1 // SPDX-License-Identifier: GPL-2.0
3 * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
48 #include "lantiq_pce.h"
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB 0x00
52 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
53 #define GSWIP_MDIO_CTRL 0x08
54 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
55 #define GSWIP_MDIO_CTRL_RD BIT(11)
56 #define GSWIP_MDIO_CTRL_WR BIT(10)
57 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
58 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
59 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
60 #define GSWIP_MDIO_READ 0x09
61 #define GSWIP_MDIO_WRITE 0x0A
62 #define GSWIP_MDIO_MDC_CFG0 0x0B
63 #define GSWIP_MDIO_MDC_CFG1 0x0C
64 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
65 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
66 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
67 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
68 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
69 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
71 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
72 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
73 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
74 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
75 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
76 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
77 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
78 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
79 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
80 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
81 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
82 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
83 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
84 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
85 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
86 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
87 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
88 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 GSWIP_MDIO_PHY_LINK_MASK | \
91 GSWIP_MDIO_PHY_SPEED_MASK | \
92 GSWIP_MDIO_PHY_FDUP_MASK)
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p) (0x2 * (p))
96 #define GSWIP_MII_CFG_EN BIT(14)
97 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
98 #define GSWIP_MII_CFG_MODE_MIIP 0x0
99 #define GSWIP_MII_CFG_MODE_MIIM 0x1
100 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
101 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
102 #define GSWIP_MII_CFG_MODE_RGMII 0x4
103 #define GSWIP_MII_CFG_MODE_MASK 0xf
104 #define GSWIP_MII_CFG_RATE_M2P5 0x00
105 #define GSWIP_MII_CFG_RATE_M25 0x10
106 #define GSWIP_MII_CFG_RATE_M125 0x20
107 #define GSWIP_MII_CFG_RATE_M50 0x30
108 #define GSWIP_MII_CFG_RATE_AUTO 0x40
109 #define GSWIP_MII_CFG_RATE_MASK 0x70
110 #define GSWIP_MII_PCDU0 0x01
111 #define GSWIP_MII_PCDU1 0x03
112 #define GSWIP_MII_PCDU5 0x05
113 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
114 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
116 /* GSWIP Core Registers */
117 #define GSWIP_SWRES 0x000
118 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
119 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
120 #define GSWIP_VERSION 0x013
121 #define GSWIP_VERSION_REV_SHIFT 0
122 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
123 #define GSWIP_VERSION_MOD_SHIFT 8
124 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
125 #define GSWIP_VERSION_2_0 0x100
126 #define GSWIP_VERSION_2_1 0x021
127 #define GSWIP_VERSION_2_2 0x122
128 #define GSWIP_VERSION_2_2_ETC 0x022
130 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
131 #define GSWIP_BM_RAM_ADDR 0x044
132 #define GSWIP_BM_RAM_CTRL 0x045
133 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
134 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
135 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
136 #define GSWIP_BM_QUEUE_GCTRL 0x04A
137 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
138 /* buffer management Port Configuration Register */
139 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
140 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
141 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
142 /* buffer management Port Control Register */
143 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
144 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
145 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
148 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
149 #define GSWIP_PCE_TBL_MASK 0x448
150 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
151 #define GSWIP_PCE_TBL_ADDR 0x44E
152 #define GSWIP_PCE_TBL_CTRL 0x44F
153 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
154 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
155 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
156 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
157 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
158 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
159 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
160 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
161 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
162 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
163 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
164 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
165 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
166 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
167 #define GSWIP_PCE_GCTRL_0 0x456
168 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
169 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
170 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
171 #define GSWIP_PCE_GCTRL_1 0x457
172 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
173 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
174 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
175 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
176 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
177 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
178 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
179 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
180 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
181 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
182 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
183 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
184 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
185 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
186 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
187 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
188 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
189 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
190 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
192 #define GSWIP_MAC_FLEN 0x8C5
193 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
194 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
196 /* Ethernet Switch Fetch DMA Port Control Register */
197 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
198 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
199 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
200 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
201 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
202 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
203 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
204 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
205 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
207 /* Ethernet Switch Store DMA Port Control Register */
208 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
209 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
210 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
211 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(1) /* Pause Frame Forwarding */
213 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
214 #define GSWIP_TABLE_VLAN_MAPPING 0x02
215 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
216 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
218 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
220 struct gswip_hw_info
{
225 struct xway_gphy_match_data
{
226 char *fe_firmware_name
;
227 char *ge_firmware_name
;
230 struct gswip_gphy_fw
{
231 struct clk
*clk_gate
;
232 struct reset_control
*reset
;
238 struct net_device
*bridge
;
247 const struct gswip_hw_info
*hw_info
;
248 const struct xway_gphy_match_data
*gphy_fw_name_cfg
;
249 struct dsa_switch
*ds
;
251 struct regmap
*rcu_regmap
;
252 struct gswip_vlan vlans
[64];
254 struct gswip_gphy_fw
*gphy_fw
;
255 u32 port_vlan_filter
;
258 struct gswip_pce_table_entry
{
259 u16 index
; // PCE_TBL_ADDR.ADDR = pData->table_index
260 u16 table
