_fiforeg(flctl, 16, 16 * i);
686 wait_completion(flctl);
690 static void execmd_write_page_sector(struct mtd_info *mtd)
692 struct sh_flctl *flctl = mtd_to_flctl(mtd);
693 int page_addr = flctl->seqin_page_addr;
694 int sector, page_sectors;
696 page_sectors = flctl->page_size ? 4 : 1;
698 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
699 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
701 empty_fifo(flctl);
702 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
703 writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
704 writel(page_addr << 2, FLADR(flctl));
705 start_translation(flctl);
707 for (sector = 0; sector < page_sectors; sector++) {
708 write_fiforeg(flctl, 512, 512 * sector);
709 write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
712 wait_completion(flctl);
713 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
716 static void execmd_write_oob(struct mtd_info *mtd)
718 struct sh_flctl *flctl = mtd_to_flctl(mtd);
719 int page_addr = flctl->seqin_page_addr;
720 int sector, page_sectors;
722 page_sectors = flctl->page_size ? 4 : 1;
724 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
725 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
727 for (sector = 0; sector < page_sectors; sector++) {
728 empty_fifo(flctl);
729 set_addr(mtd, sector * 528 + 512, page_addr);
730 writel(16, FLDTCNTR(flctl)); /* set read size */
732 start_translation(flctl);
733 write_fiforeg(flctl, 16, 16 * sector);
734 wait_completion(flctl);
738 static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
739 int column, int page_addr)
741 struct mtd_info *mtd = nand_to_mtd(chip);
742 struct sh_flctl *flctl = mtd_to_flctl(mtd);
743 uint32_t read_cmd = 0;
745 pm_runtime_get_sync(&flctl->pdev->dev);
747 flctl->read_bytes = 0;
748 if (command != NAND_CMD_PAGEPROG)
749 flctl->index = 0;
751 switch (command) {
752 case NAND_CMD_READ1:
753 case NAND_CMD_READ0:
754 if (flctl->hwecc) {
755 /* read page with hwecc */
756 execmd_read_page_sector(mtd, page_addr);
757 break;
759 if (flctl->page_size)
760 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
761 | command);
762 else
763 set_cmd_regs(mtd, command, command);
765 set_addr(mtd, 0, page_addr);
767 flctl->read_bytes = mtd->writesize + mtd->oobsize;
768 if (flctl->chip.options & NAND_BUSWIDTH_16)
769 column >>= 1;
770 flctl->index += column;
771 goto read_normal_exit;
773 case NAND_CMD_READOOB:
774 if (flctl->hwecc) {
775 /* read page with hwecc */
776 execmd_read_oob(mtd, page_addr);
777 break;
780 if (flctl->page_size) {
781 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
782 | NAND_CMD_READ0);
783 set_addr(mtd, mtd->writesize, page_addr);
784 } else {
785 set_cmd_regs(mtd, command, command);
786 set_addr(mtd, 0, page_addr);
788 flctl->read_bytes = mtd->oobsize;
789 goto read_normal_exit;
791 case NAND_CMD_RNDOUT:
792 if (flctl->hwecc)
793 break;
795 if (flctl->page_size)
796 set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
797 | command);
798 else
799 set_cmd_regs(mtd, command, command);
801 set_addr(mtd, column, 0);
803 flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
804 goto read_normal_exit;
806 case NAND_CMD_READID:
807 set_cmd_regs(mtd, command, command);
809 /* READID is always performed using an 8-bit bus */
810 if (flctl->chip.options & NAND_BUSWIDTH_16)
811 column <<= 1;
812 set_addr(mtd, column, 0);
814 flctl->read_bytes = 8;
815 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
816 empty_fifo(flctl);
817 start_translation(flctl);
818 read_fiforeg(flctl, flctl->read_bytes, 0);
819 wait_completion(flctl);
820 break;
822 case NAND_CMD_ERASE1:
823 flctl->erase1_page_addr = page_addr;
824 break;
826 case NAND_CMD_ERASE2:
827 set_cmd_regs(mtd, NAND_CMD_ERASE1,
828 (command << 8) | NAND_CMD_ERASE1);
829 set_addr(mtd, -1, flctl->erase1_page_addr);
830 start_translation(flctl);
831 wait_completion(flctl);
832 break;
834 case NAND_CMD_SEQIN:
835 if (!flctl->page_size) {
