1 /* bnx2x_main.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT (5*HZ)
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("QLogic "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_FIRMWARE(FW_FILE_NAME_E1
);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1H
);
92 MODULE_FIRMWARE(FW_FILE_NAME_E2
);
95 module_param_named(num_queues
, bnx2x_num_queues
, int, 0444);
96 MODULE_PARM_DESC(num_queues
,
97 " Set number of queues (default is as a number of CPUs)");
99 static int disable_tpa
;
100 module_param(disable_tpa
, int, 0444);
101 MODULE_PARM_DESC(disable_tpa
, " Disable the TPA (LRO) feature");
104 module_param(int_mode
, int, 0444);
105 MODULE_PARM_DESC(int_mode
, " Force interrupt mode other than MSI-X "
108 static int dropless_fc
;
109 module_param(dropless_fc
, int, 0444);
110 MODULE_PARM_DESC(dropless_fc
, " Pause on exhausted host ring");
112 static int mrrs
= -1;
113 module_param(mrrs
, int, 0444);
114 MODULE_PARM_DESC(mrrs
, " Force Max Read Req Size (0..3) (for debug)");
117 module_param(debug
, int, 0444);
118 MODULE_PARM_DESC(debug
, " Default debug msglevel");
120 static struct workqueue_struct
*bnx2x_wq
;
121 struct workqueue_struct
*bnx2x_iov_wq
;
123 struct bnx2x_mac_vals
{
134 enum bnx2x_board_type
{
158 /* indexed by board_type, above */
162 [BCM57710
] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
163 [BCM57711
] = { "QLogic BCM57711 10 Gigabit PCIe" },
164 [BCM57711E
] = { "QLogic BCM57711E 10 Gigabit PCIe" },
165 [BCM57712
] = { "QLogic BCM57712 10 Gigabit Ethernet" },
166 [BCM57712_MF
] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
167 [BCM57712_VF
] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
168 [BCM57800
] = { "QLogic BCM57800 10 Gigabit Ethernet" },
169 [BCM57800_MF
] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
170 [BCM57800_VF
] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
171 [BCM57810
] = { "QLogic BCM57810 10 Gigabit Ethernet" },
172 [BCM57810_MF
] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
173 [BCM57810_VF
] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
174 [BCM57840_4_10
] = { "QLogic BCM57840 10 Gigabit Ethernet" },
175 [BCM57840_2_20
] = { "QLogic BCM57840 20 Gigabit Ethernet" },
176 [BCM57840_MF
] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
177 [BCM57840_VF
] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
178 [BCM57811
] = { "QLogic BCM57811 10 Gigabit Ethernet" },
179 [BCM57811_MF
] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
180 [BCM57840_O
] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
181 [BCM57840_MFO
] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 [BCM57811_VF
] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
185 #ifndef PCI_DEVICE_ID_NX2_57710
186 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
188 #ifndef PCI_DEVICE_ID_NX2_57711
189 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
191 #ifndef PCI_DEVICE_ID_NX2_57711E
192 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
194 #ifndef PCI_DEVICE_ID_NX2_57712
195 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
197 #ifndef PCI_DEVICE_ID_NX2_57712_MF
198 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
200 #ifndef PCI_DEVICE_ID_NX2_57712_VF
201 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
203 #ifndef PCI_DEVICE_ID_NX2_57800
204 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
206 #ifndef PCI_DEVICE_ID_NX2_57800_MF
207 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
209 #ifndef PCI_DEVICE_ID_NX2_57800_VF
210 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
212 #ifndef PCI_DEVICE_ID_NX2_57810
213 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
215 #ifndef PCI_DEVICE_ID_NX2_57810_MF
216 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
218 #ifndef PCI_DEVICE_ID_NX2_57840_O
219 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
221 #ifndef PCI_DEVICE_ID_NX2_57810_VF
222 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
225 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
228 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
231 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
233 #ifndef PCI_DEVICE_ID_NX2_57840_MF
234 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
236 #ifndef PCI_DEVICE_ID_NX2_57840_VF
237 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
239 #ifndef PCI_DEVICE_ID_NX2_57811
240 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
242 #ifndef PCI_DEVICE_ID_NX2_57811_MF
243 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
245 #ifndef PCI_DEVICE_ID_NX2_57811_VF
246 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
249 static const struct pci_device_id bnx2x_pci_tbl
[] = {
250 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57710
), BCM57710
},
251 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711
), BCM57711
},
252 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57711E
), BCM57711E
},
253 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712
), BCM57712
},
254 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712_MF
), BCM57712_MF
},
255 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57712_VF
), BCM57712_VF
},
256 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800
), BCM57800
},
257 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800_MF
), BCM57800_MF
},
258 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57800_VF
), BCM57800_VF
},
259 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810
), BCM57810
},
260 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810_MF
), BCM57810_MF
},
261 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_O
), BCM57840_O
},
262 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_4_10
), BCM57840_4_10
},
263 { PCI_VDEVICE(QLOGIC
, PCI_DEVICE_ID_NX2_57840_4_10
), BCM57840_4_10
},
264 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_2_20
), BCM57840_2_20
},
265 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57810_VF
), BCM57810_VF
},
266 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_MFO
), BCM57840_MFO
},
267 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_MF
), BCM57840_MF
},
268 { PCI_VDEVICE(QLOGIC
, PCI_DEVICE_ID_NX2_57840_MF
), BCM57840_MF
},
269 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57840_VF
), BCM57840_VF
},
270 { PCI_VDEVICE(QLOGIC
, PCI_DEVICE_ID_NX2_57840_VF
), BCM57840_VF
},
271 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57811
), BCM57811
},
272 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57811_MF
), BCM57811_MF
},
273 { PCI_VDEVICE(BROADCOM
, PCI_DEVICE_ID_NX2_57811_VF
), BCM57811_VF
},
277 MODULE_DEVICE_TABLE(pci
, bnx2x_pci_tbl
);
279 const u32 dmae_reg_go_c
[] = {
280 DMAE_REG_GO_C0
, DMAE_REG_GO_C1
, DMAE_REG_GO_C2
, DMAE_REG_GO_C3
,
281 DMAE_REG_GO_C4
, DMAE_REG_GO_C5
, DMAE_REG_GO_C6
, DMAE_REG_GO_C7
,
282 DMAE_REG_GO_C8
, DMAE_REG_GO_C9
, DMAE_REG_GO_C10
, DMAE_REG_GO_C11
,
283 DMAE_REG_GO_C12
, DMAE_REG_GO_C13
, DMAE_REG_GO_C14
, DMAE_REG_GO_C15
286 /* Global resources for unloading a previously loaded device */
287 #define BNX2X_PREV_WAIT_NEEDED 1
288 static DEFINE_SEMAPHORE(bnx2x_prev_sem
);
289 static LIST_HEAD(bnx2x_prev_list
);
291 /* Forward declaration */
292 static struct cnic_eth_dev
*bnx2x_cnic_probe(struct net_device
*dev
);
293 static u32
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath
*fp
);
294 static int bnx2x_set_storm_rx_mode(struct bnx2x
*bp
);
296 /****************************************************************************
297 * General service functions
298 ****************************************************************************/
300 static int bnx2x_hwtstamp_ioctl(struct bnx2x
*bp
, struct ifreq
*ifr
);
302 static void __storm_memset_dma_mapping(struct bnx2x
*bp
,
303 u32 addr
, dma_addr_t mapping
)
305 REG_WR(bp
, addr
, U64_LO(mapping
));
306 REG_WR(bp
, addr
+ 4, U64_HI(mapping
));
309 static void storm_memset_spq_addr(struct bnx2x
*bp
,
310 dma_addr_t mapping
, u16 abs_fid
)
312 u32 addr
= XSEM_REG_FAST_MEMORY
+
313 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid
);
315 __storm_memset_dma_mapping(bp
, addr
, mapping
);
318 static void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
321 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
323 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
325 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
327 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
331 static void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
334 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
336 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
338 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
340 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
344 static void storm_memset_eq_data(struct bnx2x
*bp
,
345 struct event_ring_data
*eq_data
,
348 size_t size
= sizeof(struct event_ring_data
);
350 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_DATA_OFFSET(pfid
);
352 __storm_memset_struct(bp
, addr
, size
, (u32
*)eq_data
);
355 static void storm_memset_eq_prod(struct bnx2x
*bp
, u16 eq_prod
,
358 u32 addr
= BAR_CSTRORM_INTMEM
+ CSTORM_EVENT_RING_PROD_OFFSET(pfid
);
359 REG_WR16(bp
, addr
, eq_prod
);
363 * locking is done by mcp
365 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
)
367 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
368 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, val
);
369 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
370 PCICFG_VENDOR_ID_OFFSET
);
373 static u32
bnx2x_reg_rd_ind(struct bnx2x
*bp
, u32 addr
)
377 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
, addr
);
378 pci_read_config_dword(bp
->pdev
, PCICFG_GRC_DATA
, &val
);
379 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
380 PCICFG_VENDOR_ID_OFFSET
);
385 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
386 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
387 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
388 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
389 #define DMAE_DP_DST_NONE "dst_addr [none]"
391 static void bnx2x_dp_dmae(struct bnx2x
*bp
,
392 struct dmae_command
*dmae
, int msglvl
)
394 u32 src_type
= dmae
->opcode
& DMAE_COMMAND_SRC
;
397 switch (dmae
->opcode
& DMAE_COMMAND_DST
) {
398 case DMAE_CMD_DST_PCI
:
399 if (src_type
== DMAE_CMD_SRC_PCI
)
400 DP(msglvl
, "DMAE: opcode 0x%08x\n"
401 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
402 "comp_addr [%x:%08x], comp_val 0x%08x\n",
403 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
404 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
405 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
408 DP(msglvl
, "DMAE: opcode 0x%08x\n"
409 "src [%08x], len [%d*4], dst [%x:%08x]\n"
410 "comp_addr [%x:%08x], comp_val 0x%08x\n",
411 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
412 dmae
->len
, dmae
->dst_addr_hi
, dmae
->dst_addr_lo
,
413 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
416 case DMAE_CMD_DST_GRC
:
417 if (src_type
== DMAE_CMD_SRC_PCI
)
418 DP(msglvl
, "DMAE: opcode 0x%08x\n"
419 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
420 "comp_addr [%x:%08x], comp_val 0x%08x\n",
421 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
422 dmae
->len
, dmae
->dst_addr_lo
>> 2,
423 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
426 DP(msglvl
, "DMAE: opcode 0x%08x\n"
427 "src [%08x], len [%d*4], dst [%08x]\n"
428 "comp_addr [%x:%08x], comp_val 0x%08x\n",
429 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
430 dmae
->len
, dmae
->dst_addr_lo
>> 2,
431 dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
435 if (src_type
== DMAE_CMD_SRC_PCI
)
436 DP(msglvl
, "DMAE: opcode 0x%08x\n"
437 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
438 "comp_addr [%x:%08x] comp_val 0x%08x\n",
439 dmae
->opcode
, dmae
->src_addr_hi
, dmae
->src_addr_lo
,
440 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
443 DP(msglvl
, "DMAE: opcode 0x%08x\n"
444 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
445 "comp_addr [%x:%08x] comp_val 0x%08x\n",
446 dmae
->opcode
, dmae
->src_addr_lo
>> 2,
447 dmae
->len
, dmae
->comp_addr_hi
, dmae
->comp_addr_lo
,
452 for (i
= 0; i
< (sizeof(struct dmae_command
)/4); i
++)
453 DP(msglvl
, "DMAE RAW [%02d]: 0x%08x\n",
454 i
, *(((u32
*)dmae
) + i
));
457 /* copy command into DMAE command memory and set DMAE command go */
458 void bnx2x_post_dmae(struct bnx2x
*bp
, struct dmae_command
*dmae
, int idx
)
463 cmd_offset
= (DMAE_REG_CMD_MEM
+ sizeof(struct dmae_command
) * idx
);
464 for (i
= 0; i
< (sizeof(struct dmae_command
)/4); i
++) {
465 REG_WR(bp
, cmd_offset
+ i
*4, *(((u32
*)dmae
) + i
));
467 REG_WR(bp
, dmae_reg_go_c
[idx
], 1);
470 u32
bnx2x_dmae_opcode_add_comp(u32 opcode
, u8 comp_type
)
472 return opcode
| ((comp_type
<< DMAE_COMMAND_C_DST_SHIFT
) |
476 u32
bnx2x_dmae_opcode_clr_src_reset(u32 opcode
)
478 return opcode
& ~DMAE_CMD_SRC_RESET
;
481 u32
bnx2x_dmae_opcode(struct bnx2x
*bp
, u8 src_type
, u8 dst_type
,
482 bool with_comp
, u8 comp_type
)
486 opcode
|= ((src_type
<< DMAE_COMMAND_SRC_SHIFT
) |
487 (dst_type
<< DMAE_COMMAND_DST_SHIFT
));
489 opcode
|= (DMAE_CMD_SRC_RESET
| DMAE_CMD_DST_RESET
);
491 opcode
|= (BP_PORT(bp
) ? DMAE_CMD_PORT_1
: DMAE_CMD_PORT_0
);
492 opcode
|= ((BP_VN(bp
) << DMAE_CMD_E1HVN_SHIFT
) |
493 (BP_VN(bp
) << DMAE_COMMAND_DST_VN_SHIFT
));
494 opcode
|= (DMAE_COM_SET_ERR
<< DMAE_COMMAND_ERR_POLICY_SHIFT
);
497 opcode
|= DMAE_CMD_ENDIANITY_B_DW_SWAP
;
499 opcode
|= DMAE_CMD_ENDIANITY_DW_SWAP
;
502 opcode
= bnx2x_dmae_opcode_add_comp(opcode
, comp_type
);
506 void bnx2x_prep_dmae_with_comp(struct bnx2x
*bp
,
507 struct dmae_command
*dmae
,
508 u8 src_type
, u8 dst_type
)
510 memset(dmae
, 0, sizeof(struct dmae_command
));
513 dmae
->opcode
= bnx2x_dmae_opcode(bp
, src_type
, dst_type
,
514 true, DMAE_COMP_PCI
);
516 /* fill in the completion parameters */
517 dmae
->comp_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_comp
));
518 dmae
->comp_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_comp
));
519 dmae
->comp_val
= DMAE_COMP_VAL
;
522 /* issue a dmae command over the init-channel and wait for completion */
523 int bnx2x_issue_dmae_with_comp(struct bnx2x
*bp
, struct dmae_command
*dmae
,
526 int cnt
= CHIP_REV_IS_SLOW(bp
) ? (400000) : 4000;
529 bnx2x_dp_dmae(bp
, dmae
, BNX2X_MSG_DMAE
);
531 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
532 * as long as this code is called both from syscall context and
533 * from ndo_set_rx_mode() flow that may be called from BH.
536 spin_lock_bh(&bp
->dmae_lock
);
538 /* reset completion */
541 /* post the command on the channel used for initializations */
542 bnx2x_post_dmae(bp
, dmae
, INIT_DMAE_C(bp
));
544 /* wait for completion */
546 while ((*comp
& ~DMAE_PCI_ERR_FLAG
) != DMAE_COMP_VAL
) {
549 (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
&&
550 bp
->recovery_state
!= BNX2X_RECOVERY_NIC_LOADING
)) {
551 BNX2X_ERR("DMAE timeout!\n");
558 if (*comp
& DMAE_PCI_ERR_FLAG
) {
559 BNX2X_ERR("DMAE PCI error!\n");
565 spin_unlock_bh(&bp
->dmae_lock
);
570 void bnx2x_write_dmae(struct bnx2x
*bp
, dma_addr_t dma_addr
, u32 dst_addr
,
574 struct dmae_command dmae
;
576 if (!bp
->dmae_ready
) {
577 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
580 bnx2x_init_ind_wr(bp
, dst_addr
, data
, len32
);
582 bnx2x_init_str_wr(bp
, dst_addr
, data
, len32
);
586 /* set opcode and fixed command fields */
587 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_PCI
, DMAE_DST_GRC
);
589 /* fill in addresses and len */
590 dmae
.src_addr_lo
= U64_LO(dma_addr
);
591 dmae
.src_addr_hi
= U64_HI(dma_addr
);
592 dmae
.dst_addr_lo
= dst_addr
>> 2;
593 dmae
.dst_addr_hi
= 0;
596 /* issue the command and wait for completion */
597 rc
= bnx2x_issue_dmae_with_comp(bp
, &dmae
, bnx2x_sp(bp
, wb_comp
));
599 BNX2X_ERR("DMAE returned failure %d\n", rc
);
600 #ifdef BNX2X_STOP_ON_ERROR
606 void bnx2x_read_dmae(struct bnx2x
*bp
, u32 src_addr
, u32 len32
)
609 struct dmae_command dmae
;
611 if (!bp
->dmae_ready
) {
612 u32
*data
= bnx2x_sp(bp
, wb_data
[0]);
616 for (i
= 0; i
< len32
; i
++)
617 data
[i
] = bnx2x_reg_rd_ind(bp
, src_addr
+ i
*4);
619 for (i
= 0; i
< len32
; i
++)
620 data
[i
] = REG_RD(bp
, src_addr
+ i
*4);
625 /* set opcode and fixed command fields */
626 bnx2x_prep_dmae_with_comp(bp
, &dmae
, DMAE_SRC_GRC
, DMAE_DST_PCI
);
628 /* fill in addresses and len */
629 dmae
.src_addr_lo
= src_addr
>> 2;
630 dmae
.src_addr_hi
= 0;
631 dmae
.dst_addr_lo
= U64_LO(bnx2x_sp_mapping(bp
, wb_data
));
632 dmae
.dst_addr_hi
= U64_HI(bnx2x_sp_mapping(bp
, wb_data
));
635 /* issue the command and wait for completion */
636 rc
= bnx2x_issue_dmae_with_comp(bp
, &dmae
, bnx2x_sp(bp
, wb_comp
));
638 BNX2X_ERR("DMAE returned failure %d\n", rc
);
639 #ifdef BNX2X_STOP_ON_ERROR
645 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
, dma_addr_t phys_addr
,
648 int dmae_wr_max
= DMAE_LEN32_WR_MAX(bp
);
651 while (len
> dmae_wr_max
) {
652 bnx2x_write_dmae(bp
, phys_addr
+ offset
,
653 addr
+ offset
, dmae_wr_max
);
654 offset
+= dmae_wr_max
* 4;
658 bnx2x_write_dmae(bp
, phys_addr
+ offset
, addr
+ offset
, len
);
670 #define REGS_IN_ENTRY 4
672 static inline int bnx2x_get_assert_list_entry(struct bnx2x
*bp
,
678 return XSTORM_ASSERT_LIST_OFFSET(entry
);
680 return TSTORM_ASSERT_LIST_OFFSET(entry
);
682 return CSTORM_ASSERT_LIST_OFFSET(entry
);
684 return USTORM_ASSERT_LIST_OFFSET(entry
);
687 BNX2X_ERR("unknown storm\n");
692 static int bnx2x_mc_assert(struct bnx2x
*bp
)
697 u32 regs
[REGS_IN_ENTRY
];
698 u32 bar_storm_intmem
[STORMS_NUM
] = {
704 u32 storm_assert_list_index
[STORMS_NUM
] = {
705 XSTORM_ASSERT_LIST_INDEX_OFFSET
,
706 TSTORM_ASSERT_LIST_INDEX_OFFSET
,
707 CSTORM_ASSERT_LIST_INDEX_OFFSET
,
708 USTORM_ASSERT_LIST_INDEX_OFFSET
710 char *storms_string
[STORMS_NUM
] = {
717 for (storm
= XSTORM
; storm
< MAX_STORMS
; storm
++) {
718 last_idx
= REG_RD8(bp
, bar_storm_intmem
[storm
] +
719 storm_assert_list_index
[storm
]);
721 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
722 storms_string
[storm
], last_idx
);
724 /* print the asserts */
725 for (i
= 0; i
< STROM_ASSERT_ARRAY_SIZE
; i
++) {
726 /* read a single assert entry */
727 for (j
= 0; j
< REGS_IN_ENTRY
; j
++)
728 regs
[j
] = REG_RD(bp
, bar_storm_intmem
[storm
] +
729 bnx2x_get_assert_list_entry(bp
,
734 /* log entry if it contains a valid assert */
735 if (regs
[0] != COMMON_ASM_INVALID_ASSERT_OPCODE
) {
736 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
737 storms_string
[storm
], i
, regs
[3],
738 regs
[2], regs
[1], regs
[0]);
746 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
747 CHIP_IS_E1(bp
) ? "everest1" :
748 CHIP_IS_E1H(bp
) ? "everest1h" :
749 CHIP_IS_E2(bp
) ? "everest2" : "everest3",
750 BCM_5710_FW_MAJOR_VERSION
,
751 BCM_5710_FW_MINOR_VERSION
,
752 BCM_5710_FW_REVISION_VERSION
);
757 #define MCPR_TRACE_BUFFER_SIZE (0x800)
758 #define SCRATCH_BUFFER_SIZE(bp) \
759 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
761 void bnx2x_fw_dump_lvl(struct bnx2x
*bp
, const char *lvl
)
767 u32 trace_shmem_base
;
769 BNX2X_ERR("NO MCP - can not dump\n");
772 netdev_printk(lvl
, bp
->dev
, "bc %d.%d.%d\n",
773 (bp
->common
.bc_ver
& 0xff0000) >> 16,
774 (bp
->common
.bc_ver
& 0xff00) >> 8,
775 (bp
->common
.bc_ver
& 0xff));
777 if (pci_channel_offline(bp
->pdev
)) {
778 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
782 val
= REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
);
783 if (val
== REG_RD(bp
, MCP_REG_MCPR_CPU_PROGRAM_COUNTER
))
784 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl
, val
);
786 if (BP_PATH(bp
) == 0)
787 trace_shmem_base
= bp
->common
.shmem_base
;
789 trace_shmem_base
= SHMEM2_RD(bp
, other_shmem_base_addr
);
792 if (trace_shmem_base
< MCPR_SCRATCH_BASE(bp
) + MCPR_TRACE_BUFFER_SIZE
||
793 trace_shmem_base
>= MCPR_SCRATCH_BASE(bp
) +
794 SCRATCH_BUFFER_SIZE(bp
)) {
795 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800 addr
= trace_shmem_base
- MCPR_TRACE_BUFFER_SIZE
;
802 /* validate TRCB signature */
803 mark
= REG_RD(bp
, addr
);
804 if (mark
!= MFW_TRACE_SIGNATURE
) {
805 BNX2X_ERR("Trace buffer signature is missing.");
809 /* read cyclic buffer pointer */
811 mark
= REG_RD(bp
, addr
);
812 mark
= MCPR_SCRATCH_BASE(bp
) + ((mark
+ 0x3) & ~0x3) - 0x08000000;
813 if (mark
>= trace_shmem_base
|| mark
< addr
+ 4) {
814 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
817 printk("%s" "begin fw dump (mark 0x%x)\n", lvl
, mark
);
821 /* dump buffer after the mark */
822 for (offset
= mark
; offset
< trace_shmem_base
; offset
+= 0x8*4) {
823 for (word
= 0; word
< 8; word
++)
824 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
826 pr_cont("%s", (char *)data
);
829 /* dump buffer before the mark */
830 for (offset
= addr
+ 4; offset
<= mark
; offset
+= 0x8*4) {
831 for (word
= 0; word
< 8; word
++)
832 data
[word
] = htonl(REG_RD(bp
, offset
+ 4*word
));
834 pr_cont("%s", (char *)data
);
836 printk("%s" "end of fw dump\n", lvl
);
839 static void bnx2x_fw_dump(struct bnx2x
*bp
)
841 bnx2x_fw_dump_lvl(bp
, KERN_ERR
);
844 static void bnx2x_hc_int_disable(struct bnx2x
*bp
)
846 int port
= BP_PORT(bp
);
847 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
848 u32 val
= REG_RD(bp
, addr
);
850 /* in E1 we must use only PCI configuration space to disable
851 * MSI/MSIX capability
852 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
854 if (CHIP_IS_E1(bp
)) {
855 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
856 * Use mask register to prevent from HC sending interrupts
857 * after we exit the function
859 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0);
861 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
862 HC_CONFIG_0_REG_INT_LINE_EN_0
|
863 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
865 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
866 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
867 HC_CONFIG_0_REG_INT_LINE_EN_0
|
868 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
871 "write %x to HC %d (addr 0x%x)\n",
874 REG_WR(bp
, addr
, val
);
875 if (REG_RD(bp
, addr
) != val
)
876 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
879 static void bnx2x_igu_int_disable(struct bnx2x
*bp
)
881 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
883 val
&= ~(IGU_PF_CONF_MSI_MSIX_EN
|
884 IGU_PF_CONF_INT_LINE_EN
|
885 IGU_PF_CONF_ATTN_BIT_EN
);
887 DP(NETIF_MSG_IFDOWN
, "write %x to IGU\n", val
);
889 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
890 if (REG_RD(bp
, IGU_REG_PF_CONFIGURATION
) != val
)
891 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
894 static void bnx2x_int_disable(struct bnx2x
*bp
)
896 if (bp
->common
.int_block
== INT_BLOCK_HC
)
897 bnx2x_hc_int_disable(bp
);
899 bnx2x_igu_int_disable(bp
);
902 void bnx2x_panic_dump(struct bnx2x
*bp
, bool disable_int
)
906 struct hc_sp_status_block_data sp_sb_data
;
907 int func
= BP_FUNC(bp
);
908 #ifdef BNX2X_STOP_ON_ERROR
909 u16 start
= 0, end
= 0;
912 if (IS_PF(bp
) && disable_int
)
913 bnx2x_int_disable(bp
);
915 bp
->stats_state
= STATS_STATE_DISABLED
;
916 bp
->eth_stats
.unrecoverable_error
++;
917 DP(BNX2X_MSG_STATS
, "stats_state - DISABLED\n");
919 BNX2X_ERR("begin crash dump -----------------\n");
924 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
925 int data_size
, cstorm_offset
;
927 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928 bp
->def_idx
, bp
->def_att_idx
, bp
->attn_state
,
929 bp
->spq_prod_idx
, bp
->stats_counter
);
930 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
931 def_sb
->atten_status_block
.attn_bits
,
932 def_sb
->atten_status_block
.attn_bits_ack
,
933 def_sb
->atten_status_block
.status_block_id
,
934 def_sb
->atten_status_block
.attn_bits_index
);
936 for (i
= 0; i
< HC_SP_SB_MAX_INDICES
; i
++)
938 def_sb
->sp_sb
.index_values
[i
],
939 (i
== HC_SP_SB_MAX_INDICES
- 1) ? ") " : " ");
941 data_size
= sizeof(struct hc_sp_status_block_data
) /
943 cstorm_offset
= CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
);
944 for (i
= 0; i
< data_size
; i
++)
945 *((u32
*)&sp_sb_data
+ i
) =
946 REG_RD(bp
, BAR_CSTRORM_INTMEM
+ cstorm_offset
+
949 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
950 sp_sb_data
.igu_sb_id
,
951 sp_sb_data
.igu_seg_id
,
952 sp_sb_data
.p_func
.pf_id
,
953 sp_sb_data
.p_func
.vnic_id
,
954 sp_sb_data
.p_func
.vf_id
,
955 sp_sb_data
.p_func
.vf_valid
,
959 for_each_eth_queue(bp
, i
) {
960 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
962 struct hc_status_block_data_e2 sb_data_e2
;
963 struct hc_status_block_data_e1x sb_data_e1x
;
964 struct hc_status_block_sm
*hc_sm_p
=
966 sb_data_e1x
.common
.state_machine
:
967 sb_data_e2
.common
.state_machine
;
968 struct hc_index_data
*hc_index_p
=
970 sb_data_e1x
.index_data
:
971 sb_data_e2
.index_data
;
974 struct bnx2x_fp_txdata txdata
;
983 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
984 i
, fp
->rx_bd_prod
, fp
->rx_bd_cons
,
986 fp
->rx_comp_cons
, le16_to_cpu(*fp
->rx_cons_sb
));
987 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
988 fp
->rx_sge_prod
, fp
->last_max_sge
,
989 le16_to_cpu(fp
->fp_hc_idx
));
992 for_each_cos_in_tx_queue(fp
, cos
)
994 if (!fp
->txdata_ptr
[cos
])
997 txdata
= *fp
->txdata_ptr
[cos
];
999 if (!txdata
.tx_cons_sb
)
1002 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1003 i
, txdata
.tx_pkt_prod
,
1004 txdata
.tx_pkt_cons
, txdata
.tx_bd_prod
,
1006 le16_to_cpu(*txdata
.tx_cons_sb
));
1009 loop
= CHIP_IS_E1x(bp
) ?
1010 HC_SB_MAX_INDICES_E1X
: HC_SB_MAX_INDICES_E2
;
1017 BNX2X_ERR(" run indexes (");
1018 for (j
= 0; j
< HC_SB_MAX_SM
; j
++)
1020 fp
->sb_running_index
[j
],
1021 (j
== HC_SB_MAX_SM
- 1) ? ")" : " ");
1023 BNX2X_ERR(" indexes (");
1024 for (j
= 0; j
< loop
; j
++)
1026 fp
->sb_index_values
[j
],
1027 (j
== loop
- 1) ? ")" : " ");
1029 /* VF cannot access FW refelection for status block */
1034 data_size
= CHIP_IS_E1x(bp
) ?
1035 sizeof(struct hc_status_block_data_e1x
) :
1036 sizeof(struct hc_status_block_data_e2
);
1037 data_size
/= sizeof(u32
);
1038 sb_data_p
= CHIP_IS_E1x(bp
) ?
1039 (u32
*)&sb_data_e1x
:
1041 /* copy sb data in here */
1042 for (j
= 0; j
< data_size
; j
++)
1043 *(sb_data_p
+ j
) = REG_RD(bp
, BAR_CSTRORM_INTMEM
+
1044 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp
->fw_sb_id
) +
1047 if (!CHIP_IS_E1x(bp
)) {
1048 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1049 sb_data_e2
.common
.p_func
.pf_id
,
1050 sb_data_e2
.common
.p_func
.vf_id
,
1051 sb_data_e2
.common
.p_func
.vf_valid
,
1052 sb_data_e2
.common
.p_func
.vnic_id
,
1053 sb_data_e2
.common
.same_igu_sb_1b
,
1054 sb_data_e2
.common
.state
);
1056 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 sb_data_e1x
.common
.p_func
.pf_id
,
1058 sb_data_e1x
.common
.p_func
.vf_id
,
1059 sb_data_e1x
.common
.p_func
.vf_valid
,
1060 sb_data_e1x
.common
.p_func
.vnic_id
,
1061 sb_data_e1x
.common
.same_igu_sb_1b
,
1062 sb_data_e1x
.common
.state
);
1066 for (j
= 0; j
< HC_SB_MAX_SM
; j
++) {
1067 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068 j
, hc_sm_p
[j
].__flags
,
1069 hc_sm_p
[j
].igu_sb_id
,
1070 hc_sm_p
[j
].igu_seg_id
,
1071 hc_sm_p
[j
].time_to_expire
,
1072 hc_sm_p
[j
].timer_value
);
1076 for (j
= 0; j
< loop
; j
++) {
1077 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j
,
1078 hc_index_p
[j
].flags
,
1079 hc_index_p
[j
].timeout
);
1083 #ifdef BNX2X_STOP_ON_ERROR
1086 BNX2X_ERR("eq cons %x prod %x\n", bp
->eq_cons
, bp
->eq_prod
);
1087 for (i
= 0; i
< NUM_EQ_DESC
; i
++) {
1088 u32
*data
= (u32
*)&bp
->eq_ring
[i
].message
.data
;
1090 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091 i
, bp
->eq_ring
[i
].message
.opcode
,
1092 bp
->eq_ring
[i
].message
.error
);
1093 BNX2X_ERR("data: %x %x %x\n",
1094 data
[0], data
[1], data
[2]);
1100 for_each_valid_rx_queue(bp
, i
) {
1101 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1106 if (!fp
->rx_cons_sb
)
1109 start
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) - 10);
1110 end
= RX_BD(le16_to_cpu(*fp
->rx_cons_sb
) + 503);
1111 for (j
= start
; j
!= end
; j
= RX_BD(j
+ 1)) {
1112 u32
*rx_bd
= (u32
*)&fp
->rx_desc_ring
[j
];
1113 struct sw_rx_bd
*sw_bd
= &fp
->rx_buf_ring
[j
];
1115 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1116 i
, j
, rx_bd
[1], rx_bd
[0], sw_bd
->data
);
1119 start
= RX_SGE(fp
->rx_sge_prod
);
1120 end
= RX_SGE(fp
->last_max_sge
);
1121 for (j
= start
; j
!= end
; j
= RX_SGE(j
+ 1)) {
1122 u32
*rx_sge
= (u32
*)&fp
->rx_sge_ring
[j
];
1123 struct sw_rx_page
*sw_page
= &fp
->rx_page_ring
[j
];
1125 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1126 i
, j
, rx_sge
[1], rx_sge
[0], sw_page
->page
);
1129 start
= RCQ_BD(fp
->rx_comp_cons
- 10);
1130 end
= RCQ_BD(fp
->rx_comp_cons
+ 503);
1131 for (j
= start
; j
!= end
; j
= RCQ_BD(j
+ 1)) {
1132 u32
*cqe
= (u32
*)&fp
->rx_comp_ring
[j
];
1134 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135 i
, j
, cqe
[0], cqe
[1], cqe
[2], cqe
[3]);
1140 for_each_valid_tx_queue(bp
, i
) {
1141 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1146 for_each_cos_in_tx_queue(fp
, cos
) {
1147 struct bnx2x_fp_txdata
*txdata
= fp
->txdata_ptr
[cos
];
1149 if (!fp
->txdata_ptr
[cos
])
1152 if (!txdata
->tx_cons_sb
)
1155 start
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) - 10);
1156 end
= TX_BD(le16_to_cpu(*txdata
->tx_cons_sb
) + 245);
1157 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
1158 struct sw_tx_bd
*sw_bd
=
1159 &txdata
->tx_buf_ring
[j
];
1161 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162 i
, cos
, j
, sw_bd
->skb
,
1166 start
= TX_BD(txdata
->tx_bd_cons
- 10);
1167 end
= TX_BD(txdata
->tx_bd_cons
+ 254);
1168 for (j
= start
; j
!= end
; j
= TX_BD(j
+ 1)) {
1169 u32
*tx_bd
= (u32
*)&txdata
->tx_desc_ring
[j
];
1171 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172 i
, cos
, j
, tx_bd
[0], tx_bd
[1],
1173 tx_bd
[2], tx_bd
[3]);
1179 int tmp_msg_en
= bp
->msg_enable
;
1182 bp
->msg_enable
|= NETIF_MSG_HW
;
1183 BNX2X_ERR("Idle check (1st round) ----------\n");
1185 BNX2X_ERR("Idle check (2nd round) ----------\n");
1187 bp
->msg_enable
= tmp_msg_en
;
1188 bnx2x_mc_assert(bp
);
1191 BNX2X_ERR("end crash dump -----------------\n");
1195 * FLR Support for E2
1197 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1200 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1201 #define FLR_WAIT_INTERVAL 50 /* usec */
1202 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1204 struct pbf_pN_buf_regs
{
1211 struct pbf_pN_cmd_regs
{
1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x
*bp
,
1218 struct pbf_pN_buf_regs
*regs
,
1221 u32 init_crd
, crd
, crd_start
, crd_freed
, crd_freed_start
;
1222 u32 cur_cnt
= poll_count
;
1224 crd_freed
= crd_freed_start
= REG_RD(bp
, regs
->crd_freed
);
1225 crd
= crd_start
= REG_RD(bp
, regs
->crd
);
1226 init_crd
= REG_RD(bp
, regs
->init_crd
);
1228 DP(BNX2X_MSG_SP
, "INIT CREDIT[%d] : %x\n", regs
->pN
, init_crd
);
1229 DP(BNX2X_MSG_SP
, "CREDIT[%d] : s:%x\n", regs
->pN
, crd
);
1230 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: s:%x\n", regs
->pN
, crd_freed
);
1232 while ((crd
!= init_crd
) && ((u32
)SUB_S32(crd_freed
, crd_freed_start
) <
1233 (init_crd
- crd_start
))) {
1235 udelay(FLR_WAIT_INTERVAL
);
1236 crd
= REG_RD(bp
, regs
->crd
);
1237 crd_freed
= REG_RD(bp
, regs
->crd_freed
);
1239 DP(BNX2X_MSG_SP
, "PBF tx buffer[%d] timed out\n",
1241 DP(BNX2X_MSG_SP
, "CREDIT[%d] : c:%x\n",
1243 DP(BNX2X_MSG_SP
, "CREDIT_FREED[%d]: c:%x\n",
1244 regs
->pN
, crd_freed
);
1248 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249 poll_count
-cur_cnt
, FLR_WAIT_INTERVAL
, regs
->pN
);
1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x
*bp
,
1253 struct pbf_pN_cmd_regs
*regs
,
1256 u32 occup
, to_free
, freed
, freed_start
;
1257 u32 cur_cnt
= poll_count
;
1259 occup
= to_free
= REG_RD(bp
, regs
->lines_occup
);
1260 freed
= freed_start
= REG_RD(bp
, regs
->lines_freed
);
1262 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n", regs
->pN
, occup
);
1263 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n", regs
->pN
, freed
);
1265 while (occup
&& ((u32
)SUB_S32(freed
, freed_start
) < to_free
)) {
1267 udelay(FLR_WAIT_INTERVAL
);
1268 occup
= REG_RD(bp
, regs
->lines_occup
);
1269 freed
= REG_RD(bp
, regs
->lines_freed
);
1271 DP(BNX2X_MSG_SP
, "PBF cmd queue[%d] timed out\n",
1273 DP(BNX2X_MSG_SP
, "OCCUPANCY[%d] : s:%x\n",
1275 DP(BNX2X_MSG_SP
, "LINES_FREED[%d] : s:%x\n",
1280 DP(BNX2X_MSG_SP
, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281 poll_count
-cur_cnt
, FLR_WAIT_INTERVAL
, regs
->pN
);
1284 static u32
bnx2x_flr_clnup_reg_poll(struct bnx2x
*bp
, u32 reg
,
1285 u32 expected
, u32 poll_count
)
1287 u32 cur_cnt
= poll_count
;
1290 while ((val
= REG_RD(bp
, reg
)) != expected
&& cur_cnt
--)
1291 udelay(FLR_WAIT_INTERVAL
);
1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x
*bp
, u32 reg
,
1297 char *msg
, u32 poll_cnt
)
1299 u32 val
= bnx2x_flr_clnup_reg_poll(bp
, reg
, 0, poll_cnt
);
1301 BNX2X_ERR("%s usage count=%d\n", msg
, val
);
1307 /* Common routines with VF FLR cleanup */
1308 u32
bnx2x_flr_clnup_poll_count(struct bnx2x
*bp
)
1310 /* adjust polling timeout */
1311 if (CHIP_REV_IS_EMUL(bp
))
1312 return FLR_POLL_CNT
* 2000;
1314 if (CHIP_REV_IS_FPGA(bp
))
1315 return FLR_POLL_CNT
* 120;
1317 return FLR_POLL_CNT
;
1320 void bnx2x_tx_hw_flushed(struct bnx2x
*bp
, u32 poll_count
)
1322 struct pbf_pN_cmd_regs cmd_regs
[] = {
1323 {0, (CHIP_IS_E3B0(bp
)) ?
1324 PBF_REG_TQ_OCCUPANCY_Q0
:
1325 PBF_REG_P0_TQ_OCCUPANCY
,
1326 (CHIP_IS_E3B0(bp
)) ?
1327 PBF_REG_TQ_LINES_FREED_CNT_Q0
:
1328 PBF_REG_P0_TQ_LINES_FREED_CNT
},
1329 {1, (CHIP_IS_E3B0(bp
)) ?
1330 PBF_REG_TQ_OCCUPANCY_Q1
:
1331 PBF_REG_P1_TQ_OCCUPANCY
,
1332 (CHIP_IS_E3B0(bp
)) ?
1333 PBF_REG_TQ_LINES_FREED_CNT_Q1
:
1334 PBF_REG_P1_TQ_LINES_FREED_CNT
},
1335 {4, (CHIP_IS_E3B0(bp
)) ?
1336 PBF_REG_TQ_OCCUPANCY_LB_Q
:
1337 PBF_REG_P4_TQ_OCCUPANCY
,
1338 (CHIP_IS_E3B0(bp
)) ?
1339 PBF_REG_TQ_LINES_FREED_CNT_LB_Q
:
1340 PBF_REG_P4_TQ_LINES_FREED_CNT
}
1343 struct pbf_pN_buf_regs buf_regs
[] = {
1344 {0, (CHIP_IS_E3B0(bp
)) ?
1345 PBF_REG_INIT_CRD_Q0
:
1346 PBF_REG_P0_INIT_CRD
,
1347 (CHIP_IS_E3B0(bp
)) ?
1350 (CHIP_IS_E3B0(bp
)) ?
1351 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0
:
1352 PBF_REG_P0_INTERNAL_CRD_FREED_CNT
},
1353 {1, (CHIP_IS_E3B0(bp
)) ?
1354 PBF_REG_INIT_CRD_Q1
:
1355 PBF_REG_P1_INIT_CRD
,
1356 (CHIP_IS_E3B0(bp
)) ?
1359 (CHIP_IS_E3B0(bp
)) ?
1360 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1
:
1361 PBF_REG_P1_INTERNAL_CRD_FREED_CNT
},
1362 {4, (CHIP_IS_E3B0(bp
)) ?
1363 PBF_REG_INIT_CRD_LB_Q
:
1364 PBF_REG_P4_INIT_CRD
,
1365 (CHIP_IS_E3B0(bp
)) ?
1366 PBF_REG_CREDIT_LB_Q
:
1368 (CHIP_IS_E3B0(bp
)) ?
1369 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q
:
1370 PBF_REG_P4_INTERNAL_CRD_FREED_CNT
},
1375 /* Verify the command queues are flushed P0, P1, P4 */
1376 for (i
= 0; i
< ARRAY_SIZE(cmd_regs
); i
++)
1377 bnx2x_pbf_pN_cmd_flushed(bp
, &cmd_regs
[i
], poll_count
);
1379 /* Verify the transmission buffers are flushed P0, P1, P4 */
1380 for (i
= 0; i
< ARRAY_SIZE(buf_regs
); i
++)
1381 bnx2x_pbf_pN_buf_flushed(bp
, &buf_regs
[i
], poll_count
);
1384 #define OP_GEN_PARAM(param) \
1385 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1387 #define OP_GEN_TYPE(type) \
1388 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1390 #define OP_GEN_AGG_VECT(index) \
1391 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1393 int bnx2x_send_final_clnup(struct bnx2x
*bp
, u8 clnup_func
, u32 poll_cnt
)
1395 u32 op_gen_command
= 0;
1396 u32 comp_addr
= BAR_CSTRORM_INTMEM
+
1397 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func
);
1400 if (REG_RD(bp
, comp_addr
)) {
1401 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1405 op_gen_command
|= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX
);
1406 op_gen_command
|= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE
);
1407 op_gen_command
|= OP_GEN_AGG_VECT(clnup_func
);
1408 op_gen_command
|= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT
;
1410 DP(BNX2X_MSG_SP
, "sending FW Final cleanup\n");
1411 REG_WR(bp
, XSDM_REG_OPERATION_GEN
, op_gen_command
);
1413 if (bnx2x_flr_clnup_reg_poll(bp
, comp_addr
, 1, poll_cnt
) != 1) {
1414 BNX2X_ERR("FW final cleanup did not succeed\n");
1415 DP(BNX2X_MSG_SP
, "At timeout completion address contained %x\n",
1416 (REG_RD(bp
, comp_addr
)));
1420 /* Zero completion for next FLR */
1421 REG_WR(bp
, comp_addr
, 0);
1426 u8
bnx2x_is_pcie_pending(struct pci_dev
*dev
)
1430 pcie_capability_read_word(dev
, PCI_EXP_DEVSTA
, &status
);
1431 return status
& PCI_EXP_DEVSTA_TRPND
;
1434 /* PF FLR specific routines
1436 static int bnx2x_poll_hw_usage_counters(struct bnx2x
*bp
, u32 poll_cnt
)
1438 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1439 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1440 CFC_REG_NUM_LCIDS_INSIDE_PF
,
1441 "CFC PF usage counter timed out",
1445 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1446 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1447 DORQ_REG_PF_USAGE_CNT
,
1448 "DQ PF usage counter timed out",
1452 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1453 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1454 QM_REG_PF_USG_CNT_0
+ 4*BP_FUNC(bp
),
1455 "QM PF usage counter timed out",
1459 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1460 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1461 TM_REG_LIN0_VNIC_UC
+ 4*BP_PORT(bp
),
1462 "Timers VNIC usage counter timed out",
1465 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1466 TM_REG_LIN0_NUM_SCANS
+ 4*BP_PORT(bp
),
1467 "Timers NUM_SCANS usage counter timed out",
1471 /* Wait DMAE PF usage counter to zero */
1472 if (bnx2x_flr_clnup_poll_hw_counter(bp
,
1473 dmae_reg_go_c
[INIT_DMAE_C(bp
)],
1474 "DMAE command register timed out",
1481 static void bnx2x_hw_enable_status(struct bnx2x
*bp
)
1485 val
= REG_RD(bp
, CFC_REG_WEAK_ENABLE_PF
);
1486 DP(BNX2X_MSG_SP
, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val
);
1488 val
= REG_RD(bp
, PBF_REG_DISABLE_PF
);
1489 DP(BNX2X_MSG_SP
, "PBF_REG_DISABLE_PF is 0x%x\n", val
);
1491 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSI_EN
);
1492 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val
);
1494 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_EN
);
1495 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val
);
1497 val
= REG_RD(bp
, IGU_REG_PCI_PF_MSIX_FUNC_MASK
);
1498 DP(BNX2X_MSG_SP
, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val
);
1500 val
= REG_RD(bp
, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR
);
1501 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val
);
1503 val
= REG_RD(bp
, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR
);
1504 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val
);
1506 val
= REG_RD(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
);
1507 DP(BNX2X_MSG_SP
, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1511 static int bnx2x_pf_flr_clnup(struct bnx2x
*bp
)
1513 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
1515 DP(BNX2X_MSG_SP
, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp
));
1517 /* Re-enable PF target read access */
1518 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
1520 /* Poll HW usage counters */
1521 DP(BNX2X_MSG_SP
, "Polling usage counters\n");
1522 if (bnx2x_poll_hw_usage_counters(bp
, poll_cnt
))
1525 /* Zero the igu 'trailing edge' and 'leading edge' */
1527 /* Send the FW cleanup command */
1528 if (bnx2x_send_final_clnup(bp
, (u8
)BP_FUNC(bp
), poll_cnt
))
1533 /* Verify TX hw is flushed */
1534 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
1536 /* Wait 100ms (not adjusted according to platform) */
1539 /* Verify no pending pci transactions */
1540 if (bnx2x_is_pcie_pending(bp
->pdev
))
1541 BNX2X_ERR("PCIE Transactions still pending\n");
1544 bnx2x_hw_enable_status(bp
);
1547 * Master enable - Due to WB DMAE writes performed before this
1548 * register is re-initialized as part of the regular function init
1550 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
1555 static void bnx2x_hc_int_enable(struct bnx2x
*bp
)
1557 int port
= BP_PORT(bp
);
1558 u32 addr
= port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
;
1559 u32 val
= REG_RD(bp
, addr
);
1560 bool msix
= (bp
->flags
& USING_MSIX_FLAG
) ? true : false;
1561 bool single_msix
= (bp
->flags
& USING_SINGLE_MSIX_FLAG
) ? true : false;
1562 bool msi
= (bp
->flags
& USING_MSI_FLAG
) ? true : false;
1565 val
&= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1566 HC_CONFIG_0_REG_INT_LINE_EN_0
);
1567 val
|= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1568 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1570 val
|= HC_CONFIG_0_REG_SINGLE_ISR_EN_0
;
1572 val
&= ~HC_CONFIG_0_REG_INT_LINE_EN_0
;
1573 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1574 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1577 val
|= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0
|
1578 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
|
1579 HC_CONFIG_0_REG_INT_LINE_EN_0
|
1580 HC_CONFIG_0_REG_ATTN_BIT_EN_0
);
1582 if (!CHIP_IS_E1(bp
)) {
1584 "write %x to HC %d (addr 0x%x)\n", val
, port
, addr
);
1586 REG_WR(bp
, addr
, val
);
1588 val
&= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0
;
1593 REG_WR(bp
, HC_REG_INT_MASK
+ port
*4, 0x1FFFF);
1596 "write %x to HC %d (addr 0x%x) mode %s\n", val
, port
, addr
,
1597 (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1599 REG_WR(bp
, addr
, val
);
1601 * Ensure that HC_CONFIG is written before leading/trailing edge config
1605 if (!CHIP_IS_E1(bp
)) {
1606 /* init leading/trailing edge */
1608 val
= (0xee0f | (1 << (BP_VN(bp
) + 4)));
1610 /* enable nig and gpio3 attention */
1615 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
1616 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
1620 static void bnx2x_igu_int_enable(struct bnx2x
*bp
)
1623 bool msix
= (bp
->flags
& USING_MSIX_FLAG
) ? true : false;
1624 bool single_msix
= (bp
->flags
& USING_SINGLE_MSIX_FLAG
) ? true : false;
1625 bool msi
= (bp
->flags
& USING_MSI_FLAG
) ? true : false;
1627 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
1630 val
&= ~(IGU_PF_CONF_INT_LINE_EN
|
1631 IGU_PF_CONF_SINGLE_ISR_EN
);
1632 val
|= (IGU_PF_CONF_MSI_MSIX_EN
|
1633 IGU_PF_CONF_ATTN_BIT_EN
);
1636 val
|= IGU_PF_CONF_SINGLE_ISR_EN
;
1638 val
&= ~IGU_PF_CONF_INT_LINE_EN
;
1639 val
|= (IGU_PF_CONF_MSI_MSIX_EN
|
1640 IGU_PF_CONF_ATTN_BIT_EN
|
1641 IGU_PF_CONF_SINGLE_ISR_EN
);
1643 val
&= ~IGU_PF_CONF_MSI_MSIX_EN
;
1644 val
|= (IGU_PF_CONF_INT_LINE_EN
|
1645 IGU_PF_CONF_ATTN_BIT_EN
|
1646 IGU_PF_CONF_SINGLE_ISR_EN
);
1649 /* Clean previous status - need to configure igu prior to ack*/
1650 if ((!msix
) || single_msix
) {
1651 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1655 val
|= IGU_PF_CONF_FUNC_EN
;
1657 DP(NETIF_MSG_IFUP
, "write 0x%x to IGU mode %s\n",
1658 val
, (msix
? "MSI-X" : (msi
? "MSI" : "INTx")));
1660 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
1662 if (val
& IGU_PF_CONF_INT_LINE_EN
)
1663 pci_intx(bp
->pdev
, true);
1667 /* init leading/trailing edge */
1669 val
= (0xee0f | (1 << (BP_VN(bp
) + 4)));
1671 /* enable nig and gpio3 attention */
1676 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
1677 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
1680 void bnx2x_int_enable(struct bnx2x
*bp
)
1682 if (bp
->common
.int_block
== INT_BLOCK_HC
)
1683 bnx2x_hc_int_enable(bp
);
1685 bnx2x_igu_int_enable(bp
);
1688 void bnx2x_int_disable_sync(struct bnx2x
*bp
, int disable_hw
)
1690 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
1694 /* prevent the HW from sending interrupts */
1695 bnx2x_int_disable(bp
);
1697 /* make sure all ISRs are done */
1699 synchronize_irq(bp
->msix_table
[0].vector
);
1701 if (CNIC_SUPPORT(bp
))
1703 for_each_eth_queue(bp
, i
)
1704 synchronize_irq(bp
->msix_table
[offset
++].vector
);
1706 synchronize_irq(bp
->pdev
->irq
);
1708 /* make sure sp_task is not running */
1709 cancel_delayed_work(&bp
->sp_task
);
1710 cancel_delayed_work(&bp
->period_task
);
1711 flush_workqueue(bnx2x_wq
);
1717 * General service functions
1720 /* Return true if succeeded to acquire the lock */
1721 static bool bnx2x_trylock_hw_lock(struct bnx2x
*bp
, u32 resource
)
1724 u32 resource_bit
= (1 << resource
);
1725 int func
= BP_FUNC(bp
);
1726 u32 hw_lock_control_reg
;
1728 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
,
1729 "Trying to take a lock on resource %d\n", resource
);
1731 /* Validating that the resource is within range */
1732 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1733 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
,
1734 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
1740 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
1742 hw_lock_control_reg
=
1743 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
1745 /* Try to acquire the lock */
1746 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
1747 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
1748 if (lock_status
& resource_bit
)
1751 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
,
1752 "Failed to get a lock on resource %d\n", resource
);
1757 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1759 * @bp: driver handle
1761 * Returns the recovery leader resource id according to the engine this function
1762 * belongs to. Currently only only 2 engines is supported.
