1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
5 * Author: Artem Bityutskiy (Битюцкий Артём)
9 * The UBI Eraseblock Association (EBA) sub-system.
11 * This sub-system is responsible for I/O to/from logical eraseblock.
13 * Although in this implementation the EBA table is fully kept and managed in
14 * RAM, which assumes poor scalability, it might be (partially) maintained on
15 * flash in future implementations.
17 * The EBA sub-system implements per-logical eraseblock locking. Before
18 * accessing a logical eraseblock it is locked for reading or writing. The
19 * per-logical eraseblock locking is implemented by means of the lock tree. The
20 * lock tree is an RB-tree which refers all the currently locked logical
21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22 * They are indexed by (@vol_id, @lnum) pairs.
24 * EBA also maintains the global sequence counter which is incremented each
25 * time a logical eraseblock is mapped to a physical eraseblock and it is
26 * stored in the volume identifier header. This means that each VID header has
27 * a unique sequence number. The sequence number is only increased an we assume
28 * 64 bits is enough to never overflow.
31 #include <linux/slab.h>
32 #include <linux/crc32.h>
33 #include <linux/err.h>
36 /* Number of physical eraseblocks reserved for atomic LEB change operation */
37 #define EBA_RESERVED_PEBS 1
40 * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
41 * @pnum: the physical eraseblock number attached to the LEB
43 * This structure is encoding a LEB -> PEB association. Note that the LEB
44 * number is not stored here, because it is the index used to access the
47 struct ubi_eba_entry
{
52 * struct ubi_eba_table - LEB -> PEB association information
53 * @entries: the LEB to PEB mapping (one entry per LEB).
55 * This structure is private to the EBA logic and should be kept here.
56 * It is encoding the LEB to PEB association table, and is subject to
59 struct ubi_eba_table
{
60 struct ubi_eba_entry
*entries
;
64 * next_sqnum - get next sequence number.
65 * @ubi: UBI device description object
67 * This function returns next sequence number to use, which is just the current
68 * global sequence counter value. It also increases the global sequence
71 unsigned long long ubi_next_sqnum(struct ubi_device
*ubi
)
73 unsigned long long sqnum
;
75 spin_lock(&ubi
->ltree_lock
);
76 sqnum
= ubi
->global_sqnum
++;
77 spin_unlock(&ubi
->ltree_lock
);
83 * ubi_get_compat - get compatibility flags of a volume.
84 * @ubi: UBI device description object
87 * This function returns compatibility flags for an internal volume. User
88 * volumes have no compatibility flags, so %0 is returned.
90 static int ubi_get_compat(const struct ubi_device
*ubi
, int vol_id
)
92 if (vol_id
== UBI_LAYOUT_VOLUME_ID
)
93 return UBI_LAYOUT_VOLUME_COMPAT
;
98 * ubi_eba_get_ldesc - get information about a LEB
99 * @vol: volume description object
100 * @lnum: logical eraseblock number
101 * @ldesc: the LEB descriptor to fill
103 * Used to query information about a specific LEB.
104 * It is currently only returning the physical position of the LEB, but will be
105 * extended to provide more information.
107 void ubi_eba_get_ldesc(struct ubi_volume
*vol
, int lnum
,
108 struct ubi_eba_leb_desc
*ldesc
)
111 ldesc
->pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
115 * ubi_eba_create_table - allocate a new EBA table and initialize it with all
117 * @vol: volume containing the EBA table to copy
118 * @nentries: number of entries in the table
120 * Allocate a new EBA table and initialize it with all LEBs unmapped.
121 * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
123 struct ubi_eba_table
*ubi_eba_create_table(struct ubi_volume
*vol
,
126 struct ubi_eba_table
*tbl
;
130 tbl
= kzalloc(sizeof(*tbl
), GFP_KERNEL
);
132 return ERR_PTR(-ENOMEM
);
134 tbl
->entries
= kmalloc_array(nentries
, sizeof(*tbl
->entries
),
139 for (i
= 0; i
< nentries
; i
++)
140 tbl
->entries
[i
].pnum
= UBI_LEB_UNMAPPED
;
152 * ubi_eba_destroy_table - destroy an EBA table
153 * @tbl: the table to destroy
155 * Destroy an EBA table.
157 void ubi_eba_destroy_table(struct ubi_eba_table
*tbl
)
167 * ubi_eba_copy_table - copy the EBA table attached to vol into another table
168 * @vol: volume containing the EBA table to copy
170 * @nentries: number of entries to copy
172 * Copy the EBA table stored in vol into the one pointed by dst.
174 void ubi_eba_copy_table(struct ubi_volume
*vol
, struct ubi_eba_table
*dst
,
177 struct ubi_eba_table
*src
;
180 ubi_assert(dst
&& vol
&& vol
->eba_tbl
);
184 for (i
= 0; i
< nentries
; i
++)
185 dst
->entries
[i
].pnum
= src
->entries
[i
].pnum
;
189 * ubi_eba_replace_table - assign a new EBA table to a volume
190 * @vol: volume containing the EBA table to copy
191 * @tbl: new EBA table
193 * Assign a new EBA table to the volume and release the old one.
195 void ubi_eba_replace_table(struct ubi_volume
*vol
, struct ubi_eba_table
*tbl
)
197 ubi_eba_destroy_table(vol
->eba_tbl
);
202 * ltree_lookup - look up the lock tree.
203 * @ubi: UBI device description object
205 * @lnum: logical eraseblock number
207 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
208 * object if the logical eraseblock is locked and %NULL if it is not.
209 * @ubi->ltree_lock has to be locked.
211 static struct ubi_ltree_entry
*ltree_lookup(struct ubi_device
*ubi
, int vol_id
,
216 p
= ubi
->ltree
.rb_node
;
218 struct ubi_ltree_entry
*le
;
220 le
= rb_entry(p
, struct ubi_ltree_entry
, rb
);
222 if (vol_id
< le
->vol_id
)
224 else if (vol_id
> le
->vol_id
)
229 else if (lnum
> le
->lnum
)
240 * ltree_add_entry - add new entry to the lock tree.