836 /* output read command */
837 if (column >= mtd->writesize) {
838 column -= mtd->writesize;
839 read_cmd = NAND_CMD_READOOB;
840 } else if (column < 256) {
841 read_cmd = NAND_CMD_READ0;
842 } else {
843 column -= 256;
844 read_cmd = NAND_CMD_READ1;
847 flctl->seqin_column = column;
848 flctl->seqin_page_addr = page_addr;
849 flctl->seqin_read_cmd = read_cmd;
850 break;
852 case NAND_CMD_PAGEPROG:
853 empty_fifo(flctl);
854 if (!flctl->page_size) {
855 set_cmd_regs(mtd, NAND_CMD_SEQIN,
856 flctl->seqin_read_cmd);
857 set_addr(mtd, -1, -1);
858 writel(0, FLDTCNTR(flctl)); /* set 0 size */
859 start_translation(flctl);
860 wait_completion(flctl);
862 if (flctl->hwecc) {
863 /* write page with hwecc */
864 if (flctl->seqin_column == mtd->writesize)
865 execmd_write_oob(mtd);
866 else if (!flctl->seqin_column)
867 execmd_write_page_sector(mtd);
868 else
869 pr_err("Invalid address !?\n");
870 break;
872 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
873 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
874 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
875 start_translation(flctl);
876 write_fiforeg(flctl, flctl->index, 0);
877 wait_completion(flctl);
878 break;
880 case NAND_CMD_STATUS:
881 set_cmd_regs(mtd, command, command);
882 set_addr(mtd, -1, -1);
884 flctl->read_bytes = 1;
885 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
886 start_translation(flctl);
887 read_datareg(flctl, 0); /* read and end */
888 break;
890 case NAND_CMD_RESET:
891 set_cmd_regs(mtd, command, command);
892 set_addr(mtd, -1, -1);
894 writel(0, FLDTCNTR(flctl)); /* set 0 size */
895 start_translation(flctl);
896 wait_completion(flctl);
897 break;
899 default:
900 break;
902 goto runtime_exit;
904 read_normal_exit:
905 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
906 empty_fifo(flctl);
907 start_translation(flctl);
908 read_fiforeg(flctl, flctl->read_bytes, 0);
909 wait_completion(flctl);
910 runtime_exit:
911 pm_runtime_put_sync(&flctl->pdev->dev);
912 return;
915 static void flctl_select_chip(struct nand_chip *chip, int chipnr)
917 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
918 int ret;
920 switch (chipnr) {
921 case -1:
922 flctl->flcmncr_base &= ~CE0_ENABLE;
924 pm_runtime_get_sync(&flctl->pdev->dev);
925 writel(flctl->flcmncr_base, FLCMNCR(flctl));
927 if (flctl->qos_request) {
928 dev_pm_qos_remove_request(&flctl->pm_qos);
929 flctl->qos_request = 0;
932 pm_runtime_put_sync(&flctl->pdev->dev);
933 break;
934 case 0:
935 flctl->flcmncr_base |= CE0_ENABLE;
937 if (!flctl->qos_request) {
938 ret = dev_pm_qos_add_request(&flctl->pdev->dev,
939 &flctl->pm_qos,
940 DEV_PM_QOS_RESUME_LATENCY,
941 100);
942 if (ret < 0)
943 dev_err(&flctl->pdev->dev,
944 "PM QoS request failed: %d\n", ret);
945 flctl->qos_request = 1;
948 if (flctl->holden) {
949 pm_runtime_get_sync(&flctl->pdev->dev);
950 writel(HOLDEN, FLHOLDCR(flctl));
951 pm_runtime_put_sync(&flctl->pdev->dev);
953 break;
954 default:
955 BUG();
959 static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
961 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
963 memcpy(&flctl->done_buff[flctl->index], buf, len);
964 flctl->index += len;
967 static uint8_t flctl_read_byte(struct nand_chip *chip)
969 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
970 uint8_t data;
972 data = flctl->done_buff[flctl->index];
973 flctl->index++;
974 return data;
977 static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
979 struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
981 memcpy(buf, &flctl->done_buff[flctl->index], len);
982 flctl->index += len;
985 static int flctl_chip_attach_chip(struct nand_chip *chip)
987 u64 targetsize = nanddev_target_size(&chip->base);
988 struct mtd_info *mtd = nand_to_mtd(chip);
989 struct sh_flctl *flctl = mtd_to_flctl(mtd);
992 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
993 * Add the SEL_16BIT flag in flctl->flcmncr_base.