1764 static int bnx2x_get_leader_lock_resource(struct bnx2x
*bp
)
1767 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1
;
1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0
;
1773 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1775 * @bp: driver handle
1777 * Tries to acquire a leader lock for current engine.
1779 static bool bnx2x_trylock_leader_lock(struct bnx2x
*bp
)
1781 return bnx2x_trylock_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
1784 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
);
1786 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787 static int bnx2x_schedule_sp_task(struct bnx2x
*bp
)
1789 /* Set the interrupt occurred bit for the sp-task to recognize it
1790 * must ack the interrupt and transition according to the IGU
1793 atomic_set(&bp
->interrupt_occurred
, 1);
1795 /* The sp_task must execute only after this bit
1796 * is set, otherwise we will get out of sync and miss all
1797 * further interrupts. Hence, the barrier.
1801 /* schedule sp_task to workqueue */
1802 return queue_delayed_work(bnx2x_wq
, &bp
->sp_task
, 0);
1805 void bnx2x_sp_event(struct bnx2x_fastpath
*fp
, union eth_rx_cqe
*rr_cqe
)
1807 struct bnx2x
*bp
= fp
->bp
;
1808 int cid
= SW_CID(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1809 int command
= CQE_CMD(rr_cqe
->ramrod_cqe
.conn_and_cmd_data
);
1810 enum bnx2x_queue_cmd drv_cmd
= BNX2X_Q_CMD_MAX
;
1811 struct bnx2x_queue_sp_obj
*q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
1814 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1815 fp
->index
, cid
, command
, bp
->state
,
1816 rr_cqe
->ramrod_cqe
.ramrod_type
);
1818 /* If cid is within VF range, replace the slowpath object with the
1819 * one corresponding to this VF
1821 if (cid
>= BNX2X_FIRST_VF_CID
&&
1822 cid
< BNX2X_FIRST_VF_CID
+ BNX2X_VF_CIDS
)
1823 bnx2x_iov_set_queue_sp_obj(bp
, cid
, &q_obj
);
1826 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE
):
1827 DP(BNX2X_MSG_SP
, "got UPDATE ramrod. CID %d\n", cid
);
1828 drv_cmd
= BNX2X_Q_CMD_UPDATE
;
1831 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP
):
1832 DP(BNX2X_MSG_SP
, "got MULTI[%d] setup ramrod\n", cid
);
1833 drv_cmd
= BNX2X_Q_CMD_SETUP
;
1836 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
):
1837 DP(BNX2X_MSG_SP
, "got MULTI[%d] tx-only setup ramrod\n", cid
);
1838 drv_cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
1841 case (RAMROD_CMD_ID_ETH_HALT
):
1842 DP(BNX2X_MSG_SP
, "got MULTI[%d] halt ramrod\n", cid
);
1843 drv_cmd
= BNX2X_Q_CMD_HALT
;
1846 case (RAMROD_CMD_ID_ETH_TERMINATE
):
1847 DP(BNX2X_MSG_SP
, "got MULTI[%d] terminate ramrod\n", cid
);
1848 drv_cmd
= BNX2X_Q_CMD_TERMINATE
;
1851 case (RAMROD_CMD_ID_ETH_EMPTY
):
1852 DP(BNX2X_MSG_SP
, "got MULTI[%d] empty ramrod\n", cid
);
1853 drv_cmd
= BNX2X_Q_CMD_EMPTY
;
1856 case (RAMROD_CMD_ID_ETH_TPA_UPDATE
):
1857 DP(BNX2X_MSG_SP
, "got tpa update ramrod CID=%d\n", cid
);
1858 drv_cmd
= BNX2X_Q_CMD_UPDATE_TPA
;
1862 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863 command
, fp
->index
);
1867 if ((drv_cmd
!= BNX2X_Q_CMD_MAX
) &&
1868 q_obj
->complete_cmd(bp
, q_obj
, drv_cmd
))
1869 /* q_obj->complete_cmd() failure means that this was
1870 * an unexpected completion.
1872 * In this case we don't want to increase the bp->spq_left
1873 * because apparently we haven't sent this command the first
1876 #ifdef BNX2X_STOP_ON_ERROR
1882 smp_mb__before_atomic();
1883 atomic_inc(&bp
->cq_spq_left
);
1884 /* push the change in bp->spq_left and towards the memory */
1885 smp_mb__after_atomic();
1887 DP(BNX2X_MSG_SP
, "bp->cq_spq_left %x\n", atomic_read(&bp
->cq_spq_left
));
1889 if ((drv_cmd
== BNX2X_Q_CMD_UPDATE
) && (IS_FCOE_FP(fp
)) &&
1890 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING
, &bp
->sp_state
))) {
1891 /* if Q update ramrod is completed for last Q in AFEX vif set
1892 * flow, then ACK MCP at the end
1894 * mark pending ACK to MCP bit.
1895 * prevent case that both bits are cleared.
1896 * At the end of load/unload driver checks that
1897 * sp_state is cleared, and this order prevents
1900 smp_mb__before_atomic();
1901 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK
, &bp
->sp_state
);
1903 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING
, &bp
->sp_state
);
1904 smp_mb__after_atomic();
1906 /* schedule the sp task as mcp ack is required */
1907 bnx2x_schedule_sp_task(bp
);
1913 irqreturn_t
bnx2x_interrupt(int irq
, void *dev_instance
)
1915 struct bnx2x
*bp
= netdev_priv(dev_instance
);
1916 u16 status
= bnx2x_ack_int(bp
);
1921 /* Return here if interrupt is shared and it's not for us */
1922 if (unlikely(status
== 0)) {
1923 DP(NETIF_MSG_INTR
, "not our interrupt!\n");
1926 DP(NETIF_MSG_INTR
, "got an interrupt status 0x%x\n", status
);
1928 #ifdef BNX2X_STOP_ON_ERROR
1929 if (unlikely(bp
->panic
))
1933 for_each_eth_queue(bp
, i
) {
1934 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
1936 mask
= 0x2 << (fp
->index
+ CNIC_SUPPORT(bp
));
1937 if (status
& mask
) {
1938 /* Handle Rx or Tx according to SB id */
1939 for_each_cos_in_tx_queue(fp
, cos
)
1940 prefetch(fp
->txdata_ptr
[cos
]->tx_cons_sb
);
1941 prefetch(&fp
->sb_running_index
[SM_RX_ID
]);
1942 napi_schedule_irqoff(&bnx2x_fp(bp
, fp
->index
, napi
));
1947 if (CNIC_SUPPORT(bp
)) {
1949 if (status
& (mask
| 0x1)) {
1950 struct cnic_ops
*c_ops
= NULL
;
1953 c_ops
= rcu_dereference(bp
->cnic_ops
);
1954 if (c_ops
&& (bp
->cnic_eth_dev
.drv_state
&
1955 CNIC_DRV_STATE_HANDLES_IRQ
))
1956 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
1963 if (unlikely(status
& 0x1)) {
1965 /* schedule sp task to perform default status block work, ack
1966 * attentions and enable interrupts.
1968 bnx2x_schedule_sp_task(bp
);
1975 if (unlikely(status
))
1976 DP(NETIF_MSG_INTR
, "got an unknown interrupt! (status 0x%x)\n",
1985 * General service functions
1988 int bnx2x_acquire_hw_lock(struct bnx2x
*bp
, u32 resource
)
1991 u32 resource_bit
= (1 << resource
);
1992 int func
= BP_FUNC(bp
);
1993 u32 hw_lock_control_reg
;
1996 /* Validating that the resource is within range */
1997 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
1998 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
2004 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
2006 hw_lock_control_reg
=
2007 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
2010 /* Validating that the resource is not already taken */
2011 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
2012 if (lock_status
& resource_bit
) {
2013 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2014 lock_status
, resource_bit
);
2018 /* Try for 5 second every 5ms */
2019 for (cnt
= 0; cnt
< 1000; cnt
++) {
2020 /* Try to acquire the lock */
2021 REG_WR(bp
, hw_lock_control_reg
+ 4, resource_bit
);
2022 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
2023 if (lock_status
& resource_bit
)
2026 usleep_range(5000, 10000);
2028 BNX2X_ERR("Timeout\n");
2032 int bnx2x_release_leader_lock(struct bnx2x
*bp
)
2034 return bnx2x_release_hw_lock(bp
, bnx2x_get_leader_lock_resource(bp
));
2037 int bnx2x_release_hw_lock(struct bnx2x
*bp
, u32 resource
)
2040 u32 resource_bit
= (1 << resource
);
2041 int func
= BP_FUNC(bp
);
2042 u32 hw_lock_control_reg
;
2044 /* Validating that the resource is within range */
2045 if (resource
> HW_LOCK_MAX_RESOURCE_VALUE
) {
2046 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047 resource
, HW_LOCK_MAX_RESOURCE_VALUE
);
2052 hw_lock_control_reg
= (MISC_REG_DRIVER_CONTROL_1
+ func
*8);
2054 hw_lock_control_reg
=
2055 (MISC_REG_DRIVER_CONTROL_7
+ (func
- 6)*8);
2058 /* Validating that the resource is currently taken */
2059 lock_status
= REG_RD(bp
, hw_lock_control_reg
);
2060 if (!(lock_status
& resource_bit
)) {
2061 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062 lock_status
, resource_bit
);
2066 REG_WR(bp
, hw_lock_control_reg
, resource_bit
);
2070 int bnx2x_get_gpio(struct bnx2x
*bp
, int gpio_num
, u8 port
)
2072 /* The GPIO should be swapped if swap register is set and active */
2073 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2074 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2075 int gpio_shift
= gpio_num
+
2076 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2077 u32 gpio_mask
= (1 << gpio_shift
);
2081 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2082 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2086 /* read GPIO value */
2087 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
2089 /* get the requested pin value */
2090 if ((gpio_reg
& gpio_mask
) == gpio_mask
)
2098 int bnx2x_set_gpio(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
2100 /* The GPIO should be swapped if swap register is set and active */
2101 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2102 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2103 int gpio_shift
= gpio_num
+
2104 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2105 u32 gpio_mask
= (1 << gpio_shift
);
2108 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2109 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2113 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2114 /* read GPIO and mask except the float bits */
2115 gpio_reg
= (REG_RD(bp
, MISC_REG_GPIO
) & MISC_REGISTERS_GPIO_FLOAT
);
2118 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
2120 "Set GPIO %d (shift %d) -> output low\n",
2121 gpio_num
, gpio_shift
);
2122 /* clear FLOAT and set CLR */
2123 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2124 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_CLR_POS
);
2127 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
2129 "Set GPIO %d (shift %d) -> output high\n",
2130 gpio_num
, gpio_shift
);
2131 /* clear FLOAT and set SET */
2132 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2133 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_SET_POS
);
2136 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
2138 "Set GPIO %d (shift %d) -> input\n",
2139 gpio_num
, gpio_shift
);
2141 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2148 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
2149 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2154 int bnx2x_set_mult_gpio(struct bnx2x
*bp
, u8 pins
, u32 mode
)
2159 /* Any port swapping should be handled by caller. */
2161 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2162 /* read GPIO and mask except the float bits */
2163 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO
);
2164 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2165 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
2166 gpio_reg
&= ~(pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2169 case MISC_REGISTERS_GPIO_OUTPUT_LOW
:
2170 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output low\n", pins
);
2172 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_CLR_POS
);
2175 case MISC_REGISTERS_GPIO_OUTPUT_HIGH
:
2176 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> output high\n", pins
);
2178 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_SET_POS
);
2181 case MISC_REGISTERS_GPIO_INPUT_HI_Z
:
2182 DP(NETIF_MSG_LINK
, "Set GPIO 0x%x -> input\n", pins
);
2184 gpio_reg
|= (pins
<< MISC_REGISTERS_GPIO_FLOAT_POS
);
2188 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode
);
2194 REG_WR(bp
, MISC_REG_GPIO
, gpio_reg
);
2196 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2201 int bnx2x_set_gpio_int(struct bnx2x
*bp
, int gpio_num
, u32 mode
, u8 port
)
2203 /* The GPIO should be swapped if swap register is set and active */
2204 int gpio_port
= (REG_RD(bp
, NIG_REG_PORT_SWAP
) &&
2205 REG_RD(bp
, NIG_REG_STRAP_OVERRIDE
)) ^ port
;
2206 int gpio_shift
= gpio_num
+
2207 (gpio_port
? MISC_REGISTERS_GPIO_PORT_SHIFT
: 0);
2208 u32 gpio_mask
= (1 << gpio_shift
);
2211 if (gpio_num
> MISC_REGISTERS_GPIO_3
) {
2212 BNX2X_ERR("Invalid GPIO %d\n", gpio_num
);
2216 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2218 gpio_reg
= REG_RD(bp
, MISC_REG_GPIO_INT
);
2221 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR
:
2223 "Clear GPIO INT %d (shift %d) -> output low\n",
2224 gpio_num
, gpio_shift
);
2225 /* clear SET and set CLR */
2226 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2227 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2230 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET
:
2232 "Set GPIO INT %d (shift %d) -> output high\n",
2233 gpio_num
, gpio_shift
);
2234 /* clear CLR and set SET */
2235 gpio_reg
&= ~(gpio_mask
<< MISC_REGISTERS_GPIO_INT_CLR_POS
);
2236 gpio_reg
|= (gpio_mask
<< MISC_REGISTERS_GPIO_INT_SET_POS
);
2243 REG_WR(bp
, MISC_REG_GPIO_INT
, gpio_reg
);
2244 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_GPIO
);
2249 static int bnx2x_set_spio(struct bnx2x
*bp
, int spio
, u32 mode
)
2253 /* Only 2 SPIOs are configurable */
2254 if ((spio
!= MISC_SPIO_SPIO4
) && (spio
!= MISC_SPIO_SPIO5
)) {
2255 BNX2X_ERR("Invalid SPIO 0x%x\n", spio
);
2259 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2260 /* read SPIO and mask except the float bits */
2261 spio_reg
= (REG_RD(bp
, MISC_REG_SPIO
) & MISC_SPIO_FLOAT
);
2264 case MISC_SPIO_OUTPUT_LOW
:
2265 DP(NETIF_MSG_HW
, "Set SPIO 0x%x -> output low\n", spio
);
2266 /* clear FLOAT and set CLR */
2267 spio_reg
&= ~(spio
<< MISC_SPIO_FLOAT_POS
);
2268 spio_reg
|= (spio
<< MISC_SPIO_CLR_POS
);
2271 case MISC_SPIO_OUTPUT_HIGH
:
2272 DP(NETIF_MSG_HW
, "Set SPIO 0x%x -> output high\n", spio
);
2273 /* clear FLOAT and set SET */
2274 spio_reg
&= ~(spio
<< MISC_SPIO_FLOAT_POS
);
2275 spio_reg
|= (spio
<< MISC_SPIO_SET_POS
);
2278 case MISC_SPIO_INPUT_HI_Z
:
2279 DP(NETIF_MSG_HW
, "Set SPIO 0x%x -> input\n", spio
);
2281 spio_reg
|= (spio
<< MISC_SPIO_FLOAT_POS
);
2288 REG_WR(bp
, MISC_REG_SPIO
, spio_reg
);
2289 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_SPIO
);
2294 void bnx2x_calc_fc_adv(struct bnx2x
*bp
)
2296 u8 cfg_idx
= bnx2x_get_link_cfg_idx(bp
);
2298 bp
->port
.advertising
[cfg_idx
] &= ~(ADVERTISED_Asym_Pause
|
2300 switch (bp
->link_vars
.ieee_fc
&
2301 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK
) {
2302 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH
:
2303 bp
->port
.advertising
[cfg_idx
] |= (ADVERTISED_Asym_Pause
|
2307 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC
:
2308 bp
->port
.advertising
[cfg_idx
] |= ADVERTISED_Asym_Pause
;
2316 static void bnx2x_set_requested_fc(struct bnx2x
*bp
)
2318 /* Initialize link parameters structure variables
2319 * It is recommended to turn off RX FC for jumbo frames
2320 * for better performance
2322 if (CHIP_IS_E1x(bp
) && (bp
->dev
->mtu
> 5000))
2323 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_TX
;
2325 bp
->link_params
.req_fc_auto_adv
= BNX2X_FLOW_CTRL_BOTH
;
2328 static void bnx2x_init_dropless_fc(struct bnx2x
*bp
)
2330 u32 pause_enabled
= 0;
2332 if (!CHIP_IS_E1(bp
) && bp
->dropless_fc
&& bp
->link_vars
.link_up
) {
2333 if (bp
->link_vars
.flow_ctrl
& BNX2X_FLOW_CTRL_TX
)
2336 REG_WR(bp
, BAR_USTRORM_INTMEM
+
2337 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp
)),
2341 DP(NETIF_MSG_IFUP
| NETIF_MSG_LINK
, "dropless_fc is %s\n",
2342 pause_enabled
? "enabled" : "disabled");
2345 int bnx2x_initial_phy_init(struct bnx2x
*bp
, int load_mode
)
2347 int rc
, cfx_idx
= bnx2x_get_link_cfg_idx(bp
);
2348 u16 req_line_speed
= bp
->link_params
.req_line_speed
[cfx_idx
];
2350 if (!BP_NOMCP(bp
)) {
2351 bnx2x_set_requested_fc(bp
);
2352 bnx2x_acquire_phy_lock(bp
);
2354 if (load_mode
== LOAD_DIAG
) {
2355 struct link_params
*lp
= &bp
->link_params
;
2356 lp
->loopback_mode
= LOOPBACK_XGXS
;
2357 /* Prefer doing PHY loopback at highest speed */
2358 if (lp
->req_line_speed
[cfx_idx
] < SPEED_20000
) {
2359 if (lp
->speed_cap_mask
[cfx_idx
] &
2360 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G
)
2361 lp
->req_line_speed
[cfx_idx
] =
2363 else if (lp
->speed_cap_mask
[cfx_idx
] &
2364 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
)
2365 lp
->req_line_speed
[cfx_idx
] =
2368 lp
->req_line_speed
[cfx_idx
] =
2373 if (load_mode
== LOAD_LOOPBACK_EXT
) {
2374 struct link_params
*lp
= &bp
->link_params
;
2375 lp
->loopback_mode
= LOOPBACK_EXT
;
2378 rc
= bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2380 bnx2x_release_phy_lock(bp
);
2382 bnx2x_init_dropless_fc(bp
);
2384 bnx2x_calc_fc_adv(bp
);
2386 if (bp
->link_vars
.link_up
) {
2387 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2388 bnx2x_link_report(bp
);
2390 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2391 bp
->link_params
.req_line_speed
[cfx_idx
] = req_line_speed
;
2394 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2398 void bnx2x_link_set(struct bnx2x
*bp
)
2400 if (!BP_NOMCP(bp
)) {
2401 bnx2x_acquire_phy_lock(bp
);
2402 bnx2x_phy_init(&bp
->link_params
, &bp
->link_vars
);
2403 bnx2x_release_phy_lock(bp
);
2405 bnx2x_init_dropless_fc(bp
);
2407 bnx2x_calc_fc_adv(bp
);
2409 BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 static void bnx2x__link_reset(struct bnx2x
*bp
)
2414 if (!BP_NOMCP(bp
)) {
2415 bnx2x_acquire_phy_lock(bp
);
2416 bnx2x_lfa_reset(&bp
->link_params
, &bp
->link_vars
);
2417 bnx2x_release_phy_lock(bp
);
2419 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 void bnx2x_force_link_reset(struct bnx2x
*bp
)
2424 bnx2x_acquire_phy_lock(bp
);
2425 bnx2x_link_reset(&bp
->link_params
, &bp
->link_vars
, 1);
2426 bnx2x_release_phy_lock(bp
);
2429 u8
bnx2x_link_test(struct bnx2x
*bp
, u8 is_serdes
)
2433 if (!BP_NOMCP(bp
)) {
2434 bnx2x_acquire_phy_lock(bp
);
2435 rc
= bnx2x_test_link(&bp
->link_params
, &bp
->link_vars
,
2437 bnx2x_release_phy_lock(bp
);
2439 BNX2X_ERR("Bootcode is missing - can not test link\n");
2444 /* Calculates the sum of vn_min_rates.
2445 It's needed for further normalizing of the min_rates.
2447 sum of vn_min_rates.
2449 0 - if all the min_rates are 0.
2450 In the later case fairness algorithm should be deactivated.
2451 If not all min_rates are zero then those that are zeroes will be set to 1.
2453 static void bnx2x_calc_vn_min(struct bnx2x
*bp
,
2454 struct cmng_init_input
*input
)
2459 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2460 u32 vn_cfg
= bp
->mf_config
[vn
];
2461 u32 vn_min_rate
= ((vn_cfg
& FUNC_MF_CFG_MIN_BW_MASK
) >>
2462 FUNC_MF_CFG_MIN_BW_SHIFT
) * 100;
2464 /* Skip hidden vns */
2465 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
)
2467 /* If min rate is zero - set it to 1 */
2468 else if (!vn_min_rate
)
2469 vn_min_rate
= DEF_MIN_RATE
;
2473 input
->vnic_min_rate
[vn
] = vn_min_rate
;
2476 /* if ETS or all min rates are zeros - disable fairness */
2477 if (BNX2X_IS_ETS_ENABLED(bp
)) {
2478 input
->flags
.cmng_enables
&=
2479 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2480 DP(NETIF_MSG_IFUP
, "Fairness will be disabled due to ETS\n");
2481 } else if (all_zero
) {
2482 input
->flags
.cmng_enables
&=
2483 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2485 "All MIN values are zeroes fairness will be disabled\n");
2487 input
->flags
.cmng_enables
|=
2488 CMNG_FLAGS_PER_PORT_FAIRNESS_VN
;
2491 static void bnx2x_calc_vn_max(struct bnx2x
*bp
, int vn
,
2492 struct cmng_init_input
*input
)
2495 u32 vn_cfg
= bp
->mf_config
[vn
];
2497 if (vn_cfg
& FUNC_MF_CFG_FUNC_HIDE
)
2500 u32 maxCfg
= bnx2x_extract_max_cfg(bp
, vn_cfg
);
2502 if (IS_MF_PERCENT_BW(bp
)) {
2503 /* maxCfg in percents of linkspeed */
2504 vn_max_rate
= (bp
->link_vars
.line_speed
* maxCfg
) / 100;
2505 } else /* SD modes */
2506 /* maxCfg is absolute in 100Mb units */
2507 vn_max_rate
= maxCfg
* 100;
2510 DP(NETIF_MSG_IFUP
, "vn %d: vn_max_rate %d\n", vn
, vn_max_rate
);
2512 input
->vnic_max_rate
[vn
] = vn_max_rate
;
2515 static int bnx2x_get_cmng_fns_mode(struct bnx2x
*bp
)
2517 if (CHIP_REV_IS_SLOW(bp
))
2518 return CMNG_FNS_NONE
;
2520 return CMNG_FNS_MINMAX
;
2522 return CMNG_FNS_NONE
;
2525 void bnx2x_read_mf_cfg(struct bnx2x
*bp
)
2527 int vn
, n
= (CHIP_MODE_IS_4_PORT(bp
) ? 2 : 1);
2530 return; /* what should be the default value in this case */
2532 /* For 2 port configuration the absolute function number formula
2534 * abs_func = 2 * vn + BP_PORT + BP_PATH
2536 * and there are 4 functions per port
2538 * For 4 port configuration it is
2539 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2541 * and there are 2 functions per port
2543 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2544 int /*abs*/func
= n
* (2 * vn
+ BP_PORT(bp
)) + BP_PATH(bp
);
2546 if (func
>= E1H_FUNC_MAX
)
2550 MF_CFG_RD(bp
, func_mf_config
[func
].config
);
2552 if (bp
->mf_config
[BP_VN(bp
)] & FUNC_MF_CFG_FUNC_DISABLED
) {
2553 DP(NETIF_MSG_IFUP
, "mf_cfg function disabled\n");
2554 bp
->flags
|= MF_FUNC_DIS
;
2556 DP(NETIF_MSG_IFUP
, "mf_cfg function enabled\n");
2557 bp
->flags
&= ~MF_FUNC_DIS
;
2561 static void bnx2x_cmng_fns_init(struct bnx2x
*bp
, u8 read_cfg
, u8 cmng_type
)
2563 struct cmng_init_input input
;
2564 memset(&input
, 0, sizeof(struct cmng_init_input
));
2566 input
.port_rate
= bp
->link_vars
.line_speed
;
2568 if (cmng_type
== CMNG_FNS_MINMAX
&& input
.port_rate
) {
2571 /* read mf conf from shmem */
2573 bnx2x_read_mf_cfg(bp
);
2575 /* vn_weight_sum and enable fairness if not 0 */
2576 bnx2x_calc_vn_min(bp
, &input
);
2578 /* calculate and set min-max rate for each vn */
2580 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++)
2581 bnx2x_calc_vn_max(bp
, vn
, &input
);
2583 /* always enable rate shaping and fairness */
2584 input
.flags
.cmng_enables
|=
2585 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN
;
2587 bnx2x_init_cmng(&input
, &bp
->cmng
);
2591 /* rate shaping and fairness are disabled */
2593 "rate shaping and fairness are disabled\n");
2596 static void storm_memset_cmng(struct bnx2x
*bp
,
2597 struct cmng_init
*cmng
,
2601 size_t size
= sizeof(struct cmng_struct_per_port
);
2603 u32 addr
= BAR_XSTRORM_INTMEM
+
2604 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port
);
2606 __storm_memset_struct(bp
, addr
, size
, (u32
*)&cmng
->port
);
2608 for (vn
= VN_0
; vn
< BP_MAX_VN_NUM(bp
); vn
++) {
2609 int func
= func_by_vn(bp
, vn
);
2611 addr
= BAR_XSTRORM_INTMEM
+
2612 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func
);
2613 size
= sizeof(struct rate_shaping_vars_per_vn
);
2614 __storm_memset_struct(bp
, addr
, size
,
2615 (u32
*)&cmng
->vnic
.vnic_max_rate
[vn
]);
2617 addr
= BAR_XSTRORM_INTMEM
+
2618 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func
);
2619 size
= sizeof(struct fairness_vars_per_vn
);
2620 __storm_memset_struct(bp
, addr
, size
,
2621 (u32
*)&cmng
->vnic
.vnic_min_rate
[vn
]);
2625 /* init cmng mode in HW according to local configuration */
2626 void bnx2x_set_local_cmng(struct bnx2x
*bp
)
2628 int cmng_fns
= bnx2x_get_cmng_fns_mode(bp
);
2630 if (cmng_fns
!= CMNG_FNS_NONE
) {
2631 bnx2x_cmng_fns_init(bp
, false, cmng_fns
);
2632 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
2634 /* rate shaping and fairness are disabled */
2636 "single function mode without fairness\n");
2640 /* This function is called upon link interrupt */
2641 static void bnx2x_link_attn(struct bnx2x
*bp
)
2643 /* Make sure that we are synced with the current statistics */
2644 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2646 bnx2x_link_update(&bp
->link_params
, &bp
->link_vars
);
2648 bnx2x_init_dropless_fc(bp
);
2650 if (bp
->link_vars
.link_up
) {
2652 if (bp
->link_vars
.mac_type
!= MAC_TYPE_EMAC
) {
2653 struct host_port_stats
*pstats
;
2655 pstats
= bnx2x_sp(bp
, port_stats
);
2656 /* reset old mac stats */
2657 memset(&(pstats
->mac_stx
[0]), 0,
2658 sizeof(struct mac_stx
));
2660 if (bp
->state
== BNX2X_STATE_OPEN
)
2661 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2664 if (bp
->link_vars
.link_up
&& bp
->link_vars
.line_speed
)
2665 bnx2x_set_local_cmng(bp
);
2667 __bnx2x_link_report(bp
);
2670 bnx2x_link_sync_notify(bp
);
2673 void bnx2x__link_status_update(struct bnx2x
*bp
)
2675 if (bp
->state
!= BNX2X_STATE_OPEN
)
2678 /* read updated dcb configuration */
2680 bnx2x_dcbx_pmf_update(bp
);
2681 bnx2x_link_status_update(&bp
->link_params
, &bp
->link_vars
);
2682 if (bp
->link_vars
.link_up
)
2683 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2685 bnx2x_stats_handle(bp
, STATS_EVENT_STOP
);
2686 /* indicate link status */
2687 bnx2x_link_report(bp
);
2690 bp
->port
.supported
[0] |= (SUPPORTED_10baseT_Half
|
2691 SUPPORTED_10baseT_Full
|
2692 SUPPORTED_100baseT_Half
|
2693 SUPPORTED_100baseT_Full
|
2694 SUPPORTED_1000baseT_Full
|
2695 SUPPORTED_2500baseX_Full
|
2696 SUPPORTED_10000baseT_Full
|
2701 SUPPORTED_Asym_Pause
);
2702 bp
->port
.advertising
[0] = bp
->port
.supported
[0];
2704 bp
->link_params
.bp
= bp
;
2705 bp
->link_params
.port
= BP_PORT(bp
);
2706 bp
->link_params
.req_duplex
[0] = DUPLEX_FULL
;
2707 bp
->link_params
.req_flow_ctrl
[0] = BNX2X_FLOW_CTRL_NONE
;
2708 bp
->link_params
.req_line_speed
[0] = SPEED_10000
;
2709 bp
->link_params
.speed_cap_mask
[0] = 0x7f0000;
2710 bp
->link_params
.switch_cfg
= SWITCH_CFG_10G
;
2711 bp
->link_vars
.mac_type
= MAC_TYPE_BMAC
;
2712 bp
->link_vars
.line_speed
= SPEED_10000
;
2713 bp
->link_vars
.link_status
=
2714 (LINK_STATUS_LINK_UP
|
2715 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD
);
2716 bp
->link_vars
.link_up
= 1;
2717 bp
->link_vars
.duplex
= DUPLEX_FULL
;
2718 bp
->link_vars
.flow_ctrl
= BNX2X_FLOW_CTRL_NONE
;
2719 __bnx2x_link_report(bp
);
2721 bnx2x_sample_bulletin(bp
);
2723 /* if bulletin board did not have an update for link status
2724 * __bnx2x_link_report will report current status
2725 * but it will NOT duplicate report in case of already reported
2726 * during sampling bulletin board.
2728 bnx2x_stats_handle(bp
, STATS_EVENT_LINK_UP
);
2732 static int bnx2x_afex_func_update(struct bnx2x
*bp
, u16 vifid
,
2733 u16 vlan_val
, u8 allowed_prio
)
2735 struct bnx2x_func_state_params func_params
= {NULL
};
2736 struct bnx2x_func_afex_update_params
*f_update_params
=
2737 &func_params
.params
.afex_update
;
2739 func_params
.f_obj
= &bp
->func_obj
;
2740 func_params
.cmd
= BNX2X_F_CMD_AFEX_UPDATE
;
2742 /* no need to wait for RAMROD completion, so don't
2743 * set RAMROD_COMP_WAIT flag
2746 f_update_params
->vif_id
= vifid
;
2747 f_update_params
->afex_default_vlan
= vlan_val
;
2748 f_update_params
->allowed_priorities
= allowed_prio
;
2750 /* if ramrod can not be sent, response to MCP immediately */
2751 if (bnx2x_func_state_change(bp
, &func_params
) < 0)
2752 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_VIFSET_ACK
, 0);
2757 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x
*bp
, u8 cmd_type
,
2758 u16 vif_index
, u8 func_bit_map
)
2760 struct bnx2x_func_state_params func_params
= {NULL
};
2761 struct bnx2x_func_afex_viflists_params
*update_params
=
2762 &func_params
.params
.afex_viflists
;
2766 /* validate only LIST_SET and LIST_GET are received from switch */
2767 if ((cmd_type
!= VIF_LIST_RULE_GET
) && (cmd_type
!= VIF_LIST_RULE_SET
))
2768 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2771 func_params
.f_obj
= &bp
->func_obj
;
2772 func_params
.cmd
= BNX2X_F_CMD_AFEX_VIFLISTS
;
2774 /* set parameters according to cmd_type */
2775 update_params
->afex_vif_list_command
= cmd_type
;
2776 update_params
->vif_list_index
= vif_index
;
2777 update_params
->func_bit_map
=
2778 (cmd_type
== VIF_LIST_RULE_GET
) ? 0 : func_bit_map
;
2779 update_params
->func_to_clear
= 0;
2781 (cmd_type
== VIF_LIST_RULE_GET
) ?
2782 DRV_MSG_CODE_AFEX_LISTGET_ACK
:
2783 DRV_MSG_CODE_AFEX_LISTSET_ACK
;
2785 /* if ramrod can not be sent, respond to MCP immediately for
2786 * SET and GET requests (other are not triggered from MCP)
2788 rc
= bnx2x_func_state_change(bp
, &func_params
);
2790 bnx2x_fw_command(bp
, drv_msg_code
, 0);
2795 static void bnx2x_handle_afex_cmd(struct bnx2x
*bp
, u32 cmd
)
2797 struct afex_stats afex_stats
;
2798 u32 func
= BP_ABS_FUNC(bp
);
2805 u32 addr_to_write
, vifid
, addrs
, stats_type
, i
;
2807 if (cmd
& DRV_STATUS_AFEX_LISTGET_REQ
) {
2808 vifid
= SHMEM2_RD(bp
, afex_param1_to_driver
[BP_FW_MB_IDX(bp
)]);
2810 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid
);
2811 bnx2x_afex_handle_vif_list_cmd(bp
, VIF_LIST_RULE_GET
, vifid
, 0);
2814 if (cmd
& DRV_STATUS_AFEX_LISTSET_REQ
) {
2815 vifid
= SHMEM2_RD(bp
, afex_param1_to_driver
[BP_FW_MB_IDX(bp
)]);
2816 addrs
= SHMEM2_RD(bp
, afex_param2_to_driver
[BP_FW_MB_IDX(bp
)]);
2818 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2820 bnx2x_afex_handle_vif_list_cmd(bp
, VIF_LIST_RULE_SET
, vifid
,
2824 if (cmd
& DRV_STATUS_AFEX_STATSGET_REQ
) {
2825 addr_to_write
= SHMEM2_RD(bp
,
2826 afex_scratchpad_addr_to_write
[BP_FW_MB_IDX(bp
)]);
2827 stats_type
= SHMEM2_RD(bp
,
2828 afex_param1_to_driver
[BP_FW_MB_IDX(bp
)]);
2831 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2834 bnx2x_afex_collect_stats(bp
, (void *)&afex_stats
, stats_type
);
2836 /* write response to scratchpad, for MCP */
2837 for (i
= 0; i
< (sizeof(struct afex_stats
)/sizeof(u32
)); i
++)
2838 REG_WR(bp
, addr_to_write
+ i
*sizeof(u32
),
2839 *(((u32
*)(&afex_stats
))+i
));
2841 /* send ack message to MCP */
2842 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_STATSGET_ACK
, 0);
2845 if (cmd
& DRV_STATUS_AFEX_VIFSET_REQ
) {
2846 mf_config
= MF_CFG_RD(bp
, func_mf_config
[func
].config
);
2847 bp
->mf_config
[BP_VN(bp
)] = mf_config
;
2849 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2852 /* if VIF_SET is "enabled" */
2853 if (!(mf_config
& FUNC_MF_CFG_FUNC_DISABLED
)) {
2854 /* set rate limit directly to internal RAM */
2855 struct cmng_init_input cmng_input
;
2856 struct rate_shaping_vars_per_vn m_rs_vn
;
2857 size_t size
= sizeof(struct rate_shaping_vars_per_vn
);
2858 u32 addr
= BAR_XSTRORM_INTMEM
+
2859 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp
));
2861 bp
->mf_config
[BP_VN(bp
)] = mf_config
;
2863 bnx2x_calc_vn_max(bp
, BP_VN(bp
), &cmng_input
);
2864 m_rs_vn
.vn_counter
.rate
=
2865 cmng_input
.vnic_max_rate
[BP_VN(bp
)];
2866 m_rs_vn
.vn_counter
.quota
=
2867 (m_rs_vn
.vn_counter
.rate
*
2868 RS_PERIODIC_TIMEOUT_USEC
) / 8;
2870 __storm_memset_struct(bp
, addr
, size
, (u32
*)&m_rs_vn
);
2872 /* read relevant values from mf_cfg struct in shmem */
2874 (MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
2875 FUNC_MF_CFG_E1HOV_TAG_MASK
) >>
2876 FUNC_MF_CFG_E1HOV_TAG_SHIFT
;
2878 (MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
2879 FUNC_MF_CFG_AFEX_VLAN_MASK
) >>
2880 FUNC_MF_CFG_AFEX_VLAN_SHIFT
;
2881 vlan_prio
= (mf_config
&
2882 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK
) >>
2883 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT
;
2884 vlan_val
|= (vlan_prio
<< VLAN_PRIO_SHIFT
);
2887 func_mf_config
[func
].afex_config
) &
2888 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK
) >>
2889 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT
;
2892 func_mf_config
[func
].afex_config
) &
2893 FUNC_MF_CFG_AFEX_COS_FILTER_MASK
) >>
2894 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT
;
2896 /* send ramrod to FW, return in case of failure */
2897 if (bnx2x_afex_func_update(bp
, vif_id
, vlan_val
,
2901 bp
->afex_def_vlan_tag
= vlan_val
;
2902 bp
->afex_vlan_mode
= vlan_mode
;
2904 /* notify link down because BP->flags is disabled */
2905 bnx2x_link_report(bp
);
2907 /* send INVALID VIF ramrod to FW */
2908 bnx2x_afex_func_update(bp
, 0xFFFF, 0, 0);
2910 /* Reset the default afex VLAN */
2911 bp
->afex_def_vlan_tag
= -1;
2916 static void bnx2x_handle_update_svid_cmd(struct bnx2x
*bp
)
2918 struct bnx2x_func_switch_update_params
*switch_update_params
;
2919 struct bnx2x_func_state_params func_params
;
2921 memset(&func_params
, 0, sizeof(struct bnx2x_func_state_params
));
2922 switch_update_params
= &func_params
.params
.switch_update
;
2923 func_params
.f_obj
= &bp
->func_obj
;
2924 func_params
.cmd
= BNX2X_F_CMD_SWITCH_UPDATE
;
2926 /* Prepare parameters for function state transitions */
2927 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
2928 __set_bit(RAMROD_RETRY
, &func_params
.ramrod_flags
);
2930 if (IS_MF_UFP(bp
) || IS_MF_BD(bp
)) {
2931 int func
= BP_ABS_FUNC(bp
);
2934 /* Re-learn the S-tag from shmem */
2935 val
= MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
2936 FUNC_MF_CFG_E1HOV_TAG_MASK
;
2937 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
2940 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2944 /* Configure new S-tag in LLH */
2945 REG_WR(bp
, NIG_REG_LLH0_FUNC_VLAN_ID
+ BP_PORT(bp
) * 8,
2948 /* Send Ramrod to update FW of change */
2949 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG
,
2950 &switch_update_params
->changes
);
2951 switch_update_params
->vlan
= bp
->mf_ov
;
2953 if (bnx2x_func_state_change(bp
, &func_params
) < 0) {
2954 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2958 DP(BNX2X_MSG_MCP
, "Configured S-tag %02x\n",
2965 bnx2x_fw_command(bp
, DRV_MSG_CODE_OEM_UPDATE_SVID_OK
, 0);
2968 bnx2x_fw_command(bp
, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE
, 0);
2971 static void bnx2x_pmf_update(struct bnx2x
*bp
)
2973 int port
= BP_PORT(bp
);
2977 DP(BNX2X_MSG_MCP
, "pmf %d\n", bp
->port
.pmf
);
2980 * We need the mb() to ensure the ordering between the writing to
2981 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2985 /* queue a periodic task */
2986 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 0);
2988 bnx2x_dcbx_pmf_update(bp
);
2990 /* enable nig attention */
2991 val
= (0xff0f | (1 << (BP_VN(bp
) + 4)));
2992 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
2993 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, val
);
2994 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, val
);
2995 } else if (!CHIP_IS_E1x(bp
)) {
2996 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, val
);
2997 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, val
);
3000 bnx2x_stats_handle(bp
, STATS_EVENT_PMF
);
3008 * General service functions
3011 /* send the MCP a request, block until there is a reply */
3012 u32
bnx2x_fw_command(struct bnx2x
*bp
, u32 command
, u32 param
)
3014 int mb_idx
= BP_FW_MB_IDX(bp
);
3018 u8 delay
= CHIP_REV_IS_SLOW(bp
) ? 100 : 10;
3020 mutex_lock(&bp
->fw_mb_mutex
);
3022 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_param
, param
);
3023 SHMEM_WR(bp
, func_mb
[mb_idx
].drv_mb_header
, (command
| seq
));
3025 DP(BNX2X_MSG_MCP
, "wrote command (%x) to FW MB param 0x%08x\n",
3026 (command
| seq
), param
);
3029 /* let the FW do it's magic ... */
3032 rc
= SHMEM_RD(bp
, func_mb
[mb_idx
].fw_mb_header
);
3034 /* Give the FW up to 5 second (500*10ms) */
3035 } while ((seq
!= (rc
& FW_MSG_SEQ_NUMBER_MASK
)) && (cnt
++ < 500));
3037 DP(BNX2X_MSG_MCP
, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3038 cnt
*delay
, rc
, seq
);
3040 /* is this a reply to our command? */
3041 if (seq
== (rc
& FW_MSG_SEQ_NUMBER_MASK
))
3042 rc
&= FW_MSG_CODE_MASK
;
3045 BNX2X_ERR("FW failed to respond!\n");
3049 mutex_unlock(&bp
->fw_mb_mutex
);
3054 static void storm_memset_func_cfg(struct bnx2x
*bp
,
3055 struct tstorm_eth_function_common_config
*tcfg
,
3058 size_t size
= sizeof(struct tstorm_eth_function_common_config
);
3060 u32 addr
= BAR_TSTRORM_INTMEM
+
3061 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid
);
3063 __storm_memset_struct(bp
, addr
, size
, (u32
*)tcfg
);
3066 void bnx2x_func_init(struct bnx2x
*bp
, struct bnx2x_func_init_params
*p
)
3068 if (CHIP_IS_E1x(bp
)) {
3069 struct tstorm_eth_function_common_config tcfg
= {0};
3071 storm_memset_func_cfg(bp
, &tcfg
, p
->func_id
);
3074 /* Enable the function in the FW */
3075 storm_memset_vf_to_pf(bp
, p
->func_id
, p
->pf_id
);
3076 storm_memset_func_en(bp
, p
->func_id
, 1);
3079 if (p
->spq_active
) {
3080 storm_memset_spq_addr(bp
, p
->spq_map
, p
->func_id
);
3081 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+
3082 XSTORM_SPQ_PROD_OFFSET(p
->func_id
), p
->spq_prod
);
3087 * bnx2x_get_common_flags - Return common flags
3089 * @bp: device handle
3091 * @zero_stats: TRUE if statistics zeroing is needed
3093 * Return the flags that are common for the Tx-only and not normal connections.
3095 static unsigned long bnx2x_get_common_flags(struct bnx2x
*bp
,
3096 struct bnx2x_fastpath
*fp
,
3099 unsigned long flags
= 0;
3101 /* PF driver will always initialize the Queue to an ACTIVE state */
3102 __set_bit(BNX2X_Q_FLG_ACTIVE
, &flags
);
3104 /* tx only connections collect statistics (on the same index as the
3105 * parent connection). The statistics are zeroed when the parent
3106 * connection is initialized.
3109 __set_bit(BNX2X_Q_FLG_STATS
, &flags
);
3111 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &flags
);
3113 if (bp
->flags
& TX_SWITCHING
)
3114 __set_bit(BNX2X_Q_FLG_TX_SWITCH
, &flags
);
3116 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT
, &flags
);
3117 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID
, &flags
);
3119 #ifdef BNX2X_STOP_ON_ERROR
3120 __set_bit(BNX2X_Q_FLG_TX_SEC
, &flags
);
3126 static unsigned long bnx2x_get_q_flags(struct bnx2x
*bp
,
3127 struct bnx2x_fastpath
*fp
,
3130 unsigned long flags
= 0;
3132 /* calculate other queue flags */
3134 __set_bit(BNX2X_Q_FLG_OV
, &flags
);
3136 if (IS_FCOE_FP(fp
)) {
3137 __set_bit(BNX2X_Q_FLG_FCOE
, &flags
);
3138 /* For FCoE - force usage of default priority (for afex) */
3139 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI
, &flags
);
3142 if (fp
->mode
!= TPA_MODE_DISABLED
) {
3143 __set_bit(BNX2X_Q_FLG_TPA
, &flags
);
3144 __set_bit(BNX2X_Q_FLG_TPA_IPV6
, &flags
);
3145 if (fp
->mode
== TPA_MODE_GRO
)
3146 __set_bit(BNX2X_Q_FLG_TPA_GRO
, &flags
);
3150 __set_bit(BNX2X_Q_FLG_LEADING_RSS
, &flags
);
3151 __set_bit(BNX2X_Q_FLG_MCAST
, &flags
);
3154 /* Always set HW VLAN stripping */
3155 __set_bit(BNX2X_Q_FLG_VLAN
, &flags
);
3157 /* configure silent vlan removal */
3159 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM
, &flags
);
3161 return flags
| bnx2x_get_common_flags(bp
, fp
, true);
3164 static void bnx2x_pf_q_prep_general(struct bnx2x
*bp
,
3165 struct bnx2x_fastpath
*fp
, struct bnx2x_general_setup_params
*gen_init
,
3168 gen_init
->stat_id
= bnx2x_stats_id(fp
);
3169 gen_init
->spcl_id
= fp
->cl_id
;
3171 /* Always use mini-jumbo MTU for FCoE L2 ring */
3173 gen_init
->mtu
= BNX2X_FCOE_MINI_JUMBO_MTU
;
3175 gen_init
->mtu
= bp
->dev
->mtu
;
3177 gen_init
->cos
= cos
;
3179 gen_init
->fp_hsi
= ETH_FP_HSI_VERSION
;
3182 static void bnx2x_pf_rx_q_prep(struct bnx2x
*bp
,
3183 struct bnx2x_fastpath
*fp
, struct rxq_pause_params
*pause
,
3184 struct bnx2x_rxq_setup_params
*rxq_init
)
3188 u16 tpa_agg_size
= 0;
3190 if (fp
->mode
!= TPA_MODE_DISABLED
) {
3191 pause
->sge_th_lo
= SGE_TH_LO(bp
);
3192 pause
->sge_th_hi
= SGE_TH_HI(bp
);
3194 /* validate SGE ring has enough to cross high threshold */
3195 WARN_ON(bp
->dropless_fc
&&
3196 pause
->sge_th_hi
+ FW_PREFETCH_CNT
>
3197 MAX_RX_SGE_CNT
* NUM_RX_SGE_PAGES
);
3199 tpa_agg_size
= TPA_AGG_SIZE
;
3200 max_sge
= SGE_PAGE_ALIGN(bp
->dev
->mtu
) >>
3202 max_sge
= ((max_sge
+ PAGES_PER_SGE
- 1) &
3203 (~(PAGES_PER_SGE
-1))) >> PAGES_PER_SGE_SHIFT
;
3204 sge_sz
= (u16
)min_t(u32
, SGE_PAGES
, 0xffff);
3207 /* pause - not for e1 */
3208 if (!CHIP_IS_E1(bp
)) {
3209 pause
->bd_th_lo
= BD_TH_LO(bp
);
3210 pause
->bd_th_hi
= BD_TH_HI(bp
);
3212 pause
->rcq_th_lo
= RCQ_TH_LO(bp
);
3213 pause
->rcq_th_hi
= RCQ_TH_HI(bp
);
3215 * validate that rings have enough entries to cross
3218 WARN_ON(bp
->dropless_fc
&&
3219 pause
->bd_th_hi
+ FW_PREFETCH_CNT
>
3221 WARN_ON(bp
->dropless_fc
&&
3222 pause
->rcq_th_hi
+ FW_PREFETCH_CNT
>
3223 NUM_RCQ_RINGS
* MAX_RCQ_DESC_CNT
);
3229 rxq_init
->dscr_map
= fp
->rx_desc_mapping
;
3230 rxq_init
->sge_map
= fp
->rx_sge_mapping
;
3231 rxq_init
->rcq_map
= fp
->rx_comp_mapping
;
3232 rxq_init
->rcq_np_map
= fp
->rx_comp_mapping
+ BCM_PAGE_SIZE
;
3234 /* This should be a maximum number of data bytes that may be
3235 * placed on the BD (not including paddings).
