1 // SPDX-License-Identifier: GPL-2.0-only
4 * Alchemy Au1x00 ethernet driver
6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
7 * Copyright 2002 TimeSys Corp.
8 * Added ethtool/mii-tool support,
9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
11 * or riemer@riemer-nt.de: fixed the link beat detection with
12 * ioctls (SIOCGMIIPHY)
13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
14 * converted to use linux-2.6.x's PHY framework
16 * Author: MontaVista Software, Inc.
17 * ppopov@mvista.com or source@mvista.com
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include <linux/capability.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/string.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/mii.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/phy.h>
41 #include <linux/platform_device.h>
42 #include <linux/cpu.h>
45 #include <asm/mipsregs.h>
47 #include <asm/processor.h>
50 #include <au1xxx_eth.h>
53 #include "au1000_eth.h"
55 #ifdef AU1000_ETH_DEBUG
56 static int au1000_debug
= 5;
58 static int au1000_debug
= 3;
61 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
65 #define DRV_NAME "au1000_eth"
66 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
67 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
69 MODULE_AUTHOR(DRV_AUTHOR
);
70 MODULE_DESCRIPTION(DRV_DESC
);
71 MODULE_LICENSE("GPL");
73 /* AU1000 MAC registers and bits */
74 #define MAC_CONTROL 0x0
75 # define MAC_RX_ENABLE (1 << 2)
76 # define MAC_TX_ENABLE (1 << 3)
77 # define MAC_DEF_CHECK (1 << 5)
78 # define MAC_SET_BL(X) (((X) & 0x3) << 6)
79 # define MAC_AUTO_PAD (1 << 8)
80 # define MAC_DISABLE_RETRY (1 << 10)
81 # define MAC_DISABLE_BCAST (1 << 11)
82 # define MAC_LATE_COL (1 << 12)
83 # define MAC_HASH_MODE (1 << 13)
84 # define MAC_HASH_ONLY (1 << 15)
85 # define MAC_PASS_ALL (1 << 16)
86 # define MAC_INVERSE_FILTER (1 << 17)
87 # define MAC_PROMISCUOUS (1 << 18)
88 # define MAC_PASS_ALL_MULTI (1 << 19)
89 # define MAC_FULL_DUPLEX (1 << 20)
90 # define MAC_NORMAL_MODE 0
91 # define MAC_INT_LOOPBACK (1 << 21)
92 # define MAC_EXT_LOOPBACK (1 << 22)
93 # define MAC_DISABLE_RX_OWN (1 << 23)
94 # define MAC_BIG_ENDIAN (1 << 30)
95 # define MAC_RX_ALL (1 << 31)
96 #define MAC_ADDRESS_HIGH 0x4
97 #define MAC_ADDRESS_LOW 0x8
98 #define MAC_MCAST_HIGH 0xC
99 #define MAC_MCAST_LOW 0x10
100 #define MAC_MII_CNTRL 0x14
101 # define MAC_MII_BUSY (1 << 0)
102 # define MAC_MII_READ 0
103 # define MAC_MII_WRITE (1 << 1)
104 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
105 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
106 #define MAC_MII_DATA 0x18
107 #define MAC_FLOW_CNTRL 0x1C
108 # define MAC_FLOW_CNTRL_BUSY (1 << 0)
109 # define MAC_FLOW_CNTRL_ENABLE (1 << 1)
110 # define MAC_PASS_CONTROL (1 << 2)
111 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16)
112 #define MAC_VLAN1_TAG 0x20
113 #define MAC_VLAN2_TAG 0x24
115 /* Ethernet Controller Enable */
116 # define MAC_EN_CLOCK_ENABLE (1 << 0)
117 # define MAC_EN_RESET0 (1 << 1)
118 # define MAC_EN_TOSS (0 << 2)
119 # define MAC_EN_CACHEABLE (1 << 3)
120 # define MAC_EN_RESET1 (1 << 4)
121 # define MAC_EN_RESET2 (1 << 5)
122 # define MAC_DMA_RESET (1 << 6)
124 /* Ethernet Controller DMA Channels */
125 /* offsets from MAC_TX_RING_ADDR address */
126 #define MAC_TX_BUFF0_STATUS 0x0
127 # define TX_FRAME_ABORTED (1 << 0)
128 # define TX_JAB_TIMEOUT (1 << 1)
129 # define TX_NO_CARRIER (1 << 2)
130 # define TX_LOSS_CARRIER (1 << 3)
131 # define TX_EXC_DEF (1 << 4)
132 # define TX_LATE_COLL_ABORT (1 << 5)
133 # define TX_EXC_COLL (1 << 6)
134 # define TX_UNDERRUN (1 << 7)
135 # define TX_DEFERRED (1 << 8)
136 # define TX_LATE_COLL (1 << 9)
137 # define TX_COLL_CNT_MASK (0xF << 10)
138 # define TX_PKT_RETRY (1 << 31)
139 #define MAC_TX_BUFF0_ADDR 0x4
140 # define TX_DMA_ENABLE (1 << 0)
141 # define TX_T_DONE (1 << 1)
142 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
143 #define MAC_TX_BUFF0_LEN 0x8
144 #define MAC_TX_BUFF1_STATUS 0x10
145 #define MAC_TX_BUFF1_ADDR 0x14
146 #define MAC_TX_BUFF1_LEN 0x18
147 #define MAC_TX_BUFF2_STATUS 0x20
148 #define MAC_TX_BUFF2_ADDR 0x24
149 #define MAC_TX_BUFF2_LEN 0x28
150 #define MAC_TX_BUFF3_STATUS 0x30
151 #define MAC_TX_BUFF3_ADDR 0x34
152 #define MAC_TX_BUFF3_LEN 0x38
154 /* offsets from MAC_RX_RING_ADDR */
155 #define MAC_RX_BUFF0_STATUS 0x0
156 # define RX_FRAME_LEN_MASK 0x3fff
157 # define RX_WDOG_TIMER (1 << 14)
158 # define RX_RUNT (1 << 15)
159 # define RX_OVERLEN (1 << 16)
160 # define RX_COLL (1 << 17)
161 # define RX_ETHER (1 << 18)
162 # define RX_MII_ERROR (1 << 19)
163 # define RX_DRIBBLING (1 << 20)
