1 /* bnx2x_cmn.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
26 #include <linux/crash_dump.h>
29 #include <net/ip6_checksum.h>
30 #include <linux/prefetch.h>
31 #include "bnx2x_cmn.h"
32 #include "bnx2x_init.h"
35 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
);
36 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
);
37 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
);
38 static int bnx2x_poll(struct napi_struct
*napi
, int budget
);
40 static void bnx2x_add_all_napi_cnic(struct bnx2x
*bp
)
44 /* Add NAPI objects */
45 for_each_rx_queue_cnic(bp
, i
) {
46 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
47 bnx2x_poll
, NAPI_POLL_WEIGHT
);
51 static void bnx2x_add_all_napi(struct bnx2x
*bp
)
55 /* Add NAPI objects */
56 for_each_eth_queue(bp
, i
) {
57 netif_napi_add(bp
->dev
, &bnx2x_fp(bp
, i
, napi
),
58 bnx2x_poll
, NAPI_POLL_WEIGHT
);
62 static int bnx2x_calc_num_queues(struct bnx2x
*bp
)
64 int nq
= bnx2x_num_queues
? : netif_get_num_default_rss_queues();
66 /* Reduce memory usage in kdump environment by using only one queue */
67 if (is_kdump_kernel())
70 nq
= clamp(nq
, 1, BNX2X_MAX_QUEUES(bp
));
75 * bnx2x_move_fp - move content of the fastpath structure.
78 * @from: source FP index
79 * @to: destination FP index
81 * Makes sure the contents of the bp->fp[to].napi is kept
82 * intact. This is done by first copying the napi struct from
83 * the target to the source, and then mem copying the entire
84 * source onto the target. Update txdata pointers and related
87 static inline void bnx2x_move_fp(struct bnx2x
*bp
, int from
, int to
)
89 struct bnx2x_fastpath
*from_fp
= &bp
->fp
[from
];
90 struct bnx2x_fastpath
*to_fp
= &bp
->fp
[to
];
91 struct bnx2x_sp_objs
*from_sp_objs
= &bp
->sp_objs
[from
];
92 struct bnx2x_sp_objs
*to_sp_objs
= &bp
->sp_objs
[to
];
93 struct bnx2x_fp_stats
*from_fp_stats
= &bp
->fp_stats
[from
];
94 struct bnx2x_fp_stats
*to_fp_stats
= &bp
->fp_stats
[to
];
95 int old_max_eth_txqs
, new_max_eth_txqs
;
96 int old_txdata_index
= 0, new_txdata_index
= 0;
97 struct bnx2x_agg_info
*old_tpa_info
= to_fp
->tpa_info
;
99 /* Copy the NAPI object as it has been already initialized */
100 from_fp
->napi
= to_fp
->napi
;
102 /* Move bnx2x_fastpath contents */
103 memcpy(to_fp
, from_fp
, sizeof(*to_fp
));
106 /* Retain the tpa_info of the original `to' version as we don't want
107 * 2 FPs to contain the same tpa_info pointer.
109 to_fp
->tpa_info
= old_tpa_info
;
111 /* move sp_objs contents as well, as their indices match fp ones */
112 memcpy(to_sp_objs
, from_sp_objs
, sizeof(*to_sp_objs
));
114 /* move fp_stats contents as well, as their indices match fp ones */
115 memcpy(to_fp_stats
, from_fp_stats
, sizeof(*to_fp_stats
));
117 /* Update txdata pointers in fp and move txdata content accordingly:
118 * Each fp consumes 'max_cos' txdata structures, so the index should be
119 * decremented by max_cos x delta.
122 old_max_eth_txqs
= BNX2X_NUM_ETH_QUEUES(bp
) * (bp
)->max_cos
;
123 new_max_eth_txqs
= (BNX2X_NUM_ETH_QUEUES(bp
) - from
+ to
) *
125 if (from
== FCOE_IDX(bp
)) {
126 old_txdata_index
= old_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
127 new_txdata_index
= new_max_eth_txqs
+ FCOE_TXQ_IDX_OFFSET
;
130 memcpy(&bp
->bnx2x_txq
[new_txdata_index
],
131 &bp
->bnx2x_txq
[old_txdata_index
],
132 sizeof(struct bnx2x_fp_txdata
));
133 to_fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[new_txdata_index
];
137 * bnx2x_fill_fw_str - Fill buffer with FW version string.
140 * @buf: character buffer to fill with the fw name
141 * @buf_len: length of the above buffer
144 void bnx2x_fill_fw_str(struct bnx2x
*bp
, char *buf
, size_t buf_len
)
147 u8 phy_fw_ver
[PHY_FW_VER_LEN
];
149 phy_fw_ver
[0] = '\0';
150 bnx2x_get_ext_phy_fw_version(&bp
->link_params
,
151 phy_fw_ver
, PHY_FW_VER_LEN
);
152 strlcpy(buf
, bp
->fw_ver
, buf_len
);
153 snprintf(buf
+ strlen(bp
->fw_ver
), 32 - strlen(bp
->fw_ver
),
155 (bp
->common
.bc_ver
& 0xff0000) >> 16,
156 (bp
->common
.bc_ver
& 0xff00) >> 8,
157 (bp
->common
.bc_ver
& 0xff),
158 ((phy_fw_ver
[0] != '\0') ? " phy " : ""), phy_fw_ver
);
160 bnx2x_vf_fill_fw_str(bp
, buf
, buf_len
);
165 * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
168 * @delta: number of eth queues which were not allocated
170 static void bnx2x_shrink_eth_fp(struct bnx2x
*bp
, int delta
)
172 int i
, cos
, old_eth_num
= BNX2X_NUM_ETH_QUEUES(bp
);
174 /* Queue pointer cannot be re-set on an fp-basis, as moving pointer
175 * backward along the array could cause memory to be overridden
177 for (cos
= 1; cos
< bp
->max_cos
; cos
++) {
178 for (i
= 0; i
< old_eth_num
- delta
; i
++) {
179 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
180 int new_idx
= cos
* (old_eth_num
- delta
) + i
;
182 memcpy(&bp
->bnx2x_txq
[new_idx
], fp
->txdata_ptr
[cos
],
183 sizeof(struct bnx2x_fp_txdata
));
184 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[new_idx
];
189 int bnx2x_load_count
[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191 /* free skb in the packet ring at pos idx
192 * return idx of last bd freed
194 static u16
bnx2x_free_tx_pkt(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
,
195 u16 idx
, unsigned int *pkts_compl
,
196 unsigned int *bytes_compl
)
198 struct sw_tx_bd
*tx_buf
= &txdata
->tx_buf_ring
[idx
];
199 struct eth_tx_start_bd
*tx_start_bd
;
200 struct eth_tx_bd
*tx_data_bd
;
201 struct sk_buff
*skb
= tx_buf
->skb
;
202 u16 bd_idx
= TX_BD(tx_buf
->first_bd
), new_cons
;
204 u16 split_bd_len
= 0;
206 /* prefetch skb end pointer to speedup dev_kfree_skb() */
209 DP(NETIF_MSG_TX_DONE
, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
210 txdata
->txq_index
, idx
, tx_buf
, skb
);
212 tx_start_bd
= &txdata
->tx_desc_ring
[bd_idx
].start_bd
;
214 nbd
= le16_to_cpu(tx_start_bd
->nbd
) - 1;
215 #ifdef BNX2X_STOP_ON_ERROR
216 if ((nbd
- 1) > (MAX_SKB_FRAGS
+ 2)) {
217 BNX2X_ERR("BAD nbd!\n");
221 new_cons
= nbd
+ tx_buf
->first_bd
;
223 /* Get the next bd */
224 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
226 /* Skip a parse bd... */
228 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
230 if (tx_buf
->flags
& BNX2X_HAS_SECOND_PBD
) {
231 /* Skip second parse bd... */
233 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
236 /* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
237 if (tx_buf
->flags
& BNX2X_TSO_SPLIT_BD
) {
238 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
239 split_bd_len
= BD_UNMAP_LEN(tx_data_bd
);
241 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
245 dma_unmap_single(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_start_bd
),
246 BD_UNMAP_LEN(tx_start_bd
) + split_bd_len
,
252 tx_data_bd
= &txdata
->tx_desc_ring
[bd_idx
].reg_bd
;
253 dma_unmap_page(&bp
->pdev
->dev
, BD_UNMAP_ADDR(tx_data_bd
),
254 BD_UNMAP_LEN(tx_data_bd
), DMA_TO_DEVICE
);
256 bd_idx
= TX_BD(NEXT_TX_IDX(bd_idx
));
263 (*bytes_compl
) += skb
->len
;
264 dev_kfree_skb_any(skb
);
267 tx_buf
->first_bd
= 0;
273 int bnx2x_tx_int(struct bnx2x
*bp
, struct bnx2x_fp_txdata
*txdata
)
275 struct netdev_queue
*txq
;
276 u16 hw_cons
, sw_cons
, bd_cons
= txdata
->tx_bd_cons
;
277 unsigned int pkts_compl
= 0, bytes_compl
= 0;
279 #ifdef BNX2X_STOP_ON_ERROR
280 if (unlikely(bp
->panic
))
284 txq
= netdev_get_tx_queue(bp
->dev
, txdata
->txq_index
);
285 hw_cons
= le16_to_cpu(*txdata
->tx_cons_sb
);
286 sw_cons
= txdata
->tx_pkt_cons
;
288 /* Ensure subsequent loads occur after hw_cons */
291 while (sw_cons
!= hw_cons
) {
294 pkt_cons
= TX_BD(sw_cons
);
296 DP(NETIF_MSG_TX_DONE
,
297 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
298 txdata
->txq_index
, hw_cons
, sw_cons
, pkt_cons
);
300 bd_cons
= bnx2x_free_tx_pkt(bp
, txdata
, pkt_cons
,
301 &pkts_compl
, &bytes_compl
);
306 netdev_tx_completed_queue(txq
, pkts_compl
, bytes_compl
);
308 txdata
->tx_pkt_cons
= sw_cons
;
309 txdata
->tx_bd_cons
= bd_cons
;
311 /* Need to make the tx_bd_cons update visible to start_xmit()
312 * before checking for netif_tx_queue_stopped(). Without the
313 * memory barrier, there is a small possibility that
314 * start_xmit() will miss it and cause the queue to be stopped
316 * On the other hand we need an rmb() here to ensure the proper
317 * ordering of bit testing in the following
318 * netif_tx_queue_stopped(txq) call.
322 if (unlikely(netif_tx_queue_stopped(txq
))) {
323 /* Taking tx_lock() is needed to prevent re-enabling the queue
324 * while it's empty. This could have happen if rx_action() gets
325 * suspended in bnx2x_tx_int() after the condition before
326 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
328 * stops the queue->sees fresh tx_bd_cons->releases the queue->
329 * sends some packets consuming the whole queue again->
333 __netif_tx_lock(txq
, smp_processor_id());
335 if ((netif_tx_queue_stopped(txq
)) &&
336 (bp
->state
== BNX2X_STATE_OPEN
) &&
337 (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
))
338 netif_tx_wake_queue(txq
);
340 __netif_tx_unlock(txq
);
345 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath
*fp
,
348 u16 last_max
= fp
->last_max_sge
;
350 if (SUB_S16(idx
, last_max
) > 0)
351 fp
->last_max_sge
= idx
;
354 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath
*fp
,
356 struct eth_end_agg_rx_cqe
*cqe
)
358 struct bnx2x
*bp
= fp
->bp
;
359 u16 last_max
, last_elem
, first_elem
;
366 /* First mark all used pages */
367 for (i
= 0; i
< sge_len
; i
++)
368 BIT_VEC64_CLEAR_BIT(fp
->sge_mask
,
369 RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[i
])));
371 DP(NETIF_MSG_RX_STATUS
, "fp_cqe->sgl[%d] = %d\n",
372 sge_len
- 1, le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
374 /* Here we assume that the last SGE index is the biggest */
375 prefetch((void *)(fp
->sge_mask
));
376 bnx2x_update_last_max_sge(fp
,
377 le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[sge_len
- 1]));
379 last_max
= RX_SGE(fp
->last_max_sge
);
380 last_elem
= last_max
>> BIT_VEC64_ELEM_SHIFT
;
381 first_elem
= RX_SGE(fp
->rx_sge_prod
) >> BIT_VEC64_ELEM_SHIFT
;
383 /* If ring is not full */
384 if (last_elem
+ 1 != first_elem
)
387 /* Now update the prod */
388 for (i
= first_elem
; i
!= last_elem
; i
= NEXT_SGE_MASK_ELEM(i
)) {
389 if (likely(fp
->sge_mask
[i
]))
392 fp
->sge_mask
[i
] = BIT_VEC64_ELEM_ONE_MASK
;
393 delta
+= BIT_VEC64_ELEM_SZ
;
397 fp
->rx_sge_prod
+= delta
;
398 /* clear page-end entries */
399 bnx2x_clear_sge_mask_next_elems(fp
);
402 DP(NETIF_MSG_RX_STATUS
,
403 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
404 fp
->last_max_sge
, fp
->rx_sge_prod
);
407 /* Get Toeplitz hash value in the skb using the value from the
408 * CQE (calculated by HW).
410 static u32
bnx2x_get_rxhash(const struct bnx2x
*bp
,
411 const struct eth_fast_path_rx_cqe
*cqe
,
412 enum pkt_hash_types
*rxhash_type
)
414 /* Get Toeplitz hash from CQE */
415 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
416 (cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG
)) {
417 enum eth_rss_hash_type htype
;
419 htype
= cqe
->status_flags
& ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE
;
420 *rxhash_type
= ((htype
== TCP_IPV4_HASH_TYPE
) ||
421 (htype
== TCP_IPV6_HASH_TYPE
)) ?
422 PKT_HASH_TYPE_L4
: PKT_HASH_TYPE_L3
;
424 return le32_to_cpu(cqe
->rss_hash_result
);
426 *rxhash_type
= PKT_HASH_TYPE_NONE
;
430 static void bnx2x_tpa_start(struct bnx2x_fastpath
*fp
, u16 queue
,
432 struct eth_fast_path_rx_cqe
*cqe
)
434 struct bnx2x
*bp
= fp
->bp
;
435 struct sw_rx_bd
*cons_rx_buf
= &fp
->rx_buf_ring
[cons
];
436 struct sw_rx_bd
*prod_rx_buf
= &fp
->rx_buf_ring
[prod
];
437 struct eth_rx_bd
*prod_bd
= &fp
->rx_desc_ring
[prod
];
439 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[queue
];
440 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
442 /* print error if current state != stop */
443 if (tpa_info
->tpa_state
!= BNX2X_TPA_STOP
)
444 BNX2X_ERR("start of bin not in stop [%d]\n", queue
);
446 /* Try to map an empty data buffer from the aggregation info */
447 mapping
= dma_map_single(&bp
->pdev
->dev
,
448 first_buf
->data
+ NET_SKB_PAD
,
449 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
451 * ...if it fails - move the skb from the consumer to the producer
452 * and set the current aggregation state as ERROR to drop it
453 * when TPA_STOP arrives.
456 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
457 /* Move the BD from the consumer to the producer */
458 bnx2x_reuse_rx_data(fp
, cons
, prod
);
459 tpa_info
->tpa_state
= BNX2X_TPA_ERROR
;
463 /* move empty data from pool to prod */
464 prod_rx_buf
->data
= first_buf
->data
;
465 dma_unmap_addr_set(prod_rx_buf
, mapping
, mapping
);
466 /* point prod_bd to new data */
467 prod_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
468 prod_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
470 /* move partial skb from cons to pool (don't unmap yet) */
471 *first_buf
= *cons_rx_buf
;
473 /* mark bin state as START */
474 tpa_info
->parsing_flags
=
475 le16_to_cpu(cqe
->pars_flags
.flags
);
476 tpa_info
->vlan_tag
= le16_to_cpu(cqe
->vlan_tag
);
477 tpa_info
->tpa_state
= BNX2X_TPA_START
;
478 tpa_info
->len_on_bd
= le16_to_cpu(cqe
->len_on_bd
);
479 tpa_info
->placement_offset
= cqe
->placement_offset
;
480 tpa_info
->rxhash
= bnx2x_get_rxhash(bp
, cqe
, &tpa_info
->rxhash_type
);
481 if (fp
->mode
== TPA_MODE_GRO
) {
482 u16 gro_size
= le16_to_cpu(cqe
->pkt_len_or_gro_seg_len
);
483 tpa_info
->full_page
= SGE_PAGES
/ gro_size
* gro_size
;
484 tpa_info
->gro_size
= gro_size
;
487 #ifdef BNX2X_STOP_ON_ERROR
488 fp
->tpa_queue_used
|= (1 << queue
);
489 DP(NETIF_MSG_RX_STATUS
, "fp->tpa_queue_used = 0x%llx\n",
494 /* Timestamp option length allowed for TPA aggregation:
496 * nop nop kind length echo val
498 #define TPA_TSTAMP_OPT_LEN 12
500 * bnx2x_set_gro_params - compute GRO values
503 * @parsing_flags: parsing flags from the START CQE
504 * @len_on_bd: total length of the first packet for the
506 * @pkt_len: length of all segments
507 * @num_of_coalesced_segs: count of segments
509 * Approximate value of the MSS for this aggregation calculated using
510 * the first packet of it.
511 * Compute number of aggregated segments, and gso_type.
513 static void bnx2x_set_gro_params(struct sk_buff
*skb
, u16 parsing_flags
,
514 u16 len_on_bd
, unsigned int pkt_len
,
515 u16 num_of_coalesced_segs
)
517 /* TPA aggregation won't have either IP options or TCP options
518 * other than timestamp or IPv6 extension headers.
520 u16 hdrs_len
= ETH_HLEN
+ sizeof(struct tcphdr
);
522 if (GET_FLAG(parsing_flags
, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL
) ==
523 PRS_FLAG_OVERETH_IPV6
) {
524 hdrs_len
+= sizeof(struct ipv6hdr
);
525 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV6
;
527 hdrs_len
+= sizeof(struct iphdr
);
528 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
531 /* Check if there was a TCP timestamp, if there is it's will
532 * always be 12 bytes length: nop nop kind length echo val.
534 * Otherwise FW would close the aggregation.