3237 rxq_init
->buf_sz
= fp
->rx_buf_size
- BNX2X_FW_RX_ALIGN_START
-
3238 BNX2X_FW_RX_ALIGN_END
- IP_HEADER_ALIGNMENT_PADDING
;
3240 rxq_init
->cl_qzone_id
= fp
->cl_qzone_id
;
3241 rxq_init
->tpa_agg_sz
= tpa_agg_size
;
3242 rxq_init
->sge_buf_sz
= sge_sz
;
3243 rxq_init
->max_sges_pkt
= max_sge
;
3244 rxq_init
->rss_engine_id
= BP_FUNC(bp
);
3245 rxq_init
->mcast_engine_id
= BP_FUNC(bp
);
3247 /* Maximum number or simultaneous TPA aggregation for this Queue.
3249 * For PF Clients it should be the maximum available number.
3250 * VF driver(s) may want to define it to a smaller value.
3252 rxq_init
->max_tpa_queues
= MAX_AGG_QS(bp
);
3254 rxq_init
->cache_line_log
= BNX2X_RX_ALIGN_SHIFT
;
3255 rxq_init
->fw_sb_id
= fp
->fw_sb_id
;
3258 rxq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS
;
3260 rxq_init
->sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
3261 /* configure silent vlan removal
3262 * if multi function mode is afex, then mask default vlan
3264 if (IS_MF_AFEX(bp
)) {
3265 rxq_init
->silent_removal_value
= bp
->afex_def_vlan_tag
;
3266 rxq_init
->silent_removal_mask
= VLAN_VID_MASK
;
3270 static void bnx2x_pf_tx_q_prep(struct bnx2x
*bp
,
3271 struct bnx2x_fastpath
*fp
, struct bnx2x_txq_setup_params
*txq_init
,
3274 txq_init
->dscr_map
= fp
->txdata_ptr
[cos
]->tx_desc_mapping
;
3275 txq_init
->sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
+ cos
;
3276 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_NW
;
3277 txq_init
->fw_sb_id
= fp
->fw_sb_id
;
3280 * set the tss leading client id for TX classification ==
3281 * leading RSS client id
3283 txq_init
->tss_leading_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
3285 if (IS_FCOE_FP(fp
)) {
3286 txq_init
->sb_cq_index
= HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS
;
3287 txq_init
->traffic_type
= LLFC_TRAFFIC_TYPE_FCOE
;
3291 static void bnx2x_pf_init(struct bnx2x
*bp
)
3293 struct bnx2x_func_init_params func_init
= {0};
3294 struct event_ring_data eq_data
= { {0} };
3296 if (!CHIP_IS_E1x(bp
)) {
3297 /* reset IGU PF statistics: MSIX + ATTN */
3299 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
3300 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
3301 (CHIP_MODE_IS_4_PORT(bp
) ?
3302 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
3304 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+
3305 BNX2X_IGU_STAS_MSG_VF_CNT
*4 +
3306 BNX2X_IGU_STAS_MSG_PF_CNT
*4 +
3307 (CHIP_MODE_IS_4_PORT(bp
) ?
3308 BP_FUNC(bp
) : BP_VN(bp
))*4, 0);
3311 func_init
.spq_active
= true;
3312 func_init
.pf_id
= BP_FUNC(bp
);
3313 func_init
.func_id
= BP_FUNC(bp
);
3314 func_init
.spq_map
= bp
->spq_mapping
;
3315 func_init
.spq_prod
= bp
->spq_prod_idx
;
3317 bnx2x_func_init(bp
, &func_init
);
3319 memset(&(bp
->cmng
), 0, sizeof(struct cmng_struct_per_port
));
3322 * Congestion management values depend on the link rate
3323 * There is no active link so initial link rate is set to 10 Gbps.
3324 * When the link comes up The congestion management values are
3325 * re-calculated according to the actual link rate.
3327 bp
->link_vars
.line_speed
= SPEED_10000
;
3328 bnx2x_cmng_fns_init(bp
, true, bnx2x_get_cmng_fns_mode(bp
));
3330 /* Only the PMF sets the HW */
3332 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
3334 /* init Event Queue - PCI bus guarantees correct endianity*/
3335 eq_data
.base_addr
.hi
= U64_HI(bp
->eq_mapping
);
3336 eq_data
.base_addr
.lo
= U64_LO(bp
->eq_mapping
);
3337 eq_data
.producer
= bp
->eq_prod
;
3338 eq_data
.index_id
= HC_SP_INDEX_EQ_CONS
;
3339 eq_data
.sb_id
= DEF_SB_ID
;
3340 storm_memset_eq_data(bp
, &eq_data
, BP_FUNC(bp
));
3343 static void bnx2x_e1h_disable(struct bnx2x
*bp
)
3345 int port
= BP_PORT(bp
);
3347 bnx2x_tx_disable(bp
);
3349 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
3352 static void bnx2x_e1h_enable(struct bnx2x
*bp
)
3354 int port
= BP_PORT(bp
);
3356 if (!(IS_MF_UFP(bp
) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp
)))
3357 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
* 8, 1);
3359 /* Tx queue should be only re-enabled */
3360 netif_tx_wake_all_queues(bp
->dev
);
3363 * Should not call netif_carrier_on since it will be called if the link
3364 * is up when checking for link state
3368 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3370 static void bnx2x_drv_info_ether_stat(struct bnx2x
*bp
)
3372 struct eth_stats_info
*ether_stat
=
3373 &bp
->slowpath
->drv_info_to_mcp
.ether_stat
;
3374 struct bnx2x_vlan_mac_obj
*mac_obj
=
3375 &bp
->sp_objs
->mac_obj
;
3378 strlcpy(ether_stat
->version
, DRV_MODULE_VERSION
,
3379 ETH_STAT_INFO_VERSION_LEN
);
3381 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3382 * mac_local field in ether_stat struct. The base address is offset by 2
3383 * bytes to account for the field being 8 bytes but a mac address is
3384 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3385 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3386 * allocated by the ether_stat struct, so the macs will land in their
3389 for (i
= 0; i
< DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED
; i
++)
3390 memset(ether_stat
->mac_local
+ i
, 0,
3391 sizeof(ether_stat
->mac_local
[0]));
3392 mac_obj
->get_n_elements(bp
, &bp
->sp_objs
[0].mac_obj
,
3393 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED
,
3394 ether_stat
->mac_local
+ MAC_PAD
, MAC_PAD
,
3396 ether_stat
->mtu_size
= bp
->dev
->mtu
;
3397 if (bp
->dev
->features
& NETIF_F_RXCSUM
)
3398 ether_stat
->feature_flags
|= FEATURE_ETH_CHKSUM_OFFLOAD_MASK
;
3399 if (bp
->dev
->features
& NETIF_F_TSO
)
3400 ether_stat
->feature_flags
|= FEATURE_ETH_LSO_MASK
;
3401 ether_stat
->feature_flags
|= bp
->common
.boot_mode
;
3403 ether_stat
->promiscuous_mode
= (bp
->dev
->flags
& IFF_PROMISC
) ? 1 : 0;
3405 ether_stat
->txq_size
= bp
->tx_ring_size
;
3406 ether_stat
->rxq_size
= bp
->rx_ring_size
;
3408 #ifdef CONFIG_BNX2X_SRIOV
3409 ether_stat
->vf_cnt
= IS_SRIOV(bp
) ? bp
->vfdb
->sriov
.nr_virtfn
: 0;
3413 static void bnx2x_drv_info_fcoe_stat(struct bnx2x
*bp
)
3415 struct bnx2x_dcbx_app_params
*app
= &bp
->dcbx_port_params
.app
;
3416 struct fcoe_stats_info
*fcoe_stat
=
3417 &bp
->slowpath
->drv_info_to_mcp
.fcoe_stat
;
3419 if (!CNIC_LOADED(bp
))
3422 memcpy(fcoe_stat
->mac_local
+ MAC_PAD
, bp
->fip_mac
, ETH_ALEN
);
3424 fcoe_stat
->qos_priority
=
3425 app
->traffic_type_priority
[LLFC_TRAFFIC_TYPE_FCOE
];
3427 /* insert FCoE stats from ramrod response */
3429 struct tstorm_per_queue_stats
*fcoe_q_tstorm_stats
=
3430 &bp
->fw_stats_data
->queue_stats
[FCOE_IDX(bp
)].
3431 tstorm_queue_statistics
;
3433 struct xstorm_per_queue_stats
*fcoe_q_xstorm_stats
=
3434 &bp
->fw_stats_data
->queue_stats
[FCOE_IDX(bp
)].
3435 xstorm_queue_statistics
;
3437 struct fcoe_statistics_params
*fw_fcoe_stat
=
3438 &bp
->fw_stats_data
->fcoe
;
3440 ADD_64_LE(fcoe_stat
->rx_bytes_hi
, LE32_0
,
3441 fcoe_stat
->rx_bytes_lo
,
3442 fw_fcoe_stat
->rx_stat0
.fcoe_rx_byte_cnt
);
3444 ADD_64_LE(fcoe_stat
->rx_bytes_hi
,
3445 fcoe_q_tstorm_stats
->rcv_ucast_bytes
.hi
,
3446 fcoe_stat
->rx_bytes_lo
,
3447 fcoe_q_tstorm_stats
->rcv_ucast_bytes
.lo
);
3449 ADD_64_LE(fcoe_stat
->rx_bytes_hi
,
3450 fcoe_q_tstorm_stats
->rcv_bcast_bytes
.hi
,
3451 fcoe_stat
->rx_bytes_lo
,
3452 fcoe_q_tstorm_stats
->rcv_bcast_bytes
.lo
);
3454 ADD_64_LE(fcoe_stat
->rx_bytes_hi
,
3455 fcoe_q_tstorm_stats
->rcv_mcast_bytes
.hi
,
3456 fcoe_stat
->rx_bytes_lo
,
3457 fcoe_q_tstorm_stats
->rcv_mcast_bytes
.lo
);
3459 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3460 fcoe_stat
->rx_frames_lo
,
3461 fw_fcoe_stat
->rx_stat0
.fcoe_rx_pkt_cnt
);
3463 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3464 fcoe_stat
->rx_frames_lo
,
3465 fcoe_q_tstorm_stats
->rcv_ucast_pkts
);
3467 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3468 fcoe_stat
->rx_frames_lo
,
3469 fcoe_q_tstorm_stats
->rcv_bcast_pkts
);
3471 ADD_64_LE(fcoe_stat
->rx_frames_hi
, LE32_0
,
3472 fcoe_stat
->rx_frames_lo
,
3473 fcoe_q_tstorm_stats
->rcv_mcast_pkts
);
3475 ADD_64_LE(fcoe_stat
->tx_bytes_hi
, LE32_0
,
3476 fcoe_stat
->tx_bytes_lo
,
3477 fw_fcoe_stat
->tx_stat
.fcoe_tx_byte_cnt
);
3479 ADD_64_LE(fcoe_stat
->tx_bytes_hi
,
3480 fcoe_q_xstorm_stats
->ucast_bytes_sent
.hi
,
3481 fcoe_stat
->tx_bytes_lo
,
3482 fcoe_q_xstorm_stats
->ucast_bytes_sent
.lo
);
3484 ADD_64_LE(fcoe_stat
->tx_bytes_hi
,
3485 fcoe_q_xstorm_stats
->bcast_bytes_sent
.hi
,
3486 fcoe_stat
->tx_bytes_lo
,
3487 fcoe_q_xstorm_stats
->bcast_bytes_sent
.lo
);
3489 ADD_64_LE(fcoe_stat
->tx_bytes_hi
,
3490 fcoe_q_xstorm_stats
->mcast_bytes_sent
.hi
,
3491 fcoe_stat
->tx_bytes_lo
,
3492 fcoe_q_xstorm_stats
->mcast_bytes_sent
.lo
);
3494 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3495 fcoe_stat
->tx_frames_lo
,
3496 fw_fcoe_stat
->tx_stat
.fcoe_tx_pkt_cnt
);
3498 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3499 fcoe_stat
->tx_frames_lo
,
3500 fcoe_q_xstorm_stats
->ucast_pkts_sent
);
3502 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3503 fcoe_stat
->tx_frames_lo
,
3504 fcoe_q_xstorm_stats
->bcast_pkts_sent
);
3506 ADD_64_LE(fcoe_stat
->tx_frames_hi
, LE32_0
,
3507 fcoe_stat
->tx_frames_lo
,
3508 fcoe_q_xstorm_stats
->mcast_pkts_sent
);
3511 /* ask L5 driver to add data to the struct */
3512 bnx2x_cnic_notify(bp
, CNIC_CTL_FCOE_STATS_GET_CMD
);
3515 static void bnx2x_drv_info_iscsi_stat(struct bnx2x
*bp
)
3517 struct bnx2x_dcbx_app_params
*app
= &bp
->dcbx_port_params
.app
;
3518 struct iscsi_stats_info
*iscsi_stat
=
3519 &bp
->slowpath
->drv_info_to_mcp
.iscsi_stat
;
3521 if (!CNIC_LOADED(bp
))
3524 memcpy(iscsi_stat
->mac_local
+ MAC_PAD
, bp
->cnic_eth_dev
.iscsi_mac
,
3527 iscsi_stat
->qos_priority
=
3528 app
->traffic_type_priority
[LLFC_TRAFFIC_TYPE_ISCSI
];
3530 /* ask L5 driver to add data to the struct */
3531 bnx2x_cnic_notify(bp
, CNIC_CTL_ISCSI_STATS_GET_CMD
);
3534 /* called due to MCP event (on pmf):
3535 * reread new bandwidth configuration
3537 * notify others function about the change
3539 static void bnx2x_config_mf_bw(struct bnx2x
*bp
)
3541 /* Workaround for MFW bug.
3542 * MFW is not supposed to generate BW attention in
3543 * single function mode.
3547 "Ignoring MF BW config in single function mode\n");
3551 if (bp
->link_vars
.link_up
) {
3552 bnx2x_cmng_fns_init(bp
, true, CMNG_FNS_MINMAX
);
3553 bnx2x_link_sync_notify(bp
);
3555 storm_memset_cmng(bp
, &bp
->cmng
, BP_PORT(bp
));
3558 static void bnx2x_set_mf_bw(struct bnx2x
*bp
)
3560 bnx2x_config_mf_bw(bp
);
3561 bnx2x_fw_command(bp
, DRV_MSG_CODE_SET_MF_BW_ACK
, 0);
3564 static void bnx2x_handle_eee_event(struct bnx2x
*bp
)
3566 DP(BNX2X_MSG_MCP
, "EEE - LLDP event\n");
3567 bnx2x_fw_command(bp
, DRV_MSG_CODE_EEE_RESULTS_ACK
, 0);
3570 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3571 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3573 static void bnx2x_handle_drv_info_req(struct bnx2x
*bp
)
3575 enum drv_info_opcode op_code
;
3576 u32 drv_info_ctl
= SHMEM2_RD(bp
, drv_info_control
);
3577 bool release
= false;
3580 /* if drv_info version supported by MFW doesn't match - send NACK */
3581 if ((drv_info_ctl
& DRV_INFO_CONTROL_VER_MASK
) != DRV_INFO_CUR_VER
) {
3582 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_NACK
, 0);
3586 op_code
= (drv_info_ctl
& DRV_INFO_CONTROL_OP_CODE_MASK
) >>
3587 DRV_INFO_CONTROL_OP_CODE_SHIFT
;
3589 /* Must prevent other flows from accessing drv_info_to_mcp */
3590 mutex_lock(&bp
->drv_info_mutex
);
3592 memset(&bp
->slowpath
->drv_info_to_mcp
, 0,
3593 sizeof(union drv_info_to_mcp
));
3596 case ETH_STATS_OPCODE
:
3597 bnx2x_drv_info_ether_stat(bp
);
3599 case FCOE_STATS_OPCODE
:
3600 bnx2x_drv_info_fcoe_stat(bp
);
3602 case ISCSI_STATS_OPCODE
:
3603 bnx2x_drv_info_iscsi_stat(bp
);
3606 /* if op code isn't supported - send NACK */
3607 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_NACK
, 0);
3611 /* if we got drv_info attn from MFW then these fields are defined in
3614 SHMEM2_WR(bp
, drv_info_host_addr_lo
,
3615 U64_LO(bnx2x_sp_mapping(bp
, drv_info_to_mcp
)));
3616 SHMEM2_WR(bp
, drv_info_host_addr_hi
,
3617 U64_HI(bnx2x_sp_mapping(bp
, drv_info_to_mcp
)));
3619 bnx2x_fw_command(bp
, DRV_MSG_CODE_DRV_INFO_ACK
, 0);
3621 /* Since possible management wants both this and get_driver_version
3622 * need to wait until management notifies us it finished utilizing
3625 if (!SHMEM2_HAS(bp
, mfw_drv_indication
)) {
3626 DP(BNX2X_MSG_MCP
, "Management does not support indication\n");
3627 } else if (!bp
->drv_info_mng_owner
) {
3628 u32 bit
= MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp
) >> 1));
3630 for (wait
= 0; wait
< BNX2X_UPDATE_DRV_INFO_IND_COUNT
; wait
++) {
3631 u32 indication
= SHMEM2_RD(bp
, mfw_drv_indication
);
3633 /* Management is done; need to clear indication */
3634 if (indication
& bit
) {
3635 SHMEM2_WR(bp
, mfw_drv_indication
,
3641 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH
);
3645 DP(BNX2X_MSG_MCP
, "Management did not release indication\n");
3646 bp
->drv_info_mng_owner
= true;
3650 mutex_unlock(&bp
->drv_info_mutex
);
3653 static u32
bnx2x_update_mng_version_utility(u8
*version
, bool bnx2x_format
)
3659 i
= sscanf(version
, "1.%c%hhd.%hhd.%hhd",
3660 &vals
[0], &vals
[1], &vals
[2], &vals
[3]);
3664 i
= sscanf(version
, "%hhd.%hhd.%hhd.%hhd",
3665 &vals
[0], &vals
[1], &vals
[2], &vals
[3]);
3671 return (vals
[0] << 24) | (vals
[1] << 16) | (vals
[2] << 8) | vals
[3];
3674 void bnx2x_update_mng_version(struct bnx2x
*bp
)
3676 u32 iscsiver
= DRV_VER_NOT_LOADED
;
3677 u32 fcoever
= DRV_VER_NOT_LOADED
;
3678 u32 ethver
= DRV_VER_NOT_LOADED
;
3679 int idx
= BP_FW_MB_IDX(bp
);
3682 if (!SHMEM2_HAS(bp
, func_os_drv_ver
))
3685 mutex_lock(&bp
->drv_info_mutex
);
3686 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3687 if (bp
->drv_info_mng_owner
)
3690 if (bp
->state
!= BNX2X_STATE_OPEN
)
3693 /* Parse ethernet driver version */
3694 ethver
= bnx2x_update_mng_version_utility(DRV_MODULE_VERSION
, true);
3695 if (!CNIC_LOADED(bp
))
3698 /* Try getting storage driver version via cnic */
3699 memset(&bp
->slowpath
->drv_info_to_mcp
, 0,
3700 sizeof(union drv_info_to_mcp
));
3701 bnx2x_drv_info_iscsi_stat(bp
);
3702 version
= bp
->slowpath
->drv_info_to_mcp
.iscsi_stat
.version
;
3703 iscsiver
= bnx2x_update_mng_version_utility(version
, false);
3705 memset(&bp
->slowpath
->drv_info_to_mcp
, 0,
3706 sizeof(union drv_info_to_mcp
));
3707 bnx2x_drv_info_fcoe_stat(bp
);
3708 version
= bp
->slowpath
->drv_info_to_mcp
.fcoe_stat
.version
;
3709 fcoever
= bnx2x_update_mng_version_utility(version
, false);
3712 SHMEM2_WR(bp
, func_os_drv_ver
[idx
].versions
[DRV_PERS_ETHERNET
], ethver
);
3713 SHMEM2_WR(bp
, func_os_drv_ver
[idx
].versions
[DRV_PERS_ISCSI
], iscsiver
);
3714 SHMEM2_WR(bp
, func_os_drv_ver
[idx
].versions
[DRV_PERS_FCOE
], fcoever
);
3716 mutex_unlock(&bp
->drv_info_mutex
);
3718 DP(BNX2X_MSG_MCP
, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3719 ethver
, iscsiver
, fcoever
);
3722 void bnx2x_update_mfw_dump(struct bnx2x
*bp
)
3727 if (!SHMEM2_HAS(bp
, drv_info
))
3730 /* Update Driver load time, possibly broken in y2038 */
3731 SHMEM2_WR(bp
, drv_info
.epoc
, (u32
)ktime_get_real_seconds());
3733 drv_ver
= bnx2x_update_mng_version_utility(DRV_MODULE_VERSION
, true);
3734 SHMEM2_WR(bp
, drv_info
.drv_ver
, drv_ver
);
3736 SHMEM2_WR(bp
, drv_info
.fw_ver
, REG_RD(bp
, XSEM_REG_PRAM
));
3738 /* Check & notify On-Chip dump. */
3739 valid_dump
= SHMEM2_RD(bp
, drv_info
.valid_dump
);
3741 if (valid_dump
& FIRST_DUMP_VALID
)
3742 DP(NETIF_MSG_IFUP
, "A valid On-Chip MFW dump found on 1st partition\n");
3744 if (valid_dump
& SECOND_DUMP_VALID
)
3745 DP(NETIF_MSG_IFUP
, "A valid On-Chip MFW dump found on 2nd partition\n");
3748 static void bnx2x_oem_event(struct bnx2x
*bp
, u32 event
)
3750 u32 cmd_ok
, cmd_fail
;
3753 if (event
& DRV_STATUS_DCC_EVENT_MASK
&&
3754 event
& DRV_STATUS_OEM_EVENT_MASK
) {
3755 BNX2X_ERR("Received simultaneous events %08x\n", event
);
3759 if (event
& DRV_STATUS_DCC_EVENT_MASK
) {
3760 cmd_fail
= DRV_MSG_CODE_DCC_FAILURE
;
3761 cmd_ok
= DRV_MSG_CODE_DCC_OK
;
3762 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3763 cmd_fail
= DRV_MSG_CODE_OEM_FAILURE
;
3764 cmd_ok
= DRV_MSG_CODE_OEM_OK
;
3767 DP(BNX2X_MSG_MCP
, "oem_event 0x%x\n", event
);
3769 if (event
& (DRV_STATUS_DCC_DISABLE_ENABLE_PF
|
3770 DRV_STATUS_OEM_DISABLE_ENABLE_PF
)) {
3771 /* This is the only place besides the function initialization
3772 * where the bp->flags can change so it is done without any
3775 if (bp
->mf_config
[BP_VN(bp
)] & FUNC_MF_CFG_FUNC_DISABLED
) {
3776 DP(BNX2X_MSG_MCP
, "mf_cfg function disabled\n");
3777 bp
->flags
|= MF_FUNC_DIS
;
3779 bnx2x_e1h_disable(bp
);
3781 DP(BNX2X_MSG_MCP
, "mf_cfg function enabled\n");
3782 bp
->flags
&= ~MF_FUNC_DIS
;
3784 bnx2x_e1h_enable(bp
);
3786 event
&= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF
|
3787 DRV_STATUS_OEM_DISABLE_ENABLE_PF
);
3790 if (event
& (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
|
3791 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION
)) {
3792 bnx2x_config_mf_bw(bp
);
3793 event
&= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION
|
3794 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION
);
3797 /* Report results to MCP */
3799 bnx2x_fw_command(bp
, cmd_fail
, 0);
3801 bnx2x_fw_command(bp
, cmd_ok
, 0);
3804 /* must be called under the spq lock */
3805 static struct eth_spe
*bnx2x_sp_get_next(struct bnx2x
*bp
)
3807 struct eth_spe
*next_spe
= bp
->spq_prod_bd
;
3809 if (bp
->spq_prod_bd
== bp
->spq_last_bd
) {
3810 bp
->spq_prod_bd
= bp
->spq
;
3811 bp
->spq_prod_idx
= 0;
3812 DP(BNX2X_MSG_SP
, "end of spq\n");
3820 /* must be called under the spq lock */
3821 static void bnx2x_sp_prod_update(struct bnx2x
*bp
)
3823 int func
= BP_FUNC(bp
);
3826 * Make sure that BD data is updated before writing the producer:
3827 * BD data is written to the memory, the producer is read from the
3828 * memory, thus we need a full memory barrier to ensure the ordering.
3832 REG_WR16_RELAXED(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_PROD_OFFSET(func
),
3837 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3839 * @cmd: command to check
3840 * @cmd_type: command type
3842 static bool bnx2x_is_contextless_ramrod(int cmd
, int cmd_type
)
3844 if ((cmd_type
== NONE_CONNECTION_TYPE
) ||
3845 (cmd
== RAMROD_CMD_ID_ETH_FORWARD_SETUP
) ||
3846 (cmd
== RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
) ||
3847 (cmd
== RAMROD_CMD_ID_ETH_FILTER_RULES
) ||
3848 (cmd
== RAMROD_CMD_ID_ETH_MULTICAST_RULES
) ||
3849 (cmd
== RAMROD_CMD_ID_ETH_SET_MAC
) ||
3850 (cmd
== RAMROD_CMD_ID_ETH_RSS_UPDATE
))
3857 * bnx2x_sp_post - place a single command on an SP ring
3859 * @bp: driver handle
3860 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3861 * @cid: SW CID the command is related to
3862 * @data_hi: command private data address (high 32 bits)
3863 * @data_lo: command private data address (low 32 bits)
3864 * @cmd_type: command type (e.g. NONE, ETH)
3866 * SP data is handled as if it's always an address pair, thus data fields are
3867 * not swapped to little endian in upper functions. Instead this function swaps
3868 * data as if it's two u32 fields.
3870 int bnx2x_sp_post(struct bnx2x
*bp
, int command
, int cid
,
3871 u32 data_hi
, u32 data_lo
, int cmd_type
)
3873 struct eth_spe
*spe
;
3875 bool common
= bnx2x_is_contextless_ramrod(command
, cmd_type
);
3877 #ifdef BNX2X_STOP_ON_ERROR
3878 if (unlikely(bp
->panic
)) {
3879 BNX2X_ERR("Can't post SP when there is panic\n");
3884 spin_lock_bh(&bp
->spq_lock
);
3887 if (!atomic_read(&bp
->eq_spq_left
)) {
3888 BNX2X_ERR("BUG! EQ ring full!\n");
3889 spin_unlock_bh(&bp
->spq_lock
);
3893 } else if (!atomic_read(&bp
->cq_spq_left
)) {
3894 BNX2X_ERR("BUG! SPQ ring full!\n");
3895 spin_unlock_bh(&bp
->spq_lock
);
3900 spe
= bnx2x_sp_get_next(bp
);
3902 /* CID needs port number to be encoded int it */
3903 spe
->hdr
.conn_and_cmd_data
=
3904 cpu_to_le32((command
<< SPE_HDR_CMD_ID_SHIFT
) |
3907 /* In some cases, type may already contain the func-id
3908 * mainly in SRIOV related use cases, so we add it here only
3909 * if it's not already set.
3911 if (!(cmd_type
& SPE_HDR_FUNCTION_ID
)) {
3912 type
= (cmd_type
<< SPE_HDR_CONN_TYPE_SHIFT
) &
3914 type
|= ((BP_FUNC(bp
) << SPE_HDR_FUNCTION_ID_SHIFT
) &
3915 SPE_HDR_FUNCTION_ID
);
3920 spe
->hdr
.type
= cpu_to_le16(type
);
3922 spe
->data
.update_data_addr
.hi
= cpu_to_le32(data_hi
);
3923 spe
->data
.update_data_addr
.lo
= cpu_to_le32(data_lo
);
3926 * It's ok if the actual decrement is issued towards the memory
3927 * somewhere between the spin_lock and spin_unlock. Thus no
3928 * more explicit memory barrier is needed.
3931 atomic_dec(&bp
->eq_spq_left
);
3933 atomic_dec(&bp
->cq_spq_left
);
3936 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3937 bp
->spq_prod_idx
, (u32
)U64_HI(bp
->spq_mapping
),
3938 (u32
)(U64_LO(bp
->spq_mapping
) +
3939 (void *)bp
->spq_prod_bd
- (void *)bp
->spq
), command
, common
,
3940 HW_CID(bp
, cid
), data_hi
, data_lo
, type
,
3941 atomic_read(&bp
->cq_spq_left
), atomic_read(&bp
->eq_spq_left
));
3943 bnx2x_sp_prod_update(bp
);
3944 spin_unlock_bh(&bp
->spq_lock
);
3948 /* acquire split MCP access lock register */
3949 static int bnx2x_acquire_alr(struct bnx2x
*bp
)
3955 for (j
= 0; j
< 1000; j
++) {
3956 REG_WR(bp
, MCP_REG_MCPR_ACCESS_LOCK
, MCPR_ACCESS_LOCK_LOCK
);
3957 val
= REG_RD(bp
, MCP_REG_MCPR_ACCESS_LOCK
);
3958 if (val
& MCPR_ACCESS_LOCK_LOCK
)
3961 usleep_range(5000, 10000);
3963 if (!(val
& MCPR_ACCESS_LOCK_LOCK
)) {
3964 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3971 /* release split MCP access lock register */
3972 static void bnx2x_release_alr(struct bnx2x
*bp
)
3974 REG_WR(bp
, MCP_REG_MCPR_ACCESS_LOCK
, 0);
3977 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3978 #define BNX2X_DEF_SB_IDX 0x0002
3980 static u16
bnx2x_update_dsb_idx(struct bnx2x
*bp
)
3982 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
3985 barrier(); /* status block is written to by the chip */
3986 if (bp
->def_att_idx
!= def_sb
->atten_status_block
.attn_bits_index
) {
3987 bp
->def_att_idx
= def_sb
->atten_status_block
.attn_bits_index
;
3988 rc
|= BNX2X_DEF_SB_ATT_IDX
;
3991 if (bp
->def_idx
!= def_sb
->sp_sb
.running_index
) {
3992 bp
->def_idx
= def_sb
->sp_sb
.running_index
;
3993 rc
|= BNX2X_DEF_SB_IDX
;
3996 /* Do not reorder: indices reading should complete before handling */
4002 * slow path service functions
4005 static void bnx2x_attn_int_asserted(struct bnx2x
*bp
, u32 asserted
)
4007 int port
= BP_PORT(bp
);
4008 u32 aeu_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
4009 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
4010 u32 nig_int_mask_addr
= port
? NIG_REG_MASK_INTERRUPT_PORT1
:
4011 NIG_REG_MASK_INTERRUPT_PORT0
;
4016 if (bp
->attn_state
& asserted
)
4017 BNX2X_ERR("IGU ERROR\n");
4019 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4020 aeu_mask
= REG_RD(bp
, aeu_addr
);
4022 DP(NETIF_MSG_HW
, "aeu_mask %x newly asserted %x\n",
4023 aeu_mask
, asserted
);
4024 aeu_mask
&= ~(asserted
& 0x3ff);
4025 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
4027 REG_WR(bp
, aeu_addr
, aeu_mask
);
4028 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
4030 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
4031 bp
->attn_state
|= asserted
;
4032 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
4034 if (asserted
& ATTN_HARD_WIRED_MASK
) {
4035 if (asserted
& ATTN_NIG_FOR_FUNC
) {
4037 bnx2x_acquire_phy_lock(bp
);
4039 /* save nig interrupt mask */
4040 nig_mask
= REG_RD(bp
, nig_int_mask_addr
);
4042 /* If nig_mask is not set, no need to call the update
4046 REG_WR(bp
, nig_int_mask_addr
, 0);
4048 bnx2x_link_attn(bp
);
4051 /* handle unicore attn? */
4053 if (asserted
& ATTN_SW_TIMER_4_FUNC
)
4054 DP(NETIF_MSG_HW
, "ATTN_SW_TIMER_4_FUNC!\n");
4056 if (asserted
& GPIO_2_FUNC
)
4057 DP(NETIF_MSG_HW
, "GPIO_2_FUNC!\n");
4059 if (asserted
& GPIO_3_FUNC
)
4060 DP(NETIF_MSG_HW
, "GPIO_3_FUNC!\n");
4062 if (asserted
& GPIO_4_FUNC
)
4063 DP(NETIF_MSG_HW
, "GPIO_4_FUNC!\n");
4066 if (asserted
& ATTN_GENERAL_ATTN_1
) {
4067 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_1!\n");
4068 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_1
, 0x0);
4070 if (asserted
& ATTN_GENERAL_ATTN_2
) {
4071 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_2!\n");
4072 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_2
, 0x0);
4074 if (asserted
& ATTN_GENERAL_ATTN_3
) {
4075 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_3!\n");
4076 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_3
, 0x0);
4079 if (asserted
& ATTN_GENERAL_ATTN_4
) {
4080 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_4!\n");
4081 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_4
, 0x0);
4083 if (asserted
& ATTN_GENERAL_ATTN_5
) {
4084 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_5!\n");
4085 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_5
, 0x0);
4087 if (asserted
& ATTN_GENERAL_ATTN_6
) {
4088 DP(NETIF_MSG_HW
, "ATTN_GENERAL_ATTN_6!\n");
4089 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_6
, 0x0);
4093 } /* if hardwired */
4095 if (bp
->common
.int_block
== INT_BLOCK_HC
)
4096 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
4097 COMMAND_REG_ATTN_BITS_SET
);
4099 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_SET_UPPER
*8);
4101 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", asserted
,
4102 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
4103 REG_WR(bp
, reg_addr
, asserted
);
4105 /* now set back the mask */
4106 if (asserted
& ATTN_NIG_FOR_FUNC
) {
4107 /* Verify that IGU ack through BAR was written before restoring
4108 * NIG mask. This loop should exit after 2-3 iterations max.
4110 if (bp
->common
.int_block
!= INT_BLOCK_HC
) {
4111 u32 cnt
= 0, igu_acked
;
4113 igu_acked
= REG_RD(bp
,
4114 IGU_REG_ATTENTION_ACK_BITS
);
4115 } while (((igu_acked
& ATTN_NIG_FOR_FUNC
) == 0) &&
4116 (++cnt
< MAX_IGU_ATTN_ACK_TO
));
4119 "Failed to verify IGU ack on time\n");
4122 REG_WR(bp
, nig_int_mask_addr
, nig_mask
);
4123 bnx2x_release_phy_lock(bp
);
4127 static void bnx2x_fan_failure(struct bnx2x
*bp
)
4129 int port
= BP_PORT(bp
);
4131 /* mark the failure */
4134 dev_info
.port_hw_config
[port
].external_phy_config
);
4136 ext_phy_config
&= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK
;
4137 ext_phy_config
|= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
;
4138 SHMEM_WR(bp
, dev_info
.port_hw_config
[port
].external_phy_config
,
4141 /* log the failure */
4142 netdev_err(bp
->dev
, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4143 "Please contact OEM Support for assistance\n");
4145 /* Schedule device reset (unload)
4146 * This is due to some boards consuming sufficient power when driver is
4147 * up to overheat if fan fails.
4149 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_FAN_FAILURE
, 0);
4152 static void bnx2x_attn_int_deasserted0(struct bnx2x
*bp
, u32 attn
)
4154 int port
= BP_PORT(bp
);
4158 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
4159 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
4161 if (attn
& AEU_INPUTS_ATTN_BITS_SPIO5
) {
4163 val
= REG_RD(bp
, reg_offset
);
4164 val
&= ~AEU_INPUTS_ATTN_BITS_SPIO5
;
4165 REG_WR(bp
, reg_offset
, val
);
4167 BNX2X_ERR("SPIO5 hw attention\n");
4169 /* Fan failure attention */
4170 bnx2x_hw_reset_phy(&bp
->link_params
);
4171 bnx2x_fan_failure(bp
);
4174 if ((attn
& bp
->link_vars
.aeu_int_mask
) && bp
->port
.pmf
) {
4175 bnx2x_acquire_phy_lock(bp
);
4176 bnx2x_handle_module_detect_int(&bp
->link_params
);
4177 bnx2x_release_phy_lock(bp
);
4180 if (attn
& HW_INTERRUPT_ASSERT_SET_0
) {
4182 val
= REG_RD(bp
, reg_offset
);
4183 val
&= ~(attn
& HW_INTERRUPT_ASSERT_SET_0
);
4184 REG_WR(bp
, reg_offset
, val
);
4186 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4187 (u32
)(attn
& HW_INTERRUPT_ASSERT_SET_0
));
4192 static void bnx2x_attn_int_deasserted1(struct bnx2x
*bp
, u32 attn
)
4196 if (attn
& AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT
) {
4198 val
= REG_RD(bp
, DORQ_REG_DORQ_INT_STS_CLR
);
4199 BNX2X_ERR("DB hw attention 0x%x\n", val
);
4200 /* DORQ discard attention */
4202 BNX2X_ERR("FATAL error from DORQ\n");
4205 if (attn
& HW_INTERRUPT_ASSERT_SET_1
) {
4207 int port
= BP_PORT(bp
);
4210 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1
:
4211 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1
);
4213 val
= REG_RD(bp
, reg_offset
);
4214 val
&= ~(attn
& HW_INTERRUPT_ASSERT_SET_1
);
4215 REG_WR(bp
, reg_offset
, val
);
4217 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4218 (u32
)(attn
& HW_INTERRUPT_ASSERT_SET_1
));
4223 static void bnx2x_attn_int_deasserted2(struct bnx2x
*bp
, u32 attn
)
4227 if (attn
& AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT
) {
4229 val
= REG_RD(bp
, CFC_REG_CFC_INT_STS_CLR
);
4230 BNX2X_ERR("CFC hw attention 0x%x\n", val
);
4231 /* CFC error attention */
4233 BNX2X_ERR("FATAL error from CFC\n");
4236 if (attn
& AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT
) {
4237 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_0
);
4238 BNX2X_ERR("PXP hw attention-0 0x%x\n", val
);
4239 /* RQ_USDMDP_FIFO_OVERFLOW */
4241 BNX2X_ERR("FATAL error from PXP\n");
4243 if (!CHIP_IS_E1x(bp
)) {
4244 val
= REG_RD(bp
, PXP_REG_PXP_INT_STS_CLR_1
);
4245 BNX2X_ERR("PXP hw attention-1 0x%x\n", val
);
4249 if (attn
& HW_INTERRUPT_ASSERT_SET_2
) {
4251 int port
= BP_PORT(bp
);
4254 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2
:
4255 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2
);
4257 val
= REG_RD(bp
, reg_offset
);
4258 val
&= ~(attn
& HW_INTERRUPT_ASSERT_SET_2
);
4259 REG_WR(bp
, reg_offset
, val
);
4261 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4262 (u32
)(attn
& HW_INTERRUPT_ASSERT_SET_2
));
4267 static void bnx2x_attn_int_deasserted3(struct bnx2x
*bp
, u32 attn
)
4271 if (attn
& EVEREST_GEN_ATTN_IN_USE_MASK
) {
4273 if (attn
& BNX2X_PMF_LINK_ASSERT
) {
4274 int func
= BP_FUNC(bp
);
4276 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
4277 bnx2x_read_mf_cfg(bp
);
4278 bp
->mf_config
[BP_VN(bp
)] = MF_CFG_RD(bp
,
4279 func_mf_config
[BP_ABS_FUNC(bp
)].config
);
4281 func_mb
[BP_FW_MB_IDX(bp
)].drv_status
);
4283 if (val
& (DRV_STATUS_DCC_EVENT_MASK
|
4284 DRV_STATUS_OEM_EVENT_MASK
))
4286 (val
& (DRV_STATUS_DCC_EVENT_MASK
|
4287 DRV_STATUS_OEM_EVENT_MASK
)));
4289 if (val
& DRV_STATUS_SET_MF_BW
)
4290 bnx2x_set_mf_bw(bp
);
4292 if (val
& DRV_STATUS_DRV_INFO_REQ
)
4293 bnx2x_handle_drv_info_req(bp
);
4295 if (val
& DRV_STATUS_VF_DISABLED
)
4296 bnx2x_schedule_iov_task(bp
,
4297 BNX2X_IOV_HANDLE_FLR
);
4299 if ((bp
->port
.pmf
== 0) && (val
& DRV_STATUS_PMF
))
4300 bnx2x_pmf_update(bp
);
4303 (val
& DRV_STATUS_DCBX_NEGOTIATION_RESULTS
) &&
4304 bp
->dcbx_enabled
> 0)
4305 /* start dcbx state machine */
4306 bnx2x_dcbx_set_params(bp
,
4307 BNX2X_DCBX_STATE_NEG_RECEIVED
);
4308 if (val
& DRV_STATUS_AFEX_EVENT_MASK
)
4309 bnx2x_handle_afex_cmd(bp
,
4310 val
& DRV_STATUS_AFEX_EVENT_MASK
);
4311 if (val
& DRV_STATUS_EEE_NEGOTIATION_RESULTS
)
4312 bnx2x_handle_eee_event(bp
);
4314 if (val
& DRV_STATUS_OEM_UPDATE_SVID
)
4315 bnx2x_schedule_sp_rtnl(bp
,
4316 BNX2X_SP_RTNL_UPDATE_SVID
, 0);
4318 if (bp
->link_vars
.periodic_flags
&
4319 PERIODIC_FLAGS_LINK_EVENT
) {
4320 /* sync with link */
4321 bnx2x_acquire_phy_lock(bp
);
4322 bp
->link_vars
.periodic_flags
&=
4323 ~PERIODIC_FLAGS_LINK_EVENT
;
4324 bnx2x_release_phy_lock(bp
);
4326 bnx2x_link_sync_notify(bp
);
4327 bnx2x_link_report(bp
);
4329 /* Always call it here: bnx2x_link_report() will
4330 * prevent the link indication duplication.
4332 bnx2x__link_status_update(bp
);
4333 } else if (attn
& BNX2X_MC_ASSERT_BITS
) {
4335 BNX2X_ERR("MC assert!\n");
4336 bnx2x_mc_assert(bp
);
4337 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_10
, 0);
4338 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_9
, 0);
4339 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_8
, 0);
4340 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_7
, 0);
4343 } else if (attn
& BNX2X_MCP_ASSERT
) {
4345 BNX2X_ERR("MCP assert!\n");
4346 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_11
, 0);
4350 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn
);
4353 if (attn
& EVEREST_LATCHED_ATTN_IN_USE_MASK
) {
4354 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn
);
4355 if (attn
& BNX2X_GRC_TIMEOUT
) {
4356 val
= CHIP_IS_E1(bp
) ? 0 :
4357 REG_RD(bp
, MISC_REG_GRC_TIMEOUT_ATTN
);
4358 BNX2X_ERR("GRC time-out 0x%08x\n", val
);
4360 if (attn
& BNX2X_GRC_RSV
) {
4361 val
= CHIP_IS_E1(bp
) ? 0 :
4362 REG_RD(bp
, MISC_REG_GRC_RSV_ATTN
);
4363 BNX2X_ERR("GRC reserved 0x%08x\n", val
);
4365 REG_WR(bp
, MISC_REG_AEU_CLR_LATCH_SIGNAL
, 0x7ff);
4371 * 0-7 - Engine0 load counter.
4372 * 8-15 - Engine1 load counter.
4373 * 16 - Engine0 RESET_IN_PROGRESS bit.
4374 * 17 - Engine1 RESET_IN_PROGRESS bit.
4375 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4377 * 19 - Engine1 ONE_IS_LOADED.
4378 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4379 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4380 * just the one belonging to its engine).
4383 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4385 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4386 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4387 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4388 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4389 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4390 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4391 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4394 * Set the GLOBAL_RESET bit.
4396 * Should be run under rtnl lock
4398 void bnx2x_set_reset_global(struct bnx2x
*bp
)
4401 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4402 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4403 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
| BNX2X_GLOBAL_RESET_BIT
);
4404 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4408 * Clear the GLOBAL_RESET bit.
4410 * Should be run under rtnl lock
4412 static void bnx2x_clear_reset_global(struct bnx2x
*bp
)
4415 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4416 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4417 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
& (~BNX2X_GLOBAL_RESET_BIT
));
4418 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4422 * Checks the GLOBAL_RESET bit.
4424 * should be run under rtnl lock
4426 static bool bnx2x_reset_is_global(struct bnx2x
*bp
)
4428 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4430 DP(NETIF_MSG_HW
, "GEN_REG_VAL=0x%08x\n", val
);
4431 return (val
& BNX2X_GLOBAL_RESET_BIT
) ? true : false;
4435 * Clear RESET_IN_PROGRESS bit for the current engine.
4437 * Should be run under rtnl lock
4439 static void bnx2x_set_reset_done(struct bnx2x
*bp
)
4442 u32 bit
= BP_PATH(bp
) ?
4443 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
4444 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4445 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4449 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4451 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4455 * Set RESET_IN_PROGRESS for the current engine.
4457 * should be run under rtnl lock
4459 void bnx2x_set_reset_in_progress(struct bnx2x
*bp
)
4462 u32 bit
= BP_PATH(bp
) ?
4463 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
4464 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4465 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4469 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4470 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4474 * Checks the RESET_IN_PROGRESS bit for the given engine.
4475 * should be run under rtnl lock
4477 bool bnx2x_reset_is_done(struct bnx2x
*bp
, int engine
)
4479 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4481 BNX2X_PATH1_RST_IN_PROG_BIT
: BNX2X_PATH0_RST_IN_PROG_BIT
;
4483 /* return false if bit is set */
4484 return (val
& bit
) ? false : true;
4488 * set pf load for the current pf.
4490 * should be run under rtnl lock
4492 void bnx2x_set_pf_load(struct bnx2x
*bp
)
4495 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
4496 BNX2X_PATH0_LOAD_CNT_MASK
;
4497 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
4498 BNX2X_PATH0_LOAD_CNT_SHIFT
;
4500 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4501 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4503 DP(NETIF_MSG_IFUP
, "Old GEN_REG_VAL=0x%08x\n", val
);
4505 /* get the current counter value */
4506 val1
= (val
& mask
) >> shift
;
4508 /* set bit of that PF */
4509 val1
|= (1 << bp
->pf_num
);
4511 /* clear the old value */
4514 /* set the new one */
4515 val
|= ((val1
<< shift
) & mask
);
4517 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4518 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4522 * bnx2x_clear_pf_load - clear pf load mark
4524 * @bp: driver handle
4526 * Should be run under rtnl lock.
4527 * Decrements the load counter for the current engine. Returns
4528 * whether other functions are still loaded
4530 bool bnx2x_clear_pf_load(struct bnx2x
*bp
)
4533 u32 mask
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_MASK
:
4534 BNX2X_PATH0_LOAD_CNT_MASK
;
4535 u32 shift
= BP_PATH(bp
) ? BNX2X_PATH1_LOAD_CNT_SHIFT
:
4536 BNX2X_PATH0_LOAD_CNT_SHIFT
;
4538 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4539 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4540 DP(NETIF_MSG_IFDOWN
, "Old GEN_REG_VAL=0x%08x\n", val
);
4542 /* get the current counter value */
4543 val1
= (val
& mask
) >> shift
;
4545 /* clear bit of that PF */
4546 val1
&= ~(1 << bp
->pf_num
);
4548 /* clear the old value */
4551 /* set the new one */
4552 val
|= ((val1
<< shift
) & mask
);
4554 REG_WR(bp
, BNX2X_RECOVERY_GLOB_REG
, val
);
4555 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RECOVERY_REG
);
4560 * Read the load status for the current engine.