241 * @ubi: UBI device description object
243 * @lnum: logical eraseblock number
245 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
246 * lock tree. If such entry is already there, its usage counter is increased.
247 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
250 static struct ubi_ltree_entry
*ltree_add_entry(struct ubi_device
*ubi
,
251 int vol_id
, int lnum
)
253 struct ubi_ltree_entry
*le
, *le1
, *le_free
;
255 le
= kmalloc(sizeof(struct ubi_ltree_entry
), GFP_NOFS
);
257 return ERR_PTR(-ENOMEM
);
260 init_rwsem(&le
->mutex
);
264 spin_lock(&ubi
->ltree_lock
);
265 le1
= ltree_lookup(ubi
, vol_id
, lnum
);
269 * This logical eraseblock is already locked. The newly
270 * allocated lock entry is not needed.
275 struct rb_node
**p
, *parent
= NULL
;
278 * No lock entry, add the newly allocated one to the
279 * @ubi->ltree RB-tree.
283 p
= &ubi
->ltree
.rb_node
;
286 le1
= rb_entry(parent
, struct ubi_ltree_entry
, rb
);
288 if (vol_id
< le1
->vol_id
)
290 else if (vol_id
> le1
->vol_id
)
293 ubi_assert(lnum
!= le1
->lnum
);
294 if (lnum
< le1
->lnum
)
301 rb_link_node(&le
->rb
, parent
, p
);
302 rb_insert_color(&le
->rb
, &ubi
->ltree
);
305 spin_unlock(&ubi
->ltree_lock
);
312 * leb_read_lock - lock logical eraseblock for reading.
313 * @ubi: UBI device description object
315 * @lnum: logical eraseblock number
317 * This function locks a logical eraseblock for reading. Returns zero in case
318 * of success and a negative error code in case of failure.
320 static int leb_read_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
322 struct ubi_ltree_entry
*le
;
324 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
327 down_read(&le
->mutex
);
332 * leb_read_unlock - unlock logical eraseblock.
333 * @ubi: UBI device description object
335 * @lnum: logical eraseblock number
337 static void leb_read_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
339 struct ubi_ltree_entry
*le
;
341 spin_lock(&ubi
->ltree_lock
);
342 le
= ltree_lookup(ubi
, vol_id
, lnum
);
344 ubi_assert(le
->users
>= 0);
346 if (le
->users
== 0) {
347 rb_erase(&le
->rb
, &ubi
->ltree
);
350 spin_unlock(&ubi
->ltree_lock
);
354 * leb_write_lock - lock logical eraseblock for writing.
355 * @ubi: UBI device description object
357 * @lnum: logical eraseblock number
359 * This function locks a logical eraseblock for writing. Returns zero in case
360 * of success and a negative error code in case of failure.
362 static int leb_write_lock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
364 struct ubi_ltree_entry
*le
;
366 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
369 down_write(&le
->mutex
);
374 * leb_write_trylock - try to lock logical eraseblock for writing.
375 * @ubi: UBI device description object
377 * @lnum: logical eraseblock number
379 * This function locks a logical eraseblock for writing if there is no
380 * contention and does nothing if there is contention. Returns %0 in case of
381 * success, %1 in case of contention, and and a negative error code in case of
384 static int leb_write_trylock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
386 struct ubi_ltree_entry
*le
;
388 le
= ltree_add_entry(ubi
, vol_id
, lnum
);
391 if (down_write_trylock(&le
->mutex
))
394 /* Contention, cancel */
395 spin_lock(&ubi
->ltree_lock
);
397 ubi_assert(le
->users
>= 0);
398 if (le
->users
== 0) {
399 rb_erase(&le
->rb
, &ubi
->ltree
);
402 spin_unlock(&ubi
->ltree_lock
);
408 * leb_write_unlock - unlock logical eraseblock.
409 * @ubi: UBI device description object
411 * @lnum: logical eraseblock number
413 static void leb_write_unlock(struct ubi_device
*ubi
, int vol_id
, int lnum
)
415 struct ubi_ltree_entry
*le
;
417 spin_lock(&ubi
->ltree_lock
);
418 le
= ltree_lookup(ubi
, vol_id
, lnum
);
420 ubi_assert(le
->users
>= 0);
421 up_write(&le
->mutex
);
422 if (le
->users
== 0) {
423 rb_erase(&le
->rb
, &ubi
->ltree
);
426 spin_unlock(&ubi
->ltree_lock
);
430 * ubi_eba_is_mapped - check if a LEB is mapped.
431 * @vol: volume description object
432 * @lnum: logical eraseblock number
434 * This function returns true if the LEB is mapped, false otherwise.
436 bool ubi_eba_is_mapped(struct ubi_volume
*vol
, int lnum
)
438 return vol
->eba_tbl
->entries
[lnum
].pnum
>= 0;
442 * ubi_eba_unmap_leb - un-map logical eraseblock.
443 * @ubi: UBI device description object
444 * @vol: volume description object
445 * @lnum: logical eraseblock number
447 * This function un-maps logical eraseblock @lnum and schedules corresponding
448 * physical eraseblock for erasure. Returns zero in case of success and a
449 * negative error code in case of failure.
451 int ubi_eba_unmap_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
454 int err
, pnum
, vol_id
= vol
->vol_id
;
459 err
= leb_write_lock(ubi
, vol_id
, lnum
);
463 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
465 /* This logical eraseblock is already unmapped */
468 dbg_eba("erase LEB %d:%d, PEB %d", vol_id
, lnum
, pnum
);
470 down_read(&ubi
->fm_eba_sem
);
471 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
472 up_read(&ubi
->fm_eba_sem
);
473 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 0);
476 leb_write_unlock(ubi
, vol_id
, lnum
);
480 #ifdef CONFIG_MTD_UBI_FASTMAP
482 * check_mapping - check and fixup a mapping
483 * @ubi: UBI device description object
484 * @vol: volume description object
485 * @lnum: logical eraseblock number
486 * @pnum: physical eraseblock number
488 * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
489 * operations, if such an operation is interrupted the mapping still looks
490 * good, but upon first read an ECC is reported to the upper layer.
