WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / can / xilinx_can.c
blob3f54edee92ebf20bba63342c9c71a372d518cfe5
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
4 * Copyright (C) 2012 - 2014 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
8 * Description:
9 * This driver is developed for Axi CAN IP and for Zynq CANPS Controller.
12 #include <linux/clk.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/can/dev.h>
28 #include <linux/can/error.h>
29 #include <linux/can/led.h>
30 #include <linux/pm_runtime.h>
32 #define DRIVER_NAME "xilinx_can"
34 /* CAN registers set */
35 enum xcan_reg {
36 XCAN_SRR_OFFSET = 0x00, /* Software reset */
37 XCAN_MSR_OFFSET = 0x04, /* Mode select */
38 XCAN_BRPR_OFFSET = 0x08, /* Baud rate prescaler */
39 XCAN_BTR_OFFSET = 0x0C, /* Bit timing */
40 XCAN_ECR_OFFSET = 0x10, /* Error counter */
41 XCAN_ESR_OFFSET = 0x14, /* Error status */
42 XCAN_SR_OFFSET = 0x18, /* Status */
43 XCAN_ISR_OFFSET = 0x1C, /* Interrupt status */
44 XCAN_IER_OFFSET = 0x20, /* Interrupt enable */
45 XCAN_ICR_OFFSET = 0x24, /* Interrupt clear */
47 /* not on CAN FD cores */
48 XCAN_TXFIFO_OFFSET = 0x30, /* TX FIFO base */
49 XCAN_RXFIFO_OFFSET = 0x50, /* RX FIFO base */
50 XCAN_AFR_OFFSET = 0x60, /* Acceptance Filter */
52 /* only on CAN FD cores */
53 XCAN_F_BRPR_OFFSET = 0x088, /* Data Phase Baud Rate
54 * Prescalar
56 XCAN_F_BTR_OFFSET = 0x08C, /* Data Phase Bit Timing */
57 XCAN_TRR_OFFSET = 0x0090, /* TX Buffer Ready Request */
58 XCAN_AFR_EXT_OFFSET = 0x00E0, /* Acceptance Filter */
59 XCAN_FSR_OFFSET = 0x00E8, /* RX FIFO Status */
60 XCAN_TXMSG_BASE_OFFSET = 0x0100, /* TX Message Space */
61 XCAN_RXMSG_BASE_OFFSET = 0x1100, /* RX Message Space */
62 XCAN_RXMSG_2_BASE_OFFSET = 0x2100, /* RX Message Space */
63 XCAN_AFR_2_MASK_OFFSET = 0x0A00, /* Acceptance Filter MASK */
64 XCAN_AFR_2_ID_OFFSET = 0x0A04, /* Acceptance Filter ID */
67 #define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
68 #define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
69 #define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
70 #define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
71 #define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
73 #define XCAN_CANFD_FRAME_SIZE 0x48
74 #define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
75 XCAN_CANFD_FRAME_SIZE * (n))
76 #define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
77 XCAN_CANFD_FRAME_SIZE * (n))
78 #define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
79 XCAN_CANFD_FRAME_SIZE * (n))
81 /* the single TX mailbox used by this driver on CAN FD HW */
82 #define XCAN_TX_MAILBOX_IDX 0
84 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
85 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
86 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
87 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
88 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
89 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
90 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
91 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
92 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
93 #define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
94 #define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
95 #define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
96 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
97 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
98 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
99 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
100 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
101 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
102 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
103 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
104 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
105 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
106 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
107 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
108 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
109 #define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
110 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
111 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
112 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
113 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
114 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
115 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
116 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
117 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
118 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
119 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
120 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
121 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
122 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
123 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
124 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
125 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
126 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
127 #define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
128 #define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
129 #define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
130 #define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
131 #define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
132 #define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
133 #define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
135 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
136 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
137 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
138 #define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
139 #define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
140 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
141 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
142 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
143 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
145 /* CAN frame length constants */
146 #define XCAN_FRAME_MAX_DATA_LEN 8
147 #define XCANFD_DW_BYTES 4
148 #define XCAN_TIMEOUT (1 * HZ)
150 /* TX-FIFO-empty interrupt available */
151 #define XCAN_FLAG_TXFEMP 0x0001
152 /* RX Match Not Finished interrupt available */
153 #define XCAN_FLAG_RXMNF 0x0002
154 /* Extended acceptance filters with control at 0xE0 */
155 #define XCAN_FLAG_EXT_FILTERS 0x0004
156 /* TX mailboxes instead of TX FIFO */
157 #define XCAN_FLAG_TX_MAILBOXES 0x0008
158 /* RX FIFO with each buffer in separate registers at 0x1100
159 * instead of the regular FIFO at 0x50
161 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010
162 #define XCAN_FLAG_CANFD_2 0x0020
164 enum xcan_ip_type {
165 XAXI_CAN = 0,
166 XZYNQ_CANPS,
167 XAXI_CANFD,
168 XAXI_CANFD_2_0,
171 struct xcan_devtype_data {
172 enum xcan_ip_type cantype;
173 unsigned int flags;
174 const struct can_bittiming_const *bittiming_const;
175 const char *bus_clk_name;
176 unsigned int btr_ts2_shift;
177 unsigned int btr_sjw_shift;
181 * struct xcan_priv - This definition define CAN driver instance
182 * @can: CAN private data structure.
183 * @tx_lock: Lock for synchronizing TX interrupt handling
184 * @tx_head: Tx CAN packets ready to send on the queue
185 * @tx_tail: Tx CAN packets successfully sended on the queue
186 * @tx_max: Maximum number packets the driver can send
187 * @napi: NAPI structure
188 * @read_reg: For reading data from CAN registers
189 * @write_reg: For writing data to CAN registers
190 * @dev: Network device data structure
191 * @reg_base: Ioremapped address to registers
192 * @irq_flags: For request_irq()
193 * @bus_clk: Pointer to struct clk
194 * @can_clk: Pointer to struct clk
195 * @devtype: Device type specific constants
197 struct xcan_priv {
198 struct can_priv can;
199 spinlock_t tx_lock; /* Lock for synchronizing TX interrupt handling */
200 unsigned int tx_head;
201 unsigned int tx_tail;
202 unsigned int tx_max;
203 struct napi_struct napi;
204 u32 (*read_reg)(const struct xcan_priv *priv, enum xcan_reg reg);
205 void (*write_reg)(const struct xcan_priv *priv, enum xcan_reg reg,
206 u32 val);
207 struct device *dev;
208 void __iomem *reg_base;
209 unsigned long irq_flags;
210 struct clk *bus_clk;
211 struct clk *can_clk;
212 struct xcan_devtype_data devtype;
215 /* CAN Bittiming constants as per Xilinx CAN specs */
