WIP FPC-III support
[linux/fpc-iii.git] / drivers / mtd / spi-nor / controllers / aspeed-smc.c
blob7225870e8b18cd666ae0a7d5b64ade7fde25c143
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ASPEED Static Memory Controller driver
5 * Copyright (c) 2015-2016, IBM Corporation.
6 */
8 #include <linux/bug.h>
9 #include <linux/device.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/mtd/mtd.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/mtd/spi-nor.h>
16 #include <linux/of.h>
17 #include <linux/of_platform.h>
18 #include <linux/sizes.h>
19 #include <linux/sysfs.h>
21 #define DEVICE_NAME "aspeed-smc"
24 * The driver only support SPI flash
26 enum aspeed_smc_flash_type {
27 smc_type_nor = 0,
28 smc_type_nand = 1,
29 smc_type_spi = 2,
32 struct aspeed_smc_chip;
34 struct aspeed_smc_info {
35 u32 maxsize; /* maximum size of chip window */
36 u8 nce; /* number of chip enables */
37 bool hastype; /* flash type field exists in config reg */
38 u8 we0; /* shift for write enable bit for CE0 */
39 u8 ctl0; /* offset in regs of ctl for CE0 */
41 void (*set_4b)(struct aspeed_smc_chip *chip);
44 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip);
45 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip);
47 static const struct aspeed_smc_info fmc_2400_info = {
48 .maxsize = 64 * 1024 * 1024,
49 .nce = 5,
50 .hastype = true,
51 .we0 = 16,
52 .ctl0 = 0x10,
53 .set_4b = aspeed_smc_chip_set_4b,
56 static const struct aspeed_smc_info spi_2400_info = {
57 .maxsize = 64 * 1024 * 1024,
58 .nce = 1,
59 .hastype = false,
60 .we0 = 0,
61 .ctl0 = 0x04,
62 .set_4b = aspeed_smc_chip_set_4b_spi_2400,
65 static const struct aspeed_smc_info fmc_2500_info = {
66 .maxsize = 256 * 1024 * 1024,
67 .nce = 3,
68 .hastype = true,
69 .we0 = 16,
70 .ctl0 = 0x10,
71 .set_4b = aspeed_smc_chip_set_4b,
74 static const struct aspeed_smc_info spi_2500_info = {
75 .maxsize = 128 * 1024 * 1024,
76 .nce = 2,
77 .hastype = false,
78 .we0 = 16,
79 .ctl0 = 0x10,
80 .set_4b = aspeed_smc_chip_set_4b,
83 enum aspeed_smc_ctl_reg_value {
84 smc_base, /* base value without mode for other commands */
85 smc_read, /* command reg for (maybe fast) reads */
86 smc_write, /* command reg for writes */
87 smc_max,
90 struct aspeed_smc_controller;
92 struct aspeed_smc_chip {
93 int cs;
94 struct aspeed_smc_controller *controller;
95 void __iomem *ctl; /* control register */
96 void __iomem *ahb_base; /* base of chip window */
97 u32 ahb_window_size; /* chip mapping window size */
98 u32 ctl_val[smc_max]; /* control settings */
99 enum aspeed_smc_flash_type type; /* what type of flash */
100 struct spi_nor nor;
103 struct aspeed_smc_controller {
104 struct device *dev;
106 struct mutex mutex; /* controller access mutex */
107 const struct aspeed_smc_info *info; /* type info of controller */
108 void __iomem *regs; /* controller registers */
109 void __iomem *ahb_base; /* per-chip windows resource */
110 u32 ahb_window_size; /* full mapping window size */
112 struct aspeed_smc_chip *chips[]; /* pointers to attached chips */
116 * SPI Flash Configuration Register (AST2500 SPI)
117 * or
118 * Type setting Register (AST2500 FMC).
119 * CE0 and CE1 can only be of type SPI. CE2 can be of type NOR but the
120 * driver does not support it.