536 if (parsing_flags
& PARSING_FLAGS_TIME_STAMP_EXIST_FLAG
)
537 hdrs_len
+= TPA_TSTAMP_OPT_LEN
;
539 skb_shinfo(skb
)->gso_size
= len_on_bd
- hdrs_len
;
541 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
542 * to skb_shinfo(skb)->gso_segs
544 NAPI_GRO_CB(skb
)->count
= num_of_coalesced_segs
;
547 static int bnx2x_alloc_rx_sge(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
548 u16 index
, gfp_t gfp_mask
)
550 struct sw_rx_page
*sw_buf
= &fp
->rx_page_ring
[index
];
551 struct eth_rx_sge
*sge
= &fp
->rx_sge_ring
[index
];
552 struct bnx2x_alloc_pool
*pool
= &fp
->page_pool
;
556 pool
->page
= alloc_pages(gfp_mask
, PAGES_PER_SGE_SHIFT
);
557 if (unlikely(!pool
->page
))
563 mapping
= dma_map_page(&bp
->pdev
->dev
, pool
->page
,
564 pool
->offset
, SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
565 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
566 BNX2X_ERR("Can't map sge\n");
570 sw_buf
->page
= pool
->page
;
571 sw_buf
->offset
= pool
->offset
;
573 dma_unmap_addr_set(sw_buf
, mapping
, mapping
);
575 sge
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
576 sge
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
578 pool
->offset
+= SGE_PAGE_SIZE
;
579 if (PAGE_SIZE
- pool
->offset
>= SGE_PAGE_SIZE
)
580 get_page(pool
->page
);
586 static int bnx2x_fill_frag_skb(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
587 struct bnx2x_agg_info
*tpa_info
,
590 struct eth_end_agg_rx_cqe
*cqe
,
593 struct sw_rx_page
*rx_pg
, old_rx_pg
;
594 u32 i
, frag_len
, frag_size
;
595 int err
, j
, frag_id
= 0;
596 u16 len_on_bd
= tpa_info
->len_on_bd
;
597 u16 full_page
= 0, gro_size
= 0;
599 frag_size
= le16_to_cpu(cqe
->pkt_len
) - len_on_bd
;
601 if (fp
->mode
== TPA_MODE_GRO
) {
602 gro_size
= tpa_info
->gro_size
;
603 full_page
= tpa_info
->full_page
;
606 /* This is needed in order to enable forwarding support */
608 bnx2x_set_gro_params(skb
, tpa_info
->parsing_flags
, len_on_bd
,
609 le16_to_cpu(cqe
->pkt_len
),
610 le16_to_cpu(cqe
->num_of_coalesced_segs
));
612 #ifdef BNX2X_STOP_ON_ERROR
613 if (pages
> min_t(u32
, 8, MAX_SKB_FRAGS
) * SGE_PAGES
) {
614 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
616 BNX2X_ERR("cqe->pkt_len = %d\n", cqe
->pkt_len
);
622 /* Run through the SGL and compose the fragmented skb */
623 for (i
= 0, j
= 0; i
< pages
; i
+= PAGES_PER_SGE
, j
++) {
624 u16 sge_idx
= RX_SGE(le16_to_cpu(cqe
->sgl_or_raw_data
.sgl
[j
]));
626 /* FW gives the indices of the SGE as if the ring is an array
627 (meaning that "next" element will consume 2 indices) */
628 if (fp
->mode
== TPA_MODE_GRO
)
629 frag_len
= min_t(u32
, frag_size
, (u32
)full_page
);
631 frag_len
= min_t(u32
, frag_size
, (u32
)SGE_PAGES
);
633 rx_pg
= &fp
->rx_page_ring
[sge_idx
];
636 /* If we fail to allocate a substitute page, we simply stop
637 where we are and drop the whole packet */
638 err
= bnx2x_alloc_rx_sge(bp
, fp
, sge_idx
, GFP_ATOMIC
);
640 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
644 dma_unmap_page(&bp
->pdev
->dev
,
645 dma_unmap_addr(&old_rx_pg
, mapping
),
646 SGE_PAGE_SIZE
, DMA_FROM_DEVICE
);
647 /* Add one frag and update the appropriate fields in the skb */
648 if (fp
->mode
== TPA_MODE_LRO
)
649 skb_fill_page_desc(skb
, j
, old_rx_pg
.page
,
650 old_rx_pg
.offset
, frag_len
);
654 for (rem
= frag_len
; rem
> 0; rem
-= gro_size
) {
655 int len
= rem
> gro_size
? gro_size
: rem
;
656 skb_fill_page_desc(skb
, frag_id
++,
658 old_rx_pg
.offset
+ offset
,
661 get_page(old_rx_pg
.page
);
666 skb
->data_len
+= frag_len
;
667 skb
->truesize
+= SGE_PAGES
;
668 skb
->len
+= frag_len
;
670 frag_size
-= frag_len
;
676 static void bnx2x_frag_free(const struct bnx2x_fastpath
*fp
, void *data
)
678 if (fp
->rx_frag_size
)
684 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath
*fp
, gfp_t gfp_mask
)
686 if (fp
->rx_frag_size
) {
687 /* GFP_KERNEL allocations are used only during initialization */
688 if (unlikely(gfpflags_allow_blocking(gfp_mask
)))
689 return (void *)__get_free_page(gfp_mask
);
691 return napi_alloc_frag(fp
->rx_frag_size
);
694 return kmalloc(fp
->rx_buf_size
+ NET_SKB_PAD
, gfp_mask
);
698 static void bnx2x_gro_ip_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
700 const struct iphdr
*iph
= ip_hdr(skb
);
703 skb_set_transport_header(skb
, sizeof(struct iphdr
));
706 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
707 iph
->saddr
, iph
->daddr
, 0);
710 static void bnx2x_gro_ipv6_csum(struct bnx2x
*bp
, struct sk_buff
*skb
)
712 struct ipv6hdr
*iph
= ipv6_hdr(skb
);
715 skb_set_transport_header(skb
, sizeof(struct ipv6hdr
));
718 th
->check
= ~tcp_v6_check(skb
->len
- skb_transport_offset(skb
),
719 &iph
->saddr
, &iph
->daddr
, 0);
722 static void bnx2x_gro_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
723 void (*gro_func
)(struct bnx2x
*, struct sk_buff
*))
725 skb_reset_network_header(skb
);
727 tcp_gro_complete(skb
);
731 static void bnx2x_gro_receive(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
735 if (skb_shinfo(skb
)->gso_size
) {
736 switch (be16_to_cpu(skb
->protocol
)) {
738 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ip_csum
);
741 bnx2x_gro_csum(bp
, skb
, bnx2x_gro_ipv6_csum
);
744 netdev_WARN_ONCE(bp
->dev
,
745 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
746 be16_to_cpu(skb
->protocol
));
750 skb_record_rx_queue(skb
, fp
->rx_queue
);
751 napi_gro_receive(&fp
->napi
, skb
);
754 static void bnx2x_tpa_stop(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
755 struct bnx2x_agg_info
*tpa_info
,
757 struct eth_end_agg_rx_cqe
*cqe
,
760 struct sw_rx_bd
*rx_buf
= &tpa_info
->first_buf
;
761 u8 pad
= tpa_info
->placement_offset
;
762 u16 len
= tpa_info
->len_on_bd
;
763 struct sk_buff
*skb
= NULL
;
764 u8
*new_data
, *data
= rx_buf
->data
;
765 u8 old_tpa_state
= tpa_info
->tpa_state
;
767 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
769 /* If we there was an error during the handling of the TPA_START -
770 * drop this aggregation.
772 if (old_tpa_state
== BNX2X_TPA_ERROR
)
775 /* Try to allocate the new data */
776 new_data
= bnx2x_frag_alloc(fp
, GFP_ATOMIC
);
777 /* Unmap skb in the pool anyway, as we are going to change
778 pool entry status to BNX2X_TPA_STOP even if new skb allocation
780 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(rx_buf
, mapping
),
781 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
782 if (likely(new_data
))
783 skb
= build_skb(data
, fp
->rx_frag_size
);
786 #ifdef BNX2X_STOP_ON_ERROR
787 if (pad
+ len
> fp
->rx_buf_size
) {
788 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
789 pad
, len
, fp
->rx_buf_size
);
795 skb_reserve(skb
, pad
+ NET_SKB_PAD
);
797 skb_set_hash(skb
, tpa_info
->rxhash
, tpa_info
->rxhash_type
);
799 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
800 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
802 if (!bnx2x_fill_frag_skb(bp
, fp
, tpa_info
, pages
,
803 skb
, cqe
, cqe_idx
)) {
804 if (tpa_info
->parsing_flags
& PARSING_FLAGS_VLAN
)
805 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), tpa_info
->vlan_tag
);
806 bnx2x_gro_receive(bp
, fp
, skb
);
808 DP(NETIF_MSG_RX_STATUS
,
809 "Failed to allocate new pages - dropping packet!\n");
810 dev_kfree_skb_any(skb
);
813 /* put new data in bin */
814 rx_buf
->data
= new_data
;
819 bnx2x_frag_free(fp
, new_data
);
821 /* drop the packet and keep the buffer in the bin */
822 DP(NETIF_MSG_RX_STATUS
,
823 "Failed to allocate or map a new skb - dropping packet!\n");
824 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
++;
827 static int bnx2x_alloc_rx_data(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
828 u16 index
, gfp_t gfp_mask
)
831 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[index
];
832 struct eth_rx_bd
*rx_bd
= &fp
->rx_desc_ring
[index
];
835 data
= bnx2x_frag_alloc(fp
, gfp_mask
);
836 if (unlikely(data
== NULL
))
839 mapping
= dma_map_single(&bp
->pdev
->dev
, data
+ NET_SKB_PAD
,
842 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
843 bnx2x_frag_free(fp
, data
);
844 BNX2X_ERR("Can't map rx data\n");
849 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
851 rx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
852 rx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
858 void bnx2x_csum_validate(struct sk_buff
*skb
, union eth_rx_cqe
*cqe
,
859 struct bnx2x_fastpath
*fp
,
860 struct bnx2x_eth_q_stats
*qstats
)
862 /* Do nothing if no L4 csum validation was done.
863 * We do not check whether IP csum was validated. For IPv4 we assume
864 * that if the card got as far as validating the L4 csum, it also
865 * validated the IP csum. IPv6 has no IP csum.
867 if (cqe
->fast_path_cqe
.status_flags
&
868 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG
)
871 /* If L4 validation was done, check if an error was found. */
873 if (cqe
->fast_path_cqe
.type_error_flags
&
874 (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG
|
875 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG
))
876 qstats
->hw_csum_err
++;
878 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
881 static int bnx2x_rx_int(struct bnx2x_fastpath
*fp
, int budget
)
883 struct bnx2x
*bp
= fp
->bp
;
884 u16 bd_cons
, bd_prod
, bd_prod_fw
, comp_ring_cons
;
885 u16 sw_comp_cons
, sw_comp_prod
;
887 union eth_rx_cqe
*cqe
;
888 struct eth_fast_path_rx_cqe
*cqe_fp
;
890 #ifdef BNX2X_STOP_ON_ERROR
891 if (unlikely(bp
->panic
))
897 bd_cons
= fp
->rx_bd_cons
;
898 bd_prod
= fp
->rx_bd_prod
;
899 bd_prod_fw
= bd_prod
;
900 sw_comp_cons
= fp
->rx_comp_cons
;
901 sw_comp_prod
= fp
->rx_comp_prod
;
903 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
904 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
905 cqe_fp
= &cqe
->fast_path_cqe
;
907 DP(NETIF_MSG_RX_STATUS
,
908 "queue[%d]: sw_comp_cons %u\n", fp
->index
, sw_comp_cons
);
910 while (BNX2X_IS_CQE_COMPLETED(cqe_fp
)) {
911 struct sw_rx_bd
*rx_buf
= NULL
;
914 enum eth_rx_cqe_type cqe_fp_type
;
918 enum pkt_hash_types rxhash_type
;
920 #ifdef BNX2X_STOP_ON_ERROR
921 if (unlikely(bp
->panic
))
925 bd_prod
= RX_BD(bd_prod
);
926 bd_cons
= RX_BD(bd_cons
);
928 /* A rmb() is required to ensure that the CQE is not read
929 * before it is written by the adapter DMA. PCI ordering
930 * rules will make sure the other fields are written before
931 * the marker at the end of struct eth_fast_path_rx_cqe
932 * but without rmb() a weakly ordered processor can process
933 * stale data. Without the barrier TPA state-machine might
934 * enter inconsistent state and kernel stack might be
935 * provided with incorrect packet description - these lead
936 * to various kernel crashed.
940 cqe_fp_flags
= cqe_fp
->type_error_flags
;
941 cqe_fp_type
= cqe_fp_flags
& ETH_FAST_PATH_RX_CQE_TYPE
;
943 DP(NETIF_MSG_RX_STATUS
,
944 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
945 CQE_TYPE(cqe_fp_flags
),
946 cqe_fp_flags
, cqe_fp
->status_flags
,
947 le32_to_cpu(cqe_fp
->rss_hash_result
),
948 le16_to_cpu(cqe_fp
->vlan_tag
),
949 le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
));
951 /* is this a slowpath msg? */
952 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type
))) {
953 bnx2x_sp_event(fp
, cqe
);
957 rx_buf
= &fp
->rx_buf_ring
[bd_cons
];
960 if (!CQE_TYPE_FAST(cqe_fp_type
)) {
961 struct bnx2x_agg_info
*tpa_info
;
962 u16 frag_size
, pages
;
963 #ifdef BNX2X_STOP_ON_ERROR
965 if (fp
->mode
== TPA_MODE_DISABLED
&&
966 (CQE_TYPE_START(cqe_fp_type
) ||
967 CQE_TYPE_STOP(cqe_fp_type
)))
968 BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
969 CQE_TYPE(cqe_fp_type
));
972 if (CQE_TYPE_START(cqe_fp_type
)) {
973 u16 queue
= cqe_fp
->queue_index
;
974 DP(NETIF_MSG_RX_STATUS
,
975 "calling tpa_start on queue %d\n",
978 bnx2x_tpa_start(fp
, queue
,
984 queue
= cqe
->end_agg_cqe
.queue_index
;
985 tpa_info
= &fp
->tpa_info
[queue
];
986 DP(NETIF_MSG_RX_STATUS
,
987 "calling tpa_stop on queue %d\n",
990 frag_size
= le16_to_cpu(cqe
->end_agg_cqe
.pkt_len
) -
993 if (fp
->mode
== TPA_MODE_GRO
)
994 pages
= (frag_size
+ tpa_info
->full_page
- 1) /
997 pages
= SGE_PAGE_ALIGN(frag_size
) >>
1000 bnx2x_tpa_stop(bp
, fp
, tpa_info
, pages
,
1001 &cqe
->end_agg_cqe
, comp_ring_cons
);
1002 #ifdef BNX2X_STOP_ON_ERROR
1007 bnx2x_update_sge_prod(fp
, pages
, &cqe
->end_agg_cqe
);
1011 len
= le16_to_cpu(cqe_fp
->pkt_len_or_gro_seg_len
);
1012 pad
= cqe_fp
->placement_offset
;
1013 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
1014 dma_unmap_addr(rx_buf
, mapping
),
1015 pad
+ RX_COPY_THRESH
,
1018 prefetch(data
+ pad
); /* speedup eth_type_trans() */
1019 /* is this an error packet? */
1020 if (unlikely(cqe_fp_flags
& ETH_RX_ERROR_FALGS
)) {
1021 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1022 "ERROR flags %x rx packet %u\n",
1023 cqe_fp_flags
, sw_comp_cons
);
1024 bnx2x_fp_qstats(bp
, fp
)->rx_err_discard_pkt
++;
1028 /* Since we don't have a jumbo ring
1029 * copy small packets if mtu > 1500
1031 if ((bp
->dev
->mtu
> ETH_MAX_PACKET_SIZE
) &&
1032 (len
<= RX_COPY_THRESH
)) {
1033 skb
= napi_alloc_skb(&fp
->napi
, len
);
1035 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1036 "ERROR packet dropped because of alloc failure\n");
1037 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1040 memcpy(skb
->data
, data
+ pad
, len
);
1041 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1043 if (likely(bnx2x_alloc_rx_data(bp
, fp
, bd_prod
,
1044 GFP_ATOMIC
) == 0)) {
1045 dma_unmap_single(&bp
->pdev
->dev
,
1046 dma_unmap_addr(rx_buf
, mapping
),
1049 skb
= build_skb(data
, fp
->rx_frag_size
);
1050 if (unlikely(!skb
)) {
1051 bnx2x_frag_free(fp
, data
);
1052 bnx2x_fp_qstats(bp
, fp
)->
1053 rx_skb_alloc_failed
++;
1056 skb_reserve(skb
, pad
);
1058 DP(NETIF_MSG_RX_ERR
| NETIF_MSG_RX_STATUS
,
1059 "ERROR packet dropped because of alloc failure\n");
1060 bnx2x_fp_qstats(bp
, fp
)->rx_skb_alloc_failed
++;
1062 bnx2x_reuse_rx_data(fp
, bd_cons
, bd_prod
);
1068 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
1070 /* Set Toeplitz hash for a none-LRO skb */
1071 rxhash
= bnx2x_get_rxhash(bp
, cqe_fp
, &rxhash_type
);
1072 skb_set_hash(skb
, rxhash
, rxhash_type
);
1074 skb_checksum_none_assert(skb
);
1076 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
1077 bnx2x_csum_validate(skb
, cqe
, fp
,
1078 bnx2x_fp_qstats(bp
, fp
));
1080 skb_record_rx_queue(skb
, fp
->rx_queue
);
1082 /* Check if this packet was timestamped */
1083 if (unlikely(cqe
->fast_path_cqe
.type_error_flags
&
1084 (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT
)))
1085 bnx2x_set_rx_ts(bp
, skb
);
1087 if (le16_to_cpu(cqe_fp
->pars_flags
.flags
) &
1089 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
1090 le16_to_cpu(cqe_fp
->vlan_tag
));
1092 napi_gro_receive(&fp
->napi
, skb
);
1094 rx_buf
->data
= NULL
;
1096 bd_cons
= NEXT_RX_IDX(bd_cons
);
1097 bd_prod
= NEXT_RX_IDX(bd_prod
);
1098 bd_prod_fw
= NEXT_RX_IDX(bd_prod_fw
);
1101 sw_comp_prod
= NEXT_RCQ_IDX(sw_comp_prod
);
1102 sw_comp_cons
= NEXT_RCQ_IDX(sw_comp_cons
);
1104 /* mark CQE as free */
1105 BNX2X_SEED_CQE(cqe_fp
);
1107 if (rx_pkt
== budget
)
1110 comp_ring_cons
= RCQ_BD(sw_comp_cons
);
1111 cqe
= &fp
->rx_comp_ring
[comp_ring_cons
];
1112 cqe_fp
= &cqe
->fast_path_cqe
;
1115 fp
->rx_bd_cons
= bd_cons
;
1116 fp
->rx_bd_prod
= bd_prod_fw
;
1117 fp
->rx_comp_cons
= sw_comp_cons
;
1118 fp
->rx_comp_prod
= sw_comp_prod
;
1120 /* Update producers */
1121 bnx2x_update_rx_prod(bp
, fp
, bd_prod_fw
, sw_comp_prod
,
1127 static irqreturn_t
bnx2x_msix_fp_int(int irq
, void *fp_cookie
)
1129 struct bnx2x_fastpath
*fp
= fp_cookie
;
1130 struct bnx2x
*bp
= fp
->bp
;
1134 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1135 fp
->index
, fp
->fw_sb_id
, fp
->igu_sb_id
);
1137 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0, IGU_INT_DISABLE
, 0);
1139 #ifdef BNX2X_STOP_ON_ERROR
1140 if (unlikely(bp
->panic
))
1144 /* Handle Rx and Tx according to MSI-X vector */
1145 for_each_cos_in_tx_queue(fp
, cos
)
1146 prefetch(fp
->txdata_ptr
[cos
]->tx_cons_sb
);
1148 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1149 napi_schedule_irqoff(&bnx2x_fp(bp
, fp
->index
, napi
));
1154 /* HW Lock for shared dual port PHYs */
1155 void bnx2x_acquire_phy_lock(struct bnx2x
*bp
)
1157 mutex_lock(&bp
->port
.phy_mutex
);
1159 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1162 void bnx2x_release_phy_lock(struct bnx2x
*bp
)
1164 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_MDIO
);
1166 mutex_unlock(&bp
->port
.phy_mutex
);
1169 /* calculates MF speed according to current linespeed and MF configuration */
1170 u16
bnx2x_get_mf_speed(struct bnx2x
*bp
)
1172 u16 line_speed
= bp
->link_vars
.line_speed
;
1174 u16 maxCfg
= bnx2x_extract_max_cfg(bp
,
1175 bp
->mf_config
[BP_VN(bp
)]);
1177 /* Calculate the current MAX line speed limit for the MF
1180 if (IS_MF_PERCENT_BW(bp
))
1181 line_speed
= (line_speed
* maxCfg
) / 100;
1182 else { /* SD mode */
1183 u16 vn_max_rate
= maxCfg
* 100;
1185 if (vn_max_rate
< line_speed
)
1186 line_speed
= vn_max_rate
;
1194 * bnx2x_fill_report_data - fill link report data to report
1196 * @bp: driver handle
1197 * @data: link state to update
1199 * It uses a none-atomic bit operations because is called under the mutex.
1201 static void bnx2x_fill_report_data(struct bnx2x
*bp
,
1202 struct bnx2x_link_report_data
*data
)
1204 memset(data
, 0, sizeof(*data
));
1207 /* Fill the report data: effective line speed */
1208 data
->line_speed
= bnx2x_get_mf_speed(bp
);
1211 if (!bp
->link_vars
.link_up
|| (bp
->flags
& MF_FUNC_DIS
))
1212 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1213 &data
->link_report_flags
);
1215 if (!BNX2X_NUM_ETH_QUEUES(bp
))
1216 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1217 &data
->link_report_flags
);
1220 if (bp
->link_vars
.duplex
== DUPLEX_FULL
)
1221 __set_bit(BNX2X_LINK_REPORT_FD
,
1222 &data
->link_report_flags
);
1224 /* Rx Flow Control is ON */
1225 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_RX
)
1226 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1227 &data
->link_report_flags
);
1229 /* Tx Flow Control is ON */
1230 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
1231 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1232 &data
->link_report_flags
);
1234 *data
= bp
->vf_link_vars
;
1239 * bnx2x_link_report - report link status to OS.
1241 * @bp: driver handle
1243 * Calls the __bnx2x_link_report() under the same locking scheme
1244 * as a link/PHY state managing code to ensure a consistent link
1248 void bnx2x_link_report(struct bnx2x
*bp
)
1250 bnx2x_acquire_phy_lock(bp
);
1251 __bnx2x_link_report(bp
);
1252 bnx2x_release_phy_lock(bp
);
1256 * __bnx2x_link_report - report link status to OS.
1258 * @bp: driver handle
1260 * None atomic implementation.
1261 * Should be called under the phy_lock.
1263 void __bnx2x_link_report(struct bnx2x
*bp
)
1265 struct bnx2x_link_report_data cur_data
;
1267 if (bp
->force_link_down
) {
1268 bp
->link_vars
.link_up
= 0;
1273 if (IS_PF(bp
) && !CHIP_IS_E1(bp
))
1274 bnx2x_read_mf_cfg(bp
);
1276 /* Read the current link report info */
1277 bnx2x_fill_report_data(bp
, &cur_data
);
1279 /* Don't report link down or exactly the same link status twice */
1280 if (!memcmp(&cur_data
, &bp
->last_reported_link
, sizeof(cur_data
)) ||
1281 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1282 &bp
->last_reported_link
.link_report_flags
) &&
1283 test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1284 &cur_data
.link_report_flags
)))
1289 /* We are going to report a new link parameters now -
1290 * remember the current data for the next time.