; // PCE_TBL_CTRL.ADDR = pData->table
270 struct gswip_rmon_cnt_desc
{
276 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
278 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt
[] = {
279 /** Receive Packet Count (only packets that are accepted and not discarded). */
280 MIB_DESC(1, 0x1F, "RxGoodPkts"),
281 MIB_DESC(1, 0x23, "RxUnicastPkts"),
282 MIB_DESC(1, 0x22, "RxMulticastPkts"),
283 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
284 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
285 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
286 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
287 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
288 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
289 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
290 MIB_DESC(1, 0x12, "Rx64BytePkts"),
291 MIB_DESC(1, 0x13, "Rx127BytePkts"),
292 MIB_DESC(1, 0x14, "Rx255BytePkts"),
293 MIB_DESC(1, 0x15, "Rx511BytePkts"),
294 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
295 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
296 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
297 MIB_DESC(1, 0x18, "RxDroppedPkts"),
298 MIB_DESC(1, 0x19, "RxFilteredPkts"),
299 MIB_DESC(2, 0x24, "RxGoodBytes"),
300 MIB_DESC(2, 0x26, "RxBadBytes"),
301 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
302 MIB_DESC(1, 0x0C, "TxGoodPkts"),
303 MIB_DESC(1, 0x06, "TxUnicastPkts"),
304 MIB_DESC(1, 0x07, "TxMulticastPkts"),
305 MIB_DESC(1, 0x00, "Tx64BytePkts"),
306 MIB_DESC(1, 0x01, "Tx127BytePkts"),
307 MIB_DESC(1, 0x02, "Tx255BytePkts"),
308 MIB_DESC(1, 0x03, "Tx511BytePkts"),
309 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
310 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
311 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
312 MIB_DESC(1, 0x08, "TxSingleCollCount"),
313 MIB_DESC(1, 0x09, "TxMultCollCount"),
314 MIB_DESC(1, 0x0A, "TxLateCollCount"),
315 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
316 MIB_DESC(1, 0x0D, "TxPauseCount"),
317 MIB_DESC(1, 0x10, "TxDroppedPkts"),
318 MIB_DESC(2, 0x0E, "TxGoodBytes"),
321 static u32
gswip_switch_r(struct gswip_priv
*priv
, u32 offset
)
323 return __raw_readl(priv
->gswip
+ (offset
* 4));
326 static void gswip_switch_w(struct gswip_priv
*priv
, u32 val
, u32 offset
)
328 __raw_writel(val
, priv
->gswip
+ (offset
* 4));
331 static void gswip_switch_mask(struct gswip_priv
*priv
, u32 clear
, u32 set
,
334 u32 val
= gswip_switch_r(priv
, offset
);
338 gswip_switch_w(priv
, val
, offset
);
341 static u32
gswip_switch_r_timeout(struct gswip_priv
*priv
, u32 offset
,
346 return readx_poll_timeout(__raw_readl
, priv
->gswip
+ (offset
* 4), val
,
347 (val
& cleared
) == 0, 20, 50000);
350 static u32
gswip_mdio_r(struct gswip_priv
*priv
, u32 offset
)
352 return __raw_readl(priv
->mdio
+ (offset
* 4));
355 static void gswip_mdio_w(struct gswip_priv
*priv
, u32 val
, u32 offset
)
357 __raw_writel(val
, priv
->mdio
+ (offset
* 4));
360 static void gswip_mdio_mask(struct gswip_priv
*priv
, u32 clear
, u32 set
,
363 u32 val
= gswip_mdio_r(priv
, offset
);
367 gswip_mdio_w(priv
, val
, offset
);
370 static u32
gswip_mii_r(struct gswip_priv
*priv
, u32 offset
)
372 return __raw_readl(priv
->mii
+ (offset
* 4));
375 static void gswip_mii_w(struct gswip_priv
*priv
, u32 val
, u32 offset
)
377 __raw_writel(val
, priv
->mii
+ (offset
* 4));
380 static void gswip_mii_mask(struct gswip_priv
*priv
, u32 clear
, u32 set
,
383 u32 val
= gswip_mii_r(priv
, offset
);
387 gswip_mii_w(priv
, val
, offset
);
390 static void gswip_mii_mask_cfg(struct gswip_priv
*priv
, u32 clear
, u32 set
,
393 /* There's no MII_CFG register for the CPU port */
394 if (!dsa_is_cpu_port(priv
->ds
, port
))
395 gswip_mii_mask(priv
, clear
, set
, GSWIP_MII_CFGp(port
));
398 static void gswip_mii_mask_pcdu(struct gswip_priv
*priv
, u32 clear
, u32 set
,
403 gswip_mii_mask(priv
, clear
, set
, GSWIP_MII_PCDU0
);
406 gswip_mii_mask(priv
, clear
, set
, GSWIP_MII_PCDU1
);
409 gswip_mii_mask(priv
, clear
, set
, GSWIP_MII_PCDU5
);
414 static int gswip_mdio_poll(struct gswip_priv
*priv
)
418 while (likely(cnt
--)) {
419 u32 ctrl
= gswip_mdio_r(priv
, GSWIP_MDIO_CTRL
);
421 if ((ctrl
& GSWIP_MDIO_CTRL_BUSY
) == 0)
423 usleep_range(20, 40);
429 static int gswip_mdio_wr(struct mii_bus
*bus
, int addr
, int reg
, u16 val
)
431 struct gswip_priv
*priv
= bus
->priv
;
434 err
= gswip_mdio_poll(priv
);
436 dev_err(&bus
->dev
, "waiting for MDIO bus busy timed out\n");
440 gswip_mdio_w(priv
, val
, GSWIP_MDIO_WRITE
);
441 gswip_mdio_w(priv
, GSWIP_MDIO_CTRL_BUSY
| GSWIP_MDIO_CTRL_WR
|
442 ((addr
& GSWIP_MDIO_CTRL_PHYAD_MASK
) << GSWIP_MDIO_CTRL_PHYAD_SHIFT
) |
443 (reg
& GSWIP_MDIO_CTRL_REGAD_MASK
),
449 static int gswip_mdio_rd(struct mii_bus
*bus
, int addr
, int reg
)
451 struct gswip_priv
*priv
= bus
->priv
;
454 err
= gswip_mdio_poll(priv
);
456 dev_err(&bus
->dev
, "waiting for MDIO bus busy timed out\n");
460 gswip_mdio_w(priv
, GSWIP_MDIO_CTRL_BUSY
| GSWIP_MDIO_CTRL_RD
|
461 ((addr
& GSWIP_MDIO_CTRL_PHYAD_MASK
) << GSWIP_MDIO_CTRL_PHYAD_SHIFT
) |
462 (reg
& GSWIP_MDIO_CTRL_REGAD_MASK
),
465 err
= gswip_mdio_poll(priv
);
467 dev_err(&bus
->dev
, "waiting for MDIO bus busy timed out\n");
471 return gswip_mdio_r(priv
, GSWIP_MDIO_READ
);
474 static int gswip_mdio(struct gswip_priv
*priv
, struct device_node
*mdio_np
)
476 struct dsa_switch
*ds
= priv
->ds
;
478 ds
->slave_mii_bus
= devm_mdiobus_alloc(priv
->dev
);
479 if (!ds
->slave_mii_bus
)
482 ds
->slave_mii_bus
->priv
= priv
;
483 ds
->slave_mii_bus
->read
= gswip_mdio_rd
;
484 ds
->slave_mii_bus
->write
= gswip_mdio_wr
;
485 ds
->slave_mii_bus
->name
= "lantiq,xrx200-mdio";
486 snprintf(ds
->slave_mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-mii",
487 dev_name(priv
->dev
));
488 ds
->slave_mii_bus
->parent
= priv
->dev
;
489 ds
->slave_mii_bus
->phy_mask
= ~ds
->phys_mii_mask
;
491 return of_mdiobus_register(ds
->slave_mii_bus
, mdio_np
);
494 static int gswip_pce_table_entry_read(struct gswip_priv
*priv
,
495 struct gswip_pce_table_entry
*tbl
)
500 u16 addr_mode
= tbl
->key_mode
? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD
:
501 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD
;
503 err
= gswip_switch_r_timeout(priv
, GSWIP_PCE_TBL_CTRL
,
504 GSWIP_PCE_TBL_CTRL_BAS
);
508 gswip_switch_w(priv
, tbl
->index
, GSWIP_PCE_TBL_ADDR
);
509 gswip_switch_mask(priv
, GSWIP_PCE_TBL_CTRL_ADDR_MASK
|
510 GSWIP_PCE_TBL_CTRL_OPMOD_MASK
,
511 tbl
->table
| addr_mode
| GSWIP_PCE_TBL_CTRL_BAS
,
514 err
= gswip_switch_r_timeout(priv
, GSWIP_PCE_TBL_CTRL
,
515 GSWIP_PCE_TBL_CTRL_BAS
);
519 for (i
= 0; i
< ARRAY_SIZE(tbl
->key
); i
++)
520 tbl
->key
[i
] = gswip_switch_r(priv
, GSWIP_PCE_TBL_KEY(i
));
522 for (i
= 0; i
< ARRAY_SIZE(tbl
->val
); i
++)
523 tbl
->val
[i
] = gswip_switch_r(priv
, GSWIP_PCE_TBL_VAL(i
));
525 tbl
->mask
= gswip_switch_r(priv
, GSWIP_PCE_TBL_MASK
);
527 crtl
= gswip_switch_r(priv
, GSWIP_PCE_TBL_CTRL
);
529 tbl
->type
= !!(crtl
& GSWIP_PCE_TBL_CTRL_TYPE
);
530 tbl
->valid
= !!(crtl
& GSWIP_PCE_TBL_CTRL_VLD
);
531 tbl
->gmap
= (crtl
& GSWIP_PCE_TBL_CTRL_GMAP_MASK
) >> 7;
536 static int gswip_pce_table_entry_write(struct gswip_priv
*priv
,
537 struct gswip_pce_table_entry
*tbl
)
542 u16 addr_mode
= tbl
->key_mode
? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR
:
543 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR
;
545 err
= gswip_switch_r_timeout(priv
, GSWIP_PCE_TBL_CTRL
,
546 GSWIP_PCE_TBL_CTRL_BAS
);
550 gswip_switch_w(priv
, tbl
->index
, GSWIP_PCE_TBL_ADDR
);
551 gswip_switch_mask(priv
, GSWIP_PCE_TBL_CTRL_ADDR_MASK
|
552 GSWIP_PCE_TBL_CTRL_OPMOD_MASK
,
553 tbl
->table
| addr_mode
,
556 for (i
= 0; i
< ARRAY_SIZE(tbl
->key
); i
++)
557 gswip_switch_w(priv
, tbl
->key
[i
], GSWIP_PCE_TBL_KEY(i
));
559 for (i
= 0; i
< ARRAY_SIZE(tbl
->val
); i
++)
560 gswip_switch_w(priv
, tbl
->val
[i
], GSWIP_PCE_TBL_VAL(i
));
562 gswip_switch_mask(priv
, GSWIP_PCE_TBL_CTRL_ADDR_MASK
|
563 GSWIP_PCE_TBL_CTRL_OPMOD_MASK
,
564 tbl
->table
| addr_mode
,
567 gswip_switch_w(priv
, tbl
->mask
, GSWIP_PCE_TBL_MASK
);
569 crtl
= gswip_switch_r(priv
, GSWIP_PCE_TBL_CTRL
);
570 crtl
&= ~(GSWIP_PCE_TBL_CTRL_TYPE
| GSWIP_PCE_TBL_CTRL_VLD
|
571 GSWIP_PCE_TBL_CTRL_GMAP_MASK
);
573 crtl
|= GSWIP_PCE_TBL_CTRL_TYPE
;
575 crtl
|= GSWIP_PCE_TBL_CTRL_VLD
;
576 crtl
|= (tbl
->gmap
<< 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK
;
577 crtl
|= GSWIP_PCE_TBL_CTRL_BAS
;
578 gswip_switch_w(priv
, crtl
, GSWIP_PCE_TBL_CTRL
);
580 return gswip_switch_r_timeout(priv
, GSWIP_PCE_TBL_CTRL
,
581 GSWIP_PCE_TBL_CTRL_BAS
);
584 /* Add the LAN port into a bridge with the CPU port by
585 * default. This prevents automatic forwarding of
586 * packages between the LAN ports when no explicit
587 * bridge is configured.