122 #define CONFIG_REG 0x0
123 #define CONFIG_DISABLE_LEGACY BIT(31) /* 1 */
125 #define CONFIG_CE2_WRITE BIT(18)
126 #define CONFIG_CE1_WRITE BIT(17)
127 #define CONFIG_CE0_WRITE BIT(16)
129 #define CONFIG_CE2_TYPE BIT(4) /* AST2500 FMC only */
130 #define CONFIG_CE1_TYPE BIT(2) /* AST2500 FMC only */
131 #define CONFIG_CE0_TYPE BIT(0) /* AST2500 FMC only */
134 * CE Control Register
136 #define CE_CONTROL_REG 0x4
139 * CEx Control Register
141 #define CONTROL_AAF_MODE BIT(31)
142 #define CONTROL_IO_MODE_MASK GENMASK(30, 28)
143 #define CONTROL_IO_DUAL_DATA BIT(29)
144 #define CONTROL_IO_DUAL_ADDR_DATA (BIT(29) | BIT(28))
145 #define CONTROL_IO_QUAD_DATA BIT(30)
146 #define CONTROL_IO_QUAD_ADDR_DATA (BIT(30) | BIT(28))
147 #define CONTROL_CE_INACTIVE_SHIFT 24
148 #define CONTROL_CE_INACTIVE_MASK GENMASK(27, \
149 CONTROL_CE_INACTIVE_SHIFT)
150 /* 0 = 16T ... 15 = 1T T=HCLK */
151 #define CONTROL_COMMAND_SHIFT 16
152 #define CONTROL_DUMMY_COMMAND_OUT BIT(15)
153 #define CONTROL_IO_DUMMY_HI BIT(14)
154 #define CONTROL_IO_DUMMY_HI_SHIFT 14
155 #define CONTROL_CLK_DIV4 BIT(13) /* others */
156 #define CONTROL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI */
157 #define CONTROL_RW_MERGE BIT(12)
158 #define CONTROL_IO_DUMMY_LO_SHIFT 6
159 #define CONTROL_IO_DUMMY_LO GENMASK(7, \
160 CONTROL_IO_DUMMY_LO_SHIFT)
161 #define CONTROL_IO_DUMMY_MASK (CONTROL_IO_DUMMY_HI | \
162 CONTROL_IO_DUMMY_LO)
163 #define CONTROL_IO_DUMMY_SET(dummy) \
164 (((((dummy) >> 2) & 0x1) << CONTROL_IO_DUMMY_HI_SHIFT) | \
165 (((dummy) & 0x3) << CONTROL_IO_DUMMY_LO_SHIFT))
167 #define CONTROL_CLOCK_FREQ_SEL_SHIFT 8
168 #define CONTROL_CLOCK_FREQ_SEL_MASK GENMASK(11, \
169 CONTROL_CLOCK_FREQ_SEL_SHIFT)
170 #define CONTROL_LSB_FIRST BIT(5)
171 #define CONTROL_CLOCK_MODE_3 BIT(4)
172 #define CONTROL_IN_DUAL_DATA BIT(3)
173 #define CONTROL_CE_STOP_ACTIVE_CONTROL BIT(2)
174 #define CONTROL_COMMAND_MODE_MASK GENMASK(1, 0)
175 #define CONTROL_COMMAND_MODE_NORMAL 0
176 #define CONTROL_COMMAND_MODE_FREAD 1
177 #define CONTROL_COMMAND_MODE_WRITE 2
178 #define CONTROL_COMMAND_MODE_USER 3
180 #define CONTROL_KEEP_MASK \
181 (CONTROL_AAF_MODE | CONTROL_CE_INACTIVE_MASK | CONTROL_CLK_DIV4 | \
182 CONTROL_CLOCK_FREQ_SEL_MASK | CONTROL_LSB_FIRST | CONTROL_CLOCK_MODE_3)
185 * The Segment Register uses a 8MB unit to encode the start address
186 * and the end address of the mapping window of a flash SPI slave :
188 * | byte 1 | byte 2 | byte 3 | byte 4 |
189 * +--------+--------+--------+--------+
190 * | end | start | 0 | 0 |
192 #define SEGMENT_ADDR_REG0 0x30
193 #define SEGMENT_ADDR_START(_r) ((((_r) >> 16) & 0xFF) << 23)
194 #define SEGMENT_ADDR_END(_r) ((((_r) >> 24) & 0xFF) << 23)
195 #define SEGMENT_ADDR_VALUE(start, end) \
196 (((((start) >> 23) & 0xFF) << 16) | ((((end) >> 23) & 0xFF) << 24))
197 #define SEGMENT_ADDR_REG(controller, cs) \
198 ((controller)->regs + SEGMENT_ADDR_REG0 + (cs) * 4)
201 * In user mode all data bytes read or written to the chip decode address
202 * range are transferred to or from the SPI bus. The range is treated as a
203 * fifo of arbitratry 1, 2, or 4 byte width but each write has to be aligned
204 * to its size. The address within the multiple 8kB range is ignored when
205 * sending bytes to the SPI bus.