1292 memcpy(&bp
->last_reported_link
, &cur_data
, sizeof(cur_data
));
1294 /* propagate status to VFs */
1296 bnx2x_iov_link_update(bp
);
1298 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1299 &cur_data
.link_report_flags
)) {
1300 netif_carrier_off(bp
->dev
);
1301 netdev_err(bp
->dev
, "NIC Link is Down\n");
1307 netif_carrier_on(bp
->dev
);
1309 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD
,
1310 &cur_data
.link_report_flags
))
1315 /* Handle the FC at the end so that only these flags would be
1316 * possibly set. This way we may easily check if there is no FC
1319 if (cur_data
.link_report_flags
) {
1320 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1321 &cur_data
.link_report_flags
)) {
1322 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1323 &cur_data
.link_report_flags
))
1324 flow
= "ON - receive & transmit";
1326 flow
= "ON - receive";
1328 flow
= "ON - transmit";
1333 netdev_info(bp
->dev
, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1334 cur_data
.line_speed
, duplex
, flow
);
1338 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath
*fp
)
1342 for (i
= 1; i
<= NUM_RX_SGE_PAGES
; i
++) {
1343 struct eth_rx_sge
*sge
;
1345 sge
= &fp
->rx_sge_ring
[RX_SGE_CNT
* i
- 2];
1347 cpu_to_le32(U64_HI(fp
->rx_sge_mapping
+
1348 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1351 cpu_to_le32(U64_LO(fp
->rx_sge_mapping
+
1352 BCM_PAGE_SIZE
*(i
% NUM_RX_SGE_PAGES
)));
1356 static void bnx2x_free_tpa_pool(struct bnx2x
*bp
,
1357 struct bnx2x_fastpath
*fp
, int last
)
1361 for (i
= 0; i
< last
; i
++) {
1362 struct bnx2x_agg_info
*tpa_info
= &fp
->tpa_info
[i
];
1363 struct sw_rx_bd
*first_buf
= &tpa_info
->first_buf
;
1364 u8
*data
= first_buf
->data
;
1367 DP(NETIF_MSG_IFDOWN
, "tpa bin %d empty on free\n", i
);
1370 if (tpa_info
->tpa_state
== BNX2X_TPA_START
)
1371 dma_unmap_single(&bp
->pdev
->dev
,
1372 dma_unmap_addr(first_buf
, mapping
),
1373 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1374 bnx2x_frag_free(fp
, data
);
1375 first_buf
->data
= NULL
;
1379 void bnx2x_init_rx_rings_cnic(struct bnx2x
*bp
)
1383 for_each_rx_queue_cnic(bp
, j
) {
1384 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1388 /* Activate BD ring */
1390 * this will generate an interrupt (to the TSTORM)
1391 * must only be done after chip is initialized
1393 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1398 void bnx2x_init_rx_rings(struct bnx2x
*bp
)
1400 int func
= BP_FUNC(bp
);
1404 /* Allocate TPA resources */
1405 for_each_eth_queue(bp
, j
) {
1406 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1409 "mtu %d rx_buf_size %d\n", bp
->dev
->mtu
, fp
->rx_buf_size
);
1411 if (fp
->mode
!= TPA_MODE_DISABLED
) {
1412 /* Fill the per-aggregation pool */
1413 for (i
= 0; i
< MAX_AGG_QS(bp
); i
++) {
1414 struct bnx2x_agg_info
*tpa_info
=
1416 struct sw_rx_bd
*first_buf
=
1417 &tpa_info
->first_buf
;
1420 bnx2x_frag_alloc(fp
, GFP_KERNEL
);
1421 if (!first_buf
->data
) {
1422 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1424 bnx2x_free_tpa_pool(bp
, fp
, i
);
1425 fp
->mode
= TPA_MODE_DISABLED
;
1428 dma_unmap_addr_set(first_buf
, mapping
, 0);
1429 tpa_info
->tpa_state
= BNX2X_TPA_STOP
;
1432 /* "next page" elements initialization */
1433 bnx2x_set_next_page_sgl(fp
);
1435 /* set SGEs bit mask */
1436 bnx2x_init_sge_ring_bit_mask(fp
);
1438 /* Allocate SGEs and initialize the ring elements */
1439 for (i
= 0, ring_prod
= 0;
1440 i
< MAX_RX_SGE_CNT
*NUM_RX_SGE_PAGES
; i
++) {
1442 if (bnx2x_alloc_rx_sge(bp
, fp
, ring_prod
,
1444 BNX2X_ERR("was only able to allocate %d rx sges\n",
1446 BNX2X_ERR("disabling TPA for queue[%d]\n",
1448 /* Cleanup already allocated elements */
1449 bnx2x_free_rx_sge_range(bp
, fp
,
1451 bnx2x_free_tpa_pool(bp
, fp
,
1453 fp
->mode
= TPA_MODE_DISABLED
;
1457 ring_prod
= NEXT_SGE_IDX(ring_prod
);
1460 fp
->rx_sge_prod
= ring_prod
;
1464 for_each_eth_queue(bp
, j
) {
1465 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1469 /* Activate BD ring */
1471 * this will generate an interrupt (to the TSTORM)
1472 * must only be done after chip is initialized
1474 bnx2x_update_rx_prod(bp
, fp
, fp
->rx_bd_prod
, fp
->rx_comp_prod
,
1480 if (CHIP_IS_E1(bp
)) {
1481 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1482 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
),
1483 U64_LO(fp
->rx_comp_mapping
));
1484 REG_WR(bp
, BAR_USTRORM_INTMEM
+
1485 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func
) + 4,
1486 U64_HI(fp
->rx_comp_mapping
));
1491 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath
*fp
)
1494 struct bnx2x
*bp
= fp
->bp
;
1496 for_each_cos_in_tx_queue(fp
, cos
) {
1497 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
1498 unsigned pkts_compl
= 0, bytes_compl
= 0;
1500 u16 sw_prod
= txdata
->tx_pkt_prod
;
1501 u16 sw_cons
= txdata
->tx_pkt_cons
;
1503 while (sw_cons
!= sw_prod
) {
1504 bnx2x_free_tx_pkt(bp
, txdata
, TX_BD(sw_cons
),
1505 &pkts_compl
, &bytes_compl
);
1509 netdev_tx_reset_queue(
1510 netdev_get_tx_queue(bp
->dev
,
1511 txdata
->txq_index
));
1515 static void bnx2x_free_tx_skbs_cnic(struct bnx2x
*bp
)
1519 for_each_tx_queue_cnic(bp
, i
) {
1520 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1524 static void bnx2x_free_tx_skbs(struct bnx2x
*bp
)
1528 for_each_eth_queue(bp
, i
) {
1529 bnx2x_free_tx_skbs_queue(&bp
->fp
[i
]);
1533 static void bnx2x_free_rx_bds(struct bnx2x_fastpath
*fp
)
1535 struct bnx2x
*bp
= fp
->bp
;
1538 /* ring wasn't allocated */
1539 if (fp
->rx_buf_ring
== NULL
)
1542 for (i
= 0; i
< NUM_RX_BD
; i
++) {
1543 struct sw_rx_bd
*rx_buf
= &fp
->rx_buf_ring
[i
];
1544 u8
*data
= rx_buf
->data
;
1548 dma_unmap_single(&bp
->pdev
->dev
,
1549 dma_unmap_addr(rx_buf
, mapping
),
1550 fp
->rx_buf_size
, DMA_FROM_DEVICE
);
1552 rx_buf
->data
= NULL
;
1553 bnx2x_frag_free(fp
, data
);
1557 static void bnx2x_free_rx_skbs_cnic(struct bnx2x
*bp
)
1561 for_each_rx_queue_cnic(bp
, j
) {
1562 bnx2x_free_rx_bds(&bp
->fp
[j
]);
1566 static void bnx2x_free_rx_skbs(struct bnx2x
*bp
)
1570 for_each_eth_queue(bp
, j
) {
1571 struct bnx2x_fastpath
*fp
= &bp
->fp
[j
];
1573 bnx2x_free_rx_bds(fp
);
1575 if (fp
->mode
!= TPA_MODE_DISABLED
)
1576 bnx2x_free_tpa_pool(bp
, fp
, MAX_AGG_QS(bp
));
1580 static void bnx2x_free_skbs_cnic(struct bnx2x
*bp
)
1582 bnx2x_free_tx_skbs_cnic(bp
);
1583 bnx2x_free_rx_skbs_cnic(bp
);
1586 void bnx2x_free_skbs(struct bnx2x
*bp
)
1588 bnx2x_free_tx_skbs(bp
);
1589 bnx2x_free_rx_skbs(bp
);
1592 void bnx2x_update_max_mf_config(struct bnx2x
*bp
, u32 value
)
1594 /* load old values */
1595 u32 mf_cfg
= bp
->mf_config
[BP_VN(bp
)];
1597 if (value
!= bnx2x_extract_max_cfg(bp
, mf_cfg
)) {
1598 /* leave all but MAX value */
1599 mf_cfg
&= ~FUNC_MF_CFG_MAX_BW_MASK
;
1601 /* set new MAX value */
1602 mf_cfg
|= (value
<< FUNC_MF_CFG_MAX_BW_SHIFT
)
1603 & FUNC_MF_CFG_MAX_BW_MASK
;
1605 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW
, mf_cfg
);
1610 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1612 * @bp: driver handle
1613 * @nvecs: number of vectors to be released
1615 static void bnx2x_free_msix_irqs(struct bnx2x
*bp
, int nvecs
)
1619 if (nvecs
== offset
)
1622 /* VFs don't have a default SB */
1624 free_irq(bp
->msix_table
[offset
].vector
, bp
->dev
);
1625 DP(NETIF_MSG_IFDOWN
, "released sp irq (%d)\n",
1626 bp
->msix_table
[offset
].vector
);
1630 if (CNIC_SUPPORT(bp
)) {
1631 if (nvecs
== offset
)
1636 for_each_eth_queue(bp
, i
) {
1637 if (nvecs
== offset
)
1639 DP(NETIF_MSG_IFDOWN
, "about to release fp #%d->%d irq\n",
1640 i
, bp
->msix_table
[offset
].vector
);
1642 free_irq(bp
->msix_table
[offset
++].vector
, &bp
->fp
[i
]);
1646 void bnx2x_free_irq(struct bnx2x
*bp
)
1648 if (bp
->flags
& USING_MSIX_FLAG
&&
1649 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1650 int nvecs
= BNX2X_NUM_ETH_QUEUES(bp
) + CNIC_SUPPORT(bp
);
1652 /* vfs don't have a default status block */
1656 bnx2x_free_msix_irqs(bp
, nvecs
);
1658 free_irq(bp
->dev
->irq
, bp
->dev
);
1662 int bnx2x_enable_msix(struct bnx2x
*bp
)
1664 int msix_vec
= 0, i
, rc
;
1666 /* VFs don't have a default status block */
1668 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1669 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1670 bp
->msix_table
[0].entry
);
1674 /* Cnic requires an msix vector for itself */
1675 if (CNIC_SUPPORT(bp
)) {
1676 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1677 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1678 msix_vec
, bp
->msix_table
[msix_vec
].entry
);
1682 /* We need separate vectors for ETH queues only (not FCoE) */
1683 for_each_eth_queue(bp
, i
) {
1684 bp
->msix_table
[msix_vec
].entry
= msix_vec
;
1685 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1686 msix_vec
, msix_vec
, i
);
1690 DP(BNX2X_MSG_SP
, "about to request enable msix with %d vectors\n",
1693 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0],
1694 BNX2X_MIN_MSIX_VEC_CNT(bp
), msix_vec
);
1696 * reconfigure number of tx/rx queues according to available
1699 if (rc
== -ENOSPC
) {
1700 /* Get by with single vector */
1701 rc
= pci_enable_msix_range(bp
->pdev
, &bp
->msix_table
[0], 1, 1);
1703 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1708 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1709 bp
->flags
|= USING_SINGLE_MSIX_FLAG
;
1711 BNX2X_DEV_INFO("set number of queues to 1\n");
1712 bp
->num_ethernet_queues
= 1;
1713 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1714 } else if (rc
< 0) {
1715 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc
);
1717 } else if (rc
< msix_vec
) {
1718 /* how less vectors we will have? */
1719 int diff
= msix_vec
- rc
;
1721 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc
);
1724 * decrease number of queues by number of unallocated entries
1726 bp
->num_ethernet_queues
-= diff
;
1727 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1729 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1733 bp
->flags
|= USING_MSIX_FLAG
;
1738 /* fall to INTx if not enough memory */
1740 bp
->flags
|= DISABLE_MSI_FLAG
;
1745 static int bnx2x_req_msix_irqs(struct bnx2x
*bp
)
1747 int i
, rc
, offset
= 0;
1749 /* no default status block for vf */
1751 rc
= request_irq(bp
->msix_table
[offset
++].vector
,
1752 bnx2x_msix_sp_int
, 0,
1753 bp
->dev
->name
, bp
->dev
);
1755 BNX2X_ERR("request sp irq failed\n");
1760 if (CNIC_SUPPORT(bp
))
1763 for_each_eth_queue(bp
, i
) {
1764 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1765 snprintf(fp
->name
, sizeof(fp
->name
), "%s-fp-%d",
1768 rc
= request_irq(bp
->msix_table
[offset
].vector
,
1769 bnx2x_msix_fp_int
, 0, fp
->name
, fp
);
1771 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i
,
1772 bp
->msix_table
[offset
].vector
, rc
);
1773 bnx2x_free_msix_irqs(bp
, offset
);
1780 i
= BNX2X_NUM_ETH_QUEUES(bp
);
1782 offset
= 1 + CNIC_SUPPORT(bp
);
1783 netdev_info(bp
->dev
,
1784 "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1785 bp
->msix_table
[0].vector
,
1786 0, bp
->msix_table
[offset
].vector
,
1787 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1789 offset
= CNIC_SUPPORT(bp
);
1790 netdev_info(bp
->dev
,
1791 "using MSI-X IRQs: fp[%d] %d ... fp[%d] %d\n",
1792 0, bp
->msix_table
[offset
].vector
,
1793 i
- 1, bp
->msix_table
[offset
+ i
- 1].vector
);
1798 int bnx2x_enable_msi(struct bnx2x
*bp
)
1802 rc
= pci_enable_msi(bp
->pdev
);
1804 BNX2X_DEV_INFO("MSI is not attainable\n");
1807 bp
->flags
|= USING_MSI_FLAG
;
1812 static int bnx2x_req_irq(struct bnx2x
*bp
)
1814 unsigned long flags
;
1817 if (bp
->flags
& (USING_MSI_FLAG
| USING_MSIX_FLAG
))
1820 flags
= IRQF_SHARED
;
1822 if (bp
->flags
& USING_MSIX_FLAG
)
1823 irq
= bp
->msix_table
[0].vector
;
1825 irq
= bp
->pdev
->irq
;
1827 return request_irq(irq
, bnx2x_interrupt
, flags
, bp
->dev
->name
, bp
->dev
);
1830 static int bnx2x_setup_irqs(struct bnx2x
*bp
)
1833 if (bp
->flags
& USING_MSIX_FLAG
&&
1834 !(bp
->flags
& USING_SINGLE_MSIX_FLAG
)) {
1835 rc
= bnx2x_req_msix_irqs(bp
);
1839 rc
= bnx2x_req_irq(bp
);
1841 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc
);
1844 if (bp
->flags
& USING_MSI_FLAG
) {
1845 bp
->dev
->irq
= bp
->pdev
->irq
;
1846 netdev_info(bp
->dev
, "using MSI IRQ %d\n",
1849 if (bp
->flags
& USING_MSIX_FLAG
) {
1850 bp
->dev
->irq
= bp
->msix_table
[0].vector
;
1851 netdev_info(bp
->dev
, "using MSIX IRQ %d\n",
1859 static void bnx2x_napi_enable_cnic(struct bnx2x
*bp
)
1863 for_each_rx_queue_cnic(bp
, i
) {
1864 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1868 static void bnx2x_napi_enable(struct bnx2x
*bp
)
1872 for_each_eth_queue(bp
, i
) {
1873 napi_enable(&bnx2x_fp(bp
, i
, napi
));
1877 static void bnx2x_napi_disable_cnic(struct bnx2x
*bp
)
1881 for_each_rx_queue_cnic(bp
, i
) {
1882 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1886 static void bnx2x_napi_disable(struct bnx2x
*bp
)
1890 for_each_eth_queue(bp
, i
) {
1891 napi_disable(&bnx2x_fp(bp
, i
, napi
));
1895 void bnx2x_netif_start(struct bnx2x
*bp
)
1897 if (netif_running(bp
->dev
)) {
1898 bnx2x_napi_enable(bp
);
1899 if (CNIC_LOADED(bp
))
1900 bnx2x_napi_enable_cnic(bp
);
1901 bnx2x_int_enable(bp
);
1902 if (bp
->state
== BNX2X_STATE_OPEN
)
1903 netif_tx_wake_all_queues(bp
->dev
);
1907 void bnx2x_netif_stop(struct bnx2x
*bp
, int disable_hw
)
1909 bnx2x_int_disable_sync(bp
, disable_hw
);
1910 bnx2x_napi_disable(bp
);
1911 if (CNIC_LOADED(bp
))
1912 bnx2x_napi_disable_cnic(bp
);
1915 u16
bnx2x_select_queue(struct net_device
*dev
, struct sk_buff
*skb
,
1916 struct net_device
*sb_dev
)
1918 struct bnx2x
*bp
= netdev_priv(dev
);
1920 if (CNIC_LOADED(bp
) && !NO_FCOE(bp
)) {
1921 struct ethhdr
*hdr
= (struct ethhdr
*)skb
->data
;
1922 u16 ether_type
= ntohs(hdr
->h_proto
);
1924 /* Skip VLAN tag if present */
1925 if (ether_type
== ETH_P_8021Q
) {
1926 struct vlan_ethhdr
*vhdr
=
1927 (struct vlan_ethhdr
*)skb
->data
;
1929 ether_type
= ntohs(vhdr
->h_vlan_encapsulated_proto
);
1932 /* If ethertype is FCoE or FIP - use FCoE ring */
1933 if ((ether_type
== ETH_P_FCOE
) || (ether_type
== ETH_P_FIP
))
1934 return bnx2x_fcoe_tx(bp
, txq_index
);
1937 /* select a non-FCoE queue */
1938 return netdev_pick_tx(dev
, skb
, NULL
) %
1939 (BNX2X_NUM_ETH_QUEUES(bp
) * bp
->max_cos
);
1942 void bnx2x_set_num_queues(struct bnx2x
*bp
)
1945 bp
->num_ethernet_queues
= bnx2x_calc_num_queues(bp
);
1947 /* override in STORAGE SD modes */
1948 if (IS_MF_STORAGE_ONLY(bp
))
1949 bp
->num_ethernet_queues
= 1;
1951 /* Add special queues */
1952 bp
->num_cnic_queues
= CNIC_SUPPORT(bp
); /* For FCOE */
1953 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
1955 BNX2X_DEV_INFO("set number of queues to %d\n", bp
->num_queues
);
1959 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1961 * @bp: Driver handle
1962 * @include_cnic: handle cnic case
1964 * We currently support for at most 16 Tx queues for each CoS thus we will
1965 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1968 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1969 * index after all ETH L2 indices.
1971 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1972 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1973 * 16..31,...) with indices that are not coupled with any real Tx queue.
1975 * The proper configuration of skb->queue_mapping is handled by
1976 * bnx2x_select_queue() and __skb_tx_hash().