589 static int gswip_add_single_port_br(struct gswip_priv
*priv
, int port
, bool add
)
591 struct gswip_pce_table_entry vlan_active
= {0,};
592 struct gswip_pce_table_entry vlan_mapping
= {0,};
593 unsigned int cpu_port
= priv
->hw_info
->cpu_port
;
594 unsigned int max_ports
= priv
->hw_info
->max_ports
;
597 if (port
>= max_ports
) {
598 dev_err(priv
->dev
, "single port for %i supported\n", port
);
602 vlan_active
.index
= port
+ 1;
603 vlan_active
.table
= GSWIP_TABLE_ACTIVE_VLAN
;
604 vlan_active
.key
[0] = 0; /* vid */
605 vlan_active
.val
[0] = port
+ 1 /* fid */;
606 vlan_active
.valid
= add
;
607 err
= gswip_pce_table_entry_write(priv
, &vlan_active
);
609 dev_err(priv
->dev
, "failed to write active VLAN: %d\n", err
);
616 vlan_mapping
.index
= port
+ 1;
617 vlan_mapping
.table
= GSWIP_TABLE_VLAN_MAPPING
;
618 vlan_mapping
.val
[0] = 0 /* vid */;
619 vlan_mapping
.val
[1] = BIT(port
) | BIT(cpu_port
);
620 vlan_mapping
.val
[2] = 0;
621 err
= gswip_pce_table_entry_write(priv
, &vlan_mapping
);
623 dev_err(priv
->dev
, "failed to write VLAN mapping: %d\n", err
);
630 static int gswip_port_enable(struct dsa_switch
*ds
, int port
,
631 struct phy_device
*phydev
)
633 struct gswip_priv
*priv
= ds
->priv
;
636 if (!dsa_is_user_port(ds
, port
))
639 if (!dsa_is_cpu_port(ds
, port
)) {
640 err
= gswip_add_single_port_br(priv
, port
, true);
645 /* RMON Counter Enable for port */
646 gswip_switch_w(priv
, GSWIP_BM_PCFG_CNTEN
, GSWIP_BM_PCFGp(port
));
648 /* enable port fetch/store dma & VLAN Modification */
649 gswip_switch_mask(priv
, 0, GSWIP_FDMA_PCTRL_EN
|
650 GSWIP_FDMA_PCTRL_VLANMOD_BOTH
,
651 GSWIP_FDMA_PCTRLp(port
));
652 gswip_switch_mask(priv
, 0, GSWIP_SDMA_PCTRL_EN
,
653 GSWIP_SDMA_PCTRLp(port
));
655 if (!dsa_is_cpu_port(ds
, port
)) {
656 u32 macconf
= GSWIP_MDIO_PHY_LINK_AUTO
|
657 GSWIP_MDIO_PHY_SPEED_AUTO
|
658 GSWIP_MDIO_PHY_FDUP_AUTO
|
659 GSWIP_MDIO_PHY_FCONTX_AUTO
|
660 GSWIP_MDIO_PHY_FCONRX_AUTO
|
661 (phydev
->mdio
.addr
& GSWIP_MDIO_PHY_ADDR_MASK
);
663 gswip_mdio_w(priv
, macconf
, GSWIP_MDIO_PHYp(port
));
664 /* Activate MDIO auto polling */
665 gswip_mdio_mask(priv
, 0, BIT(port
), GSWIP_MDIO_MDC_CFG0
);
671 static void gswip_port_disable(struct dsa_switch
*ds
, int port
)
673 struct gswip_priv
*priv
= ds
->priv
;
675 if (!dsa_is_user_port(ds
, port
))
678 if (!dsa_is_cpu_port(ds
, port
)) {
679 gswip_mdio_mask(priv
, GSWIP_MDIO_PHY_LINK_DOWN
,
680 GSWIP_MDIO_PHY_LINK_MASK
,
681 GSWIP_MDIO_PHYp(port
));
682 /* Deactivate MDIO auto polling */
683 gswip_mdio_mask(priv
, BIT(port
), 0, GSWIP_MDIO_MDC_CFG0
);
686 gswip_switch_mask(priv
, GSWIP_FDMA_PCTRL_EN
, 0,
687 GSWIP_FDMA_PCTRLp(port
));
688 gswip_switch_mask(priv
, GSWIP_SDMA_PCTRL_EN
, 0,
689 GSWIP_SDMA_PCTRLp(port
));
692 static int gswip_pce_load_microcode(struct gswip_priv
*priv
)
697 gswip_switch_mask(priv
, GSWIP_PCE_TBL_CTRL_ADDR_MASK
|
698 GSWIP_PCE_TBL_CTRL_OPMOD_MASK
,
699 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR
, GSWIP_PCE_TBL_CTRL
);
700 gswip_switch_w(priv
, 0, GSWIP_PCE_TBL_MASK
);
702 for (i
= 0; i
< ARRAY_SIZE(gswip_pce_microcode
); i
++) {
703 gswip_switch_w(priv
, i
, GSWIP_PCE_TBL_ADDR
);
704 gswip_switch_w(priv
, gswip_pce_microcode
[i
].val_0
,
705 GSWIP_PCE_TBL_VAL(0));
706 gswip_switch_w(priv
, gswip_pce_microcode
[i
].val_1
,
707 GSWIP_PCE_TBL_VAL(1));
708 gswip_switch_w(priv
, gswip_pce_microcode
[i
].val_2
,
709 GSWIP_PCE_TBL_VAL(2));
710 gswip_switch_w(priv
, gswip_pce_microcode
[i
].val_3
,
711 GSWIP_PCE_TBL_VAL(3));
713 /* start the table access: */
714 gswip_switch_mask(priv
, 0, GSWIP_PCE_TBL_CTRL_BAS
,
716 err
= gswip_switch_r_timeout(priv
, GSWIP_PCE_TBL_CTRL
,
717 GSWIP_PCE_TBL_CTRL_BAS
);
722 /* tell the switch that the microcode is loaded */
723 gswip_switch_mask(priv
, 0, GSWIP_PCE_GCTRL_0_MC_VALID
,
729 static int gswip_port_vlan_filtering(struct dsa_switch
*ds
, int port
,
731 struct switchdev_trans
*trans
)
733 struct gswip_priv
*priv
= ds
->priv
;
735 /* Do not allow changing the VLAN filtering options while in bridge */
736 if (switchdev_trans_ph_prepare(trans
)) {
737 struct net_device
*bridge
= dsa_to_port(ds
, port
)->bridge_dev
;
742 if (!!(priv
->port_vlan_filter
& BIT(port
)) != vlan_filtering
)
748 if (vlan_filtering
) {
749 /* Use port based VLAN tag */
750 gswip_switch_mask(priv
,
752 GSWIP_PCE_VCTRL_UVR
| GSWIP_PCE_VCTRL_VIMR
|
753 GSWIP_PCE_VCTRL_VEMR
,
754 GSWIP_PCE_VCTRL(port
));
755 gswip_switch_mask(priv
, GSWIP_PCE_PCTRL_0_TVM
, 0,
756 GSWIP_PCE_PCTRL_0p(port
));
758 /* Use port based VLAN tag */
759 gswip_switch_mask(priv
,
760 GSWIP_PCE_VCTRL_UVR
| GSWIP_PCE_VCTRL_VIMR
|
761 GSWIP_PCE_VCTRL_VEMR
,
763 GSWIP_PCE_VCTRL(port
));
764 gswip_switch_mask(priv
, 0, GSWIP_PCE_PCTRL_0_TVM
,
765 GSWIP_PCE_PCTRL_0p(port
));
771 static int gswip_setup(struct dsa_switch
*ds
)
773 struct gswip_priv
*priv
= ds
->priv
;
774 unsigned int cpu_port
= priv
->hw_info
->cpu_port
;
778 gswip_switch_w(priv
, GSWIP_SWRES_R0
, GSWIP_SWRES
);
779 usleep_range(5000, 10000);
780 gswip_switch_w(priv
, 0, GSWIP_SWRES
);
782 /* disable port fetch/store dma on all ports */
783 for (i
= 0; i
< priv
->hw_info
->max_ports
; i
++) {
784 struct switchdev_trans trans
;
786 /* Skip the prepare phase, this shouldn't return an error
789 trans
.ph_prepare
= false;
791 gswip_port_disable(ds
, i
);
792 gswip_port_vlan_filtering(ds
, i
, false, &trans
);
796 gswip_mdio_mask(priv
, 0, GSWIP_MDIO_GLOB_ENABLE
, GSWIP_MDIO_GLOB
);
798 err