207 * On the arm architecture, as of Linux version 4.3, memcpy_fromio and
208 * memcpy_toio on little endian targets use the optimized memcpy routines
209 * that were designed for well behavied memory storage. These routines
210 * have a stutter if the source and destination are not both word aligned,
211 * once with a duplicate access to the source after aligning to the
212 * destination to a word boundary, and again with a duplicate access to
213 * the source when the final byte count is not word aligned.
215 * When writing or reading the fifo this stutter discards data or sends
216 * too much data to the fifo and can not be used by this driver.
218 * While the low level io string routines that implement the insl family do
219 * the desired accesses and memory increments, the cross architecture io
220 * macros make them essentially impossible to use on a memory mapped address
221 * instead of a a token from the call to iomap of an io port.
223 * These fifo routines use readl and friends to a constant io port and update
224 * the memory buffer pointer and count via explicit code. The final updates
225 * to len are optimistically suppressed.
227 static int aspeed_smc_read_from_ahb(void *buf, void __iomem *src, size_t len)
229 size_t offset = 0;
231 if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
232 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
233 ioread32_rep(src, buf, len >> 2);
234 offset = len & ~0x3;
235 len -= offset;
237 ioread8_rep(src, (u8 *)buf + offset, len);
238 return 0;
241 static int aspeed_smc_write_to_ahb(void __iomem *dst, const void *buf,
242 size_t len)
244 size_t offset = 0;
246 if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
247 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
248 iowrite32_rep(dst, buf, len >> 2);
249 offset = len & ~0x3;
250 len -= offset;
252 iowrite8_rep(dst, (const u8 *)buf + offset, len);
253 return 0;
256 static inline u32 aspeed_smc_chip_write_bit(struct aspeed_smc_chip *chip)
258 return BIT(chip->controller->info->we0 + chip->cs);
261 static void aspeed_smc_chip_check_config(struct aspeed_smc_chip *chip)
263 struct aspeed_smc_controller *controller = chip->controller;
264 u32 reg;
266 reg = readl(controller->regs + CONFIG_REG);
268 if (reg & aspeed_smc_chip_write_bit(chip))
269 return;
271 dev_dbg(controller->dev, "config write is not set ! @%p: 0x%08x\n",
272 controller->regs + CONFIG_REG, reg);
273 reg |= aspeed_smc_chip_write_bit(chip);
274 writel(reg, controller->regs + CONFIG_REG);
277 static void aspeed_smc_start_user(struct spi_nor *nor)
279 struct aspeed_smc_chip *chip = nor->priv;
280 u32 ctl = chip->ctl_val[smc_base];
283 * When the chip is controlled in user mode, we need write
284 * access to send the opcodes to it. So check the config.