1978 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1979 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1981 static int bnx2x_set_real_num_queues(struct bnx2x
*bp
, int include_cnic
)
1985 tx
= BNX2X_NUM_ETH_QUEUES(bp
) * bp
->max_cos
;
1986 rx
= BNX2X_NUM_ETH_QUEUES(bp
);
1988 /* account for fcoe queue */
1989 if (include_cnic
&& !NO_FCOE(bp
)) {
1994 rc
= netif_set_real_num_tx_queues(bp
->dev
, tx
);
1996 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc
);
1999 rc
= netif_set_real_num_rx_queues(bp
->dev
, rx
);
2001 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc
);
2005 DP(NETIF_MSG_IFUP
, "Setting real num queues to (tx, rx) (%d, %d)\n",
2011 static void bnx2x_set_rx_buf_size(struct bnx2x
*bp
)
2015 for_each_queue(bp
, i
) {
2016 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2019 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
2022 * Although there are no IP frames expected to arrive to
2023 * this ring we still want to add an
2024 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2027 mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
2030 fp
->rx_buf_size
= BNX2X_FW_RX_ALIGN_START
+
2031 IP_HEADER_ALIGNMENT_PADDING
+
2034 BNX2X_FW_RX_ALIGN_END
;
2035 fp
->rx_buf_size
= SKB_DATA_ALIGN(fp
->rx_buf_size
);
2036 /* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2037 if (fp
->rx_buf_size
+ NET_SKB_PAD
<= PAGE_SIZE
)
2038 fp
->rx_frag_size
= fp
->rx_buf_size
+ NET_SKB_PAD
;
2040 fp
->rx_frag_size
= 0;
2044 static int bnx2x_init_rss(struct bnx2x
*bp
)
2047 u8 num_eth_queues
= BNX2X_NUM_ETH_QUEUES(bp
);
2049 /* Prepare the initial contents for the indirection table if RSS is
2052 for (i
= 0; i
< sizeof(bp
->rss_conf_obj
.ind_table
); i
++)
2053 bp
->rss_conf_obj
.ind_table
[i
] =
2055 ethtool_rxfh_indir_default(i
, num_eth_queues
);
2058 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2059 * per-port, so if explicit configuration is needed , do it only
2062 * For 57712 and newer on the other hand it's a per-function
2065 return bnx2x_config_rss_eth(bp
, bp
->port
.pmf
|| !CHIP_IS_E1x(bp
));
2068 int bnx2x_rss(struct bnx2x
*bp
, struct bnx2x_rss_config_obj
*rss_obj
,
2069 bool config_hash
, bool enable
)
2071 struct bnx2x_config_rss_params params
= {NULL
};
2073 /* Although RSS is meaningless when there is a single HW queue we
2074 * still need it enabled in order to have HW Rx hash generated.
2076 * if (!is_eth_multi(bp))
2077 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
2080 params
.rss_obj
= rss_obj
;
2082 __set_bit(RAMROD_COMP_WAIT
, ¶ms
.ramrod_flags
);
2085 __set_bit(BNX2X_RSS_MODE_REGULAR
, ¶ms
.rss_flags
);
2087 /* RSS configuration */
2088 __set_bit(BNX2X_RSS_IPV4
, ¶ms
.rss_flags
);
2089 __set_bit(BNX2X_RSS_IPV4_TCP
, ¶ms
.rss_flags
);
2090 __set_bit(BNX2X_RSS_IPV6
, ¶ms
.rss_flags
);
2091 __set_bit(BNX2X_RSS_IPV6_TCP
, ¶ms
.rss_flags
);
2092 if (rss_obj
->udp_rss_v4
)
2093 __set_bit(BNX2X_RSS_IPV4_UDP
, ¶ms
.rss_flags
);
2094 if (rss_obj
->udp_rss_v6
)
2095 __set_bit(BNX2X_RSS_IPV6_UDP
, ¶ms
.rss_flags
);
2097 if (!CHIP_IS_E1x(bp
)) {
2098 /* valid only for TUNN_MODE_VXLAN tunnel mode */
2099 __set_bit(BNX2X_RSS_IPV4_VXLAN
, ¶ms
.rss_flags
);
2100 __set_bit(BNX2X_RSS_IPV6_VXLAN
, ¶ms
.rss_flags
);
2102 /* valid only for TUNN_MODE_GRE tunnel mode */
2103 __set_bit(BNX2X_RSS_TUNN_INNER_HDRS
, ¶ms
.rss_flags
);
2106 __set_bit(BNX2X_RSS_MODE_DISABLED
, ¶ms
.rss_flags
);
2110 params
.rss_result_mask
= MULTI_MASK
;
2112 memcpy(params
.ind_table
, rss_obj
->ind_table
, sizeof(params
.ind_table
));
2116 netdev_rss_key_fill(params
.rss_key
, T_ETH_RSS_KEY
* 4);
2117 __set_bit(BNX2X_RSS_SET_SRCH
, ¶ms
.rss_flags
);
2121 return bnx2x_config_rss(bp
, ¶ms
);
2123 return bnx2x_vfpf_config_rss(bp
, ¶ms
);
2126 static int bnx2x_init_hw(struct bnx2x
*bp
, u32 load_code
)
2128 struct bnx2x_func_state_params func_params
= {NULL
};
2130 /* Prepare parameters for function state transitions */
2131 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
2133 func_params
.f_obj
= &bp
->func_obj
;
2134 func_params
.cmd
= BNX2X_F_CMD_HW_INIT
;
2136 func_params
.params
.hw_init
.load_phase
= load_code
;
2138 return bnx2x_func_state_change(bp
, &func_params
);
2142 * Cleans the object that have internal lists without sending
2143 * ramrods. Should be run when interrupts are disabled.
2145 void bnx2x_squeeze_objects(struct bnx2x
*bp
)
2148 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
2149 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
2150 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->sp_objs
->mac_obj
;
2152 /***************** Cleanup MACs' object first *************************/
2154 /* Wait for completion of requested */
2155 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2156 /* Perform a dry cleanup */
2157 __set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod_flags
);
2159 /* Clean ETH primary MAC */
2160 __set_bit(BNX2X_ETH_MAC
, &vlan_mac_flags
);
2161 rc
= mac_obj
->delete_all(bp
, &bp
->sp_objs
->mac_obj
, &vlan_mac_flags
,
2164 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc
);
2166 /* Cleanup UC list */
2168 __set_bit(BNX2X_UC_LIST_MAC
, &vlan_mac_flags
);
2169 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
,
2172 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc
);
2174 /***************** Now clean mcast object *****************************/
2175 rparam
.mcast_obj
= &bp
->mcast_obj
;
2176 __set_bit(RAMROD_DRV_CLR_ONLY
, &rparam
.ramrod_flags
);
2178 /* Add a DEL command... - Since we're doing a driver cleanup only,
2179 * we take a lock surrounding both the initial send and the CONTs,
2180 * as we don't want a true completion to disrupt us in the middle.
2182 netif_addr_lock_bh(bp
->dev
);
2183 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
2185 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2188 /* ...and wait until all pending commands are cleared */
2189 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2192 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2194 netif_addr_unlock_bh(bp
->dev
);
2198 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
2200 netif_addr_unlock_bh(bp
->dev
);
2203 #ifndef BNX2X_STOP_ON_ERROR
2204 #define LOAD_ERROR_EXIT(bp, label) \
2206 (bp)->state = BNX2X_STATE_ERROR; \
2210 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2212 bp->cnic_loaded = false; \
2215 #else /*BNX2X_STOP_ON_ERROR*/
2216 #define LOAD_ERROR_EXIT(bp, label) \
2218 (bp)->state = BNX2X_STATE_ERROR; \
2222 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2224 bp->cnic_loaded = false; \
2228 #endif /*BNX2X_STOP_ON_ERROR*/
2230 static void bnx2x_free_fw_stats_mem(struct bnx2x
*bp
)
2232 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
2233 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2237 static int bnx2x_alloc_fw_stats_mem(struct bnx2x
*bp
)
2239 int num_groups
, vf_headroom
= 0;
2240 int is_fcoe_stats
= NO_FCOE(bp
) ? 0 : 1;
2242 /* number of queues for statistics is number of eth queues + FCoE */
2243 u8 num_queue_stats
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe_stats
;
2245 /* Total number of FW statistics requests =
2246 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2247 * and fcoe l2 queue) stats + num of queues (which includes another 1
2248 * for fcoe l2 queue if applicable)
2250 bp
->fw_stats_num
= 2 + is_fcoe_stats
+ num_queue_stats
;
2252 /* vf stats appear in the request list, but their data is allocated by
2253 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2254 * it is used to determine where to place the vf stats queries in the
2258 vf_headroom
= bnx2x_vf_headroom(bp
);
2260 /* Request is built from stats_query_header and an array of
2261 * stats_query_cmd_group each of which contains
2262 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2263 * configured in the stats_query_header.
2266 (((bp
->fw_stats_num
+ vf_headroom
) / STATS_QUERY_CMD_COUNT
) +
2267 (((bp
->fw_stats_num
+ vf_headroom
) % STATS_QUERY_CMD_COUNT
) ?
2270 DP(BNX2X_MSG_SP
, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2271 bp
->fw_stats_num
, vf_headroom
, num_groups
);
2272 bp
->fw_stats_req_sz
= sizeof(struct stats_query_header
) +
2273 num_groups
* sizeof(struct stats_query_cmd_group
);
2275 /* Data for statistics requests + stats_counter
2276 * stats_counter holds per-STORM counters that are incremented
2277 * when STORM has finished with the current request.
2278 * memory for FCoE offloaded statistics are counted anyway,
2279 * even if they will not be sent.
2280 * VF stats are not accounted for here as the data of VF stats is stored
2281 * in memory allocated by the VF, not here.
2283 bp
->fw_stats_data_sz
= sizeof(struct per_port_stats
) +
2284 sizeof(struct per_pf_stats
) +
2285 sizeof(struct fcoe_statistics_params
) +
2286 sizeof(struct per_queue_stats
) * num_queue_stats
+
2287 sizeof(struct stats_counter
);
2289 bp
->fw_stats
= BNX2X_PCI_ALLOC(&bp
->fw_stats_mapping
,
2290 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
2295 bp
->fw_stats_req
= (struct bnx2x_fw_stats_req
*)bp
->fw_stats
;
2296 bp
->fw_stats_req_mapping
= bp
->fw_stats_mapping
;
2297 bp
->fw_stats_data
= (struct bnx2x_fw_stats_data
*)
2298 ((u8
*)bp
->fw_stats
+ bp
->fw_stats_req_sz
);
2299 bp
->fw_stats_data_mapping
= bp
->fw_stats_mapping
+
2300 bp
->fw_stats_req_sz
;
2302 DP(BNX2X_MSG_SP
, "statistics request base address set to %x %x\n",
2303 U64_HI(bp
->fw_stats_req_mapping
),
2304 U64_LO(bp
->fw_stats_req_mapping
));
2305 DP(BNX2X_MSG_SP
, "statistics data base address set to %x %x\n",
2306 U64_HI(bp
->fw_stats_data_mapping
),
2307 U64_LO(bp
->fw_stats_data_mapping
));
2311 bnx2x_free_fw_stats_mem(bp
);
2312 BNX2X_ERR("Can't allocate FW stats memory\n");
2316 /* send load request to mcp and analyze response */
2317 static int bnx2x_nic_load_request(struct bnx2x
*bp
, u32
*load_code
)
2323 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
2324 DRV_MSG_SEQ_NUMBER_MASK
);
2325 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
2327 /* Get current FW pulse sequence */
2328 bp
->fw_drv_pulse_wr_seq
=
2329 (SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
) &
2330 DRV_PULSE_SEQ_MASK
);
2331 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp
->fw_drv_pulse_wr_seq
);
2333 param
= DRV_MSG_CODE_LOAD_REQ_WITH_LFA
;
2335 if (IS_MF_SD(bp
) && bnx2x_port_after_undi(bp
))
2336 param
|= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA
;
2339 (*load_code
) = bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_REQ
, param
);
2341 /* if mcp fails to respond we must abort */
2342 if (!(*load_code
)) {
2343 BNX2X_ERR("MCP response failure, aborting\n");
2347 /* If mcp refused (e.g. other port is in diagnostic mode) we
2350 if ((*load_code
) == FW_MSG_CODE_DRV_LOAD_REFUSED
) {
2351 BNX2X_ERR("MCP refused load request, aborting\n");
2357 /* check whether another PF has already loaded FW to chip. In
2358 * virtualized environments a pf from another VM may have already
2359 * initialized the device including loading FW
2361 int bnx2x_compare_fw_ver(struct bnx2x
*bp
, u32 load_code
, bool print_err
)
2363 /* is another pf loaded on this engine? */
2364 if (load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
&&
2365 load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON
) {
2366 /* build my FW version dword */
2367 u32 my_fw
= (BCM_5710_FW_MAJOR_VERSION
) +
2368 (BCM_5710_FW_MINOR_VERSION
<< 8) +
2369 (BCM_5710_FW_REVISION_VERSION
<< 16) +
2370 (BCM_5710_FW_ENGINEERING_VERSION
<< 24);
2372 /* read loaded FW from chip */
2373 u32 loaded_fw
= REG_RD(bp
, XSEM_REG_PRAM
);
2375 DP(BNX2X_MSG_SP
, "loaded fw %x, my fw %x\n",
2378 /* abort nic load if version mismatch */
2379 if (my_fw
!= loaded_fw
) {
2381 BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2384 BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2392 /* returns the "mcp load_code" according to global load_count array */
2393 static int bnx2x_nic_load_no_mcp(struct bnx2x
*bp
, int port
)
2395 int path
= BP_PATH(bp
);
2397 DP(NETIF_MSG_IFUP
, "NO MCP - load counts[%d] %d, %d, %d\n",
2398 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2399 bnx2x_load_count
[path
][2]);
2400 bnx2x_load_count
[path
][0]++;
2401 bnx2x_load_count
[path
][1 + port
]++;
2402 DP(NETIF_MSG_IFUP
, "NO MCP - new load counts[%d] %d, %d, %d\n",
2403 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
2404 bnx2x_load_count
[path
][2]);
2405 if (bnx2x_load_count
[path
][0] == 1)
2406 return FW_MSG_CODE_DRV_LOAD_COMMON
;
2407 else if (bnx2x_load_count
[path
][1 + port
] == 1)
2408 return FW_MSG_CODE_DRV_LOAD_PORT
;
2410 return FW_MSG_CODE_DRV_LOAD_FUNCTION
;
2413 /* mark PMF if applicable */
2414 static void bnx2x_nic_load_pmf(struct bnx2x
*bp
, u32 load_code
)
2416 if ((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2417 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
) ||
2418 (load_code
== FW_MSG_CODE_DRV_LOAD_PORT
)) {
2420 /* We need the barrier to ensure the ordering between the
2421 * writing to bp->port.pmf here and reading it from the
2422 * bnx2x_periodic_task().
2429 DP(NETIF_MSG_LINK
, "pmf %d\n", bp
->port
.pmf
);
2432 static void bnx2x_nic_load_afex_dcc(struct bnx2x
*bp
, int load_code
)
2434 if (((load_code
== FW_MSG_CODE_DRV_LOAD_COMMON
) ||
2435 (load_code
== FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
)) &&
2436 (bp
->common
.shmem2_base
)) {
2437 if (SHMEM2_HAS(bp
, dcc_support
))
2438 SHMEM2_WR(bp
, dcc_support
,
2439 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV
|
2440 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV
));
2441 if (SHMEM2_HAS(bp
, afex_driver_support
))
2442 SHMEM2_WR(bp
, afex_driver_support
,
2443 SHMEM_AFEX_SUPPORTED_VERSION_ONE
);
2446 /* Set AFEX default VLAN tag to an invalid value */
2447 bp
->afex_def_vlan_tag
= -1;
2451 * bnx2x_bz_fp - zero content of the fastpath structure.
2453 * @bp: driver handle
2454 * @index: fastpath index to be zeroed
2456 * Makes sure the contents of the bp->fp[index].napi is kept
2459 static void bnx2x_bz_fp(struct bnx2x
*bp
, int index
)
2461 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
2463 struct napi_struct orig_napi
= fp
->napi
;
2464 struct bnx2x_agg_info
*orig_tpa_info
= fp
->tpa_info
;
2466 /* bzero bnx2x_fastpath contents */
2468 memset(fp
->tpa_info
, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2
*
2469 sizeof(struct bnx2x_agg_info
));
2470 memset(fp
, 0, sizeof(*fp
));
2472 /* Restore the NAPI object as it has been already initialized */
2473 fp
->napi
= orig_napi
;
2474 fp
->tpa_info
= orig_tpa_info
;
2478 fp
->max_cos
= bp
->max_cos
;
2480 /* Special queues support only one CoS */
2483 /* Init txdata pointers */
2485 fp
->txdata_ptr
[0] = &bp
->bnx2x_txq
[FCOE_TXQ_IDX(bp
)];
2487 for_each_cos_in_tx_queue(fp
, cos
)
2488 fp
->txdata_ptr
[cos
] = &bp
->bnx2x_txq
[cos
*
2489 BNX2X_NUM_ETH_QUEUES(bp
) + index
];
2491 /* set the tpa flag for each queue. The tpa flag determines the queue
2492 * minimal size so it must be set prior to queue memory allocation
2494 if (bp
->dev
->features
& NETIF_F_LRO
)
2495 fp
->mode
= TPA_MODE_LRO
;
2496 else if (bp
->dev
->features
& NETIF_F_GRO_HW
)
2497 fp
->mode
= TPA_MODE_GRO
;
2499 fp
->mode
= TPA_MODE_DISABLED
;
2501 /* We don't want TPA if it's disabled in bp
2502 * or if this is an FCoE L2 ring.
2504 if (bp
->disable_tpa
|| IS_FCOE_FP(fp
))
2505 fp
->mode
= TPA_MODE_DISABLED
;
2508 void bnx2x_set_os_driver_state(struct bnx2x
*bp
, u32 state
)
2512 if (!IS_MF_BD(bp
) || !SHMEM2_HAS(bp
, os_driver_state
) || IS_VF(bp
))
2515 cur
= SHMEM2_RD(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)]);
2516 DP(NETIF_MSG_IFUP
, "Driver state %08x-->%08x\n",
2519 SHMEM2_WR(bp
, os_driver_state
[BP_FW_MB_IDX(bp
)], state
);
2522 int bnx2x_load_cnic(struct bnx2x
*bp
)
2524 int i
, rc
, port
= BP_PORT(bp
);
2526 DP(NETIF_MSG_IFUP
, "Starting CNIC-related load\n");
2528 mutex_init(&bp
->cnic_mutex
);
2531 rc
= bnx2x_alloc_mem_cnic(bp
);
2533 BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2534 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2538 rc
= bnx2x_alloc_fp_mem_cnic(bp
);
2540 BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2541 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2544 /* Update the number of queues with the cnic queues */
2545 rc
= bnx2x_set_real_num_queues(bp
, 1);
2547 BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2548 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic0
);
2551 /* Add all CNIC NAPI objects */
2552 bnx2x_add_all_napi_cnic(bp
);
2553 DP(NETIF_MSG_IFUP
, "cnic napi added\n");
2554 bnx2x_napi_enable_cnic(bp
);
2556 rc
= bnx2x_init_hw_func_cnic(bp
);
2558 LOAD_ERROR_EXIT_CNIC(bp
, load_error_cnic1
);
2560 bnx2x_nic_init_cnic(bp
);
2563 /* Enable Timer scan */
2564 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 1);
2566 /* setup cnic queues */
2567 for_each_cnic_queue(bp
, i
) {
2568 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], 0);
2570 BNX2X_ERR("Queue setup failed\n");
2571 LOAD_ERROR_EXIT(bp
, load_error_cnic2
);
2576 /* Initialize Rx filter. */
2577 bnx2x_set_rx_mode_inner(bp
);
2579 /* re-read iscsi info */
2580 bnx2x_get_iscsi_info(bp
);
2581 bnx2x_setup_cnic_irq_info(bp
);
2582 bnx2x_setup_cnic_info(bp
);
2583 bp
->cnic_loaded
= true;
2584 if (bp
->state
== BNX2X_STATE_OPEN
)
2585 bnx2x_cnic_notify(bp
, CNIC_CTL_START_CMD
);
2587 DP(NETIF_MSG_IFUP
, "Ending successfully CNIC-related load\n");
2591 #ifndef BNX2X_STOP_ON_ERROR
2593 /* Disable Timer scan */
2594 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
2597 bnx2x_napi_disable_cnic(bp
);
2598 /* Update the number of queues without the cnic queues */
2599 if (bnx2x_set_real_num_queues(bp
, 0))
2600 BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2602 BNX2X_ERR("CNIC-related load failed\n");
2603 bnx2x_free_fp_mem_cnic(bp
);
2604 bnx2x_free_mem_cnic(bp
);
2606 #endif /* ! BNX2X_STOP_ON_ERROR */
2609 /* must be called with rtnl_lock */
2610 int bnx2x_nic_load(struct bnx2x
*bp
, int load_mode
)
2612 int port
= BP_PORT(bp
);
2613 int i
, rc
= 0, load_code
= 0;
2615 DP(NETIF_MSG_IFUP
, "Starting NIC load\n");
2617 "CNIC is %s\n", CNIC_ENABLED(bp
) ? "enabled" : "disabled");
2619 #ifdef BNX2X_STOP_ON_ERROR
2620 if (unlikely(bp
->panic
)) {
2621 BNX2X_ERR("Can't load NIC when there is panic\n");
2626 bp
->state
= BNX2X_STATE_OPENING_WAIT4_LOAD
;
2628 /* zero the structure w/o any lock, before SP handler is initialized */
2629 memset(&bp
->last_reported_link
, 0, sizeof(bp
->last_reported_link
));
2630 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
2631 &bp
->last_reported_link
.link_report_flags
);
2634 /* must be called before memory allocation and HW init */
2635 bnx2x_ilt_set_info(bp
);
2638 * Zero fastpath structures preserving invariants like napi, which are
2639 * allocated only once, fp index, max_cos, bp pointer.
2640 * Also set fp->mode and txdata_ptr.