= gswip_pce_load_microcode(priv
);
800 dev_err(priv
->dev
, "writing PCE microcode failed, %i", err
);
804 /* Default unknown Broadcast/Multicast/Unicast port maps */
805 gswip_switch_w(priv
, BIT(cpu_port
), GSWIP_PCE_PMAP1
);
806 gswip_switch_w(priv
, BIT(cpu_port
), GSWIP_PCE_PMAP2
);
807 gswip_switch_w(priv
, BIT(cpu_port
), GSWIP_PCE_PMAP3
);
809 /* disable PHY auto polling */
810 gswip_mdio_w(priv
, 0x0, GSWIP_MDIO_MDC_CFG0
);
811 /* Configure the MDIO Clock 2.5 MHz */
812 gswip_mdio_mask(priv
, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1
);
814 /* Disable the xMII link */
815 for (i
= 0; i
< priv
->hw_info
->max_ports
; i
++)
816 gswip_mii_mask_cfg(priv
, GSWIP_MII_CFG_EN
, 0, i
);
818 /* enable special tag insertion on cpu port */
819 gswip_switch_mask(priv
, 0, GSWIP_FDMA_PCTRL_STEN
,
820 GSWIP_FDMA_PCTRLp(cpu_port
));
822 /* accept special tag in ingress direction */
823 gswip_switch_mask(priv
, 0, GSWIP_PCE_PCTRL_0_INGRESS
,
824 GSWIP_PCE_PCTRL_0p(cpu_port
));
826 gswip_switch_mask(priv
, 0, GSWIP_MAC_CTRL_2_MLEN
,
827 GSWIP_MAC_CTRL_2p(cpu_port
));
828 gswip_switch_w(priv
, VLAN_ETH_FRAME_LEN
+ 8, GSWIP_MAC_FLEN
);
829 gswip_switch_mask(priv
, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD
,
830 GSWIP_BM_QUEUE_GCTRL
);
832 /* VLAN aware Switching */
833 gswip_switch_mask(priv
, 0, GSWIP_PCE_GCTRL_0_VLAN
, GSWIP_PCE_GCTRL_0
);
835 /* Flush MAC Table */
836 gswip_switch_mask(priv
, 0, GSWIP_PCE_GCTRL_0_MTFL
, GSWIP_PCE_GCTRL_0
);
838 err
= gswip_switch_r_timeout(priv
, GSWIP_PCE_GCTRL_0
,
839 GSWIP_PCE_GCTRL_0_MTFL
);
841 dev_err(priv
->dev
, "MAC flushing didn't finish\n");
845 gswip_port_enable(ds
, cpu_port
, NULL
);
849 static enum dsa_tag_protocol
gswip_get_tag_protocol(struct dsa_switch
*ds
,
851 enum dsa_tag_protocol mp
)
853 return DSA_TAG_PROTO_GSWIP
;
856 static int gswip_vlan_active_create(struct gswip_priv
*priv
,
857 struct net_device
*bridge
,
860 struct gswip_pce_table_entry vlan_active
= {0,};
861 unsigned int max_ports
= priv
->hw_info
->max_ports
;
866 /* Look for a free slot */
867 for (i
= max_ports
; i
< ARRAY_SIZE(priv
->vlans
); i
++) {
868 if (!priv
->vlans
[i
].bridge
) {
880 vlan_active
.index
= idx
;
881 vlan_active
.table
= GSWIP_TABLE_ACTIVE_VLAN
;
882 vlan_active
.key
[0] = vid
;
883 vlan_active
.val
[0] = fid
;
884 vlan_active
.valid
= true;
886 err
= gswip_pce_table_entry_write(priv
, &vlan_active
);
888 dev_err(priv
->dev
, "failed to write active VLAN: %d\n", err
);
892 priv
->vlans
[idx
].bridge
= bridge
;
893 priv
->vlans
[idx
].vid
= vid
;
894 priv
->vlans
[idx
].fid
= fid
;
899 static int gswip_vlan_active_remove(struct gswip_priv
*priv
, int idx
)
901 struct gswip_pce_table_entry vlan_active
= {0,};
904 vlan_active
.index
= idx
;
905 vlan_active
.table
= GSWIP_TABLE_ACTIVE_VLAN
;
906 vlan_active
.valid
= false;
907 err
= gswip_pce_table_entry_write(priv
, &vlan_active
);
909 dev_err(priv
->dev
, "failed to delete active VLAN: %d\n", err
);
910 priv
->vlans
[idx
].bridge
= NULL
;
915 static int gswip_vlan_add_unaware(struct gswip_priv
*priv
,
916 struct net_device
*bridge
, int port
)
918 struct gswip_pce_table_entry vlan_mapping
= {0,};
919 unsigned int max_ports
= priv
->hw_info
->max_ports
;
920 unsigned int cpu_port
= priv
->hw_info
->cpu_port
;
921 bool active_vlan_created
= false;
926 /* Check if there is already a page for this bridge */
927 for (i
= max_ports
; i
< ARRAY_SIZE(priv
->vlans
); i
++) {
928 if (priv
->vlans
[i
].bridge
== bridge
) {
934 /* If this bridge is not programmed yet, add a Active VLAN table
935 * entry in a free slot and prepare the VLAN mapping table entry.
938 idx
= gswip_vlan_active_create(priv
, bridge
, -1, 0);
941 active_vlan_created
= true;
943 vlan_mapping
.index
= idx
;
944 vlan_mapping
.table
= GSWIP_TABLE_VLAN_MAPPING
;
945 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
946 vlan_mapping
.val
[0] = 0;
948 /* Read the existing VLAN mapping entry from the switch */
949 vlan_mapping
.index
= idx
;
950 vlan_mapping
.table
= GSWIP_TABLE_VLAN_MAPPING
;
951 err
= gswip_pce_table_entry_read(priv
, &vlan_mapping
);
953 dev_err(priv
->dev
, "failed to read VLAN mapping: %d\n",
959 /* Update the VLAN mapping entry and write it to the switch */
960 vlan_mapping
.val
[1] |= BIT(cpu_port
);
961 vlan_mapping
.val
[1] |= BIT(port
);
962 err
= gswip_pce_table_entry_write(priv
, &vlan_mapping
);
964 dev_err(priv
->dev
, "failed to write VLAN mapping: %d\n", err
);
965 /* In case an Active VLAN was creaetd delete it again */
966 if (active_vlan_created
)
967 gswip_vlan_active_remove(priv
, idx
);
971 gswip_switch_w(priv
, 0, GSWIP_PCE_DEFPVID(port
));
975 static int gswip_vlan_add_aware(struct gswip_priv
*priv
,
976 struct net_device
*bridge
, int port
,
977 u16 vid
, bool untagged
,
980 struct gswip_pce_table_entry vlan_mapping
= {0,};
981 unsigned int max_ports
= priv
->hw_info
->max_ports
;
982 unsigned int cpu_port
= priv
->hw_info
->cpu_port
;
983 bool active_vlan_created
= false;
989 /* Check if there is already a page for this bridge */
990 for (i
= max_ports
; i
< ARRAY_SIZE(priv
->vlans
); i
++) {
991 if (priv
->vlans
[i
].bridge
== bridge
) {
992 if (fid
!= -1 && fid
!= priv
->vlans
[i
].fid
)
993 dev_err(priv
->dev
, "one bridge with multiple flow ids\n");
994 fid
= priv
->vlans
[i
].fid
;
995 if (priv
->vlans
[i
].vid
== vid
) {
1002 /* If this bridge is not programmed yet, add a Active VLAN table
1003 * entry in a free slot and prepare the VLAN mapping table entry.