286 aspeed_smc_chip_check_config(chip);
288 ctl |= CONTROL_COMMAND_MODE_USER |
289 CONTROL_CE_STOP_ACTIVE_CONTROL;
290 writel(ctl, chip->ctl);
292 ctl &= ~CONTROL_CE_STOP_ACTIVE_CONTROL;
293 writel(ctl, chip->ctl);
296 static void aspeed_smc_stop_user(struct spi_nor *nor)
298 struct aspeed_smc_chip *chip = nor->priv;
300 u32 ctl = chip->ctl_val[smc_read];
301 u32 ctl2 = ctl | CONTROL_COMMAND_MODE_USER |
302 CONTROL_CE_STOP_ACTIVE_CONTROL;
304 writel(ctl2, chip->ctl); /* stop user CE control */
305 writel(ctl, chip->ctl); /* default to fread or read mode */
308 static int aspeed_smc_prep(struct spi_nor *nor)
310 struct aspeed_smc_chip *chip = nor->priv;
312 mutex_lock(&chip->controller->mutex);
313 return 0;
316 static void aspeed_smc_unprep(struct spi_nor *nor)
318 struct aspeed_smc_chip *chip = nor->priv;
320 mutex_unlock(&chip->controller->mutex);
323 static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
324 size_t len)
326 struct aspeed_smc_chip *chip = nor->priv;
328 aspeed_smc_start_user(nor);
329 aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
330 aspeed_smc_read_from_ahb(buf, chip->ahb_base, len);
331 aspeed_smc_stop_user(nor);
332 return 0;
335 static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
336 size_t len)
338 struct aspeed_smc_chip *chip = nor->priv;
340 aspeed_smc_start_user(nor);
341 aspeed_smc_write_to_ahb(chip->ahb_base, &opcode, 1);
342 aspeed_smc_write_to_ahb(chip->ahb_base, buf, len);
343 aspeed_smc_stop_user(nor);
344 return 0;
347 static void aspeed_smc_send_cmd_addr(struct spi_nor *nor, u8 cmd, u32 addr)
349 struct aspeed_smc_chip *chip = nor->priv;
350 __be32 temp;
351 u32 cmdaddr;
353 switch (nor->addr_width) {
354 default:
355 WARN_ONCE(1, "Unexpected address width %u, defaulting to 3\n",
356 nor->addr_width);
357 fallthrough;
358 case 3:
359 cmdaddr = addr & 0xFFFFFF;
360 cmdaddr |= cmd << 24;
362 temp = cpu_to_be32(cmdaddr);
363 aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
364 break;
365 case 4:
366 temp = cpu_to_be32(addr);
367 aspeed_smc_write_to_ahb(chip->ahb_base, &cmd, 1);
368 aspeed_smc_write_to_ahb(chip->ahb_base, &temp, 4);
369 break;
373 static ssize_t aspeed_smc_read_user(struct spi_nor *nor, loff_t from,
374 size_t len, u_char *read_buf)
376 struct aspeed_smc_chip *chip = nor->priv;
377 int i;
378 u8 dummy = 0xFF;
380 aspeed_smc_start_user(nor);
381 aspeed_smc_send_cmd_addr(nor, nor->read_opcode, from);
382 for (i = 0; i < chip->nor.read_dummy / 8; i++)
383 aspeed_smc_write_to_ahb(chip->ahb_base, &dummy, sizeof(dummy));
385 aspeed_smc_read_from_ahb(read_buf, chip->ahb_base, len);
386 aspeed_smc_stop_user(nor);
387 return len;
390 static ssize_t aspeed_smc_write_user(struct spi_nor *nor, loff_t to,
391 size_t len, const u_char *write_buf)
393 struct aspeed_smc_chip *chip = nor->priv;
395 aspeed_smc_start_user(nor);
396 aspeed_smc_send_cmd_addr(nor, nor->program_opcode, to);
397 aspeed_smc_write_to_ahb(chip->ahb_base, write_buf, len);
398 aspeed_smc_stop_user(nor);
399 return len;
402 static int aspeed_smc_unregister(struct aspeed_smc_controller *controller)
404 struct aspeed_smc_chip *chip;
405 int n;
407 for (n = 0; n < controller->info->nce; n++) {
408 chip = controller->chips[n];
409 if (chip)
410 mtd_device_unregister(&chip->nor.mtd);
413 return 0;
416 static int aspeed_smc_remove(struct platform_device *dev)
418 return aspeed_smc_unregister(platform_get_drvdata(dev));
421 static const struct of_device_id aspeed_smc_matches[] = {
422 { .compatible = "aspeed,ast2400-fmc", .data = &fmc_2400_info },
423 { .compatible = "aspeed,ast2400-spi", .data = &spi_2400_info },
424 { .compatible = "aspeed,ast2500-fmc", .data = &fmc_2500_info },
425 { .compatible = "aspeed,ast2500-spi", .data = &spi_2500_info },
428 MODULE_DEVICE_TABLE(of, aspeed_smc_matches);
431 * Each chip has a mapping window defined by a segment address
432 * register defining a start and an end address on the AHB bus. These
433 * addresses can be configured to fit the chip size and offer a
434 * contiguous memory region across chips. For the moment, we only
435 * check that each chip segment is valid.