4562 * should be run under rtnl lock
4564 static bool bnx2x_get_load_status(struct bnx2x
*bp
, int engine
)
4566 u32 mask
= (engine
? BNX2X_PATH1_LOAD_CNT_MASK
:
4567 BNX2X_PATH0_LOAD_CNT_MASK
);
4568 u32 shift
= (engine
? BNX2X_PATH1_LOAD_CNT_SHIFT
:
4569 BNX2X_PATH0_LOAD_CNT_SHIFT
);
4570 u32 val
= REG_RD(bp
, BNX2X_RECOVERY_GLOB_REG
);
4572 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "GLOB_REG=0x%08x\n", val
);
4574 val
= (val
& mask
) >> shift
;
4576 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "load mask for engine %d = 0x%x\n",
4582 static void _print_parity(struct bnx2x
*bp
, u32 reg
)
4584 pr_cont(" [0x%08x] ", REG_RD(bp
, reg
));
4587 static void _print_next_block(int idx
, const char *blk
)
4589 pr_cont("%s%s", idx
? ", " : "", blk
);
4592 static bool bnx2x_check_blocks_with_parity0(struct bnx2x
*bp
, u32 sig
,
4593 int *par_num
, bool print
)
4601 for (i
= 0; sig
; i
++) {
4602 cur_bit
= (0x1UL
<< i
);
4603 if (sig
& cur_bit
) {
4604 res
|= true; /* Each bit is real error! */
4608 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR
:
4609 _print_next_block((*par_num
)++, "BRB");
4611 BRB1_REG_BRB1_PRTY_STS
);
4613 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR
:
4614 _print_next_block((*par_num
)++,
4616 _print_parity(bp
, PRS_REG_PRS_PRTY_STS
);
4618 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR
:
4619 _print_next_block((*par_num
)++, "TSDM");
4621 TSDM_REG_TSDM_PRTY_STS
);
4623 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR
:
4624 _print_next_block((*par_num
)++,
4626 _print_parity(bp
, SRC_REG_SRC_PRTY_STS
);
4628 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR
:
4629 _print_next_block((*par_num
)++, "TCM");
4630 _print_parity(bp
, TCM_REG_TCM_PRTY_STS
);
4632 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR
:
4633 _print_next_block((*par_num
)++,
4636 TSEM_REG_TSEM_PRTY_STS_0
);
4638 TSEM_REG_TSEM_PRTY_STS_1
);
4640 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR
:
4641 _print_next_block((*par_num
)++, "XPB");
4642 _print_parity(bp
, GRCBASE_XPB
+
4643 PB_REG_PB_PRTY_STS
);
4656 static bool bnx2x_check_blocks_with_parity1(struct bnx2x
*bp
, u32 sig
,
4657 int *par_num
, bool *global
,
4666 for (i
= 0; sig
; i
++) {
4667 cur_bit
= (0x1UL
<< i
);
4668 if (sig
& cur_bit
) {
4669 res
|= true; /* Each bit is real error! */
4671 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR
:
4673 _print_next_block((*par_num
)++, "PBF");
4674 _print_parity(bp
, PBF_REG_PBF_PRTY_STS
);
4677 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR
:
4679 _print_next_block((*par_num
)++, "QM");
4680 _print_parity(bp
, QM_REG_QM_PRTY_STS
);
4683 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR
:
4685 _print_next_block((*par_num
)++, "TM");
4686 _print_parity(bp
, TM_REG_TM_PRTY_STS
);
4689 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR
:
4691 _print_next_block((*par_num
)++, "XSDM");
4693 XSDM_REG_XSDM_PRTY_STS
);
4696 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR
:
4698 _print_next_block((*par_num
)++, "XCM");
4699 _print_parity(bp
, XCM_REG_XCM_PRTY_STS
);
4702 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR
:
4704 _print_next_block((*par_num
)++,
4707 XSEM_REG_XSEM_PRTY_STS_0
);
4709 XSEM_REG_XSEM_PRTY_STS_1
);
4712 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR
:
4714 _print_next_block((*par_num
)++,
4717 DORQ_REG_DORQ_PRTY_STS
);
4720 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR
:
4722 _print_next_block((*par_num
)++, "NIG");
4723 if (CHIP_IS_E1x(bp
)) {
4725 NIG_REG_NIG_PRTY_STS
);
4728 NIG_REG_NIG_PRTY_STS_0
);
4730 NIG_REG_NIG_PRTY_STS_1
);
4734 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR
:
4736 _print_next_block((*par_num
)++,
4740 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR
:
4742 _print_next_block((*par_num
)++,
4744 _print_parity(bp
, DBG_REG_DBG_PRTY_STS
);
4747 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR
:
4749 _print_next_block((*par_num
)++, "USDM");
4751 USDM_REG_USDM_PRTY_STS
);
4754 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR
:
4756 _print_next_block((*par_num
)++, "UCM");
4757 _print_parity(bp
, UCM_REG_UCM_PRTY_STS
);
4760 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR
:
4762 _print_next_block((*par_num
)++,
4765 USEM_REG_USEM_PRTY_STS_0
);
4767 USEM_REG_USEM_PRTY_STS_1
);
4770 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR
:
4772 _print_next_block((*par_num
)++, "UPB");
4773 _print_parity(bp
, GRCBASE_UPB
+
4774 PB_REG_PB_PRTY_STS
);
4777 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR
:
4779 _print_next_block((*par_num
)++, "CSDM");
4781 CSDM_REG_CSDM_PRTY_STS
);
4784 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR
:
4786 _print_next_block((*par_num
)++, "CCM");
4787 _print_parity(bp
, CCM_REG_CCM_PRTY_STS
);
4800 static bool bnx2x_check_blocks_with_parity2(struct bnx2x
*bp
, u32 sig
,
4801 int *par_num
, bool print
)
4809 for (i
= 0; sig
; i
++) {
4810 cur_bit
= (0x1UL
<< i
);
4811 if (sig
& cur_bit
) {
4812 res
= true; /* Each bit is real error! */
4815 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR
:
4816 _print_next_block((*par_num
)++,
4819 CSEM_REG_CSEM_PRTY_STS_0
);
4821 CSEM_REG_CSEM_PRTY_STS_1
);
4823 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR
:
4824 _print_next_block((*par_num
)++, "PXP");
4825 _print_parity(bp
, PXP_REG_PXP_PRTY_STS
);
4827 PXP2_REG_PXP2_PRTY_STS_0
);
4829 PXP2_REG_PXP2_PRTY_STS_1
);
4831 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
:
4832 _print_next_block((*par_num
)++,
4833 "PXPPCICLOCKCLIENT");
4835 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR
:
4836 _print_next_block((*par_num
)++, "CFC");
4838 CFC_REG_CFC_PRTY_STS
);
4840 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR
:
4841 _print_next_block((*par_num
)++, "CDU");
4842 _print_parity(bp
, CDU_REG_CDU_PRTY_STS
);
4844 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR
:
4845 _print_next_block((*par_num
)++, "DMAE");
4847 DMAE_REG_DMAE_PRTY_STS
);
4849 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR
:
4850 _print_next_block((*par_num
)++, "IGU");
4851 if (CHIP_IS_E1x(bp
))
4853 HC_REG_HC_PRTY_STS
);
4856 IGU_REG_IGU_PRTY_STS
);
4858 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR
:
4859 _print_next_block((*par_num
)++, "MISC");
4861 MISC_REG_MISC_PRTY_STS
);
4874 static bool bnx2x_check_blocks_with_parity3(struct bnx2x
*bp
, u32 sig
,
4875 int *par_num
, bool *global
,
4882 for (i
= 0; sig
; i
++) {
4883 cur_bit
= (0x1UL
<< i
);
4884 if (sig
& cur_bit
) {
4886 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY
:
4888 _print_next_block((*par_num
)++,
4893 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY
:
4895 _print_next_block((*par_num
)++,
4900 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY
:
4902 _print_next_block((*par_num
)++,
4907 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
:
4909 /* clear latched SCPAD PATIRY from MCP */
4910 REG_WR(bp
, MISC_REG_AEU_CLR_LATCH_SIGNAL
,
4923 static bool bnx2x_check_blocks_with_parity4(struct bnx2x
*bp
, u32 sig
,
4924 int *par_num
, bool print
)
4932 for (i
= 0; sig
; i
++) {
4933 cur_bit
= (0x1UL
<< i
);
4934 if (sig
& cur_bit
) {
4935 res
= true; /* Each bit is real error! */
4938 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
:
4939 _print_next_block((*par_num
)++,
4942 PGLUE_B_REG_PGLUE_B_PRTY_STS
);
4944 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
:
4945 _print_next_block((*par_num
)++, "ATC");
4947 ATC_REG_ATC_PRTY_STS
);
4959 static bool bnx2x_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
,
4964 if ((sig
[0] & HW_PRTY_ASSERT_SET_0
) ||
4965 (sig
[1] & HW_PRTY_ASSERT_SET_1
) ||
4966 (sig
[2] & HW_PRTY_ASSERT_SET_2
) ||
4967 (sig
[3] & HW_PRTY_ASSERT_SET_3
) ||
4968 (sig
[4] & HW_PRTY_ASSERT_SET_4
)) {
4971 DP(NETIF_MSG_HW
, "Was parity error: HW block parity attention:\n"
4972 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4973 sig
[0] & HW_PRTY_ASSERT_SET_0
,
4974 sig
[1] & HW_PRTY_ASSERT_SET_1
,
4975 sig
[2] & HW_PRTY_ASSERT_SET_2
,
4976 sig
[3] & HW_PRTY_ASSERT_SET_3
,
4977 sig
[4] & HW_PRTY_ASSERT_SET_4
);
4979 if (((sig
[0] & HW_PRTY_ASSERT_SET_0
) ||
4980 (sig
[1] & HW_PRTY_ASSERT_SET_1
) ||
4981 (sig
[2] & HW_PRTY_ASSERT_SET_2
) ||
4982 (sig
[4] & HW_PRTY_ASSERT_SET_4
)) ||
4983 (sig
[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD
)) {
4985 "Parity errors detected in blocks: ");
4990 res
|= bnx2x_check_blocks_with_parity0(bp
,
4991 sig
[0] & HW_PRTY_ASSERT_SET_0
, &par_num
, print
);
4992 res
|= bnx2x_check_blocks_with_parity1(bp
,
4993 sig
[1] & HW_PRTY_ASSERT_SET_1
, &par_num
, global
, print
);
4994 res
|= bnx2x_check_blocks_with_parity2(bp
,
4995 sig
[2] & HW_PRTY_ASSERT_SET_2
, &par_num
, print
);
4996 res
|= bnx2x_check_blocks_with_parity3(bp
,
4997 sig
[3] & HW_PRTY_ASSERT_SET_3
, &par_num
, global
, print
);
4998 res
|= bnx2x_check_blocks_with_parity4(bp
,
4999 sig
[4] & HW_PRTY_ASSERT_SET_4
, &par_num
, print
);
5009 * bnx2x_chk_parity_attn - checks for parity attentions.
5011 * @bp: driver handle
5012 * @global: true if there was a global attention
5013 * @print: show parity attention in syslog
5015 bool bnx2x_chk_parity_attn(struct bnx2x
*bp
, bool *global
, bool print
)
5017 struct attn_route attn
= { {0} };
5018 int port
= BP_PORT(bp
);
5020 attn
.sig
[0] = REG_RD(bp
,
5021 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+
5023 attn
.sig
[1] = REG_RD(bp
,
5024 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+
5026 attn
.sig
[2] = REG_RD(bp
,
5027 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+
5029 attn
.sig
[3] = REG_RD(bp
,
5030 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+
5032 /* Since MCP attentions can't be disabled inside the block, we need to
5033 * read AEU registers to see whether they're currently disabled
5035 attn
.sig
[3] &= ((REG_RD(bp
,
5036 !port
? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5037 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0
) &
5038 MISC_AEU_ENABLE_MCP_PRTY_BITS
) |
5039 ~MISC_AEU_ENABLE_MCP_PRTY_BITS
);
5041 if (!CHIP_IS_E1x(bp
))
5042 attn
.sig
[4] = REG_RD(bp
,
5043 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+
5046 return bnx2x_parity_attn(bp
, global
, print
, attn
.sig
);
5049 static void bnx2x_attn_int_deasserted4(struct bnx2x
*bp
, u32 attn
)
5052 if (attn
& AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT
) {
5054 val
= REG_RD(bp
, PGLUE_B_REG_PGLUE_B_INT_STS_CLR
);
5055 BNX2X_ERR("PGLUE hw attention 0x%x\n", val
);
5056 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR
)
5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5058 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR
)
5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5060 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN
)
5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5062 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN
)
5063 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5065 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN
)
5066 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5068 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN
)
5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5070 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN
)
5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5072 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN
)
5073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5074 if (val
& PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW
)
5075 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5077 if (attn
& AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT
) {
5078 val
= REG_RD(bp
, ATC_REG_ATC_INT_STS_CLR
);
5079 BNX2X_ERR("ATC hw attention 0x%x\n", val
);
5080 if (val
& ATC_ATC_INT_STS_REG_ADDRESS_ERROR
)
5081 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5082 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND
)
5083 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5084 if (val
& ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS
)
5085 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5086 if (val
& ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT
)
5087 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5088 if (val
& ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR
)
5089 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5090 if (val
& ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU
)
5091 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5094 if (attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
5095 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)) {
5096 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5097 (u32
)(attn
& (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
|
5098 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR
)));
5102 static void bnx2x_attn_int_deasserted(struct bnx2x
*bp
, u32 deasserted
)
5104 struct attn_route attn
, *group_mask
;
5105 int port
= BP_PORT(bp
);
5110 bool global
= false;
5112 /* need to take HW lock because MCP or other port might also
5113 try to handle this event */
5114 bnx2x_acquire_alr(bp
);
5116 if (bnx2x_chk_parity_attn(bp
, &global
, true)) {
5117 #ifndef BNX2X_STOP_ON_ERROR
5118 bp
->recovery_state
= BNX2X_RECOVERY_INIT
;
5119 schedule_delayed_work(&bp
->sp_rtnl_task
, 0);
5120 /* Disable HW interrupts */
5121 bnx2x_int_disable(bp
);
5122 /* In case of parity errors don't handle attentions so that
5123 * other function would "see" parity errors.
5128 bnx2x_release_alr(bp
);
5132 attn
.sig
[0] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ port
*4);
5133 attn
.sig
[1] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0
+ port
*4);
5134 attn
.sig
[2] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0
+ port
*4);
5135 attn
.sig
[3] = REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0
+ port
*4);
5136 if (!CHIP_IS_E1x(bp
))
5138 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0
+ port
*4);
5142 DP(NETIF_MSG_HW
, "attn: %08x %08x %08x %08x %08x\n",
5143 attn
.sig
[0], attn
.sig
[1], attn
.sig
[2], attn
.sig
[3], attn
.sig
[4]);
5145 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
5146 if (deasserted
& (1 << index
)) {
5147 group_mask
= &bp
->attn_group
[index
];
5149 DP(NETIF_MSG_HW
, "group[%d]: %08x %08x %08x %08x %08x\n",
5151 group_mask
->sig
[0], group_mask
->sig
[1],
5152 group_mask
->sig
[2], group_mask
->sig
[3],
5153 group_mask
->sig
[4]);
5155 bnx2x_attn_int_deasserted4(bp
,
5156 attn
.sig
[4] & group_mask
->sig
[4]);
5157 bnx2x_attn_int_deasserted3(bp
,
5158 attn
.sig
[3] & group_mask
->sig
[3]);
5159 bnx2x_attn_int_deasserted1(bp
,
5160 attn
.sig
[1] & group_mask
->sig
[1]);
5161 bnx2x_attn_int_deasserted2(bp
,
5162 attn
.sig
[2] & group_mask
->sig
[2]);
5163 bnx2x_attn_int_deasserted0(bp
,
5164 attn
.sig
[0] & group_mask
->sig
[0]);
5168 bnx2x_release_alr(bp
);
5170 if (bp
->common
.int_block
== INT_BLOCK_HC
)
5171 reg_addr
= (HC_REG_COMMAND_REG
+ port
*32 +
5172 COMMAND_REG_ATTN_BITS_CLR
);
5174 reg_addr
= (BAR_IGU_INTMEM
+ IGU_CMD_ATTN_BIT_CLR_UPPER
*8);
5177 DP(NETIF_MSG_HW
, "about to mask 0x%08x at %s addr 0x%x\n", val
,
5178 (bp
->common
.int_block
== INT_BLOCK_HC
) ? "HC" : "IGU", reg_addr
);
5179 REG_WR(bp
, reg_addr
, val
);
5181 if (~bp
->attn_state
& deasserted
)
5182 BNX2X_ERR("IGU ERROR\n");
5184 reg_addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
5185 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
5187 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
5188 aeu_mask
= REG_RD(bp
, reg_addr
);
5190 DP(NETIF_MSG_HW
, "aeu_mask %x newly deasserted %x\n",
5191 aeu_mask
, deasserted
);
5192 aeu_mask
|= (deasserted
& 0x3ff);
5193 DP(NETIF_MSG_HW
, "new mask %x\n", aeu_mask
);
5195 REG_WR(bp
, reg_addr
, aeu_mask
);
5196 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_PORT0_ATT_MASK
+ port
);
5198 DP(NETIF_MSG_HW
, "attn_state %x\n", bp
->attn_state
);
5199 bp
->attn_state
&= ~deasserted
;
5200 DP(NETIF_MSG_HW
, "new state %x\n", bp
->attn_state
);
5203 static void bnx2x_attn_int(struct bnx2x
*bp
)
5205 /* read local copy of bits */
5206 u32 attn_bits
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
5208 u32 attn_ack
= le32_to_cpu(bp
->def_status_blk
->atten_status_block
.
5210 u32 attn_state
= bp
->attn_state
;
5212 /* look for changed bits */
5213 u32 asserted
= attn_bits
& ~attn_ack
& ~attn_state
;
5214 u32 deasserted
= ~attn_bits
& attn_ack
& attn_state
;
5217 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5218 attn_bits
, attn_ack
, asserted
, deasserted
);
5220 if (~(attn_bits
^ attn_ack
) & (attn_bits
^ attn_state
))
5221 BNX2X_ERR("BAD attention state\n");
5223 /* handle bits that were raised */
5225 bnx2x_attn_int_asserted(bp
, asserted
);
5228 bnx2x_attn_int_deasserted(bp
, deasserted
);
5231 void bnx2x_igu_ack_sb(struct bnx2x
*bp
, u8 igu_sb_id
, u8 segment
,
5232 u16 index
, u8 op
, u8 update
)
5234 u32 igu_addr
= bp
->igu_base_addr
;
5235 igu_addr
+= (IGU_CMD_INT_ACK_BASE
+ igu_sb_id
)*8;
5236 bnx2x_igu_ack_sb_gen(bp
, igu_sb_id
, segment
, index
, op
, update
,
5240 static void bnx2x_update_eq_prod(struct bnx2x
*bp
, u16 prod
)
5242 /* No memory barriers */
5243 storm_memset_eq_prod(bp
, prod
, BP_FUNC(bp
));
5246 static int bnx2x_cnic_handle_cfc_del(struct bnx2x
*bp
, u32 cid
,
5247 union event_ring_elem
*elem
)
5249 u8 err
= elem
->message
.error
;
5251 if (!bp
->cnic_eth_dev
.starting_cid
||
5252 (cid
< bp
->cnic_eth_dev
.starting_cid
&&
5253 cid
!= bp
->cnic_eth_dev
.iscsi_l2_cid
))
5256 DP(BNX2X_MSG_SP
, "got delete ramrod for CNIC CID %d\n", cid
);
5258 if (unlikely(err
)) {
5260 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5262 bnx2x_panic_dump(bp
, false);
5264 bnx2x_cnic_cfc_comp(bp
, cid
, err
);
5268 static void bnx2x_handle_mcast_eqe(struct bnx2x
*bp
)
5270 struct bnx2x_mcast_ramrod_params rparam
;
5273 memset(&rparam
, 0, sizeof(rparam
));
5275 rparam
.mcast_obj
= &bp
->mcast_obj
;
5277 netif_addr_lock_bh(bp
->dev
);
5279 /* Clear pending state for the last command */
5280 bp
->mcast_obj
.raw
.clear_pending(&bp
->mcast_obj
.raw
);
5282 /* If there are pending mcast commands - send them */
5283 if (bp
->mcast_obj
.check_pending(&bp
->mcast_obj
)) {
5284 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
5286 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5290 netif_addr_unlock_bh(bp
->dev
);
5293 static void bnx2x_handle_classification_eqe(struct bnx2x
*bp
,
5294 union event_ring_elem
*elem
)
5296 unsigned long ramrod_flags
= 0;
5298 u32 echo
= le32_to_cpu(elem
->message
.data
.eth_event
.echo
);
5299 u32 cid
= echo
& BNX2X_SWCID_MASK
;
5300 struct bnx2x_vlan_mac_obj
*vlan_mac_obj
;
5302 /* Always push next commands out, don't wait here */
5303 __set_bit(RAMROD_CONT
, &ramrod_flags
);
5305 switch (echo
>> BNX2X_SWCID_SHIFT
) {
5306 case BNX2X_FILTER_MAC_PENDING
:
5307 DP(BNX2X_MSG_SP
, "Got SETUP_MAC completions\n");
5308 if (CNIC_LOADED(bp
) && (cid
== BNX2X_ISCSI_ETH_CID(bp
)))
5309 vlan_mac_obj
= &bp
->iscsi_l2_mac_obj
;
5311 vlan_mac_obj
= &bp
->sp_objs
[cid
].mac_obj
;
5314 case BNX2X_FILTER_VLAN_PENDING
:
5315 DP(BNX2X_MSG_SP
, "Got SETUP_VLAN completions\n");
5316 vlan_mac_obj
= &bp
->sp_objs
[cid
].vlan_obj
;
5318 case BNX2X_FILTER_MCAST_PENDING
:
5319 DP(BNX2X_MSG_SP
, "Got SETUP_MCAST completions\n");
5320 /* This is only relevant for 57710 where multicast MACs are
5321 * configured as unicast MACs using the same ramrod.
5323 bnx2x_handle_mcast_eqe(bp
);
5326 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo
);
5330 rc
= vlan_mac_obj
->complete(bp
, vlan_mac_obj
, elem
, &ramrod_flags
);
5333 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
5335 DP(BNX2X_MSG_SP
, "Scheduled next pending commands...\n");
5338 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
);
5340 static void bnx2x_handle_rx_mode_eqe(struct bnx2x
*bp
)
5342 netif_addr_lock_bh(bp
->dev
);
5344 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
5346 /* Send rx_mode command again if was requested */
5347 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
))
5348 bnx2x_set_storm_rx_mode(bp
);
5349 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
,
5351 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
5352 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
,
5354 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
5356 netif_addr_unlock_bh(bp
->dev
);
5359 static void bnx2x_after_afex_vif_lists(struct bnx2x
*bp
,
5360 union event_ring_elem
*elem
)
5362 if (elem
->message
.data
.vif_list_event
.echo
== VIF_LIST_RULE_GET
) {
5364 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5365 elem
->message
.data
.vif_list_event
.func_bit_map
);
5366 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_LISTGET_ACK
,
5367 elem
->message
.data
.vif_list_event
.func_bit_map
);
5368 } else if (elem
->message
.data
.vif_list_event
.echo
==
5369 VIF_LIST_RULE_SET
) {
5370 DP(BNX2X_MSG_SP
, "afex: ramrod completed VIF LIST_SET\n");
5371 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_LISTSET_ACK
, 0);
5375 /* called with rtnl_lock */
5376 static void bnx2x_after_function_update(struct bnx2x
*bp
)
5379 struct bnx2x_fastpath
*fp
;
5380 struct bnx2x_queue_state_params queue_params
= {NULL
};
5381 struct bnx2x_queue_update_params
*q_update_params
=
5382 &queue_params
.params
.update
;
5384 /* Send Q update command with afex vlan removal values for all Qs */
5385 queue_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
5387 /* set silent vlan removal values according to vlan mode */
5388 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
5389 &q_update_params
->update_flags
);
5390 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
5391 &q_update_params
->update_flags
);
5392 __set_bit(RAMROD_COMP_WAIT
, &queue_params
.ramrod_flags
);
5394 /* in access mode mark mask and value are 0 to strip all vlans */
5395 if (bp
->afex_vlan_mode
== FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE
) {
5396 q_update_params
->silent_removal_value
= 0;
5397 q_update_params
->silent_removal_mask
= 0;
5399 q_update_params
->silent_removal_value
=
5400 (bp
->afex_def_vlan_tag
& VLAN_VID_MASK
);
5401 q_update_params
->silent_removal_mask
= VLAN_VID_MASK
;
5404 for_each_eth_queue(bp
, q
) {
5405 /* Set the appropriate Queue object */
5407 queue_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
5409 /* send the ramrod */
5410 rc
= bnx2x_queue_state_change(bp
, &queue_params
);
5412 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5416 if (!NO_FCOE(bp
) && CNIC_ENABLED(bp
)) {
5417 fp
= &bp
->fp
[FCOE_IDX(bp
)];
5418 queue_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
5420 /* clear pending completion bit */
5421 __clear_bit(RAMROD_COMP_WAIT
, &queue_params
.ramrod_flags
);
5423 /* mark latest Q bit */
5424 smp_mb__before_atomic();
5425 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING
, &bp
->sp_state
);
5426 smp_mb__after_atomic();
5428 /* send Q update ramrod for FCoE Q */
5429 rc
= bnx2x_queue_state_change(bp
, &queue_params
);
5431 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5434 /* If no FCoE ring - ACK MCP now */
5435 bnx2x_link_report(bp
);
5436 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_VIFSET_ACK
, 0);
5440 static struct bnx2x_queue_sp_obj
*bnx2x_cid_to_q_obj(
5441 struct bnx2x
*bp
, u32 cid
)
5443 DP(BNX2X_MSG_SP
, "retrieving fp from cid %d\n", cid
);
5445 if (CNIC_LOADED(bp
) && (cid
== BNX2X_FCOE_ETH_CID(bp
)))
5446 return &bnx2x_fcoe_sp_obj(bp
, q_obj
);
5448 return &bp
->sp_objs
[CID_TO_FP(cid
, bp
)].q_obj
;
5451 static void bnx2x_eq_int(struct bnx2x
*bp
)
5453 u16 hw_cons
, sw_cons
, sw_prod
;
5454 union event_ring_elem
*elem
;
5458 int rc
, spqe_cnt
= 0;
5459 struct bnx2x_queue_sp_obj
*q_obj
;
5460 struct bnx2x_func_sp_obj
*f_obj
= &bp
->func_obj
;
5461 struct bnx2x_raw_obj
*rss_raw
= &bp
->rss_conf_obj
.raw
;
5463 hw_cons
= le16_to_cpu(*bp
->eq_cons_sb
);
5465 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5466 * when we get the next-page we need to adjust so the loop
5467 * condition below will be met. The next element is the size of a
5468 * regular element and hence incrementing by 1
5470 if ((hw_cons
& EQ_DESC_MAX_PAGE
) == EQ_DESC_MAX_PAGE
)
5473 /* This function may never run in parallel with itself for a
5474 * specific bp, thus there is no need in "paired" read memory
5477 sw_cons
= bp
->eq_cons
;
5478 sw_prod
= bp
->eq_prod
;
5480 DP(BNX2X_MSG_SP
, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5481 hw_cons
, sw_cons
, atomic_read(&bp
->eq_spq_left
));
5483 for (; sw_cons
!= hw_cons
;
5484 sw_prod
= NEXT_EQ_IDX(sw_prod
), sw_cons
= NEXT_EQ_IDX(sw_cons
)) {
5486 elem
= &bp
->eq_ring
[EQ_DESC(sw_cons
)];
5488 rc
= bnx2x_iov_eq_sp_event(bp
, elem
);
5490 DP(BNX2X_MSG_IOV
, "bnx2x_iov_eq_sp_event returned %d\n",
5495 opcode
= elem
->message
.opcode
;
5497 /* handle eq element */
5499 case EVENT_RING_OPCODE_VF_PF_CHANNEL
:
5500 bnx2x_vf_mbx_schedule(bp
,
5501 &elem
->message
.data
.vf_pf_event
);
5504 case EVENT_RING_OPCODE_STAT_QUERY
:
5505 DP_AND((BNX2X_MSG_SP
| BNX2X_MSG_STATS
),
5506 "got statistics comp event %d\n",
5508 /* nothing to do with stats comp */
5511 case EVENT_RING_OPCODE_CFC_DEL
:
5512 /* handle according to cid range */
5514 * we may want to verify here that the bp state is
5518 /* elem CID originates from FW; actually LE */
5519 cid
= SW_CID(elem
->message
.data
.cfc_del_event
.cid
);
5522 "got delete ramrod for MULTI[%d]\n", cid
);
5524 if (CNIC_LOADED(bp
) &&
5525 !bnx2x_cnic_handle_cfc_del(bp
, cid
, elem
))
5528 q_obj
= bnx2x_cid_to_q_obj(bp
, cid
);
5530 if (q_obj
->complete_cmd(bp
, q_obj
, BNX2X_Q_CMD_CFC_DEL
))
5535 case EVENT_RING_OPCODE_STOP_TRAFFIC
:
5536 DP(BNX2X_MSG_SP
| BNX2X_MSG_DCB
, "got STOP TRAFFIC\n");
5537 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_PAUSED
);
5538 if (f_obj
->complete_cmd(bp
, f_obj
,
5539 BNX2X_F_CMD_TX_STOP
))
5543 case EVENT_RING_OPCODE_START_TRAFFIC
:
5544 DP(BNX2X_MSG_SP
| BNX2X_MSG_DCB
, "got START TRAFFIC\n");
5545 bnx2x_dcbx_set_params(bp
, BNX2X_DCBX_STATE_TX_RELEASED
);
5546 if (f_obj
->complete_cmd(bp
, f_obj
,
5547 BNX2X_F_CMD_TX_START
))
5551 case EVENT_RING_OPCODE_FUNCTION_UPDATE
:
5552 echo
= elem
->message
.data
.function_update_event
.echo
;
5553 if (echo
== SWITCH_UPDATE
) {
5554 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
5555 "got FUNC_SWITCH_UPDATE ramrod\n");
5556 if (f_obj
->complete_cmd(
5557 bp
, f_obj
, BNX2X_F_CMD_SWITCH_UPDATE
))
5561 int cmd
= BNX2X_SP_RTNL_AFEX_F_UPDATE
;
5563 DP(BNX2X_MSG_SP
| BNX2X_MSG_MCP
,
5564 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5565 f_obj
->complete_cmd(bp
, f_obj
,
5566 BNX2X_F_CMD_AFEX_UPDATE
);
5568 /* We will perform the Queues update from
5569 * sp_rtnl task as all Queue SP operations
5570 * should run under rtnl_lock.
5572 bnx2x_schedule_sp_rtnl(bp
, cmd
, 0);
5577 case EVENT_RING_OPCODE_AFEX_VIF_LISTS
:
5578 f_obj
->complete_cmd(bp
, f_obj
,
5579 BNX2X_F_CMD_AFEX_VIFLISTS
);
5580 bnx2x_after_afex_vif_lists(bp
, elem
);
5582 case EVENT_RING_OPCODE_FUNCTION_START
:
5583 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
5584 "got FUNC_START ramrod\n");
5585 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_START
))
5590 case EVENT_RING_OPCODE_FUNCTION_STOP
:
5591 DP(BNX2X_MSG_SP
| NETIF_MSG_IFUP
,
5592 "got FUNC_STOP ramrod\n");
5593 if (f_obj
->complete_cmd(bp
, f_obj
, BNX2X_F_CMD_STOP
))
5598 case EVENT_RING_OPCODE_SET_TIMESYNC
:
5599 DP(BNX2X_MSG_SP
| BNX2X_MSG_PTP
,
5600 "got set_timesync ramrod completion\n");
5601 if (f_obj
->complete_cmd(bp
, f_obj
,
5602 BNX2X_F_CMD_SET_TIMESYNC
))
5607 switch (opcode
| bp
->state
) {
5608 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
5610 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
5611 BNX2X_STATE_OPENING_WAIT4_PORT
):
5612 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES
|
5613 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5614 DP(BNX2X_MSG_SP
, "got RSS_UPDATE ramrod. CID %d\n",
5615 SW_CID(elem
->message
.data
.eth_event
.echo
));
5616 rss_raw
->clear_pending(rss_raw
);
5619 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_OPEN
):
5620 case (EVENT_RING_OPCODE_SET_MAC
| BNX2X_STATE_DIAG
):
5621 case (EVENT_RING_OPCODE_SET_MAC
|
5622 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5623 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
5625 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
5627 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES
|
5628 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5629 DP(BNX2X_MSG_SP
, "got (un)set vlan/mac ramrod\n");
5630 bnx2x_handle_classification_eqe(bp
, elem
);
5633 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
5635 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
5637 case (EVENT_RING_OPCODE_MULTICAST_RULES
|
5638 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5639 DP(BNX2X_MSG_SP
, "got mcast ramrod\n");
5640 bnx2x_handle_mcast_eqe(bp
);
5643 case (EVENT_RING_OPCODE_FILTERS_RULES
|
5645 case (EVENT_RING_OPCODE_FILTERS_RULES
|
5647 case (EVENT_RING_OPCODE_FILTERS_RULES
|
5648 BNX2X_STATE_CLOSING_WAIT4_HALT
):
5649 DP(BNX2X_MSG_SP
, "got rx_mode ramrod\n");
5650 bnx2x_handle_rx_mode_eqe(bp
);
5653 /* unknown event log error and continue */
5654 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5655 elem
->message
.opcode
, bp
->state
);
5661 smp_mb__before_atomic();
5662 atomic_add(spqe_cnt
, &bp
->eq_spq_left
);
5664 bp
->eq_cons
= sw_cons
;
5665 bp
->eq_prod
= sw_prod
;
5666 /* Make sure that above mem writes were issued towards the memory */
5669 /* update producer */
5670 bnx2x_update_eq_prod(bp
, bp
->eq_prod
);
5673 static void bnx2x_sp_task(struct work_struct
*work
)
5675 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_task
.work
);
5677 DP(BNX2X_MSG_SP
, "sp task invoked\n");
5679 /* make sure the atomic interrupt_occurred has been written */
5681 if (atomic_read(&bp
->interrupt_occurred
)) {
5683 /* what work needs to be performed? */
5684 u16 status
= bnx2x_update_dsb_idx(bp
);
5686 DP(BNX2X_MSG_SP
, "status %x\n", status
);
5687 DP(BNX2X_MSG_SP
, "setting interrupt_occurred to 0\n");
5688 atomic_set(&bp
->interrupt_occurred
, 0);
5691 if (status
& BNX2X_DEF_SB_ATT_IDX
) {
5693 status
&= ~BNX2X_DEF_SB_ATT_IDX
;
5696 /* SP events: STAT_QUERY and others */
5697 if (status
& BNX2X_DEF_SB_IDX
) {
5698 struct bnx2x_fastpath
*fp
= bnx2x_fcoe_fp(bp
);
5700 if (FCOE_INIT(bp
) &&
5701 (bnx2x_has_rx_work(fp
) || bnx2x_has_tx_work(fp
))) {
5702 /* Prevent local bottom-halves from running as
5703 * we are going to change the local NAPI list.
5706 napi_schedule(&bnx2x_fcoe(bp
, napi
));
5710 /* Handle EQ completions */
5712 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
,
5713 le16_to_cpu(bp
->def_idx
), IGU_INT_NOP
, 1);
5715 status
&= ~BNX2X_DEF_SB_IDX
;
5718 /* if status is non zero then perhaps something went wrong */
5719 if (unlikely(status
))
5721 "got an unknown interrupt! (status 0x%x)\n", status
);
5723 /* ack status block only if something was actually handled */
5724 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, ATTENTION_ID
,
5725 le16_to_cpu(bp
->def_att_idx
), IGU_INT_ENABLE
, 1);
5728 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5729 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK
,
5731 bnx2x_link_report(bp
);
5732 bnx2x_fw_command(bp
, DRV_MSG_CODE_AFEX_VIFSET_ACK
, 0);
5736 irqreturn_t
bnx2x_msix_sp_int(int irq
, void *dev_instance
)
5738 struct net_device
*dev
= dev_instance
;
5739 struct bnx2x
*bp
= netdev_priv(dev
);
5741 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0,
5742 IGU_INT_DISABLE
, 0);
5744 #ifdef BNX2X_STOP_ON_ERROR
5745 if (unlikely(bp
->panic
))
5749 if (CNIC_LOADED(bp
)) {
5750 struct cnic_ops
*c_ops
;
5753 c_ops
= rcu_dereference(bp
->cnic_ops
);
5755 c_ops
->cnic_handler(bp
->cnic_data
, NULL
);
5759 /* schedule sp task to perform default status block work, ack
5760 * attentions and enable interrupts.
5762 bnx2x_schedule_sp_task(bp
);
5767 /* end of slow path */
5769 void bnx2x_drv_pulse(struct bnx2x
*bp
)
5771 SHMEM_WR(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_pulse_mb
,
5772 bp
->fw_drv_pulse_wr_seq
);
5775 static void bnx2x_timer(struct timer_list
*t
)
5777 struct bnx2x
*bp
= from_timer(bp
, t
, timer
);
5779 if (!netif_running(bp
->dev
))
5784 int mb_idx
= BP_FW_MB_IDX(bp
);
5788 ++bp
->fw_drv_pulse_wr_seq
;
5789 bp
->fw_drv_pulse_wr_seq
&= DRV_PULSE_SEQ_MASK
;
5790 drv_pulse
= bp
->fw_drv_pulse_wr_seq
;
5791 bnx2x_drv_pulse(bp
);
5793 mcp_pulse
= (SHMEM_RD(bp
, func_mb
[mb_idx
].mcp_pulse_mb
) &
5794 MCP_PULSE_SEQ_MASK
);
5795 /* The delta between driver pulse and mcp response
5796 * should not get too big. If the MFW is more than 5 pulses
5797 * behind, we should worry about it enough to generate an error
5800 if (((drv_pulse
- mcp_pulse
) & MCP_PULSE_SEQ_MASK
) > 5)
5801 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5802 drv_pulse
, mcp_pulse
);
5805 if (bp
->state
== BNX2X_STATE_OPEN
)
5806 bnx2x_stats_handle(bp
, STATS_EVENT_UPDATE
);
5808 /* sample pf vf bulletin board for new posts from pf */
5810 bnx2x_timer_sriov(bp
);
5812 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
5815 /* end of Statistics */
5820 * nic init service functions
5823 static void bnx2x_fill(struct bnx2x
*bp
, u32 addr
, int fill
, u32 len
)
5826 if (!(len
%4) && !(addr
%4))
5827 for (i
= 0; i
< len
; i
+= 4)
5828 REG_WR(bp
, addr
+ i
, fill
);
5830 for (i
= 0; i
< len
; i
++)
5831 REG_WR8(bp
, addr
+ i
, fill
);
5834 /* helper: writes FP SP data to FW - data_size in dwords */
5835 static void bnx2x_wr_fp_sb_data(struct bnx2x
*bp
,
5841 for (index
= 0; index
< data_size
; index
++)
5842 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
5843 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id
) +
5845 *(sb_data_p
+ index
));
5848 static void bnx2x_zero_fp_sb(struct bnx2x
*bp
, int fw_sb_id
)
5852 struct hc_status_block_data_e2 sb_data_e2
;
5853 struct hc_status_block_data_e1x sb_data_e1x
;
5855 /* disable the function first */
5856 if (!CHIP_IS_E1x(bp
)) {
5857 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
5858 sb_data_e2
.common
.state
= SB_DISABLED
;
5859 sb_data_e2
.common
.p_func
.vf_valid
= false;
5860 sb_data_p
= (u32
*)&sb_data_e2
;
5861 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
5863 memset(&sb_data_e1x
, 0,
5864 sizeof(struct hc_status_block_data_e1x
));
5865 sb_data_e1x
.common
.state
= SB_DISABLED
;
5866 sb_data_e1x
.common
.p_func
.vf_valid
= false;
5867 sb_data_p
= (u32
*)&sb_data_e1x
;
5868 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
5870 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
5872 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5873 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id
), 0,
5874 CSTORM_STATUS_BLOCK_SIZE
);
5875 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5876 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id
), 0,
5877 CSTORM_SYNC_BLOCK_SIZE
);
5880 /* helper: writes SP SB data to FW */
5881 static void bnx2x_wr_sp_sb_data(struct bnx2x
*bp
,
5882 struct hc_sp_status_block_data
*sp_sb_data
)
5884 int func
= BP_FUNC(bp
);
5886 for (i
= 0; i
< sizeof(struct hc_sp_status_block_data
)/sizeof(u32
); i
++)
5887 REG_WR(bp
, BAR_CSTRORM_INTMEM
+
5888 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func
) +
5890 *((u32
*)sp_sb_data
+ i
));
5893 static void bnx2x_zero_sp_sb(struct bnx2x
*bp
)
5895 int func
= BP_FUNC(bp
);
5896 struct hc_sp_status_block_data sp_sb_data
;
5897 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
5899 sp_sb_data
.state
= SB_DISABLED
;
5900 sp_sb_data
.p_func
.vf_valid
= false;
5902 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
5904 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5905 CSTORM_SP_STATUS_BLOCK_OFFSET(func
), 0,
5906 CSTORM_SP_STATUS_BLOCK_SIZE
);
5907 bnx2x_fill(bp
, BAR_CSTRORM_INTMEM
+
5908 CSTORM_SP_SYNC_BLOCK_OFFSET(func
), 0,
5909 CSTORM_SP_SYNC_BLOCK_SIZE
);
5912 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm
*hc_sm
,
5913 int igu_sb_id
, int igu_seg_id
)
5915 hc_sm
->igu_sb_id
= igu_sb_id
;
5916 hc_sm
->igu_seg_id
= igu_seg_id
;
5917 hc_sm
->timer_value
= 0xFF;
5918 hc_sm
->time_to_expire
= 0xFFFFFFFF;
5921 /* allocates state machine ids. */
5922 static void bnx2x_map_sb_state_machines(struct hc_index_data
*index_data
)
5924 /* zero out state machine indices */
5926 index_data
[HC_INDEX_ETH_RX_CQ_CONS
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5929 index_data
[HC_INDEX_OOO_TX_CQ_CONS
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5930 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS0
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5931 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS1
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5932 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS2
].flags
&= ~HC_INDEX_DATA_SM_ID
;
5936 index_data
[HC_INDEX_ETH_RX_CQ_CONS
].flags
|=
5937 SM_RX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5940 index_data
[HC_INDEX_OOO_TX_CQ_CONS
].flags
|=
5941 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5942 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS0
].flags
|=
5943 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5944 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS1
].flags
|=
5945 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5946 index_data
[HC_INDEX_ETH_TX_CQ_CONS_COS2
].flags
|=
5947 SM_TX_ID
<< HC_INDEX_DATA_SM_ID_SHIFT
;
5950 void bnx2x_init_sb(struct bnx2x
*bp
, dma_addr_t mapping
, int vfid
,
5951 u8 vf_valid
, int fw_sb_id
, int igu_sb_id
)
5955 struct hc_status_block_data_e2 sb_data_e2
;
5956 struct hc_status_block_data_e1x sb_data_e1x
;
5957 struct hc_status_block_sm
*hc_sm_p
;
5961 if (CHIP_INT_MODE_IS_BC(bp
))
5962 igu_seg_id
= HC_SEG_ACCESS_NORM
;
5964 igu_seg_id
= IGU_SEG_ACCESS_NORM
;
5966 bnx2x_zero_fp_sb(bp
, fw_sb_id
);
5968 if (!CHIP_IS_E1x(bp
)) {
5969 memset(&sb_data_e2
, 0, sizeof(struct hc_status_block_data_e2
));
5970 sb_data_e2
.common
.state
= SB_ENABLED
;
5971 sb_data_e2
.common
.p_func
.pf_id
= BP_FUNC(bp
);
5972 sb_data_e2
.common
.p_func
.vf_id
= vfid
;
5973 sb_data_e2
.common
.p_func
.vf_valid
= vf_valid
;
5974 sb_data_e2
.common
.p_func
.vnic_id
= BP_VN(bp
);
5975 sb_data_e2
.common
.same_igu_sb_1b
= true;
5976 sb_data_e2
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
5977 sb_data_e2
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
5978 hc_sm_p
= sb_data_e2
.common
.state_machine
;
5979 sb_data_p
= (u32
*)&sb_data_e2
;
5980 data_size
= sizeof(struct hc_status_block_data_e2
)/sizeof(u32
);
5981 bnx2x_map_sb_state_machines(sb_data_e2
.index_data
);
5983 memset(&sb_data_e1x
, 0,
5984 sizeof(struct hc_status_block_data_e1x
));
5985 sb_data_e1x
.common
.state
= SB_ENABLED
;
5986 sb_data_e1x
.common
.p_func
.pf_id
= BP_FUNC(bp
);
5987 sb_data_e1x
.common
.p_func
.vf_id
= 0xff;
5988 sb_data_e1x
.common
.p_func
.vf_valid
= false;
5989 sb_data_e1x
.common
.p_func
.vnic_id
= BP_VN(bp
);
5990 sb_data_e1x
.common
.same_igu_sb_1b
= true;
5991 sb_data_e1x
.common
.host_sb_addr
.hi
= U64_HI(mapping
);
5992 sb_data_e1x
.common
.host_sb_addr
.lo
= U64_LO(mapping
);
5993 hc_sm_p
= sb_data_e1x
.common
.state_machine
;
5994 sb_data_p
= (u32
*)&sb_data_e1x
;
5995 data_size
= sizeof(struct hc_status_block_data_e1x
)/sizeof(u32
);
5996 bnx2x_map_sb_state_machines(sb_data_e1x
.index_data
);
5999 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_RX_ID
],
6000 igu_sb_id
, igu_seg_id
);
6001 bnx2x_setup_ndsb_state_machine(&hc_sm_p
[SM_TX_ID
],
6002 igu_sb_id
, igu_seg_id
);
6004 DP(NETIF_MSG_IFUP
, "Init FW SB %d\n", fw_sb_id
);
6006 /* write indices to HW - PCI guarantees endianity of regpairs */
6007 bnx2x_wr_fp_sb_data(bp
, fw_sb_id
, sb_data_p
, data_size
);
6010 static void bnx2x_update_coalesce_sb(struct bnx2x
*bp
, u8 fw_sb_id
,
6011 u16 tx_usec
, u16 rx_usec
)
6013 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
, HC_INDEX_ETH_RX_CQ_CONS
,
6015 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
6016 HC_INDEX_ETH_TX_CQ_CONS_COS0
, false,
6018 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
6019 HC_INDEX_ETH_TX_CQ_CONS_COS1
, false,
6021 bnx2x_update_coalesce_sb_index(bp
, fw_sb_id
,
6022 HC_INDEX_ETH_TX_CQ_CONS_COS2
, false,
6026 static void bnx2x_init_def_sb(struct bnx2x
*bp
)
6028 struct host_sp_status_block
*def_sb
= bp
->def_status_blk
;
6029 dma_addr_t mapping
= bp
->def_status_blk_mapping
;
6030 int igu_sp_sb_index
;
6032 int port
= BP_PORT(bp
);
6033 int func
= BP_FUNC(bp
);
6034 int reg_offset
, reg_offset_en5
;
6037 struct hc_sp_status_block_data sp_sb_data
;
6038 memset(&sp_sb_data
, 0, sizeof(struct hc_sp_status_block_data
));
6040 if (CHIP_INT_MODE_IS_BC(bp
)) {
6041 igu_sp_sb_index
= DEF_SB_IGU_ID
;
6042 igu_seg_id
= HC_SEG_ACCESS_DEF
;
6044 igu_sp_sb_index
= bp
->igu_dsb_id
;
6045 igu_seg_id
= IGU_SEG_ACCESS_DEF
;
6049 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
6050 atten_status_block
);
6051 def_sb
->atten_status_block
.status_block_id
= igu_sp_sb_index
;
6055 reg_offset
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
6056 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
6057 reg_offset_en5
= (port
? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0
:
6058 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0
);
6059 for (index
= 0; index
< MAX_DYNAMIC_ATTN_GRPS
; index
++) {
6061 /* take care of sig[0]..sig[4] */
6062 for (sindex
= 0; sindex
< 4; sindex
++)
6063 bp
->attn_group
[index
].sig
[sindex
] =
6064 REG_RD(bp
, reg_offset
+ sindex
*0x4 + 0x10*index
);
6066 if (!CHIP_IS_E1x(bp
))
6068 * enable5 is separate from the rest of the registers,
6069 * and therefore the address skip is 4
6070 * and not 16 between the different groups
6072 bp
->attn_group
[index
].sig
[4] = REG_RD(bp
,
6073 reg_offset_en5
+ 0x4*index
);
6075 bp
->attn_group
[index
].sig
[4] = 0;
6078 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
6079 reg_offset
= (port
? HC_REG_ATTN_MSG1_ADDR_L
:
6080 HC_REG_ATTN_MSG0_ADDR_L
);
6082 REG_WR(bp
, reg_offset
, U64_LO(section
));
6083 REG_WR(bp
, reg_offset
+ 4, U64_HI(section
));
6084 } else if (!CHIP_IS_E1x(bp
)) {
6085 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_L
, U64_LO(section
));
6086 REG_WR(bp
, IGU_REG_ATTN_MSG_ADDR_H
, U64_HI(section
));
6089 section
= ((u64
)mapping
) + offsetof(struct host_sp_status_block
,
6092 bnx2x_zero_sp_sb(bp
);
6094 /* PCI guarantees endianity of regpairs */
6095 sp_sb_data
.state
= SB_ENABLED
;
6096 sp_sb_data
.host_sb_addr
.lo
= U64_LO(section
);
6097 sp_sb_data
.host_sb_addr
.hi
= U64_HI(section
);
6098 sp_sb_data
.igu_sb_id
= igu_sp_sb_index
;
6099 sp_sb_data
.igu_seg_id
= igu_seg_id
;
6100 sp_sb_data
.p_func
.pf_id
= func
;
6101 sp_sb_data
.p_func
.vnic_id
= BP_VN(bp
);
6102 sp_sb_data
.p_func
.vf_id
= 0xff;
6104 bnx2x_wr_sp_sb_data(bp
, &sp_sb_data
);
6106 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
, USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
6109 void bnx2x_update_coalesce(struct bnx2x
*bp
)
6113 for_each_eth_queue(bp
, i
)
6114 bnx2x_update_coalesce_sb(bp
, bp
->fp
[i
].fw_sb_id
,
6115 bp
->tx_ticks
, bp
->rx_ticks
);
6118 static void bnx2x_init_sp_ring(struct bnx2x
*bp
)
6120 spin_lock_init(&bp
->spq_lock
);
6121 atomic_set(&bp
->cq_spq_left
, MAX_SPQ_PENDING
);
6123 bp
->spq_prod_idx
= 0;
6124 bp
->dsb_sp_prod
= BNX2X_SP_DSB_INDEX
;
6125 bp
->spq_prod_bd
= bp
->spq
;
6126 bp
->spq_last_bd
= bp
->spq_prod_bd
+ MAX_SP_DESC_CNT
;
6129 static void bnx2x_init_eq_ring(struct bnx2x
*bp
)
6132 for (i
= 1; i
<= NUM_EQ_PAGES
; i
++) {
6133 union event_ring_elem
*elem
=
6134 &bp
->eq_ring
[EQ_DESC_CNT_PAGE
* i
- 1];
6136 elem
->next_page
.addr
.hi
=
6137 cpu_to_le32(U64_HI(bp
->eq_mapping
+
6138 BCM_PAGE_SIZE
* (i
% NUM_EQ_PAGES
)));
6139 elem
->next_page
.addr
.lo
=
6140 cpu_to_le32(U64_LO(bp
->eq_mapping
+
6141 BCM_PAGE_SIZE
*(i
% NUM_EQ_PAGES
)));
6144 bp
->eq_prod
= NUM_EQ_DESC
;
6145 bp
->eq_cons_sb
= BNX2X_EQ_INDEX
;
6146 /* we want a warning message before it gets wrought... */
6147 atomic_set(&bp
->eq_spq_left
,
6148 min_t(int, MAX_SP_DESC_CNT
- MAX_SPQ_PENDING
, NUM_EQ_DESC
) - 1);
6151 /* called with netif_addr_lock_bh() */
6152 static int bnx2x_set_q_rx_mode(struct bnx2x
*bp
, u8 cl_id
,
6153 unsigned long rx_mode_flags
,
6154 unsigned long rx_accept_flags
,
6155 unsigned long tx_accept_flags
,
6156 unsigned long ramrod_flags
)
6158 struct bnx2x_rx_mode_ramrod_params ramrod_param
;
6161 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
6163 /* Prepare ramrod parameters */
6164 ramrod_param
.cid
= 0;
6165 ramrod_param
.cl_id
= cl_id
;
6166 ramrod_param
.rx_mode_obj
= &bp
->rx_mode_obj
;
6167 ramrod_param
.func_id
= BP_FUNC(bp
);
6169 ramrod_param
.pstate
= &bp
->sp_state
;
6170 ramrod_param
.state
= BNX2X_FILTER_RX_MODE_PENDING
;
6172 ramrod_param
.rdata
= bnx2x_sp(bp
, rx_mode_rdata
);
6173 ramrod_param
.rdata_mapping
= bnx2x_sp_mapping(bp
, rx_mode_rdata
);
6175 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
);
6177 ramrod_param
.ramrod_flags
= ramrod_flags
;
6178 ramrod_param
.rx_mode_flags
= rx_mode_flags
;
6180 ramrod_param
.rx_accept_flags
= rx_accept_flags
;
6181 ramrod_param
.tx_accept_flags
= tx_accept_flags
;
6183 rc
= bnx2x_config_rx_mode(bp
, &ramrod_param
);
6185 BNX2X_ERR("Set rx_mode %d failed\n", bp
->rx_mode
);
6192 static int bnx2x_fill_accept_flags(struct bnx2x
*bp
, u32 rx_mode
,
6193 unsigned long *rx_accept_flags
,
6194 unsigned long *tx_accept_flags
)
6196 /* Clear the flags first */
6197 *rx_accept_flags
= 0;
6198 *tx_accept_flags
= 0;
6201 case BNX2X_RX_MODE_NONE
:
6203 * 'drop all' supersedes any accept flags that may have been
6204 * passed to the function.