2642 DP(NETIF_MSG_IFUP
, "num queues: %d", bp
->num_queues
);
2643 for_each_queue(bp
, i
)
2645 memset(bp
->bnx2x_txq
, 0, (BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+
2646 bp
->num_cnic_queues
) *
2647 sizeof(struct bnx2x_fp_txdata
));
2649 bp
->fcoe_init
= false;
2651 /* Set the receive queues buffer size */
2652 bnx2x_set_rx_buf_size(bp
);
2655 rc
= bnx2x_alloc_mem(bp
);
2657 BNX2X_ERR("Unable to allocate bp memory\n");
2662 /* need to be done after alloc mem, since it's self adjusting to amount
2663 * of memory available for RSS queues
2665 rc
= bnx2x_alloc_fp_mem(bp
);
2667 BNX2X_ERR("Unable to allocate memory for fps\n");
2668 LOAD_ERROR_EXIT(bp
, load_error0
);
2671 /* Allocated memory for FW statistics */
2672 if (bnx2x_alloc_fw_stats_mem(bp
))
2673 LOAD_ERROR_EXIT(bp
, load_error0
);
2675 /* request pf to initialize status blocks */
2677 rc
= bnx2x_vfpf_init(bp
);
2679 LOAD_ERROR_EXIT(bp
, load_error0
);
2682 /* As long as bnx2x_alloc_mem() may possibly update
2683 * bp->num_queues, bnx2x_set_real_num_queues() should always
2684 * come after it. At this stage cnic queues are not counted.
2686 rc
= bnx2x_set_real_num_queues(bp
, 0);
2688 BNX2X_ERR("Unable to set real_num_queues\n");
2689 LOAD_ERROR_EXIT(bp
, load_error0
);
2692 /* configure multi cos mappings in kernel.
2693 * this configuration may be overridden by a multi class queue
2694 * discipline or by a dcbx negotiation result.
2696 bnx2x_setup_tc(bp
->dev
, bp
->max_cos
);
2698 /* Add all NAPI objects */
2699 bnx2x_add_all_napi(bp
);
2700 DP(NETIF_MSG_IFUP
, "napi added\n");
2701 bnx2x_napi_enable(bp
);
2704 /* set pf load just before approaching the MCP */
2705 bnx2x_set_pf_load(bp
);
2707 /* if mcp exists send load request and analyze response */
2708 if (!BP_NOMCP(bp
)) {
2709 /* attempt to load pf */
2710 rc
= bnx2x_nic_load_request(bp
, &load_code
);
2712 LOAD_ERROR_EXIT(bp
, load_error1
);
2714 /* what did mcp say? */
2715 rc
= bnx2x_compare_fw_ver(bp
, load_code
, true);
2717 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2718 LOAD_ERROR_EXIT(bp
, load_error2
);
2721 load_code
= bnx2x_nic_load_no_mcp(bp
, port
);
2724 /* mark pmf if applicable */
2725 bnx2x_nic_load_pmf(bp
, load_code
);
2727 /* Init Function state controlling object */
2728 bnx2x__init_func_obj(bp
);
2731 rc
= bnx2x_init_hw(bp
, load_code
);
2733 BNX2X_ERR("HW init failed, aborting\n");
2734 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2735 LOAD_ERROR_EXIT(bp
, load_error2
);
2739 bnx2x_pre_irq_nic_init(bp
);
2741 /* Connect to IRQs */
2742 rc
= bnx2x_setup_irqs(bp
);
2744 BNX2X_ERR("setup irqs failed\n");
2746 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2747 LOAD_ERROR_EXIT(bp
, load_error2
);
2750 /* Init per-function objects */
2752 /* Setup NIC internals and enable interrupts */
2753 bnx2x_post_irq_nic_init(bp
, load_code
);
2755 bnx2x_init_bp_objs(bp
);
2756 bnx2x_iov_nic_init(bp
);
2758 /* Set AFEX default VLAN tag to an invalid value */
2759 bp
->afex_def_vlan_tag
= -1;
2760 bnx2x_nic_load_afex_dcc(bp
, load_code
);
2761 bp
->state
= BNX2X_STATE_OPENING_WAIT4_PORT
;
2762 rc
= bnx2x_func_start(bp
);
2764 BNX2X_ERR("Function start failed!\n");
2765 bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
2767 LOAD_ERROR_EXIT(bp
, load_error3
);
2770 /* Send LOAD_DONE command to MCP */
2771 if (!BP_NOMCP(bp
)) {
2772 load_code
= bnx2x_fw_command(bp
,
2773 DRV_MSG_CODE_LOAD_DONE
, 0);
2775 BNX2X_ERR("MCP response failure, aborting\n");
2777 LOAD_ERROR_EXIT(bp
, load_error3
);
2781 /* initialize FW coalescing state machines in RAM */
2782 bnx2x_update_coalesce(bp
);
2785 /* setup the leading queue */
2786 rc
= bnx2x_setup_leading(bp
);
2788 BNX2X_ERR("Setup leading failed!\n");
2789 LOAD_ERROR_EXIT(bp
, load_error3
);
2792 /* set up the rest of the queues */
2793 for_each_nondefault_eth_queue(bp
, i
) {
2795 rc
= bnx2x_setup_queue(bp
, &bp
->fp
[i
], false);
2797 rc
= bnx2x_vfpf_setup_q(bp
, &bp
->fp
[i
], false);
2799 BNX2X_ERR("Queue %d setup failed\n", i
);
2800 LOAD_ERROR_EXIT(bp
, load_error3
);
2805 rc
= bnx2x_init_rss(bp
);
2807 BNX2X_ERR("PF RSS init failed\n");
2808 LOAD_ERROR_EXIT(bp
, load_error3
);
2811 /* Now when Clients are configured we are ready to work */
2812 bp
->state
= BNX2X_STATE_OPEN
;
2814 /* Configure a ucast MAC */
2816 rc
= bnx2x_set_eth_mac(bp
, true);
2818 rc
= bnx2x_vfpf_config_mac(bp
, bp
->dev
->dev_addr
, bp
->fp
->index
,
2821 BNX2X_ERR("Setting Ethernet MAC failed\n");
2822 LOAD_ERROR_EXIT(bp
, load_error3
);
2825 if (IS_PF(bp
) && bp
->pending_max
) {
2826 bnx2x_update_max_mf_config(bp
, bp
->pending_max
);
2827 bp
->pending_max
= 0;
2830 bp
->force_link_down
= false;
2832 rc
= bnx2x_initial_phy_init(bp
, load_mode
);
2834 LOAD_ERROR_EXIT(bp
, load_error3
);
2836 bp
->link_params
.feature_config_flags
&= ~FEATURE_CONFIG_BOOT_FROM_SAN
;
2838 /* Start fast path */
2840 /* Re-configure vlan filters */
2841 rc
= bnx2x_vlan_reconfigure_vid(bp
);
2843 LOAD_ERROR_EXIT(bp
, load_error3
);
2845 /* Initialize Rx filter. */
2846 bnx2x_set_rx_mode_inner(bp
);
2848 if (bp
->flags
& PTP_SUPPORTED
) {
2849 bnx2x_register_phc(bp
);
2851 bnx2x_configure_ptp_filters(bp
);
2854 switch (load_mode
) {
2856 /* Tx queue should be only re-enabled */
2857 netif_tx_wake_all_queues(bp
->dev
);
2861 netif_tx_start_all_queues(bp
->dev
);
2862 smp_mb__after_atomic();
2866 case LOAD_LOOPBACK_EXT
:
2867 bp
->state
= BNX2X_STATE_DIAG
;
2875 bnx2x_update_drv_flags(bp
, 1 << DRV_FLAGS_PORT_MASK
, 0);
2877 bnx2x__link_status_update(bp
);
2879 /* start the timer */
2880 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
2882 if (CNIC_ENABLED(bp
))
2883 bnx2x_load_cnic(bp
);
2886 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
2888 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2889 /* mark driver is loaded in shmem2 */
2891 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2892 val
&= ~DRV_FLAGS_MTU_MASK
;
2893 val
|= (bp
->dev
->mtu
<< DRV_FLAGS_MTU_SHIFT
);
2894 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2895 val
| DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED
|
2896 DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2899 /* Wait for all pending SP commands to complete */
2900 if (IS_PF(bp
) && !bnx2x_wait_sp_comp(bp
, ~0x0UL
)) {
2901 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2902 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
2906 /* Update driver data for On-Chip MFW dump. */
2908 bnx2x_update_mfw_dump(bp
);
2910 /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2911 if (bp
->port
.pmf
&& (bp
->state
!= BNX2X_STATE_DIAG
))
2912 bnx2x_dcbx_init(bp
, false);
2914 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2915 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_ACTIVE
);
2917 DP(NETIF_MSG_IFUP
, "Ending successfully NIC load\n");
2921 #ifndef BNX2X_STOP_ON_ERROR
2924 bnx2x_int_disable_sync(bp
, 1);
2926 /* Clean queueable objects */
2927 bnx2x_squeeze_objects(bp
);
2930 /* Free SKBs, SGEs, TPA pool and driver internals */
2931 bnx2x_free_skbs(bp
);
2932 for_each_rx_queue(bp
, i
)
2933 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
2938 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
2939 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
, 0);
2940 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
2945 bnx2x_napi_disable(bp
);
2946 bnx2x_del_all_napi(bp
);
2948 /* clear pf_load status, as it was already set */
2950 bnx2x_clear_pf_load(bp
);
2952 bnx2x_free_fw_stats_mem(bp
);
2953 bnx2x_free_fp_mem(bp
);
2957 #endif /* ! BNX2X_STOP_ON_ERROR */
2960 int bnx2x_drain_tx_queues(struct bnx2x
*bp
)
2964 /* Wait until tx fastpath tasks complete */
2965 for_each_tx_queue(bp
, i
) {
2966 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2968 for_each_cos_in_tx_queue(fp
, cos
)
2969 rc
= bnx2x_clean_tx_queue(bp
, fp
->txdata_ptr
[cos
]);
2976 /* must be called with rtnl_lock */
2977 int bnx2x_nic_unload(struct bnx2x
*bp
, int unload_mode
, bool keep_link
)
2980 bool global
= false;
2982 DP(NETIF_MSG_IFUP
, "Starting NIC unload\n");
2984 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
2985 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_DISABLED
);
2987 /* mark driver is unloaded in shmem2 */
2988 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
2990 val
= SHMEM2_RD(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
2991 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
2992 val
& ~DRV_FLAGS_CAPABILITIES_LOADED_L2
);
2995 if (IS_PF(bp
) && bp
->recovery_state
!= BNX2X_RECOVERY_DONE
&&
2996 (bp
->state
== BNX2X_STATE_CLOSED
||
2997 bp
->state
== BNX2X_STATE_ERROR
)) {
2998 /* We can get here if the driver has been unloaded
2999 * during parity error recovery and is either waiting for a
3000 * leader to complete or for other functions to unload and
3001 * then ifdown has been issued. In this case we want to
3002 * unload and let other functions to complete a recovery
3005 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
3007 bnx2x_release_leader_lock(bp
);
3010 DP(NETIF_MSG_IFDOWN
, "Releasing a leadership...\n");
3011 BNX2X_ERR("Can't unload in closed or error state\n");
3015 /* Nothing to do during unload if previous bnx2x_nic_load()
3016 * have not completed successfully - all resources are released.
3018 * we can get here only after unsuccessful ndo_* callback, during which
3019 * dev->IFF_UP flag is still on.
3021 if (bp
->state
== BNX2X_STATE_CLOSED
|| bp
->state
== BNX2X_STATE_ERROR
)
3024 /* It's important to set the bp->state to the value different from
3025 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3026 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3028 bp
->state
= BNX2X_STATE_CLOSING_WAIT4_HALT
;
3031 /* indicate to VFs that the PF is going down */
3032 bnx2x_iov_channel_down(bp
);
3034 if (CNIC_LOADED(bp
))
3035 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
3038 bnx2x_tx_disable(bp
);
3039 netdev_reset_tc(bp
->dev
);
3041 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
3043 del_timer_sync(&bp
->timer
);
3045 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
3046 /* Set ALWAYS_ALIVE bit in shmem */
3047 bp
->fw_drv_pulse_wr_seq
|= DRV_PULSE_ALWAYS_ALIVE
;
3048 bnx2x_drv_pulse(bp
);
3049 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
3050 bnx2x_save_statistics(bp
);
3053 /* wait till consumers catch up with producers in all queues.
3054 * If we're recovering, FW can't write to host so no reason
3055 * to wait for the queues to complete all Tx.
3057 if (unload_mode
!= UNLOAD_RECOVERY
)
3058 bnx2x_drain_tx_queues(bp
);
3060 /* if VF indicate to PF this function is going down (PF will delete sp
3061 * elements and clear initializations
3064 bnx2x_clear_vlan_info(bp
);
3065 bnx2x_vfpf_close_vf(bp
);
3066 } else if (unload_mode
!= UNLOAD_RECOVERY
) {
3067 /* if this is a normal/close unload need to clean up chip*/
3068 bnx2x_chip_cleanup(bp
, unload_mode
, keep_link
);
3070 /* Send the UNLOAD_REQUEST to the MCP */
3071 bnx2x_send_unload_req(bp
, unload_mode
);
3073 /* Prevent transactions to host from the functions on the
3074 * engine that doesn't reset global blocks in case of global
3075 * attention once global blocks are reset and gates are opened
3076 * (the engine which leader will perform the recovery
3079 if (!CHIP_IS_E1x(bp
))
3080 bnx2x_pf_disable(bp
);
3082 /* Disable HW interrupts, NAPI */
3083 bnx2x_netif_stop(bp
, 1);
3084 /* Delete all NAPI objects */
3085 bnx2x_del_all_napi(bp
);
3086 if (CNIC_LOADED(bp
))
3087 bnx2x_del_all_napi_cnic(bp
);
3091 /* Report UNLOAD_DONE to MCP */
3092 bnx2x_send_unload_done(bp
, false);
3096 * At this stage no more interrupts will arrive so we may safely clean
3097 * the queueable objects here in case they failed to get cleaned so far.
3100 bnx2x_squeeze_objects(bp
);
3102 /* There should be no more pending SP commands at this stage */
3107 /* clear pending work in rtnl task */
3108 bp
->sp_rtnl_state
= 0;
3111 /* Free SKBs, SGEs, TPA pool and driver internals */
3112 bnx2x_free_skbs(bp
);
3113 if (CNIC_LOADED(bp
))
3114 bnx2x_free_skbs_cnic(bp
);
3115 for_each_rx_queue(bp
, i
)
3116 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
3118 bnx2x_free_fp_mem(bp
);
3119 if (CNIC_LOADED(bp
))
3120 bnx2x_free_fp_mem_cnic(bp
);
3123 if (CNIC_LOADED(bp
))
3124 bnx2x_free_mem_cnic(bp
);
3128 bp
->state
= BNX2X_STATE_CLOSED
;
3129 bp
->cnic_loaded
= false;
3131 /* Clear driver version indication in shmem */
3132 if (IS_PF(bp
) && !BP_NOMCP(bp
))
3133 bnx2x_update_mng_version(bp
);
3135 /* Check if there are pending parity attentions. If there are - set
3136 * RECOVERY_IN_PROGRESS.
3138 if (IS_PF(bp
) && bnx2x_chk_parity_attn(bp
, &global
, false)) {
3139 bnx2x_set_reset_in_progress(bp
);
3141 /* Set RESET_IS_GLOBAL if needed */
3143 bnx2x_set_reset_global(bp
);
3146 /* The last driver must disable a "close the gate" if there is no
3147 * parity attention or "process kill" pending.
3150 !bnx2x_clear_pf_load(bp
) &&
3151 bnx2x_reset_is_done(bp
, BP_PATH(bp
)))
3152 bnx2x_disable_close_the_gate(bp
);
3154 DP(NETIF_MSG_IFUP
, "Ending NIC unload\n");
3159 int bnx2x_set_power_state(struct bnx2x
*bp
, pci_power_t state
)
3163 /* If there is no power capability, silently succeed */
3164 if (!bp
->pdev
->pm_cap
) {
3165 BNX2X_DEV_INFO("No power capability. Breaking.\n");
3169 pci_read_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3173 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3174 ((pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3175 PCI_PM_CTRL_PME_STATUS
));
3177 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3178 /* delay required during transition out of D3hot */
3183 /* If there are other clients above don't
3184 shut down the power */
3185 if (atomic_read(&bp
->pdev
->enable_cnt
) != 1)
3187 /* Don't shut down the power for emulation and FPGA */
3188 if (CHIP_REV_IS_SLOW(bp
))
3191 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3195 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3197 pci_write_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_CTRL
,
3200 /* No more memory access after this point until
3201 * device is brought back to D0.
3206 dev_err(&bp
->pdev
->dev
, "Can't support state = %d\n", state
);
3213 * net_device service functions
3215 static int bnx2x_poll(struct napi_struct
*napi
, int budget
)
3217 struct bnx2x_fastpath
*fp
= container_of(napi
, struct bnx2x_fastpath
,
3219 struct bnx2x
*bp
= fp
->bp
;
3223 #ifdef BNX2X_STOP_ON_ERROR
3224 if (unlikely(bp
->panic
)) {
3225 napi_complete(napi
);
3229 for_each_cos_in_tx_queue(fp
, cos
)
3230 if (bnx2x_tx_queue_has_work(fp
->txdata_ptr
[cos
]))
3231 bnx2x_tx_int(bp
, fp
->txdata_ptr
[cos
]);
3233 rx_work_done
= (bnx2x_has_rx_work(fp
)) ? bnx2x_rx_int(fp
, budget
) : 0;
3235 if (rx_work_done
< budget
) {
3236 /* No need to update SB for FCoE L2 ring as long as
3237 * it's connected to the default SB and the SB
3238 * has been updated when NAPI was scheduled.
3240 if (IS_FCOE_FP(fp
)) {
3241 napi_complete_done(napi
, rx_work_done
);
3243 bnx2x_update_fpsb_idx(fp
);
3244 /* bnx2x_has_rx_work() reads the status block,
3245 * thus we need to ensure that status block indices
3246 * have been actually read (bnx2x_update_fpsb_idx)
3247 * prior to this check (bnx2x_has_rx_work) so that
3248 * we won't write the "newer" value of the status block
3249 * to IGU (if there was a DMA right after
3250 * bnx2x_has_rx_work and if there is no rmb, the memory
3251 * reading (bnx2x_update_fpsb_idx) may be postponed
3252 * to right before bnx2x_ack_sb). In this case there
3253 * will never be another interrupt until there is
3254 * another update of the status block, while there
3255 * is still unhandled work.