995 if (chip->options & NAND_BUSWIDTH_16)
996 flctl->flcmncr_base |= SEL_16BIT;
998 if (mtd->writesize == 512) {
999 flctl->page_size = 0;
1000 if (targetsize > (32 << 20)) {
1001 /* big than 32MB */
1002 flctl->rw_ADRCNT = ADRCNT_4;
1003 flctl->erase_ADRCNT = ADRCNT_3;
1004 } else if (targetsize > (2 << 16)) {
1005 /* big than 128KB */
1006 flctl->rw_ADRCNT = ADRCNT_3;
1007 flctl->erase_ADRCNT = ADRCNT_2;
1008 } else {
1009 flctl->rw_ADRCNT = ADRCNT_2;
1010 flctl->erase_ADRCNT = ADRCNT_1;
1012 } else {
1013 flctl->page_size = 1;
1014 if (targetsize > (128 << 20)) {
1015 /* big than 128MB */
1016 flctl->rw_ADRCNT = ADRCNT2_E;
1017 flctl->erase_ADRCNT = ADRCNT_3;
1018 } else if (targetsize > (8 << 16)) {
1019 /* big than 512KB */
1020 flctl->rw_ADRCNT = ADRCNT_4;
1021 flctl->erase_ADRCNT = ADRCNT_2;
1022 } else {
1023 flctl->rw_ADRCNT = ADRCNT_3;
1024 flctl->erase_ADRCNT = ADRCNT_1;
1028 if (flctl->hwecc) {
1029 if (mtd->writesize == 512) {
1030 mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1031 chip->badblock_pattern = &flctl_4secc_smallpage;
1032 } else {
1033 mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1034 chip->badblock_pattern = &flctl_4secc_largepage;
1037 chip->ecc.size = 512;
1038 chip->ecc.bytes = 10;
1039 chip->ecc.strength = 4;
1040 chip->ecc.read_page = flctl_read_page_hwecc;
1041 chip->ecc.write_page = flctl_write_page_hwecc;
1042 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1044 /* 4 symbols ECC enabled */
1045 flctl->flcmncr_base |= _4ECCEN;
1046 } else {
1047 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1048 chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1051 return 0;
1054 static const struct nand_controller_ops flctl_nand_controller_ops = {
1055 .attach_chip = flctl_chip_attach_chip,
1058 static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1060 struct sh_flctl *flctl = dev_id;
1062 dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1063 writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1065 return IRQ_HANDLED;
1068 struct flctl_soc_config {
1069 unsigned long flcmncr_val;
1070 unsigned has_hwecc:1;
1071 unsigned use_holden:1;
1074 static struct flctl_soc_config flctl_sh7372_config = {
1075 .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1076 .has_hwecc = 1,
1077 .use_holden = 1,
1080 static const struct of_device_id of_flctl_match[] = {
1081 { .compatible = "renesas,shmobile-flctl-sh7372",
1082 .data = &flctl_sh7372_config },
1085 MODULE_DEVICE_TABLE(of, of_flctl_match);
1087 static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1089 const struct flctl_soc_config *config;
1090 struct sh_flctl_platform_data *pdata;
1092 config = of_device_get_match_data(dev);
1093 if (!config) {
1094 dev_err(dev, "%s: no OF configuration attached\n", __func__);
1095 return NULL;
1098 pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1099 GFP_KERNEL);
1100 if (!pdata)
1101 return NULL;
1103 /* set SoC specific options */
1104 pdata->flcmncr_val = config->flcmncr_val;
1105 pdata->has_hwecc = config->has_hwecc;
1106 pdata->use_holden = config->use_holden;
1108 return pdata;
1111 static int flctl_probe(struct platform_device *pdev)
1113 struct resource *res;
1114 struct sh_flctl *flctl;