1006 idx
= gswip_vlan_active_create(priv
, bridge
, fid
, vid
);
1009 active_vlan_created
= true;
1011 vlan_mapping
.index
= idx
;
1012 vlan_mapping
.table
= GSWIP_TABLE_VLAN_MAPPING
;
1013 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1014 vlan_mapping
.val
[0] = vid
;
1016 /* Read the existing VLAN mapping entry from the switch */
1017 vlan_mapping
.index
= idx
;
1018 vlan_mapping
.table
= GSWIP_TABLE_VLAN_MAPPING
;
1019 err
= gswip_pce_table_entry_read(priv
, &vlan_mapping
);
1021 dev_err(priv
->dev
, "failed to read VLAN mapping: %d\n",
1027 vlan_mapping
.val
[0] = vid
;
1028 /* Update the VLAN mapping entry and write it to the switch */
1029 vlan_mapping
.val
[1] |= BIT(cpu_port
);
1030 vlan_mapping
.val
[2] |= BIT(cpu_port
);
1031 vlan_mapping
.val
[1] |= BIT(port
);
1033 vlan_mapping
.val
[2] &= ~BIT(port
);
1035 vlan_mapping
.val
[2] |= BIT(port
);
1036 err
= gswip_pce_table_entry_write(priv
, &vlan_mapping
);
1038 dev_err(priv
->dev
, "failed to write VLAN mapping: %d\n", err
);
1039 /* In case an Active VLAN was creaetd delete it again */
1040 if (active_vlan_created
)
1041 gswip_vlan_active_remove(priv
, idx
);
1046 gswip_switch_w(priv
, idx
, GSWIP_PCE_DEFPVID(port
));
1051 static int gswip_vlan_remove(struct gswip_priv
*priv
,
1052 struct net_device
*bridge
, int port
,
1053 u16 vid
, bool pvid
, bool vlan_aware
)
1055 struct gswip_pce_table_entry vlan_mapping
= {0,};
1056 unsigned int max_ports
= priv
->hw_info
->max_ports
;
1057 unsigned int cpu_port
= priv
->hw_info
->cpu_port
;
1062 /* Check if there is already a page for this bridge */
1063 for (i
= max_ports
; i
< ARRAY_SIZE(priv
->vlans
); i
++) {
1064 if (priv
->vlans
[i
].bridge
== bridge
&&
1065 (!vlan_aware
|| priv
->vlans
[i
].vid
== vid
)) {
1072 dev_err(priv
->dev
, "bridge to leave does not exists\n");
1076 vlan_mapping
.index
= idx
;
1077 vlan_mapping
.table
= GSWIP_TABLE_VLAN_MAPPING
;
1078 err
= gswip_pce_table_entry_read(priv
, &vlan_mapping
);
1080 dev_err(priv
->dev
, "failed to read VLAN mapping: %d\n", err
);
1084 vlan_mapping
.val
[1] &= ~BIT(port
);
1085 vlan_mapping
.val
[2] &= ~BIT(port
);
1086 err
= gswip_pce_table_entry_write(priv
, &vlan_mapping
);
1088 dev_err(priv
->dev
, "failed to write VLAN mapping: %d\n", err
);
1092 /* In case all ports are removed from the bridge, remove the VLAN */
1093 if ((vlan_mapping
.val
[1] & ~BIT(cpu_port
)) == 0) {
1094 err
= gswip_vlan_active_remove(priv
, idx
);
1096 dev_err(priv
->dev
, "failed to write active VLAN: %d\n",
1102 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1104 gswip_switch_w(priv
, 0, GSWIP_PCE_DEFPVID(port
));
1109 static int gswip_port_bridge_join(struct dsa_switch
*ds
, int port
,
1110 struct net_device
*bridge
)
1112 struct gswip_priv
*priv
= ds
->priv
;
1115 /* When the bridge uses VLAN filtering we have to configure VLAN
1116 * specific bridges. No bridge is configured here.
1118 if (!br_vlan_enabled(bridge
)) {
1119 err
= gswip_vlan_add_unaware(priv
, bridge
, port
);
1122 priv
->port_vlan_filter
&= ~BIT(port
);
1124 priv
->port_vlan_filter
|= BIT(port
);
1126 return gswip_add_single_port_br(priv
, port
, false);
1129 static void gswip_port_bridge_leave(struct dsa_switch
*ds
, int port
,
1130 struct net_device
*bridge
)
1132 struct gswip_priv
*priv
= ds
->priv
;
1134 gswip_add_single_port_br(priv
, port
, true);
1136 /* When the bridge uses VLAN filtering we have to configure VLAN
1137 * specific bridges. No bridge is configured here.
1139 if (!br_vlan_enabled(bridge
))
1140 gswip_vlan_remove(priv
, bridge
, port
, 0, true, false);
1143 static int gswip_port_vlan_prepare(struct dsa_switch
*ds
, int port
,
1144 const struct switchdev_obj_port_vlan
*vlan
)
1146 struct gswip_priv
*priv
= ds
->priv
;
1147 struct net_device
*bridge
= dsa_to_port(ds
, port
)->bridge_dev
;
1148 unsigned int max_ports
= priv
->hw_info
->max_ports
;
1151 int pos
= max_ports
;
1153 /* We only support VLAN filtering on bridges */
1154 if (!dsa_is_cpu_port(ds
, port
) && !bridge
)
1157 for (vid
= vlan
->vid_begin
; vid
<= vlan
->vid_end
; ++vid
) {
1160 /* Check if there is already a page for this VLAN */
1161 for (i
= max_ports
; i
< ARRAY_SIZE(priv
->vlans
); i
++) {
1162 if (priv
->vlans
[i
].bridge
== bridge
&&
1163 priv
->vlans
[i
].vid
== vid
) {
1169 /* If this VLAN is not programmed yet, we have to reserve
1170 * one entry in the VLAN table. Make sure we start at the
1171 * next position round.
1174 /* Look for a free slot */
1175 for (; pos
< ARRAY_SIZE(priv
->vlans
); pos
++) {
1176 if (!priv
->vlans
[pos
].bridge
) {
1191 static void gswip_port_vlan_add(struct dsa_switch
*ds
, int port
,
1192 const struct switchdev_obj_port_vlan
*vlan
)
1194 struct gswip_priv
*priv
= ds
->priv
;
1195 struct net_device
*bridge
= dsa_to_port(ds
, port
)->bridge_dev
;
1196 bool untagged
= vlan
->flags
& BRIDGE_VLAN_INFO_UNTAGGED
;
1197 bool pvid
= vlan
->flags
& BRIDGE_VLAN_INFO_PVID
;
1200 /* We have to receive all packets on the CPU port and should not
1201 * do any VLAN filtering here. This is also called with bridge
1202 * NULL and then we do not know for which bridge to configure
1205 if (dsa_is_cpu_port(ds
, port
))
1208 for (vid
= vlan
->vid_begin
; vid
<= vlan
->vid_end
; ++vid
)
1209 gswip_vlan_add_aware(priv
, bridge
, port
, vid
, untagged
, pvid
);
1212 static int gswip_port_vlan_del(struct dsa_switch
*ds
, int port
,
1213 const struct switchdev_obj_port_vlan
*vlan
)
1215 struct gswip_priv
*priv
= ds
->priv
;
1216 struct net_device
*bridge
= dsa_to_port(ds
, port
)->bridge_dev
;
1217 bool pvid
= vlan
->flags
& BRIDGE_VLAN_INFO_PVID
;
1221 /* We have to receive all packets on the CPU port and should not
1222 * do any VLAN filtering here. This is also called with bridge
1223 * NULL and then we do not know for which bridge to configure
1226 if (dsa_is_cpu_port(ds
, port
))
1229 for (vid
= vlan
->vid_begin
; vid
<= vlan
->vid_end
; ++vid
) {
1230 err
= gswip_vlan_remove(priv
, bridge
, port
, vid
, pvid
, true);
1238 static void gswip_port_fast_age(struct dsa_switch
*ds
, int port
)
1240 struct gswip_priv
*priv
= ds
->priv
;
1241 struct gswip_pce_table_entry mac_bridge
= {0,};
1245 for (i
= 0; i
< 2048; i
++) {
1246 mac_bridge
.table
= GSWIP_TABLE_MAC_BRIDGE
;
1247 mac_bridge
.index
= i
;
1249 err
= gswip_pce_table_entry_read(priv
, &mac_bridge
);
1251 dev_err(priv
->dev
, "failed to read mac bridge: %d\n",
1256 if (!mac_bridge
.valid
)
1259 if (mac_bridge
.val
[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC
)
1262 if (((mac_bridge
.val
[0] & GENMASK(7, 4)) >> 4) != port
)
1265 mac_bridge
.valid
= false;
1266 err
= gswip_pce_table_entry_write(priv
, &mac_bridge
);
1268 dev_err(priv
->dev
, "failed to write mac bridge: %d\n",
1275 static void gswip_port_stp_state_set(struct dsa_switch