6207 case BNX2X_RX_MODE_NORMAL
:
6208 __set_bit(BNX2X_ACCEPT_UNICAST
, rx_accept_flags
);
6209 __set_bit(BNX2X_ACCEPT_MULTICAST
, rx_accept_flags
);
6210 __set_bit(BNX2X_ACCEPT_BROADCAST
, rx_accept_flags
);
6212 /* internal switching mode */
6213 __set_bit(BNX2X_ACCEPT_UNICAST
, tx_accept_flags
);
6214 __set_bit(BNX2X_ACCEPT_MULTICAST
, tx_accept_flags
);
6215 __set_bit(BNX2X_ACCEPT_BROADCAST
, tx_accept_flags
);
6217 if (bp
->accept_any_vlan
) {
6218 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, rx_accept_flags
);
6219 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, tx_accept_flags
);
6223 case BNX2X_RX_MODE_ALLMULTI
:
6224 __set_bit(BNX2X_ACCEPT_UNICAST
, rx_accept_flags
);
6225 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, rx_accept_flags
);
6226 __set_bit(BNX2X_ACCEPT_BROADCAST
, rx_accept_flags
);
6228 /* internal switching mode */
6229 __set_bit(BNX2X_ACCEPT_UNICAST
, tx_accept_flags
);
6230 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, tx_accept_flags
);
6231 __set_bit(BNX2X_ACCEPT_BROADCAST
, tx_accept_flags
);
6233 if (bp
->accept_any_vlan
) {
6234 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, rx_accept_flags
);
6235 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, tx_accept_flags
);
6239 case BNX2X_RX_MODE_PROMISC
:
6240 /* According to definition of SI mode, iface in promisc mode
6241 * should receive matched and unmatched (in resolution of port)
6244 __set_bit(BNX2X_ACCEPT_UNMATCHED
, rx_accept_flags
);
6245 __set_bit(BNX2X_ACCEPT_UNICAST
, rx_accept_flags
);
6246 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, rx_accept_flags
);
6247 __set_bit(BNX2X_ACCEPT_BROADCAST
, rx_accept_flags
);
6249 /* internal switching mode */
6250 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, tx_accept_flags
);
6251 __set_bit(BNX2X_ACCEPT_BROADCAST
, tx_accept_flags
);
6254 __set_bit(BNX2X_ACCEPT_ALL_UNICAST
, tx_accept_flags
);
6256 __set_bit(BNX2X_ACCEPT_UNICAST
, tx_accept_flags
);
6258 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, rx_accept_flags
);
6259 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, tx_accept_flags
);
6263 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode
);
6270 /* called with netif_addr_lock_bh() */
6271 static int bnx2x_set_storm_rx_mode(struct bnx2x
*bp
)
6273 unsigned long rx_mode_flags
= 0, ramrod_flags
= 0;
6274 unsigned long rx_accept_flags
= 0, tx_accept_flags
= 0;
6278 /* Configure rx_mode of FCoE Queue */
6279 __set_bit(BNX2X_RX_MODE_FCOE_ETH
, &rx_mode_flags
);
6281 rc
= bnx2x_fill_accept_flags(bp
, bp
->rx_mode
, &rx_accept_flags
,
6286 __set_bit(RAMROD_RX
, &ramrod_flags
);
6287 __set_bit(RAMROD_TX
, &ramrod_flags
);
6289 return bnx2x_set_q_rx_mode(bp
, bp
->fp
->cl_id
, rx_mode_flags
,
6290 rx_accept_flags
, tx_accept_flags
,
6294 static void bnx2x_init_internal_common(struct bnx2x
*bp
)
6298 /* Zero this manually as its initialization is
6299 currently missing in the initTool */
6300 for (i
= 0; i
< (USTORM_AGG_DATA_SIZE
>> 2); i
++)
6301 REG_WR(bp
, BAR_USTRORM_INTMEM
+
6302 USTORM_AGG_DATA_OFFSET
+ i
* 4, 0);
6303 if (!CHIP_IS_E1x(bp
)) {
6304 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_IGU_MODE_OFFSET
,
6305 CHIP_INT_MODE_IS_BC(bp
) ?
6306 HC_IGU_BC_MODE
: HC_IGU_NBC_MODE
);
6310 static void bnx2x_init_internal(struct bnx2x
*bp
, u32 load_code
)
6312 switch (load_code
) {
6313 case FW_MSG_CODE_DRV_LOAD_COMMON
:
6314 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
:
6315 bnx2x_init_internal_common(bp
);
6318 case FW_MSG_CODE_DRV_LOAD_PORT
:
6322 case FW_MSG_CODE_DRV_LOAD_FUNCTION
:
6323 /* internal memory per function is
6324 initialized inside bnx2x_pf_init */
6328 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code
);
6333 static inline u8
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath
*fp
)
6335 return fp
->bp
->igu_base_sb
+ fp
->index
+ CNIC_SUPPORT(fp
->bp
);
6338 static inline u8
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath
*fp
)
6340 return fp
->bp
->base_fw_ndsb
+ fp
->index
+ CNIC_SUPPORT(fp
->bp
);
6343 static u8
bnx2x_fp_cl_id(struct bnx2x_fastpath
*fp
)
6345 if (CHIP_IS_E1x(fp
->bp
))
6346 return BP_L_ID(fp
->bp
) + fp
->index
;
6347 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6348 return bnx2x_fp_igu_sb_id(fp
);
6351 static void bnx2x_init_eth_fp(struct bnx2x
*bp
, int fp_idx
)
6353 struct bnx2x_fastpath
*fp
= &bp
->fp
[fp_idx
];
6355 unsigned long q_type
= 0;
6356 u32 cids
[BNX2X_MULTI_TX_COS
] = { 0 };
6357 fp
->rx_queue
= fp_idx
;
6359 fp
->cl_id
= bnx2x_fp_cl_id(fp
);
6360 fp
->fw_sb_id
= bnx2x_fp_fw_sb_id(fp
);
6361 fp
->igu_sb_id
= bnx2x_fp_igu_sb_id(fp
);
6362 /* qZone id equals to FW (per path) client id */
6363 fp
->cl_qzone_id
= bnx2x_fp_qzone_id(fp
);
6366 fp
->ustorm_rx_prods_offset
= bnx2x_rx_ustorm_prods_offset(fp
);
6368 /* Setup SB indices */
6369 fp
->rx_cons_sb
= BNX2X_RX_SB_INDEX
;
6371 /* Configure Queue State object */
6372 __set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
6373 __set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
6375 BUG_ON(fp
->max_cos
> BNX2X_MULTI_TX_COS
);
6378 for_each_cos_in_tx_queue(fp
, cos
) {
6379 bnx2x_init_txdata(bp
, fp
->txdata_ptr
[cos
],
6380 CID_COS_TO_TX_ONLY_CID(fp
->cid
, cos
, bp
),
6381 FP_COS_TO_TXQ(fp
, cos
, bp
),
6382 BNX2X_TX_SB_INDEX_BASE
+ cos
, fp
);
6383 cids
[cos
] = fp
->txdata_ptr
[cos
]->cid
;
6386 /* nothing more for vf to do here */
6390 bnx2x_init_sb(bp
, fp
->status_blk_mapping
, BNX2X_VF_ID_INVALID
, false,
6391 fp
->fw_sb_id
, fp
->igu_sb_id
);
6392 bnx2x_update_fpsb_idx(fp
);
6393 bnx2x_init_queue_obj(bp
, &bnx2x_sp_obj(bp
, fp
).q_obj
, fp
->cl_id
, cids
,
6394 fp
->max_cos
, BP_FUNC(bp
), bnx2x_sp(bp
, q_rdata
),
6395 bnx2x_sp_mapping(bp
, q_rdata
), q_type
);
6398 * Configure classification DBs: Always enable Tx switching
6400 bnx2x_init_vlan_mac_fp_objs(fp
, BNX2X_OBJ_TYPE_RX_TX
);
6403 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6404 fp_idx
, bp
, fp
->status_blk
.e2_sb
, fp
->cl_id
, fp
->fw_sb_id
,
6408 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata
*txdata
)
6412 for (i
= 1; i
<= NUM_TX_RINGS
; i
++) {
6413 struct eth_tx_next_bd
*tx_next_bd
=
6414 &txdata
->tx_desc_ring
[TX_DESC_CNT
* i
- 1].next_bd
;
6416 tx_next_bd
->addr_hi
=
6417 cpu_to_le32(U64_HI(txdata
->tx_desc_mapping
+
6418 BCM_PAGE_SIZE
*(i
% NUM_TX_RINGS
)));
6419 tx_next_bd
->addr_lo
=
6420 cpu_to_le32(U64_LO(txdata
->tx_desc_mapping
+
6421 BCM_PAGE_SIZE
*(i
% NUM_TX_RINGS
)));
6424 *txdata
->tx_cons_sb
= cpu_to_le16(0);
6426 SET_FLAG(txdata
->tx_db
.data
.header
.header
, DOORBELL_HDR_DB_TYPE
, 1);
6427 txdata
->tx_db
.data
.zero_fill1
= 0;
6428 txdata
->tx_db
.data
.prod
= 0;
6430 txdata
->tx_pkt_prod
= 0;
6431 txdata
->tx_pkt_cons
= 0;
6432 txdata
->tx_bd_prod
= 0;
6433 txdata
->tx_bd_cons
= 0;
6437 static void bnx2x_init_tx_rings_cnic(struct bnx2x
*bp
)
6441 for_each_tx_queue_cnic(bp
, i
)
6442 bnx2x_init_tx_ring_one(bp
->fp
[i
].txdata_ptr
[0]);
6445 static void bnx2x_init_tx_rings(struct bnx2x
*bp
)
6450 for_each_eth_queue(bp
, i
)
6451 for_each_cos_in_tx_queue(&bp
->fp
[i
], cos
)
6452 bnx2x_init_tx_ring_one(bp
->fp
[i
].txdata_ptr
[cos
]);
6455 static void bnx2x_init_fcoe_fp(struct bnx2x
*bp
)
6457 struct bnx2x_fastpath
*fp
= bnx2x_fcoe_fp(bp
);
6458 unsigned long q_type
= 0;
6460 bnx2x_fcoe(bp
, rx_queue
) = BNX2X_NUM_ETH_QUEUES(bp
);
6461 bnx2x_fcoe(bp
, cl_id
) = bnx2x_cnic_eth_cl_id(bp
,
6462 BNX2X_FCOE_ETH_CL_ID_IDX
);
6463 bnx2x_fcoe(bp
, cid
) = BNX2X_FCOE_ETH_CID(bp
);
6464 bnx2x_fcoe(bp
, fw_sb_id
) = DEF_SB_ID
;
6465 bnx2x_fcoe(bp
, igu_sb_id
) = bp
->igu_dsb_id
;
6466 bnx2x_fcoe(bp
, rx_cons_sb
) = BNX2X_FCOE_L2_RX_INDEX
;
6467 bnx2x_init_txdata(bp
, bnx2x_fcoe(bp
, txdata_ptr
[0]),
6468 fp
->cid
, FCOE_TXQ_IDX(bp
), BNX2X_FCOE_L2_TX_INDEX
,
6471 DP(NETIF_MSG_IFUP
, "created fcoe tx data (fp index %d)\n", fp
->index
);
6473 /* qZone id equals to FW (per path) client id */
6474 bnx2x_fcoe(bp
, cl_qzone_id
) = bnx2x_fp_qzone_id(fp
);
6476 bnx2x_fcoe(bp
, ustorm_rx_prods_offset
) =
6477 bnx2x_rx_ustorm_prods_offset(fp
);
6479 /* Configure Queue State object */
6480 __set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
6481 __set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
6483 /* No multi-CoS for FCoE L2 client */
6484 BUG_ON(fp
->max_cos
!= 1);
6486 bnx2x_init_queue_obj(bp
, &bnx2x_sp_obj(bp
, fp
).q_obj
, fp
->cl_id
,
6487 &fp
->cid
, 1, BP_FUNC(bp
), bnx2x_sp(bp
, q_rdata
),
6488 bnx2x_sp_mapping(bp
, q_rdata
), q_type
);
6491 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6492 fp
->index
, bp
, fp
->status_blk
.e2_sb
, fp
->cl_id
, fp
->fw_sb_id
,
6496 void bnx2x_nic_init_cnic(struct bnx2x
*bp
)
6499 bnx2x_init_fcoe_fp(bp
);
6501 bnx2x_init_sb(bp
, bp
->cnic_sb_mapping
,
6502 BNX2X_VF_ID_INVALID
, false,
6503 bnx2x_cnic_fw_sb_id(bp
), bnx2x_cnic_igu_sb_id(bp
));
6505 /* ensure status block indices were read */
6507 bnx2x_init_rx_rings_cnic(bp
);
6508 bnx2x_init_tx_rings_cnic(bp
);
6514 void bnx2x_pre_irq_nic_init(struct bnx2x
*bp
)
6518 /* Setup NIC internals and enable interrupts */
6519 for_each_eth_queue(bp
, i
)
6520 bnx2x_init_eth_fp(bp
, i
);
6522 /* ensure status block indices were read */
6524 bnx2x_init_rx_rings(bp
);
6525 bnx2x_init_tx_rings(bp
);
6528 /* Initialize MOD_ABS interrupts */
6529 bnx2x_init_mod_abs_int(bp
, &bp
->link_vars
, bp
->common
.chip_id
,
6530 bp
->common
.shmem_base
,
6531 bp
->common
.shmem2_base
, BP_PORT(bp
));
6533 /* initialize the default status block and sp ring */
6534 bnx2x_init_def_sb(bp
);
6535 bnx2x_update_dsb_idx(bp
);
6536 bnx2x_init_sp_ring(bp
);
6538 bnx2x_memset_stats(bp
);
6542 void bnx2x_post_irq_nic_init(struct bnx2x
*bp
, u32 load_code
)
6544 bnx2x_init_eq_ring(bp
);
6545 bnx2x_init_internal(bp
, load_code
);
6547 bnx2x_stats_init(bp
);
6549 /* flush all before enabling interrupts */
6552 bnx2x_int_enable(bp
);
6554 /* Check for SPIO5 */
6555 bnx2x_attn_int_deasserted0(bp
,
6556 REG_RD(bp
, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0
+ BP_PORT(bp
)*4) &
6557 AEU_INPUTS_ATTN_BITS_SPIO5
);
6560 /* gzip service functions */
6561 static int bnx2x_gunzip_init(struct bnx2x
*bp
)
6563 bp
->gunzip_buf
= dma_alloc_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
,
6564 &bp
->gunzip_mapping
, GFP_KERNEL
);
6565 if (bp
->gunzip_buf
== NULL
)
6568 bp
->strm
= kmalloc(sizeof(*bp
->strm
), GFP_KERNEL
);
6569 if (bp
->strm
== NULL
)
6572 bp
->strm
->workspace
= vmalloc(zlib_inflate_workspacesize());
6573 if (bp
->strm
->workspace
== NULL
)
6583 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
6584 bp
->gunzip_mapping
);
6585 bp
->gunzip_buf
= NULL
;
6588 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6592 static void bnx2x_gunzip_end(struct bnx2x
*bp
)
6595 vfree(bp
->strm
->workspace
);
6600 if (bp
->gunzip_buf
) {
6601 dma_free_coherent(&bp
->pdev
->dev
, FW_BUF_SIZE
, bp
->gunzip_buf
,
6602 bp
->gunzip_mapping
);
6603 bp
->gunzip_buf
= NULL
;
6607 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
)
6611 /* check gzip header */
6612 if ((zbuf
[0] != 0x1f) || (zbuf
[1] != 0x8b) || (zbuf
[2] != Z_DEFLATED
)) {
6613 BNX2X_ERR("Bad gzip header\n");
6621 if (zbuf
[3] & FNAME
)
6622 while ((zbuf
[n
++] != 0) && (n
< len
));
6624 bp
->strm
->next_in
= (typeof(bp
->strm
->next_in
))zbuf
+ n
;
6625 bp
->strm
->avail_in
= len
- n
;
6626 bp
->strm
->next_out
= bp
->gunzip_buf
;
6627 bp
->strm
->avail_out
= FW_BUF_SIZE
;
6629 rc
= zlib_inflateInit2(bp
->strm
, -MAX_WBITS
);
6633 rc
= zlib_inflate(bp
->strm
, Z_FINISH
);
6634 if ((rc
!= Z_OK
) && (rc
!= Z_STREAM_END
))
6635 netdev_err(bp
->dev
, "Firmware decompression error: %s\n",
6638 bp
->gunzip_outlen
= (FW_BUF_SIZE
- bp
->strm
->avail_out
);
6639 if (bp
->gunzip_outlen
& 0x3)
6641 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6643 bp
->gunzip_outlen
>>= 2;
6645 zlib_inflateEnd(bp
->strm
);
6647 if (rc
== Z_STREAM_END
)
6653 /* nic load/unload */
6656 * General service functions
6659 /* send a NIG loopback debug packet */
6660 static void bnx2x_lb_pckt(struct bnx2x
*bp
)
6664 /* Ethernet source and destination addresses */
6665 wb_write
[0] = 0x55555555;
6666 wb_write
[1] = 0x55555555;
6667 wb_write
[2] = 0x20; /* SOP */
6668 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
6670 /* NON-IP protocol */
6671 wb_write
[0] = 0x09000000;
6672 wb_write
[1] = 0x55555555;
6673 wb_write
[2] = 0x10; /* EOP, eop_bvalid = 0 */
6674 REG_WR_DMAE(bp
, NIG_REG_DEBUG_PACKET_LB
, wb_write
, 3);
6677 /* some of the internal memories
6678 * are not directly readable from the driver
6679 * to test them we send debug packets
6681 static int bnx2x_int_mem_test(struct bnx2x
*bp
)
6687 if (CHIP_REV_IS_FPGA(bp
))
6689 else if (CHIP_REV_IS_EMUL(bp
))
6694 /* Disable inputs of parser neighbor blocks */
6695 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
6696 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
6697 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
6698 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
6700 /* Write 0 to parser credits for CFC search request */
6701 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
6703 /* send Ethernet packet */
6706 /* TODO do i reset NIG statistic? */
6707 /* Wait until NIG register shows 1 packet of size 0x10 */
6708 count
= 1000 * factor
;
6711 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
6712 val
= *bnx2x_sp(bp
, wb_data
[0]);
6716 usleep_range(10000, 20000);
6720 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
6724 /* Wait until PRS register shows 1 packet */
6725 count
= 1000 * factor
;
6727 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
6731 usleep_range(10000, 20000);
6735 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
6739 /* Reset and init BRB, PRS */
6740 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
6742 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
6744 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6745 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6747 DP(NETIF_MSG_HW
, "part2\n");
6749 /* Disable inputs of parser neighbor blocks */
6750 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x0);
6751 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x0);
6752 REG_WR(bp
, CFC_REG_DEBUG0
, 0x1);
6753 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x0);
6755 /* Write 0 to parser credits for CFC search request */
6756 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x0);
6758 /* send 10 Ethernet packets */
6759 for (i
= 0; i
< 10; i
++)
6762 /* Wait until NIG register shows 10 + 1
6763 packets of size 11*0x10 = 0xb0 */
6764 count
= 1000 * factor
;
6767 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
6768 val
= *bnx2x_sp(bp
, wb_data
[0]);
6772 usleep_range(10000, 20000);
6776 BNX2X_ERR("NIG timeout val = 0x%x\n", val
);
6780 /* Wait until PRS register shows 2 packets */
6781 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
6783 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
6785 /* Write 1 to parser credits for CFC search request */
6786 REG_WR(bp
, PRS_REG_CFC_SEARCH_INITIAL_CREDIT
, 0x1);
6788 /* Wait until PRS register shows 3 packets */
6789 msleep(10 * factor
);
6790 /* Wait until NIG register shows 1 packet of size 0x10 */
6791 val
= REG_RD(bp
, PRS_REG_NUM_OF_PACKETS
);
6793 BNX2X_ERR("PRS timeout val = 0x%x\n", val
);
6795 /* clear NIG EOP FIFO */
6796 for (i
= 0; i
< 11; i
++)
6797 REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_FIFO
);
6798 val
= REG_RD(bp
, NIG_REG_INGRESS_EOP_LB_EMPTY
);
6800 BNX2X_ERR("clear of NIG failed\n");
6804 /* Reset and init BRB, PRS, NIG */
6805 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
, 0x03);
6807 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0x03);
6809 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
6810 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
6811 if (!CNIC_SUPPORT(bp
))
6813 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
6815 /* Enable inputs of parser neighbor blocks */
6816 REG_WR(bp
, TSDM_REG_ENABLE_IN1
, 0x7fffffff);
6817 REG_WR(bp
, TCM_REG_PRS_IFEN
, 0x1);
6818 REG_WR(bp
, CFC_REG_DEBUG0
, 0x0);
6819 REG_WR(bp
, NIG_REG_PRS_REQ_IN_EN
, 0x1);
6821 DP(NETIF_MSG_HW
, "done\n");
6826 static void bnx2x_enable_blocks_attention(struct bnx2x
*bp
)
6830 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
6831 if (!CHIP_IS_E1x(bp
))
6832 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0x40);
6834 REG_WR(bp
, PXP_REG_PXP_INT_MASK_1
, 0);
6835 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
6836 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
6838 * mask read length error interrupts in brb for parser
6839 * (parsing unit and 'checksum and crc' unit)
6840 * these errors are legal (PU reads fixed length and CAC can cause
6841 * read length error on truncated packets)
6843 REG_WR(bp
, BRB1_REG_BRB1_INT_MASK
, 0xFC00);
6844 REG_WR(bp
, QM_REG_QM_INT_MASK
, 0);
6845 REG_WR(bp
, TM_REG_TM_INT_MASK
, 0);
6846 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_0
, 0);
6847 REG_WR(bp
, XSDM_REG_XSDM_INT_MASK_1
, 0);
6848 REG_WR(bp
, XCM_REG_XCM_INT_MASK
, 0);
6849 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6850 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6851 REG_WR(bp
, USDM_REG_USDM_INT_MASK_0
, 0);
6852 REG_WR(bp
, USDM_REG_USDM_INT_MASK_1
, 0);
6853 REG_WR(bp
, UCM_REG_UCM_INT_MASK
, 0);
6854 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6855 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6856 REG_WR(bp
, GRCBASE_UPB
+ PB_REG_PB_INT_MASK
, 0);
6857 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_0
, 0);
6858 REG_WR(bp
, CSDM_REG_CSDM_INT_MASK_1
, 0);
6859 REG_WR(bp
, CCM_REG_CCM_INT_MASK
, 0);
6860 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6861 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6863 val
= PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
|
6864 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
|
6865 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
;
6866 if (!CHIP_IS_E1x(bp
))
6867 val
|= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
|
6868 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED
;
6869 REG_WR(bp
, PXP2_REG_PXP2_INT_MASK_0
, val
);
6871 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_0
, 0);
6872 REG_WR(bp
, TSDM_REG_TSDM_INT_MASK_1
, 0);
6873 REG_WR(bp
, TCM_REG_TCM_INT_MASK
, 0);
6874 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6876 if (!CHIP_IS_E1x(bp
))
6877 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6878 REG_WR(bp
, TSEM_REG_TSEM_INT_MASK_1
, 0x07ff);
6880 REG_WR(bp
, CDU_REG_CDU_INT_MASK
, 0);
6881 REG_WR(bp
, DMAE_REG_DMAE_INT_MASK
, 0);
6882 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6883 REG_WR(bp
, PBF_REG_PBF_INT_MASK
, 0x18); /* bit 3,4 masked */
6886 static void bnx2x_reset_common(struct bnx2x
*bp
)
6891 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
6894 if (CHIP_IS_E3(bp
)) {
6895 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
6896 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
6899 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
, val
);
6902 static void bnx2x_setup_dmae(struct bnx2x
*bp
)
6905 spin_lock_init(&bp
->dmae_lock
);
6908 static void bnx2x_init_pxp(struct bnx2x
*bp
)
6911 int r_order
, w_order
;
6913 pcie_capability_read_word(bp
->pdev
, PCI_EXP_DEVCTL
, &devctl
);
6914 DP(NETIF_MSG_HW
, "read 0x%x from devctl\n", devctl
);
6915 w_order
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
6917 r_order
= ((devctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
6919 DP(NETIF_MSG_HW
, "force read order to %d\n", bp
->mrrs
);
6923 bnx2x_init_pxp_arb(bp
, r_order
, w_order
);
6926 static void bnx2x_setup_fan_failure_detection(struct bnx2x
*bp
)
6936 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config2
) &
6937 SHARED_HW_CFG_FAN_FAILURE_MASK
;
6939 if (val
== SHARED_HW_CFG_FAN_FAILURE_ENABLED
)
6943 * The fan failure mechanism is usually related to the PHY type since
6944 * the power consumption of the board is affected by the PHY. Currently,
6945 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6947 else if (val
== SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE
)
6948 for (port
= PORT_0
; port
< PORT_MAX
; port
++) {
6950 bnx2x_fan_failure_det_req(
6952 bp
->common
.shmem_base
,
6953 bp
->common
.shmem2_base
,
6957 DP(NETIF_MSG_HW
, "fan detection setting: %d\n", is_required
);
6959 if (is_required
== 0)
6962 /* Fan failure is indicated by SPIO 5 */
6963 bnx2x_set_spio(bp
, MISC_SPIO_SPIO5
, MISC_SPIO_INPUT_HI_Z
);
6965 /* set to active low mode */
6966 val
= REG_RD(bp
, MISC_REG_SPIO_INT
);
6967 val
|= (MISC_SPIO_SPIO5
<< MISC_SPIO_INT_OLD_SET_POS
);
6968 REG_WR(bp
, MISC_REG_SPIO_INT
, val
);
6970 /* enable interrupt to signal the IGU */
6971 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
6972 val
|= MISC_SPIO_SPIO5
;
6973 REG_WR(bp
, MISC_REG_SPIO_EVENT_EN
, val
);
6976 void bnx2x_pf_disable(struct bnx2x
*bp
)
6978 u32 val
= REG_RD(bp
, IGU_REG_PF_CONFIGURATION
);
6979 val
&= ~IGU_PF_CONF_FUNC_EN
;
6981 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, val
);
6982 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 0);
6983 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 0);
6986 static void bnx2x__common_init_phy(struct bnx2x
*bp
)
6988 u32 shmem_base
[2], shmem2_base
[2];
6989 /* Avoid common init in case MFW supports LFA */
6990 if (SHMEM2_RD(bp
, size
) >
6991 (u32
)offsetof(struct shmem2_region
, lfa_host_addr
[BP_PORT(bp
)]))
6993 shmem_base
[0] = bp
->common
.shmem_base
;
6994 shmem2_base
[0] = bp
->common
.shmem2_base
;
6995 if (!CHIP_IS_E1x(bp
)) {
6997 SHMEM2_RD(bp
, other_shmem_base_addr
);
6999 SHMEM2_RD(bp
, other_shmem2_base_addr
);
7001 bnx2x_acquire_phy_lock(bp
);
7002 bnx2x_common_init_phy(bp
, shmem_base
, shmem2_base
,
7003 bp
->common
.chip_id
);
7004 bnx2x_release_phy_lock(bp
);
7007 static void bnx2x_config_endianity(struct bnx2x
*bp
, u32 val
)
7009 REG_WR(bp
, PXP2_REG_RQ_QM_ENDIAN_M
, val
);
7010 REG_WR(bp
, PXP2_REG_RQ_TM_ENDIAN_M
, val
);
7011 REG_WR(bp
, PXP2_REG_RQ_SRC_ENDIAN_M
, val
);
7012 REG_WR(bp
, PXP2_REG_RQ_CDU_ENDIAN_M
, val
);
7013 REG_WR(bp
, PXP2_REG_RQ_DBG_ENDIAN_M
, val
);
7015 /* make sure this value is 0 */
7016 REG_WR(bp
, PXP2_REG_RQ_HC_ENDIAN_M
, 0);
7018 REG_WR(bp
, PXP2_REG_RD_QM_SWAP_MODE
, val
);
7019 REG_WR(bp
, PXP2_REG_RD_TM_SWAP_MODE
, val
);
7020 REG_WR(bp
, PXP2_REG_RD_SRC_SWAP_MODE
, val
);
7021 REG_WR(bp
, PXP2_REG_RD_CDURD_SWAP_MODE
, val
);
7024 static void bnx2x_set_endianity(struct bnx2x
*bp
)
7027 bnx2x_config_endianity(bp
, 1);
7029 bnx2x_config_endianity(bp
, 0);
7033 static void bnx2x_reset_endianity(struct bnx2x
*bp
)
7035 bnx2x_config_endianity(bp
, 0);
7039 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7041 * @bp: driver handle
7043 static int bnx2x_init_hw_common(struct bnx2x
*bp
)
7047 DP(NETIF_MSG_HW
, "starting common init func %d\n", BP_ABS_FUNC(bp
));
7050 * take the RESET lock to protect undi_unload flow from accessing
7051 * registers while we're resetting the chip
7053 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
7055 bnx2x_reset_common(bp
);
7056 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, 0xffffffff);
7059 if (CHIP_IS_E3(bp
)) {
7060 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT0
;
7061 val
|= MISC_REGISTERS_RESET_REG_2_MSTAT1
;
7063 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
, val
);
7065 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
7067 bnx2x_init_block(bp
, BLOCK_MISC
, PHASE_COMMON
);
7069 if (!CHIP_IS_E1x(bp
)) {
7073 * 4-port mode or 2-port mode we need to turn of master-enable
7074 * for everyone, after that, turn it back on for self.
7075 * so, we disregard multi-function or not, and always disable
7076 * for all functions on the given path, this means 0,2,4,6 for
7077 * path 0 and 1,3,5,7 for path 1
7079 for (abs_func_id
= BP_PATH(bp
);
7080 abs_func_id
< E2_FUNC_MAX
*2; abs_func_id
+= 2) {
7081 if (abs_func_id
== BP_ABS_FUNC(bp
)) {
7083 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
,
7088 bnx2x_pretend_func(bp
, abs_func_id
);
7089 /* clear pf enable */
7090 bnx2x_pf_disable(bp
);
7091 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
7095 bnx2x_init_block(bp
, BLOCK_PXP
, PHASE_COMMON
);
7096 if (CHIP_IS_E1(bp
)) {
7097 /* enable HW interrupt from PXP on USDM overflow
7098 bit 16 on INT_MASK_0 */
7099 REG_WR(bp
, PXP_REG_PXP_INT_MASK_0
, 0);
7102 bnx2x_init_block(bp
, BLOCK_PXP2
, PHASE_COMMON
);
7104 bnx2x_set_endianity(bp
);
7105 bnx2x_ilt_init_page_size(bp
, INITOP_SET
);
7107 if (CHIP_REV_IS_FPGA(bp
) && CHIP_IS_E1H(bp
))
7108 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x1);
7110 /* let the HW do it's magic ... */
7112 /* finish PXP init */
7113 val
= REG_RD(bp
, PXP2_REG_RQ_CFG_DONE
);
7115 BNX2X_ERR("PXP2 CFG failed\n");
7118 val
= REG_RD(bp
, PXP2_REG_RD_INIT_DONE
);
7120 BNX2X_ERR("PXP2 RD_INIT failed\n");
7124 /* Timers bug workaround E2 only. We need to set the entire ILT to
7125 * have entries with value "0" and valid bit on.
7126 * This needs to be done by the first PF that is loaded in a path
7127 * (i.e. common phase)
7129 if (!CHIP_IS_E1x(bp
)) {
7130 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7131 * (i.e. vnic3) to start even if it is marked as "scan-off".
7132 * This occurs when a different function (func2,3) is being marked
7133 * as "scan-off". Real-life scenario for example: if a driver is being
7134 * load-unloaded while func6,7 are down. This will cause the timer to access
7135 * the ilt, translate to a logical address and send a request to read/write.
7136 * Since the ilt for the function that is down is not valid, this will cause
7137 * a translation error which is unrecoverable.
7138 * The Workaround is intended to make sure that when this happens nothing fatal
7139 * will occur. The workaround:
7140 * 1. First PF driver which loads on a path will:
7141 * a. After taking the chip out of reset, by using pretend,
7142 * it will write "0" to the following registers of
7144 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7145 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7146 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7147 * And for itself it will write '1' to
7148 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7149 * dmae-operations (writing to pram for example.)
7150 * note: can be done for only function 6,7 but cleaner this
7152 * b. Write zero+valid to the entire ILT.
7153 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7154 * VNIC3 (of that port). The range allocated will be the
7155 * entire ILT. This is needed to prevent ILT range error.
7156 * 2. Any PF driver load flow:
7157 * a. ILT update with the physical addresses of the allocated
7159 * b. Wait 20msec. - note that this timeout is needed to make
7160 * sure there are no requests in one of the PXP internal
7161 * queues with "old" ILT addresses.
7162 * c. PF enable in the PGLC.
7163 * d. Clear the was_error of the PF in the PGLC. (could have
7164 * occurred while driver was down)
7165 * e. PF enable in the CFC (WEAK + STRONG)
7166 * f. Timers scan enable
7167 * 3. PF driver unload flow:
7168 * a. Clear the Timers scan_en.
7169 * b. Polling for scan_on=0 for that PF.
7170 * c. Clear the PF enable bit in the PXP.
7171 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7172 * e. Write zero+valid to all ILT entries (The valid bit must
7174 * f. If this is VNIC 3 of a port then also init
7175 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7176 * to the last entry in the ILT.
7179 * Currently the PF error in the PGLC is non recoverable.
7180 * In the future the there will be a recovery routine for this error.
7181 * Currently attention is masked.
7182 * Having an MCP lock on the load/unload process does not guarantee that
7183 * there is no Timer disable during Func6/7 enable. This is because the
7184 * Timers scan is currently being cleared by the MCP on FLR.
7185 * Step 2.d can be done only for PF6/7 and the driver can also check if
7186 * there is error before clearing it. But the flow above is simpler and
7188 * All ILT entries are written by zero+valid and not just PF6/7
7189 * ILT entries since in the future the ILT entries allocation for
7190 * PF-s might be dynamic.
7192 struct ilt_client_info ilt_cli
;
7193 struct bnx2x_ilt ilt
;
7194 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
7195 memset(&ilt
, 0, sizeof(struct bnx2x_ilt
));
7197 /* initialize dummy TM client */
7199 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
7200 ilt_cli
.client_num
= ILT_CLIENT_TM
;
7202 /* Step 1: set zeroes to all ilt page entries with valid bit on
7203 * Step 2: set the timers first/last ilt entry to point
7204 * to the entire range to prevent ILT range error for 3rd/4th
7205 * vnic (this code assumes existence of the vnic)
7207 * both steps performed by call to bnx2x_ilt_client_init_op()
7208 * with dummy TM client
7210 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7211 * and his brother are split registers
7213 bnx2x_pretend_func(bp
, (BP_PATH(bp
) + 6));
7214 bnx2x_ilt_client_init_op_ilt(bp
, &ilt
, &ilt_cli
, INITOP_CLEAR
);
7215 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
7217 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN
, BNX2X_PXP_DRAM_ALIGN
);
7218 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_RD
, BNX2X_PXP_DRAM_ALIGN
);
7219 REG_WR(bp
, PXP2_REG_RQ_DRAM_ALIGN_SEL
, 1);
7222 REG_WR(bp
, PXP2_REG_RQ_DISABLE_INPUTS
, 0);
7223 REG_WR(bp
, PXP2_REG_RD_DISABLE_INPUTS
, 0);
7225 if (!CHIP_IS_E1x(bp
)) {
7226 int factor
= CHIP_REV_IS_EMUL(bp
) ? 1000 :
7227 (CHIP_REV_IS_FPGA(bp
) ? 400 : 0);
7228 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, PHASE_COMMON
);
7230 bnx2x_init_block(bp
, BLOCK_ATC
, PHASE_COMMON
);
7232 /* let the HW do it's magic ... */
7235 val
= REG_RD(bp
, ATC_REG_ATC_INIT_DONE
);
7236 } while (factor
-- && (val
!= 1));
7239 BNX2X_ERR("ATC_INIT failed\n");
7244 bnx2x_init_block(bp
, BLOCK_DMAE
, PHASE_COMMON
);
7246 bnx2x_iov_init_dmae(bp
);
7248 /* clean the DMAE memory */
7250 bnx2x_init_fill(bp
, TSEM_REG_PRAM
, 0, 8, 1);
7252 bnx2x_init_block(bp
, BLOCK_TCM
, PHASE_COMMON
);
7254 bnx2x_init_block(bp
, BLOCK_UCM
, PHASE_COMMON
);
7256 bnx2x_init_block(bp
, BLOCK_CCM
, PHASE_COMMON
);
7258 bnx2x_init_block(bp
, BLOCK_XCM
, PHASE_COMMON
);
7260 bnx2x_read_dmae(bp
, XSEM_REG_PASSIVE_BUFFER
, 3);
7261 bnx2x_read_dmae(bp
, CSEM_REG_PASSIVE_BUFFER
, 3);
7262 bnx2x_read_dmae(bp
, TSEM_REG_PASSIVE_BUFFER
, 3);
7263 bnx2x_read_dmae(bp
, USEM_REG_PASSIVE_BUFFER
, 3);
7265 bnx2x_init_block(bp
, BLOCK_QM
, PHASE_COMMON
);
7267 /* QM queues pointers table */
7268 bnx2x_qm_init_ptr_table(bp
, bp
->qm_cid_count
, INITOP_SET
);
7270 /* soft reset pulse */
7271 REG_WR(bp
, QM_REG_SOFT_RESET
, 1);
7272 REG_WR(bp
, QM_REG_SOFT_RESET
, 0);
7274 if (CNIC_SUPPORT(bp
))
7275 bnx2x_init_block(bp
, BLOCK_TM
, PHASE_COMMON
);
7277 bnx2x_init_block(bp
, BLOCK_DORQ
, PHASE_COMMON
);
7279 if (!CHIP_REV_IS_SLOW(bp
))
7280 /* enable hw interrupt from doorbell Q */
7281 REG_WR(bp
, DORQ_REG_DORQ_INT_MASK
, 0);
7283 bnx2x_init_block(bp
, BLOCK_BRB1
, PHASE_COMMON
);
7285 bnx2x_init_block(bp
, BLOCK_PRS
, PHASE_COMMON
);
7286 REG_WR(bp
, PRS_REG_A_PRSU_20
, 0xf);
7288 if (!CHIP_IS_E1(bp
))
7289 REG_WR(bp
, PRS_REG_E1HOV_MODE
, bp
->path_has_ovlan
);
7291 if (!CHIP_IS_E1x(bp
) && !CHIP_IS_E3B0(bp
)) {
7292 if (IS_MF_AFEX(bp
)) {
7293 /* configure that VNTag and VLAN headers must be
7294 * received in afex mode
7296 REG_WR(bp
, PRS_REG_HDRS_AFTER_BASIC
, 0xE);
7297 REG_WR(bp
, PRS_REG_MUST_HAVE_HDRS
, 0xA);
7298 REG_WR(bp
, PRS_REG_HDRS_AFTER_TAG_0
, 0x6);
7299 REG_WR(bp
, PRS_REG_TAG_ETHERTYPE_0
, 0x8926);
7300 REG_WR(bp
, PRS_REG_TAG_LEN_0
, 0x4);
7302 /* Bit-map indicating which L2 hdrs may appear
7303 * after the basic Ethernet header
7305 REG_WR(bp
, PRS_REG_HDRS_AFTER_BASIC
,
7306 bp
->path_has_ovlan
? 7 : 6);
7310 bnx2x_init_block(bp
, BLOCK_TSDM
, PHASE_COMMON
);
7311 bnx2x_init_block(bp
, BLOCK_CSDM
, PHASE_COMMON
);
7312 bnx2x_init_block(bp
, BLOCK_USDM
, PHASE_COMMON
);
7313 bnx2x_init_block(bp
, BLOCK_XSDM
, PHASE_COMMON
);
7315 if (!CHIP_IS_E1x(bp
)) {
7316 /* reset VFC memories */
7317 REG_WR(bp
, TSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
7318 VFC_MEMORIES_RST_REG_CAM_RST
|
7319 VFC_MEMORIES_RST_REG_RAM_RST
);
7320 REG_WR(bp
, XSEM_REG_FAST_MEMORY
+ VFC_REG_MEMORIES_RST
,
7321 VFC_MEMORIES_RST_REG_CAM_RST
|
7322 VFC_MEMORIES_RST_REG_RAM_RST
);
7327 bnx2x_init_block(bp
, BLOCK_TSEM
, PHASE_COMMON
);
7328 bnx2x_init_block(bp
, BLOCK_USEM
, PHASE_COMMON
);
7329 bnx2x_init_block(bp
, BLOCK_CSEM
, PHASE_COMMON
);
7330 bnx2x_init_block(bp
, BLOCK_XSEM
, PHASE_COMMON
);
7333 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
7335 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
,
7338 bnx2x_init_block(bp
, BLOCK_UPB
, PHASE_COMMON
);
7339 bnx2x_init_block(bp
, BLOCK_XPB
, PHASE_COMMON
);
7340 bnx2x_init_block(bp
, BLOCK_PBF
, PHASE_COMMON
);
7342 if (!CHIP_IS_E1x(bp
)) {
7343 if (IS_MF_AFEX(bp
)) {
7344 /* configure that VNTag and VLAN headers must be
7347 REG_WR(bp
, PBF_REG_HDRS_AFTER_BASIC
, 0xE);
7348 REG_WR(bp
, PBF_REG_MUST_HAVE_HDRS
, 0xA);
7349 REG_WR(bp
, PBF_REG_HDRS_AFTER_TAG_0
, 0x6);
7350 REG_WR(bp
, PBF_REG_TAG_ETHERTYPE_0
, 0x8926);
7351 REG_WR(bp
, PBF_REG_TAG_LEN_0
, 0x4);
7353 REG_WR(bp
, PBF_REG_HDRS_AFTER_BASIC
,
7354 bp
->path_has_ovlan
? 7 : 6);
7358 REG_WR(bp
, SRC_REG_SOFT_RST
, 1);
7360 bnx2x_init_block(bp
, BLOCK_SRC
, PHASE_COMMON
);
7362 if (CNIC_SUPPORT(bp
)) {
7363 REG_WR(bp
, SRC_REG_KEYSEARCH_0
, 0x63285672);
7364 REG_WR(bp
, SRC_REG_KEYSEARCH_1
, 0x24b8f2cc);
7365 REG_WR(bp
, SRC_REG_KEYSEARCH_2
, 0x223aef9b);
7366 REG_WR(bp
, SRC_REG_KEYSEARCH_3
, 0x26001e3a);
7367 REG_WR(bp
, SRC_REG_KEYSEARCH_4
, 0x7ae91116);
7368 REG_WR(bp
, SRC_REG_KEYSEARCH_5
, 0x5ce5230b);
7369 REG_WR(bp
, SRC_REG_KEYSEARCH_6
, 0x298d8adf);
7370 REG_WR(bp
, SRC_REG_KEYSEARCH_7
, 0x6eb0ff09);
7371 REG_WR(bp
, SRC_REG_KEYSEARCH_8
, 0x1830f82f);
7372 REG_WR(bp
, SRC_REG_KEYSEARCH_9
, 0x01e46be7);
7374 REG_WR(bp
, SRC_REG_SOFT_RST
, 0);
7376 if (sizeof(union cdu_context
) != 1024)
7377 /* we currently assume that a context is 1024 bytes */
7378 dev_alert(&bp
->pdev
->dev
,
7379 "please adjust the size of cdu_context(%ld)\n",
7380 (long)sizeof(union cdu_context
));
7382 bnx2x_init_block(bp
, BLOCK_CDU
, PHASE_COMMON
);
7383 val
= (4 << 24) + (0 << 12) + 1024;
7384 REG_WR(bp
, CDU_REG_CDU_GLOBAL_PARAMS
, val
);
7386 bnx2x_init_block(bp
, BLOCK_CFC
, PHASE_COMMON
);
7387 REG_WR(bp
, CFC_REG_INIT_REG
, 0x7FF);
7388 /* enable context validation interrupt from CFC */
7389 REG_WR(bp
, CFC_REG_CFC_INT_MASK
, 0);
7391 /* set the thresholds to prevent CFC/CDU race */
7392 REG_WR(bp
, CFC_REG_DEBUG0
, 0x20020000);
7394 bnx2x_init_block(bp
, BLOCK_HC
, PHASE_COMMON
);
7396 if (!CHIP_IS_E1x(bp
) && BP_NOMCP(bp
))
7397 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x36);
7399 bnx2x_init_block(bp
, BLOCK_IGU
, PHASE_COMMON
);
7400 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, PHASE_COMMON
);
7402 /* Reset PCIE errors for debug */
7403 REG_WR(bp
, 0x2814, 0xffffffff);
7404 REG_WR(bp
, 0x3820, 0xffffffff);
7406 if (!CHIP_IS_E1x(bp
)) {
7407 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_CONTROL_5
,
7408 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1
|
7409 PXPCS_TL_CONTROL_5_ERR_UNSPPORT
));
7410 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC345_STAT
,
7411 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4
|
7412 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3
|
7413 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2
));
7414 REG_WR(bp
, PCICFG_OFFSET
+ PXPCS_TL_FUNC678_STAT
,
7415 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7
|
7416 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6
|
7417 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5
));
7420 bnx2x_init_block(bp
, BLOCK_NIG
, PHASE_COMMON
);
7421 if (!CHIP_IS_E1(bp
)) {
7422 /* in E3 this done in per-port section */
7423 if (!CHIP_IS_E3(bp
))
7424 REG_WR(bp
, NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
7426 if (CHIP_IS_E1H(bp
))
7427 /* not applicable for E2 (and above ...) */
7428 REG_WR(bp
, NIG_REG_LLH_E1HOV_MODE
, IS_MF_SD(bp
));
7430 if (CHIP_REV_IS_SLOW(bp
))
7433 /* finish CFC init */
7434 val
= reg_poll(bp
, CFC_REG_LL_INIT_DONE
, 1, 100, 10);
7436 BNX2X_ERR("CFC LL_INIT failed\n");
7439 val
= reg_poll(bp
, CFC_REG_AC_INIT_DONE
, 1, 100, 10);
7441 BNX2X_ERR("CFC AC_INIT failed\n");
7444 val
= reg_poll(bp
, CFC_REG_CAM_INIT_DONE
, 1, 100, 10);
7446 BNX2X_ERR("CFC CAM_INIT failed\n");
7449 REG_WR(bp
, CFC_REG_DEBUG0
, 0);
7451 if (CHIP_IS_E1(bp
)) {
7452 /* read NIG statistic
7453 to see if this is our first up since powerup */
7454 bnx2x_read_dmae(bp
, NIG_REG_STAT2_BRB_OCTET
, 2);
7455 val
= *bnx2x_sp(bp
, wb_data
[0]);
7457 /* do internal memory self test */
7458 if ((val
== 0) && bnx2x_int_mem_test(bp
)) {
7459 BNX2X_ERR("internal mem self test failed\n");
7464 bnx2x_setup_fan_failure_detection(bp
);
7466 /* clear PXP2 attentions */
7467 REG_RD(bp
, PXP2_REG_PXP2_INT_STS_CLR_0
);
7469 bnx2x_enable_blocks_attention(bp
);
7470 bnx2x_enable_blocks_parity(bp
);
7472 if (!BP_NOMCP(bp
)) {
7473 if (CHIP_IS_E1x(bp
))
7474 bnx2x__common_init_phy(bp
);
7476 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7478 if (SHMEM2_HAS(bp
, netproc_fw_ver
))
7479 SHMEM2_WR(bp
, netproc_fw_ver
, REG_RD(bp
, XSEM_REG_PRAM
));
7485 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7487 * @bp: driver handle
7489 static int bnx2x_init_hw_common_chip(struct bnx2x
*bp
)
7491 int rc
= bnx2x_init_hw_common(bp
);
7496 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7498 bnx2x__common_init_phy(bp
);
7503 static int bnx2x_init_hw_port(struct bnx2x
*bp
)
7505 int port
= BP_PORT(bp
);
7506 int init_phase
= port
? PHASE_PORT1
: PHASE_PORT0
;
7510 DP(NETIF_MSG_HW
, "starting port init port %d\n", port
);
7512 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
7514 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
7515 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
7516 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
7518 /* Timers bug workaround: disables the pf_master bit in pglue at
7519 * common phase, we need to enable it here before any dmae access are
7520 * attempted. Therefore we manually added the enable-master to the
7521 * port phase (it also happens in the function phase)
7523 if (!CHIP_IS_E1x(bp
))
7524 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
7526 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
7527 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
7528 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
7529 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
7531 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
7532 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
7533 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
7534 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
7536 /* QM cid (connection) count */
7537 bnx2x_qm_init_cid_count(bp
, bp
->qm_cid_count
, INITOP_SET
);
7539 if (CNIC_SUPPORT(bp
)) {
7540 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
7541 REG_WR(bp
, TM_REG_LIN0_SCAN_TIME
+ port
*4, 20);
7542 REG_WR(bp
, TM_REG_LIN0_MAX_ACTIVE_CID
+ port
*4, 31);
7545 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
7547 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
7549 if (CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) {
7552 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 160 : 246);
7553 else if (bp
->dev
->mtu
> 4096) {
7554 if (bp
->flags
& ONE_PORT_FLAG
)
7558 /* (24*1024 + val*4)/256 */
7559 low
= 96 + (val
/64) +
7560 ((val
% 64) ? 1 : 0);
7563 low
= ((bp
->flags
& ONE_PORT_FLAG
) ? 80 : 160);
7564 high
= low
+ 56; /* 14*1024/256 */
7565 REG_WR(bp
, BRB1_REG_PAUSE_LOW_THRESHOLD_0
+ port
*4, low
);
7566 REG_WR(bp
, BRB1_REG_PAUSE_HIGH_THRESHOLD_0
+ port
*4, high
);
7569 if (CHIP_MODE_IS_4_PORT(bp
))
7570 REG_WR(bp
, (BP_PORT(bp
) ?