3259 if (!(bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
3260 if (napi_complete_done(napi
, rx_work_done
)) {
3261 /* Re-enable interrupts */
3262 DP(NETIF_MSG_RX_STATUS
,
3263 "Update index to %d\n", fp
->fp_hc_idx
);
3264 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
,
3265 le16_to_cpu(fp
->fp_hc_idx
),
3269 rx_work_done
= budget
;
3274 return rx_work_done
;
3277 /* we split the first BD into headers and data BDs
3278 * to ease the pain of our fellow microcode engineers
3279 * we use one mapping for both BDs
3281 static u16
bnx2x_tx_split(struct bnx2x
*bp
,
3282 struct bnx2x_fp_txdata
*txdata
,
3283 struct sw_tx_bd
*tx_buf
,
3284 struct eth_tx_start_bd
**tx_bd
, u16 hlen
,
3287 struct eth_tx_start_bd
*h_tx_bd
= *tx_bd
;
3288 struct eth_tx_bd
*d_tx_bd
;
3290 int old_len
= le16_to_cpu(h_tx_bd
->nbytes
);
3292 /* first fix first BD */
3293 h_tx_bd
->nbytes
= cpu_to_le16(hlen
);
3295 DP(NETIF_MSG_TX_QUEUED
, "TSO split header size is %d (%x:%x)\n",
3296 h_tx_bd
->nbytes
, h_tx_bd
->addr_hi
, h_tx_bd
->addr_lo
);
3298 /* now get a new data BD
3299 * (after the pbd) and fill it */
3300 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3301 d_tx_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
3303 mapping
= HILO_U64(le32_to_cpu(h_tx_bd
->addr_hi
),
3304 le32_to_cpu(h_tx_bd
->addr_lo
)) + hlen
;
3306 d_tx_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
3307 d_tx_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
3308 d_tx_bd
->nbytes
= cpu_to_le16(old_len
- hlen
);
3310 /* this marks the BD as one that has no individual mapping */
3311 tx_buf
->flags
|= BNX2X_TSO_SPLIT_BD
;
3313 DP(NETIF_MSG_TX_QUEUED
,
3314 "TSO split data size is %d (%x:%x)\n",
3315 d_tx_bd
->nbytes
, d_tx_bd
->addr_hi
, d_tx_bd
->addr_lo
);
3318 *tx_bd
= (struct eth_tx_start_bd
*)d_tx_bd
;
3323 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3324 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3325 static __le16
bnx2x_csum_fix(unsigned char *t_header
, u16 csum
, s8 fix
)
3327 __sum16 tsum
= (__force __sum16
) csum
;
3330 tsum
= ~csum_fold(csum_sub((__force __wsum
) csum
,
3331 csum_partial(t_header
- fix
, fix
, 0)));
3334 tsum
= ~csum_fold(csum_add((__force __wsum
) csum
,
3335 csum_partial(t_header
, -fix
, 0)));
3337 return bswab16(tsum
);
3340 static u32
bnx2x_xmit_type(struct bnx2x
*bp
, struct sk_buff
*skb
)
3346 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3349 protocol
= vlan_get_protocol(skb
);
3350 if (protocol
== htons(ETH_P_IPV6
)) {
3352 prot
= ipv6_hdr(skb
)->nexthdr
;
3355 prot
= ip_hdr(skb
)->protocol
;
3358 if (!CHIP_IS_E1x(bp
) && skb
->encapsulation
) {
3359 if (inner_ip_hdr(skb
)->version
== 6) {
3360 rc
|= XMIT_CSUM_ENC_V6
;
3361 if (inner_ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3362 rc
|= XMIT_CSUM_TCP
;
3364 rc
|= XMIT_CSUM_ENC_V4
;
3365 if (inner_ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3366 rc
|= XMIT_CSUM_TCP
;
3369 if (prot
== IPPROTO_TCP
)
3370 rc
|= XMIT_CSUM_TCP
;
3372 if (skb_is_gso(skb
)) {
3373 if (skb_is_gso_v6(skb
)) {
3374 rc
|= (XMIT_GSO_V6
| XMIT_CSUM_TCP
);
3375 if (rc
& XMIT_CSUM_ENC
)
3376 rc
|= XMIT_GSO_ENC_V6
;
3378 rc
|= (XMIT_GSO_V4
| XMIT_CSUM_TCP
);
3379 if (rc
& XMIT_CSUM_ENC
)
3380 rc
|= XMIT_GSO_ENC_V4
;
3387 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3388 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS 4
3390 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3391 #define BNX2X_NUM_TSO_WIN_SUB_BDS 3
3393 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3394 /* check if packet requires linearization (packet is too fragmented)
3395 no need to check fragmentation if page size > 8K (there will be no
3396 violation to FW restrictions) */
3397 static int bnx2x_pkt_req_lin(struct bnx2x
*bp
, struct sk_buff
*skb
,
3400 int first_bd_sz
= 0, num_tso_win_sub
= BNX2X_NUM_TSO_WIN_SUB_BDS
;
3401 int to_copy
= 0, hlen
= 0;
3403 if (xmit_type
& XMIT_GSO_ENC
)
3404 num_tso_win_sub
= BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS
;
3406 if (skb_shinfo(skb
)->nr_frags
>= (MAX_FETCH_BD
- num_tso_win_sub
)) {
3407 if (xmit_type
& XMIT_GSO
) {
3408 unsigned short lso_mss
= skb_shinfo(skb
)->gso_size
;
3409 int wnd_size
= MAX_FETCH_BD
- num_tso_win_sub
;
3410 /* Number of windows to check */
3411 int num_wnds
= skb_shinfo(skb
)->nr_frags
- wnd_size
;
3416 /* Headers length */
3417 if (xmit_type
& XMIT_GSO_ENC
)
3418 hlen
= (int)(skb_inner_transport_header(skb
) -
3420 inner_tcp_hdrlen(skb
);
3422 hlen
= (int)(skb_transport_header(skb
) -
3423 skb
->data
) + tcp_hdrlen(skb
);
3425 /* Amount of data (w/o headers) on linear part of SKB*/
3426 first_bd_sz
= skb_headlen(skb
) - hlen
;
3428 wnd_sum
= first_bd_sz
;
3430 /* Calculate the first sum - it's special */
3431 for (frag_idx
= 0; frag_idx
< wnd_size
- 1; frag_idx
++)
3433 skb_frag_size(&skb_shinfo(skb
)->frags
[frag_idx
]);
3435 /* If there was data on linear skb data - check it */
3436 if (first_bd_sz
> 0) {
3437 if (unlikely(wnd_sum
< lso_mss
)) {
3442 wnd_sum
-= first_bd_sz
;
3445 /* Others are easier: run through the frag list and
3446 check all windows */
3447 for (wnd_idx
= 0; wnd_idx
<= num_wnds
; wnd_idx
++) {
3449 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
+ wnd_size
- 1]);
3451 if (unlikely(wnd_sum
< lso_mss
)) {
3456 skb_frag_size(&skb_shinfo(skb
)->frags
[wnd_idx
]);
3459 /* in non-LSO too fragmented packet should always
3466 if (unlikely(to_copy
))
3467 DP(NETIF_MSG_TX_QUEUED
,
3468 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
3469 (xmit_type
& XMIT_GSO
) ? "LSO" : "non-LSO",
3470 skb_shinfo(skb
)->nr_frags
, hlen
, first_bd_sz
);
3477 * bnx2x_set_pbd_gso - update PBD in GSO case.
3481 * @xmit_type: xmit flags
3483 static void bnx2x_set_pbd_gso(struct sk_buff
*skb
,
3484 struct eth_tx_parse_bd_e1x
*pbd
,
3487 pbd
->lso_mss
= cpu_to_le16(skb_shinfo(skb
)->gso_size
);
3488 pbd
->tcp_send_seq
= bswab32(tcp_hdr(skb
)->seq
);
3489 pbd
->tcp_flags
= pbd_tcp_flags(tcp_hdr(skb
));
3491 if (xmit_type
& XMIT_GSO_V4
) {
3492 pbd
->ip_id
= bswab16(ip_hdr(skb
)->id
);
3493 pbd
->tcp_pseudo_csum
=
3494 bswab16(~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3496 0, IPPROTO_TCP
, 0));
3498 pbd
->tcp_pseudo_csum
=
3499 bswab16(~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3500 &ipv6_hdr(skb
)->daddr
,
3501 0, IPPROTO_TCP
, 0));
3505 cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN
);
3509 * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3511 * @bp: driver handle
3513 * @parsing_data: data to be updated
3514 * @xmit_type: xmit flags
3516 * 57712/578xx related, when skb has encapsulation
3518 static u8
bnx2x_set_pbd_csum_enc(struct bnx2x
*bp
, struct sk_buff
*skb
,
3519 u32
*parsing_data
, u32 xmit_type
)
3522 ((((u8
*)skb_inner_transport_header(skb
) - skb
->data
) >> 1) <<
3523 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3524 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3526 if (xmit_type
& XMIT_CSUM_TCP
) {
3527 *parsing_data
|= ((inner_tcp_hdrlen(skb
) / 4) <<
3528 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3529 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3531 return skb_inner_transport_header(skb
) +
3532 inner_tcp_hdrlen(skb
) - skb
->data
;
3535 /* We support checksum offload for TCP and UDP only.
3536 * No need to pass the UDP header length - it's a constant.
3538 return skb_inner_transport_header(skb
) +
3539 sizeof(struct udphdr
) - skb
->data
;
3543 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3545 * @bp: driver handle
3547 * @parsing_data: data to be updated
3548 * @xmit_type: xmit flags
3550 * 57712/578xx related
3552 static u8
bnx2x_set_pbd_csum_e2(struct bnx2x
*bp
, struct sk_buff
*skb
,
3553 u32
*parsing_data
, u32 xmit_type
)
3556 ((((u8
*)skb_transport_header(skb
) - skb
->data
) >> 1) <<
3557 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT
) &
3558 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W
;
3560 if (xmit_type
& XMIT_CSUM_TCP
) {
3561 *parsing_data
|= ((tcp_hdrlen(skb
) / 4) <<
3562 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT
) &
3563 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW
;
3565 return skb_transport_header(skb
) + tcp_hdrlen(skb
) - skb
->data
;
3567 /* We support checksum offload for TCP and UDP only.
3568 * No need to pass the UDP header length - it's a constant.
3570 return skb_transport_header(skb
) + sizeof(struct udphdr
) - skb
->data
;
3573 /* set FW indication according to inner or outer protocols if tunneled */
3574 static void bnx2x_set_sbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3575 struct eth_tx_start_bd
*tx_start_bd
,
3578 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_L4_CSUM
;
3580 if (xmit_type
& (XMIT_CSUM_ENC_V6
| XMIT_CSUM_V6
))
3581 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IPV6
;
3583 if (!(xmit_type
& XMIT_CSUM_TCP
))
3584 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_IS_UDP
;
3588 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3590 * @bp: driver handle
3592 * @pbd: parse BD to be updated
3593 * @xmit_type: xmit flags
3595 static u8
bnx2x_set_pbd_csum(struct bnx2x
*bp
, struct sk_buff
*skb
,
3596 struct eth_tx_parse_bd_e1x
*pbd
,
3599 u8 hlen
= (skb_network_header(skb
) - skb
->data
) >> 1;
3601 /* for now NS flag is not used in Linux */
3604 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3605 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT
));
3607 pbd
->ip_hlen_w
= (skb_transport_header(skb
) -
3608 skb_network_header(skb
)) >> 1;
3610 hlen
+= pbd
->ip_hlen_w
;
3612 /* We support checksum offload for TCP and UDP only */
3613 if (xmit_type
& XMIT_CSUM_TCP
)
3614 hlen
+= tcp_hdrlen(skb
) / 2;
3616 hlen
+= sizeof(struct udphdr
) / 2;
3618 pbd
->total_hlen_w
= cpu_to_le16(hlen
);
3621 if (xmit_type
& XMIT_CSUM_TCP
) {
3622 pbd
->tcp_pseudo_csum
= bswab16(tcp_hdr(skb
)->check
);
3625 s8 fix
= SKB_CS_OFF(skb
); /* signed! */
3627 DP(NETIF_MSG_TX_QUEUED
,
3628 "hlen %d fix %d csum before fix %x\n",
3629 le16_to_cpu(pbd
->total_hlen_w
), fix
, SKB_CS(skb
));
3631 /* HW bug: fixup the CSUM */
3632 pbd
->tcp_pseudo_csum
=
3633 bnx2x_csum_fix(skb_transport_header(skb
),
3636 DP(NETIF_MSG_TX_QUEUED
, "csum after fix %x\n",
3637 pbd
->tcp_pseudo_csum
);
3643 static void bnx2x_update_pbds_gso_enc(struct sk_buff
*skb
,
3644 struct eth_tx_parse_bd_e2
*pbd_e2
,
3645 struct eth_tx_parse_2nd_bd
*pbd2
,
3650 u8 outerip_off
, outerip_len
= 0;
3652 /* from outer IP to transport */
3653 hlen_w
= (skb_inner_transport_header(skb
) -
3654 skb_network_header(skb
)) >> 1;
3657 hlen_w
+= inner_tcp_hdrlen(skb
) >> 1;
3659 pbd2
->fw_ip_hdr_to_payload_w
= hlen_w
;
3661 /* outer IP header info */
3662 if (xmit_type
& XMIT_CSUM_V4
) {
3663 struct iphdr
*iph
= ip_hdr(skb
);
3664 u32 csum
= (__force u32
)(~iph
->check
) -
3665 (__force u32
)iph
->tot_len
-
3666 (__force u32
)iph
->frag_off
;
3668 outerip_len
= iph
->ihl
<< 1;
3670 pbd2
->fw_ip_csum_wo_len_flags_frag
=
3671 bswab16(csum_fold((__force __wsum
)csum
));
3673 pbd2
->fw_ip_hdr_to_payload_w
=
3674 hlen_w
- ((sizeof(struct ipv6hdr
)) >> 1);
3675 pbd_e2
->data
.tunnel_data
.flags
|=
3676 ETH_TUNNEL_DATA_IPV6_OUTER
;
3679 pbd2
->tcp_send_seq
= bswab32(inner_tcp_hdr(skb
)->seq
);
3681 pbd2
->tcp_flags
= pbd_tcp_flags(inner_tcp_hdr(skb
));
3683 /* inner IP header info */
3684 if (xmit_type
& XMIT_CSUM_ENC_V4
) {
3685 pbd2
->hw_ip_id
= bswab16(inner_ip_hdr(skb
)->id
);
3687 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3688 bswab16(~csum_tcpudp_magic(
3689 inner_ip_hdr(skb
)->saddr
,
3690 inner_ip_hdr(skb
)->daddr
,
3691 0, IPPROTO_TCP
, 0));
3693 pbd_e2
->data
.tunnel_data
.pseudo_csum
=
3694 bswab16(~csum_ipv6_magic(
3695 &inner_ipv6_hdr(skb
)->saddr
,
3696 &inner_ipv6_hdr(skb
)->daddr
,
3697 0, IPPROTO_TCP
, 0));
3700 outerip_off
= (skb_network_header(skb
) - skb
->data
) >> 1;
3705 ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT
) |
3706 ((skb
->protocol
== cpu_to_be16(ETH_P_8021Q
)) <<
3707 ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT
);
3709 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
3710 SET_FLAG(*global_data
, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST
, 1);
3711 pbd2
->tunnel_udp_hdr_start_w
= skb_transport_offset(skb
) >> 1;
3715 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff
*skb
, u32
*parsing_data
,
3718 struct ipv6hdr
*ipv6
;
3720 if (!(xmit_type
& (XMIT_GSO_ENC_V6
| XMIT_GSO_V6
)))
3723 if (xmit_type
& XMIT_GSO_ENC_V6
)
3724 ipv6
= inner_ipv6_hdr(skb
);
3725 else /* XMIT_GSO_V6 */
3726 ipv6
= ipv6_hdr(skb
);
3728 if (ipv6
->nexthdr
== NEXTHDR_IPV6
)
3729 *parsing_data
|= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR
;
3732 /* called with netif_tx_lock
3733 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3734 * netif_wake_queue()
3736 netdev_tx_t
bnx2x_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3738 struct bnx2x
*bp
= netdev_priv(dev
);
3740 struct netdev_queue
*txq
;
3741 struct bnx2x_fp_txdata
*txdata
;
3742 struct sw_tx_bd
*tx_buf
;
3743 struct eth_tx_start_bd
*tx_start_bd
, *first_bd
;
3744 struct eth_tx_bd
*tx_data_bd
, *total_pkt_bd
= NULL
;
3745 struct eth_tx_parse_bd_e1x
*pbd_e1x
= NULL
;
3746 struct eth_tx_parse_bd_e2
*pbd_e2
= NULL
;
3747 struct eth_tx_parse_2nd_bd
*pbd2
= NULL
;
3748 u32 pbd_e2_parsing_data
= 0;
3749 u16 pkt_prod
, bd_prod
;
3752 u32 xmit_type
= bnx2x_xmit_type(bp
, skb
);
3755 __le16 pkt_size
= 0;
3757 u8 mac_type
= UNICAST_ADDRESS
;
3759 #ifdef BNX2X_STOP_ON_ERROR
3760 if (unlikely(bp
->panic
))
3761 return NETDEV_TX_BUSY
;
3764 txq_index
= skb_get_queue_mapping(skb
);
3765 txq
= netdev_get_tx_queue(dev
, txq_index
);
3767 BUG_ON(txq_index
>= MAX_ETH_TXQ_IDX(bp
) + (CNIC_LOADED(bp
) ? 1 : 0));
3769 txdata
= &bp
->bnx2x_txq
[txq_index
];
3771 /* enable this debug print to view the transmission queue being used
3772 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3773 txq_index, fp_index, txdata_index); */
3775 /* enable this debug print to view the transmission details
3776 DP(NETIF_MSG_TX_QUEUED,
3777 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3778 txdata->cid, fp_index, txdata_index, txdata, fp); */
3780 if (unlikely(bnx2x_tx_avail(bp
, txdata
) <
3781 skb_shinfo(skb
)->nr_frags
+
3783 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT
))) {
3784 /* Handle special storage cases separately */
3785 if (txdata
->tx_ring_size
== 0) {
3786 struct bnx2x_eth_q_stats
*q_stats
=
3787 bnx2x_fp_qstats(bp
, txdata
->parent_fp
);
3788 q_stats
->driver_filtered_tx_pkt
++;
3790 return NETDEV_TX_OK
;
3792 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
3793 netif_tx_stop_queue(txq
);
3794 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3796 return NETDEV_TX_BUSY
;
3799 DP(NETIF_MSG_TX_QUEUED
,
3800 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x len %d\n",
3801 txq_index
, skb
->ip_summed
, skb
->protocol
, ipv6_hdr(skb
)->nexthdr
,
3802 ip_hdr(skb
)->protocol
, skb_shinfo(skb
)->gso_type
, xmit_type
,
3805 eth
= (struct ethhdr
*)skb
->data
;
3807 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
3808 if (unlikely(is_multicast_ether_addr(eth
->h_dest
))) {
3809 if (is_broadcast_ether_addr(eth
->h_dest
))
3810 mac_type
= BROADCAST_ADDRESS
;
3812 mac_type
= MULTICAST_ADDRESS
;
3815 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3816 /* First, check if we need to linearize the skb (due to FW
3817 restrictions). No need to check fragmentation if page size > 8K
3818 (there will be no violation to FW restrictions) */
3819 if (bnx2x_pkt_req_lin(bp
, skb
, xmit_type
)) {
3820 /* Statistics of linearization */
3822 if (skb_linearize(skb
) != 0) {
3823 DP(NETIF_MSG_TX_QUEUED
,
3824 "SKB linearization failed - silently dropping this SKB\n");
3825 dev_kfree_skb_any(skb
);
3826 return NETDEV_TX_OK
;
3830 /* Map skb linear data for DMA */
3831 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
,
3832 skb_headlen(skb
), DMA_TO_DEVICE
);
3833 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
3834 DP(NETIF_MSG_TX_QUEUED
,
3835 "SKB mapping failed - silently dropping this SKB\n");
3836 dev_kfree_skb_any(skb
);
3837 return NETDEV_TX_OK
;
3840 Please read carefully. First we use one BD which we mark as start,
3841 then we have a parsing info BD (used for TSO or xsum),
3842 and only then we have the rest of the TSO BDs.
3843 (don't forget to mark the last one as last,
3844 and to unmap only AFTER you write to the BD ...)
3845 And above all, all pdb sizes are in words - NOT DWORDS!
3848 /* get current pkt produced now - advance it just before sending packet
3849 * since mapping of pages may fail and cause packet to be dropped
3851 pkt_prod
= txdata
->tx_pkt_prod
;
3852 bd_prod
= TX_BD(txdata
->tx_bd_prod
);
3854 /* get a tx_buf and first BD
3855 * tx_start_bd may be changed during SPLIT,
3856 * but first_bd will always stay first
3858 tx_buf
= &txdata
->tx_buf_ring
[TX_BD(pkt_prod
)];
3859 tx_start_bd
= &txdata
->tx_desc_ring
[bd_prod
].start_bd
;
3860 first_bd
= tx_start_bd
;
3862 tx_start_bd
->bd_flags
.as_bitfield
= ETH_TX_BD_FLAGS_START_BD
;
3864 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)) {
3865 if (!(bp
->flags
& TX_TIMESTAMPING_EN
)) {
3866 bp
->eth_stats
.ptp_skip_tx_ts
++;
3867 BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3868 } else if (bp
->ptp_tx_skb
) {
3869 bp
->eth_stats
.ptp_skip_tx_ts
++;
3870 netdev_err_once(bp
->dev
,
3871 "Device supports only a single outstanding packet to timestamp, this packet won't be timestamped\n");
3873 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3874 /* schedule check for Tx timestamp */
3875 bp
->ptp_tx_skb
= skb_get(skb
);
3876 bp
->ptp_tx_start
= jiffies
;
3877 schedule_work(&bp
->ptp_task
);
3881 /* header nbd: indirectly zero other flags! */
3882 tx_start_bd
->general_data
= 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT
;
3884 /* remember the first BD of the packet */
3885 tx_buf
->first_bd
= txdata
->tx_bd_prod
;
3889 DP(NETIF_MSG_TX_QUEUED
,
3890 "sending pkt %u @%p next_idx %u bd %u @%p\n",
3891 pkt_prod
, tx_buf
, txdata
->tx_pkt_prod
, bd_prod
, tx_start_bd
);
3893 if (skb_vlan_tag_present(skb
)) {
3894 tx_start_bd
->vlan_or_ethertype
=
3895 cpu_to_le16(skb_vlan_tag_get(skb
));
3896 tx_start_bd
->bd_flags
.as_bitfield
|=
3897 (X_ETH_OUTBAND_VLAN
<< ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3899 /* when transmitting in a vf, start bd must hold the ethertype
3900 * for fw to enforce it
3903 #ifndef BNX2X_STOP_ON_ERROR
3906 /* Still need to consider inband vlan for enforced */
3907 if (__vlan_get_tag(skb
, &vlan_tci
)) {
3908 tx_start_bd
->vlan_or_ethertype
=
3909 cpu_to_le16(ntohs(eth
->h_proto
));
3911 tx_start_bd
->bd_flags
.as_bitfield
|=
3912 (X_ETH_INBAND_VLAN
<<
3913 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT
);
3914 tx_start_bd
->vlan_or_ethertype
=
3915 cpu_to_le16(vlan_tci
);
3917 #ifndef BNX2X_STOP_ON_ERROR
3919 /* used by FW for packet accounting */
3920 tx_start_bd
->vlan_or_ethertype
= cpu_to_le16(pkt_prod
);
3925 nbd
= 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3927 /* turn on parsing and get a BD */
3928 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3930 if (xmit_type
& XMIT_CSUM
)
3931 bnx2x_set_sbd_csum(bp
, skb
, tx_start_bd
, xmit_type
);
3933 if (!CHIP_IS_E1x(bp
)) {
3934 pbd_e2
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e2
;
3935 memset(pbd_e2
, 0, sizeof(struct eth_tx_parse_bd_e2
));
3937 if (xmit_type
& XMIT_CSUM_ENC
) {
3938 u16 global_data
= 0;
3940 /* Set PBD in enc checksum offload case */
3941 hlen
= bnx2x_set_pbd_csum_enc(bp
, skb
,
3942 &pbd_e2_parsing_data
,
3945 /* turn on 2nd parsing and get a BD */
3946 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
3948 pbd2
= &txdata
->tx_desc_ring
[bd_prod
].parse_2nd_bd
;
3950 memset(pbd2
, 0, sizeof(*pbd2
));
3952 pbd_e2
->data
.tunnel_data
.ip_hdr_start_inner_w
=
3953 (skb_inner_network_header(skb
) -
3956 if (xmit_type
& XMIT_GSO_ENC
)
3957 bnx2x_update_pbds_gso_enc(skb
, pbd_e2
, pbd2
,
3961 pbd2
->global_data
= cpu_to_le16(global_data
);
3963 /* add addition parse BD indication to start BD */
3964 SET_FLAG(tx_start_bd
->general_data
,
3965 ETH_TX_START_BD_PARSE_NBDS
, 1);
3966 /* set encapsulation flag in start BD */
3967 SET_FLAG(tx_start_bd
->general_data
,
3968 ETH_TX_START_BD_TUNNEL_EXIST
, 1);
3970 tx_buf
->flags
|= BNX2X_HAS_SECOND_PBD
;
3973 } else if (xmit_type
& XMIT_CSUM
) {
3974 /* Set PBD in checksum offload case w/o encapsulation */
3975 hlen
= bnx2x_set_pbd_csum_e2(bp
, skb
,
3976 &pbd_e2_parsing_data
,
3980 bnx2x_set_ipv6_ext_e2(skb
, &pbd_e2_parsing_data
, xmit_type
);
3981 /* Add the macs to the parsing BD if this is a vf or if
3982 * Tx Switching is enabled.