491 * Normaly during the full-scan at attach time this is fixed, for Fastmap
492 * we have to deal with it while reading.
493 * If the PEB behind a LEB shows this symthom we change the mapping to
494 * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
496 * Returns 0 on success, negative error code in case of failure.
498 static int check_mapping(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
502 struct ubi_vid_io_buf
*vidb
;
503 struct ubi_vid_hdr
*vid_hdr
;
505 if (!ubi
->fast_attach
)
508 if (!vol
->checkmap
|| test_bit(lnum
, vol
->checkmap
))
511 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
515 err
= ubi_io_read_vid_hdr(ubi
, *pnum
, vidb
, 0);
516 if (err
> 0 && err
!= UBI_IO_BITFLIPS
) {
521 case UBI_IO_FF_BITFLIPS
:
523 case UBI_IO_BAD_HDR_EBADMSG
:
529 if (err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== UBI_IO_FF_BITFLIPS
)
532 down_read(&ubi
->fm_eba_sem
);
533 vol
->eba_tbl
->entries
[lnum
].pnum
= UBI_LEB_UNMAPPED
;
534 up_read(&ubi
->fm_eba_sem
);
535 ubi_wl_put_peb(ubi
, vol
->vol_id
, lnum
, *pnum
, torture
);
537 *pnum
= UBI_LEB_UNMAPPED
;
538 } else if (err
< 0) {
539 ubi_err(ubi
, "unable to read VID header back from PEB %i: %i",
544 int found_vol_id
, found_lnum
;
546 ubi_assert(err
== 0 || err
== UBI_IO_BITFLIPS
);
548 vid_hdr
= ubi_get_vid_hdr(vidb
);
549 found_vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
550 found_lnum
= be32_to_cpu(vid_hdr
->lnum
);
552 if (found_lnum
!= lnum
|| found_vol_id
!= vol
->vol_id
) {
553 ubi_err(ubi
, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
554 *pnum
, found_vol_id
, found_lnum
, vol
->vol_id
, lnum
);
561 set_bit(lnum
, vol
->checkmap
);
565 ubi_free_vid_buf(vidb
);
570 static int check_mapping(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
578 * ubi_eba_read_leb - read data.
579 * @ubi: UBI device description object
580 * @vol: volume description object
581 * @lnum: logical eraseblock number
582 * @buf: buffer to store the read data
583 * @offset: offset from where to read
584 * @len: how many bytes to read
585 * @check: data CRC check flag
587 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
588 * bytes. The @check flag only makes sense for static volumes and forces
589 * eraseblock data CRC checking.
591 * In case of success this function returns zero. In case of a static volume,
592 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
593 * returned for any volume type if an ECC error was detected by the MTD device
594 * driver. Other negative error cored may be returned in case of other errors.
596 int ubi_eba_read_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
597 void *buf
, int offset
, int len
, int check
)
599 int err
, pnum
, scrub
= 0, vol_id
= vol
->vol_id
;
600 struct ubi_vid_io_buf
*vidb
;
601 struct ubi_vid_hdr
*vid_hdr
;
604 err
= leb_read_lock(ubi
, vol_id
, lnum
);
608 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
610 err
= check_mapping(ubi
, vol
, lnum
, &pnum
);
615 if (pnum
== UBI_LEB_UNMAPPED
) {
617 * The logical eraseblock is not mapped, fill the whole buffer
618 * with 0xFF bytes. The exception is static volumes for which
619 * it is an error to read unmapped logical eraseblocks.
621 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
622 len
, offset
, vol_id
, lnum
);
623 leb_read_unlock(ubi
, vol_id
, lnum
);
624 ubi_assert(vol
->vol_type
!= UBI_STATIC_VOLUME
);
625 memset(buf
, 0xFF, len
);
629 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
630 len
, offset
, vol_id
, lnum
, pnum
);
632 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
637 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
643 vid_hdr
= ubi_get_vid_hdr(vidb
);
645 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
646 if (err
&& err
!= UBI_IO_BITFLIPS
) {
649 * The header is either absent or corrupted.
650 * The former case means there is a bug -
651 * switch to read-only mode just in case.
652 * The latter case means a real corruption - we
653 * may try to recover data. FIXME: but this is
656 if (err
== UBI_IO_BAD_HDR_EBADMSG
||
657 err
== UBI_IO_BAD_HDR
) {
658 ubi_warn(ubi
, "corrupted VID header at PEB %d, LEB %d:%d",
663 * Ending up here in the non-Fastmap case
664 * is a clear bug as the VID header had to
665 * be present at scan time to have it referenced.
666 * With fastmap the story is more complicated.
667 * Fastmap has the mapping info without the need
668 * of a full scan. So the LEB could have been
669 * unmapped, Fastmap cannot know this and keeps
670 * the LEB referenced.
671 * This is valid and works as the layer above UBI
672 * has to do bookkeeping about used/referenced
675 if (ubi
->fast_attach
) {
684 } else if (err
== UBI_IO_BITFLIPS
)
687 ubi_assert(lnum
< be32_to_cpu(vid_hdr
->used_ebs
));
688 ubi_assert(len
== be32_to_cpu(vid_hdr
->data_size
));
690 crc
= be32_to_cpu(vid_hdr
->data_crc
);
691 ubi_free_vid_buf(vidb
);
694 err
= ubi_io_read_data(ubi
, buf
, pnum
, offset
, len
);
696 if (err
== UBI_IO_BITFLIPS
)
698 else if (mtd_is_eccerr(err
)) {
699 if (vol
->vol_type
== UBI_DYNAMIC_VOLUME
)
703 ubi_msg(ubi
, "force data checking");
712 uint32_t crc1
= crc32(UBI_CRC32_INIT
, buf
, len
);
714 ubi_warn(ubi
, "CRC error: calculated %#08x, must be %#08x",
722 err
= ubi_wl_scrub_peb(ubi
, pnum
);
724 leb_read_unlock(ubi
, vol_id
, lnum
);
728 ubi_free_vid_buf(vidb
);
730 leb_read_unlock(ubi
, vol_id
, lnum
);
735 * ubi_eba_read_leb_sg - read data into a scatter gather list.