437 static void __iomem *aspeed_smc_chip_base(struct aspeed_smc_chip *chip,
438 struct resource *res)
440 struct aspeed_smc_controller *controller = chip->controller;
441 u32 offset = 0;
442 u32 reg;
444 if (controller->info->nce > 1) {
445 reg = readl(SEGMENT_ADDR_REG(controller, chip->cs));
447 if (SEGMENT_ADDR_START(reg) >= SEGMENT_ADDR_END(reg))
448 return NULL;
450 offset = SEGMENT_ADDR_START(reg) - res->start;
453 return controller->ahb_base + offset;
456 static u32 aspeed_smc_ahb_base_phy(struct aspeed_smc_controller *controller)
458 u32 seg0_val = readl(SEGMENT_ADDR_REG(controller, 0));
460 return SEGMENT_ADDR_START(seg0_val);
463 static u32 chip_set_segment(struct aspeed_smc_chip *chip, u32 cs, u32 start,
464 u32 size)
466 struct aspeed_smc_controller *controller = chip->controller;
467 void __iomem *seg_reg;
468 u32 seg_oldval, seg_newval, ahb_base_phy, end;
470 ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
472 seg_reg = SEGMENT_ADDR_REG(controller, cs);
473 seg_oldval = readl(seg_reg);
476 * If the chip size is not specified, use the default segment
477 * size, but take into account the possible overlap with the
478 * previous segment
480 if (!size)
481 size = SEGMENT_ADDR_END(seg_oldval) - start;
484 * The segment cannot exceed the maximum window size of the
485 * controller.
487 if (start + size > ahb_base_phy + controller->ahb_window_size) {
488 size = ahb_base_phy + controller->ahb_window_size - start;
489 dev_warn(chip->nor.dev, "CE%d window resized to %dMB",
490 cs, size >> 20);
493 end = start + size;
494 seg_newval = SEGMENT_ADDR_VALUE(start, end);
495 writel(seg_newval, seg_reg);
498 * Restore default value if something goes wrong. The chip
499 * might have set some bogus value and we would loose access
500 * to the chip.
502 if (seg_newval != readl(seg_reg)) {
503 dev_err(chip->nor.dev, "CE%d window invalid", cs);
504 writel(seg_oldval, seg_reg);
505 start = SEGMENT_ADDR_START(seg_oldval);
506 end = SEGMENT_ADDR_END(seg_oldval);
507 size = end - start;
510 dev_info(chip->nor.dev, "CE%d window [ 0x%.8x - 0x%.8x ] %dMB",
511 cs, start, end, size >> 20);
513 return size;
517 * The segment register defines the mapping window on the AHB bus and
518 * it needs to be configured depending on the chip size. The segment
519 * register of the following CE also needs to be tuned in order to
520 * provide a contiguous window across multiple chips.
522 * This is expected to be called in increasing CE order
524 static u32 aspeed_smc_chip_set_segment(struct aspeed_smc_chip *chip)
526 struct aspeed_smc_controller *controller = chip->controller;
527 u32 ahb_base_phy, start;
528 u32 size = chip->nor.mtd.size;
531 * Each controller has a chip size limit for direct memory
532 * access
534 if (size > controller->info->maxsize)
535 size = controller->info->maxsize;
538 * The AST2400 SPI controller only handles one chip and does
539 * not have segment registers. Let's use the chip size for the
540 * AHB window.