216 static const struct can_bittiming_const xcan_bittiming_const = {
217 .name = DRIVER_NAME,
218 .tseg1_min = 1,
219 .tseg1_max = 16,
220 .tseg2_min = 1,
221 .tseg2_max = 8,
222 .sjw_max = 4,
223 .brp_min = 1,
224 .brp_max = 256,
225 .brp_inc = 1,
228 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
229 static const struct can_bittiming_const xcan_bittiming_const_canfd = {
230 .name = DRIVER_NAME,
231 .tseg1_min = 1,
232 .tseg1_max = 64,
233 .tseg2_min = 1,
234 .tseg2_max = 16,
235 .sjw_max = 16,
236 .brp_min = 1,
237 .brp_max = 256,
238 .brp_inc = 1,
241 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
242 static struct can_bittiming_const xcan_data_bittiming_const_canfd = {
243 .name = DRIVER_NAME,
244 .tseg1_min = 1,
245 .tseg1_max = 16,
246 .tseg2_min = 1,
247 .tseg2_max = 8,
248 .sjw_max = 8,
249 .brp_min = 1,
250 .brp_max = 256,
251 .brp_inc = 1,
254 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
255 static const struct can_bittiming_const xcan_bittiming_const_canfd2 = {
256 .name = DRIVER_NAME,
257 .tseg1_min = 1,
258 .tseg1_max = 256,
259 .tseg2_min = 1,
260 .tseg2_max = 128,
261 .sjw_max = 128,
262 .brp_min = 2,
263 .brp_max = 256,
264 .brp_inc = 1,
267 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
268 static struct can_bittiming_const xcan_data_bittiming_const_canfd2 = {
269 .name = DRIVER_NAME,
270 .tseg1_min = 1,
271 .tseg1_max = 32,
272 .tseg2_min = 1,
273 .tseg2_max = 16,
274 .sjw_max = 16,
275 .brp_min = 2,
276 .brp_max = 256,
277 .brp_inc = 1,
281 * xcan_write_reg_le - Write a value to the device register little endian
282 * @priv: Driver private data structure
283 * @reg: Register offset
284 * @val: Value to write at the Register offset
286 * Write data to the paricular CAN register
288 static void xcan_write_reg_le(const struct xcan_priv *priv, enum xcan_reg reg,
289 u32 val)
291 iowrite32(val, priv->reg_base + reg);
295 * xcan_read_reg_le - Read a value from the device register little endian
296 * @priv: Driver private data structure
297 * @reg: Register offset
299 * Read data from the particular CAN register
300 * Return: value read from the CAN register
302 static u32 xcan_read_reg_le(const struct xcan_priv *priv, enum xcan_reg reg)
304 return ioread32(priv->reg_base + reg);
308 * xcan_write_reg_be - Write a value to the device register big endian
309 * @priv: Driver private data structure
310 * @reg: Register offset
311 * @val: Value to write at the Register offset
313 * Write data to the paricular CAN register
315 static void xcan_write_reg_be(const struct xcan_priv *priv, enum xcan_reg reg,
316 u32 val)
318 iowrite32be(val, priv->reg_base + reg);
322 * xcan_read_reg_be - Read a value from the device register big endian
323 * @priv: Driver private data structure
324 * @reg: Register offset
326 * Read data from the particular CAN register
327 * Return: value read from the CAN register
329 static u32 xcan_read_reg_be(const struct xcan_priv *priv, enum xcan_reg reg)
331 return ioread32be(priv->reg_base + reg);
335 * xcan_rx_int_mask - Get the mask for the receive interrupt
336 * @priv: Driver private data structure
338 * Return: The receive interrupt mask used by the driver on this HW
340 static u32 xcan_rx_int_mask(const struct xcan_priv *priv)
342 /* RXNEMP is better suited for our use case as it cannot be cleared
343 * while the FIFO is non-empty, but CAN FD HW does not have it
345 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
346 return XCAN_IXR_RXOK_MASK;
347 else
348 return XCAN_IXR_RXNEMP_MASK;
352 * set_reset_mode - Resets the CAN device mode
353 * @ndev: Pointer to net_device structure
355 * This is the driver reset mode routine.The driver
356 * enters into configuration mode.
358 * Return: 0 on success and failure value on error
360 static int set_reset_mode(struct net_device *ndev)
362 struct xcan_priv *priv = netdev_priv(ndev);
363 unsigned long timeout;
365 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
367 timeout = jiffies + XCAN_TIMEOUT;
368 while (!(priv->read_reg(priv, XCAN_SR_OFFSET) & XCAN_SR_CONFIG_MASK)) {
369 if (time_after(jiffies, timeout)) {
370 netdev_warn(ndev, "timed out for config mode\n");
371 return -ETIMEDOUT;
373 usleep_range(500, 10000);
376 /* reset clears FIFOs */
377 priv->tx_head = 0;
378 priv->tx_tail = 0;
380 return 0;
384 * xcan_set_bittiming - CAN set bit timing routine
385 * @ndev: Pointer to net_device structure
387 * This is the driver set bittiming routine.
388 * Return: 0 on success and failure value on error
390 static int xcan_set_bittiming(struct net_device *ndev)
392 struct xcan_priv *priv = netdev_priv(ndev);
393 struct can_bittiming *bt = &priv->can.bittiming;
394 struct can_bittiming *dbt = &priv->can.data_bittiming;
395 u32 btr0, btr1;
396 u32 is_config_mode;
398 /* Check whether Xilinx CAN is in configuration mode.
399 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
401 is_config_mode = priv->read_reg(priv, XCAN_SR_OFFSET) &
402 XCAN_SR_CONFIG_MASK;
403 if (!is_config_mode) {
404 netdev_alert(ndev,
405 "BUG! Cannot set bittiming - CAN is not in config mode\n");
406 return -EPERM;
409 /* Setting Baud Rate prescalar value in BRPR Register */
410 btr0 = (bt->brp - 1);
412 /* Setting Time Segment 1 in BTR Register */
413 btr1 = (bt->prop_seg + bt->phase_seg1 - 1);
415 /* Setting Time Segment 2 in BTR Register */
416 btr1 |= (bt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
418 /* Setting Synchronous jump width in BTR Register */
419 btr1 |= (bt->sjw - 1) << priv->devtype.btr_sjw_shift;
421 priv->write_reg(priv, XCAN_BRPR_OFFSET, btr0);
422 priv->write_reg(priv, XCAN_BTR_OFFSET, btr1);
424 if (priv->devtype.cantype == XAXI_CANFD ||
425 priv->devtype.cantype == XAXI_CANFD_2_0) {
426 /* Setting Baud Rate prescalar value in F_BRPR Register */
427 btr0 = dbt->brp - 1;
429 /* Setting Time Segment 1 in BTR Register */
430 btr1 = dbt->prop_seg + dbt->phase_seg1 - 1;
432 /* Setting Time Segment 2 in BTR Register */
433 btr1 |= (dbt->phase_seg2 - 1) << priv->devtype.btr_ts2_shift;
435 /* Setting Synchronous jump width in BTR Register */
436 btr1 |= (dbt->sjw - 1) << priv->devtype.btr_sjw_shift;
438 priv->write_reg(priv, XCAN_F_BRPR_OFFSET, btr0);
439 priv->write_reg(priv, XCAN_F_BTR_OFFSET, btr1);
442 netdev_dbg(ndev, "BRPR=0x%08x, BTR=0x%08x\n",
443 priv->read_reg(priv, XCAN_BRPR_OFFSET),
444 priv->read_reg(priv, XCAN_BTR_OFFSET));
446 return 0;
450 * xcan_chip_start - This the drivers start routine
451 * @ndev: Pointer to net_device structure
453 * This is the drivers start routine.
454 * Based on the State of the CAN device it puts
455 * the CAN device into a proper mode.
457 * Return: 0 on success and failure value on error
459 static int xcan_chip_start(struct net_device *ndev)
461 struct xcan_priv *priv = netdev_priv(ndev);
462 u32 reg_msr;
463 int err;
464 u32 ier;
466 /* Check if it is in reset mode */
467 err = set_reset_mode(ndev);
468 if (err < 0)
469 return err;
471 err = xcan_set_bittiming(ndev);
472 if (err < 0)
473 return err;
475 /* Enable interrupts
477 * We enable the ERROR interrupt even with
478 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
479 * dedicated interrupt for a state change to
480 * ERROR_WARNING/ERROR_PASSIVE.
482 ier = XCAN_IXR_TXOK_MASK | XCAN_IXR_BSOFF_MASK |
483 XCAN_IXR_WKUP_MASK | XCAN_IXR_SLP_MASK |
484 XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
485 XCAN_IXR_ARBLST_MASK | xcan_rx_int_mask(priv);
487 if (priv->devtype.flags & XCAN_FLAG_RXMNF)
488 ier |= XCAN_IXR_RXMNF_MASK;
490 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
492 /* Check whether it is loopback mode or normal mode */
493 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
494 reg_msr = XCAN_MSR_LBACK_MASK;
495 else
496 reg_msr = 0x0;
498 /* enable the first extended filter, if any, as cores with extended
499 * filtering default to non-receipt if all filters are disabled
501 if (priv->devtype.flags & XCAN_FLAG_EXT_FILTERS)
502 priv->write_reg(priv, XCAN_AFR_EXT_OFFSET, 0x00000001);
504 priv->write_reg(priv, XCAN_MSR_OFFSET, reg_msr);
505 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_CEN_MASK);
507 netdev_dbg(ndev, "status:#x%08x\n",
508 priv->read_reg(priv, XCAN_SR_OFFSET));
510 priv->can.state = CAN_STATE_ERROR_ACTIVE;
511 return 0;
515 * xcan_do_set_mode - This sets the mode of the driver
516 * @ndev: Pointer to net_device structure
517 * @mode: Tells the mode of the driver
519 * This check the drivers state and calls the
520 * the corresponding modes to set.