736 * @ubi: UBI device description object
737 * @vol: volume description object
738 * @lnum: logical eraseblock number
739 * @sgl: UBI scatter gather list to store the read data
740 * @offset: offset from where to read
741 * @len: how many bytes to read
742 * @check: data CRC check flag
744 * This function works exactly like ubi_eba_read_leb(). But instead of
745 * storing the read data into a buffer it writes to an UBI scatter gather
748 int ubi_eba_read_leb_sg(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
749 struct ubi_sgl
*sgl
, int lnum
, int offset
, int len
,
754 struct scatterlist
*sg
;
757 ubi_assert(sgl
->list_pos
< UBI_MAX_SG_COUNT
);
758 sg
= &sgl
->sg
[sgl
->list_pos
];
759 if (len
< sg
->length
- sgl
->page_pos
)
762 to_read
= sg
->length
- sgl
->page_pos
;
764 ret
= ubi_eba_read_leb(ubi
, vol
, lnum
,
765 sg_virt(sg
) + sgl
->page_pos
, offset
,
773 sgl
->page_pos
+= to_read
;
774 if (sgl
->page_pos
== sg
->length
) {
790 * try_recover_peb - try to recover from write failure.
791 * @vol: volume description object
792 * @pnum: the physical eraseblock to recover
793 * @lnum: logical eraseblock number
794 * @buf: data which was not written because of the write failure
795 * @offset: offset of the failed write
796 * @len: how many bytes should have been written
798 * @retry: whether the caller should retry in case of failure
800 * This function is called in case of a write failure and moves all good data
801 * from the potentially bad physical eraseblock to a good physical eraseblock.
802 * This function also writes the data which was not written due to the failure.
803 * Returns 0 in case of success, and a negative error code in case of failure.
804 * In case of failure, the %retry parameter is set to false if this is a fatal
805 * error (retrying won't help), and true otherwise.
807 static int try_recover_peb(struct ubi_volume
*vol
, int pnum
, int lnum
,
808 const void *buf
, int offset
, int len
,
809 struct ubi_vid_io_buf
*vidb
, bool *retry
)
811 struct ubi_device
*ubi
= vol
->ubi
;
812 struct ubi_vid_hdr
*vid_hdr
;
813 int new_pnum
, err
, vol_id
= vol
->vol_id
, data_size
;
818 new_pnum
= ubi_wl_get_peb(ubi
);
824 ubi_msg(ubi
, "recover PEB %d, move data to PEB %d",
827 err
= ubi_io_read_vid_hdr(ubi
, pnum
, vidb
, 1);
828 if (err
&& err
!= UBI_IO_BITFLIPS
) {
834 vid_hdr
= ubi_get_vid_hdr(vidb
);
835 ubi_assert(vid_hdr
->vol_type
== UBI_VID_DYNAMIC
);
837 mutex_lock(&ubi
->buf_mutex
);
838 memset(ubi
->peb_buf
+ offset
, 0xFF, len
);
840 /* Read everything before the area where the write failure happened */
842 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, pnum
, 0, offset
);
843 if (err
&& err
!= UBI_IO_BITFLIPS
)
849 memcpy(ubi
->peb_buf
+ offset
, buf
, len
);
851 data_size
= offset
+ len
;
852 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
853 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
854 vid_hdr
->copy_flag
= 1;
855 vid_hdr
->data_size
= cpu_to_be32(data_size
);
856 vid_hdr
->data_crc
= cpu_to_be32(crc
);
857 err
= ubi_io_write_vid_hdr(ubi
, new_pnum
, vidb
);
861 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, new_pnum
, 0, data_size
);
864 mutex_unlock(&ubi
->buf_mutex
);
867 vol
->eba_tbl
->entries
[lnum
].pnum
= new_pnum
;
870 up_read(&ubi
->fm_eba_sem
);
873 ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
874 ubi_msg(ubi
, "data was successfully recovered");
875 } else if (new_pnum
>= 0) {
877 * Bad luck? This physical eraseblock is bad too? Crud. Let's
878 * try to get another one.
880 ubi_wl_put_peb(ubi
, vol_id
, lnum
, new_pnum
, 1);
881 ubi_warn(ubi
, "failed to write to PEB %d", new_pnum
);
888 * recover_peb - recover from write failure.
889 * @ubi: UBI device description object
890 * @pnum: the physical eraseblock to recover
892 * @lnum: logical eraseblock number
893 * @buf: data which was not written because of the write failure
894 * @offset: offset of the failed write
895 * @len: how many bytes should have been written
897 * This function is called in case of a write failure and moves all good data
898 * from the potentially bad physical eraseblock to a good physical eraseblock.
899 * This function also writes the data which was not written due to the failure.
900 * Returns 0 in case of success, and a negative error code in case of failure.
901 * This function tries %UBI_IO_RETRIES before giving up.
903 static int recover_peb(struct ubi_device
*ubi
, int pnum
, int vol_id
, int lnum
,
904 const void *buf
, int offset
, int len
)
906 int err
, idx
= vol_id2idx(ubi
, vol_id
), tries
;
907 struct ubi_volume
*vol
= ubi
->volumes
[idx
];
908 struct ubi_vid_io_buf
*vidb
;
910 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
914 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
917 err
= try_recover_peb(vol
, pnum
, lnum
, buf
, offset
, len
, vidb
,
922 ubi_msg(ubi
, "try again");
925 ubi_free_vid_buf(vidb
);
931 * try_write_vid_and_data - try to write VID header and data to a new PEB.