542 if (controller->info == &spi_2400_info)
543 goto out;
546 * The AST2500 SPI controller has a HW bug when the CE0 chip
547 * size reaches 128MB. Enforce a size limit of 120MB to
548 * prevent the controller from using bogus settings in the
549 * segment register.
551 if (chip->cs == 0 && controller->info == &spi_2500_info &&
552 size == SZ_128M) {
553 size = 120 << 20;
554 dev_info(chip->nor.dev,
555 "CE%d window resized to %dMB (AST2500 HW quirk)",
556 chip->cs, size >> 20);
559 ahb_base_phy = aspeed_smc_ahb_base_phy(controller);
562 * As a start address for the current segment, use the default
563 * start address if we are handling CE0 or use the previous
564 * segment ending address
566 if (chip->cs) {
567 u32 prev = readl(SEGMENT_ADDR_REG(controller, chip->cs - 1));
569 start = SEGMENT_ADDR_END(prev);
570 } else {
571 start = ahb_base_phy;
574 size = chip_set_segment(chip, chip->cs, start, size);
576 /* Update chip base address on the AHB bus */
577 chip->ahb_base = controller->ahb_base + (start - ahb_base_phy);
580 * Now, make sure the next segment does not overlap with the
581 * current one we just configured, even if there is no
582 * available chip. That could break access in Command Mode.
584 if (chip->cs < controller->info->nce - 1)
585 chip_set_segment(chip, chip->cs + 1, start + size, 0);
587 out:
588 if (size < chip->nor.mtd.size)
589 dev_warn(chip->nor.dev,
590 "CE%d window too small for chip %dMB",
591 chip->cs, (u32)chip->nor.mtd.size >> 20);
593 return size;
596 static void aspeed_smc_chip_enable_write(struct aspeed_smc_chip *chip)
598 struct aspeed_smc_controller *controller = chip->controller;
599 u32 reg;
601 reg = readl(controller->regs + CONFIG_REG);
603 reg |= aspeed_smc_chip_write_bit(chip);
604 writel(reg, controller->regs + CONFIG_REG);
607 static void aspeed_smc_chip_set_type(struct aspeed_smc_chip *chip, int type)
609 struct aspeed_smc_controller *controller = chip->controller;
610 u32 reg;
612 chip->type = type;
614 reg = readl(controller->regs + CONFIG_REG);
615 reg &= ~(3 << (chip->cs * 2));
616 reg |= chip->type << (chip->cs * 2);
617 writel(reg, controller->regs + CONFIG_REG);
621 * The first chip of the AST2500 FMC flash controller is strapped by
622 * hardware, or autodetected, but other chips need to be set. Enforce
623 * the 4B setting for all chips.
625 static void aspeed_smc_chip_set_4b(struct aspeed_smc_chip *chip)
627 struct aspeed_smc_controller *controller = chip->controller;
628 u32 reg;
630 reg = readl(controller->regs + CE_CONTROL_REG);
631 reg |= 1 << chip->cs;
632 writel(reg, controller->regs + CE_CONTROL_REG);
636 * The AST2400 SPI flash controller does not have a CE Control
637 * register. It uses the CE0 control register to set 4Byte mode at the
638 * controller level.
640 static void aspeed_smc_chip_set_4b_spi_2400(struct aspeed_smc_chip *chip)
642 chip->ctl_val[smc_base] |= CONTROL_IO_ADDRESS_4B;
643 chip->ctl_val[smc_read] |= CONTROL_IO_ADDRESS_4B;
646 static int aspeed_smc_chip_setup_init(struct aspeed_smc_chip *chip,
647 struct resource *res)
649 struct aspeed_smc_controller *controller = chip->controller;
650 const struct aspeed_smc_info *info = controller->info;
651 u32 reg, base_reg;
654 * Always turn on the write enable bit to allow opcodes to be
655 * sent in user mode.