164 # define RX_CRC_ERROR (1 << 21)
165 # define RX_VLAN1 (1 << 22)
166 # define RX_VLAN2 (1 << 23)
167 # define RX_LEN_ERROR (1 << 24)
168 # define RX_CNTRL_FRAME (1 << 25)
169 # define RX_U_CNTRL_FRAME (1 << 26)
170 # define RX_MCAST_FRAME (1 << 27)
171 # define RX_BCAST_FRAME (1 << 28)
172 # define RX_FILTER_FAIL (1 << 29)
173 # define RX_PACKET_FILTER (1 << 30)
174 # define RX_MISSED_FRAME (1 << 31)
176 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \
177 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
178 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
179 #define MAC_RX_BUFF0_ADDR 0x4
180 # define RX_DMA_ENABLE (1 << 0)
181 # define RX_T_DONE (1 << 1)
182 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
183 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0)
184 #define MAC_RX_BUFF1_STATUS 0x10
185 #define MAC_RX_BUFF1_ADDR 0x14
186 #define MAC_RX_BUFF2_STATUS 0x20
187 #define MAC_RX_BUFF2_ADDR 0x24
188 #define MAC_RX_BUFF3_STATUS 0x30
189 #define MAC_RX_BUFF3_ADDR 0x34
192 * Theory of operation
194 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
195 * There are four receive and four transmit descriptors. These
196 * descriptors are not in memory; rather, they are just a set of
197 * hardware registers.
199 * Since the Au1000 has a coherent data cache, the receive and
200 * transmit buffers are allocated from the KSEG0 segment. The
201 * hardware registers, however, are still mapped at KSEG1 to
202 * make sure there's no out-of-order writes, and that all writes
203 * complete immediately.
207 * board-specific configurations
209 * PHY detection algorithm
211 * If phy_static_config is undefined, the PHY setup is
214 * mii_probe() first searches the current MAC's MII bus for a PHY,
215 * selecting the first (or last, if phy_search_highest_addr is
216 * defined) PHY address not already claimed by another netdev.
218 * If nothing was found that way when searching for the 2nd ethernet
219 * controller's PHY and phy1_search_mac0 is defined, then
220 * the first MII bus is searched as well for an unclaimed PHY; this is
221 * needed in case of a dual-PHY accessible only through the MAC0's MII
224 * Finally, if no PHY is found, then the corresponding ethernet
225 * controller is not registered to the network subsystem.
228 /* autodetection defaults: phy1_search_mac0 */
232 * most boards PHY setup should be detectable properly with the
233 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
234 * you have a switch attached, or want to use the PHY's interrupt
235 * notification capabilities) you can provide a static PHY
238 * IRQs may only be set, if a PHY address was configured
239 * If a PHY address is given, also a bus id is required to be set
241 * ps: make sure the used irqs are configured properly in the board
244 static void au1000_enable_mac(struct net_device
*dev
, int force_reset
)
247 struct au1000_private
*aup
= netdev_priv(dev
);
249 spin_lock_irqsave(&aup
->lock
, flags
);
251 if (force_reset
|| (!aup
->mac_enabled
)) {
252 writel(MAC_EN_CLOCK_ENABLE
, aup
->enable
);
253 wmb(); /* drain writebuffer */
255 writel((MAC_EN_RESET0
| MAC_EN_RESET1
| MAC_EN_RESET2
256 | MAC_EN_CLOCK_ENABLE
), aup
->enable
);
257 wmb(); /* drain writebuffer */
260 aup
->mac_enabled
= 1;
263 spin_unlock_irqrestore(&aup
->lock
, flags
);
269 static int au1000_mdio_read(struct net_device
*dev
, int phy_addr
, int reg
)
271 struct au1000_private
*aup
= netdev_priv(dev
);
272 u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
273 u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
277 while (readl(mii_control_reg
) & MAC_MII_BUSY
) {
279 if (--timedout
== 0) {
280 netdev_err(dev
, "read_MII busy timeout!!\n");
285 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
286 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_READ
;
288 writel(mii_control
, mii_control_reg
);
291 while (readl(mii_control_reg
) & MAC_MII_BUSY
) {
293 if (--timedout
== 0) {
294 netdev_err(dev
, "mdio_read busy timeout!!\n");
298 return readl(mii_data_reg
);
301 static void au1000_mdio_write(struct net_device
*dev
, int phy_addr
,
304 struct au1000_private
*aup
= netdev_priv(dev
);
305 u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
306 u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
310 while (readl(mii_control_reg
) & MAC_MII_BUSY
) {
312 if (--timedout
== 0) {
313 netdev_err(dev
, "mdio_write busy timeout!!\n");
318 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
319 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_WRITE
;
321 writel(value
, mii_data_reg
);
322 writel(mii_control