522 * Return: 0 on success and failure value on error
524 static int xcan_do_set_mode(struct net_device *ndev, enum can_mode mode)
526 int ret;
528 switch (mode) {
529 case CAN_MODE_START:
530 ret = xcan_chip_start(ndev);
531 if (ret < 0) {
532 netdev_err(ndev, "xcan_chip_start failed!\n");
533 return ret;
535 netif_wake_queue(ndev);
536 break;
537 default:
538 ret = -EOPNOTSUPP;
539 break;
542 return ret;
546 * xcan_write_frame - Write a frame to HW
547 * @ndev: Pointer to net_device structure
548 * @skb: sk_buff pointer that contains data to be Txed
549 * @frame_offset: Register offset to write the frame to
551 static void xcan_write_frame(struct net_device *ndev, struct sk_buff *skb,
552 int frame_offset)
554 u32 id, dlc, data[2] = {0, 0};
555 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
556 u32 ramoff, dwindex = 0, i;
557 struct xcan_priv *priv = netdev_priv(ndev);
559 /* Watch carefully on the bit sequence */
560 if (cf->can_id & CAN_EFF_FLAG) {
561 /* Extended CAN ID format */
562 id = ((cf->can_id & CAN_EFF_MASK) << XCAN_IDR_ID2_SHIFT) &
563 XCAN_IDR_ID2_MASK;
564 id |= (((cf->can_id & CAN_EFF_MASK) >>
565 (CAN_EFF_ID_BITS - CAN_SFF_ID_BITS)) <<
566 XCAN_IDR_ID1_SHIFT) & XCAN_IDR_ID1_MASK;
568 /* The substibute remote TX request bit should be "1"
569 * for extended frames as in the Xilinx CAN datasheet
571 id |= XCAN_IDR_IDE_MASK | XCAN_IDR_SRR_MASK;
573 if (cf->can_id & CAN_RTR_FLAG)
574 /* Extended frames remote TX request */
575 id |= XCAN_IDR_RTR_MASK;
576 } else {
577 /* Standard CAN ID format */
578 id = ((cf->can_id & CAN_SFF_MASK) << XCAN_IDR_ID1_SHIFT) &
579 XCAN_IDR_ID1_MASK;
581 if (cf->can_id & CAN_RTR_FLAG)
582 /* Standard frames remote TX request */
583 id |= XCAN_IDR_SRR_MASK;
586 dlc = can_fd_len2dlc(cf->len) << XCAN_DLCR_DLC_SHIFT;
587 if (can_is_canfd_skb(skb)) {
588 if (cf->flags & CANFD_BRS)
589 dlc |= XCAN_DLCR_BRS_MASK;
590 dlc |= XCAN_DLCR_EDL_MASK;
593 if (!(priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES) &&
594 (priv->devtype.flags & XCAN_FLAG_TXFEMP))
595 can_put_echo_skb(skb, ndev, priv->tx_head % priv->tx_max);
596 else
597 can_put_echo_skb(skb, ndev, 0);
599 priv->tx_head++;
601 priv->write_reg(priv, XCAN_FRAME_ID_OFFSET(frame_offset), id);
602 /* If the CAN frame is RTR frame this write triggers transmission
603 * (not on CAN FD)
605 priv->write_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_offset), dlc);
606 if (priv->devtype.cantype == XAXI_CANFD ||
607 priv->devtype.cantype == XAXI_CANFD_2_0) {
608 for (i = 0; i < cf->len; i += 4) {
609 ramoff = XCANFD_FRAME_DW_OFFSET(frame_offset) +
610 (dwindex * XCANFD_DW_BYTES);
611 priv->write_reg(priv, ramoff,
612 be32_to_cpup((__be32 *)(cf->data + i)));
613 dwindex++;
615 } else {
616 if (cf->len > 0)
617 data[0] = be32_to_cpup((__be32 *)(cf->data + 0));
618 if (cf->len > 4)
619 data[1] = be32_to_cpup((__be32 *)(cf->data + 4));
621 if (!(cf->can_id & CAN_RTR_FLAG)) {
622 priv->write_reg(priv,
623 XCAN_FRAME_DW1_OFFSET(frame_offset),
624 data[0]);
625 /* If the CAN frame is Standard/Extended frame this
626 * write triggers transmission (not on CAN FD)
628 priv->write_reg(priv,
629 XCAN_FRAME_DW2_OFFSET(frame_offset),
630 data[1]);
636 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
637 * @skb: sk_buff pointer that contains data to be Txed
638 * @ndev: Pointer to net_device structure
640 * Return: 0 on success, -ENOSPC if FIFO is full.
642 static int xcan_start_xmit_fifo(struct sk_buff *skb, struct net_device *ndev)
644 struct xcan_priv *priv = netdev_priv(ndev);
645 unsigned long flags;
647 /* Check if the TX buffer is full */
648 if (unlikely(priv->read_reg(priv, XCAN_SR_OFFSET) &
649 XCAN_SR_TXFLL_MASK))
650 return -ENOSPC;
652 spin_lock_irqsave(&priv->tx_lock, flags);
654 xcan_write_frame(ndev, skb, XCAN_TXFIFO_OFFSET);
656 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
657 if (priv->tx_max > 1)
658 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXFEMP_MASK);
660 /* Check if the TX buffer is full */
661 if ((priv->tx_head - priv->tx_tail) == priv->tx_max)
662 netif_stop_queue(ndev);
664 spin_unlock_irqrestore(&priv->tx_lock, flags);
666 return 0;
670 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
671 * @skb: sk_buff pointer that contains data to be Txed
672 * @ndev: Pointer to net_device structure
674 * Return: 0 on success, -ENOSPC if there is no space
676 static int xcan_start_xmit_mailbox(struct sk_buff *skb, struct net_device *ndev)
678 struct xcan_priv *priv = netdev_priv(ndev);
679 unsigned long flags;
681 if (unlikely(priv->read_reg(priv, XCAN_TRR_OFFSET) &
682 BIT(XCAN_TX_MAILBOX_IDX)))
683 return -ENOSPC;
685 spin_lock_irqsave(&priv->tx_lock, flags);
687 xcan_write_frame(ndev, skb,
688 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX));
690 /* Mark buffer as ready for transmit */
691 priv->write_reg(priv, XCAN_TRR_OFFSET, BIT(XCAN_TX_MAILBOX_IDX));
693 netif_stop_queue(ndev);
695 spin_unlock_irqrestore(&priv->tx_lock, flags);
697 return 0;
701 * xcan_start_xmit - Starts the transmission
702 * @skb: sk_buff pointer that contains data to be Txed
703 * @ndev: Pointer to net_device structure
705 * This function is invoked from upper layers to initiate transmission.
707 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
709 static netdev_tx_t xcan_start_xmit(struct sk_buff *skb, struct net_device *ndev)
711 struct xcan_priv *priv = netdev_priv(ndev);
712 int ret;
714 if (can_dropped_invalid_skb(ndev, skb))
715 return NETDEV_TX_OK;
717 if (priv->devtype.flags & XCAN_FLAG_TX_MAILBOXES)
718 ret = xcan_start_xmit_mailbox(skb, ndev);
719 else
720 ret = xcan_start_xmit_fifo(skb, ndev);
722 if (ret < 0) {
723 netdev_err(ndev, "BUG!, TX full when queue awake!\n");
724 netif_stop_queue(ndev);
725 return NETDEV_TX_BUSY;
728 return NETDEV_TX_OK;
732 * xcan_rx - Is called from CAN isr to complete the received
733 * frame processing
734 * @ndev: Pointer to net_device structure
735 * @frame_base: Register offset to the frame to be read
737 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
738 * does minimal processing and invokes "netif_receive_skb" to complete further
739 * processing.