657 aspeed_smc_chip_enable_write(chip);
659 /* The driver only supports SPI type flash */
660 if (info->hastype)
661 aspeed_smc_chip_set_type(chip, smc_type_spi);
664 * Configure chip base address in memory
666 chip->ahb_base = aspeed_smc_chip_base(chip, res);
667 if (!chip->ahb_base) {
668 dev_warn(chip->nor.dev, "CE%d window closed", chip->cs);
669 return -EINVAL;
673 * Get value of the inherited control register. U-Boot usually
674 * does some timing calibration on the FMC chip, so it's good
675 * to keep them. In the future, we should handle calibration
676 * from Linux.
678 reg = readl(chip->ctl);
679 dev_dbg(controller->dev, "control register: %08x\n", reg);
681 base_reg = reg & CONTROL_KEEP_MASK;
682 if (base_reg != reg) {
683 dev_dbg(controller->dev,
684 "control register changed to: %08x\n",
685 base_reg);
687 chip->ctl_val[smc_base] = base_reg;
690 * Retain the prior value of the control register as the
691 * default if it was normal access mode. Otherwise start with
692 * the sanitized base value set to read mode.
694 if ((reg & CONTROL_COMMAND_MODE_MASK) ==
695 CONTROL_COMMAND_MODE_NORMAL)
696 chip->ctl_val[smc_read] = reg;
697 else
698 chip->ctl_val[smc_read] = chip->ctl_val[smc_base] |
699 CONTROL_COMMAND_MODE_NORMAL;
701 dev_dbg(controller->dev, "default control register: %08x\n",
702 chip->ctl_val[smc_read]);
703 return 0;
706 static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
708 struct aspeed_smc_controller *controller = chip->controller;
709 const struct aspeed_smc_info *info = controller->info;
710 u32 cmd;
712 if (chip->nor.addr_width == 4 && info->set_4b)
713 info->set_4b(chip);
715 /* This is for direct AHB access when using Command Mode. */
716 chip->ahb_window_size = aspeed_smc_chip_set_segment(chip);
719 * base mode has not been optimized yet. use it for writes.
721 chip->ctl_val[smc_write] = chip->ctl_val[smc_base] |
722 chip->nor.program_opcode << CONTROL_COMMAND_SHIFT |
723 CONTROL_COMMAND_MODE_WRITE;
725 dev_dbg(controller->dev, "write control register: %08x\n",
726 chip->ctl_val[smc_write]);
729 * TODO: Adjust clocks if fast read is supported and interpret
730 * SPI NOR flags to adjust controller settings.
732 if (chip->nor.read_proto == SNOR_PROTO_1_1_1) {
733 if (chip->nor.read_dummy == 0)
734 cmd = CONTROL_COMMAND_MODE_NORMAL;
735 else
736 cmd = CONTROL_COMMAND_MODE_FREAD;
737 } else {
738 dev_err(chip->nor.dev, "unsupported SPI read mode\n");
739 return -EINVAL;
742 chip->ctl_val[smc_read] |= cmd |
743 CONTROL_IO_DUMMY_SET(chip->nor.read_dummy / 8);
745 dev_dbg(controller->dev, "base control register: %08x\n",
746 chip->ctl_val[smc_read]);
747 return 0;
750 static const struct spi_nor_controller_ops aspeed_smc_controller_ops = {
751 .prepare = aspeed_smc_prep,
752 .unprepare = aspeed_smc_unprep,
753 .read_reg = aspeed_smc_read_reg,
754 .write_reg = aspeed_smc_write_reg,
755 .read = aspeed_smc_read_user,
756 .write = aspeed_smc_write_user,
759 static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
760 struct device_node *np, struct resource *r)
762 const struct spi_nor_hwcaps hwcaps = {
763 .mask = SNOR_HWCAPS_READ |
764 SNOR_HWCAPS_READ_FAST |
765 SNOR_HWCAPS_PP,
767 const struct aspeed_smc_info *info = controller->info;
768 struct device *dev = controller->dev;
769 struct device_node *child;
770 unsigned int cs;
771 int ret = -ENODEV;