*ds
, int port
, u8 state
)
1277 struct gswip_priv
*priv
= ds
->priv
;
1281 case BR_STATE_DISABLED
:
1282 gswip_switch_mask(priv
, GSWIP_SDMA_PCTRL_EN
, 0,
1283 GSWIP_SDMA_PCTRLp(port
));
1285 case BR_STATE_BLOCKING
:
1286 case BR_STATE_LISTENING
:
1287 stp_state
= GSWIP_PCE_PCTRL_0_PSTATE_LISTEN
;
1289 case BR_STATE_LEARNING
:
1290 stp_state
= GSWIP_PCE_PCTRL_0_PSTATE_LEARNING
;
1292 case BR_STATE_FORWARDING
:
1293 stp_state
= GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING
;
1296 dev_err(priv
->dev
, "invalid STP state: %d\n", state
);
1300 gswip_switch_mask(priv
, 0, GSWIP_SDMA_PCTRL_EN
,
1301 GSWIP_SDMA_PCTRLp(port
));
1302 gswip_switch_mask(priv
, GSWIP_PCE_PCTRL_0_PSTATE_MASK
, stp_state
,
1303 GSWIP_PCE_PCTRL_0p(port
));
1306 static int gswip_port_fdb(struct dsa_switch
*ds
, int port
,
1307 const unsigned char *addr
, u16 vid
, bool add
)
1309 struct gswip_priv
*priv
= ds
->priv
;
1310 struct net_device
*bridge
= dsa_to_port(ds
, port
)->bridge_dev
;
1311 struct gswip_pce_table_entry mac_bridge
= {0,};
1312 unsigned int cpu_port
= priv
->hw_info
->cpu_port
;
1320 for (i
= cpu_port
; i
< ARRAY_SIZE(priv
->vlans
); i
++) {
1321 if (priv
->vlans
[i
].bridge
== bridge
) {
1322 fid
= priv
->vlans
[i
].fid
;
1328 dev_err(priv
->dev
, "Port not part of a bridge\n");
1332 mac_bridge
.table
= GSWIP_TABLE_MAC_BRIDGE
;
1333 mac_bridge
.key_mode
= true;
1334 mac_bridge
.key
[0] = addr
[5] | (addr
[4] << 8);
1335 mac_bridge
.key
[1] = addr
[3] | (addr
[2] << 8);
1336 mac_bridge
.key
[2] = addr
[1] | (addr
[0] << 8);
1337 mac_bridge
.key
[3] = fid
;
1338 mac_bridge
.val
[0] = add
? BIT(port
) : 0; /* port map */
1339 mac_bridge
.val
[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC
;
1340 mac_bridge
.valid
= add
;
1342 err
= gswip_pce_table_entry_write(priv
, &mac_bridge
);
1344 dev_err(priv
->dev
, "failed to write mac bridge: %d\n", err
);
1349 static int gswip_port_fdb_add(struct dsa_switch
*ds
, int port
,
1350 const unsigned char *addr
, u16 vid
)
1352 return gswip_port_fdb(ds
, port
, addr
, vid
, true);
1355 static int gswip_port_fdb_del(struct dsa_switch
*ds
, int port
,
1356 const unsigned char *addr
, u16 vid
)
1358 return gswip_port_fdb(ds
, port
, addr
, vid
, false);
1361 static int gswip_port_fdb_dump(struct dsa_switch
*ds
, int port
,
1362 dsa_fdb_dump_cb_t
*cb
, void *data
)
1364 struct gswip_priv
*priv
= ds
->priv
;
1365 struct gswip_pce_table_entry mac_bridge
= {0,};
1366 unsigned char addr
[6];
1370 for (i
= 0; i
< 2048; i
++) {
1371 mac_bridge
.table
= GSWIP_TABLE_MAC_BRIDGE
;
1372 mac_bridge
.index
= i
;
1374 err
= gswip_pce_table_entry_read(priv
, &mac_bridge
);
1376 dev_err(priv
->dev
, "failed to write mac bridge: %d\n",
1381 if (!mac_bridge
.valid
)
1384 addr
[5] = mac_bridge
.key
[0] & 0xff;
1385 addr
[4] = (mac_bridge
.key
[0] >> 8) & 0xff;
1386 addr
[3] = mac_bridge
.key
[1] & 0xff;
1387 addr
[2] = (mac_bridge
.key
[1] >> 8) & 0xff;
1388 addr
[1] = mac_bridge
.key
[2] & 0xff;
1389 addr
[0] = (mac_bridge
.key
[2] >> 8) & 0xff;
1390 if (mac_bridge
.val
[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC
) {
1391 if (mac_bridge
.val
[0] & BIT(port
))
1392 cb(addr
, 0, true, data
);
1394 if (((mac_bridge
.val
[0] & GENMASK(7, 4)) >> 4) == port
)
1395 cb(addr
, 0, false, data
);
1401 static void gswip_phylink_validate(struct dsa_switch
*ds
, int port
,
1402 unsigned long *supported
,
1403 struct phylink_link_state
*state
)
1405 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask
) = { 0, };
1410 if (!phy_interface_mode_is_rgmii(state
->interface
) &&
1411 state
->interface
!= PHY_INTERFACE_MODE_MII
&&
1412 state
->interface
!= PHY_INTERFACE_MODE_REVMII
&&
1413 state
->interface
!= PHY_INTERFACE_MODE_RMII
)
1419 if (state
->interface
!= PHY_INTERFACE_MODE_INTERNAL
)
1423 if (!phy_interface_mode_is_rgmii(state
->interface
) &&
1424 state
->interface
!= PHY_INTERFACE_MODE_INTERNAL
)
1428 bitmap_zero(supported
, __ETHTOOL_LINK_MODE_MASK_NBITS
);
1429 dev_err(ds
->dev
, "Unsupported port: %i\n", port
);
1433 /* Allow all the expected bits */
1434 phylink_set(mask
, Autoneg
);
1435 phylink_set_port_modes(mask
);
1436 phylink_set(mask
, Pause
);
1437 phylink_set(mask
, Asym_Pause
);
1439 /* With the exclusion of MII, Reverse MII and Reduced MII, we
1440 * support Gigabit, including Half duplex
1442 if (state
->interface
!= PHY_INTERFACE_MODE_MII
&&
1443 state
->interface
!= PHY_INTERFACE_MODE_REVMII
&&
1444 state
->interface
!= PHY_INTERFACE_MODE_RMII
) {
1445 phylink_set(mask
, 1000baseT_Full
);
1446 phylink_set(mask
, 1000baseT_Half
);
1449 phylink_set(mask
, 10baseT_Half
);
1450 phylink_set(mask
, 10baseT_Full
);
1451 phylink_set(mask
, 100baseT_Half
);
1452 phylink_set(mask
, 100baseT_Full
);
1454 bitmap_and(supported
, supported
, mask
,
1455 __ETHTOOL_LINK_MODE_MASK_NBITS
);
1456 bitmap_and(state
->advertising
, state
->advertising
, mask
,
1457 __ETHTOOL_LINK_MODE_MASK_NBITS
);
1461 bitmap_zero(supported
, __ETHTOOL_LINK_MODE_MASK_NBITS
);
1462 dev_err(ds
->dev
, "Unsupported interface '%s' for port %d\n",
1463 phy_modes(state
->interface
), port
);
1467 static void gswip_phylink_mac_config(struct dsa_switch
*ds
, int port
,
1469 const struct phylink_link_state
*state
)
1471 struct gswip_priv
*priv
= ds
->priv
;
1474 miicfg
|= GSWIP_MII_CFG_LDCLKDIS
;
1476 switch (state
->interface
) {
1477 case PHY_INTERFACE_MODE_MII
:
1478 case PHY_INTERFACE_MODE_INTERNAL
:
1479 miicfg
|= GSWIP_MII_CFG_MODE_MIIM
;
1481 case PHY_INTERFACE_MODE_REVMII
:
1482 miicfg
|= GSWIP_MII_CFG_MODE_MIIP
;
1484 case PHY_INTERFACE_MODE_RMII
:
1485 miicfg
|= GSWIP_MII_CFG_MODE_RMIIM
;
1487 case PHY_INTERFACE_MODE_RGMII
:
1488 case PHY_INTERFACE_MODE_RGMII_ID
:
1489 case PHY_INTERFACE_MODE_RGMII_RXID
:
1490 case PHY_INTERFACE_MODE_RGMII_TXID
:
1491 miicfg
|= GSWIP_MII_CFG_MODE_RGMII
;
1495 "Unsupported interface: %d\n", state
->interface
);
1498 gswip_mii_mask_cfg(priv
, GSWIP_MII_CFG_MODE_MASK
, miicfg
, port
);
1500 switch (state
->interface
) {
1501 case PHY_INTERFACE_MODE_RGMII_ID
:
1502 gswip_mii_mask_pcdu(priv
, GSWIP_MII_PCDU_TXDLY_MASK
|
1503 GSWIP_MII_PCDU_RXDLY_MASK
, 0, port
);
1505 case PHY_INTERFACE_MODE_RGMII_RXID
:
1506 gswip_mii_mask_pcdu(priv
, GSWIP_MII_PCDU_RXDLY_MASK
, 0, port
);
1508 case PHY_INTERFACE_MODE_RGMII_TXID
:
1509 gswip_mii_mask_pcdu(priv
, GSWIP_MII_PCDU_TXDLY_MASK
, 0, port
);
1516 static void gswip_phylink_mac_link_down(struct dsa_switch
*ds
, int port
,
1518 phy_interface_t interface
)
1520 struct gswip_priv
*priv
= ds
->priv
;
1522 gswip_mii_mask_cfg(priv
, GSWIP_MII_CFG_EN
, 0, port
);
1525 static void gswip_phylink_mac_link_up(struct dsa_switch
*ds
, int port
,
1527 phy_interface_t interface
,
1528 struct phy_device
*phydev
,
1529 int speed
, int duplex
,
1530 bool tx_pause