3985 /* override GRE parameters in BD */
3986 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
3987 &pbd_e2
->data
.mac_addr
.src_mid
,
3988 &pbd_e2
->data
.mac_addr
.src_lo
,
3991 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.dst_hi
,
3992 &pbd_e2
->data
.mac_addr
.dst_mid
,
3993 &pbd_e2
->data
.mac_addr
.dst_lo
,
3996 if (bp
->flags
& TX_SWITCHING
)
3997 bnx2x_set_fw_mac_addr(
3998 &pbd_e2
->data
.mac_addr
.dst_hi
,
3999 &pbd_e2
->data
.mac_addr
.dst_mid
,
4000 &pbd_e2
->data
.mac_addr
.dst_lo
,
4002 #ifdef BNX2X_STOP_ON_ERROR
4003 /* Enforce security is always set in Stop on Error -
4004 * source mac should be present in the parsing BD
4006 bnx2x_set_fw_mac_addr(&pbd_e2
->data
.mac_addr
.src_hi
,
4007 &pbd_e2
->data
.mac_addr
.src_mid
,
4008 &pbd_e2
->data
.mac_addr
.src_lo
,
4013 SET_FLAG(pbd_e2_parsing_data
,
4014 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE
, mac_type
);
4016 u16 global_data
= 0;
4017 pbd_e1x
= &txdata
->tx_desc_ring
[bd_prod
].parse_bd_e1x
;
4018 memset(pbd_e1x
, 0, sizeof(struct eth_tx_parse_bd_e1x
));
4019 /* Set PBD in checksum offload case */
4020 if (xmit_type
& XMIT_CSUM
)
4021 hlen
= bnx2x_set_pbd_csum(bp
, skb
, pbd_e1x
, xmit_type
);
4023 SET_FLAG(global_data
,
4024 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE
, mac_type
);
4025 pbd_e1x
->global_data
|= cpu_to_le16(global_data
);
4028 /* Setup the data pointer of the first BD of the packet */
4029 tx_start_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4030 tx_start_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4031 tx_start_bd
->nbytes
= cpu_to_le16(skb_headlen(skb
));
4032 pkt_size
= tx_start_bd
->nbytes
;
4034 DP(NETIF_MSG_TX_QUEUED
,
4035 "first bd @%p addr (%x:%x) nbytes %d flags %x vlan %x\n",
4036 tx_start_bd
, tx_start_bd
->addr_hi
, tx_start_bd
->addr_lo
,
4037 le16_to_cpu(tx_start_bd
->nbytes
),
4038 tx_start_bd
->bd_flags
.as_bitfield
,
4039 le16_to_cpu(tx_start_bd
->vlan_or_ethertype
));
4041 if (xmit_type
& XMIT_GSO
) {
4043 DP(NETIF_MSG_TX_QUEUED
,
4044 "TSO packet len %d hlen %d total len %d tso size %d\n",
4045 skb
->len
, hlen
, skb_headlen(skb
),
4046 skb_shinfo(skb
)->gso_size
);
4048 tx_start_bd
->bd_flags
.as_bitfield
|= ETH_TX_BD_FLAGS_SW_LSO
;
4050 if (unlikely(skb_headlen(skb
) > hlen
)) {
4052 bd_prod
= bnx2x_tx_split(bp
, txdata
, tx_buf
,
4056 if (!CHIP_IS_E1x(bp
))
4057 pbd_e2_parsing_data
|=
4058 (skb_shinfo(skb
)->gso_size
<<
4059 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT
) &
4060 ETH_TX_PARSE_BD_E2_LSO_MSS
;
4062 bnx2x_set_pbd_gso(skb
, pbd_e1x
, xmit_type
);
4065 /* Set the PBD's parsing_data field if not zero
4066 * (for the chips newer than 57711).
4068 if (pbd_e2_parsing_data
)
4069 pbd_e2
->parsing_data
= cpu_to_le32(pbd_e2_parsing_data
);
4071 tx_data_bd
= (struct eth_tx_bd
*)tx_start_bd
;
4073 /* Handle fragmented skb */
4074 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
4075 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4077 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0,
4078 skb_frag_size(frag
), DMA_TO_DEVICE
);
4079 if (unlikely(dma_mapping_error(&bp
->pdev
->dev
, mapping
))) {
4080 unsigned int pkts_compl
= 0, bytes_compl
= 0;
4082 DP(NETIF_MSG_TX_QUEUED
,
4083 "Unable to map page - dropping packet...\n");
4085 /* we need unmap all buffers already mapped
4087 * first_bd->nbd need to be properly updated
4088 * before call to bnx2x_free_tx_pkt
4090 first_bd
->nbd
= cpu_to_le16(nbd
);
4091 bnx2x_free_tx_pkt(bp
, txdata
,
4092 TX_BD(txdata
->tx_pkt_prod
),
4093 &pkts_compl
, &bytes_compl
);
4094 return NETDEV_TX_OK
;
4097 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4098 tx_data_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4099 if (total_pkt_bd
== NULL
)
4100 total_pkt_bd
= &txdata
->tx_desc_ring
[bd_prod
].reg_bd
;
4102 tx_data_bd
->addr_hi
= cpu_to_le32(U64_HI(mapping
));
4103 tx_data_bd
->addr_lo
= cpu_to_le32(U64_LO(mapping
));
4104 tx_data_bd
->nbytes
= cpu_to_le16(skb_frag_size(frag
));
4105 le16_add_cpu(&pkt_size
, skb_frag_size(frag
));
4108 DP(NETIF_MSG_TX_QUEUED
,
4109 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
4110 i
, tx_data_bd
, tx_data_bd
->addr_hi
, tx_data_bd
->addr_lo
,
4111 le16_to_cpu(tx_data_bd
->nbytes
));
4114 DP(NETIF_MSG_TX_QUEUED
, "last bd @%p\n", tx_data_bd
);
4116 /* update with actual num BDs */
4117 first_bd
->nbd
= cpu_to_le16(nbd
);
4119 bd_prod
= TX_BD(NEXT_TX_IDX(bd_prod
));
4121 /* now send a tx doorbell, counting the next BD
4122 * if the packet contains or ends with it
4124 if (TX_BD_POFF(bd_prod
) < nbd
)
4127 /* total_pkt_bytes should be set on the first data BD if
4128 * it's not an LSO packet and there is more than one
4129 * data BD. In this case pkt_size is limited by an MTU value.
4130 * However we prefer to set it for an LSO packet (while we don't
4131 * have to) in order to save some CPU cycles in a none-LSO
4132 * case, when we much more care about them.
4134 if (total_pkt_bd
!= NULL
)
4135 total_pkt_bd
->total_pkt_bytes
= pkt_size
;
4138 DP(NETIF_MSG_TX_QUEUED
,
4139 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
4140 pbd_e1x
, pbd_e1x
->global_data
, pbd_e1x
->ip_hlen_w
,
4141 pbd_e1x
->ip_id
, pbd_e1x
->lso_mss
, pbd_e1x
->tcp_flags
,
4142 pbd_e1x
->tcp_pseudo_csum
, pbd_e1x
->tcp_send_seq
,
4143 le16_to_cpu(pbd_e1x
->total_hlen_w
));
4145 DP(NETIF_MSG_TX_QUEUED
,
4146 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
4148 pbd_e2
->data
.mac_addr
.dst_hi
,
4149 pbd_e2
->data
.mac_addr
.dst_mid
,
4150 pbd_e2
->data
.mac_addr
.dst_lo
,
4151 pbd_e2
->data
.mac_addr
.src_hi
,
4152 pbd_e2
->data
.mac_addr
.src_mid
,
4153 pbd_e2
->data
.mac_addr
.src_lo
,
4154 pbd_e2
->parsing_data
);
4155 DP(NETIF_MSG_TX_QUEUED
, "doorbell: nbd %d bd %u\n", nbd
, bd_prod
);
4157 netdev_tx_sent_queue(txq
, skb
->len
);
4159 skb_tx_timestamp(skb
);
4161 txdata
->tx_pkt_prod
++;
4163 * Make sure that the BD data is updated before updating the producer
4164 * since FW might read the BD right after the producer is updated.
4165 * This is only applicable for weak-ordered memory model archs such
4166 * as IA-64. The following barrier is also mandatory since FW will
4167 * assumes packets must have BDs.
4171 txdata
->tx_db
.data
.prod
+= nbd
;
4172 /* make sure descriptor update is observed by HW */
4175 DOORBELL_RELAXED(bp
, txdata
->cid
, txdata
->tx_db
.raw
);
4177 txdata
->tx_bd_prod
+= nbd
;
4179 if (unlikely(bnx2x_tx_avail(bp
, txdata
) < MAX_DESC_PER_TX_PKT
)) {
4180 netif_tx_stop_queue(txq
);
4182 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
4183 * ordering of set_bit() in netif_tx_stop_queue() and read of
4187 bnx2x_fp_qstats(bp
, txdata
->parent_fp
)->driver_xoff
++;
4188 if (bnx2x_tx_avail(bp
, txdata
) >= MAX_DESC_PER_TX_PKT
)
4189 netif_tx_wake_queue(txq
);
4193 return NETDEV_TX_OK
;
4196 void bnx2x_get_c2s_mapping(struct bnx2x
*bp
, u8
*c2s_map
, u8
*c2s_default
)
4198 int mfw_vn
= BP_FW_MB_IDX(bp
);
4201 /* If the shmem shouldn't affect configuration, reflect */
4202 if (!IS_MF_BD(bp
)) {
4205 for (i
= 0; i
< BNX2X_MAX_PRIORITY
; i
++)
4212 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_lower
[mfw_vn
]);
4213 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4214 c2s_map
[0] = tmp
& 0xff;
4215 c2s_map
[1] = (tmp
>> 8) & 0xff;
4216 c2s_map
[2] = (tmp
>> 16) & 0xff;
4217 c2s_map
[3] = (tmp
>> 24) & 0xff;
4219 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_upper
[mfw_vn
]);
4220 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4221 c2s_map
[4] = tmp
& 0xff;
4222 c2s_map
[5] = (tmp
>> 8) & 0xff;
4223 c2s_map
[6] = (tmp
>> 16) & 0xff;
4224 c2s_map
[7] = (tmp
>> 24) & 0xff;
4226 tmp
= SHMEM2_RD(bp
, c2s_pcp_map_default
[mfw_vn
]);
4227 tmp
= (__force u32
)be32_to_cpu((__force __be32
)tmp
);
4228 *c2s_default
= (tmp
>> (8 * mfw_vn
)) & 0xff;
4232 * bnx2x_setup_tc - routine to configure net_device for multi tc
4234 * @dev: net device to configure
4235 * @num_tc: number of traffic classes to enable
4237 * callback connected to the ndo_setup_tc function pointer
4239 int bnx2x_setup_tc(struct net_device
*dev
, u8 num_tc
)
4241 struct bnx2x
*bp
= netdev_priv(dev
);
4242 u8 c2s_map
[BNX2X_MAX_PRIORITY
], c2s_def
;
4243 int cos
, prio
, count
, offset
;
4245 /* setup tc must be called under rtnl lock */
4248 /* no traffic classes requested. Aborting */
4250 netdev_reset_tc(dev
);
4254 /* requested to support too many traffic classes */
4255 if (num_tc
> bp
->max_cos
) {
4256 BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4257 num_tc
, bp
->max_cos
);
4261 /* declare amount of supported traffic classes */
4262 if (netdev_set_num_tc(dev
, num_tc
)) {
4263 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc
);
4267 bnx2x_get_c2s_mapping(bp
, c2s_map
, &c2s_def
);
4269 /* configure priority to traffic class mapping */
4270 for (prio
= 0; prio
< BNX2X_MAX_PRIORITY
; prio
++) {
4271 int outer_prio
= c2s_map
[prio
];
4273 netdev_set_prio_tc_map(dev
, prio
, bp
->prio_to_cos
[outer_prio
]);
4274 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4275 "mapping priority %d to tc %d\n",
4276 outer_prio
, bp
->prio_to_cos
[outer_prio
]);
4279 /* Use this configuration to differentiate tc0 from other COSes
4280 This can be used for ets or pfc, and save the effort of setting
4281 up a multio class queue disc or negotiating DCBX with a switch
4282 netdev_set_prio_tc_map(dev, 0, 0);
4283 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4284 for (prio = 1; prio < 16; prio++) {
4285 netdev_set_prio_tc_map(dev, prio, 1);
4286 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4289 /* configure traffic class to transmission queue mapping */
4290 for (cos
= 0; cos
< bp
->max_cos
; cos
++) {
4291 count
= BNX2X_NUM_ETH_QUEUES(bp
);
4292 offset
= cos
* BNX2X_NUM_NON_CNIC_QUEUES(bp
);
4293 netdev_set_tc_queue(dev
, cos
, count
, offset
);
4294 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
4295 "mapping tc %d to offset %d count %d\n",
4296 cos
, offset
, count
);
4302 int __bnx2x_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
4305 struct tc_mqprio_qopt
*mqprio
= type_data
;
4307 if (type
!= TC_SETUP_QDISC_MQPRIO
)
4310 mqprio
->hw
= TC_MQPRIO_HW_OFFLOAD_TCS
;
4312 return bnx2x_setup_tc(dev
, mqprio
->num_tc
);
4315 /* called with rtnl_lock */
4316 int bnx2x_change_mac_addr(struct net_device
*dev
, void *p
)
4318 struct sockaddr
*addr
= p
;
4319 struct bnx2x
*bp
= netdev_priv(dev
);
4322 if (!is_valid_ether_addr(addr
->sa_data
)) {
4323 BNX2X_ERR("Requested MAC address is not valid\n");
4327 if (IS_MF_STORAGE_ONLY(bp
)) {
4328 BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4332 if (netif_running(dev
)) {
4333 rc
= bnx2x_set_eth_mac(bp
, false);
4338 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
4340 if (netif_running(dev
))
4341 rc
= bnx2x_set_eth_mac(bp
, true);
4343 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4344 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4349 static void bnx2x_free_fp_mem_at(struct bnx2x
*bp
, int fp_index
)
4351 union host_hc_status_block
*sb
= &bnx2x_fp(bp
, fp_index
, status_blk
);
4352 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_index
];
4357 if (IS_FCOE_IDX(fp_index
)) {
4358 memset(sb
, 0, sizeof(union host_hc_status_block
));
4359 fp
->status_blk_mapping
= 0;
4362 if (!CHIP_IS_E1x(bp
))
4363 BNX2X_PCI_FREE(sb
->e2_sb
,
4364 bnx2x_fp(bp
, fp_index
,
4365 status_blk_mapping
),
4366 sizeof(struct host_hc_status_block_e2
));
4368 BNX2X_PCI_FREE(sb
->e1x_sb
,
4369 bnx2x_fp(bp
, fp_index
,
4370 status_blk_mapping
),
4371 sizeof(struct host_hc_status_block_e1x
));
4375 if (!skip_rx_queue(bp
, fp_index
)) {
4376 bnx2x_free_rx_bds(fp
);
4378 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4379 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_buf_ring
));
4380 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_desc_ring
),
4381 bnx2x_fp(bp
, fp_index
, rx_desc_mapping
),
4382 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4384 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_comp_ring
),
4385 bnx2x_fp(bp
, fp_index
, rx_comp_mapping
),
4386 sizeof(struct eth_fast_path_rx_cqe
) *
4390 BNX2X_FREE(bnx2x_fp(bp
, fp_index
, rx_page_ring
));
4391 BNX2X_PCI_FREE(bnx2x_fp(bp
, fp_index
, rx_sge_ring
),
4392 bnx2x_fp(bp
, fp_index
, rx_sge_mapping
),
4393 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4397 if (!skip_tx_queue(bp
, fp_index
)) {
4398 /* fastpath tx rings: tx_buf tx_desc */
4399 for_each_cos_in_tx_queue(fp
, cos
) {
4400 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4402 DP(NETIF_MSG_IFDOWN
,
4403 "freeing tx memory of fp %d cos %d cid %d\n",
4404 fp_index
, cos
, txdata
->cid
);
4406 BNX2X_FREE(txdata
->tx_buf_ring
);
4407 BNX2X_PCI_FREE(txdata
->tx_desc_ring
,
4408 txdata
->tx_desc_mapping
,
4409 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4412 /* end of fastpath */
4415 static void bnx2x_free_fp_mem_cnic(struct bnx2x
*bp
)
4418 for_each_cnic_queue(bp
, i
)
4419 bnx2x_free_fp_mem_at(bp
, i
);
4422 void bnx2x_free_fp_mem(struct bnx2x
*bp
)
4425 for_each_eth_queue(bp
, i
)
4426 bnx2x_free_fp_mem_at(bp
, i
);
4429 static void set_sb_shortcuts(struct bnx2x
*bp
, int index
)
4431 union host_hc_status_block status_blk
= bnx2x_fp(bp
, index
, status_blk
);
4432 if (!CHIP_IS_E1x(bp
)) {
4433 bnx2x_fp(bp
, index
, sb_index_values
) =
4434 (__le16
*)status_blk
.e2_sb
->sb
.index_values
;
4435 bnx2x_fp(bp
, index
, sb_running_index
) =
4436 (__le16
*)status_blk
.e2_sb
->sb
.running_index
;
4438 bnx2x_fp(bp
, index
, sb_index_values
) =
4439 (__le16
*)status_blk
.e1x_sb
->sb
.index_values
;
4440 bnx2x_fp(bp
, index
, sb_running_index
) =
4441 (__le16
*)status_blk
.e1x_sb
->sb
.running_index
;
4445 /* Returns the number of actually allocated BDs */
4446 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath
*fp
,
4449 struct bnx2x
*bp
= fp
->bp
;
4450 u16 ring_prod
, cqe_ring_prod
;
4451 int i
, failure_cnt
= 0;
4453 fp
->rx_comp_cons
= 0;
4454 cqe_ring_prod
= ring_prod
= 0;
4456 /* This routine is called only during fo init so
4457 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4459 for (i
= 0; i
< rx_ring_size
; i
++) {
4460 if (bnx2x_alloc_rx_data(bp
, fp
, ring_prod
, GFP_KERNEL
) < 0) {
4464 ring_prod
= NEXT_RX_IDX(ring_prod
);
4465 cqe_ring_prod
= NEXT_RCQ_IDX(cqe_ring_prod
);
4466 WARN_ON(ring_prod
<= (i
- failure_cnt
));
4470 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4471 i
- failure_cnt
, fp
->index
);
4473 fp
->rx_bd_prod
= ring_prod
;
4474 /* Limit the CQE producer by the CQE ring size */
4475 fp
->rx_comp_prod
= min_t(u16
, NUM_RCQ_RINGS
*RCQ_DESC_CNT
,
4478 bnx2x_fp_stats(bp
, fp
)->eth_q_stats
.rx_skb_alloc_failed
+= failure_cnt
;
4480 return i
- failure_cnt
;
4483 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath
*fp
)
4487 for (i
= 1; i
<= NUM_RCQ_RINGS
; i
++) {
4488 struct eth_rx_cqe_next_page
*nextpg
;
4490 nextpg
= (struct eth_rx_cqe_next_page
*)
4491 &fp
->rx_comp_ring
[RCQ_DESC_CNT
* i
- 1];
4493 cpu_to_le32(U64_HI(fp
->rx_comp_mapping
+
4494 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4496 cpu_to_le32(U64_LO(fp
->rx_comp_mapping
+
4497 BCM_PAGE_SIZE
*(i
% NUM_RCQ_RINGS
)));
4501 static int bnx2x_alloc_fp_mem_at(struct bnx2x
*bp
, int index
)
4503 union host_hc_status_block
*sb
;
4504 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
4507 int rx_ring_size
= 0;
4509 if (!bp
->rx_ring_size
&& IS_MF_STORAGE_ONLY(bp
)) {
4510 rx_ring_size
= MIN_RX_SIZE_NONTPA
;
4511 bp
->rx_ring_size
= rx_ring_size
;
4512 } else if (!bp
->rx_ring_size
) {
4513 rx_ring_size
= MAX_RX_AVAIL
/BNX2X_NUM_RX_QUEUES(bp
);
4515 if (CHIP_IS_E3(bp
)) {
4516 u32 cfg
= SHMEM_RD(bp
,
4517 dev_info
.port_hw_config
[BP_PORT(bp
)].