, mii_control_reg
);
325 static int au1000_mdiobus_read(struct mii_bus
*bus
, int phy_addr
, int regnum
)
327 struct net_device
*const dev
= bus
->priv
;
329 /* make sure the MAC associated with this
332 au1000_enable_mac(dev
, 0);
334 return au1000_mdio_read(dev
, phy_addr
, regnum
);
337 static int au1000_mdiobus_write(struct mii_bus
*bus
, int phy_addr
, int regnum
,
340 struct net_device
*const dev
= bus
->priv
;
342 /* make sure the MAC associated with this
345 au1000_enable_mac(dev
, 0);
347 au1000_mdio_write(dev
, phy_addr
, regnum
, value
);
351 static int au1000_mdiobus_reset(struct mii_bus
*bus
)
353 struct net_device
*const dev
= bus
->priv
;
355 /* make sure the MAC associated with this
358 au1000_enable_mac(dev
, 0);
363 static void au1000_hard_stop(struct net_device
*dev
)
365 struct au1000_private
*aup
= netdev_priv(dev
);
368 netif_dbg(aup
, drv
, dev
, "hard stop\n");
370 reg
= readl(&aup
->mac
->control
);
371 reg
&= ~(MAC_RX_ENABLE
| MAC_TX_ENABLE
);
372 writel(reg
, &aup
->mac
->control
);
373 wmb(); /* drain writebuffer */
377 static void au1000_enable_rx_tx(struct net_device
*dev
)
379 struct au1000_private
*aup
= netdev_priv(dev
);
382 netif_dbg(aup
, hw
, dev
, "enable_rx_tx\n");
384 reg
= readl(&aup
->mac
->control
);
385 reg
|= (MAC_RX_ENABLE
| MAC_TX_ENABLE
);
386 writel(reg
, &aup
->mac
->control
);
387 wmb(); /* drain writebuffer */
392 au1000_adjust_link(struct net_device
*dev
)
394 struct au1000_private
*aup
= netdev_priv(dev
);
395 struct phy_device
*phydev
= dev
->phydev
;
399 int status_change
= 0;
403 spin_lock_irqsave(&aup
->lock
, flags
);
405 if (phydev
->link
&& (aup
->old_speed
!= phydev
->speed
)) {
408 switch (phydev
->speed
) {
413 netdev_warn(dev
, "Speed (%d) is not 10/100 ???\n",
418 aup
->old_speed
= phydev
->speed
;
423 if (phydev
->link
&& (aup
->old_duplex
!= phydev
->duplex
)) {
424 /* duplex mode changed */
426 /* switching duplex mode requires to disable rx and tx! */
427 au1000_hard_stop(dev
);
429 reg
= readl(&aup
->mac
->control
);
430 if (DUPLEX_FULL
== phydev
->duplex
) {
431 reg
|= MAC_FULL_DUPLEX
;
432 reg
&= ~MAC_DISABLE_RX_OWN
;
434 reg
&= ~MAC_FULL_DUPLEX
;
435 reg
|= MAC_DISABLE_RX_OWN
;
437 writel(reg
, &aup
->mac
->control
);
438 wmb(); /* drain writebuffer */
441 au1000_enable_rx_tx(dev
);
442 aup
->old_duplex
= phydev
->duplex
;
447 if (phydev
->link
!= aup
->old_link
) {
448 /* link state changed */
453 aup
->old_duplex
= -1;
456 aup
->old_link
= phydev
->link
;
460 spin_unlock_irqrestore(&aup
->lock
, flags
);
464 netdev_info(dev
, "link up (%d/%s)\n",
466 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
468 netdev_info(dev
, "link down\n");
472 static int au1000_mii_probe(struct net_device
*dev
)
474 struct au1000_private
*const aup
= netdev_priv(dev
);
475 struct phy_device
*phydev
= NULL
;
478 if (aup
->phy_static_config
) {
479 BUG_ON(aup
->mac_id
< 0 || aup
->mac_id
> 1);
482 phydev
= mdiobus_get_phy(aup
->mii_bus
, aup
->phy_addr
);
484 netdev_info(dev
, "using PHY-less setup\n");
488 /* find the first (lowest address) PHY
489 * on the current MAC's MII bus
491 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++)
492 if (mdiobus_get_phy(aup
->mii_bus
, phy_addr
)) {
493 phydev
= mdiobus_get_phy(aup
->mii_bus
, phy_addr
);
494 if (!aup
->phy_search_highest_addr
)
495 /* break out with first one found */
499 if (aup
->phy1_search_mac0
) {
500 /* try harder to find a PHY */
501 if (!phydev
&& (aup
->mac_id
== 1)) {
502 /* no PHY found, maybe we have a dual PHY? */
503 dev_info(&dev
->dev
, ": no PHY found on MAC1, "
504 "let's see if it's attached to MAC0...\n");
506 /* find the first (lowest address) non-attached
507 * PHY on the MAC0 MII bus
509 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++) {
510 struct phy_device
*const tmp_phydev
=
511 mdiobus_get_phy(aup
->mii_bus
,
514 if (aup
->mac_id
== 1)
521 /* already claimed by MAC0 */
522 if (tmp_phydev
->attached_dev
)
526 break; /* found it */
532 netdev_err(dev
, "no PHY found\n");
536 /* now we are supposed to have a proper phydev, to attach to... */
537 BUG_ON(phydev
->attached_dev
);
539 phydev
= phy_connect(dev
, phydev_name(phydev
),
540 &au1000_adjust_link
, PHY_INTERFACE_MODE_MII
);
542 if (IS_ERR(phydev
)) {
543 netdev_err(dev
, "Could not attach to PHY\n");
544 return PTR_ERR(phydev
);
547 phy_set_max_speed(phydev
, SPEED_100
);
551 aup
->old_duplex
= -1;
553 phy_attached_info(phydev
);
559 * Buffer allocation/deallocation routines. The buffer descriptor returned
560 * has the virtual and dma address of a buffer suitable for
561 * both, receive and transmit operations.