932 * @vol: volume description object
933 * @lnum: logical eraseblock number
934 * @vidb: the VID buffer to write
935 * @buf: buffer containing the data
936 * @offset: where to start writing data
937 * @len: how many bytes should be written
939 * This function tries to write VID header and data belonging to logical
940 * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
941 * in case of success and a negative error code in case of failure.
942 * In case of error, it is possible that something was still written to the
943 * flash media, but may be some garbage.
945 static int try_write_vid_and_data(struct ubi_volume
*vol
, int lnum
,
946 struct ubi_vid_io_buf
*vidb
, const void *buf
,
949 struct ubi_device
*ubi
= vol
->ubi
;
950 int pnum
, opnum
, err
, vol_id
= vol
->vol_id
;
952 pnum
= ubi_wl_get_peb(ubi
);
958 opnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
960 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
961 len
, offset
, vol_id
, lnum
, pnum
);
963 err
= ubi_io_write_vid_hdr(ubi
, pnum
, vidb
);
965 ubi_warn(ubi
, "failed to write VID header to LEB %d:%d, PEB %d",
971 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
974 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
975 len
, offset
, vol_id
, lnum
, pnum
);
980 vol
->eba_tbl
->entries
[lnum
].pnum
= pnum
;
983 up_read(&ubi
->fm_eba_sem
);
985 if (err
&& pnum
>= 0)
986 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, pnum
, 1);
987 else if (!err
&& opnum
>= 0)
988 err
= ubi_wl_put_peb(ubi
, vol_id
, lnum
, opnum
, 0);
994 * ubi_eba_write_leb - write data to dynamic volume.
995 * @ubi: UBI device description object
996 * @vol: volume description object
997 * @lnum: logical eraseblock number
998 * @buf: the data to write
999 * @offset: offset within the logical eraseblock where to write
1000 * @len: how many bytes to write
1002 * This function writes data to logical eraseblock @lnum of a dynamic volume
1003 * @vol. Returns zero in case of success and a negative error code in case
1004 * of failure. In case of error, it is possible that something was still
1005 * written to the flash media, but may be some garbage.
1006 * This function retries %UBI_IO_RETRIES times before giving up.
1008 int ubi_eba_write_leb(struct ubi_device
*ubi
, struct ubi_volume
*vol
, int lnum
,
1009 const void *buf
, int offset
, int len
)
1011 int err
, pnum
, tries
, vol_id
= vol
->vol_id
;
1012 struct ubi_vid_io_buf
*vidb
;
1013 struct ubi_vid_hdr
*vid_hdr
;
1018 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1022 pnum
= vol
->eba_tbl
->entries
[lnum
].pnum
;
1024 err
= check_mapping(ubi
, vol
, lnum
, &pnum
);
1030 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
1031 len
, offset
, vol_id
, lnum
, pnum
);
1033 err
= ubi_io_write_data(ubi
, buf
, pnum
, offset
, len
);
1035 ubi_warn(ubi
, "failed to write data to PEB %d", pnum
);
1036 if (err
== -EIO
&& ubi
->bad_allowed
)
1037 err
= recover_peb(ubi
, pnum
, vol_id
, lnum
, buf
,
1045 * The logical eraseblock is not mapped. We have to get a free physical
1046 * eraseblock and write the volume identifier header there first.
1048 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1050 leb_write_unlock(ubi
, vol_id
, lnum
);
1054 vid_hdr
= ubi_get_vid_hdr(vidb
);
1056 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1057 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1058 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1059 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1060 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1061 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1063 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1064 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, offset
, len
);
1065 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1069 * Fortunately, this is the first write operation to this
1070 * physical eraseblock, so just put it and request a new one.
1071 * We assume that if this physical eraseblock went bad, the
1072 * erase code will handle that.
1074 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1075 ubi_msg(ubi
, "try another PEB");
1078 ubi_free_vid_buf(vidb
);
1084 leb_write_unlock(ubi
, vol_id
, lnum
);
1090 * ubi_eba_write_leb_st - write data to static volume.
1091 * @ubi: UBI device description object
1092 * @vol: volume description object
1093 * @lnum: logical eraseblock number
1094 * @buf: data to write
1095 * @len: how many bytes to write
1096 * @used_ebs: how many logical eraseblocks will this volume contain
1098 * This function writes data to logical eraseblock @lnum of static volume
1099 * @vol. The @used_ebs argument should contain total number of logical
1100 * eraseblock in this static volume.
1102 * When writing to the last logical eraseblock, the @len argument doesn't have
1103 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1104 * to the real data size, although the @buf buffer has to contain the
1105 * alignment. In all other cases, @len has to be aligned.
1107 * It is prohibited to write more than once to logical eraseblocks of static
1108 * volumes. This function returns zero in case of success and a negative error
1109 * code in case of failure.