773 for_each_available_child_of_node(np, child) {
774 struct aspeed_smc_chip *chip;
775 struct spi_nor *nor;
776 struct mtd_info *mtd;
778 /* This driver does not support NAND or NOR flash devices. */
779 if (!of_device_is_compatible(child, "jedec,spi-nor"))
780 continue;
782 ret = of_property_read_u32(child, "reg", &cs);
783 if (ret) {
784 dev_err(dev, "Couldn't not read chip select.\n");
785 break;
788 if (cs >= info->nce) {
789 dev_err(dev, "Chip select %d out of range.\n",
790 cs);
791 ret = -ERANGE;
792 break;
795 if (controller->chips[cs]) {
796 dev_err(dev, "Chip select %d already in use by %s\n",
797 cs, dev_name(controller->chips[cs]->nor.dev));
798 ret = -EBUSY;
799 break;
802 chip = devm_kzalloc(controller->dev, sizeof(*chip), GFP_KERNEL);
803 if (!chip) {
804 ret = -ENOMEM;
805 break;
808 chip->controller = controller;
809 chip->ctl = controller->regs + info->ctl0 + cs * 4;
810 chip->cs = cs;
812 nor = &chip->nor;
813 mtd = &nor->mtd;
815 nor->dev = dev;
816 nor->priv = chip;
817 spi_nor_set_flash_node(nor, child);
818 nor->controller_ops = &aspeed_smc_controller_ops;
820 ret = aspeed_smc_chip_setup_init(chip, r);
821 if (ret)
822 break;
825 * TODO: Add support for Dual and Quad SPI protocols
826 * attach when board support is present as determined
827 * by of property.
829 ret = spi_nor_scan(nor, NULL, &hwcaps);
830 if (ret)
831 break;
833 ret = aspeed_smc_chip_setup_finish(chip);
834 if (ret)
835 break;
837 ret = mtd_device_register(mtd, NULL, 0);
838 if (ret)
839 break;
841 controller->chips[cs] = chip;
844 if (ret) {
845 of_node_put(child);
846 aspeed_smc_unregister(controller);
849 return ret;
852 static int aspeed_smc_probe(struct platform_device *pdev)
854 struct device_node *np = pdev->dev.of_node;
855 struct device *dev = &pdev->dev;
856 struct aspeed_smc_controller *controller;
857 const struct of_device_id *match;
858 const struct aspeed_smc_info *info;
859 struct resource *res;
860 int ret;
862 match = of_match_device(aspeed_smc_matches, &pdev->dev);
863 if (!match || !match->data)
864 return -ENODEV;
865 info = match->data;
867 controller = devm_kzalloc(&pdev->dev,
868 struct_size(controller, chips, info->nce),
869 GFP_KERNEL);
870 if (!controller)
871 return -ENOMEM;
872 controller->info = info;
873 controller->dev = dev;
875 mutex_init(&controller->mutex);
876 platform_set_drvdata(pdev, controller);
878 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
879 controller->regs = devm_ioremap_resource(dev, res);
880 if (IS_ERR(controller->regs))
881 return PTR_ERR(controller->regs);
883 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
884 controller->ahb_base = devm_ioremap_resource(dev, res);
885 if (IS_ERR(controller->ahb_base))
886 return PTR_ERR(controller->ahb_base);
888 controller->ahb_window_size = resource_size(res);
890 ret = aspeed_smc_setup_flash(controller, np, res);
891 if (ret)
892 dev_err(dev, "Aspeed SMC probe failed %d\n", ret);
894 return ret;
897 static struct platform_driver aspeed_smc_driver = {
898 .probe = aspeed_smc_probe,
899 .remove = aspeed_smc_remove,
900 .driver = {
901 .name = DEVICE_NAME,
902 .of_match_table = aspeed_smc_matches,
906 module_platform_driver(aspeed_smc_driver);
908 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
909 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
910 MODULE_LICENSE("GPL v2");