4520 /* Decrease ring size for 1G functions */
4521 if ((cfg
& PORT_HW_CFG_NET_SERDES_IF_MASK
) ==
4522 PORT_HW_CFG_NET_SERDES_IF_SGMII
)
4526 /* allocate at least number of buffers required by FW */
4527 rx_ring_size
= max_t(int, bp
->disable_tpa
? MIN_RX_SIZE_NONTPA
:
4528 MIN_RX_SIZE_TPA
, rx_ring_size
);
4530 bp
->rx_ring_size
= rx_ring_size
;
4531 } else /* if rx_ring_size specified - use it */
4532 rx_ring_size
= bp
->rx_ring_size
;
4534 DP(BNX2X_MSG_SP
, "calculated rx_ring_size %d\n", rx_ring_size
);
4537 sb
= &bnx2x_fp(bp
, index
, status_blk
);
4539 if (!IS_FCOE_IDX(index
)) {
4541 if (!CHIP_IS_E1x(bp
)) {
4542 sb
->e2_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4543 sizeof(struct host_hc_status_block_e2
));
4547 sb
->e1x_sb
= BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, status_blk_mapping
),
4548 sizeof(struct host_hc_status_block_e1x
));
4554 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4555 * set shortcuts for it.
4557 if (!IS_FCOE_IDX(index
))
4558 set_sb_shortcuts(bp
, index
);
4561 if (!skip_tx_queue(bp
, index
)) {
4562 /* fastpath tx rings: tx_buf tx_desc */
4563 for_each_cos_in_tx_queue(fp
, cos
) {
4564 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
4567 "allocating tx memory of fp %d cos %d\n",
4570 txdata
->tx_buf_ring
= kcalloc(NUM_TX_BD
,
4571 sizeof(struct sw_tx_bd
),
4573 if (!txdata
->tx_buf_ring
)
4575 txdata
->tx_desc_ring
= BNX2X_PCI_ALLOC(&txdata
->tx_desc_mapping
,
4576 sizeof(union eth_tx_bd_types
) * NUM_TX_BD
);
4577 if (!txdata
->tx_desc_ring
)
4583 if (!skip_rx_queue(bp
, index
)) {
4584 /* fastpath rx rings: rx_buf rx_desc rx_comp */
4585 bnx2x_fp(bp
, index
, rx_buf_ring
) =
4586 kcalloc(NUM_RX_BD
, sizeof(struct sw_rx_bd
), GFP_KERNEL
);
4587 if (!bnx2x_fp(bp
, index
, rx_buf_ring
))
4589 bnx2x_fp(bp
, index
, rx_desc_ring
) =
4590 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_desc_mapping
),
4591 sizeof(struct eth_rx_bd
) * NUM_RX_BD
);
4592 if (!bnx2x_fp(bp
, index
, rx_desc_ring
))
4595 /* Seed all CQEs by 1s */
4596 bnx2x_fp(bp
, index
, rx_comp_ring
) =
4597 BNX2X_PCI_FALLOC(&bnx2x_fp(bp
, index
, rx_comp_mapping
),
4598 sizeof(struct eth_fast_path_rx_cqe
) * NUM_RCQ_BD
);
4599 if (!bnx2x_fp(bp
, index
, rx_comp_ring
))
4603 bnx2x_fp(bp
, index
, rx_page_ring
) =
4604 kcalloc(NUM_RX_SGE
, sizeof(struct sw_rx_page
),
4606 if (!bnx2x_fp(bp
, index
, rx_page_ring
))
4608 bnx2x_fp(bp
, index
, rx_sge_ring
) =
4609 BNX2X_PCI_ALLOC(&bnx2x_fp(bp
, index
, rx_sge_mapping
),
4610 BCM_PAGE_SIZE
* NUM_RX_SGE_PAGES
);
4611 if (!bnx2x_fp(bp
, index
, rx_sge_ring
))
4614 bnx2x_set_next_page_rx_bd(fp
);
4617 bnx2x_set_next_page_rx_cq(fp
);
4620 ring_size
= bnx2x_alloc_rx_bds(fp
, rx_ring_size
);
4621 if (ring_size
< rx_ring_size
)
4627 /* handles low memory cases */
4629 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4631 /* FW will drop all packets if queue is not big enough,
4632 * In these cases we disable the queue
4633 * Min size is different for OOO, TPA and non-TPA queues
4635 if (ring_size
< (fp
->mode
== TPA_MODE_DISABLED
?
4636 MIN_RX_SIZE_NONTPA
: MIN_RX_SIZE_TPA
)) {
4637 /* release memory allocated for this queue */
4638 bnx2x_free_fp_mem_at(bp
, index
);
4644 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x
*bp
)
4648 if (bnx2x_alloc_fp_mem_at(bp
, FCOE_IDX(bp
)))
4649 /* we will fail load process instead of mark
4657 static int bnx2x_alloc_fp_mem(struct bnx2x
*bp
)
4661 /* 1. Allocate FP for leading - fatal if error
4662 * 2. Allocate RSS - fix number of queues if error
4666 if (bnx2x_alloc_fp_mem_at(bp
, 0))
4670 for_each_nondefault_eth_queue(bp
, i
)
4671 if (bnx2x_alloc_fp_mem_at(bp
, i
))
4674 /* handle memory failures */
4675 if (i
!= BNX2X_NUM_ETH_QUEUES(bp
)) {
4676 int delta
= BNX2X_NUM_ETH_QUEUES(bp
) - i
;
4679 bnx2x_shrink_eth_fp(bp
, delta
);
4680 if (CNIC_SUPPORT(bp
))
4681 /* move non eth FPs next to last eth FP
4682 * must be done in that order
4683 * FCOE_IDX < FWD_IDX < OOO_IDX
4686 /* move FCoE fp even NO_FCOE_FLAG is on */
4687 bnx2x_move_fp(bp
, FCOE_IDX(bp
), FCOE_IDX(bp
) - delta
);
4688 bp
->num_ethernet_queues
-= delta
;
4689 bp
->num_queues
= bp
->num_ethernet_queues
+
4690 bp
->num_cnic_queues
;
4691 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4692 bp
->num_queues
+ delta
, bp
->num_queues
);
4698 void bnx2x_free_mem_bp(struct bnx2x
*bp
)
4702 for (i
= 0; i
< bp
->fp_array_size
; i
++)
4703 kfree(bp
->fp
[i
].tpa_info
);
4706 kfree(bp
->fp_stats
);
4707 kfree(bp
->bnx2x_txq
);
4708 kfree(bp
->msix_table
);
4712 int bnx2x_alloc_mem_bp(struct bnx2x
*bp
)
4714 struct bnx2x_fastpath
*fp
;
4715 struct msix_entry
*tbl
;
4716 struct bnx2x_ilt
*ilt
;
4717 int msix_table_size
= 0;
4718 int fp_array_size
, txq_array_size
;
4722 * The biggest MSI-X table we might need is as a maximum number of fast
4723 * path IGU SBs plus default SB (for PF only).
4725 msix_table_size
= bp
->igu_sb_cnt
;
4728 BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size
);
4730 /* fp array: RSS plus CNIC related L2 queues */
4731 fp_array_size
= BNX2X_MAX_RSS_COUNT(bp
) + CNIC_SUPPORT(bp
);
4732 bp
->fp_array_size
= fp_array_size
;
4733 BNX2X_DEV_INFO("fp_array_size %d\n", bp
->fp_array_size
);
4735 fp
= kcalloc(bp
->fp_array_size
, sizeof(*fp
), GFP_KERNEL
);
4738 for (i
= 0; i
< bp
->fp_array_size
; i
++) {
4740 kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2
,
4741 sizeof(struct bnx2x_agg_info
), GFP_KERNEL
);
4742 if (!(fp
[i
].tpa_info
))
4748 /* allocate sp objs */
4749 bp
->sp_objs
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_sp_objs
),
4754 /* allocate fp_stats */
4755 bp
->fp_stats
= kcalloc(bp
->fp_array_size
, sizeof(struct bnx2x_fp_stats
),
4760 /* Allocate memory for the transmission queues array */
4762 BNX2X_MAX_RSS_COUNT(bp
) * BNX2X_MULTI_TX_COS
+ CNIC_SUPPORT(bp
);
4763 BNX2X_DEV_INFO("txq_array_size %d", txq_array_size
);
4765 bp
->bnx2x_txq
= kcalloc(txq_array_size
, sizeof(struct bnx2x_fp_txdata
),
4771 tbl
= kcalloc(msix_table_size
, sizeof(*tbl
), GFP_KERNEL
);
4774 bp
->msix_table
= tbl
;
4777 ilt
= kzalloc(sizeof(*ilt
), GFP_KERNEL
);
4784 bnx2x_free_mem_bp(bp
);
4788 int bnx2x_reload_if_running(struct net_device
*dev
)
4790 struct bnx2x
*bp
= netdev_priv(dev
);
4792 if (unlikely(!netif_running(dev
)))
4795 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
4796 return bnx2x_nic_load(bp
, LOAD_NORMAL
);
4799 int bnx2x_get_cur_phy_idx(struct bnx2x
*bp
)
4801 u32 sel_phy_idx
= 0;
4802 if (bp
->link_params
.num_phys
<= 1)
4805 if (bp
->link_vars
.link_up
) {
4806 sel_phy_idx
= EXT_PHY1
;
4807 /* In case link is SERDES, check if the EXT_PHY2 is the one */
4808 if ((bp
->link_vars
.link_status
& LINK_STATUS_SERDES_LINK
) &&
4809 (bp
->link_params
.phy
[EXT_PHY2
].supported
& SUPPORTED_FIBRE
))
4810 sel_phy_idx
= EXT_PHY2
;
4813 switch (bnx2x_phy_selection(&bp
->link_params
)) {
4814 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT
:
4815 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY
:
4816 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY
:
4817 sel_phy_idx
= EXT_PHY1
;
4819 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY
:
4820 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY
:
4821 sel_phy_idx
= EXT_PHY2
;
4828 int bnx2x_get_link_cfg_idx(struct bnx2x
*bp
)
4830 u32 sel_phy_idx
= bnx2x_get_cur_phy_idx(bp
);
4832 * The selected activated PHY is always after swapping (in case PHY
4833 * swapping is enabled). So when swapping is enabled, we need to reverse
4837 if (bp
->link_params
.multi_phy_config
&
4838 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
4839 if (sel_phy_idx
== EXT_PHY1
)
4840 sel_phy_idx
= EXT_PHY2
;
4841 else if (sel_phy_idx
== EXT_PHY2
)
4842 sel_phy_idx
= EXT_PHY1
;
4844 return LINK_CONFIG_IDX(sel_phy_idx
);
4847 #ifdef NETDEV_FCOE_WWNN
4848 int bnx2x_fcoe_get_wwn(struct net_device
*dev
, u64
*wwn
, int type
)
4850 struct bnx2x
*bp
= netdev_priv(dev
);
4851 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
4854 case NETDEV_FCOE_WWNN
:
4855 *wwn
= HILO_U64(cp
->fcoe_wwn_node_name_hi
,
4856 cp
->fcoe_wwn_node_name_lo
);
4858 case NETDEV_FCOE_WWPN
:
4859 *wwn
= HILO_U64(cp
->fcoe_wwn_port_name_hi
,
4860 cp
->fcoe_wwn_port_name_lo
);
4863 BNX2X_ERR("Wrong WWN type requested - %d\n", type
);
4871 /* called with rtnl_lock */
4872 int bnx2x_change_mtu(struct net_device
*dev
, int new_mtu
)
4874 struct bnx2x
*bp
= netdev_priv(dev
);
4876 if (pci_num_vf(bp
->pdev
)) {
4877 DP(BNX2X_MSG_IOV
, "VFs are enabled, can not change MTU\n");
4881 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
4882 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4886 /* This does not race with packet allocation
4887 * because the actual alloc size is
4888 * only updated as part of load
4892 if (!bnx2x_mtu_allows_gro(new_mtu
))
4893 dev
->features
&= ~NETIF_F_GRO_HW
;
4895 if (IS_PF(bp
) && SHMEM2_HAS(bp
, curr_cfg
))
4896 SHMEM2_WR(bp
, curr_cfg
, CURR_CFG_MET_OS
);
4898 return bnx2x_reload_if_running(dev
);
4901 netdev_features_t
bnx2x_fix_features(struct net_device
*dev
,
4902 netdev_features_t features
)
4904 struct bnx2x
*bp
= netdev_priv(dev
);
4906 if (pci_num_vf(bp
->pdev
)) {
4907 netdev_features_t changed
= dev
->features
^ features
;
4909 /* Revert the requested changes in features if they
4910 * would require internal reload of PF in bnx2x_set_features().
4912 if (!(features
& NETIF_F_RXCSUM
) && !bp
->disable_tpa
) {
4913 features
&= ~NETIF_F_RXCSUM
;
4914 features
|= dev
->features
& NETIF_F_RXCSUM
;
4917 if (changed
& NETIF_F_LOOPBACK
) {
4918 features
&= ~NETIF_F_LOOPBACK
;
4919 features
|= dev
->features
& NETIF_F_LOOPBACK
;
4923 /* TPA requires Rx CSUM offloading */
4924 if (!(features
& NETIF_F_RXCSUM
))
4925 features
&= ~NETIF_F_LRO
;
4927 if (!(features
& NETIF_F_GRO
) || !bnx2x_mtu_allows_gro(dev
->mtu
))
4928 features
&= ~NETIF_F_GRO_HW
;
4929 if (features
& NETIF_F_GRO_HW
)
4930 features
&= ~NETIF_F_LRO
;
4935 int bnx2x_set_features(struct net_device
*dev
, netdev_features_t features
)
4937 struct bnx2x
*bp
= netdev_priv(dev
);
4938 netdev_features_t changes
= features
^ dev
->features
;
4939 bool bnx2x_reload
= false;
4942 /* VFs or non SRIOV PFs should be able to change loopback feature */
4943 if (!pci_num_vf(bp
->pdev
)) {
4944 if (features
& NETIF_F_LOOPBACK
) {
4945 if (bp
->link_params
.loopback_mode
!= LOOPBACK_BMAC
) {
4946 bp
->link_params
.loopback_mode
= LOOPBACK_BMAC
;
4947 bnx2x_reload
= true;
4950 if (bp
->link_params
.loopback_mode
!= LOOPBACK_NONE
) {
4951 bp
->link_params
.loopback_mode
= LOOPBACK_NONE
;
4952 bnx2x_reload
= true;
4957 /* Don't care about GRO changes */
4958 changes
&= ~NETIF_F_GRO
;
4961 bnx2x_reload
= true;
4964 if (bp
->recovery_state
== BNX2X_RECOVERY_DONE
) {
4965 dev
->features
= features
;
4966 rc
= bnx2x_reload_if_running(dev
);
4969 /* else: bnx2x_nic_load() will be called at end of recovery */
4975 void bnx2x_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
4977 struct bnx2x
*bp
= netdev_priv(dev
);
4979 /* We want the information of the dump logged,
4980 * but calling bnx2x_panic() would kill all chances of recovery.
4983 #ifndef BNX2X_STOP_ON_ERROR
4984 bnx2x_panic_dump(bp
, false);
4989 /* This allows the netif to be shutdown gracefully before resetting */
4990 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_TX_TIMEOUT
, 0);
4993 static int __maybe_unused
bnx2x_suspend(struct device
*dev_d
)
4995 struct pci_dev
*pdev
= to_pci_dev(dev_d
);
4996 struct net_device
*dev
= pci_get_drvdata(pdev
);
5000 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5003 bp
= netdev_priv(dev
);
5007 if (!netif_running(dev
)) {
5012 netif_device_detach(dev
);
5014 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
5021 static int __maybe_unused
bnx2x_resume(struct device
*dev_d
)
5023 struct pci_dev
*pdev
= to_pci_dev(dev_d
);
5024 struct net_device
*dev
= pci_get_drvdata(pdev
);
5029 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
5032 bp
= netdev_priv(dev
);
5034 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
5035 BNX2X_ERR("Handling parity error recovery. Try again later\n");
5041 if (!netif_running(dev
)) {
5046 netif_device_attach(dev
);
5048 rc
= bnx2x_nic_load(bp
, LOAD_OPEN
);
5055 SIMPLE_DEV_PM_OPS(bnx2x_pm_ops
, bnx2x_suspend
, bnx2x_resume
);
5057 void bnx2x_set_ctx_validation(struct bnx2x
*bp
, struct eth_context
*cxt
,
5061 BNX2X_ERR("bad context pointer %p\n", cxt
);
5065 /* ustorm cxt validation */
5066 cxt
->ustorm_ag_context
.cdu_usage
=
5067 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5068 CDU_REGION_NUMBER_UCM_AG
, ETH_CONNECTION_TYPE
);
5069 /* xcontext validation */
5070 cxt
->xstorm_ag_context
.cdu_reserved
=
5071 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp
, cid
),
5072 CDU_REGION_NUMBER_XCM_AG
, ETH_CONNECTION_TYPE
);
5075 static void storm_memset_hc_timeout(struct bnx2x
*bp
, u8 port
,
5076 u8 fw_sb_id
, u8 sb_index
,
5079 u32 addr
= BAR_CSTRORM_INTMEM
+
5080 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id
, sb_index
);
5081 REG_WR8(bp
, addr
, ticks
);
5083 "port %x fw_sb_id %d sb_index %d ticks %d\n",
5084 port
, fw_sb_id
, sb_index
, ticks
);
5087 static void storm_memset_hc_disable(struct bnx2x
*bp
, u8 port
,
5088 u16 fw_sb_id
, u8 sb_index
,
5091 u32 enable_flag
= disable
? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT
);
5092 u32 addr
= BAR_CSTRORM_INTMEM
+
5093 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id
, sb_index
);
5094 u8 flags
= REG_RD8(bp
, addr
);
5096 flags
&= ~HC_INDEX_DATA_HC_ENABLED
;
5097 flags
|= enable_flag
;
5098 REG_WR8(bp
, addr
, flags
);
5100 "port %x fw_sb_id %d sb_index %d disable %d\n",
5101 port
, fw_sb_id
, sb_index
, disable
);
5104 void bnx2x_update_coalesce_sb_index(struct bnx2x
*bp
, u8 fw_sb_id
,
5105 u8 sb_index
, u8 disable
, u16 usec
)
5107 int port
= BP_PORT(bp
);
5108 u8 ticks
= usec
/ BNX2X_BTR
;
5110 storm_memset_hc_timeout(bp
, port
, fw_sb_id
, sb_index
, ticks
);
5112 disable
= disable
? 1 : (usec
? 0 : 1);
5113 storm_memset_hc_disable(bp
, port
, fw_sb_id
, sb_index
, disable
);
5116 void bnx2x_schedule_sp_rtnl(struct bnx2x
*bp
, enum sp_rtnl_flag flag
,
5119 smp_mb__before_atomic();
5120 set_bit(flag
, &bp
->sp_rtnl_state
);
5121 smp_mb__after_atomic();
5122 DP((BNX2X_MSG_SP
| verbose
), "Scheduling sp_rtnl task [Flag: %d]\n",
5124 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);