, bool rx_pause
)
1532 struct gswip_priv
*priv
= ds
->priv
;
1534 gswip_mii_mask_cfg(priv
, 0, GSWIP_MII_CFG_EN
, port
);
1537 static void gswip_get_strings(struct dsa_switch
*ds
, int port
, u32 stringset
,
1542 if (stringset
!= ETH_SS_STATS
)
1545 for (i
= 0; i
< ARRAY_SIZE(gswip_rmon_cnt
); i
++)
1546 strncpy(data
+ i
* ETH_GSTRING_LEN
, gswip_rmon_cnt
[i
].name
,
1550 static u32
gswip_bcm_ram_entry_read(struct gswip_priv
*priv
, u32 table
,
1556 gswip_switch_w(priv
, index
, GSWIP_BM_RAM_ADDR
);
1557 gswip_switch_mask(priv
, GSWIP_BM_RAM_CTRL_ADDR_MASK
|
1558 GSWIP_BM_RAM_CTRL_OPMOD
,
1559 table
| GSWIP_BM_RAM_CTRL_BAS
,
1562 err
= gswip_switch_r_timeout(priv
, GSWIP_BM_RAM_CTRL
,
1563 GSWIP_BM_RAM_CTRL_BAS
);
1565 dev_err(priv
->dev
, "timeout while reading table: %u, index: %u",
1570 result
= gswip_switch_r(priv
, GSWIP_BM_RAM_VAL(0));
1571 result
|= gswip_switch_r(priv
, GSWIP_BM_RAM_VAL(1)) << 16;
1576 static void gswip_get_ethtool_stats(struct dsa_switch
*ds
, int port
,
1579 struct gswip_priv
*priv
= ds
->priv
;
1580 const struct gswip_rmon_cnt_desc
*rmon_cnt
;
1584 for (i
= 0; i
< ARRAY_SIZE(gswip_rmon_cnt
); i
++) {
1585 rmon_cnt
= &gswip_rmon_cnt
[i
];
1587 data
[i
] = gswip_bcm_ram_entry_read(priv
, port
,
1589 if (rmon_cnt
->size
== 2) {
1590 high
= gswip_bcm_ram_entry_read(priv
, port
,
1591 rmon_cnt
->offset
+ 1);
1592 data
[i
] |= high
<< 32;
1597 static int gswip_get_sset_count(struct dsa_switch
*ds
, int port
, int sset
)
1599 if (sset
!= ETH_SS_STATS
)
1602 return ARRAY_SIZE(gswip_rmon_cnt
);
1605 static const struct dsa_switch_ops gswip_switch_ops
= {
1606 .get_tag_protocol
= gswip_get_tag_protocol
,
1607 .setup
= gswip_setup
,
1608 .port_enable
= gswip_port_enable
,
1609 .port_disable
= gswip_port_disable
,
1610 .port_bridge_join
= gswip_port_bridge_join
,
1611 .port_bridge_leave
= gswip_port_bridge_leave
,
1612 .port_fast_age
= gswip_port_fast_age
,
1613 .port_vlan_filtering
= gswip_port_vlan_filtering
,
1614 .port_vlan_prepare
= gswip_port_vlan_prepare
,
1615 .port_vlan_add
= gswip_port_vlan_add
,
1616 .port_vlan_del
= gswip_port_vlan_del
,
1617 .port_stp_state_set
= gswip_port_stp_state_set
,
1618 .port_fdb_add
= gswip_port_fdb_add
,
1619 .port_fdb_del
= gswip_port_fdb_del
,
1620 .port_fdb_dump
= gswip_port_fdb_dump
,
1621 .phylink_validate
= gswip_phylink_validate
,
1622 .phylink_mac_config
= gswip_phylink_mac_config
,
1623 .phylink_mac_link_down
= gswip_phylink_mac_link_down
,
1624 .phylink_mac_link_up
= gswip_phylink_mac_link_up
,
1625 .get_strings
= gswip_get_strings
,
1626 .get_ethtool_stats
= gswip_get_ethtool_stats
,
1627 .get_sset_count
= gswip_get_sset_count
,
1630 static const struct xway_gphy_match_data xrx200a1x_gphy_data
= {
1631 .fe_firmware_name
= "lantiq/xrx200_phy22f_a14.bin",
1632 .ge_firmware_name
= "lantiq/xrx200_phy11g_a14.bin",
1635 static const struct xway_gphy_match_data xrx200a2x_gphy_data
= {
1636 .fe_firmware_name
= "lantiq/xrx200_phy22f_a22.bin",
1637 .ge_firmware_name
= "lantiq/xrx200_phy11g_a22.bin",
1640 static const struct xway_gphy_match_data xrx300_gphy_data
= {
1641 .fe_firmware_name
= "lantiq/xrx300_phy22f_a21.bin",
1642 .ge_firmware_name
= "lantiq/xrx300_phy11g_a21.bin",
1645 static const struct of_device_id xway_gphy_match
[] = {
1646 { .compatible
= "lantiq,xrx200-gphy-fw", .data
= NULL
},
1647 { .compatible
= "lantiq,xrx200a1x-gphy-fw", .data
= &xrx200a1x_gphy_data
},
1648 { .compatible
= "lantiq,xrx200a2x-gphy-fw", .data
= &xrx200a2x_gphy_data
},
1649 { .compatible
= "lantiq,xrx300-gphy-fw", .data
= &xrx300_gphy_data
},
1650 { .compatible
= "lantiq,xrx330-gphy-fw", .data
= &xrx300_gphy_data
},
1654 static int gswip_gphy_fw_load(struct gswip_priv
*priv
, struct gswip_gphy_fw
*gphy_fw
)
1656 struct device
*dev
= priv
->dev
;
1657 const struct firmware
*fw
;
1659 dma_addr_t dma_addr
;
1660 dma_addr_t dev_addr
;
1664 ret
= clk_prepare_enable(gphy_fw
->clk_gate
);
1668 reset_control_assert(gphy_fw
->reset
);
1670 ret
= request_firmware(&fw
, gphy_fw
->fw_name
, dev
);
1672 dev_err(dev
, "failed to load firmware: %s, error: %i\n",
1673 gphy_fw
->fw_name
, ret
);
1677 /* GPHY cores need the firmware code in a persistent and contiguous
1678 * memory area with a 16 kB boundary aligned start address.
1680 size
= fw
->size
+ XRX200_GPHY_FW_ALIGN
;
1682 fw_addr
= dmam_alloc_coherent(dev
, size
, &dma_addr
, GFP_KERNEL
);
1684 fw_addr
= PTR_ALIGN(fw_addr
, XRX200_GPHY_FW_ALIGN
);
1685 dev_addr
= ALIGN(dma_addr
, XRX200_GPHY_FW_ALIGN
);
1686 memcpy(fw_addr
, fw
->data
, fw
->size
);
1688 dev_err(dev
, "failed to alloc firmware memory\n");
1689 release_firmware(fw
);
1693 release_firmware(fw
);
1695 ret
= regmap_write(priv
->rcu_regmap
, gphy_fw
->fw_addr_offset
, dev_addr
);
1699 reset_control_deassert(gphy_fw
->reset
);
1704 static int gswip_gphy_fw_probe(struct gswip_priv
*priv
,
1705 struct gswip_gphy_fw
*gphy_fw
,
1706 struct device_node
*gphy_fw_np
, int i
)
1708 struct device
*dev
= priv
->dev
;
1713 snprintf(gphyname
, sizeof(gphyname
), "gphy%d", i
);
1715 gphy_fw
->clk_gate
= devm_clk_get(dev
, gphyname
);
1716 if (IS_ERR(gphy_fw
->clk_gate
)) {
1717 dev_err(dev
, "Failed to lookup gate clock\n");
1718 return PTR_ERR(gphy_fw
->clk_gate
);
1721 ret
= of_property_read_u32(gphy_fw_np
, "reg", &gphy_fw
->fw_addr_offset
);
1725 ret
= of_property_read_u32(gphy_fw_np
, "lantiq,gphy-mode", &gphy_mode
);
1726 /* Default to GE mode */
1728 gphy_mode
= GPHY_MODE_GE
;
1730 switch (gphy_mode
) {
1732 gphy_fw
->fw_name
= priv
->gphy_fw_name_cfg
->fe_firmware_name
;
1735 gphy_fw
->fw_name
= priv
->gphy_fw_name_cfg
->ge_firmware_name
;
1738 dev_err(dev
, "Unknown GPHY mode %d\n", gphy_mode
);
1742 gphy_fw
->reset
= of_reset_control_array_get_exclusive(gphy_fw_np
);
1743 if (IS_ERR(gphy_fw
->reset
)) {
1744 if (PTR_ERR(gphy_fw
->reset
) != -EPROBE_DEFER
)
1745 dev_err(dev
, "Failed to lookup gphy reset\n");
1746 return PTR_ERR(gphy_fw
->reset
);
1749 return gswip_gphy_fw_load(priv
, gphy_fw
);
1752 static void gswip_gphy_fw_remove(struct gswip_priv
*priv
,
1753 struct gswip_gphy_fw
*gphy_fw
)
1757 /* check if the device was fully probed */
1758 if (!gphy_fw
->fw_name
)
1761 ret
= regmap_write(priv
->rcu_regmap
, gphy_fw
->fw_addr_offset
, 0);
1763 dev_err(priv
->dev
, "can not reset GPHY FW pointer");
1765 clk_disable_unprepare(gphy_fw
->clk_gate
);
1767 reset_control_put(gphy_fw
->reset
);
1770 static int gswip_gphy_fw_list(struct gswip_priv
*priv
,
1771 struct device_node
*gphy_fw_list_np
, u32 version
)
1773 struct device
*dev
= priv
->dev
;
1774 struct device_node
*gphy_fw_np
;
1775 const struct of_device_id
*match
;
1779 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1780 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1781 * needs a different GPHY firmware.