1111 int ubi_eba_write_leb_st(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1112 int lnum
, const void *buf
, int len
, int used_ebs
)
1114 int err
, tries
, data_size
= len
, vol_id
= vol
->vol_id
;
1115 struct ubi_vid_io_buf
*vidb
;
1116 struct ubi_vid_hdr
*vid_hdr
;
1122 if (lnum
== used_ebs
- 1)
1123 /* If this is the last LEB @len may be unaligned */
1124 len
= ALIGN(data_size
, ubi
->min_io_size
);
1126 ubi_assert(!(len
& (ubi
->min_io_size
- 1)));
1128 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1132 vid_hdr
= ubi_get_vid_hdr(vidb
);
1134 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1138 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1139 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1140 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1141 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1142 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1144 crc
= crc32(UBI_CRC32_INIT
, buf
, data_size
);
1145 vid_hdr
->vol_type
= UBI_VID_STATIC
;
1146 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1147 vid_hdr
->used_ebs
= cpu_to_be32(used_ebs
);
1148 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1150 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
< 0);
1152 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1153 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1154 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1157 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1158 ubi_msg(ubi
, "try another PEB");
1164 leb_write_unlock(ubi
, vol_id
, lnum
);
1167 ubi_free_vid_buf(vidb
);
1173 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1174 * @ubi: UBI device description object
1175 * @vol: volume description object
1176 * @lnum: logical eraseblock number
1177 * @buf: data to write
1178 * @len: how many bytes to write
1180 * This function changes the contents of a logical eraseblock atomically. @buf
1181 * has to contain new logical eraseblock data, and @len - the length of the
1182 * data, which has to be aligned. This function guarantees that in case of an
1183 * unclean reboot the old contents is preserved. Returns zero in case of
1184 * success and a negative error code in case of failure.
1186 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1187 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1189 int ubi_eba_atomic_leb_change(struct ubi_device
*ubi
, struct ubi_volume
*vol
,
1190 int lnum
, const void *buf
, int len
)
1192 int err
, tries
, vol_id
= vol
->vol_id
;
1193 struct ubi_vid_io_buf
*vidb
;
1194 struct ubi_vid_hdr
*vid_hdr
;
1202 * Special case when data length is zero. In this case the LEB
1203 * has to be unmapped and mapped somewhere else.
1205 err
= ubi_eba_unmap_leb(ubi
, vol
, lnum
);
1208 return ubi_eba_write_leb(ubi
, vol
, lnum
, NULL
, 0, 0);
1211 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1215 vid_hdr
= ubi_get_vid_hdr(vidb
);
1217 mutex_lock(&ubi
->alc_mutex
);
1218 err
= leb_write_lock(ubi
, vol_id
, lnum
);
1222 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1223 vid_hdr
->vol_id
= cpu_to_be32(vol_id
);
1224 vid_hdr
->lnum
= cpu_to_be32(lnum
);
1225 vid_hdr
->compat
= ubi_get_compat(ubi
, vol_id
);
1226 vid_hdr
->data_pad
= cpu_to_be32(vol
->data_pad
);
1228 crc
= crc32(UBI_CRC32_INIT
, buf
, len
);
1229 vid_hdr
->vol_type
= UBI_VID_DYNAMIC
;
1230 vid_hdr
->data_size
= cpu_to_be32(len
);
1231 vid_hdr
->copy_flag
= 1;
1232 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1234 dbg_eba("change LEB %d:%d", vol_id
, lnum
);
1236 for (tries
= 0; tries
<= UBI_IO_RETRIES
; tries
++) {
1237 err
= try_write_vid_and_data(vol
, lnum
, vidb
, buf
, 0, len
);
1238 if (err
!= -EIO
|| !ubi
->bad_allowed
)
1241 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1242 ubi_msg(ubi
, "try another PEB");
1246 * This flash device does not admit of bad eraseblocks or
1247 * something nasty and unexpected happened. Switch to read-only
1248 * mode just in case.
1253 leb_write_unlock(ubi
, vol_id
, lnum
);
1256 mutex_unlock(&ubi
->alc_mutex
);
1257 ubi_free_vid_buf(vidb
);
1262 * is_error_sane - check whether a read error is sane.
1263 * @err: code of the error happened during reading
1265 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1266 * cannot read data from the target PEB (an error @err happened). If the error
1267 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1268 * fatal and UBI will be switched to R/O mode later.
1270 * The idea is that we try not to switch to R/O mode if the read error is
1271 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1272 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1273 * mode, simply because we do not know what happened at the MTD level, and we
1274 * cannot handle this. E.g., the underlying driver may have become crazy, and
1275 * it is safer to switch to R/O mode to preserve the data.
1277 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1278 * which we have just written.
1280 static int is_error_sane(int err
)
1282 if (err
== -EIO
|| err
== -ENOMEM
|| err
== UBI_IO_BAD_HDR
||
1283 err
== UBI_IO_BAD_HDR_EBADMSG
|| err
== -ETIMEDOUT
)
1289 * ubi_eba_copy_leb - copy logical eraseblock.
1290 * @ubi: UBI device description object
1291 * @from: physical eraseblock number from where to copy
1292 * @to: physical eraseblock number where to copy
1293 * @vidb: data structure from where the VID header is derived
1295 * This function copies logical eraseblock from physical eraseblock @from to
1296 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1297 * function. Returns:
1298 * o %0 in case of success;
1299 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1300 * o a negative error code in case of failure.
1302 int ubi_eba_copy_leb(struct ubi_device
*ubi
, int from
, int to
,
1303 struct ubi_vid_io_buf
*vidb
)
1305 int err
, vol_id
, lnum
, data_size
, aldata_size
, idx
;
1306 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1307 struct ubi_volume
*vol
;
1310 ubi_assert(rwsem_is_locked(&ubi
->fm_eba_sem
));
1312 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
1313 lnum
= be32_to_cpu(vid_hdr
->lnum
);
1315 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id
, lnum
, from
, to
);
1317 if (vid_hdr
->vol_type
== UBI_VID_STATIC
) {
1318 data_size
= be32_to_cpu(vid_hdr
->data_size
);
1319 aldata_size
= ALIGN(data_size
, ubi
->min_io_size
);
1321 data_size
= aldata_size
=
1322 ubi
->leb_size
- be32_to_cpu(vid_hdr
->data_pad
);
1324 idx
= vol_id2idx(ubi
, vol_id
);
1325 spin_lock(&ubi
->volumes_lock
);
1327 * Note, we may race with volume deletion, which means that the volume
1328 * this logical eraseblock belongs to might be being deleted. Since the
1329 * volume deletion un-maps all the volume's logical eraseblocks, it will
1330 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1332 vol
= ubi
->volumes
[idx
];
1333 spin_unlock(&ubi
->volumes_lock
);
1335 /* No need to do further work, cancel */
1336 dbg_wl("volume %d is being removed, cancel", vol_id
);
1337 return MOVE_CANCEL_RACE
;
1341 * We do not want anybody to write to this logical eraseblock while we
1342 * are moving it, so lock it.