740 * Return: 1 on success and 0 on failure.
742 static int xcan_rx(struct net_device *ndev, int frame_base)
744 struct xcan_priv *priv = netdev_priv(ndev);
745 struct net_device_stats *stats = &ndev->stats;
746 struct can_frame *cf;
747 struct sk_buff *skb;
748 u32 id_xcan, dlc, data[2] = {0, 0};
750 skb = alloc_can_skb(ndev, &cf);
751 if (unlikely(!skb)) {
752 stats->rx_dropped++;
753 return 0;
756 /* Read a frame from Xilinx zynq CANPS */
757 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
758 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base)) >>
759 XCAN_DLCR_DLC_SHIFT;
761 /* Change Xilinx CAN data length format to socketCAN data format */
762 cf->len = can_cc_dlc2len(dlc);
764 /* Change Xilinx CAN ID format to socketCAN ID format */
765 if (id_xcan & XCAN_IDR_IDE_MASK) {
766 /* The received frame is an Extended format frame */
767 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
768 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
769 XCAN_IDR_ID2_SHIFT;
770 cf->can_id |= CAN_EFF_FLAG;
771 if (id_xcan & XCAN_IDR_RTR_MASK)
772 cf->can_id |= CAN_RTR_FLAG;
773 } else {
774 /* The received frame is a standard format frame */
775 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
776 XCAN_IDR_ID1_SHIFT;
777 if (id_xcan & XCAN_IDR_SRR_MASK)
778 cf->can_id |= CAN_RTR_FLAG;
781 /* DW1/DW2 must always be read to remove message from RXFIFO */
782 data[0] = priv->read_reg(priv, XCAN_FRAME_DW1_OFFSET(frame_base));
783 data[1] = priv->read_reg(priv, XCAN_FRAME_DW2_OFFSET(frame_base));
785 if (!(cf->can_id & CAN_RTR_FLAG)) {
786 /* Change Xilinx CAN data format to socketCAN data format */
787 if (cf->len > 0)
788 *(__be32 *)(cf->data) = cpu_to_be32(data[0]);
789 if (cf->len > 4)
790 *(__be32 *)(cf->data + 4) = cpu_to_be32(data[1]);
793 stats->rx_bytes += cf->len;
794 stats->rx_packets++;
795 netif_receive_skb(skb);
797 return 1;
801 * xcanfd_rx - Is called from CAN isr to complete the received
802 * frame processing
803 * @ndev: Pointer to net_device structure
804 * @frame_base: Register offset to the frame to be read
806 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
807 * does minimal processing and invokes "netif_receive_skb" to complete further
808 * processing.
809 * Return: 1 on success and 0 on failure.
811 static int xcanfd_rx(struct net_device *ndev, int frame_base)
813 struct xcan_priv *priv = netdev_priv(ndev);
814 struct net_device_stats *stats = &ndev->stats;
815 struct canfd_frame *cf;
816 struct sk_buff *skb;
817 u32 id_xcan, dlc, data[2] = {0, 0}, dwindex = 0, i, dw_offset;
819 id_xcan = priv->read_reg(priv, XCAN_FRAME_ID_OFFSET(frame_base));
820 dlc = priv->read_reg(priv, XCAN_FRAME_DLC_OFFSET(frame_base));
821 if (dlc & XCAN_DLCR_EDL_MASK)
822 skb = alloc_canfd_skb(ndev, &cf);
823 else
824 skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
826 if (unlikely(!skb)) {
827 stats->rx_dropped++;
828 return 0;
831 /* Change Xilinx CANFD data length format to socketCAN data
832 * format
834 if (dlc & XCAN_DLCR_EDL_MASK)
835 cf->len = can_fd_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
836 XCAN_DLCR_DLC_SHIFT);
837 else
838 cf->len = can_cc_dlc2len((dlc & XCAN_DLCR_DLC_MASK) >>
839 XCAN_DLCR_DLC_SHIFT);
841 /* Change Xilinx CAN ID format to socketCAN ID format */
842 if (id_xcan & XCAN_IDR_IDE_MASK) {
843 /* The received frame is an Extended format frame */
844 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >> 3;
845 cf->can_id |= (id_xcan & XCAN_IDR_ID2_MASK) >>
846 XCAN_IDR_ID2_SHIFT;
847 cf->can_id |= CAN_EFF_FLAG;
848 if (id_xcan & XCAN_IDR_RTR_MASK)
849 cf->can_id |= CAN_RTR_FLAG;
850 } else {
851 /* The received frame is a standard format frame */
852 cf->can_id = (id_xcan & XCAN_IDR_ID1_MASK) >>
853 XCAN_IDR_ID1_SHIFT;
854 if (!(dlc & XCAN_DLCR_EDL_MASK) && (id_xcan &
855 XCAN_IDR_SRR_MASK))
856 cf->can_id |= CAN_RTR_FLAG;
859 /* Check the frame received is FD or not*/
860 if (dlc & XCAN_DLCR_EDL_MASK) {
861 for (i = 0; i < cf->len; i += 4) {
862 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base) +
863 (dwindex * XCANFD_DW_BYTES);
864 data[0] = priv->read_reg(priv, dw_offset);
865 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
866 dwindex++;
868 } else {
869 for (i = 0; i < cf->len; i += 4) {
870 dw_offset = XCANFD_FRAME_DW_OFFSET(frame_base);
871 data[0] = priv->read_reg(priv, dw_offset + i);
872 *(__be32 *)(cf->data + i) = cpu_to_be32(data[0]);
875 stats->rx_bytes += cf->len;
876 stats->rx_packets++;
877 netif_receive_skb(skb);
879 return 1;
883 * xcan_current_error_state - Get current error state from HW
884 * @ndev: Pointer to net_device structure
886 * Checks the current CAN error state from the HW. Note that this
887 * only checks for ERROR_PASSIVE and ERROR_WARNING.
889 * Return:
890 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
891 * otherwise.
893 static enum can_state xcan_current_error_state(struct net_device *ndev)
895 struct xcan_priv *priv = netdev_priv(ndev);
896 u32 status = priv->read_reg(priv, XCAN_SR_OFFSET);
898 if ((status & XCAN_SR_ESTAT_MASK) == XCAN_SR_ESTAT_MASK)
899 return CAN_STATE_ERROR_PASSIVE;
900 else if (status & XCAN_SR_ERRWRN_MASK)
901 return CAN_STATE_ERROR_WARNING;
902 else
903 return CAN_STATE_ERROR_ACTIVE;
907 * xcan_set_error_state - Set new CAN error state
908 * @ndev: Pointer to net_device structure
909 * @new_state: The new CAN state to be set
910 * @cf: Error frame to be populated or NULL
912 * Set new CAN error state for the device, updating statistics and
913 * populating the error frame if given.
915 static void xcan_set_error_state(struct net_device *ndev,
916 enum can_state new_state,
917 struct can_frame *cf)
919 struct xcan_priv *priv = netdev_priv(ndev);
920 u32 ecr = priv->read_reg(priv, XCAN_ECR_OFFSET);
921 u32 txerr = ecr & XCAN_ECR_TEC_MASK;
922 u32 rxerr = (ecr & XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT;
923 enum can_state tx_state = txerr >= rxerr ? new_state : 0;
924 enum can_state rx_state = txerr <= rxerr ? new_state : 0;
926 /* non-ERROR states are handled elsewhere */
927 if (WARN_ON(new_state > CAN_STATE_ERROR_PASSIVE))
928 return;
930 can_change_state(ndev, cf, tx_state, rx_state);
932 if (cf) {
933 cf->data[6] = txerr;
934 cf->data[7] = rxerr;
939 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
940 * @ndev: Pointer to net_device structure
942 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
943 * the performed RX/TX has caused it to drop to a lesser state and set
944 * the interface state accordingly.