563 static struct db_dest
*au1000_GetFreeDB(struct au1000_private
*aup
)
569 aup
->pDBfree
= pDB
->pnext
;
574 void au1000_ReleaseDB(struct au1000_private
*aup
, struct db_dest
*pDB
)
576 struct db_dest
*pDBfree
= aup
->pDBfree
;
578 pDBfree
->pnext
= pDB
;
582 static void au1000_reset_mac_unlocked(struct net_device
*dev
)
584 struct au1000_private
*const aup
= netdev_priv(dev
);
587 au1000_hard_stop(dev
);
589 writel(MAC_EN_CLOCK_ENABLE
, aup
->enable
);
590 wmb(); /* drain writebuffer */
592 writel(0, aup
->enable
);
593 wmb(); /* drain writebuffer */
597 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
598 /* reset control bits */
599 aup
->rx_dma_ring
[i
]->buff_stat
&= ~0xf;
601 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
602 /* reset control bits */
603 aup
->tx_dma_ring
[i
]->buff_stat
&= ~0xf;
606 aup
->mac_enabled
= 0;
610 static void au1000_reset_mac(struct net_device
*dev
)
612 struct au1000_private
*const aup
= netdev_priv(dev
);
615 netif_dbg(aup
, hw
, dev
, "reset mac, aup %x\n",
618 spin_lock_irqsave(&aup
->lock
, flags
);
620 au1000_reset_mac_unlocked(dev
);
622 spin_unlock_irqrestore(&aup
->lock
, flags
);
626 * Setup the receive and transmit "rings". These pointers are the addresses
627 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
628 * these are not descriptors sitting in memory.
631 au1000_setup_hw_rings(struct au1000_private
*aup
, void __iomem
*tx_base
)
635 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
636 aup
->rx_dma_ring
[i
] = (struct rx_dma
*)
637 (tx_base
+ 0x100 + sizeof(struct rx_dma
) * i
);
639 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
640 aup
->tx_dma_ring
[i
] = (struct tx_dma
*)
641 (tx_base
+ sizeof(struct tx_dma
) * i
);
649 au1000_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
651 struct au1000_private
*aup
= netdev_priv(dev
);
653 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
654 snprintf(info
->bus_info
, sizeof(info
->bus_info
), "%s %d", DRV_NAME
,
658 static void au1000_set_msglevel(struct net_device
*dev
, u32 value
)
660 struct au1000_private
*aup
= netdev_priv(dev
);
661 aup
->msg_enable
= value
;
664 static u32
au1000_get_msglevel(struct net_device
*dev
)
666 struct au1000_private
*aup
= netdev_priv(dev
);
667 return aup
->msg_enable
;
670 static const struct ethtool_ops au1000_ethtool_ops
= {
671 .get_drvinfo
= au1000_get_drvinfo
,
672 .get_link
= ethtool_op_get_link
,
673 .get_msglevel
= au1000_get_msglevel
,
674 .set_msglevel
= au1000_set_msglevel
,
675 .get_link_ksettings
= phy_ethtool_get_link_ksettings
,
676 .set_link_ksettings
= phy_ethtool_set_link_ksettings
,
680 * Initialize the interface.
682 * When the device powers up, the clocks are disabled and the
683 * mac is in reset state. When the interface is closed, we
684 * do the same -- reset the device and disable the clocks to
685 * conserve power. Thus, whenever au1000_init() is called,
686 * the device should already be in reset state.