1344 * Note, we are using non-waiting locking here, because we cannot sleep
1345 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1346 * unmapping the LEB which is mapped to the PEB we are going to move
1347 * (@from). This task locks the LEB and goes sleep in the
1348 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1349 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1350 * LEB is already locked, we just do not move it and return
1351 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1352 * we do not know the reasons of the contention - it may be just a
1353 * normal I/O on this LEB, so we want to re-try.
1355 err
= leb_write_trylock(ubi
, vol_id
, lnum
);
1357 dbg_wl("contention on LEB %d:%d, cancel", vol_id
, lnum
);
1362 * The LEB might have been put meanwhile, and the task which put it is
1363 * probably waiting on @ubi->move_mutex. No need to continue the work,
1366 if (vol
->eba_tbl
->entries
[lnum
].pnum
!= from
) {
1367 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1368 vol_id
, lnum
, from
, vol
->eba_tbl
->entries
[lnum
].pnum
);
1369 err
= MOVE_CANCEL_RACE
;
1370 goto out_unlock_leb
;
1374 * OK, now the LEB is locked and we can safely start moving it. Since
1375 * this function utilizes the @ubi->peb_buf buffer which is shared
1376 * with some other functions - we lock the buffer by taking the
1379 mutex_lock(&ubi
->buf_mutex
);
1380 dbg_wl("read %d bytes of data", aldata_size
);
1381 err
= ubi_io_read_data(ubi
, ubi
->peb_buf
, from
, 0, aldata_size
);
1382 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1383 ubi_warn(ubi
, "error %d while reading data from PEB %d",
1385 err
= MOVE_SOURCE_RD_ERR
;
1386 goto out_unlock_buf
;
1390 * Now we have got to calculate how much data we have to copy. In
1391 * case of a static volume it is fairly easy - the VID header contains
1392 * the data size. In case of a dynamic volume it is more difficult - we
1393 * have to read the contents, cut 0xFF bytes from the end and copy only
1394 * the first part. We must do this to avoid writing 0xFF bytes as it
1395 * may have some side-effects. And not only this. It is important not
1396 * to include those 0xFFs to CRC because later the they may be filled
1399 if (vid_hdr
->vol_type
== UBI_VID_DYNAMIC
)
1400 aldata_size
= data_size
=
1401 ubi_calc_data_len(ubi
, ubi
->peb_buf
, data_size
);
1404 crc
= crc32(UBI_CRC32_INIT
, ubi
->peb_buf
, data_size
);
1408 * It may turn out to be that the whole @from physical eraseblock
1409 * contains only 0xFF bytes. Then we have to only write the VID header
1410 * and do not write any data. This also means we should not set
1411 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1413 if (data_size
> 0) {
1414 vid_hdr
->copy_flag
= 1;
1415 vid_hdr
->data_size
= cpu_to_be32(data_size
);
1416 vid_hdr
->data_crc
= cpu_to_be32(crc
);
1418 vid_hdr
->sqnum
= cpu_to_be64(ubi_next_sqnum(ubi
));
1420 err
= ubi_io_write_vid_hdr(ubi
, to
, vidb
);
1423 err
= MOVE_TARGET_WR_ERR
;
1424 goto out_unlock_buf
;
1429 /* Read the VID header back and check if it was written correctly */
1430 err
= ubi_io_read_vid_hdr(ubi
, to
, vidb
, 1);
1432 if (err
!= UBI_IO_BITFLIPS
) {
1433 ubi_warn(ubi
, "error %d while reading VID header back from PEB %d",
1435 if (is_error_sane(err
))
1436 err
= MOVE_TARGET_RD_ERR
;
1438 err
= MOVE_TARGET_BITFLIPS
;
1439 goto out_unlock_buf
;
1442 if (data_size
> 0) {
1443 err
= ubi_io_write_data(ubi
, ubi
->peb_buf
, to
, 0, aldata_size
);
1446 err
= MOVE_TARGET_WR_ERR
;
1447 goto out_unlock_buf
;
1453 ubi_assert(vol
->eba_tbl
->entries
[lnum
].pnum
== from
);
1454 vol
->eba_tbl
->entries
[lnum
].pnum
= to
;
1457 mutex_unlock(&ubi
->buf_mutex
);
1459 leb_write_unlock(ubi
, vol_id
, lnum
);
1464 * print_rsvd_warning - warn about not having enough reserved PEBs.
1465 * @ubi: UBI device description object
1466 * @ai: UBI attach info object
1468 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1469 * cannot reserve enough PEBs for bad block handling. This function makes a
1470 * decision whether we have to print a warning or not. The algorithm is as
1472 * o if this is a new UBI image, then just print the warning
1473 * o if this is an UBI image which has already been used for some time, print
1474 * a warning only if we can reserve less than 10% of the expected amount of
1477 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1478 * of PEBs becomes smaller, which is normal and we do not want to scare users
1479 * with a warning every time they attach the MTD device. This was an issue
1480 * reported by real users.
1482 static void print_rsvd_warning(struct ubi_device
*ubi
,
1483 struct ubi_attach_info
*ai
)
1486 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1487 * large number to distinguish between newly flashed and used images.
1489 if (ai
->max_sqnum
> (1 << 18)) {
1490 int min
= ubi
->beb_rsvd_level
/ 10;
1494 if (ubi
->beb_rsvd_pebs
> min
)
1498 ubi_warn(ubi
, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1499 ubi
->beb_rsvd_pebs
, ubi
->beb_rsvd_level
);
1500 if (ubi
->corr_peb_count
)
1501 ubi_warn(ubi
, "%d PEBs are corrupted and not used",
1502 ubi
->corr_peb_count
);
1506 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1507 * @ubi: UBI device description object
1508 * @ai_fastmap: UBI attach info object created by fastmap
1509 * @ai_scan: UBI attach info object created by scanning
1511 * Returns < 0 in case of an internal error, 0 otherwise.