7571 BRB1_REG_MAC_GUARANTIED_1
:
7572 BRB1_REG_MAC_GUARANTIED_0
), 40);
7574 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
7575 if (CHIP_IS_E3B0(bp
)) {
7576 if (IS_MF_AFEX(bp
)) {
7577 /* configure headers for AFEX mode */
7578 REG_WR(bp
, BP_PORT(bp
) ?
7579 PRS_REG_HDRS_AFTER_BASIC_PORT_1
:
7580 PRS_REG_HDRS_AFTER_BASIC_PORT_0
, 0xE);
7581 REG_WR(bp
, BP_PORT(bp
) ?
7582 PRS_REG_HDRS_AFTER_TAG_0_PORT_1
:
7583 PRS_REG_HDRS_AFTER_TAG_0_PORT_0
, 0x6);
7584 REG_WR(bp
, BP_PORT(bp
) ?
7585 PRS_REG_MUST_HAVE_HDRS_PORT_1
:
7586 PRS_REG_MUST_HAVE_HDRS_PORT_0
, 0xA);
7588 /* Ovlan exists only if we are in multi-function +
7589 * switch-dependent mode, in switch-independent there
7590 * is no ovlan headers
7592 REG_WR(bp
, BP_PORT(bp
) ?
7593 PRS_REG_HDRS_AFTER_BASIC_PORT_1
:
7594 PRS_REG_HDRS_AFTER_BASIC_PORT_0
,
7595 (bp
->path_has_ovlan
? 7 : 6));
7599 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
7600 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
7601 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
7602 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
7604 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
7605 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
7606 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
7607 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
7609 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
7610 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
7612 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
7614 if (CHIP_IS_E1x(bp
)) {
7615 /* configure PBF to work without PAUSE mtu 9000 */
7616 REG_WR(bp
, PBF_REG_P0_PAUSE_ENABLE
+ port
*4, 0);
7618 /* update threshold */
7619 REG_WR(bp
, PBF_REG_P0_ARB_THRSH
+ port
*4, (9040/16));
7620 /* update init credit */
7621 REG_WR(bp
, PBF_REG_P0_INIT_CRD
+ port
*4, (9040/16) + 553 - 22);
7624 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 1);
7626 REG_WR(bp
, PBF_REG_INIT_P0
+ port
*4, 0);
7629 if (CNIC_SUPPORT(bp
))
7630 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
7632 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
7633 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
7635 if (CHIP_IS_E1(bp
)) {
7636 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
7637 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
7639 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
7641 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
7643 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
7644 /* init aeu_mask_attn_func_0/1:
7645 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7646 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7647 * bits 4-7 are used for "per vn group attention" */
7648 val
= IS_MF(bp
) ? 0xF7 : 0x7;
7649 /* Enable DCBX attention for all but E1 */
7650 val
|= CHIP_IS_E1(bp
) ? 0 : 0x10;
7651 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, val
);
7653 /* SCPAD_PARITY should NOT trigger close the gates */
7654 reg
= port
? MISC_REG_AEU_ENABLE4_NIG_1
: MISC_REG_AEU_ENABLE4_NIG_0
;
7657 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
);
7659 reg
= port
? MISC_REG_AEU_ENABLE4_PXP_1
: MISC_REG_AEU_ENABLE4_PXP_0
;
7662 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY
);
7664 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
7666 if (!CHIP_IS_E1x(bp
)) {
7667 /* Bit-map indicating which L2 hdrs may appear after the
7668 * basic Ethernet header
7671 REG_WR(bp
, BP_PORT(bp
) ?
7672 NIG_REG_P1_HDRS_AFTER_BASIC
:
7673 NIG_REG_P0_HDRS_AFTER_BASIC
, 0xE);
7675 REG_WR(bp
, BP_PORT(bp
) ?
7676 NIG_REG_P1_HDRS_AFTER_BASIC
:
7677 NIG_REG_P0_HDRS_AFTER_BASIC
,
7678 IS_MF_SD(bp
) ? 7 : 6);
7681 REG_WR(bp
, BP_PORT(bp
) ?
7682 NIG_REG_LLH1_MF_MODE
:
7683 NIG_REG_LLH_MF_MODE
, IS_MF(bp
));
7685 if (!CHIP_IS_E3(bp
))
7686 REG_WR(bp
, NIG_REG_XGXS_SERDES0_MODE_SEL
+ port
*4, 1);
7688 if (!CHIP_IS_E1(bp
)) {
7689 /* 0x2 disable mf_ov, 0x1 enable */
7690 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK_MF
+ port
*4,
7691 (IS_MF_SD(bp
) ? 0x1 : 0x2));
7693 if (!CHIP_IS_E1x(bp
)) {
7695 switch (bp
->mf_mode
) {
7696 case MULTI_FUNCTION_SD
:
7699 case MULTI_FUNCTION_SI
:
7700 case MULTI_FUNCTION_AFEX
:
7705 REG_WR(bp
, (BP_PORT(bp
) ? NIG_REG_LLH1_CLS_TYPE
:
7706 NIG_REG_LLH0_CLS_TYPE
), val
);
7709 REG_WR(bp
, NIG_REG_LLFC_ENABLE_0
+ port
*4, 0);
7710 REG_WR(bp
, NIG_REG_LLFC_OUT_EN_0
+ port
*4, 0);
7711 REG_WR(bp
, NIG_REG_PAUSE_ENABLE_0
+ port
*4, 1);
7715 /* If SPIO5 is set to generate interrupts, enable it for this port */
7716 val
= REG_RD(bp
, MISC_REG_SPIO_EVENT_EN
);
7717 if (val
& MISC_SPIO_SPIO5
) {
7718 u32 reg_addr
= (port
? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0
:
7719 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0
);
7720 val
= REG_RD(bp
, reg_addr
);
7721 val
|= AEU_INPUTS_ATTN_BITS_SPIO5
;
7722 REG_WR(bp
, reg_addr
, val
);
7725 if (CHIP_IS_E3B0(bp
))
7726 bp
->flags
|= PTP_SUPPORTED
;
7731 static void bnx2x_ilt_wr(struct bnx2x
*bp
, u32 index
, dma_addr_t addr
)
7737 reg
= PXP2_REG_RQ_ONCHIP_AT
+ index
*8;
7739 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ index
*8;
7741 wb_write
[0] = ONCHIP_ADDR1(addr
);
7742 wb_write
[1] = ONCHIP_ADDR2(addr
);
7743 REG_WR_DMAE(bp
, reg
, wb_write
, 2);
7746 void bnx2x_igu_clear_sb_gen(struct bnx2x
*bp
, u8 func
, u8 idu_sb_id
, bool is_pf
)
7748 u32 data
, ctl
, cnt
= 100;
7749 u32 igu_addr_data
= IGU_REG_COMMAND_REG_32LSB_DATA
;
7750 u32 igu_addr_ctl
= IGU_REG_COMMAND_REG_CTRL
;
7751 u32 igu_addr_ack
= IGU_REG_CSTORM_TYPE_0_SB_CLEANUP
+ (idu_sb_id
/32)*4;
7752 u32 sb_bit
= 1 << (idu_sb_id
%32);
7753 u32 func_encode
= func
| (is_pf
? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT
;
7754 u32 addr_encode
= IGU_CMD_E2_PROD_UPD_BASE
+ idu_sb_id
;
7756 /* Not supported in BC mode */
7757 if (CHIP_INT_MODE_IS_BC(bp
))
7760 data
= (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7761 << IGU_REGULAR_CLEANUP_TYPE_SHIFT
) |
7762 IGU_REGULAR_CLEANUP_SET
|
7763 IGU_REGULAR_BCLEANUP
;
7765 ctl
= addr_encode
<< IGU_CTRL_REG_ADDRESS_SHIFT
|
7766 func_encode
<< IGU_CTRL_REG_FID_SHIFT
|
7767 IGU_CTRL_CMD_TYPE_WR
<< IGU_CTRL_REG_TYPE_SHIFT
;
7769 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7770 data
, igu_addr_data
);
7771 REG_WR(bp
, igu_addr_data
, data
);
7773 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7775 REG_WR(bp
, igu_addr_ctl
, ctl
);
7778 /* wait for clean up to finish */
7779 while (!(REG_RD(bp
, igu_addr_ack
) & sb_bit
) && --cnt
)
7782 if (!(REG_RD(bp
, igu_addr_ack
) & sb_bit
)) {
7784 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7785 idu_sb_id
, idu_sb_id
/32, idu_sb_id
%32, cnt
);
7789 static void bnx2x_igu_clear_sb(struct bnx2x
*bp
, u8 idu_sb_id
)
7791 bnx2x_igu_clear_sb_gen(bp
, BP_FUNC(bp
), idu_sb_id
, true /*PF*/);
7794 static void bnx2x_clear_func_ilt(struct bnx2x
*bp
, u32 func
)
7796 u32 i
, base
= FUNC_ILT_BASE(func
);
7797 for (i
= base
; i
< base
+ ILT_PER_FUNC
; i
++)
7798 bnx2x_ilt_wr(bp
, i
, 0);
7801 static void bnx2x_init_searcher(struct bnx2x
*bp
)
7803 int port
= BP_PORT(bp
);
7804 bnx2x_src_init_t2(bp
, bp
->t2
, bp
->t2_mapping
, SRC_CONN_NUM
);
7805 /* T1 hash bits value determines the T1 number of entries */
7806 REG_WR(bp
, SRC_REG_NUMBER_HASH_BITS0
+ port
*4, SRC_HASH_BITS
);
7809 static inline int bnx2x_func_switch_update(struct bnx2x
*bp
, int suspend
)
7812 struct bnx2x_func_state_params func_params
= {NULL
};
7813 struct bnx2x_func_switch_update_params
*switch_update_params
=
7814 &func_params
.params
.switch_update
;
7816 /* Prepare parameters for function state transitions */
7817 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
7818 __set_bit(RAMROD_RETRY
, &func_params
.ramrod_flags
);
7820 func_params
.f_obj
= &bp
->func_obj
;
7821 func_params
.cmd
= BNX2X_F_CMD_SWITCH_UPDATE
;
7823 /* Function parameters */
7824 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG
,
7825 &switch_update_params
->changes
);
7827 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND
,
7828 &switch_update_params
->changes
);
7830 rc
= bnx2x_func_state_change(bp
, &func_params
);
7835 static int bnx2x_reset_nic_mode(struct bnx2x
*bp
)
7837 int rc
, i
, port
= BP_PORT(bp
);
7838 int vlan_en
= 0, mac_en
[NUM_MACS
];
7840 /* Close input from network */
7841 if (bp
->mf_mode
== SINGLE_FUNCTION
) {
7842 bnx2x_set_rx_filter(&bp
->link_params
, 0);
7844 vlan_en
= REG_RD(bp
, port
? NIG_REG_LLH1_FUNC_EN
:
7845 NIG_REG_LLH0_FUNC_EN
);
7846 REG_WR(bp
, port
? NIG_REG_LLH1_FUNC_EN
:
7847 NIG_REG_LLH0_FUNC_EN
, 0);
7848 for (i
= 0; i
< NUM_MACS
; i
++) {
7849 mac_en
[i
] = REG_RD(bp
, port
?
7850 (NIG_REG_LLH1_FUNC_MEM_ENABLE
+
7852 (NIG_REG_LLH0_FUNC_MEM_ENABLE
+
7854 REG_WR(bp
, port
? (NIG_REG_LLH1_FUNC_MEM_ENABLE
+
7856 (NIG_REG_LLH0_FUNC_MEM_ENABLE
+ 4 * i
), 0);
7860 /* Close BMC to host */
7861 REG_WR(bp
, port
? NIG_REG_P0_TX_MNG_HOST_ENABLE
:
7862 NIG_REG_P1_TX_MNG_HOST_ENABLE
, 0);
7864 /* Suspend Tx switching to the PF. Completion of this ramrod
7865 * further guarantees that all the packets of that PF / child
7866 * VFs in BRB were processed by the Parser, so it is safe to
7867 * change the NIC_MODE register.
7869 rc
= bnx2x_func_switch_update(bp
, 1);
7871 BNX2X_ERR("Can't suspend tx-switching!\n");
7875 /* Change NIC_MODE register */
7876 REG_WR(bp
, PRS_REG_NIC_MODE
, 0);
7878 /* Open input from network */
7879 if (bp
->mf_mode
== SINGLE_FUNCTION
) {
7880 bnx2x_set_rx_filter(&bp
->link_params
, 1);
7882 REG_WR(bp
, port
? NIG_REG_LLH1_FUNC_EN
:
7883 NIG_REG_LLH0_FUNC_EN
, vlan_en
);
7884 for (i
= 0; i
< NUM_MACS
; i
++) {
7885 REG_WR(bp
, port
? (NIG_REG_LLH1_FUNC_MEM_ENABLE
+
7887 (NIG_REG_LLH0_FUNC_MEM_ENABLE
+ 4 * i
),
7892 /* Enable BMC to host */
7893 REG_WR(bp
, port
? NIG_REG_P0_TX_MNG_HOST_ENABLE
:
7894 NIG_REG_P1_TX_MNG_HOST_ENABLE
, 1);
7896 /* Resume Tx switching to the PF */
7897 rc
= bnx2x_func_switch_update(bp
, 0);
7899 BNX2X_ERR("Can't resume tx-switching!\n");
7903 DP(NETIF_MSG_IFUP
, "NIC MODE disabled\n");
7907 int bnx2x_init_hw_func_cnic(struct bnx2x
*bp
)
7911 bnx2x_ilt_init_op_cnic(bp
, INITOP_SET
);
7913 if (CONFIGURE_NIC_MODE(bp
)) {
7914 /* Configure searcher as part of function hw init */
7915 bnx2x_init_searcher(bp
);
7917 /* Reset NIC mode */
7918 rc
= bnx2x_reset_nic_mode(bp
);
7920 BNX2X_ERR("Can't change NIC mode!\n");
7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7928 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7929 * the addresses of the transaction, resulting in was-error bit set in the pci
7930 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7931 * to clear the interrupt which detected this from the pglueb and the was done
7934 static void bnx2x_clean_pglue_errors(struct bnx2x
*bp
)
7936 if (!CHIP_IS_E1x(bp
))
7937 REG_WR(bp
, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR
,
7938 1 << BP_ABS_FUNC(bp
));
7941 static int bnx2x_init_hw_func(struct bnx2x
*bp
)
7943 int port
= BP_PORT(bp
);
7944 int func
= BP_FUNC(bp
);
7945 int init_phase
= PHASE_PF0
+ func
;
7946 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
7949 u32 main_mem_base
, main_mem_size
, main_mem_prty_clr
;
7950 int i
, main_mem_width
, rc
;
7952 DP(NETIF_MSG_HW
, "starting func init func %d\n", func
);
7954 /* FLR cleanup - hmmm */
7955 if (!CHIP_IS_E1x(bp
)) {
7956 rc
= bnx2x_pf_flr_clnup(bp
);
7963 /* set MSI reconfigure capability */
7964 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
7965 addr
= (port
? HC_REG_CONFIG_1
: HC_REG_CONFIG_0
);
7966 val
= REG_RD(bp
, addr
);
7967 val
|= HC_CONFIG_0_REG_MSI_ATTN_EN_0
;
7968 REG_WR(bp
, addr
, val
);
7971 bnx2x_init_block(bp
, BLOCK_PXP
, init_phase
);
7972 bnx2x_init_block(bp
, BLOCK_PXP2
, init_phase
);
7975 cdu_ilt_start
= ilt
->clients
[ILT_CLIENT_CDU
].start
;
7978 cdu_ilt_start
+= BNX2X_FIRST_VF_CID
/ILT_PAGE_CIDS
;
7979 cdu_ilt_start
= bnx2x_iov_init_ilt(bp
, cdu_ilt_start
);
7981 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7982 * those of the VFs, so start line should be reset
7984 cdu_ilt_start
= ilt
->clients
[ILT_CLIENT_CDU
].start
;
7985 for (i
= 0; i
< L2_ILT_LINES(bp
); i
++) {
7986 ilt
->lines
[cdu_ilt_start
+ i
].page
= bp
->context
[i
].vcxt
;
7987 ilt
->lines
[cdu_ilt_start
+ i
].page_mapping
=
7988 bp
->context
[i
].cxt_mapping
;
7989 ilt
->lines
[cdu_ilt_start
+ i
].size
= bp
->context
[i
].size
;
7992 bnx2x_ilt_init_op(bp
, INITOP_SET
);
7994 if (!CONFIGURE_NIC_MODE(bp
)) {
7995 bnx2x_init_searcher(bp
);
7996 REG_WR(bp
, PRS_REG_NIC_MODE
, 0);
7997 DP(NETIF_MSG_IFUP
, "NIC MODE disabled\n");
8000 REG_WR(bp
, PRS_REG_NIC_MODE
, 1);
8001 DP(NETIF_MSG_IFUP
, "NIC MODE configured\n");
8004 if (!CHIP_IS_E1x(bp
)) {
8005 u32 pf_conf
= IGU_PF_CONF_FUNC_EN
;
8007 /* Turn on a single ISR mode in IGU if driver is going to use
8010 if (!(bp
->flags
& USING_MSIX_FLAG
))
8011 pf_conf
|= IGU_PF_CONF_SINGLE_ISR_EN
;
8013 * Timers workaround bug: function init part.
8014 * Need to wait 20msec after initializing ILT,
8015 * needed to make sure there are no requests in
8016 * one of the PXP internal queues with "old" ILT addresses
8020 * Master enable - Due to WB DMAE writes performed before this
8021 * register is re-initialized as part of the regular function
8024 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 1);
8025 /* Enable the function in IGU */
8026 REG_WR(bp
, IGU_REG_PF_CONFIGURATION
, pf_conf
);
8031 bnx2x_init_block(bp
, BLOCK_PGLUE_B
, init_phase
);
8033 bnx2x_clean_pglue_errors(bp
);
8035 bnx2x_init_block(bp
, BLOCK_ATC
, init_phase
);
8036 bnx2x_init_block(bp
, BLOCK_DMAE
, init_phase
);
8037 bnx2x_init_block(bp
, BLOCK_NIG
, init_phase
);
8038 bnx2x_init_block(bp
, BLOCK_SRC
, init_phase
);
8039 bnx2x_init_block(bp
, BLOCK_MISC
, init_phase
);
8040 bnx2x_init_block(bp
, BLOCK_TCM
, init_phase
);
8041 bnx2x_init_block(bp
, BLOCK_UCM
, init_phase
);
8042 bnx2x_init_block(bp
, BLOCK_CCM
, init_phase
);
8043 bnx2x_init_block(bp
, BLOCK_XCM
, init_phase
);
8044 bnx2x_init_block(bp
, BLOCK_TSEM
, init_phase
);
8045 bnx2x_init_block(bp
, BLOCK_USEM
, init_phase
);
8046 bnx2x_init_block(bp
, BLOCK_CSEM
, init_phase
);
8047 bnx2x_init_block(bp
, BLOCK_XSEM
, init_phase
);
8049 if (!CHIP_IS_E1x(bp
))
8050 REG_WR(bp
, QM_REG_PF_EN
, 1);
8052 if (!CHIP_IS_E1x(bp
)) {
8053 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
8054 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
8055 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
8056 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, BNX2X_MAX_NUM_OF_VFS
+ func
);
8058 bnx2x_init_block(bp
, BLOCK_QM
, init_phase
);
8060 bnx2x_init_block(bp
, BLOCK_TM
, init_phase
);
8061 bnx2x_init_block(bp
, BLOCK_DORQ
, init_phase
);
8062 REG_WR(bp
, DORQ_REG_MODE_ACT
, 1); /* no dpm */
8064 bnx2x_iov_init_dq(bp
);
8066 bnx2x_init_block(bp
, BLOCK_BRB1
, init_phase
);
8067 bnx2x_init_block(bp
, BLOCK_PRS
, init_phase
);
8068 bnx2x_init_block(bp
, BLOCK_TSDM
, init_phase
);
8069 bnx2x_init_block(bp
, BLOCK_CSDM
, init_phase
);
8070 bnx2x_init_block(bp
, BLOCK_USDM
, init_phase
);
8071 bnx2x_init_block(bp
, BLOCK_XSDM
, init_phase
);
8072 bnx2x_init_block(bp
, BLOCK_UPB
, init_phase
);
8073 bnx2x_init_block(bp
, BLOCK_XPB
, init_phase
);
8074 bnx2x_init_block(bp
, BLOCK_PBF
, init_phase
);
8075 if (!CHIP_IS_E1x(bp
))
8076 REG_WR(bp
, PBF_REG_DISABLE_PF
, 0);
8078 bnx2x_init_block(bp
, BLOCK_CDU
, init_phase
);
8080 bnx2x_init_block(bp
, BLOCK_CFC
, init_phase
);
8082 if (!CHIP_IS_E1x(bp
))
8083 REG_WR(bp
, CFC_REG_WEAK_ENABLE_PF
, 1);
8086 if (!(IS_MF_UFP(bp
) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp
))) {
8087 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
* 8, 1);
8088 REG_WR(bp
, NIG_REG_LLH0_FUNC_VLAN_ID
+ port
* 8,
8093 bnx2x_init_block(bp
, BLOCK_MISC_AEU
, init_phase
);
8095 /* HC init per function */
8096 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
8097 if (CHIP_IS_E1H(bp
)) {
8098 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
8100 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
8101 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
8103 bnx2x_init_block(bp
, BLOCK_HC
, init_phase
);
8106 int num_segs
, sb_idx
, prod_offset
;
8108 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ func
*4, 0);
8110 if (!CHIP_IS_E1x(bp
)) {
8111 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
8112 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
8115 bnx2x_init_block(bp
, BLOCK_IGU
, init_phase
);
8117 if (!CHIP_IS_E1x(bp
)) {
8121 * E2 mode: address 0-135 match to the mapping memory;
8122 * 136 - PF0 default prod; 137 - PF1 default prod;
8123 * 138 - PF2 default prod; 139 - PF3 default prod;
8124 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8125 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8128 * E1.5 mode - In backward compatible mode;
8129 * for non default SB; each even line in the memory
8130 * holds the U producer and each odd line hold
8131 * the C producer. The first 128 producers are for
8132 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8133 * producers are for the DSB for each PF.
8134 * Each PF has five segments: (the order inside each
8135 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8136 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8137 * 144-147 attn prods;
8139 /* non-default-status-blocks */
8140 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
8141 IGU_BC_NDSB_NUM_SEGS
: IGU_NORM_NDSB_NUM_SEGS
;
8142 for (sb_idx
= 0; sb_idx
< bp
->igu_sb_cnt
; sb_idx
++) {
8143 prod_offset
= (bp
->igu_base_sb
+ sb_idx
) *
8146 for (i
= 0; i
< num_segs
; i
++) {
8147 addr
= IGU_REG_PROD_CONS_MEMORY
+
8148 (prod_offset
+ i
) * 4;
8149 REG_WR(bp
, addr
, 0);
8151 /* send consumer update with value 0 */
8152 bnx2x_ack_sb(bp
, bp
->igu_base_sb
+ sb_idx
,
8153 USTORM_ID
, 0, IGU_INT_NOP
, 1);
8154 bnx2x_igu_clear_sb(bp
,
8155 bp
->igu_base_sb
+ sb_idx
);
8158 /* default-status-blocks */
8159 num_segs
= CHIP_INT_MODE_IS_BC(bp
) ?
8160 IGU_BC_DSB_NUM_SEGS
: IGU_NORM_DSB_NUM_SEGS
;
8162 if (CHIP_MODE_IS_4_PORT(bp
))
8163 dsb_idx
= BP_FUNC(bp
);
8165 dsb_idx
= BP_VN(bp
);
8167 prod_offset
= (CHIP_INT_MODE_IS_BC(bp
) ?
8168 IGU_BC_BASE_DSB_PROD
+ dsb_idx
:
8169 IGU_NORM_BASE_DSB_PROD
+ dsb_idx
);
8172 * igu prods come in chunks of E1HVN_MAX (4) -
8173 * does not matters what is the current chip mode
8175 for (i
= 0; i
< (num_segs
* E1HVN_MAX
);
8177 addr
= IGU_REG_PROD_CONS_MEMORY
+
8178 (prod_offset
+ i
)*4;
8179 REG_WR(bp
, addr
, 0);
8181 /* send consumer update with 0 */
8182 if (CHIP_INT_MODE_IS_BC(bp
)) {
8183 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8184 USTORM_ID
, 0, IGU_INT_NOP
, 1);
8185 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8186 CSTORM_ID
, 0, IGU_INT_NOP
, 1);
8187 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8188 XSTORM_ID
, 0, IGU_INT_NOP
, 1);
8189 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8190 TSTORM_ID
, 0, IGU_INT_NOP
, 1);
8191 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8192 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
8194 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8195 USTORM_ID
, 0, IGU_INT_NOP
, 1);
8196 bnx2x_ack_sb(bp
, bp
->igu_dsb_id
,
8197 ATTENTION_ID
, 0, IGU_INT_NOP
, 1);
8199 bnx2x_igu_clear_sb(bp
, bp
->igu_dsb_id
);
8201 /* !!! These should become driver const once
8202 rf-tool supports split-68 const */
8203 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
8204 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
8205 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
8206 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
8207 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
8208 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
8212 /* Reset PCIE errors for debug */
8213 REG_WR(bp
, 0x2114, 0xffffffff);
8214 REG_WR(bp
, 0x2120, 0xffffffff);
8216 if (CHIP_IS_E1x(bp
)) {
8217 main_mem_size
= HC_REG_MAIN_MEMORY_SIZE
/ 2; /*dwords*/
8218 main_mem_base
= HC_REG_MAIN_MEMORY
+
8219 BP_PORT(bp
) * (main_mem_size
* 4);
8220 main_mem_prty_clr
= HC_REG_HC_PRTY_STS_CLR
;
8223 val
= REG_RD(bp
, main_mem_prty_clr
);
8226 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8229 /* Clear "false" parity errors in MSI-X table */
8230 for (i
= main_mem_base
;
8231 i
< main_mem_base
+ main_mem_size
* 4;
8232 i
+= main_mem_width
) {
8233 bnx2x_read_dmae(bp
, i
, main_mem_width
/ 4);
8234 bnx2x_write_dmae(bp
, bnx2x_sp_mapping(bp
, wb_data
),
8235 i
, main_mem_width
/ 4);
8237 /* Clear HC parity attention */
8238 REG_RD(bp
, main_mem_prty_clr
);
8241 #ifdef BNX2X_STOP_ON_ERROR
8242 /* Enable STORMs SP logging */
8243 REG_WR8(bp
, BAR_USTRORM_INTMEM
+
8244 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
8245 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+
8246 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
8247 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
8248 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
8249 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+
8250 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp
)), 1);
8253 bnx2x_phy_probe(&bp
->link_params
);
8258 void bnx2x_free_mem_cnic(struct bnx2x
*bp
)
8260 bnx2x_ilt_mem_op_cnic(bp
, ILT_MEMOP_FREE
);
8262 if (!CHIP_IS_E1x(bp
))
8263 BNX2X_PCI_FREE(bp
->cnic_sb
.e2_sb
, bp
->cnic_sb_mapping
,
8264 sizeof(struct host_hc_status_block_e2
));
8266 BNX2X_PCI_FREE(bp
->cnic_sb
.e1x_sb
, bp
->cnic_sb_mapping
,
8267 sizeof(struct host_hc_status_block_e1x
));
8269 BNX2X_PCI_FREE(bp
->t2
, bp
->t2_mapping
, SRC_T2_SZ
);
8272 void bnx2x_free_mem(struct bnx2x
*bp
)
8276 BNX2X_PCI_FREE(bp
->fw_stats
, bp
->fw_stats_mapping
,
8277 bp
->fw_stats_data_sz
+ bp
->fw_stats_req_sz
);
8282 BNX2X_PCI_FREE(bp
->def_status_blk
, bp
->def_status_blk_mapping
,
8283 sizeof(struct host_sp_status_block
));
8285 BNX2X_PCI_FREE(bp
->slowpath
, bp
->slowpath_mapping
,
8286 sizeof(struct bnx2x_slowpath
));
8288 for (i
= 0; i
< L2_ILT_LINES(bp
); i
++)
8289 BNX2X_PCI_FREE(bp
->context
[i
].vcxt
, bp
->context
[i
].cxt_mapping
,
8290 bp
->context
[i
].size
);
8291 bnx2x_ilt_mem_op(bp
, ILT_MEMOP_FREE
);
8293 BNX2X_FREE(bp
->ilt
->lines
);
8295 BNX2X_PCI_FREE(bp
->spq
, bp
->spq_mapping
, BCM_PAGE_SIZE
);
8297 BNX2X_PCI_FREE(bp
->eq_ring
, bp
->eq_mapping
,
8298 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
8300 BNX2X_PCI_FREE(bp
->t2
, bp
->t2_mapping
, SRC_T2_SZ
);
8302 bnx2x_iov_free_mem(bp
);
8305 int bnx2x_alloc_mem_cnic(struct bnx2x
*bp
)
8307 if (!CHIP_IS_E1x(bp
)) {
8308 /* size = the status block + ramrod buffers */
8309 bp
->cnic_sb
.e2_sb
= BNX2X_PCI_ALLOC(&bp
->cnic_sb_mapping
,
8310 sizeof(struct host_hc_status_block_e2
));
8311 if (!bp
->cnic_sb
.e2_sb
)
8314 bp
->cnic_sb
.e1x_sb
= BNX2X_PCI_ALLOC(&bp
->cnic_sb_mapping
,
8315 sizeof(struct host_hc_status_block_e1x
));
8316 if (!bp
->cnic_sb
.e1x_sb
)
8320 if (CONFIGURE_NIC_MODE(bp
) && !bp
->t2
) {
8321 /* allocate searcher T2 table, as it wasn't allocated before */
8322 bp
->t2
= BNX2X_PCI_ALLOC(&bp
->t2_mapping
, SRC_T2_SZ
);
8327 /* write address to which L5 should insert its values */
8328 bp
->cnic_eth_dev
.addr_drv_info_to_mcp
=
8329 &bp
->slowpath
->drv_info_to_mcp
;
8331 if (bnx2x_ilt_mem_op_cnic(bp
, ILT_MEMOP_ALLOC
))
8337 bnx2x_free_mem_cnic(bp
);
8338 BNX2X_ERR("Can't allocate memory\n");
8342 int bnx2x_alloc_mem(struct bnx2x
*bp
)
8344 int i
, allocated
, context_size
;
8346 if (!CONFIGURE_NIC_MODE(bp
) && !bp
->t2
) {
8347 /* allocate searcher T2 table */
8348 bp
->t2
= BNX2X_PCI_ALLOC(&bp
->t2_mapping
, SRC_T2_SZ
);
8353 bp
->def_status_blk
= BNX2X_PCI_ALLOC(&bp
->def_status_blk_mapping
,
8354 sizeof(struct host_sp_status_block
));
8355 if (!bp
->def_status_blk
)
8358 bp
->slowpath
= BNX2X_PCI_ALLOC(&bp
->slowpath_mapping
,
8359 sizeof(struct bnx2x_slowpath
));
8363 /* Allocate memory for CDU context:
8364 * This memory is allocated separately and not in the generic ILT
8365 * functions because CDU differs in few aspects:
8366 * 1. There are multiple entities allocating memory for context -
8367 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8368 * its own ILT lines.
8369 * 2. Since CDU page-size is not a single 4KB page (which is the case
8370 * for the other ILT clients), to be efficient we want to support
8371 * allocation of sub-page-size in the last entry.
8372 * 3. Context pointers are used by the driver to pass to FW / update
8373 * the context (for the other ILT clients the pointers are used just to
8374 * free the memory during unload).
8376 context_size
= sizeof(union cdu_context
) * BNX2X_L2_CID_COUNT(bp
);
8378 for (i
= 0, allocated
= 0; allocated
< context_size
; i
++) {
8379 bp
->context
[i
].size
= min(CDU_ILT_PAGE_SZ
,
8380 (context_size
- allocated
));
8381 bp
->context
[i
].vcxt
= BNX2X_PCI_ALLOC(&bp
->context
[i
].cxt_mapping
,
8382 bp
->context
[i
].size
);
8383 if (!bp
->context
[i
].vcxt
)
8385 allocated
+= bp
->context
[i
].size
;
8387 bp
->ilt
->lines
= kcalloc(ILT_MAX_LINES
, sizeof(struct ilt_line
),
8389 if (!bp
->ilt
->lines
)
8392 if (bnx2x_ilt_mem_op(bp
, ILT_MEMOP_ALLOC
))
8395 if (bnx2x_iov_alloc_mem(bp
))
8398 /* Slow path ring */
8399 bp
->spq
= BNX2X_PCI_ALLOC(&bp
->spq_mapping
, BCM_PAGE_SIZE
);
8404 bp
->eq_ring
= BNX2X_PCI_ALLOC(&bp
->eq_mapping
,
8405 BCM_PAGE_SIZE
* NUM_EQ_PAGES
);
8413 BNX2X_ERR("Can't allocate memory\n");
8418 * Init service functions
8421 int bnx2x_set_mac_one(struct bnx2x
*bp
, u8
*mac
,
8422 struct bnx2x_vlan_mac_obj
*obj
, bool set
,
8423 int mac_type
, unsigned long *ramrod_flags
)
8426 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
8428 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
8430 /* Fill general parameters */
8431 ramrod_param
.vlan_mac_obj
= obj
;
8432 ramrod_param
.ramrod_flags
= *ramrod_flags
;
8434 /* Fill a user request section if needed */
8435 if (!test_bit(RAMROD_CONT
, ramrod_flags
)) {
8436 memcpy(ramrod_param
.user_req
.u
.mac
.mac
, mac
, ETH_ALEN
);
8438 __set_bit(mac_type
, &ramrod_param
.user_req
.vlan_mac_flags
);
8440 /* Set the command: ADD or DEL */
8442 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
8444 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
8447 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
8449 if (rc
== -EEXIST
) {
8450 DP(BNX2X_MSG_SP
, "Failed to schedule ADD operations: %d\n", rc
);
8451 /* do not treat adding same MAC as error */
8454 BNX2X_ERR("%s MAC failed\n", (set
? "Set" : "Del"));
8459 int bnx2x_set_vlan_one(struct bnx2x
*bp
, u16 vlan
,
8460 struct bnx2x_vlan_mac_obj
*obj
, bool set
,
8461 unsigned long *ramrod_flags
)
8464 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
8466 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
8468 /* Fill general parameters */
8469 ramrod_param
.vlan_mac_obj
= obj
;
8470 ramrod_param
.ramrod_flags
= *ramrod_flags
;
8472 /* Fill a user request section if needed */
8473 if (!test_bit(RAMROD_CONT
, ramrod_flags
)) {
8474 ramrod_param
.user_req
.u
.vlan
.vlan
= vlan
;
8475 __set_bit(BNX2X_VLAN
, &ramrod_param
.user_req
.vlan_mac_flags
);
8476 /* Set the command: ADD or DEL */
8478 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
8480 ramrod_param
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
8483 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
8485 if (rc
== -EEXIST
) {
8486 /* Do not treat adding same vlan as error. */
8487 DP(BNX2X_MSG_SP
, "Failed to schedule ADD operations: %d\n", rc
);
8489 } else if (rc
< 0) {
8490 BNX2X_ERR("%s VLAN failed\n", (set
? "Set" : "Del"));
8496 void bnx2x_clear_vlan_info(struct bnx2x
*bp
)
8498 struct bnx2x_vlan_entry
*vlan
;
8500 /* Mark that hw forgot all entries */
8501 list_for_each_entry(vlan
, &bp
->vlan_reg
, link
)
8507 static int bnx2x_del_all_vlans(struct bnx2x
*bp
)
8509 struct bnx2x_vlan_mac_obj
*vlan_obj
= &bp
->sp_objs
[0].vlan_obj
;
8510 unsigned long ramrod_flags
= 0, vlan_flags
= 0;
8513 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
8514 __set_bit(BNX2X_VLAN
, &vlan_flags
);
8515 rc
= vlan_obj
->delete_all(bp
, vlan_obj
, &vlan_flags
, &ramrod_flags
);
8519 bnx2x_clear_vlan_info(bp
);
8524 int bnx2x_del_all_macs(struct bnx2x
*bp
,
8525 struct bnx2x_vlan_mac_obj
*mac_obj
,
8526 int mac_type
, bool wait_for_comp
)
8529 unsigned long ramrod_flags
= 0, vlan_mac_flags
= 0;
8531 /* Wait for completion of requested */
8533 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
8535 /* Set the mac type of addresses we want to clear */
8536 __set_bit(mac_type
, &vlan_mac_flags
);
8538 rc
= mac_obj
->delete_all(bp
, mac_obj
, &vlan_mac_flags
, &ramrod_flags
);
8540 BNX2X_ERR("Failed to delete MACs: %d\n", rc
);
8545 int bnx2x_set_eth_mac(struct bnx2x
*bp
, bool set
)
8548 unsigned long ramrod_flags
= 0;
8550 DP(NETIF_MSG_IFUP
, "Adding Eth MAC\n");
8551 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
8552 return bnx2x_set_mac_one(bp
, bp
->dev
->dev_addr
,
8553 &bp
->sp_objs
->mac_obj
, set
,
8554 BNX2X_ETH_MAC
, &ramrod_flags
);
8556 return bnx2x_vfpf_config_mac(bp
, bp
->dev
->dev_addr
,
8557 bp
->fp
->index
, set
);
8561 int bnx2x_setup_leading(struct bnx2x
*bp
)
8564 return bnx2x_setup_queue(bp
, &bp
->fp
[0], true);
8566 return bnx2x_vfpf_setup_q(bp
, &bp
->fp
[0], true);
8570 * bnx2x_set_int_mode - configure interrupt mode
8572 * @bp: driver handle
8574 * In case of MSI-X it will also try to enable MSI-X.
8576 int bnx2x_set_int_mode(struct bnx2x
*bp
)
8580 if (IS_VF(bp
) && int_mode
!= BNX2X_INT_MODE_MSIX
) {
8581 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8586 case BNX2X_INT_MODE_MSIX
:
8587 /* attempt to enable msix */
8588 rc
= bnx2x_enable_msix(bp
);
8594 /* vfs use only msix */
8595 if (rc
&& IS_VF(bp
))
8598 /* failed to enable multiple MSI-X */
8599 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8601 1 + bp
->num_cnic_queues
);
8604 case BNX2X_INT_MODE_MSI
:
8605 bnx2x_enable_msi(bp
);
8608 case BNX2X_INT_MODE_INTX
:
8609 bp
->num_ethernet_queues
= 1;
8610 bp
->num_queues
= bp
->num_ethernet_queues
+ bp
->num_cnic_queues
;
8611 BNX2X_DEV_INFO("set number of queues to 1\n");
8614 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8620 /* must be called prior to any HW initializations */
8621 static inline u16
bnx2x_cid_ilt_lines(struct bnx2x
*bp
)
8624 return (BNX2X_FIRST_VF_CID
+ BNX2X_VF_CIDS
)/ILT_PAGE_CIDS
;
8625 return L2_ILT_LINES(bp
);
8628 void bnx2x_ilt_set_info(struct bnx2x
*bp
)
8630 struct ilt_client_info
*ilt_client
;
8631 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
8634 ilt
->start_line
= FUNC_ILT_BASE(BP_FUNC(bp
));
8635 DP(BNX2X_MSG_SP
, "ilt starts at line %d\n", ilt
->start_line
);
8638 ilt_client
= &ilt
->clients
[ILT_CLIENT_CDU
];
8639 ilt_client
->client_num
= ILT_CLIENT_CDU
;
8640 ilt_client
->page_size
= CDU_ILT_PAGE_SZ
;
8641 ilt_client
->flags
= ILT_CLIENT_SKIP_MEM
;
8642 ilt_client
->start
= line
;
8643 line
+= bnx2x_cid_ilt_lines(bp
);
8645 if (CNIC_SUPPORT(bp
))
8646 line
+= CNIC_ILT_LINES
;
8647 ilt_client
->end
= line
- 1;
8649 DP(NETIF_MSG_IFUP
, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8652 ilt_client
->page_size
,
8654 ilog2(ilt_client
->page_size
>> 12));
8657 if (QM_INIT(bp
->qm_cid_count
)) {
8658 ilt_client
= &ilt
->clients
[ILT_CLIENT_QM
];
8659 ilt_client
->client_num
= ILT_CLIENT_QM
;
8660 ilt_client
->page_size
= QM_ILT_PAGE_SZ
;
8661 ilt_client
->flags
= 0;
8662 ilt_client
->start
= line
;
8664 /* 4 bytes for each cid */
8665 line
+= DIV_ROUND_UP(bp
->qm_cid_count
* QM_QUEUES_PER_FUNC
* 4,
8668 ilt_client
->end
= line
- 1;
8671 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8674 ilt_client
->page_size
,
8676 ilog2(ilt_client
->page_size
>> 12));
8679 if (CNIC_SUPPORT(bp
)) {
8681 ilt_client
= &ilt
->clients
[ILT_CLIENT_SRC
];
8682 ilt_client
->client_num
= ILT_CLIENT_SRC
;
8683 ilt_client
->page_size
= SRC_ILT_PAGE_SZ
;
8684 ilt_client
->flags
= 0;
8685 ilt_client
->start
= line
;
8686 line
+= SRC_ILT_LINES
;
8687 ilt_client
->end
= line
- 1;
8690 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8693 ilt_client
->page_size
,
8695 ilog2(ilt_client
->page_size
>> 12));
8698 ilt_client
= &ilt
->clients
[ILT_CLIENT_TM
];
8699 ilt_client
->client_num
= ILT_CLIENT_TM
;
8700 ilt_client
->page_size
= TM_ILT_PAGE_SZ
;
8701 ilt_client
->flags
= 0;
8702 ilt_client
->start
= line
;
8703 line
+= TM_ILT_LINES
;
8704 ilt_client
->end
= line
- 1;
8707 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8710 ilt_client
->page_size
,
8712 ilog2(ilt_client
->page_size
>> 12));
8715 BUG_ON(line
> ILT_MAX_LINES
);
8719 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8721 * @bp: driver handle
8722 * @fp: pointer to fastpath
8723 * @init_params: pointer to parameters structure
8725 * parameters configured:
8726 * - HC configuration
8727 * - Queue's CDU context
8729 static void bnx2x_pf_q_prep_init(struct bnx2x
*bp
,
8730 struct bnx2x_fastpath
*fp
, struct bnx2x_queue_init_params
*init_params
)
8733 int cxt_index
, cxt_offset
;
8735 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8736 if (!IS_FCOE_FP(fp
)) {
8737 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->rx
.flags
);
8738 __set_bit(BNX2X_Q_FLG_HC
, &init_params
->tx
.flags
);
8740 /* If HC is supported, enable host coalescing in the transition
8743 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->rx
.flags
);
8744 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_params
->tx
.flags
);
8747 init_params
->rx
.hc_rate
= bp
->rx_ticks
?
8748 (1000000 / bp
->rx_ticks
) : 0;
8749 init_params
->tx
.hc_rate
= bp
->tx_ticks
?
8750 (1000000 / bp
->tx_ticks
) : 0;
8753 init_params
->rx
.fw_sb_id
= init_params
->tx
.fw_sb_id
=
8757 * CQ index among the SB indices: FCoE clients uses the default
8758 * SB, therefore it's different.