688 static int au1000_init(struct net_device
*dev
)
690 struct au1000_private
*aup
= netdev_priv(dev
);
695 netif_dbg(aup
, hw
, dev
, "au1000_init\n");
697 /* bring the device out of reset */
698 au1000_enable_mac(dev
, 1);
700 spin_lock_irqsave(&aup
->lock
, flags
);
702 writel(0, &aup
->mac
->control
);
703 aup
->tx_head
= (aup
->tx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
704 aup
->tx_tail
= aup
->tx_head
;
705 aup
->rx_head
= (aup
->rx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
707 writel(dev
->dev_addr
[5]<<8 | dev
->dev_addr
[4],
708 &aup
->mac
->mac_addr_high
);
709 writel(dev
->dev_addr
[3]<<24 | dev
->dev_addr
[2]<<16 |
710 dev
->dev_addr
[1]<<8 | dev
->dev_addr
[0],
711 &aup
->mac
->mac_addr_low
);
714 for (i
= 0; i
< NUM_RX_DMA
; i
++)
715 aup
->rx_dma_ring
[i
]->buff_stat
|= RX_DMA_ENABLE
;
717 wmb(); /* drain writebuffer */
719 control
= MAC_RX_ENABLE
| MAC_TX_ENABLE
;
720 #ifndef CONFIG_CPU_LITTLE_ENDIAN
721 control
|= MAC_BIG_ENDIAN
;
724 if (dev
->phydev
->link
&& (DUPLEX_FULL
== dev
->phydev
->duplex
))
725 control
|= MAC_FULL_DUPLEX
;
727 control
|= MAC_DISABLE_RX_OWN
;
728 } else { /* PHY-less op, assume full-duplex */
729 control
|= MAC_FULL_DUPLEX
;
732 writel(control
, &aup
->mac
->control
);
733 writel(0x8100, &aup
->mac
->vlan1_tag
); /* activate vlan support */
734 wmb(); /* drain writebuffer */
736 spin_unlock_irqrestore(&aup
->lock
, flags
);
740 static inline void au1000_update_rx_stats(struct net_device
*dev
, u32 status
)
742 struct net_device_stats
*ps
= &dev
->stats
;
745 if (status
& RX_MCAST_FRAME
)
748 if (status
& RX_ERROR
) {
750 if (status
& RX_MISSED_FRAME
)
751 ps
->rx_missed_errors
++;
752 if (status
& (RX_OVERLEN
| RX_RUNT
| RX_LEN_ERROR
))
753 ps
->rx_length_errors
++;
754 if (status
& RX_CRC_ERROR
)
756 if (status
& RX_COLL
)
759 ps
->rx_bytes
+= status
& RX_FRAME_LEN_MASK
;
764 * Au1000 receive routine.
766 static int au1000_rx(struct net_device
*dev
)
768 struct au1000_private
*aup
= netdev_priv(dev
);
771 u32 buff_stat
, status
;
775 netif_dbg(aup
, rx_status
, dev
, "au1000_rx head %d\n", aup
->rx_head
);
777 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
778 buff_stat
= prxd
->buff_stat
;
779 while (buff_stat
& RX_T_DONE
) {
780 status
= prxd
->status
;
781 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
782 au1000_update_rx_stats(dev
, status
);
783 if (!(status
& RX_ERROR
)) {
786 frmlen
= (status
& RX_FRAME_LEN_MASK
);
787 frmlen
-= 4; /* Remove FCS */
788 skb
= netdev_alloc_skb(dev
, frmlen
+ 2);
790 dev
->stats
.rx_dropped
++;
793 skb_reserve(skb
, 2); /* 16 byte IP header align */
794 skb_copy_to_linear_data(skb
,
795 (unsigned char *)pDB
->vaddr
, frmlen
);
796 skb_put(skb
, frmlen
);
797 skb
->protocol
= eth_type_trans(skb
, dev
);
798 netif_rx(skb
); /* pass the packet to upper layers */
800 if (au1000_debug
> 4) {
801 pr_err("rx_error(s):");
802 if (status
& RX_MISSED_FRAME
)
804 if (status
& RX_WDOG_TIMER
)
806 if (status
& RX_RUNT
)
808 if (status
& RX_OVERLEN
)
810 if (status
& RX_COLL
)
812 if (status
& RX_MII_ERROR
)
813 pr_cont(" mii error");
814 if (status
& RX_CRC_ERROR
)
815 pr_cont(" crc error");
816 if (status
& RX_LEN_ERROR
)
817 pr_cont(" len error");
818 if (status
& RX_U_CNTRL_FRAME
)
819 pr_cont(" u control frame");
823 prxd
->buff_stat
= (u32
)(pDB
->dma_addr
| RX_DMA_ENABLE
);
824 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_RX_DMA
- 1);
825 wmb(); /* drain writebuffer */
827 /* next descriptor */
828 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
829 buff_stat
= prxd
->buff_stat
;
834 static void au1000_update_tx_stats(struct net_device
*dev
, u32 status
)
836 struct net_device_stats
*ps
= &dev
->stats
;
838 if (status
& TX_FRAME_ABORTED
) {
839 if (!dev
->phydev
|| (DUPLEX_FULL
== dev
->phydev
->duplex
)) {
840 if (status
& (TX_JAB_TIMEOUT
| TX_UNDERRUN
)) {
841 /* any other tx errors are only valid
842 * in half duplex mode
845 ps
->tx_aborted_errors
++;
849 ps
->tx_aborted_errors
++;
850 if (status
& (TX_NO_CARRIER
| TX_LOSS_CARRIER
))
851 ps
->tx_carrier_errors
++;
857 * Called from the interrupt service routine to acknowledge
858 * the TX DONE bits. This is a must if the irq is setup as
861 static void au1000_tx_ack(struct net_device
*dev
)
863 struct au1000_private
*aup
= netdev_priv(dev
);
866 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
868 while (ptxd
->buff_stat
& TX_T_DONE
) {
869 au1000_update_tx_stats(dev
, ptxd
->status
);
870 ptxd
->buff_stat
&= ~TX_T_DONE
;
872 wmb(); /* drain writebuffer */
874 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_TX_DMA
- 1);
875 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
879 netif_wake_queue(dev
);
885 * Au1000 interrupt service routine.