1512 * If a bad EBA table entry was found it will be printed out and
1513 * ubi_assert() triggers.
1515 int self_check_eba(struct ubi_device
*ubi
, struct ubi_attach_info
*ai_fastmap
,
1516 struct ubi_attach_info
*ai_scan
)
1518 int i
, j
, num_volumes
, ret
= 0;
1519 int **scan_eba
, **fm_eba
;
1520 struct ubi_ainf_volume
*av
;
1521 struct ubi_volume
*vol
;
1522 struct ubi_ainf_peb
*aeb
;
1525 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1527 scan_eba
= kmalloc_array(num_volumes
, sizeof(*scan_eba
), GFP_KERNEL
);
1531 fm_eba
= kmalloc_array(num_volumes
, sizeof(*fm_eba
), GFP_KERNEL
);
1537 for (i
= 0; i
< num_volumes
; i
++) {
1538 vol
= ubi
->volumes
[i
];
1542 scan_eba
[i
] = kmalloc_array(vol
->reserved_pebs
,
1550 fm_eba
[i
] = kmalloc_array(vol
->reserved_pebs
,
1558 for (j
= 0; j
< vol
->reserved_pebs
; j
++)
1559 scan_eba
[i
][j
] = fm_eba
[i
][j
] = UBI_LEB_UNMAPPED
;
1561 av
= ubi_find_av(ai_scan
, idx2vol_id(ubi
, i
));
1565 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1566 scan_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1568 av
= ubi_find_av(ai_fastmap
, idx2vol_id(ubi
, i
));
1572 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
)
1573 fm_eba
[i
][aeb
->lnum
] = aeb
->pnum
;
1575 for (j
= 0; j
< vol
->reserved_pebs
; j
++) {
1576 if (scan_eba
[i
][j
] != fm_eba
[i
][j
]) {
1577 if (scan_eba
[i
][j
] == UBI_LEB_UNMAPPED
||
1578 fm_eba
[i
][j
] == UBI_LEB_UNMAPPED
)
1581 ubi_err(ubi
, "LEB:%i:%i is PEB:%i instead of %i!",
1582 vol
->vol_id
, j
, fm_eba
[i
][j
],
1590 for (i
= 0; i
< num_volumes
; i
++) {
1591 if (!ubi
->volumes
[i
])
1604 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1605 * @ubi: UBI device description object
1606 * @ai: attaching information
1608 * This function returns zero in case of success and a negative error code in
1611 int ubi_eba_init(struct ubi_device
*ubi
, struct ubi_attach_info
*ai
)
1613 int i
, err
, num_volumes
;
1614 struct ubi_ainf_volume
*av
;
1615 struct ubi_volume
*vol
;
1616 struct ubi_ainf_peb
*aeb
;
1619 dbg_eba("initialize EBA sub-system");
1621 spin_lock_init(&ubi
->ltree_lock
);
1622 mutex_init(&ubi
->alc_mutex
);
1623 ubi
->ltree
= RB_ROOT
;
1625 ubi
->global_sqnum
= ai
->max_sqnum
+ 1;
1626 num_volumes
= ubi
->vtbl_slots
+ UBI_INT_VOL_COUNT
;
1628 for (i
= 0; i
< num_volumes
; i
++) {
1629 struct ubi_eba_table
*tbl
;
1631 vol
= ubi
->volumes
[i
];
1637 tbl
= ubi_eba_create_table(vol
, vol
->reserved_pebs
);
1643 ubi_eba_replace_table(vol
, tbl
);
1645 av
= ubi_find_av(ai
, idx2vol_id(ubi
, i
));
1649 ubi_rb_for_each_entry(rb
, aeb
, &av
->root
, u
.rb
) {
1650 if (aeb
->lnum
>= vol
->reserved_pebs
) {
1652 * This may happen in case of an unclean reboot
1655 ubi_move_aeb_to_list(av
, aeb
, &ai
->erase
);
1657 struct ubi_eba_entry
*entry
;
1659 entry
= &vol
->eba_tbl
->entries
[aeb
->lnum
];
1660 entry
->pnum
= aeb
->pnum
;
1665 if (ubi
->avail_pebs
< EBA_RESERVED_PEBS
) {
1666 ubi_err(ubi
, "no enough physical eraseblocks (%d, need %d)",
1667 ubi
->avail_pebs
, EBA_RESERVED_PEBS
);
1668 if (ubi
->corr_peb_count
)
1669 ubi_err(ubi
, "%d PEBs are corrupted and not used",
1670 ubi
->corr_peb_count
);
1674 ubi
->avail_pebs
-= EBA_RESERVED_PEBS
;
1675 ubi
->rsvd_pebs
+= EBA_RESERVED_PEBS
;
1677 if (ubi
->bad_allowed
) {
1678 ubi_calculate_reserved(ubi
);
1680 if (ubi
->avail_pebs
< ubi
->beb_rsvd_level
) {
1681 /* No enough free physical eraseblocks */
1682 ubi
->beb_rsvd_pebs
= ubi
->avail_pebs
;
1683 print_rsvd_warning(ubi
, ai
);
1685 ubi
->beb_rsvd_pebs
= ubi
->beb_rsvd_level
;
1687 ubi
->avail_pebs
-= ubi
->beb_rsvd_pebs
;
1688 ubi
->rsvd_pebs
+= ubi
->beb_rsvd_pebs
;
1691 dbg_eba("EBA sub-system is initialized");
1695 for (i
= 0; i
< num_volumes
; i
++) {
1696 if (!ubi
->volumes
[i
])
1698 ubi_eba_replace_table(ubi
->volumes
[i
], NULL
);