1115 struct mtd_info *flctl_mtd;
1116 struct nand_chip *nand;
1117 struct sh_flctl_platform_data *pdata;
1118 int ret;
1119 int irq;
1121 flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1122 if (!flctl)
1123 return -ENOMEM;
1125 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1126 flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1127 if (IS_ERR(flctl->reg))
1128 return PTR_ERR(flctl->reg);
1129 flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1131 irq = platform_get_irq(pdev, 0);
1132 if (irq < 0)
1133 return irq;
1135 ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1136 "flste", flctl);
1137 if (ret) {
1138 dev_err(&pdev->dev, "request interrupt failed.\n");
1139 return ret;
1142 if (pdev->dev.of_node)
1143 pdata = flctl_parse_dt(&pdev->dev);
1144 else
1145 pdata = dev_get_platdata(&pdev->dev);
1147 if (!pdata) {
1148 dev_err(&pdev->dev, "no setup data defined\n");
1149 return -EINVAL;
1152 platform_set_drvdata(pdev, flctl);
1153 nand = &flctl->chip;
1154 flctl_mtd = nand_to_mtd(nand);
1155 nand_set_flash_node(nand, pdev->dev.of_node);
1156 flctl_mtd->dev.parent = &pdev->dev;
1157 flctl->pdev = pdev;
1158 flctl->hwecc = pdata->has_hwecc;
1159 flctl->holden = pdata->use_holden;
1160 flctl->flcmncr_base = pdata->flcmncr_val;
1161 flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1163 /* Set address of hardware control function */
1164 /* 20 us command delay time */
1165 nand->legacy.chip_delay = 20;
1167 nand->legacy.read_byte = flctl_read_byte;
1168 nand->legacy.write_buf = flctl_write_buf;
1169 nand->legacy.read_buf = flctl_read_buf;
1170 nand->legacy.select_chip = flctl_select_chip;
1171 nand->legacy.cmdfunc = flctl_cmdfunc;
1172 nand->legacy.set_features = nand_get_set_features_notsupp;
1173 nand->legacy.get_features = nand_get_set_features_notsupp;
1175 if (pdata->flcmncr_val & SEL_16BIT)
1176 nand->options |= NAND_BUSWIDTH_16;
1178 nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1180 pm_runtime_enable(&pdev->dev);
1181 pm_runtime_resume(&pdev->dev);
1183 flctl_setup_dma(flctl);
1185 nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1186 ret = nand_scan(nand, 1);
1187 if (ret)
1188 goto err_chip;
1190 ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1191 if (ret)
1192 goto cleanup_nand;
1194 return 0;
1196 cleanup_nand:
1197 nand_cleanup(nand);
1198 err_chip:
1199 flctl_release_dma(flctl);
1200 pm_runtime_disable(&pdev->dev);
1201 return ret;
1204 static int flctl_remove(struct platform_device *pdev)
1206 struct sh_flctl *flctl = platform_get_drvdata(pdev);
1207 struct nand_chip *chip = &flctl->chip;
1208 int ret;
1210 flctl_release_dma(flctl);
1211 ret = mtd_device_unregister(nand_to_mtd(chip));
1212 WARN_ON(ret);
1213 nand_cleanup(chip);
1214 pm_runtime_disable(&pdev->dev);
1216 return 0;
1219 static struct platform_driver flctl_driver = {
1220 .remove = flctl_remove,
1221 .driver = {
1222 .name = "sh_flctl",
1223 .of_match_table = of_match_ptr(of_flctl_match),
1227 module_platform_driver_probe(flctl_driver, flctl_probe);
1229 MODULE_LICENSE("GPL v2");
1230 MODULE_AUTHOR("Yoshihiro Shimoda");
1231 MODULE_DESCRIPTION("SuperH FLCTL driver");
1232 MODULE_ALIAS("platform:sh_flctl");