887 static irqreturn_t
au1000_interrupt(int irq
, void *dev_id
)
889 struct net_device
*dev
= dev_id
;
891 /* Handle RX interrupts first to minimize chance of overrun */
895 return IRQ_RETVAL(1);
898 static int au1000_open(struct net_device
*dev
)
901 struct au1000_private
*aup
= netdev_priv(dev
);
903 netif_dbg(aup
, drv
, dev
, "open: dev=%p\n", dev
);
905 retval
= request_irq(dev
->irq
, au1000_interrupt
, 0,
908 netdev_err(dev
, "unable to get IRQ %d\n", dev
->irq
);
912 retval
= au1000_init(dev
);
914 netdev_err(dev
, "error in au1000_init\n");
915 free_irq(dev
->irq
, dev
);
920 phy_start(dev
->phydev
);
922 netif_start_queue(dev
);
924 netif_dbg(aup
, drv
, dev
, "open: Initialization done.\n");
929 static int au1000_close(struct net_device
*dev
)
932 struct au1000_private
*const aup
= netdev_priv(dev
);
934 netif_dbg(aup
, drv
, dev
, "close: dev=%p\n", dev
);
937 phy_stop(dev
->phydev
);
939 spin_lock_irqsave(&aup
->lock
, flags
);
941 au1000_reset_mac_unlocked(dev
);
943 /* stop the device */
944 netif_stop_queue(dev
);
946 /* disable the interrupt */
947 free_irq(dev
->irq
, dev
);
948 spin_unlock_irqrestore(&aup
->lock
, flags
);
954 * Au1000 transmit routine.
956 static netdev_tx_t
au1000_tx(struct sk_buff
*skb
, struct net_device
*dev
)
958 struct au1000_private
*aup
= netdev_priv(dev
);
959 struct net_device_stats
*ps
= &dev
->stats
;
965 netif_dbg(aup
, tx_queued
, dev
, "tx: aup %x len=%d, data=%p, head %d\n",
966 (unsigned)aup
, skb
->len
,
967 skb
->data
, aup
->tx_head
);
969 ptxd
= aup
->tx_dma_ring
[aup
->tx_head
];
970 buff_stat
= ptxd
->buff_stat
;
971 if (buff_stat
& TX_DMA_ENABLE
) {
972 /* We've wrapped around and the transmitter is still busy */
973 netif_stop_queue(dev
);
975 return NETDEV_TX_BUSY
;
976 } else if (buff_stat
& TX_T_DONE
) {
977 au1000_update_tx_stats(dev
, ptxd
->status
);
983 netif_wake_queue(dev
);
986 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
987 skb_copy_from_linear_data(skb
, (void *)pDB
->vaddr
, skb
->len
);
988 if (skb
->len
< ETH_ZLEN
) {
989 for (i
= skb
->len
; i
< ETH_ZLEN
; i
++)
990 ((char *)pDB
->vaddr
)[i
] = 0;
992 ptxd
->len
= ETH_ZLEN
;
994 ptxd
->len
= skb
->len
;
997 ps
->tx_bytes
+= ptxd
->len
;
999 ptxd
->buff_stat
= pDB
->dma_addr
| TX_DMA_ENABLE
;
1000 wmb(); /* drain writebuffer */
1002 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_TX_DMA
- 1);
1003 return NETDEV_TX_OK
;
1007 * The Tx ring has been full longer than the watchdog timeout
1008 * value. The transmitter must be hung?