946 static void xcan_update_error_state_after_rxtx(struct net_device *ndev)
948 struct xcan_priv *priv = netdev_priv(ndev);
949 enum can_state old_state = priv->can.state;
950 enum can_state new_state;
952 /* changing error state due to successful frame RX/TX can only
953 * occur from these states
955 if (old_state != CAN_STATE_ERROR_WARNING &&
956 old_state != CAN_STATE_ERROR_PASSIVE)
957 return;
959 new_state = xcan_current_error_state(ndev);
961 if (new_state != old_state) {
962 struct sk_buff *skb;
963 struct can_frame *cf;
965 skb = alloc_can_err_skb(ndev, &cf);
967 xcan_set_error_state(ndev, new_state, skb ? cf : NULL);
969 if (skb) {
970 struct net_device_stats *stats = &ndev->stats;
972 stats->rx_packets++;
973 stats->rx_bytes += cf->len;
974 netif_rx(skb);
980 * xcan_err_interrupt - error frame Isr
981 * @ndev: net_device pointer
982 * @isr: interrupt status register value
984 * This is the CAN error interrupt and it will
985 * check the the type of error and forward the error
986 * frame to upper layers.
988 static void xcan_err_interrupt(struct net_device *ndev, u32 isr)
990 struct xcan_priv *priv = netdev_priv(ndev);
991 struct net_device_stats *stats = &ndev->stats;
992 struct can_frame cf = { };
993 u32 err_status;
995 err_status = priv->read_reg(priv, XCAN_ESR_OFFSET);
996 priv->write_reg(priv, XCAN_ESR_OFFSET, err_status);
998 if (isr & XCAN_IXR_BSOFF_MASK) {
999 priv->can.state = CAN_STATE_BUS_OFF;
1000 priv->can.can_stats.bus_off++;
1001 /* Leave device in Config Mode in bus-off state */
1002 priv->write_reg(priv, XCAN_SRR_OFFSET, XCAN_SRR_RESET_MASK);
1003 can_bus_off(ndev);
1004 cf.can_id |= CAN_ERR_BUSOFF;
1005 } else {
1006 enum can_state new_state = xcan_current_error_state(ndev);
1008 if (new_state != priv->can.state)
1009 xcan_set_error_state(ndev, new_state, &cf);
1012 /* Check for Arbitration lost interrupt */
1013 if (isr & XCAN_IXR_ARBLST_MASK) {
1014 priv->can.can_stats.arbitration_lost++;
1015 cf.can_id |= CAN_ERR_LOSTARB;
1016 cf.data[0] = CAN_ERR_LOSTARB_UNSPEC;
1019 /* Check for RX FIFO Overflow interrupt */
1020 if (isr & XCAN_IXR_RXOFLW_MASK) {
1021 stats->rx_over_errors++;
1022 stats->rx_errors++;
1023 cf.can_id |= CAN_ERR_CRTL;
1024 cf.data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
1027 /* Check for RX Match Not Finished interrupt */
1028 if (isr & XCAN_IXR_RXMNF_MASK) {
1029 stats->rx_dropped++;
1030 stats->rx_errors++;
1031 netdev_err(ndev, "RX match not finished, frame discarded\n");
1032 cf.can_id |= CAN_ERR_CRTL;
1033 cf.data[1] |= CAN_ERR_CRTL_UNSPEC;
1036 /* Check for error interrupt */
1037 if (isr & XCAN_IXR_ERROR_MASK) {
1038 bool berr_reporting = false;
1040 if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
1041 berr_reporting = true;
1042 cf.can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
1045 /* Check for Ack error interrupt */
1046 if (err_status & XCAN_ESR_ACKER_MASK) {
1047 stats->tx_errors++;
1048 if (berr_reporting) {
1049 cf.can_id |= CAN_ERR_ACK;
1050 cf.data[3] = CAN_ERR_PROT_LOC_ACK;
1054 /* Check for Bit error interrupt */
1055 if (err_status & XCAN_ESR_BERR_MASK) {
1056 stats->tx_errors++;
1057 if (berr_reporting) {
1058 cf.can_id |= CAN_ERR_PROT;
1059 cf.data[2] = CAN_ERR_PROT_BIT;
1063 /* Check for Stuff error interrupt */
1064 if (err_status & XCAN_ESR_STER_MASK) {
1065 stats->rx_errors++;
1066 if (berr_reporting) {
1067 cf.can_id |= CAN_ERR_PROT;
1068 cf.data[2] = CAN_ERR_PROT_STUFF;
1072 /* Check for Form error interrupt */
1073 if (err_status & XCAN_ESR_FMER_MASK) {
1074 stats->rx_errors++;
1075 if (berr_reporting) {
1076 cf.can_id |= CAN_ERR_PROT;
1077 cf.data[2] = CAN_ERR_PROT_FORM;
1081 /* Check for CRC error interrupt */
1082 if (err_status & XCAN_ESR_CRCER_MASK) {
1083 stats->rx_errors++;
1084 if (berr_reporting) {
1085 cf.can_id |= CAN_ERR_PROT;
1086 cf.data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1089 priv->can.can_stats.bus_error++;
1092 if (cf.can_id) {
1093 struct can_frame *skb_cf;
1094 struct sk_buff *skb = alloc_can_err_skb(ndev, &skb_cf);
1096 if (skb) {
1097 skb_cf->can_id |= cf.can_id;
1098 memcpy(skb_cf->data, cf.data, CAN_ERR_DLC);
1099 stats->rx_packets++;
1100 stats->rx_bytes += CAN_ERR_DLC;
1101 netif_rx(skb);
1105 netdev_dbg(ndev, "%s: error status register:0x%x\n",
1106 __func__, priv->read_reg(priv, XCAN_ESR_OFFSET));
1110 * xcan_state_interrupt - It will check the state of the CAN device
1111 * @ndev: net_device pointer
1112 * @isr: interrupt status register value
1114 * This will checks the state of the CAN device
1115 * and puts the device into appropriate state.
1117 static void xcan_state_interrupt(struct net_device *ndev, u32 isr)
1119 struct xcan_priv *priv = netdev_priv(ndev);
1121 /* Check for Sleep interrupt if set put CAN device in sleep state */
1122 if (isr & XCAN_IXR_SLP_MASK)
1123 priv->can.state = CAN_STATE_SLEEPING;
1125 /* Check for Wake up interrupt if set put CAN device in Active state */
1126 if (isr & XCAN_IXR_WKUP_MASK)
1127 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1131 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1132 * @priv: Driver private data structure
1134 * Return: Register offset of the next frame in RX FIFO.
1136 static int xcan_rx_fifo_get_next_frame(struct xcan_priv *priv)
1138 int offset;
1140 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI) {
1141 u32 fsr, mask;
1143 /* clear RXOK before the is-empty check so that any newly
1144 * received frame will reassert it without a race
1146 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_RXOK_MASK);
1148 fsr = priv->read_reg(priv, XCAN_FSR_OFFSET);
1150 /* check if RX FIFO is empty */
1151 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1152 mask = XCAN_2_FSR_FL_MASK;
1153 else
1154 mask = XCAN_FSR_FL_MASK;
1156 if (!(fsr & mask))
1157 return -ENOENT;
1159 if (priv->devtype.flags & XCAN_FLAG_CANFD_2)
1160 offset =
1161 XCAN_RXMSG_2_FRAME_OFFSET(fsr & XCAN_2_FSR_RI_MASK);
1162 else
1163 offset =
1164 XCAN_RXMSG_FRAME_OFFSET(fsr & XCAN_FSR_RI_MASK);
1166 } else {
1167 /* check if RX FIFO is empty */
1168 if (!(priv->read_reg(priv, XCAN_ISR_OFFSET) &
1169 XCAN_IXR_RXNEMP_MASK))
1170 return -ENOENT;
1172 /* frames are read from a static offset */
1173 offset = XCAN_RXFIFO_OFFSET;
1176 return offset;
1180 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1181 * @napi: napi structure pointer
1182 * @quota: Max number of rx packets to be processed.
1184 * This is the poll routine for rx part.
1185 * It will process the packets maximux quota value.