8760 init_params
->rx
.sb_cq_index
= HC_INDEX_ETH_RX_CQ_CONS
;
8761 init_params
->tx
.sb_cq_index
= HC_INDEX_ETH_FIRST_TX_CQ_CONS
;
8764 /* set maximum number of COSs supported by this queue */
8765 init_params
->max_cos
= fp
->max_cos
;
8767 DP(NETIF_MSG_IFUP
, "fp: %d setting queue params max cos to: %d\n",
8768 fp
->index
, init_params
->max_cos
);
8770 /* set the context pointers queue object */
8771 for (cos
= FIRST_TX_COS_INDEX
; cos
< init_params
->max_cos
; cos
++) {
8772 cxt_index
= fp
->txdata_ptr
[cos
]->cid
/ ILT_PAGE_CIDS
;
8773 cxt_offset
= fp
->txdata_ptr
[cos
]->cid
- (cxt_index
*
8775 init_params
->cxts
[cos
] =
8776 &bp
->context
[cxt_index
].vcxt
[cxt_offset
].eth
;
8780 static int bnx2x_setup_tx_only(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
8781 struct bnx2x_queue_state_params
*q_params
,
8782 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
,
8783 int tx_index
, bool leading
)
8785 memset(tx_only_params
, 0, sizeof(*tx_only_params
));
8787 /* Set the command */
8788 q_params
->cmd
= BNX2X_Q_CMD_SETUP_TX_ONLY
;
8790 /* Set tx-only QUEUE flags: don't zero statistics */
8791 tx_only_params
->flags
= bnx2x_get_common_flags(bp
, fp
, false);
8793 /* choose the index of the cid to send the slow path on */
8794 tx_only_params
->cid_index
= tx_index
;
8796 /* Set general TX_ONLY_SETUP parameters */
8797 bnx2x_pf_q_prep_general(bp
, fp
, &tx_only_params
->gen_params
, tx_index
);
8799 /* Set Tx TX_ONLY_SETUP parameters */
8800 bnx2x_pf_tx_q_prep(bp
, fp
, &tx_only_params
->txq_params
, tx_index
);
8803 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8804 tx_index
, q_params
->q_obj
->cids
[FIRST_TX_COS_INDEX
],
8805 q_params
->q_obj
->cids
[tx_index
], q_params
->q_obj
->cl_id
,
8806 tx_only_params
->gen_params
.spcl_id
, tx_only_params
->flags
);
8808 /* send the ramrod */
8809 return bnx2x_queue_state_change(bp
, q_params
);
8813 * bnx2x_setup_queue - setup queue
8815 * @bp: driver handle
8816 * @fp: pointer to fastpath
8817 * @leading: is leading
8819 * This function performs 2 steps in a Queue state machine
8820 * actually: 1) RESET->INIT 2) INIT->SETUP
8823 int bnx2x_setup_queue(struct bnx2x
*bp
, struct bnx2x_fastpath
*fp
,
8826 struct bnx2x_queue_state_params q_params
= {NULL
};
8827 struct bnx2x_queue_setup_params
*setup_params
=
8828 &q_params
.params
.setup
;
8829 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
=
8830 &q_params
.params
.tx_only
;
8834 DP(NETIF_MSG_IFUP
, "setting up queue %d\n", fp
->index
);
8836 /* reset IGU state skip FCoE L2 queue */
8837 if (!IS_FCOE_FP(fp
))
8838 bnx2x_ack_sb(bp
, fp
->igu_sb_id
, USTORM_ID
, 0,
8841 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
8842 /* We want to wait for completion in this context */
8843 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
8845 /* Prepare the INIT parameters */
8846 bnx2x_pf_q_prep_init(bp
, fp
, &q_params
.params
.init
);
8848 /* Set the command */
8849 q_params
.cmd
= BNX2X_Q_CMD_INIT
;
8851 /* Change the state to INIT */
8852 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8854 BNX2X_ERR("Queue(%d) INIT failed\n", fp
->index
);
8858 DP(NETIF_MSG_IFUP
, "init complete\n");
8860 /* Now move the Queue to the SETUP state... */
8861 memset(setup_params
, 0, sizeof(*setup_params
));
8863 /* Set QUEUE flags */
8864 setup_params
->flags
= bnx2x_get_q_flags(bp
, fp
, leading
);
8866 /* Set general SETUP parameters */
8867 bnx2x_pf_q_prep_general(bp
, fp
, &setup_params
->gen_params
,
8868 FIRST_TX_COS_INDEX
);
8870 bnx2x_pf_rx_q_prep(bp
, fp
, &setup_params
->pause_params
,
8871 &setup_params
->rxq_params
);
8873 bnx2x_pf_tx_q_prep(bp
, fp
, &setup_params
->txq_params
,
8874 FIRST_TX_COS_INDEX
);
8876 /* Set the command */
8877 q_params
.cmd
= BNX2X_Q_CMD_SETUP
;
8880 bp
->fcoe_init
= true;
8882 /* Change the state to SETUP */
8883 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8885 BNX2X_ERR("Queue(%d) SETUP failed\n", fp
->index
);
8889 /* loop through the relevant tx-only indices */
8890 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
8891 tx_index
< fp
->max_cos
;
8894 /* prepare and send tx-only ramrod*/
8895 rc
= bnx2x_setup_tx_only(bp
, fp
, &q_params
,
8896 tx_only_params
, tx_index
, leading
);
8898 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8899 fp
->index
, tx_index
);
8907 static int bnx2x_stop_queue(struct bnx2x
*bp
, int index
)
8909 struct bnx2x_fastpath
*fp
= &bp
->fp
[index
];
8910 struct bnx2x_fp_txdata
*txdata
;
8911 struct bnx2x_queue_state_params q_params
= {NULL
};
8914 DP(NETIF_MSG_IFDOWN
, "stopping queue %d cid %d\n", index
, fp
->cid
);
8916 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
8917 /* We want to wait for completion in this context */
8918 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
8920 /* close tx-only connections */
8921 for (tx_index
= FIRST_TX_ONLY_COS_INDEX
;
8922 tx_index
< fp
->max_cos
;
8925 /* ascertain this is a normal queue*/
8926 txdata
= fp
->txdata_ptr
[tx_index
];
8928 DP(NETIF_MSG_IFDOWN
, "stopping tx-only queue %d\n",
8931 /* send halt terminate on tx-only connection */
8932 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
8933 memset(&q_params
.params
.terminate
, 0,
8934 sizeof(q_params
.params
.terminate
));
8935 q_params
.params
.terminate
.cid_index
= tx_index
;
8937 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8941 /* send halt terminate on tx-only connection */
8942 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
8943 memset(&q_params
.params
.cfc_del
, 0,
8944 sizeof(q_params
.params
.cfc_del
));
8945 q_params
.params
.cfc_del
.cid_index
= tx_index
;
8946 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8950 /* Stop the primary connection: */
8951 /* ...halt the connection */
8952 q_params
.cmd
= BNX2X_Q_CMD_HALT
;
8953 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8957 /* ...terminate the connection */
8958 q_params
.cmd
= BNX2X_Q_CMD_TERMINATE
;
8959 memset(&q_params
.params
.terminate
, 0,
8960 sizeof(q_params
.params
.terminate
));
8961 q_params
.params
.terminate
.cid_index
= FIRST_TX_COS_INDEX
;
8962 rc
= bnx2x_queue_state_change(bp
, &q_params
);
8965 /* ...delete cfc entry */
8966 q_params
.cmd
= BNX2X_Q_CMD_CFC_DEL
;
8967 memset(&q_params
.params
.cfc_del
, 0,
8968 sizeof(q_params
.params
.cfc_del
));
8969 q_params
.params
.cfc_del
.cid_index
= FIRST_TX_COS_INDEX
;
8970 return bnx2x_queue_state_change(bp
, &q_params
);
8973 static void bnx2x_reset_func(struct bnx2x
*bp
)
8975 int port
= BP_PORT(bp
);
8976 int func
= BP_FUNC(bp
);
8979 /* Disable the function in the FW */
8980 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(func
), 0);
8981 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(func
), 0);
8982 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(func
), 0);
8983 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(func
), 0);
8986 for_each_eth_queue(bp
, i
) {
8987 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
8988 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
8989 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp
->fw_sb_id
),
8993 if (CNIC_LOADED(bp
))
8995 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
8996 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8997 (bnx2x_cnic_fw_sb_id(bp
)), SB_DISABLED
);
9000 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+
9001 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func
),
9004 for (i
= 0; i
< XSTORM_SPQ_DATA_SIZE
/ 4; i
++)
9005 REG_WR(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_SPQ_DATA_OFFSET(func
),
9009 if (bp
->common
.int_block
== INT_BLOCK_HC
) {
9010 REG_WR(bp
, HC_REG_LEADING_EDGE_0
+ port
*8, 0);
9011 REG_WR(bp
, HC_REG_TRAILING_EDGE_0
+ port
*8, 0);
9013 REG_WR(bp
, IGU_REG_LEADING_EDGE_LATCH
, 0);
9014 REG_WR(bp
, IGU_REG_TRAILING_EDGE_LATCH
, 0);
9017 if (CNIC_LOADED(bp
)) {
9018 /* Disable Timer scan */
9019 REG_WR(bp
, TM_REG_EN_LINEAR0_TIMER
+ port
*4, 0);
9021 * Wait for at least 10ms and up to 2 second for the timers
9024 for (i
= 0; i
< 200; i
++) {
9025 usleep_range(10000, 20000);
9026 if (!REG_RD(bp
, TM_REG_LIN0_SCAN_ON
+ port
*4))
9031 bnx2x_clear_func_ilt(bp
, func
);
9033 /* Timers workaround bug for E2: if this is vnic-3,
9034 * we need to set the entire ilt range for this timers.
9036 if (!CHIP_IS_E1x(bp
) && BP_VN(bp
) == 3) {
9037 struct ilt_client_info ilt_cli
;
9038 /* use dummy TM client */
9039 memset(&ilt_cli
, 0, sizeof(struct ilt_client_info
));
9041 ilt_cli
.end
= ILT_NUM_PAGE_ENTRIES
- 1;
9042 ilt_cli
.client_num
= ILT_CLIENT_TM
;
9044 bnx2x_ilt_boundry_init_op(bp
, &ilt_cli
, 0, INITOP_CLEAR
);
9047 /* this assumes that reset_port() called before reset_func()*/
9048 if (!CHIP_IS_E1x(bp
))
9049 bnx2x_pf_disable(bp
);
9054 static void bnx2x_reset_port(struct bnx2x
*bp
)
9056 int port
= BP_PORT(bp
);
9059 /* Reset physical Link */
9060 bnx2x__link_reset(bp
);
9062 REG_WR(bp
, NIG_REG_MASK_INTERRUPT_PORT0
+ port
*4, 0);
9064 /* Do not rcv packets to BRB */
9065 REG_WR(bp
, NIG_REG_LLH0_BRB1_DRV_MASK
+ port
*4, 0x0);
9066 /* Do not direct rcv packets that are not for MCP to the BRB */
9067 REG_WR(bp
, (port
? NIG_REG_LLH1_BRB1_NOT_MCP
:
9068 NIG_REG_LLH0_BRB1_NOT_MCP
), 0x0);
9071 REG_WR(bp
, MISC_REG_AEU_MASK_ATTN_FUNC_0
+ port
*4, 0);
9074 /* Check for BRB port occupancy */
9075 val
= REG_RD(bp
, BRB1_REG_PORT_NUM_OCC_BLOCKS_0
+ port
*4);
9077 DP(NETIF_MSG_IFDOWN
,
9078 "BRB1 is not empty %d blocks are occupied\n", val
);
9080 /* TODO: Close Doorbell port? */
9083 static int bnx2x_reset_hw(struct bnx2x
*bp
, u32 load_code
)
9085 struct bnx2x_func_state_params func_params
= {NULL
};
9087 /* Prepare parameters for function state transitions */
9088 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
9090 func_params
.f_obj
= &bp
->func_obj
;
9091 func_params
.cmd
= BNX2X_F_CMD_HW_RESET
;
9093 func_params
.params
.hw_init
.load_phase
= load_code
;
9095 return bnx2x_func_state_change(bp
, &func_params
);
9098 static int bnx2x_func_stop(struct bnx2x
*bp
)
9100 struct bnx2x_func_state_params func_params
= {NULL
};
9103 /* Prepare parameters for function state transitions */
9104 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
9105 func_params
.f_obj
= &bp
->func_obj
;
9106 func_params
.cmd
= BNX2X_F_CMD_STOP
;
9109 * Try to stop the function the 'good way'. If fails (in case
9110 * of a parity error during bnx2x_chip_cleanup()) and we are
9111 * not in a debug mode, perform a state transaction in order to
9112 * enable further HW_RESET transaction.
9114 rc
= bnx2x_func_state_change(bp
, &func_params
);
9116 #ifdef BNX2X_STOP_ON_ERROR
9119 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9120 __set_bit(RAMROD_DRV_CLR_ONLY
, &func_params
.ramrod_flags
);
9121 return bnx2x_func_state_change(bp
, &func_params
);
9129 * bnx2x_send_unload_req - request unload mode from the MCP.
9131 * @bp: driver handle
9132 * @unload_mode: requested function's unload mode
9134 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9136 u32
bnx2x_send_unload_req(struct bnx2x
*bp
, int unload_mode
)
9139 int port
= BP_PORT(bp
);
9141 /* Select the UNLOAD request mode */
9142 if (unload_mode
== UNLOAD_NORMAL
)
9143 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
9145 else if (bp
->flags
& NO_WOL_FLAG
)
9146 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
;
9149 u32 emac_base
= port
? GRCBASE_EMAC1
: GRCBASE_EMAC0
;
9150 u8
*mac_addr
= bp
->dev
->dev_addr
;
9151 struct pci_dev
*pdev
= bp
->pdev
;
9155 /* The mac address is written to entries 1-4 to
9156 * preserve entry 0 which is used by the PMF
9158 u8 entry
= (BP_VN(bp
) + 1)*8;
9160 val
= (mac_addr
[0] << 8) | mac_addr
[1];
9161 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
, val
);
9163 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
9164 (mac_addr
[4] << 8) | mac_addr
[5];
9165 EMAC_WR(bp
, EMAC_REG_EMAC_MAC_MATCH
+ entry
+ 4, val
);
9167 /* Enable the PME and clear the status */
9168 pci_read_config_word(pdev
, pdev
->pm_cap
+ PCI_PM_CTRL
, &pmc
);
9169 pmc
|= PCI_PM_CTRL_PME_ENABLE
| PCI_PM_CTRL_PME_STATUS
;
9170 pci_write_config_word(pdev
, pdev
->pm_cap
+ PCI_PM_CTRL
, pmc
);
9172 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_EN
;
9175 reset_code
= DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
;
9177 /* Send the request to the MCP */
9179 reset_code
= bnx2x_fw_command(bp
, reset_code
, 0);
9181 int path
= BP_PATH(bp
);
9183 DP(NETIF_MSG_IFDOWN
, "NO MCP - load counts[%d] %d, %d, %d\n",
9184 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
9185 bnx2x_load_count
[path
][2]);
9186 bnx2x_load_count
[path
][0]--;
9187 bnx2x_load_count
[path
][1 + port
]--;
9188 DP(NETIF_MSG_IFDOWN
, "NO MCP - new load counts[%d] %d, %d, %d\n",
9189 path
, bnx2x_load_count
[path
][0], bnx2x_load_count
[path
][1],
9190 bnx2x_load_count
[path
][2]);
9191 if (bnx2x_load_count
[path
][0] == 0)
9192 reset_code
= FW_MSG_CODE_DRV_UNLOAD_COMMON
;
9193 else if (bnx2x_load_count
[path
][1 + port
] == 0)
9194 reset_code
= FW_MSG_CODE_DRV_UNLOAD_PORT
;
9196 reset_code
= FW_MSG_CODE_DRV_UNLOAD_FUNCTION
;
9203 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9205 * @bp: driver handle
9206 * @keep_link: true iff link should be kept up
9208 void bnx2x_send_unload_done(struct bnx2x
*bp
, bool keep_link
)
9210 u32 reset_param
= keep_link
? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET
: 0;
9212 /* Report UNLOAD_DONE to MCP */
9214 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, reset_param
);
9217 static int bnx2x_func_wait_started(struct bnx2x
*bp
)
9220 int msix
= (bp
->flags
& USING_MSIX_FLAG
) ? 1 : 0;
9226 * (assumption: No Attention from MCP at this stage)
9227 * PMF probably in the middle of TX disable/enable transaction
9228 * 1. Sync IRS for default SB
9229 * 2. Sync SP queue - this guarantees us that attention handling started
9230 * 3. Wait, that TX disable/enable transaction completes
9232 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9233 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9234 * received completion for the transaction the state is TX_STOPPED.
9235 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9239 /* make sure default SB ISR is done */
9241 synchronize_irq(bp
->msix_table
[0].vector
);
9243 synchronize_irq(bp
->pdev
->irq
);
9245 flush_workqueue(bnx2x_wq
);
9246 flush_workqueue(bnx2x_iov_wq
);
9248 while (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
9249 BNX2X_F_STATE_STARTED
&& tout
--)
9252 if (bnx2x_func_get_state(bp
, &bp
->func_obj
) !=
9253 BNX2X_F_STATE_STARTED
) {
9254 #ifdef BNX2X_STOP_ON_ERROR
9255 BNX2X_ERR("Wrong function state\n");
9259 * Failed to complete the transaction in a "good way"
9260 * Force both transactions with CLR bit
9262 struct bnx2x_func_state_params func_params
= {NULL
};
9264 DP(NETIF_MSG_IFDOWN
,
9265 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9267 func_params
.f_obj
= &bp
->func_obj
;
9268 __set_bit(RAMROD_DRV_CLR_ONLY
,
9269 &func_params
.ramrod_flags
);
9271 /* STARTED-->TX_ST0PPED */
9272 func_params
.cmd
= BNX2X_F_CMD_TX_STOP
;
9273 bnx2x_func_state_change(bp
, &func_params
);
9275 /* TX_ST0PPED-->STARTED */
9276 func_params
.cmd
= BNX2X_F_CMD_TX_START
;
9277 return bnx2x_func_state_change(bp
, &func_params
);
9284 static void bnx2x_disable_ptp(struct bnx2x
*bp
)
9286 int port
= BP_PORT(bp
);
9288 /* Disable sending PTP packets to host */
9289 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_TO_HOST
:
9290 NIG_REG_P0_LLH_PTP_TO_HOST
, 0x0);
9292 /* Reset PTP event detection rules */
9293 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_PARAM_MASK
:
9294 NIG_REG_P0_LLH_PTP_PARAM_MASK
, 0x7FF);
9295 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_RULE_MASK
:
9296 NIG_REG_P0_LLH_PTP_RULE_MASK
, 0x3FFF);
9297 REG_WR(bp
, port
? NIG_REG_P1_TLLH_PTP_PARAM_MASK
:
9298 NIG_REG_P0_TLLH_PTP_PARAM_MASK
, 0x7FF);
9299 REG_WR(bp
, port
? NIG_REG_P1_TLLH_PTP_RULE_MASK
:
9300 NIG_REG_P0_TLLH_PTP_RULE_MASK
, 0x3FFF);
9302 /* Disable the PTP feature */
9303 REG_WR(bp
, port
? NIG_REG_P1_PTP_EN
:
9304 NIG_REG_P0_PTP_EN
, 0x0);
9307 /* Called during unload, to stop PTP-related stuff */
9308 static void bnx2x_stop_ptp(struct bnx2x
*bp
)
9310 /* Cancel PTP work queue. Should be done after the Tx queues are
9311 * drained to prevent additional scheduling.
9313 cancel_work_sync(&bp
->ptp_task
);
9315 if (bp
->ptp_tx_skb
) {
9316 dev_kfree_skb_any(bp
->ptp_tx_skb
);
9317 bp
->ptp_tx_skb
= NULL
;
9320 /* Disable PTP in HW */
9321 bnx2x_disable_ptp(bp
);
9323 DP(BNX2X_MSG_PTP
, "PTP stop ended successfully\n");
9326 void bnx2x_chip_cleanup(struct bnx2x
*bp
, int unload_mode
, bool keep_link
)
9328 int port
= BP_PORT(bp
);
9331 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
9334 /* Wait until tx fastpath tasks complete */
9335 for_each_tx_queue(bp
, i
) {
9336 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
9338 for_each_cos_in_tx_queue(fp
, cos
)
9339 rc
= bnx2x_clean_tx_queue(bp
, fp
->txdata_ptr
[cos
]);
9340 #ifdef BNX2X_STOP_ON_ERROR
9346 /* Give HW time to discard old tx messages */
9347 usleep_range(1000, 2000);
9349 /* Clean all ETH MACs */
9350 rc
= bnx2x_del_all_macs(bp
, &bp
->sp_objs
[0].mac_obj
, BNX2X_ETH_MAC
,
9353 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc
);
9355 /* Clean up UC list */
9356 rc
= bnx2x_del_all_macs(bp
, &bp
->sp_objs
[0].mac_obj
, BNX2X_UC_LIST_MAC
,
9359 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9362 /* The whole *vlan_obj structure may be not initialized if VLAN
9363 * filtering offload is not supported by hardware. Currently this is
9364 * true for all hardware covered by CHIP_IS_E1x().
9366 if (!CHIP_IS_E1x(bp
)) {
9367 /* Remove all currently configured VLANs */
9368 rc
= bnx2x_del_all_vlans(bp
);
9370 BNX2X_ERR("Failed to delete all VLANs\n");
9374 if (!CHIP_IS_E1(bp
))
9375 REG_WR(bp
, NIG_REG_LLH0_FUNC_EN
+ port
*8, 0);
9377 /* Set "drop all" (stop Rx).
9378 * We need to take a netif_addr_lock() here in order to prevent
9379 * a race between the completion code and this code.
9381 netif_addr_lock_bh(bp
->dev
);
9382 /* Schedule the rx_mode command */
9383 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
9384 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
9385 else if (bp
->slowpath
)
9386 bnx2x_set_storm_rx_mode(bp
);
9388 /* Cleanup multicast configuration */
9389 rparam
.mcast_obj
= &bp
->mcast_obj
;
9390 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
9392 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc
);
9394 netif_addr_unlock_bh(bp
->dev
);
9396 bnx2x_iov_chip_cleanup(bp
);
9399 * Send the UNLOAD_REQUEST to the MCP. This will return if
9400 * this function should perform FUNC, PORT or COMMON HW
9403 reset_code
= bnx2x_send_unload_req(bp
, unload_mode
);
9406 * (assumption: No Attention from MCP at this stage)
9407 * PMF probably in the middle of TX disable/enable transaction
9409 rc
= bnx2x_func_wait_started(bp
);
9411 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9412 #ifdef BNX2X_STOP_ON_ERROR
9417 /* Close multi and leading connections
9418 * Completions for ramrods are collected in a synchronous way
9420 for_each_eth_queue(bp
, i
)
9421 if (bnx2x_stop_queue(bp
, i
))
9422 #ifdef BNX2X_STOP_ON_ERROR
9428 if (CNIC_LOADED(bp
)) {
9429 for_each_cnic_queue(bp
, i
)
9430 if (bnx2x_stop_queue(bp
, i
))
9431 #ifdef BNX2X_STOP_ON_ERROR
9438 /* If SP settings didn't get completed so far - something
9439 * very wrong has happen.
9441 if (!bnx2x_wait_sp_comp(bp
, ~0x0UL
))
9442 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9444 #ifndef BNX2X_STOP_ON_ERROR
9447 rc
= bnx2x_func_stop(bp
);
9449 BNX2X_ERR("Function stop failed!\n");
9450 #ifdef BNX2X_STOP_ON_ERROR
9455 /* stop_ptp should be after the Tx queues are drained to prevent
9456 * scheduling to the cancelled PTP work queue. It should also be after
9457 * function stop ramrod is sent, since as part of this ramrod FW access
9460 if (bp
->flags
& PTP_SUPPORTED
) {
9462 if (bp
->ptp_clock
) {
9463 ptp_clock_unregister(bp
->ptp_clock
);
9464 bp
->ptp_clock
= NULL
;
9468 /* Disable HW interrupts, NAPI */
9469 bnx2x_netif_stop(bp
, 1);
9470 /* Delete all NAPI objects */
9471 bnx2x_del_all_napi(bp
);
9472 if (CNIC_LOADED(bp
))
9473 bnx2x_del_all_napi_cnic(bp
);
9478 /* Reset the chip, unless PCI function is offline. If we reach this
9479 * point following a PCI error handling, it means device is really
9480 * in a bad state and we're about to remove it, so reset the chip
9481 * is not a good idea.
9483 if (!pci_channel_offline(bp
->pdev
)) {
9484 rc
= bnx2x_reset_hw(bp
, reset_code
);
9486 BNX2X_ERR("HW_RESET failed\n");
9489 /* Report UNLOAD_DONE to MCP */
9490 bnx2x_send_unload_done(bp
, keep_link
);
9493 void bnx2x_disable_close_the_gate(struct bnx2x
*bp
)
9497 DP(NETIF_MSG_IFDOWN
, "Disabling \"close the gates\"\n");
9499 if (CHIP_IS_E1(bp
)) {
9500 int port
= BP_PORT(bp
);
9501 u32 addr
= port
? MISC_REG_AEU_MASK_ATTN_FUNC_1
:
9502 MISC_REG_AEU_MASK_ATTN_FUNC_0
;
9504 val
= REG_RD(bp
, addr
);
9506 REG_WR(bp
, addr
, val
);
9508 val
= REG_RD(bp
, MISC_REG_AEU_GENERAL_MASK
);
9509 val
&= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK
|
9510 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK
);
9511 REG_WR(bp
, MISC_REG_AEU_GENERAL_MASK
, val
);
9515 /* Close gates #2, #3 and #4: */
9516 static void bnx2x_set_234_gates(struct bnx2x
*bp
, bool close
)
9520 /* Gates #2 and #4a are closed/opened for "not E1" only */
9521 if (!CHIP_IS_E1(bp
)) {
9523 REG_WR(bp
, PXP_REG_HST_DISCARD_DOORBELLS
, !!close
);
9525 REG_WR(bp
, PXP_REG_HST_DISCARD_INTERNAL_WRITES
, !!close
);
9529 if (CHIP_IS_E1x(bp
)) {
9530 /* Prevent interrupts from HC on both ports */
9531 val
= REG_RD(bp
, HC_REG_CONFIG_1
);
9532 REG_WR(bp
, HC_REG_CONFIG_1
,
9533 (!close
) ? (val
| HC_CONFIG_1_REG_BLOCK_DISABLE_1
) :
9534 (val
& ~(u32
)HC_CONFIG_1_REG_BLOCK_DISABLE_1
));
9536 val
= REG_RD(bp
, HC_REG_CONFIG_0
);
9537 REG_WR(bp
, HC_REG_CONFIG_0
,
9538 (!close
) ? (val
| HC_CONFIG_0_REG_BLOCK_DISABLE_0
) :
9539 (val
& ~(u32
)HC_CONFIG_0_REG_BLOCK_DISABLE_0
));
9541 /* Prevent incoming interrupts in IGU */
9542 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
9544 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
,
9546 (val
| IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
) :
9547 (val
& ~(u32
)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE
));
9550 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "%s gates #2, #3 and #4\n",
9551 close
? "closing" : "opening");
9554 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9556 static void bnx2x_clp_reset_prep(struct bnx2x
*bp
, u32
*magic_val
)
9558 /* Do some magic... */
9559 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
9560 *magic_val
= val
& SHARED_MF_CLP_MAGIC
;
9561 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
, val
| SHARED_MF_CLP_MAGIC
);
9565 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9567 * @bp: driver handle
9568 * @magic_val: old value of the `magic' bit.
9570 static void bnx2x_clp_reset_done(struct bnx2x
*bp
, u32 magic_val
)
9572 /* Restore the `magic' bit value... */
9573 u32 val
= MF_CFG_RD(bp
, shared_mf_config
.clp_mb
);
9574 MF_CFG_WR(bp
, shared_mf_config
.clp_mb
,
9575 (val
& (~SHARED_MF_CLP_MAGIC
)) | magic_val
);
9579 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9581 * @bp: driver handle
9582 * @magic_val: old value of 'magic' bit.
9584 * Takes care of CLP configurations.
9586 static void bnx2x_reset_mcp_prep(struct bnx2x
*bp
, u32
*magic_val
)
9589 u32 validity_offset
;
9591 DP(NETIF_MSG_HW
| NETIF_MSG_IFUP
, "Starting\n");
9593 /* Set `magic' bit in order to save MF config */
9594 if (!CHIP_IS_E1(bp
))
9595 bnx2x_clp_reset_prep(bp
, magic_val
);
9597 /* Get shmem offset */
9598 shmem
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
9600 offsetof(struct shmem_region
, validity_map
[BP_PORT(bp
)]);
9602 /* Clear validity map flags */
9604 REG_WR(bp
, shmem
+ validity_offset
, 0);
9607 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9608 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9611 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9613 * @bp: driver handle
9615 static void bnx2x_mcp_wait_one(struct bnx2x
*bp
)
9617 /* special handling for emulation and FPGA,
9618 wait 10 times longer */
9619 if (CHIP_REV_IS_SLOW(bp
))
9620 msleep(MCP_ONE_TIMEOUT
*10);
9622 msleep(MCP_ONE_TIMEOUT
);
9626 * initializes bp->common.shmem_base and waits for validity signature to appear
9628 static int bnx2x_init_shmem(struct bnx2x
*bp
)
9634 bp
->common
.shmem_base
= REG_RD(bp
, MISC_REG_SHARED_MEM_ADDR
);
9636 /* If we read all 0xFFs, means we are in PCI error state and
9637 * should bail out to avoid crashes on adapter's FW reads.
9639 if (bp
->common
.shmem_base
== 0xFFFFFFFF) {
9640 bp
->flags
|= NO_MCP_FLAG
;
9644 if (bp
->common
.shmem_base
) {
9645 val
= SHMEM_RD(bp
, validity_map
[BP_PORT(bp
)]);
9646 if (val
& SHR_MEM_VALIDITY_MB
)
9650 bnx2x_mcp_wait_one(bp
);
9652 } while (cnt
++ < (MCP_TIMEOUT
/ MCP_ONE_TIMEOUT
));
9654 BNX2X_ERR("BAD MCP validity signature\n");
9659 static int bnx2x_reset_mcp_comp(struct bnx2x
*bp
, u32 magic_val
)
9661 int rc
= bnx2x_init_shmem(bp
);
9663 /* Restore the `magic' bit value */
9664 if (!CHIP_IS_E1(bp
))
9665 bnx2x_clp_reset_done(bp
, magic_val
);
9670 static void bnx2x_pxp_prep(struct bnx2x
*bp
)
9672 if (!CHIP_IS_E1(bp
)) {
9673 REG_WR(bp
, PXP2_REG_RD_START_INIT
, 0);
9674 REG_WR(bp
, PXP2_REG_RQ_RBC_DONE
, 0);
9679 * Reset the whole chip except for:
9681 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9684 * - MISC (including AEU)
9688 static void bnx2x_process_kill_chip_reset(struct bnx2x
*bp
, bool global
)
9690 u32 not_reset_mask1
, reset_mask1
, not_reset_mask2
, reset_mask2
;
9691 u32 global_bits2
, stay_reset2
;
9694 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9695 * (per chip) blocks.
9698 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU
|
9699 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE
;
9701 /* Don't reset the following blocks.
9702 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9703 * reset, as in 4 port device they might still be owned
9704 * by the MCP (there is only one leader per path).
9707 MISC_REGISTERS_RESET_REG_1_RST_HC
|
9708 MISC_REGISTERS_RESET_REG_1_RST_PXPV
|
9709 MISC_REGISTERS_RESET_REG_1_RST_PXP
;
9712 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO
|
9713 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE
|
9714 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE
|
9715 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE
|
9716 MISC_REGISTERS_RESET_REG_2_RST_RBCN
|
9717 MISC_REGISTERS_RESET_REG_2_RST_GRC
|
9718 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE
|
9719 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B
|
9720 MISC_REGISTERS_RESET_REG_2_RST_ATC
|
9721 MISC_REGISTERS_RESET_REG_2_PGLC
|
9722 MISC_REGISTERS_RESET_REG_2_RST_BMAC0
|
9723 MISC_REGISTERS_RESET_REG_2_RST_BMAC1
|
9724 MISC_REGISTERS_RESET_REG_2_RST_EMAC0
|
9725 MISC_REGISTERS_RESET_REG_2_RST_EMAC1
|
9726 MISC_REGISTERS_RESET_REG_2_UMAC0
|
9727 MISC_REGISTERS_RESET_REG_2_UMAC1
;
9730 * Keep the following blocks in reset:
9731 * - all xxMACs are handled by the bnx2x_link code.
9734 MISC_REGISTERS_RESET_REG_2_XMAC
|
9735 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT
;
9737 /* Full reset masks according to the chip */
9738 reset_mask1
= 0xffffffff;
9741 reset_mask2
= 0xffff;
9742 else if (CHIP_IS_E1H(bp
))
9743 reset_mask2
= 0x1ffff;
9744 else if (CHIP_IS_E2(bp
))
9745 reset_mask2
= 0xfffff;
9746 else /* CHIP_IS_E3 */
9747 reset_mask2
= 0x3ffffff;
9749 /* Don't reset global blocks unless we need to */
9751 reset_mask2
&= ~global_bits2
;
9754 * In case of attention in the QM, we need to reset PXP
9755 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9756 * because otherwise QM reset would release 'close the gates' shortly
9757 * before resetting the PXP, then the PSWRQ would send a write
9758 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9759 * read the payload data from PSWWR, but PSWWR would not
9760 * respond. The write queue in PGLUE would stuck, dmae commands
9761 * would not return. Therefore it's important to reset the second
9762 * reset register (containing the
9763 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9764 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9767 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_CLEAR
,
9768 reset_mask2
& (~not_reset_mask2
));
9770 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_CLEAR
,
9771 reset_mask1
& (~not_reset_mask1
));
9775 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_2_SET
,
9776 reset_mask2
& (~stay_reset2
));
9780 REG_WR(bp
, GRCBASE_MISC
+ MISC_REGISTERS_RESET_REG_1_SET
, reset_mask1
);
9784 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9785 * It should get cleared in no more than 1s.
9787 * @bp: driver handle
9789 * It should get cleared in no more than 1s. Returns 0 if
9790 * pending writes bit gets cleared.
9792 static int bnx2x_er_poll_igu_vq(struct bnx2x
*bp
)
9798 pend_bits
= REG_RD(bp
, IGU_REG_PENDING_BITS_STATUS
);
9803 usleep_range(1000, 2000);
9804 } while (cnt
-- > 0);
9807 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9815 static int bnx2x_process_kill(struct bnx2x
*bp
, bool global
)
9819 u32 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
, pgl_exp_rom2
;
9822 /* Empty the Tetris buffer, wait for 1s */
9824 sr_cnt
= REG_RD(bp
, PXP2_REG_RD_SR_CNT
);
9825 blk_cnt
= REG_RD(bp
, PXP2_REG_RD_BLK_CNT
);
9826 port_is_idle_0
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_0
);
9827 port_is_idle_1
= REG_RD(bp
, PXP2_REG_RD_PORT_IS_IDLE_1
);
9828 pgl_exp_rom2
= REG_RD(bp
, PXP2_REG_PGL_EXP_ROM2
);
9830 tags_63_32
= REG_RD(bp
, PGLUE_B_REG_TAGS_63_32
);
9832 if ((sr_cnt
== 0x7e) && (blk_cnt
== 0xa0) &&
9833 ((port_is_idle_0
& 0x1) == 0x1) &&
9834 ((port_is_idle_1
& 0x1) == 0x1) &&
9835 (pgl_exp_rom2
== 0xffffffff) &&
9836 (!CHIP_IS_E3(bp
) || (tags_63_32
== 0xffffffff)))
9838 usleep_range(1000, 2000);
9839 } while (cnt
-- > 0);
9842 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9843 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9844 sr_cnt
, blk_cnt
, port_is_idle_0
, port_is_idle_1
,
9851 /* Close gates #2, #3 and #4 */
9852 bnx2x_set_234_gates(bp
, true);
9854 /* Poll for IGU VQs for 57712 and newer chips */
9855 if (!CHIP_IS_E1x(bp
) && bnx2x_er_poll_igu_vq(bp
))
9858 /* TBD: Indicate that "process kill" is in progress to MCP */
9860 /* Clear "unprepared" bit */
9861 REG_WR(bp
, MISC_REG_UNPREPARED
, 0);
9864 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9865 * PSWHST, GRC and PSWRD Tetris buffer.
9867 usleep_range(1000, 2000);
9869 /* Prepare to chip reset: */
9872 bnx2x_reset_mcp_prep(bp
, &val
);
9878 /* reset the chip */
9879 bnx2x_process_kill_chip_reset(bp
, global
);
9882 /* clear errors in PGB */
9883 if (!CHIP_IS_E1x(bp
))
9884 REG_WR(bp
, PGLUE_B_REG_LATCHED_ERRORS_CLR
, 0x7f);
9886 /* Recover after reset: */
9888 if (global
&& bnx2x_reset_mcp_comp(bp
, val
))
9891 /* TBD: Add resetting the NO_MCP mode DB here */
9893 /* Open the gates #2, #3 and #4 */
9894 bnx2x_set_234_gates(bp
, false);
9896 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9897 * reset state, re-enable attentions. */
9902 static int bnx2x_leader_reset(struct bnx2x
*bp
)
9905 bool global
= bnx2x_reset_is_global(bp
);
9908 /* if not going to reset MCP - load "fake" driver to reset HW while
9909 * driver is owner of the HW
9911 if (!global
&& !BP_NOMCP(bp
)) {
9912 load_code
= bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_REQ
,
9913 DRV_MSG_CODE_LOAD_REQ_WITH_LFA
);
9915 BNX2X_ERR("MCP response failure, aborting\n");
9917 goto exit_leader_reset
;
9919 if ((load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
) &&
9920 (load_code
!= FW_MSG_CODE_DRV_LOAD_COMMON
)) {
9921 BNX2X_ERR("MCP unexpected resp, aborting\n");
9923 goto exit_leader_reset2
;
9925 load_code
= bnx2x_fw_command(bp
, DRV_MSG_CODE_LOAD_DONE
, 0);
9927 BNX2X_ERR("MCP response failure, aborting\n");
9929 goto exit_leader_reset2
;
9933 /* Try to recover after the failure */
9934 if (bnx2x_process_kill(bp
, global
)) {
9935 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9938 goto exit_leader_reset2
;
9942 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9945 bnx2x_set_reset_done(bp
);
9947 bnx2x_clear_reset_global(bp
);
9950 /* unload "fake driver" if it was loaded */
9951 if (!global
&& !BP_NOMCP(bp
)) {
9952 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP
, 0);
9953 bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
, 0);
9957 bnx2x_release_leader_lock(bp
);
9962 static void bnx2x_recovery_failed(struct bnx2x
*bp
)
9964 netdev_err(bp
->dev
, "Recovery has failed. Power cycle is needed.\n");
9966 /* Disconnect this device */
9967 netif_device_detach(bp
->dev
);
9970 * Block ifup for all function on this engine until "process kill"
9973 bnx2x_set_reset_in_progress(bp
);
9975 /* Shut down the power */
9976 bnx2x_set_power_state(bp
, PCI_D3hot
);
9978 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
9984 * Assumption: runs under rtnl lock. This together with the fact
9985 * that it's called only from bnx2x_sp_rtnl() ensure that it
9986 * will never be called when netif_running(bp->dev) is false.
9988 static void bnx2x_parity_recover(struct bnx2x
*bp
)
9990 u32 error_recovered
, error_unrecovered
;
9991 bool is_parity
, global
= false;
9992 #ifdef CONFIG_BNX2X_SRIOV
9995 for (vf_idx
= 0; vf_idx
< bp
->requested_nr_virtfn
; vf_idx
++) {
9996 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
9999 vf
->state
= VF_LOST
;
10002 DP(NETIF_MSG_HW
, "Handling parity\n");
10004 switch (bp
->recovery_state
) {
10005 case BNX2X_RECOVERY_INIT
:
10006 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_INIT\n");
10007 is_parity
= bnx2x_chk_parity_attn(bp
, &global
, false);
10008 WARN_ON(!is_parity
);
10010 /* Try to get a LEADER_LOCK HW lock */
10011 if (bnx2x_trylock_leader_lock(bp
)) {
10012 bnx2x_set_reset_in_progress(bp
);
10014 * Check if there is a global attention and if
10015 * there was a global attention, set the global
10020 bnx2x_set_reset_global(bp
);
10025 /* Stop the driver */
10026 /* If interface has been removed - break */
10027 if (bnx2x_nic_unload(bp
, UNLOAD_RECOVERY
, false))
10030 bp
->recovery_state
= BNX2X_RECOVERY_WAIT
;
10032 /* Ensure "is_leader", MCP command sequence and
10033 * "recovery_state" update values are seen on other
10039 case BNX2X_RECOVERY_WAIT
:
10040 DP(NETIF_MSG_HW
, "State is BNX2X_RECOVERY_WAIT\n");
10041 if (bp
->is_leader
) {
10042 int other_engine
= BP_PATH(bp
) ? 0 : 1;
10043 bool other_load_status
=
10044 bnx2x_get_load_status(bp
, other_engine
);
10046 bnx2x_get_load_status(bp
, BP_PATH(bp
));
10047 global
= bnx2x_reset_is_global(bp
);
10050 * In case of a parity in a global block, let
10051 * the first leader that performs a
10052 * leader_reset() reset the global blocks in
10053 * order to clear global attentions. Otherwise
10054 * the gates will remain closed for that
10058 (global
&& other_load_status
)) {
10059 /* Wait until all other functions get
10062 schedule_delayed_work(&bp
->sp_rtnl_task
,
10066 /* If all other functions got down -
10067 * try to bring the chip back to
10068 * normal. In any case it's an exit
10069 * point for a leader.
10071 if (bnx2x_leader_reset(bp
)) {
10072 bnx2x_recovery_failed(bp
);
10076 /* If we are here, means that the
10077 * leader has succeeded and doesn't
10078 * want to be a leader any more. Try
10079 * to continue as a none-leader.
10083 } else { /* non-leader */
10084 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
))) {
10085 /* Try to get a LEADER_LOCK HW lock as
10086 * long as a former leader may have
10087 * been unloaded by the user or
10088 * released a leadership by another
10091 if (bnx2x_trylock_leader_lock(bp
)) {
10092 /* I'm a leader now! Restart a
10099 schedule_delayed_work(&bp
->sp_rtnl_task
,
10105 * If there was a global attention, wait
10106 * for it to be cleared.
10108 if (bnx2x_reset_is_global(bp
)) {
10109 schedule_delayed_work(
10116 bp
->eth_stats
.recoverable_error
;
10117 error_unrecovered
=
10118 bp
->eth_stats
.unrecoverable_error
;
10119 bp
->recovery_state
=
10120 BNX2X_RECOVERY_NIC_LOADING
;
10121 if (bnx2x_nic_load(bp
, LOAD_NORMAL
)) {
10122 error_unrecovered
++;
10123 netdev_err(bp
->dev
,
10124 "Recovery failed. Power cycle needed\n");
10125 /* Disconnect this device */
10126 netif_device_detach(bp
->dev
);
10127 /* Shut down the power */
10128 bnx2x_set_power_state(
10132 bp
->recovery_state
=
10133 BNX2X_RECOVERY_DONE
;
10137 bp
->eth_stats
.recoverable_error
=
10139 bp
->eth_stats
.unrecoverable_error
=
10151 static int bnx2x_udp_port_update(struct bnx2x
*bp
)
10153 struct bnx2x_func_switch_update_params
*switch_update_params
;
10154 struct bnx2x_func_state_params func_params
= {NULL
};
10155 u16 vxlan_port
= 0, geneve_port
= 0;
10158 switch_update_params
= &func_params
.params
.switch_update
;
10160 /* Prepare parameters for function state transitions */
10161 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
10162 __set_bit(RAMROD_RETRY
, &func_params
.ramrod_flags
);
10164 func_params
.f_obj
= &bp
->func_obj
;
10165 func_params
.cmd
= BNX2X_F_CMD_SWITCH_UPDATE
;
10167 /* Function parameters */
10168 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG
,
10169 &switch_update_params
->changes
);
10171 if (bp
->udp_tunnel_ports
[BNX2X_UDP_PORT_GENEVE
]) {
10172 geneve_port
= bp
->udp_tunnel_ports
[BNX2X_UDP_PORT_GENEVE
];
10173 switch_update_params
->geneve_dst_port
= geneve_port
;
10176 if (bp
->udp_tunnel_ports
[BNX2X_UDP_PORT_VXLAN
]) {
10177 vxlan_port
= bp
->udp_tunnel_ports
[BNX2X_UDP_PORT_VXLAN
];
10178 switch_update_params
->vxlan_dst_port
= vxlan_port
;
10181 /* Re-enable inner-rss for the offloaded UDP tunnels */
10182 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS
,
10183 &switch_update_params
->changes
);
10185 rc
= bnx2x_func_state_change(bp
, &func_params
);
10187 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10188 vxlan_port
, geneve_port
, rc
);
10191 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10192 vxlan_port
, geneve_port
);
10197 static int bnx2x_udp_tunnel_sync(struct net_device
*netdev
, unsigned int table
)
10199 struct bnx2x
*bp
= netdev_priv(netdev
);
10200 struct udp_tunnel_info ti
;
10202 udp_tunnel_nic_get_port(netdev
, table
, 0, &ti
);
10203 bp
->udp_tunnel_ports
[table
] = be16_to_cpu(ti
.port
);
10205 return bnx2x_udp_port_update(bp
);
10208 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels
= {
10209 .sync_table
= bnx2x_udp_tunnel_sync
,
10210 .flags
= UDP_TUNNEL_NIC_INFO_MAY_SLEEP
|
10211 UDP_TUNNEL_NIC_INFO_OPEN_ONLY
,
10213 { .n_entries
= 1, .tunnel_types
= UDP_TUNNEL_TYPE_VXLAN
, },
10214 { .n_entries
= 1, .tunnel_types
= UDP_TUNNEL_TYPE_GENEVE
, },
10218 static int bnx2x_close(struct net_device
*dev
);
10220 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10221 * scheduled on a general queue in order to prevent a dead lock.
10223 static void bnx2x_sp_rtnl_task(struct work_struct
*work
)
10225 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, sp_rtnl_task
.work
);
10229 if (!netif_running(bp
->dev
)) {
10234 if (unlikely(bp
->recovery_state
!= BNX2X_RECOVERY_DONE
)) {
10235 #ifdef BNX2X_STOP_ON_ERROR
10236 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10237 "you will need to reboot when done\n");
10238 goto sp_rtnl_not_reset
;
10241 * Clear all pending SP commands as we are going to reset the
10244 bp
->sp_rtnl_state
= 0;
10247 bnx2x_parity_recover(bp
);
10253 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT
, &bp
->sp_rtnl_state
)) {
10254 #ifdef BNX2X_STOP_ON_ERROR
10255 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10256 "you will need to reboot when done\n");
10257 goto sp_rtnl_not_reset
;
10261 * Clear all pending SP commands as we are going to reset the
10264 bp
->sp_rtnl_state
= 0;
10267 /* Immediately indicate link as down */
10268 bp
->link_vars
.link_up
= 0;
10269 bp
->force_link_down
= true;
10270 netif_carrier_off(bp
->dev
);
10271 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10273 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
10274 /* When ret value shows failure of allocation failure,
10275 * the nic is rebooted again. If open still fails, a error
10276 * message to notify the user.
10278 if (bnx2x_nic_load(bp
, LOAD_NORMAL
) == -ENOMEM
) {
10279 bnx2x_nic_unload(bp
, UNLOAD_NORMAL
, true);
10280 if (bnx2x_nic_load(bp
, LOAD_NORMAL
))
10281 BNX2X_ERR("Open the NIC fails again!\n");
10286 #ifdef BNX2X_STOP_ON_ERROR
10289 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC
, &bp
->sp_rtnl_state
))
10290 bnx2x_setup_tc(bp
->dev
, bp
->dcbx_port_params
.ets
.num_of_cos
);
10291 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE
, &bp
->sp_rtnl_state
))
10292 bnx2x_after_function_update(bp
);
10294 * in case of fan failure we need to reset id if the "stop on error"
10295 * debug flag is set, since we trying to prevent permanent overheating
10298 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE
, &bp
->sp_rtnl_state
)) {
10299 DP(NETIF_MSG_HW
, "fan failure detected. Unloading driver\n");
10300 netif_device_detach(bp
->dev
);
10301 bnx2x_close(bp
->dev
);
10306 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST
, &bp
->sp_rtnl_state
)) {
10308 "sending set mcast vf pf channel message from rtnl sp-task\n");
10309 bnx2x_vfpf_set_mcast(bp
->dev
);
10311 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN
,
10312 &bp
->sp_rtnl_state
)){
10313 if (netif_carrier_ok(bp
->dev
)) {
10314 bnx2x_tx_disable(bp
);
10315 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10319 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE
, &bp
->sp_rtnl_state
)) {
10320 DP(BNX2X_MSG_SP
, "Handling Rx Mode setting\n");
10321 bnx2x_set_rx_mode_inner(bp
);
10324 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN
,
10325 &bp
->sp_rtnl_state
))
10326 bnx2x_pf_set_vfs_vlan(bp
);
10328 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP
, &bp
->sp_rtnl_state
)) {
10329 bnx2x_dcbx_stop_hw_tx(bp
);
10330 bnx2x_dcbx_resume_hw_tx(bp
);
10333 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION
,
10334 &bp
->sp_rtnl_state
))
10335 bnx2x_update_mng_version(bp
);
10337 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID
, &bp
->sp_rtnl_state
))
10338 bnx2x_handle_update_svid_cmd(bp
);
10340 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10341 * can be called from other contexts as well)
10345 /* enable SR-IOV if applicable */
10346 if (IS_SRIOV(bp
) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV
,
10347 &bp
->sp_rtnl_state
)) {
10348 bnx2x_disable_sriov(bp
);
10349 bnx2x_enable_sriov(bp
);
10353 static void bnx2x_period_task(struct work_struct
*work
)
10355 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, period_task
.work
);
10357 if (!netif_running(bp
->dev
))
10358 goto period_task_exit
;
10360 if (CHIP_REV_IS_SLOW(bp
)) {
10361 BNX2X_ERR("period task called on emulation, ignoring\n");
10362 goto period_task_exit
;
10365 bnx2x_acquire_phy_lock(bp
);
10367 * The barrier is needed to ensure the ordering between the writing to
10368 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10369 * the reading here.
10372 if (bp
->port
.pmf
) {
10373 bnx2x_period_func(&bp
->link_params
, &bp
->link_vars
);
10375 /* Re-queue task in 1 sec */
10376 queue_delayed_work(bnx2x_wq
, &bp
->period_task
, 1*HZ
);
10379 bnx2x_release_phy_lock(bp
);
10385 * Init service functions
10388 static u32
bnx2x_get_pretend_reg(struct bnx2x
*bp
)
10390 u32 base
= PXP2_REG_PGL_PRETEND_FUNC_F0
;
10391 u32 stride
= PXP2_REG_PGL_PRETEND_FUNC_F1
- base
;
10392 return base
+ (BP_ABS_FUNC(bp
)) * stride
;
10395 static bool bnx2x_prev_unload_close_umac(struct bnx2x
*bp
,
10396 u8 port
, u32 reset_reg
,
10397 struct bnx2x_mac_vals
*vals
)
10399 u32 mask
= MISC_REGISTERS_RESET_REG_2_UMAC0
<< port
;
10402 if (!(mask
& reset_reg
))
10405 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port
);
10406 base_addr
= port
? GRCBASE_UMAC1
: GRCBASE_UMAC0
;
10407 vals
->umac_addr
[port
] = base_addr
+ UMAC_REG_COMMAND_CONFIG
;
10408 vals
->umac_val
[port
] = REG_RD(bp
, vals
->umac_addr
[port
]);
10409 REG_WR(bp
, vals
->umac_addr
[port
], 0);
10414 static void bnx2x_prev_unload_close_mac(struct bnx2x
*bp
,
10415 struct bnx2x_mac_vals
*vals
)
10417 u32 val
, base_addr
, offset
, mask
, reset_reg
;
10418 bool mac_stopped
= false;
10419 u8 port
= BP_PORT(bp
);
10421 /* reset addresses as they also mark which values were changed */
10422 memset(vals
, 0, sizeof(*vals
));
10424 reset_reg
= REG_RD(bp
, MISC_REG_RESET_REG_2
);
10426 if (!CHIP_IS_E3(bp
)) {
10427 val
= REG_RD(bp
, NIG_REG_BMAC0_REGS_OUT_EN
+ port
* 4);
10428 mask
= MISC_REGISTERS_RESET_REG_2_RST_BMAC0
<< port
;
10429 if ((mask
& reset_reg
) && val
) {
10431 BNX2X_DEV_INFO("Disable bmac Rx\n");
10432 base_addr
= BP_PORT(bp
) ? NIG_REG_INGRESS_BMAC1_MEM
10433 : NIG_REG_INGRESS_BMAC0_MEM
;
10434 offset
= CHIP_IS_E2(bp
) ? BIGMAC2_REGISTER_BMAC_CONTROL
10435 : BIGMAC_REGISTER_BMAC_CONTROL
;
10438 * use rd/wr since we cannot use dmae. This is safe
10439 * since MCP won't access the bus due to the request
10440 * to unload, and no function on the path can be
10441 * loaded at this time.