1783 if (of_device_is_compatible(gphy_fw_list_np
, "lantiq,xrx200-gphy-fw")) {
1785 case GSWIP_VERSION_2_0
:
1786 priv
->gphy_fw_name_cfg
= &xrx200a1x_gphy_data
;
1788 case GSWIP_VERSION_2_1
:
1789 priv
->gphy_fw_name_cfg
= &xrx200a2x_gphy_data
;
1792 dev_err(dev
, "unknown GSWIP version: 0x%x", version
);
1797 match
= of_match_node(xway_gphy_match
, gphy_fw_list_np
);
1798 if (match
&& match
->data
)
1799 priv
->gphy_fw_name_cfg
= match
->data
;
1801 if (!priv
->gphy_fw_name_cfg
) {
1802 dev_err(dev
, "GPHY compatible type not supported");
1806 priv
->num_gphy_fw
= of_get_available_child_count(gphy_fw_list_np
);
1807 if (!priv
->num_gphy_fw
)
1810 priv
->rcu_regmap
= syscon_regmap_lookup_by_phandle(gphy_fw_list_np
,
1812 if (IS_ERR(priv
->rcu_regmap
))
1813 return PTR_ERR(priv
->rcu_regmap
);
1815 priv
->gphy_fw
= devm_kmalloc_array(dev
, priv
->num_gphy_fw
,
1816 sizeof(*priv
->gphy_fw
),
1817 GFP_KERNEL
| __GFP_ZERO
);
1821 for_each_available_child_of_node(gphy_fw_list_np
, gphy_fw_np
) {
1822 err
= gswip_gphy_fw_probe(priv
, &priv
->gphy_fw
[i
],
1829 /* The standalone PHY11G requires 300ms to be fully
1830 * initialized and ready for any MDIO communication after being
1831 * taken out of reset. For the SoC-internal GPHY variant there
1832 * is no (known) documentation for the minimum time after a
1833 * reset. Use the same value as for the standalone variant as
1834 * some users have reported internal PHYs not being detected
1835 * without any delay.
1842 for (i
= 0; i
< priv
->num_gphy_fw
; i
++)
1843 gswip_gphy_fw_remove(priv
, &priv
->gphy_fw
[i
]);
1847 static int gswip_probe(struct platform_device
*pdev
)
1849 struct gswip_priv
*priv
;
1850 struct device_node
*mdio_np
, *gphy_fw_np
;
1851 struct device
*dev
= &pdev
->dev
;
1856 priv
= devm_kzalloc(dev
, sizeof(*priv
), GFP_KERNEL
);
1860 priv
->gswip
= devm_platform_ioremap_resource(pdev
, 0);
1861 if (IS_ERR(priv
->gswip
))
1862 return PTR_ERR(priv
->gswip
);
1864 priv
->mdio
= devm_platform_ioremap_resource(pdev
, 1);
1865 if (IS_ERR(priv
->mdio
))
1866 return PTR_ERR(priv
->mdio
);
1868 priv
->mii
= devm_platform_ioremap_resource(pdev
, 2);
1869 if (IS_ERR(priv
->mii
))
1870 return PTR_ERR(priv
->mii
);
1872 priv
->hw_info
= of_device_get_match_data(dev
);
1876 priv
->ds
= devm_kzalloc(dev
, sizeof(*priv
->ds
), GFP_KERNEL
);
1880 priv
->ds
->dev
= dev
;
1881 priv
->ds
->num_ports
= priv
->hw_info
->max_ports
;
1882 priv
->ds
->priv
= priv
;
1883 priv
->ds
->ops
= &gswip_switch_ops
;
1885 version
= gswip_switch_r(priv
, GSWIP_VERSION
);
1887 /* bring up the mdio bus */
1888 gphy_fw_np
= of_get_compatible_child(dev
->of_node
, "lantiq,gphy-fw");
1890 err
= gswip_gphy_fw_list(priv
, gphy_fw_np
, version
);
1891 of_node_put(gphy_fw_np
);
1893 dev_err(dev
, "gphy fw probe failed\n");
1898 /* bring up the mdio bus */
1899 mdio_np
= of_get_compatible_child(dev
->of_node
, "lantiq,xrx200-mdio");
1901 err
= gswip_mdio(priv
, mdio_np
);
1903 dev_err(dev
, "mdio probe failed\n");
1908 err
= dsa_register_switch(priv
->ds
);
1910 dev_err(dev
, "dsa switch register failed: %i\n", err
);
1913 if (!dsa_is_cpu_port(priv
->ds
, priv
->hw_info
->cpu_port
)) {
1914 dev_err(dev
, "wrong CPU port defined, HW only supports port: %i",
1915 priv
->hw_info
->cpu_port
);
1917 goto disable_switch
;
1920 platform_set_drvdata(pdev
, priv
);
1922 dev_info(dev
, "probed GSWIP version %lx mod %lx\n",
1923 (version
& GSWIP_VERSION_REV_MASK
) >> GSWIP_VERSION_REV_SHIFT
,
1924 (version
& GSWIP_VERSION_MOD_MASK
) >> GSWIP_VERSION_MOD_SHIFT
);
1928 gswip_mdio_mask(priv
, GSWIP_MDIO_GLOB_ENABLE
, 0, GSWIP_MDIO_GLOB
);
1929 dsa_unregister_switch(priv
->ds
);
1932 mdiobus_unregister(priv
->ds
->slave_mii_bus
);
1934 of_node_put(mdio_np
);
1935 for (i
= 0; i
< priv
->num_gphy_fw
; i
++)
1936 gswip_gphy_fw_remove(priv
, &priv
->gphy_fw
[i
]);
1940 static int gswip_remove(struct platform_device
*pdev
)
1942 struct gswip_priv
*priv
= platform_get_drvdata(pdev
);
1945 /* disable the switch */
1946 gswip_mdio_mask(priv
, GSWIP_MDIO_GLOB_ENABLE
, 0, GSWIP_MDIO_GLOB
);
1948 dsa_unregister_switch(priv
->ds
);
1950 if (priv
->ds
->slave_mii_bus
) {
1951 mdiobus_unregister(priv
->ds
->slave_mii_bus
);
1952 of_node_put(priv
->ds
->slave_mii_bus
->dev
.of_node
);
1955 for (i
= 0; i
< priv
->num_gphy_fw
; i
++)
1956 gswip_gphy_fw_remove(priv
, &priv
->gphy_fw
[i
]);
1961 static const struct gswip_hw_info gswip_xrx200
= {
1966 static const struct of_device_id gswip_of_match
[] = {
1967 { .compatible
= "lantiq,xrx200-gswip", .data
= &gswip_xrx200
},
1970 MODULE_DEVICE_TABLE(of
, gswip_of_match
);
1972 static struct platform_driver gswip_driver
= {
1973 .probe
= gswip_probe
,
1974 .remove
= gswip_remove
,
1977 .of_match_table
= gswip_of_match
,
1981 module_platform_driver(gswip_driver
);
1983 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1984 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1985 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1986 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1987 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1988 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1989 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1990 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1991 MODULE_LICENSE("GPL v2");