1187 * Return: number of packets received
1189 static int xcan_rx_poll(struct napi_struct *napi, int quota)
1191 struct net_device *ndev = napi->dev;
1192 struct xcan_priv *priv = netdev_priv(ndev);
1193 u32 ier;
1194 int work_done = 0;
1195 int frame_offset;
1197 while ((frame_offset = xcan_rx_fifo_get_next_frame(priv)) >= 0 &&
1198 (work_done < quota)) {
1199 if (xcan_rx_int_mask(priv) & XCAN_IXR_RXOK_MASK)
1200 work_done += xcanfd_rx(ndev, frame_offset);
1201 else
1202 work_done += xcan_rx(ndev, frame_offset);
1204 if (priv->devtype.flags & XCAN_FLAG_RX_FIFO_MULTI)
1205 /* increment read index */
1206 priv->write_reg(priv, XCAN_FSR_OFFSET,
1207 XCAN_FSR_IRI_MASK);
1208 else
1209 /* clear rx-not-empty (will actually clear only if
1210 * empty)
1212 priv->write_reg(priv, XCAN_ICR_OFFSET,
1213 XCAN_IXR_RXNEMP_MASK);
1216 if (work_done) {
1217 can_led_event(ndev, CAN_LED_EVENT_RX);
1218 xcan_update_error_state_after_rxtx(ndev);
1221 if (work_done < quota) {
1222 napi_complete_done(napi, work_done);
1223 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1224 ier |= xcan_rx_int_mask(priv);
1225 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1227 return work_done;
1231 * xcan_tx_interrupt - Tx Done Isr
1232 * @ndev: net_device pointer
1233 * @isr: Interrupt status register value
1235 static void xcan_tx_interrupt(struct net_device *ndev, u32 isr)
1237 struct xcan_priv *priv = netdev_priv(ndev);
1238 struct net_device_stats *stats = &ndev->stats;
1239 unsigned int frames_in_fifo;
1240 int frames_sent = 1; /* TXOK => at least 1 frame was sent */
1241 unsigned long flags;
1242 int retries = 0;
1244 /* Synchronize with xmit as we need to know the exact number
1245 * of frames in the FIFO to stay in sync due to the TXFEMP
1246 * handling.
1247 * This also prevents a race between netif_wake_queue() and
1248 * netif_stop_queue().
1250 spin_lock_irqsave(&priv->tx_lock, flags);
1252 frames_in_fifo = priv->tx_head - priv->tx_tail;
1254 if (WARN_ON_ONCE(frames_in_fifo == 0)) {
1255 /* clear TXOK anyway to avoid getting back here */
1256 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1257 spin_unlock_irqrestore(&priv->tx_lock, flags);
1258 return;
1261 /* Check if 2 frames were sent (TXOK only means that at least 1
1262 * frame was sent).
1264 if (frames_in_fifo > 1) {
1265 WARN_ON(frames_in_fifo > priv->tx_max);
1267 /* Synchronize TXOK and isr so that after the loop:
1268 * (1) isr variable is up-to-date at least up to TXOK clear
1269 * time. This avoids us clearing a TXOK of a second frame
1270 * but not noticing that the FIFO is now empty and thus
1271 * marking only a single frame as sent.
1272 * (2) No TXOK is left. Having one could mean leaving a
1273 * stray TXOK as we might process the associated frame
1274 * via TXFEMP handling as we read TXFEMP *after* TXOK
1275 * clear to satisfy (1).
1277 while ((isr & XCAN_IXR_TXOK_MASK) &&
1278 !WARN_ON(++retries == 100)) {
1279 priv->write_reg(priv, XCAN_ICR_OFFSET,
1280 XCAN_IXR_TXOK_MASK);
1281 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1284 if (isr & XCAN_IXR_TXFEMP_MASK) {
1285 /* nothing in FIFO anymore */
1286 frames_sent = frames_in_fifo;
1288 } else {
1289 /* single frame in fifo, just clear TXOK */
1290 priv->write_reg(priv, XCAN_ICR_OFFSET, XCAN_IXR_TXOK_MASK);
1293 while (frames_sent--) {
1294 stats->tx_bytes += can_get_echo_skb(ndev, priv->tx_tail %
1295 priv->tx_max);
1296 priv->tx_tail++;
1297 stats->tx_packets++;
1300 netif_wake_queue(ndev);
1302 spin_unlock_irqrestore(&priv->tx_lock, flags);
1304 can_led_event(ndev, CAN_LED_EVENT_TX);
1305 xcan_update_error_state_after_rxtx(ndev);
1309 * xcan_interrupt - CAN Isr
1310 * @irq: irq number
1311 * @dev_id: device id pointer
1313 * This is the xilinx CAN Isr. It checks for the type of interrupt
1314 * and invokes the corresponding ISR.
1316 * Return:
1317 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1319 static irqreturn_t xcan_interrupt(int irq, void *dev_id)
1321 struct net_device *ndev = (struct net_device *)dev_id;
1322 struct xcan_priv *priv = netdev_priv(ndev);
1323 u32 isr, ier;
1324 u32 isr_errors;
1325 u32 rx_int_mask = xcan_rx_int_mask(priv);
1327 /* Get the interrupt status from Xilinx CAN */
1328 isr = priv->read_reg(priv, XCAN_ISR_OFFSET);
1329 if (!isr)
1330 return IRQ_NONE;
1332 /* Check for the type of interrupt and Processing it */
1333 if (isr & (XCAN_IXR_SLP_MASK | XCAN_IXR_WKUP_MASK)) {
1334 priv->write_reg(priv, XCAN_ICR_OFFSET, (XCAN_IXR_SLP_MASK |
1335 XCAN_IXR_WKUP_MASK));
1336 xcan_state_interrupt(ndev, isr);
1339 /* Check for Tx interrupt and Processing it */
1340 if (isr & XCAN_IXR_TXOK_MASK)
1341 xcan_tx_interrupt(ndev, isr);
1343 /* Check for the type of error interrupt and Processing it */
1344 isr_errors = isr & (XCAN_IXR_ERROR_MASK | XCAN_IXR_RXOFLW_MASK |
1345 XCAN_IXR_BSOFF_MASK | XCAN_IXR_ARBLST_MASK |
1346 XCAN_IXR_RXMNF_MASK);
1347 if (isr_errors) {
1348 priv->write_reg(priv, XCAN_ICR_OFFSET, isr_errors);
1349 xcan_err_interrupt(ndev, isr);
1352 /* Check for the type of receive interrupt and Processing it */
1353 if (isr & rx_int_mask) {
1354 ier = priv->read_reg(priv, XCAN_IER_OFFSET);
1355 ier &= ~rx_int_mask;
1356 priv->write_reg(priv, XCAN_IER_OFFSET, ier);
1357 napi_schedule(&priv->napi);
1359 return IRQ_HANDLED;
1363 * xcan_chip_stop - Driver stop routine
1364 * @ndev: Pointer to net_device structure
1366 * This is the drivers stop routine. It will disable the
1367 * interrupts and put the device into configuration mode.
1369 static void xcan_chip_stop(struct net_device *ndev)
1371 struct xcan_priv *priv = netdev_priv(ndev);
1372 int ret;
1374 /* Disable interrupts and leave the can in configuration mode */
1375 ret = set_reset_mode(ndev);
1376 if (ret < 0)
1377 netdev_dbg(ndev, "set_reset_mode() Failed\n");
1379 priv->can.state = CAN_STATE_STOPPED;
1383 * xcan_open - Driver open routine
1384 * @ndev: Pointer to net_device structure
1386 * This is the driver open routine.