1010 static void au1000_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
1012 netdev_err(dev
, "au1000_tx_timeout: dev=%p\n", dev
);
1013 au1000_reset_mac(dev
);
1015 netif_trans_update(dev
); /* prevent tx timeout */
1016 netif_wake_queue(dev
);
1019 static void au1000_multicast_list(struct net_device
*dev
)
1021 struct au1000_private
*aup
= netdev_priv(dev
);
1024 netif_dbg(aup
, drv
, dev
, "%s: flags=%x\n", __func__
, dev
->flags
);
1025 reg
= readl(&aup
->mac
->control
);
1026 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1027 reg
|= MAC_PROMISCUOUS
;
1028 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1029 netdev_mc_count(dev
) > MULTICAST_FILTER_LIMIT
) {
1030 reg
|= MAC_PASS_ALL_MULTI
;
1031 reg
&= ~MAC_PROMISCUOUS
;
1032 netdev_info(dev
, "Pass all multicast\n");
1034 struct netdev_hw_addr
*ha
;
1035 u32 mc_filter
[2]; /* Multicast hash filter */
1037 mc_filter
[1] = mc_filter
[0] = 0;
1038 netdev_for_each_mc_addr(ha
, dev
)
1039 set_bit(ether_crc(ETH_ALEN
, ha
->addr
)>>26,
1041 writel(mc_filter
[1], &aup
->mac
->multi_hash_high
);
1042 writel(mc_filter
[0], &aup
->mac
->multi_hash_low
);
1043 reg
&= ~MAC_PROMISCUOUS
;
1044 reg
|= MAC_HASH_MODE
;
1046 writel(reg
, &aup
->mac
->control
);
1049 static const struct net_device_ops au1000_netdev_ops
= {
1050 .ndo_open
= au1000_open
,
1051 .ndo_stop
= au1000_close
,
1052 .ndo_start_xmit
= au1000_tx
,
1053 .ndo_set_rx_mode
= au1000_multicast_list
,
1054 .ndo_do_ioctl
= phy_do_ioctl_running
,
1055 .ndo_tx_timeout
= au1000_tx_timeout
,
1056 .ndo_set_mac_address
= eth_mac_addr
,
1057 .ndo_validate_addr
= eth_validate_addr
,
1060 static int au1000_probe(struct platform_device
*pdev
)
1062 struct au1000_private
*aup
= NULL
;
1063 struct au1000_eth_platform_data
*pd
;
1064 struct net_device
*dev
= NULL
;
1065 struct db_dest
*pDB
, *pDBfree
;
1066 int irq
, i
, err
= 0;
1067 struct resource
*base
, *macen
, *macdma
;
1069 base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1071 dev_err(&pdev
->dev
, "failed to retrieve base register\n");
1076 macen
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1078 dev_err(&pdev
->dev
, "failed to retrieve MAC Enable register\n");
1083 irq
= platform_get_irq(pdev
, 0);
1089 macdma
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
1091 dev_err(&pdev
->dev
, "failed to retrieve MACDMA registers\n");
1096 if (!request_mem_region(base
->start
, resource_size(base
),
1098 dev_err(&pdev
->dev
, "failed to request memory region for base registers\n");
1103 if (!request_mem_region(macen
->start
, resource_size(macen
),
1105 dev_err(&pdev
->dev
, "failed to request memory region for MAC enable register\n");
1110 if (!request_mem_region(macdma
->start
, resource_size(macdma
),
1112 dev_err(&pdev
->dev
, "failed to request MACDMA memory region\n");
1117 dev
= alloc_etherdev(sizeof(struct au1000_private
));
1123 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1124 platform_set_drvdata(pdev
, dev
);
1125 aup
= netdev_priv(dev
);
1127 spin_lock_init(&aup
->lock
);
1128 aup
->msg_enable
= (au1000_debug
< 4 ?
1129 AU1000_DEF_MSG_ENABLE
: au1000_debug
);
1131 /* Allocate the data buffers
1132 * Snooping works fine with eth on all au1xxx
1134 aup
->vaddr
= (u32
)dma_alloc_coherent(&pdev
->dev
, MAX_BUF_SIZE
*
1135 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1138 dev_err(&pdev
->dev
, "failed to allocate data buffers\n");
1143 /* aup->mac is the base address of the MAC's registers */
1144 aup
->mac
= (struct mac_reg
*)
1145 ioremap(base
->start
, resource_size(base
));
1147 dev_err(&pdev
->dev
, "failed to ioremap MAC registers\n");
1152 /* Setup some variables for quick register address access */
1153 aup
->enable
= (u32
*)ioremap(macen
->start
,
1154 resource_size(macen
));
1156 dev_err(&pdev
->dev
, "failed to ioremap MAC enable register\n");
1160 aup
->mac_id
= pdev
->id
;
1162 aup
->macdma
= ioremap(macdma
->start
, resource_size(macdma
));
1164 dev_err(&pdev
->dev
, "failed to ioremap MACDMA registers\n");
1169 au1000_setup_hw_rings(aup
, aup
->macdma
);
1171 writel(0, aup
->enable
);
1172 aup
->mac_enabled
= 0;
1174 pd
= dev_get_platdata(&pdev
->dev
);
1176 dev_info(&pdev
->dev
, "no platform_data passed,"
1177 " PHY search on MAC0\n");
1178 aup
->phy1_search_mac0
= 1;
1180 if (is_valid_ether_addr(pd
->mac
)) {
1181 memcpy(dev
->dev_addr
, pd
->mac
, ETH_ALEN
);
1183 /* Set a random MAC since no valid provided by platform_data. */
1184 eth_hw_addr_random(dev
);
1187 aup
->phy_static_config
= pd
->phy_static_config
;
1188 aup
->phy_search_highest_addr
= pd
->phy_search_highest_addr
;
1189 aup
->phy1_search_mac0
= pd
->phy1_search_mac0
;
1190 aup
->phy_addr
= pd
->phy_addr
;
1191 aup
->phy_busid
= pd
->phy_busid
;
1192 aup