1387 * Return: 0 on success and failure value on error
1389 static int xcan_open(struct net_device *ndev)
1391 struct xcan_priv *priv = netdev_priv(ndev);
1392 int ret;
1394 ret = pm_runtime_get_sync(priv->dev);
1395 if (ret < 0) {
1396 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1397 __func__, ret);
1398 goto err;
1401 ret = request_irq(ndev->irq, xcan_interrupt, priv->irq_flags,
1402 ndev->name, ndev);
1403 if (ret < 0) {
1404 netdev_err(ndev, "irq allocation for CAN failed\n");
1405 goto err;
1408 /* Set chip into reset mode */
1409 ret = set_reset_mode(ndev);
1410 if (ret < 0) {
1411 netdev_err(ndev, "mode resetting failed!\n");
1412 goto err_irq;
1415 /* Common open */
1416 ret = open_candev(ndev);
1417 if (ret)
1418 goto err_irq;
1420 ret = xcan_chip_start(ndev);
1421 if (ret < 0) {
1422 netdev_err(ndev, "xcan_chip_start failed!\n");
1423 goto err_candev;
1426 can_led_event(ndev, CAN_LED_EVENT_OPEN);
1427 napi_enable(&priv->napi);
1428 netif_start_queue(ndev);
1430 return 0;
1432 err_candev:
1433 close_candev(ndev);
1434 err_irq:
1435 free_irq(ndev->irq, ndev);
1436 err:
1437 pm_runtime_put(priv->dev);
1439 return ret;
1443 * xcan_close - Driver close routine
1444 * @ndev: Pointer to net_device structure
1446 * Return: 0 always
1448 static int xcan_close(struct net_device *ndev)
1450 struct xcan_priv *priv = netdev_priv(ndev);
1452 netif_stop_queue(ndev);
1453 napi_disable(&priv->napi);
1454 xcan_chip_stop(ndev);
1455 free_irq(ndev->irq, ndev);
1456 close_candev(ndev);
1458 can_led_event(ndev, CAN_LED_EVENT_STOP);
1459 pm_runtime_put(priv->dev);
1461 return 0;
1465 * xcan_get_berr_counter - error counter routine
1466 * @ndev: Pointer to net_device structure
1467 * @bec: Pointer to can_berr_counter structure
1469 * This is the driver error counter routine.
1470 * Return: 0 on success and failure value on error
1472 static int xcan_get_berr_counter(const struct net_device *ndev,
1473 struct can_berr_counter *bec)
1475 struct xcan_priv *priv = netdev_priv(ndev);
1476 int ret;
1478 ret = pm_runtime_get_sync(priv->dev);
1479 if (ret < 0) {
1480 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1481 __func__, ret);
1482 pm_runtime_put(priv->dev);
1483 return ret;
1486 bec->txerr = priv->read_reg(priv, XCAN_ECR_OFFSET) & XCAN_ECR_TEC_MASK;
1487 bec->rxerr = ((priv->read_reg(priv, XCAN_ECR_OFFSET) &
1488 XCAN_ECR_REC_MASK) >> XCAN_ESR_REC_SHIFT);
1490 pm_runtime_put(priv->dev);
1492 return 0;
1495 static const struct net_device_ops xcan_netdev_ops = {
1496 .ndo_open = xcan_open,
1497 .ndo_stop = xcan_close,
1498 .ndo_start_xmit = xcan_start_xmit,
1499 .ndo_change_mtu = can_change_mtu,
1503 * xcan_suspend - Suspend method for the driver
1504 * @dev: Address of the device structure
1506 * Put the driver into low power mode.
1507 * Return: 0 on success and failure value on error
1509 static int __maybe_unused xcan_suspend(struct device *dev)
1511 struct net_device *ndev = dev_get_drvdata(dev);
1513 if (netif_running(ndev)) {
1514 netif_stop_queue(ndev);
1515 netif_device_detach(ndev);
1516 xcan_chip_stop(ndev);
1519 return pm_runtime_force_suspend(dev);
1523 * xcan_resume - Resume from suspend
1524 * @dev: Address of the device structure
1526 * Resume operation after suspend.
1527 * Return: 0 on success and failure value on error
1529 static int __maybe_unused xcan_resume(struct device *dev)
1531 struct net_device *ndev = dev_get_drvdata(dev);
1532 int ret;
1534 ret = pm_runtime_force_resume(dev);
1535 if (ret) {
1536 dev_err(dev, "pm_runtime_force_resume failed on resume\n");
1537 return ret;
1540 if (netif_running(ndev)) {
1541 ret = xcan_chip_start(ndev);
1542 if (ret) {
1543 dev_err(dev, "xcan_chip_start failed on resume\n");
1544 return ret;
1547 netif_device_attach(ndev);
1548 netif_start_queue(ndev);
1551 return 0;
1555 * xcan_runtime_suspend - Runtime suspend method for the driver
1556 * @dev: Address of the device structure
1558 * Put the driver into low power mode.
1559 * Return: 0 always
1561 static int __maybe_unused xcan_runtime_suspend(struct device *dev)
1563 struct net_device *ndev = dev_get_drvdata(dev);
1564 struct xcan_priv *priv = netdev_priv(ndev);
1566 clk_disable_unprepare(priv->bus_clk);
1567 clk_disable_unprepare(priv->can_clk);
1569 return 0;
1573 * xcan_runtime_resume - Runtime resume from suspend
1574 * @dev: Address of the device structure
1576 * Resume operation after suspend.
1577 * Return: 0 on success and failure value on error
1579 static int __maybe_unused xcan_runtime_resume(struct device *dev)
1581 struct net_device *ndev = dev_get_drvdata(dev);
1582 struct xcan_priv *priv = netdev_priv(ndev);
1583 int ret;
1585 ret = clk_prepare_enable(priv->bus_clk);
1586 if (ret) {
1587 dev_err(dev, "Cannot enable clock.\n");
1588 return ret;
1590 ret = clk_prepare_enable(priv->can_clk);
1591 if (ret) {
1592 dev_err(dev, "Cannot enable clock.\n");
1593 clk_disable_unprepare(priv->bus_clk);
1594 return ret;
1597 return 0;
1600 static const struct dev_pm_ops xcan_dev_pm_ops = {
1601 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend, xcan_resume)
1602 SET_RUNTIME_PM_OPS(xcan_runtime_suspend, xcan_runtime_resume, NULL)
1605 static const struct xcan_devtype_data xcan_zynq_data = {
1606 .cantype = XZYNQ_CANPS,
1607 .flags = XCAN_FLAG_TXFEMP,
1608 .bittiming_const = &xcan_bittiming_const,
1609 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1610 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1611 .bus_clk_name = "pclk",
1614 static const struct xcan_devtype_data xcan_axi_data = {
1615 .cantype = XAXI_CAN,
1616 .bittiming_const = &xcan_bittiming_const,
1617 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT,
1618 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT,
1619 .bus_clk_name = "s_axi_aclk",
1622 static const struct xcan_devtype_data xcan_canfd_data = {
1623 .cantype = XAXI_CANFD,
1624 .flags = XCAN_FLAG_EXT_FILTERS |
1625 XCAN_FLAG_RXMNF |
1626 XCAN_FLAG_TX_MAILBOXES |
1627 XCAN_FLAG_RX_FIFO_MULTI,
1628 .bittiming_const = &xcan_bittiming_const_canfd,
1629 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1630 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1631 .bus_clk_name = "s_axi_aclk",
1634 static const struct xcan_devtype_data xcan_canfd2_data = {
1635 .cantype = XAXI_CANFD_2_0,
1636 .flags = XCAN_FLAG_EXT_FILTERS |
1637 XCAN_FLAG_RXMNF |
1638 XCAN_FLAG_TX_MAILBOXES |
1639 XCAN_FLAG_CANFD_2 |
1640 XCAN_FLAG_RX_FIFO_MULTI,
1641 .bittiming_const = &xcan_bittiming_const_canfd2,
1642 .btr_ts2_shift = XCAN_BTR_TS2_SHIFT_CANFD,
1643 .btr_sjw_shift = XCAN_BTR_SJW_SHIFT_CANFD,
1644 .bus_clk_name = "s_axi_aclk",
1647 /* Match table for OF platform binding */
1648 static const struct of_device_id xcan_of_match[] = {
1649 { .compatible = "xlnx,zynq-can-1.0", .data = &xcan_zynq_data },
1650 { .compatible = "xlnx,axi-can-1.00.a", .data = &xcan_axi_data },
1651 { .compatible = "xlnx,canfd-1.0", .data = &xcan_canfd_data },
1652 { .compatible = "xlnx,canfd-2.0", .data = &xcan_canfd2_data },
1653 { /* end of list */ },
1655 MODULE_DEVICE_TABLE(of, xcan_of_match);
1658 * xcan_probe - Platform registration call
1659 * @pdev: Handle to the platform device structure
1661 * This function does all the memory allocation and registration for the CAN
1662 * device.
1664 * Return: 0 on success and failure value on error
1666 static int xcan_probe(struct platform_device *pdev)
1668 struct net_device *ndev;
1669 struct xcan_priv *priv;
1670 const struct of_device_id *of_id;
1671 const struct xcan_devtype_data *devtype = &xcan_axi_data;
1672 void __iomem *addr;
1673 int ret;
1674 int rx_max, tx_max;
1675 u32 hw_tx_max = 0, hw_rx_max = 0;
1676 const char *hw_tx_max_property;
1678 /* Get the virtual base address for the device */
1679 addr = devm_platform_ioremap_resource(pdev, 0);
1680 if (IS_ERR(addr)) {
1681 ret = PTR_ERR(addr);
1682 goto err;
1685 of_id = of_match_device(xcan_of_match, &pdev->dev);
1686 if (of_id && of_id->data)
1687 devtype = of_id->data;
1689 hw_tx_max_property = devtype->flags & XCAN_FLAG_TX_MAILBOXES ?
1690 "tx-mailbox-count" : "tx-fifo-depth";
1692 ret = of_property_read_u32(pdev->dev.of_node, hw_tx_max_property,
1693 &hw_tx_max);
1694 if (ret < 0) {
1695 dev_err(&pdev->dev, "missing %s property\n",
1696 hw_tx_max_property);
1697 goto err;
1700 ret = of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1701 &hw_rx_max);
1702 if (ret < 0) {
1703 dev_err(&pdev->dev,
1704 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1705 goto err;
1708 /* With TX FIFO:
1710 * There is no way to directly figure out how many frames have been
1711 * sent when the TXOK interrupt is processed. If TXFEMP
1712 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1713 * to determine if 1 or 2 frames have been sent.
1714 * Theoretically we should be able to use TXFWMEMP to determine up
1715 * to 3 frames, but it seems that after putting a second frame in the
1716 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1717 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1718 * sent), which is not a sensible state - possibly TXFWMEMP is not
1719 * completely synchronized with the rest of the bits?
1721 * With TX mailboxes:
1723 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1724 * we submit frames one at a time.
1726 if (!(devtype->flags & XCAN_FLAG_TX_MAILBOXES) &&
1727 (devtype->flags & XCAN_FLAG_TXFEMP))
1728 tx_max = min(hw_tx_max, 2U);
1729 else
1730 tx_max = 1;
1732 rx_max = hw_rx_max;
1734 /* Create a CAN device instance */
1735 ndev = alloc_candev(sizeof(struct xcan_priv), tx_max);
1736 if (!ndev)
1737 return -ENOMEM;
1739 priv = netdev_priv(ndev);
1740 priv->dev = &pdev->dev;
1741 priv->can.bittiming_const = devtype->bittiming_const;
1742 priv->can.do_set_mode = xcan_do_set_mode;
1743 priv->can.do_get_berr_counter = xcan_get_berr_counter;
1744 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1745 CAN_CTRLMODE_BERR_REPORTING;
1747 if (devtype->cantype == XAXI_CANFD)
1748 priv->can.data_bittiming_const =
1749 &xcan_data_bittiming_const_canfd;
1751 if (devtype->cantype == XAXI_CANFD_2_0)
1752 priv->can.data_bittiming_const =
1753 &xcan_data_bittiming_const_canfd2;
1755 if (devtype->cantype == XAXI_CANFD ||
1756 devtype->cantype == XAXI_CANFD_2_0)
1757 priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
1759 priv->reg_base = addr;
1760 priv->tx_max = tx_max;
1761 priv->devtype = *devtype;
1762 spin_lock_init(&priv->tx_lock);
1764 /* Get IRQ for the device */
1765 ndev->irq = platform_get_irq(pdev, 0);
1766 ndev->flags |= IFF_ECHO; /* We support local echo */
1768 platform_set_drvdata(pdev, ndev);
1769 SET_NETDEV_DEV(ndev, &pdev->dev);
1770 ndev->netdev_ops = &xcan_netdev_ops;
1772 /* Getting the CAN can_clk info */
1773 priv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
1774 if (IS_ERR(priv->can_clk)) {
1775 if (PTR_ERR(priv->can_clk) != -EPROBE_DEFER)
1776 dev_err(&pdev->dev, "Device clock not found.\n");
1777 ret = PTR_ERR(priv->can_clk);
1778 goto err_free;
1781 priv->bus_clk = devm_clk_get(&pdev->dev, devtype->bus_clk_name);
1782 if (IS_ERR(priv->bus_clk)) {
1783 if (PTR_ERR(priv->bus_clk) != -EPROBE_DEFER)
1784 dev_err(&pdev->dev, "bus clock not found\n");
1785 ret = PTR_ERR(priv->bus_clk);
1786 goto err_free;
1789 priv->write_reg = xcan_write_reg_le;
1790 priv->read_reg = xcan_read_reg_le;
1792 pm_runtime_enable(&pdev->dev);
1793 ret = pm_runtime_get_sync(&pdev->dev);
1794 if (ret < 0) {
1795 netdev_err(ndev, "%s: pm_runtime_get failed(%d)\n",
1796 __func__, ret);
1797 goto err_disableclks;
1800 if (priv->read_reg(priv, XCAN_SR_OFFSET) != XCAN_SR_CONFIG_MASK) {
1801 priv->write_reg = xcan_write_reg_be;
1802 priv->read_reg = xcan_read_reg_be;
1805 priv->can.clock.freq = clk_get_rate(priv->can_clk);
1807 netif_napi_add(ndev, &priv->napi, xcan_rx_poll, rx_max);
1809 ret = register_candev(ndev);
1810 if (ret) {
1811 dev_err(&pdev->dev, "fail to register failed (err=%d)\n", ret);
1812 goto err_disableclks;
1815 devm_can_led_init(ndev);
1817 pm_runtime_put(&pdev->dev);
1819 if (priv->devtype.flags & XCAN_FLAG_CANFD_2) {
1820 priv->write_reg(priv, XCAN_AFR_2_ID_OFFSET, 0x00000000);
1821 priv->write_reg(priv, XCAN_AFR_2_MASK_OFFSET, 0x00000000);
1824 netdev_dbg(ndev, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
1825 priv->reg_base, ndev->irq, priv->can.clock.freq,
1826 hw_tx_max, priv->tx_max);
1828 return 0;
1830 err_disableclks:
1831 pm_runtime_put(priv->dev);
1832 pm_runtime_disable(&pdev->dev);
1833 err_free:
1834 free_candev(ndev);
1835 err:
1836 return ret;
1840 * xcan_remove - Unregister the device after releasing the resources
1841 * @pdev: Handle to the platform device structure
1843 * This function frees all the resources allocated to the device.
1844 * Return: 0 always
1846 static int xcan_remove(struct platform_device *pdev)
1848 struct net_device *ndev = platform_get_drvdata(pdev);
1849 struct xcan_priv *priv = netdev_priv(ndev);
1851 unregister_candev(ndev);
1852 pm_runtime_disable(&pdev->dev);
1853 netif_napi_del(&priv->napi);
1854 free_candev(ndev);
1856 return 0;
1859 static struct platform_driver xcan_driver = {
1860 .probe = xcan_probe,
1861 .remove = xcan_remove,
1862 .driver = {
1863 .name = DRIVER_NAME,
1864 .pm = &xcan_dev_pm_ops,
1865 .of_match_table = xcan_of_match,
1869 module_platform_driver(xcan_driver);
1871 MODULE_LICENSE("GPL");
1872 MODULE_AUTHOR("Xilinx Inc");
1873 MODULE_DESCRIPTION("Xilinx CAN interface");