->phy_irq
= pd
->phy_irq
;
1195 if (aup
->phy_busid
> 0) {
1196 dev_err(&pdev
->dev
, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1198 goto err_mdiobus_alloc
;
1201 aup
->mii_bus
= mdiobus_alloc();
1202 if (aup
->mii_bus
== NULL
) {
1203 dev_err(&pdev
->dev
, "failed to allocate mdiobus structure\n");
1205 goto err_mdiobus_alloc
;
1208 aup
->mii_bus
->priv
= dev
;
1209 aup
->mii_bus
->read
= au1000_mdiobus_read
;
1210 aup
->mii_bus
->write
= au1000_mdiobus_write
;
1211 aup
->mii_bus
->reset
= au1000_mdiobus_reset
;
1212 aup
->mii_bus
->name
= "au1000_eth_mii";
1213 snprintf(aup
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
1214 pdev
->name
, aup
->mac_id
);
1216 /* if known, set corresponding PHY IRQs */
1217 if (aup
->phy_static_config
)
1218 if (aup
->phy_irq
&& aup
->phy_busid
== aup
->mac_id
)
1219 aup
->mii_bus
->irq
[aup
->phy_addr
] = aup
->phy_irq
;
1221 err
= mdiobus_register(aup
->mii_bus
);
1223 dev_err(&pdev
->dev
, "failed to register MDIO bus\n");
1224 goto err_mdiobus_reg
;
1227 err
= au1000_mii_probe(dev
);
1232 /* setup the data buffer descriptors and attach a buffer to each one */
1234 for (i
= 0; i
< (NUM_TX_BUFFS
+NUM_RX_BUFFS
); i
++) {
1235 pDB
->pnext
= pDBfree
;
1237 pDB
->vaddr
= (u32
*)((unsigned)aup
->vaddr
+ MAX_BUF_SIZE
*i
);
1238 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
1241 aup
->pDBfree
= pDBfree
;
1244 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1245 pDB
= au1000_GetFreeDB(aup
);
1249 aup
->rx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1250 aup
->rx_db_inuse
[i
] = pDB
;
1253 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1254 pDB
= au1000_GetFreeDB(aup
);
1258 aup
->tx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1259 aup
->tx_dma_ring
[i
]->len
= 0;
1260 aup
->tx_db_inuse
[i
] = pDB
;
1263 dev
->base_addr
= base
->start
;
1265 dev
->netdev_ops
= &au1000_netdev_ops
;
1266 dev
->ethtool_ops
= &au1000_ethtool_ops
;
1267 dev
->watchdog_timeo
= ETH_TX_TIMEOUT
;
1270 * The boot code uses the ethernet controller, so reset it to start
1271 * fresh. au1000_init() expects that the device is in reset state.
1273 au1000_reset_mac(dev
);
1275 err
= register_netdev(dev
);
1277 netdev_err(dev
, "Cannot register net device, aborting.\n");
1281 netdev_info(dev
, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1282 (unsigned long)base
->start
, irq
);
1287 if (aup
->mii_bus
!= NULL
)
1288 mdiobus_unregister(aup
->mii_bus
);
1290 /* here we should have a valid dev plus aup-> register addresses
1291 * so we can reset the mac properly.
1293 au1000_reset_mac(dev
);
1295 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1296 if (aup
->rx_db_inuse
[i
])
1297 au1000_ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
1299 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1300 if (aup
->tx_db_inuse
[i
])
1301 au1000_ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
1304 mdiobus_free(aup
->mii_bus
);
1306 iounmap(aup
->macdma
);
1308 iounmap(aup
->enable
);
1312 dma_free_coherent(&pdev
->dev
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1313 (void *)aup
->vaddr
, aup
->dma_addr
);
1317 release_mem_region(macdma
->start
, resource_size(macdma
));
1319 release_mem_region(macen
->start
, resource_size(macen
));
1321 release_mem_region(base
->start
, resource_size(base
));
1326 static int au1000_remove(struct platform_device
*pdev
)
1328 struct net_device
*dev
= platform_get_drvdata(pdev
);
1329 struct au1000_private
*aup
= netdev_priv(dev
);
1331 struct resource
*base
, *macen
;
1333 unregister_netdev(dev
);
1334 mdiobus_unregister(aup
->mii_bus
);
1335 mdiobus_free(aup
->mii_bus
);
1337 for (i
= 0; i
< NUM_RX_DMA
; i
++)
1338 if (aup
->rx_db_inuse
[i
])
1339 au1000_ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
1341 for (i
= 0; i
< NUM_TX_DMA
; i
++)
1342 if (aup
->tx_db_inuse
[i
])
1343 au1000_ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
1345 dma_free_coherent(&pdev
->dev
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1346 (void *)aup
->vaddr
, aup
->dma_addr
);
1348 iounmap(aup
->macdma
);
1350 iounmap(aup
->enable
);
1352 base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 2);
1353 release_mem_region(base
->start
, resource_size(base
));
1355 base
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1356 release_mem_region(base
->start
, resource_size(base
));
1358 macen
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1359 release_mem_region(macen
->start
, resource_size(macen
));
1366 static struct platform_driver au1000_eth_driver
= {
1367 .probe
= au1000_probe
,
1368 .remove
= au1000_remove
,
1370 .name
= "au1000-eth",
1374 module_platform_driver(au1000_eth_driver
);
1376 MODULE_ALIAS("platform:au1000-eth");