10443 wb_data
[0] = REG_RD(bp
, base_addr
+ offset
);
10444 wb_data
[1] = REG_RD(bp
, base_addr
+ offset
+ 0x4);
10445 vals
->bmac_addr
= base_addr
+ offset
;
10446 vals
->bmac_val
[0] = wb_data
[0];
10447 vals
->bmac_val
[1] = wb_data
[1];
10448 wb_data
[0] &= ~BMAC_CONTROL_RX_ENABLE
;
10449 REG_WR(bp
, vals
->bmac_addr
, wb_data
[0]);
10450 REG_WR(bp
, vals
->bmac_addr
+ 0x4, wb_data
[1]);
10452 BNX2X_DEV_INFO("Disable emac Rx\n");
10453 vals
->emac_addr
= NIG_REG_NIG_EMAC0_EN
+ BP_PORT(bp
)*4;
10454 vals
->emac_val
= REG_RD(bp
, vals
->emac_addr
);
10455 REG_WR(bp
, vals
->emac_addr
, 0);
10456 mac_stopped
= true;
10458 if (reset_reg
& MISC_REGISTERS_RESET_REG_2_XMAC
) {
10459 BNX2X_DEV_INFO("Disable xmac Rx\n");
10460 base_addr
= BP_PORT(bp
) ? GRCBASE_XMAC1
: GRCBASE_XMAC0
;
10461 val
= REG_RD(bp
, base_addr
+ XMAC_REG_PFC_CTRL_HI
);
10462 REG_WR(bp
, base_addr
+ XMAC_REG_PFC_CTRL_HI
,
10464 REG_WR(bp
, base_addr
+ XMAC_REG_PFC_CTRL_HI
,
10466 vals
->xmac_addr
= base_addr
+ XMAC_REG_CTRL
;
10467 vals
->xmac_val
= REG_RD(bp
, vals
->xmac_addr
);
10468 REG_WR(bp
, vals
->xmac_addr
, 0);
10469 mac_stopped
= true;
10472 mac_stopped
|= bnx2x_prev_unload_close_umac(bp
, 0,
10474 mac_stopped
|= bnx2x_prev_unload_close_umac(bp
, 1,
10482 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10483 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10484 0x1848 + ((f) << 4))
10485 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10486 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10487 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10489 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10490 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10491 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10493 static bool bnx2x_prev_is_after_undi(struct bnx2x
*bp
)
10495 /* UNDI marks its presence in DORQ -
10496 * it initializes CID offset for normal bell to 0x7
10498 if (!(REG_RD(bp
, MISC_REG_RESET_REG_1
) &
10499 MISC_REGISTERS_RESET_REG_1_RST_DORQ
))
10502 if (REG_RD(bp
, DORQ_REG_NORM_CID_OFST
) == 0x7) {
10503 BNX2X_DEV_INFO("UNDI previously loaded\n");
10510 static void bnx2x_prev_unload_undi_inc(struct bnx2x
*bp
, u8 inc
)
10515 if (BP_FUNC(bp
) < 2)
10516 addr
= BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp
));
10518 addr
= BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp
) - 2);
10520 tmp_reg
= REG_RD(bp
, addr
);
10521 rcq
= BNX2X_PREV_UNDI_RCQ(tmp_reg
) + inc
;
10522 bd
= BNX2X_PREV_UNDI_BD(tmp_reg
) + inc
;
10524 tmp_reg
= BNX2X_PREV_UNDI_PROD(rcq
, bd
);
10525 REG_WR(bp
, addr
, tmp_reg
);
10527 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10528 BP_PORT(bp
), BP_FUNC(bp
), addr
, bd
, rcq
);
10531 static int bnx2x_prev_mcp_done(struct bnx2x
*bp
)
10533 u32 rc
= bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_DONE
,
10534 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET
);
10536 BNX2X_ERR("MCP response failure, aborting\n");
10543 static struct bnx2x_prev_path_list
*
10544 bnx2x_prev_path_get_entry(struct bnx2x
*bp
)
10546 struct bnx2x_prev_path_list
*tmp_list
;
10548 list_for_each_entry(tmp_list
, &bnx2x_prev_list
, list
)
10549 if (PCI_SLOT(bp
->pdev
->devfn
) == tmp_list
->slot
&&
10550 bp
->pdev
->bus
->number
== tmp_list
->bus
&&
10551 BP_PATH(bp
) == tmp_list
->path
)
10557 static int bnx2x_prev_path_mark_eeh(struct bnx2x
*bp
)
10559 struct bnx2x_prev_path_list
*tmp_list
;
10562 rc
= down_interruptible(&bnx2x_prev_sem
);
10564 BNX2X_ERR("Received %d when tried to take lock\n", rc
);
10568 tmp_list
= bnx2x_prev_path_get_entry(bp
);
10573 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10577 up(&bnx2x_prev_sem
);
10582 static bool bnx2x_prev_is_path_marked(struct bnx2x
*bp
)
10584 struct bnx2x_prev_path_list
*tmp_list
;
10587 if (down_trylock(&bnx2x_prev_sem
))
10590 tmp_list
= bnx2x_prev_path_get_entry(bp
);
10592 if (tmp_list
->aer
) {
10593 DP(NETIF_MSG_HW
, "Path %d was marked by AER\n",
10597 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10602 up(&bnx2x_prev_sem
);
10607 bool bnx2x_port_after_undi(struct bnx2x
*bp
)
10609 struct bnx2x_prev_path_list
*entry
;
10612 down(&bnx2x_prev_sem
);
10614 entry
= bnx2x_prev_path_get_entry(bp
);
10615 val
= !!(entry
&& (entry
->undi
& (1 << BP_PORT(bp
))));
10617 up(&bnx2x_prev_sem
);
10622 static int bnx2x_prev_mark_path(struct bnx2x
*bp
, bool after_undi
)
10624 struct bnx2x_prev_path_list
*tmp_list
;
10627 rc
= down_interruptible(&bnx2x_prev_sem
);
10629 BNX2X_ERR("Received %d when tried to take lock\n", rc
);
10633 /* Check whether the entry for this path already exists */
10634 tmp_list
= bnx2x_prev_path_get_entry(bp
);
10636 if (!tmp_list
->aer
) {
10637 BNX2X_ERR("Re-Marking the path.\n");
10639 DP(NETIF_MSG_HW
, "Removing AER indication from path %d\n",
10643 up(&bnx2x_prev_sem
);
10646 up(&bnx2x_prev_sem
);
10648 /* Create an entry for this path and add it */
10649 tmp_list
= kmalloc(sizeof(struct bnx2x_prev_path_list
), GFP_KERNEL
);
10651 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10655 tmp_list
->bus
= bp
->pdev
->bus
->number
;
10656 tmp_list
->slot
= PCI_SLOT(bp
->pdev
->devfn
);
10657 tmp_list
->path
= BP_PATH(bp
);
10659 tmp_list
->undi
= after_undi
? (1 << BP_PORT(bp
)) : 0;
10661 rc
= down_interruptible(&bnx2x_prev_sem
);
10663 BNX2X_ERR("Received %d when tried to take lock\n", rc
);
10666 DP(NETIF_MSG_HW
, "Marked path [%d] - finished previous unload\n",
10668 list_add(&tmp_list
->list
, &bnx2x_prev_list
);
10669 up(&bnx2x_prev_sem
);
10675 static int bnx2x_do_flr(struct bnx2x
*bp
)
10677 struct pci_dev
*dev
= bp
->pdev
;
10679 if (CHIP_IS_E1x(bp
)) {
10680 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10684 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10685 if (bp
->common
.bc_ver
< REQ_BC_VER_4_INITIATE_FLR
) {
10686 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10687 bp
->common
.bc_ver
);
10691 if (!pci_wait_for_pending_transaction(dev
))
10692 dev_err(&dev
->dev
, "transaction is not cleared; proceeding with reset anyway\n");
10694 BNX2X_DEV_INFO("Initiating FLR\n");
10695 bnx2x_fw_command(bp
, DRV_MSG_CODE_INITIATE_FLR
, 0);
10700 static int bnx2x_prev_unload_uncommon(struct bnx2x
*bp
)
10704 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10706 /* Test if previous unload process was already finished for this path */
10707 if (bnx2x_prev_is_path_marked(bp
))
10708 return bnx2x_prev_mcp_done(bp
);
10710 BNX2X_DEV_INFO("Path is unmarked\n");
10712 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10713 if (bnx2x_prev_is_after_undi(bp
))
10716 /* If function has FLR capabilities, and existing FW version matches
10717 * the one required, then FLR will be sufficient to clean any residue
10718 * left by previous driver
10720 rc
= bnx2x_compare_fw_ver(bp
, FW_MSG_CODE_DRV_LOAD_FUNCTION
, false);
10723 /* fw version is good */
10724 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10725 rc
= bnx2x_do_flr(bp
);
10729 /* FLR was performed */
10730 BNX2X_DEV_INFO("FLR successful\n");
10734 BNX2X_DEV_INFO("Could not FLR\n");
10737 /* Close the MCP request, return failure*/
10738 rc
= bnx2x_prev_mcp_done(bp
);
10740 rc
= BNX2X_PREV_WAIT_NEEDED
;
10745 static int bnx2x_prev_unload_common(struct bnx2x
*bp
)
10747 u32 reset_reg
, tmp_reg
= 0, rc
;
10748 bool prev_undi
= false;
10749 struct bnx2x_mac_vals mac_vals
;
10751 /* It is possible a previous function received 'common' answer,
10752 * but hasn't loaded yet, therefore creating a scenario of
10753 * multiple functions receiving 'common' on the same path.
10755 BNX2X_DEV_INFO("Common unload Flow\n");
10757 memset(&mac_vals
, 0, sizeof(mac_vals
));
10759 if (bnx2x_prev_is_path_marked(bp
))
10760 return bnx2x_prev_mcp_done(bp
);
10762 reset_reg
= REG_RD(bp
, MISC_REG_RESET_REG_1
);
10764 /* Reset should be performed after BRB is emptied */
10765 if (reset_reg
& MISC_REGISTERS_RESET_REG_1_RST_BRB1
) {
10766 u32 timer_count
= 1000;
10768 /* Close the MAC Rx to prevent BRB from filling up */
10769 bnx2x_prev_unload_close_mac(bp
, &mac_vals
);
10771 /* close LLH filters for both ports towards the BRB */
10772 bnx2x_set_rx_filter(&bp
->link_params
, 0);
10773 bp
->link_params
.port
^= 1;
10774 bnx2x_set_rx_filter(&bp
->link_params
, 0);
10775 bp
->link_params
.port
^= 1;
10777 /* Check if the UNDI driver was previously loaded */
10778 if (bnx2x_prev_is_after_undi(bp
)) {
10780 /* clear the UNDI indication */
10781 REG_WR(bp
, DORQ_REG_NORM_CID_OFST
, 0);
10782 /* clear possible idle check errors */
10783 REG_RD(bp
, NIG_REG_NIG_INT_STS_CLR_0
);
10785 if (!CHIP_IS_E1x(bp
))
10786 /* block FW from writing to host */
10787 REG_WR(bp
, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER
, 0);
10789 /* wait until BRB is empty */
10790 tmp_reg
= REG_RD(bp
, BRB1_REG_NUM_OF_FULL_BLOCKS
);
10791 while (timer_count
) {
10792 u32 prev_brb
= tmp_reg
;
10794 tmp_reg
= REG_RD(bp
, BRB1_REG_NUM_OF_FULL_BLOCKS
);
10798 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg
);
10800 /* reset timer as long as BRB actually gets emptied */
10801 if (prev_brb
> tmp_reg
)
10802 timer_count
= 1000;
10806 /* If UNDI resides in memory, manually increment it */
10808 bnx2x_prev_unload_undi_inc(bp
, 1);
10814 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10817 /* No packets are in the pipeline, path is ready for reset */
10818 bnx2x_reset_common(bp
);
10820 if (mac_vals
.xmac_addr
)
10821 REG_WR(bp
, mac_vals
.xmac_addr
, mac_vals
.xmac_val
);
10822 if (mac_vals
.umac_addr
[0])
10823 REG_WR(bp
, mac_vals
.umac_addr
[0], mac_vals
.umac_val
[0]);
10824 if (mac_vals
.umac_addr
[1])
10825 REG_WR(bp
, mac_vals
.umac_addr
[1], mac_vals
.umac_val
[1]);
10826 if (mac_vals
.emac_addr
)
10827 REG_WR(bp
, mac_vals
.emac_addr
, mac_vals
.emac_val
);
10828 if (mac_vals
.bmac_addr
) {
10829 REG_WR(bp
, mac_vals
.bmac_addr
, mac_vals
.bmac_val
[0]);
10830 REG_WR(bp
, mac_vals
.bmac_addr
+ 4, mac_vals
.bmac_val
[1]);
10833 rc
= bnx2x_prev_mark_path(bp
, prev_undi
);
10835 bnx2x_prev_mcp_done(bp
);
10839 return bnx2x_prev_mcp_done(bp
);
10842 static int bnx2x_prev_unload(struct bnx2x
*bp
)
10844 int time_counter
= 10;
10845 u32 rc
, fw
, hw_lock_reg
, hw_lock_val
;
10846 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10848 /* clear hw from errors which may have resulted from an interrupted
10849 * dmae transaction.
10851 bnx2x_clean_pglue_errors(bp
);
10853 /* Release previously held locks */
10854 hw_lock_reg
= (BP_FUNC(bp
) <= 5) ?
10855 (MISC_REG_DRIVER_CONTROL_1
+ BP_FUNC(bp
) * 8) :
10856 (MISC_REG_DRIVER_CONTROL_7
+ (BP_FUNC(bp
) - 6) * 8);
10858 hw_lock_val
= REG_RD(bp
, hw_lock_reg
);
10860 if (hw_lock_val
& HW_LOCK_RESOURCE_NVRAM
) {
10861 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10862 REG_WR(bp
, MCP_REG_MCPR_NVM_SW_ARB
,
10863 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1
<< BP_PORT(bp
)));
10866 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10867 REG_WR(bp
, hw_lock_reg
, 0xffffffff);
10869 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10871 if (MCPR_ACCESS_LOCK_LOCK
& REG_RD(bp
, MCP_REG_MCPR_ACCESS_LOCK
)) {
10872 BNX2X_DEV_INFO("Release previously held alr\n");
10873 bnx2x_release_alr(bp
);
10878 /* Lock MCP using an unload request */
10879 fw
= bnx2x_fw_command(bp
, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS
, 0);
10881 BNX2X_ERR("MCP response failure, aborting\n");
10886 rc
= down_interruptible(&bnx2x_prev_sem
);
10888 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10891 /* If Path is marked by EEH, ignore unload status */
10892 aer
= !!(bnx2x_prev_path_get_entry(bp
) &&
10893 bnx2x_prev_path_get_entry(bp
)->aer
);
10894 up(&bnx2x_prev_sem
);
10897 if (fw
== FW_MSG_CODE_DRV_UNLOAD_COMMON
|| aer
) {
10898 rc
= bnx2x_prev_unload_common(bp
);
10902 /* non-common reply from MCP might require looping */
10903 rc
= bnx2x_prev_unload_uncommon(bp
);
10904 if (rc
!= BNX2X_PREV_WAIT_NEEDED
)
10908 } while (--time_counter
);
10910 if (!time_counter
|| rc
) {
10911 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10912 rc
= -EPROBE_DEFER
;
10915 /* Mark function if its port was used to boot from SAN */
10916 if (bnx2x_port_after_undi(bp
))
10917 bp
->link_params
.feature_config_flags
|=
10918 FEATURE_CONFIG_BOOT_FROM_SAN
;
10920 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc
);
10925 static void bnx2x_get_common_hwinfo(struct bnx2x
*bp
)
10927 u32 val
, val2
, val3
, val4
, id
, boot_mode
;
10930 /* Get the chip revision id and number. */
10931 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10932 val
= REG_RD(bp
, MISC_REG_CHIP_NUM
);
10933 id
= ((val
& 0xffff) << 16);
10934 val
= REG_RD(bp
, MISC_REG_CHIP_REV
);
10935 id
|= ((val
& 0xf) << 12);
10937 /* Metal is read from PCI regs, but we can't access >=0x400 from
10938 * the configuration space (so we need to reg_rd)
10940 val
= REG_RD(bp
, PCICFG_OFFSET
+ PCI_ID_VAL3
);
10941 id
|= (((val
>> 24) & 0xf) << 4);
10942 val
= REG_RD(bp
, MISC_REG_BOND_ID
);
10944 bp
->common
.chip_id
= id
;
10946 /* force 57811 according to MISC register */
10947 if (REG_RD(bp
, MISC_REG_CHIP_TYPE
) & MISC_REG_CHIP_TYPE_57811_MASK
) {
10948 if (CHIP_IS_57810(bp
))
10949 bp
->common
.chip_id
= (CHIP_NUM_57811
<< 16) |
10950 (bp
->common
.chip_id
& 0x0000FFFF);
10951 else if (CHIP_IS_57810_MF(bp
))
10952 bp
->common
.chip_id
= (CHIP_NUM_57811_MF
<< 16) |
10953 (bp
->common
.chip_id
& 0x0000FFFF);
10954 bp
->common
.chip_id
|= 0x1;
10957 /* Set doorbell size */
10958 bp
->db_size
= (1 << BNX2X_DB_SHIFT
);
10960 if (!CHIP_IS_E1x(bp
)) {
10961 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN_OVWR
);
10962 if ((val
& 1) == 0)
10963 val
= REG_RD(bp
, MISC_REG_PORT4MODE_EN
);
10965 val
= (val
>> 1) & 1;
10966 BNX2X_DEV_INFO("chip is in %s\n", val
? "4_PORT_MODE" :
10968 bp
->common
.chip_port_mode
= val
? CHIP_4_PORT_MODE
:
10971 if (CHIP_MODE_IS_4_PORT(bp
))
10972 bp
->pfid
= (bp
->pf_num
>> 1); /* 0..3 */
10974 bp
->pfid
= (bp
->pf_num
& 0x6); /* 0, 2, 4, 6 */
10976 bp
->common
.chip_port_mode
= CHIP_PORT_MODE_NONE
; /* N/A */
10977 bp
->pfid
= bp
->pf_num
; /* 0..7 */
10980 BNX2X_DEV_INFO("pf_id: %x", bp
->pfid
);
10982 bp
->link_params
.chip_id
= bp
->common
.chip_id
;
10983 BNX2X_DEV_INFO("chip ID is 0x%x\n", id
);
10985 val
= (REG_RD(bp
, 0x2874) & 0x55);
10986 if ((bp
->common
.chip_id
& 0x1) ||
10987 (CHIP_IS_E1(bp
) && val
) || (CHIP_IS_E1H(bp
) && (val
== 0x55))) {
10988 bp
->flags
|= ONE_PORT_FLAG
;
10989 BNX2X_DEV_INFO("single port device\n");
10992 val
= REG_RD(bp
, MCP_REG_MCPR_NVM_CFG4
);
10993 bp
->common
.flash_size
= (BNX2X_NVRAM_1MB_SIZE
<<
10994 (val
& MCPR_NVM_CFG4_FLASH_SIZE
));
10995 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10996 bp
->common
.flash_size
, bp
->common
.flash_size
);
10998 bnx2x_init_shmem(bp
);
11000 bp
->common
.shmem2_base
= REG_RD(bp
, (BP_PATH(bp
) ?
11001 MISC_REG_GENERIC_CR_1
:
11002 MISC_REG_GENERIC_CR_0
));
11004 bp
->link_params
.shmem_base
= bp
->common
.shmem_base
;
11005 bp
->link_params
.shmem2_base
= bp
->common
.shmem2_base
;
11006 if (SHMEM2_RD(bp
, size
) >
11007 (u32
)offsetof(struct shmem2_region
, lfa_host_addr
[BP_PORT(bp
)]))
11008 bp
->link_params
.lfa_base
=
11009 REG_RD(bp
, bp
->common
.shmem2_base
+
11010 (u32
)offsetof(struct shmem2_region
,
11011 lfa_host_addr
[BP_PORT(bp
)]));
11013 bp
->link_params
.lfa_base
= 0;
11014 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11015 bp
->common
.shmem_base
, bp
->common
.shmem2_base
);
11017 if (!bp
->common
.shmem_base
) {
11018 BNX2X_DEV_INFO("MCP not active\n");
11019 bp
->flags
|= NO_MCP_FLAG
;
11023 bp
->common
.hw_config
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.config
);
11024 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp
->common
.hw_config
);
11026 bp
->link_params
.hw_led_mode
= ((bp
->common
.hw_config
&
11027 SHARED_HW_CFG_LED_MODE_MASK
) >>
11028 SHARED_HW_CFG_LED_MODE_SHIFT
);
11030 bp
->link_params
.feature_config_flags
= 0;
11031 val
= SHMEM_RD(bp
, dev_info
.shared_feature_config
.config
);
11032 if (val
& SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED
)
11033 bp
->link_params
.feature_config_flags
|=
11034 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
11036 bp
->link_params
.feature_config_flags
&=
11037 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED
;
11039 val
= SHMEM_RD(bp
, dev_info
.bc_rev
) >> 8;
11040 bp
->common
.bc_ver
= val
;
11041 BNX2X_DEV_INFO("bc_ver %X\n", val
);
11042 if (val
< BNX2X_BC_VER
) {
11043 /* for now only warn
11044 * later we might need to enforce this */
11045 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11046 BNX2X_BC_VER
, val
);
11048 bp
->link_params
.feature_config_flags
|=
11049 (val
>= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL
) ?
11050 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY
: 0;
11052 bp
->link_params
.feature_config_flags
|=
11053 (val
>= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL
) ?
11054 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY
: 0;
11055 bp
->link_params
.feature_config_flags
|=
11056 (val
>= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED
) ?
11057 FEATURE_CONFIG_BC_SUPPORTS_AFEX
: 0;
11058 bp
->link_params
.feature_config_flags
|=
11059 (val
>= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED
) ?
11060 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED
: 0;
11062 bp
->link_params
.feature_config_flags
|=
11063 (val
>= REQ_BC_VER_4_MT_SUPPORTED
) ?
11064 FEATURE_CONFIG_MT_SUPPORT
: 0;
11066 bp
->flags
|= (val
>= REQ_BC_VER_4_PFC_STATS_SUPPORTED
) ?
11067 BC_SUPPORTS_PFC_STATS
: 0;
11069 bp
->flags
|= (val
>= REQ_BC_VER_4_FCOE_FEATURES
) ?
11070 BC_SUPPORTS_FCOE_FEATURES
: 0;
11072 bp
->flags
|= (val
>= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF
) ?
11073 BC_SUPPORTS_DCBX_MSG_NON_PMF
: 0;
11075 bp
->flags
|= (val
>= REQ_BC_VER_4_RMMOD_CMD
) ?
11076 BC_SUPPORTS_RMMOD_CMD
: 0;
11078 boot_mode
= SHMEM_RD(bp
,
11079 dev_info
.port_feature_config
[BP_PORT(bp
)].mba_config
) &
11080 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK
;
11081 switch (boot_mode
) {
11082 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE
:
11083 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_PXE
;
11085 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB
:
11086 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_ISCSI
;
11088 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT
:
11089 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_FCOE
;
11091 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE
:
11092 bp
->common
.boot_mode
= FEATURE_ETH_BOOTMODE_NONE
;
11096 pci_read_config_word(bp
->pdev
, bp
->pdev
->pm_cap
+ PCI_PM_PMC
, &pmc
);
11097 bp
->flags
|= (pmc
& PCI_PM_CAP_PME_D3cold
) ? 0 : NO_WOL_FLAG
;
11099 BNX2X_DEV_INFO("%sWoL capable\n",
11100 (bp
->flags
& NO_WOL_FLAG
) ? "not " : "");
11102 val
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
);
11103 val2
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[4]);
11104 val3
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[8]);
11105 val4
= SHMEM_RD(bp
, dev_info
.shared_hw_config
.part_num
[12]);
11107 dev_info(&bp
->pdev
->dev
, "part number %X-%X-%X-%X\n",
11108 val
, val2
, val3
, val4
);
11111 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11112 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11114 static int bnx2x_get_igu_cam_info(struct bnx2x
*bp
)
11116 int pfid
= BP_FUNC(bp
);
11119 u8 fid
, igu_sb_cnt
= 0;
11121 bp
->igu_base_sb
= 0xff;
11122 if (CHIP_INT_MODE_IS_BC(bp
)) {
11123 int vn
= BP_VN(bp
);
11124 igu_sb_cnt
= bp
->igu_sb_cnt
;
11125 bp
->igu_base_sb
= (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
) *
11128 bp
->igu_dsb_id
= E1HVN_MAX
* FP_SB_MAX_E1x
+
11129 (CHIP_MODE_IS_4_PORT(bp
) ? pfid
: vn
);
11134 /* IGU in normal mode - read CAM */
11135 for (igu_sb_id
= 0; igu_sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
;
11137 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ igu_sb_id
* 4);
11138 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
11140 fid
= IGU_FID(val
);
11141 if ((fid
& IGU_FID_ENCODE_IS_PF
)) {
11142 if ((fid
& IGU_FID_PF_NUM_MASK
) != pfid
)
11144 if (IGU_VEC(val
) == 0)
11145 /* default status block */
11146 bp
->igu_dsb_id
= igu_sb_id
;
11148 if (bp
->igu_base_sb
== 0xff)
11149 bp
->igu_base_sb
= igu_sb_id
;
11155 #ifdef CONFIG_PCI_MSI
11156 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11157 * optional that number of CAM entries will not be equal to the value
11158 * advertised in PCI.
11159 * Driver should use the minimal value of both as the actual status
11162 bp
->igu_sb_cnt
= min_t(int, bp
->igu_sb_cnt
, igu_sb_cnt
);
11165 if (igu_sb_cnt
== 0) {
11166 BNX2X_ERR("CAM configuration error\n");
11173 static void bnx2x_link_settings_supported(struct bnx2x
*bp
, u32 switch_cfg
)
11175 int cfg_size
= 0, idx
, port
= BP_PORT(bp
);
11177 /* Aggregation of supported attributes of all external phys */
11178 bp
->port
.supported
[0] = 0;
11179 bp
->port
.supported
[1] = 0;
11180 switch (bp
->link_params
.num_phys
) {
11182 bp
->port
.supported
[0] = bp
->link_params
.phy
[INT_PHY
].supported
;
11186 bp
->port
.supported
[0] = bp
->link_params
.phy
[EXT_PHY1
].supported
;
11190 if (bp
->link_params
.multi_phy_config
&
11191 PORT_HW_CFG_PHY_SWAPPED_ENABLED
) {
11192 bp
->port
.supported
[1] =
11193 bp
->link_params
.phy
[EXT_PHY1
].supported
;
11194 bp
->port
.supported
[0] =
11195 bp
->link_params
.phy
[EXT_PHY2
].supported
;
11197 bp
->port
.supported
[0] =
11198 bp
->link_params
.phy
[EXT_PHY1
].supported
;
11199 bp
->port
.supported
[1] =
11200 bp
->link_params
.phy
[EXT_PHY2
].supported
;
11206 if (!(bp
->port
.supported
[0] || bp
->port
.supported
[1])) {
11207 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11209 dev_info
.port_hw_config
[port
].external_phy_config
),
11211 dev_info
.port_hw_config
[port
].external_phy_config2
));
11215 if (CHIP_IS_E3(bp
))
11216 bp
->port
.phy_addr
= REG_RD(bp
, MISC_REG_WC0_CTRL_PHY_ADDR
);
11218 switch (switch_cfg
) {
11219 case SWITCH_CFG_1G
:
11220 bp
->port
.phy_addr
= REG_RD(
11221 bp
, NIG_REG_SERDES0_CTRL_PHY_ADDR
+ port
*0x10);
11223 case SWITCH_CFG_10G
:
11224 bp
->port
.phy_addr
= REG_RD(
11225 bp
, NIG_REG_XGXS0_CTRL_PHY_ADDR
+ port
*0x18);
11228 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11229 bp
->port
.link_config
[0]);
11233 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp
->port
.phy_addr
);
11234 /* mask what we support according to speed_cap_mask per configuration */
11235 for (idx
= 0; idx
< cfg_size
; idx
++) {
11236 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11237 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF
))
11238 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Half
;
11240 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11241 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL
))
11242 bp
->port
.supported
[idx
] &= ~SUPPORTED_10baseT_Full
;
11244 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11245 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF
))
11246 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Half
;
11248 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11249 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL
))
11250 bp
->port
.supported
[idx
] &= ~SUPPORTED_100baseT_Full
;
11252 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11253 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G
))
11254 bp
->port
.supported
[idx
] &= ~(SUPPORTED_1000baseT_Half
|
11255 SUPPORTED_1000baseT_Full
);
11257 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11258 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G
))
11259 bp
->port
.supported
[idx
] &= ~SUPPORTED_2500baseX_Full
;
11261 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11262 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G
))
11263 bp
->port
.supported
[idx
] &= ~SUPPORTED_10000baseT_Full
;
11265 if (!(bp
->link_params
.speed_cap_mask
[idx
] &
11266 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G
))
11267 bp
->port
.supported
[idx
] &= ~SUPPORTED_20000baseKR2_Full
;
11270 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp
->port
.supported
[0],
11271 bp
->port
.supported
[1]);
11274 static void bnx2x_link_settings_requested(struct bnx2x
*bp
)
11276 u32 link_config
, idx
, cfg_size
= 0;
11277 bp
->port
.advertising
[0] = 0;
11278 bp
->port
.advertising
[1] = 0;
11279 switch (bp
->link_params
.num_phys
) {
11288 for (idx
= 0; idx
< cfg_size
; idx
++) {
11289 bp
->link_params
.req_duplex
[idx
] = DUPLEX_FULL
;
11290 link_config
= bp
->port
.link_config
[idx
];
11291 switch (link_config
& PORT_FEATURE_LINK_SPEED_MASK
) {
11292 case PORT_FEATURE_LINK_SPEED_AUTO
:
11293 if (bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
) {
11294 bp
->link_params
.req_line_speed
[idx
] =
11296 bp
->port
.advertising
[idx
] |=
11297 bp
->port
.supported
[idx
];
11298 if (bp
->link_params
.phy
[EXT_PHY1
].type
==
11299 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833
)
11300 bp
->port
.advertising
[idx
] |=
11301 (SUPPORTED_100baseT_Half
|
11302 SUPPORTED_100baseT_Full
);
11304 /* force 10G, no AN */
11305 bp
->link_params
.req_line_speed
[idx
] =
11307 bp
->port
.advertising
[idx
] |=
11308 (ADVERTISED_10000baseT_Full
|
11314 case PORT_FEATURE_LINK_SPEED_10M_FULL
:
11315 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Full
) {
11316 bp
->link_params
.req_line_speed
[idx
] =
11318 bp
->port
.advertising
[idx
] |=
11319 (ADVERTISED_10baseT_Full
|
11322 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11324 bp
->link_params
.speed_cap_mask
[idx
]);
11329 case PORT_FEATURE_LINK_SPEED_10M_HALF
:
11330 if (bp
->port
.supported
[idx
] & SUPPORTED_10baseT_Half
) {
11331 bp
->link_params
.req_line_speed
[idx
] =
11333 bp
->link_params
.req_duplex
[idx
] =
11335 bp
->port
.advertising
[idx
] |=
11336 (ADVERTISED_10baseT_Half
|
11339 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11341 bp
->link_params
.speed_cap_mask
[idx
]);
11346 case PORT_FEATURE_LINK_SPEED_100M_FULL
:
11347 if (bp
->port
.supported
[idx
] &
11348 SUPPORTED_100baseT_Full
) {
11349 bp
->link_params
.req_line_speed
[idx
] =
11351 bp
->port
.advertising
[idx
] |=
11352 (ADVERTISED_100baseT_Full
|
11355 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11357 bp
->link_params
.speed_cap_mask
[idx
]);
11362 case PORT_FEATURE_LINK_SPEED_100M_HALF
:
11363 if (bp
->port
.supported
[idx
] &
11364 SUPPORTED_100baseT_Half
) {
11365 bp
->link_params
.req_line_speed
[idx
] =
11367 bp
->link_params
.req_duplex
[idx
] =
11369 bp
->port
.advertising
[idx
] |=
11370 (ADVERTISED_100baseT_Half
|
11373 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11375 bp
->link_params
.speed_cap_mask
[idx
]);
11380 case PORT_FEATURE_LINK_SPEED_1G
:
11381 if (bp
->port
.supported
[idx
] &
11382 SUPPORTED_1000baseT_Full
) {
11383 bp
->link_params
.req_line_speed
[idx
] =
11385 bp
->port
.advertising
[idx
] |=
11386 (ADVERTISED_1000baseT_Full
|
11388 } else if (bp
->port
.supported
[idx
] &
11389 SUPPORTED_1000baseKX_Full
) {
11390 bp
->link_params
.req_line_speed
[idx
] =
11392 bp
->port
.advertising
[idx
] |=
11393 ADVERTISED_1000baseKX_Full
;
11395 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11397 bp
->link_params
.speed_cap_mask
[idx
]);
11402 case PORT_FEATURE_LINK_SPEED_2_5G
:
11403 if (bp
->port
.supported
[idx
] &
11404 SUPPORTED_2500baseX_Full
) {
11405 bp
->link_params
.req_line_speed
[idx
] =
11407 bp
->port
.advertising
[idx
] |=
11408 (ADVERTISED_2500baseX_Full
|
11411 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11413 bp
->link_params
.speed_cap_mask
[idx
]);
11418 case PORT_FEATURE_LINK_SPEED_10G_CX4
:
11419 if (bp
->port
.supported
[idx
] &
11420 SUPPORTED_10000baseT_Full
) {
11421 bp
->link_params
.req_line_speed
[idx
] =
11423 bp
->port
.advertising
[idx
] |=
11424 (ADVERTISED_10000baseT_Full
|
11426 } else if (bp
->port
.supported
[idx
] &
11427 SUPPORTED_10000baseKR_Full
) {
11428 bp
->link_params
.req_line_speed
[idx
] =
11430 bp
->port
.advertising
[idx
] |=
11431 (ADVERTISED_10000baseKR_Full
|
11434 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11436 bp
->link_params
.speed_cap_mask
[idx
]);
11440 case PORT_FEATURE_LINK_SPEED_20G
:
11441 bp
->link_params
.req_line_speed
[idx
] = SPEED_20000
;
11445 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11447 bp
->link_params
.req_line_speed
[idx
] =
11449 bp
->port
.advertising
[idx
] =
11450 bp
->port
.supported
[idx
];
11454 bp
->link_params
.req_flow_ctrl
[idx
] = (link_config
&
11455 PORT_FEATURE_FLOW_CONTROL_MASK
);
11456 if (bp
->link_params
.req_flow_ctrl
[idx
] ==
11457 BNX2X_FLOW_CTRL_AUTO
) {
11458 if (!(bp
->port
.supported
[idx
] & SUPPORTED_Autoneg
))
11459 bp
->link_params
.req_flow_ctrl
[idx
] =
11460 BNX2X_FLOW_CTRL_NONE
;
11462 bnx2x_set_requested_fc(bp
);
11465 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11466 bp
->link_params
.req_line_speed
[idx
],
11467 bp
->link_params
.req_duplex
[idx
],
11468 bp
->link_params
.req_flow_ctrl
[idx
],
11469 bp
->port
.advertising
[idx
]);
11473 static void bnx2x_set_mac_buf(u8
*mac_buf
, u32 mac_lo
, u16 mac_hi
)
11475 __be16 mac_hi_be
= cpu_to_be16(mac_hi
);
11476 __be32 mac_lo_be
= cpu_to_be32(mac_lo
);
11477 memcpy(mac_buf
, &mac_hi_be
, sizeof(mac_hi_be
));
11478 memcpy(mac_buf
+ sizeof(mac_hi_be
), &mac_lo_be
, sizeof(mac_lo_be
));
11481 static void bnx2x_get_port_hwinfo(struct bnx2x
*bp
)
11483 int port
= BP_PORT(bp
);
11485 u32 ext_phy_type
, ext_phy_config
, eee_mode
;
11487 bp
->link_params
.bp
= bp
;
11488 bp
->link_params
.port
= port
;
11490 bp
->link_params
.lane_config
=
11491 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].lane_config
);
11493 bp
->link_params
.speed_cap_mask
[0] =
11495 dev_info
.port_hw_config
[port
].speed_capability_mask
) &
11496 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK
;
11497 bp
->link_params
.speed_cap_mask
[1] =
11499 dev_info
.port_hw_config
[port
].speed_capability_mask2
) &
11500 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK
;
11501 bp
->port
.link_config
[0] =
11502 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config
);
11504 bp
->port
.link_config
[1] =
11505 SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].link_config2
);
11507 bp
->link_params
.multi_phy_config
=
11508 SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].multi_phy_config
);
11509 /* If the device is capable of WoL, set the default state according
11512 config
= SHMEM_RD(bp
, dev_info
.port_feature_config
[port
].config
);
11513 bp
->wol
= (!(bp
->flags
& NO_WOL_FLAG
) &&
11514 (config
& PORT_FEATURE_WOL_ENABLED
));
11516 if ((config
& PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK
) ==
11517 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE
&& !IS_MF(bp
))
11518 bp
->flags
|= NO_ISCSI_FLAG
;
11519 if ((config
& PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK
) ==
11520 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI
&& !(IS_MF(bp
)))
11521 bp
->flags
|= NO_FCOE_FLAG
;
11523 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11524 bp
->link_params
.lane_config
,
11525 bp
->link_params
.speed_cap_mask
[0],
11526 bp
->port
.link_config
[0]);
11528 bp
->link_params
.switch_cfg
= (bp
->port
.link_config
[0] &
11529 PORT_FEATURE_CONNECTED_SWITCH_MASK
);
11530 bnx2x_phy_probe(&bp
->link_params
);
11531 bnx2x_link_settings_supported(bp
, bp
->link_params
.switch_cfg
);
11533 bnx2x_link_settings_requested(bp
);
11536 * If connected directly, work with the internal PHY, otherwise, work
11537 * with the external PHY
11541 dev_info
.port_hw_config
[port
].external_phy_config
);
11542 ext_phy_type
= XGXS_EXT_PHY_TYPE(ext_phy_config
);
11543 if (ext_phy_type
== PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT
)
11544 bp
->mdio
.prtad
= bp
->port
.phy_addr
;
11546 else if ((ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE
) &&
11547 (ext_phy_type
!= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN
))
11549 XGXS_EXT_PHY_ADDR(ext_phy_config
);
11551 /* Configure link feature according to nvram value */
11552 eee_mode
= (((SHMEM_RD(bp
, dev_info
.
11553 port_feature_config
[port
].eee_power_mode
)) &
11554 PORT_FEAT_CFG_EEE_POWER_MODE_MASK
) >>
11555 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT
);
11556 if (eee_mode
!= PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED
) {
11557 bp
->link_params
.eee_mode
= EEE_MODE_ADV_LPI
|
11558 EEE_MODE_ENABLE_LPI
|
11559 EEE_MODE_OUTPUT_TIME
;
11561 bp
->link_params
.eee_mode
= 0;
11565 void bnx2x_get_iscsi_info(struct bnx2x
*bp
)
11567 u32 no_flags
= NO_ISCSI_FLAG
;
11568 int port
= BP_PORT(bp
);
11569 u32 max_iscsi_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
11570 drv_lic_key
[port
].max_iscsi_conn
);
11572 if (!CNIC_SUPPORT(bp
)) {
11573 bp
->flags
|= no_flags
;
11577 /* Get the number of maximum allowed iSCSI connections */
11578 bp
->cnic_eth_dev
.max_iscsi_conn
=
11579 (max_iscsi_conn
& BNX2X_MAX_ISCSI_INIT_CONN_MASK
) >>
11580 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT
;
11582 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11583 bp
->cnic_eth_dev
.max_iscsi_conn
);
11586 * If maximum allowed number of connections is zero -
11587 * disable the feature.
11589 if (!bp
->cnic_eth_dev
.max_iscsi_conn
)
11590 bp
->flags
|= no_flags
;
11593 static void bnx2x_get_ext_wwn_info(struct bnx2x
*bp
, int func
)
11596 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
11597 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_port_name_upper
);
11598 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
11599 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_port_name_lower
);
11602 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
11603 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_node_name_upper
);
11604 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
11605 MF_CFG_RD(bp
, func_ext_config
[func
].fcoe_wwn_node_name_lower
);
11608 static int bnx2x_shared_fcoe_funcs(struct bnx2x
*bp
)
11615 /* iterate over absolute function ids for this path: */
11616 for (fid
= BP_PATH(bp
); fid
< E2_FUNC_MAX
* 2; fid
+= 2) {
11617 if (IS_MF_SD(bp
)) {
11618 u32 cfg
= MF_CFG_RD(bp
,
11619 func_mf_config
[fid
].config
);
11621 if (!(cfg
& FUNC_MF_CFG_FUNC_HIDE
) &&
11622 ((cfg
& FUNC_MF_CFG_PROTOCOL_MASK
) ==
11623 FUNC_MF_CFG_PROTOCOL_FCOE
))
11626 u32 cfg
= MF_CFG_RD(bp
,
11627 func_ext_config
[fid
].
11630 if ((cfg
& MACP_FUNC_CFG_FLAGS_ENABLED
) &&
11631 (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
))
11636 int port
, port_cnt
= CHIP_MODE_IS_4_PORT(bp
) ? 2 : 1;
11638 for (port
= 0; port
< port_cnt
; port
++) {
11639 u32 lic
= SHMEM_RD(bp
,
11640 drv_lic_key
[port
].max_fcoe_conn
) ^
11641 FW_ENCODE_32BIT_PATTERN
;
11650 static void bnx2x_get_fcoe_info(struct bnx2x
*bp
)
11652 int port
= BP_PORT(bp
);
11653 int func
= BP_ABS_FUNC(bp
);
11654 u32 max_fcoe_conn
= FW_ENCODE_32BIT_PATTERN
^ SHMEM_RD(bp
,
11655 drv_lic_key
[port
].max_fcoe_conn
);
11656 u8 num_fcoe_func
= bnx2x_shared_fcoe_funcs(bp
);
11658 if (!CNIC_SUPPORT(bp
)) {
11659 bp
->flags
|= NO_FCOE_FLAG
;
11663 /* Get the number of maximum allowed FCoE connections */
11664 bp
->cnic_eth_dev
.max_fcoe_conn
=
11665 (max_fcoe_conn
& BNX2X_MAX_FCOE_INIT_CONN_MASK
) >>
11666 BNX2X_MAX_FCOE_INIT_CONN_SHIFT
;
11668 /* Calculate the number of maximum allowed FCoE tasks */
11669 bp
->cnic_eth_dev
.max_fcoe_exchanges
= MAX_NUM_FCOE_TASKS_PER_ENGINE
;
11671 /* check if FCoE resources must be shared between different functions */
11673 bp
->cnic_eth_dev
.max_fcoe_exchanges
/= num_fcoe_func
;
11675 /* Read the WWN: */
11678 bp
->cnic_eth_dev
.fcoe_wwn_port_name_hi
=
11680 dev_info
.port_hw_config
[port
].
11681 fcoe_wwn_port_name_upper
);
11682 bp
->cnic_eth_dev
.fcoe_wwn_port_name_lo
=
11684 dev_info
.port_hw_config
[port
].
11685 fcoe_wwn_port_name_lower
);
11688 bp
->cnic_eth_dev
.fcoe_wwn_node_name_hi
=
11690 dev_info
.port_hw_config
[port
].
11691 fcoe_wwn_node_name_upper
);
11692 bp
->cnic_eth_dev
.fcoe_wwn_node_name_lo
=
11694 dev_info
.port_hw_config
[port
].
11695 fcoe_wwn_node_name_lower
);
11696 } else if (!IS_MF_SD(bp
)) {
11697 /* Read the WWN info only if the FCoE feature is enabled for
11700 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp
))
11701 bnx2x_get_ext_wwn_info(bp
, func
);
11703 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp
) && !CHIP_IS_E1x(bp
))
11704 bnx2x_get_ext_wwn_info(bp
, func
);
11707 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp
->cnic_eth_dev
.max_fcoe_conn
);
11710 * If maximum allowed number of connections is zero -
11711 * disable the feature.
11713 if (!bp
->cnic_eth_dev
.max_fcoe_conn
) {
11714 bp
->flags
|= NO_FCOE_FLAG
;
11715 eth_zero_addr(bp
->fip_mac
);
11719 static void bnx2x_get_cnic_info(struct bnx2x
*bp
)
11722 * iSCSI may be dynamically disabled but reading
11723 * info here we will decrease memory usage by driver
11724 * if the feature is disabled for good
11726 bnx2x_get_iscsi_info(bp
);
11727 bnx2x_get_fcoe_info(bp
);
11730 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x
*bp
)
11733 int func
= BP_ABS_FUNC(bp
);
11734 int port
= BP_PORT(bp
);
11735 u8
*iscsi_mac
= bp
->cnic_eth_dev
.iscsi_mac
;
11736 u8
*fip_mac
= bp
->fip_mac
;
11739 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11740 * FCoE MAC then the appropriate feature should be disabled.
11741 * In non SD mode features configuration comes from struct
11744 if (!IS_MF_SD(bp
)) {
11745 u32 cfg
= MF_CFG_RD(bp
, func_ext_config
[func
].func_cfg
);
11746 if (cfg
& MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD
) {
11747 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
11748 iscsi_mac_addr_upper
);
11749 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
11750 iscsi_mac_addr_lower
);
11751 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
11753 ("Read iSCSI MAC: %pM\n", iscsi_mac
);
11755 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
11758 if (cfg
& MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD
) {
11759 val2
= MF_CFG_RD(bp
, func_ext_config
[func
].
11760 fcoe_mac_addr_upper
);
11761 val
= MF_CFG_RD(bp
, func_ext_config
[func
].
11762 fcoe_mac_addr_lower
);
11763 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
11765 ("Read FCoE L2 MAC: %pM\n", fip_mac
);
11767 bp
->flags
|= NO_FCOE_FLAG
;
11770 bp
->mf_ext_config
= cfg
;
11772 } else { /* SD MODE */
11773 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp
)) {
11774 /* use primary mac as iscsi mac */
11775 memcpy(iscsi_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
11777 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11779 ("Read iSCSI MAC: %pM\n", iscsi_mac
);
11780 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp
)) {
11781 /* use primary mac as fip mac */
11782 memcpy(fip_mac
, bp
->dev
->dev_addr
, ETH_ALEN
);
11783 BNX2X_DEV_INFO("SD FCoE MODE\n");
11785 ("Read FIP MAC: %pM\n", fip_mac
);
11789 /* If this is a storage-only interface, use SAN mac as
11790 * primary MAC. Notice that for SD this is already the case,
11791 * as the SAN mac was copied from the primary MAC.
11793 if (IS_MF_FCOE_AFEX(bp
))
11794 memcpy(bp
->dev
->dev_addr
, fip_mac
, ETH_ALEN
);
11796 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11798 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11800 bnx2x_set_mac_buf(iscsi_mac
, val
, val2
);
11802 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11803 fcoe_fip_mac_upper
);
11804 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].
11805 fcoe_fip_mac_lower
);
11806 bnx2x_set_mac_buf(fip_mac
, val
, val2
);
11809 /* Disable iSCSI OOO if MAC configuration is invalid. */
11810 if (!is_valid_ether_addr(iscsi_mac
)) {
11811 bp
->flags
|= NO_ISCSI_OOO_FLAG
| NO_ISCSI_FLAG
;
11812 eth_zero_addr(iscsi_mac
);
11815 /* Disable FCoE if MAC configuration is invalid. */
11816 if (!is_valid_ether_addr(fip_mac
)) {
11817 bp
->flags
|= NO_FCOE_FLAG
;
11818 eth_zero_addr(bp
->fip_mac
);
11822 static void bnx2x_get_mac_hwinfo(struct bnx2x
*bp
)
11825 int func
= BP_ABS_FUNC(bp
);
11826 int port
= BP_PORT(bp
);
11828 /* Zero primary MAC configuration */
11829 eth_zero_addr(bp
->dev
->dev_addr
);
11831 if (BP_NOMCP(bp
)) {
11832 BNX2X_ERROR("warning: random MAC workaround active\n");
11833 eth_hw_addr_random(bp
->dev
);
11834 } else if (IS_MF(bp
)) {
11835 val2
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_upper
);
11836 val
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_lower
);
11837 if ((val2
!= FUNC_MF_CFG_UPPERMAC_DEFAULT
) &&
11838 (val
!= FUNC_MF_CFG_LOWERMAC_DEFAULT
))
11839 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
11841 if (CNIC_SUPPORT(bp
))
11842 bnx2x_get_cnic_mac_hwinfo(bp
);
11844 /* in SF read MACs from port configuration */
11845 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_upper
);
11846 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_lower
);
11847 bnx2x_set_mac_buf(bp
->dev
->dev_addr
, val
, val2
);
11849 if (CNIC_SUPPORT(bp
))
11850 bnx2x_get_cnic_mac_hwinfo(bp
);
11853 if (!BP_NOMCP(bp
)) {
11854 /* Read physical port identifier from shmem */
11855 val2
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_upper
);
11856 val
= SHMEM_RD(bp
, dev_info
.port_hw_config
[port
].mac_lower
);
11857 bnx2x_set_mac_buf(bp
->phys_port_id
, val
, val2
);
11858 bp
->flags
|= HAS_PHYS_PORT_ID
;
11861 memcpy(bp
->link_params
.mac_addr
, bp
->dev
->dev_addr
, ETH_ALEN
);
11863 if (!is_valid_ether_addr(bp
->dev
->dev_addr
))
11864 dev_err(&bp
->pdev
->dev
,
11865 "bad Ethernet MAC address configuration: %pM\n"
11866 "change it manually before bringing up the appropriate network interface\n",
11867 bp
->dev
->dev_addr
);
11870 static bool bnx2x_get_dropless_info(struct bnx2x
*bp
)
11878 if (IS_MF(bp
) && !CHIP_IS_E1x(bp
)) {
11879 /* Take function: tmp = func */
11880 tmp
= BP_ABS_FUNC(bp
);
11881 cfg
= MF_CFG_RD(bp
, func_ext_config
[tmp
].func_cfg
);
11882 cfg
= !!(cfg
& MACP_FUNC_CFG_PAUSE_ON_HOST_RING
);
11884 /* Take port: tmp = port */
11887 dev_info
.port_hw_config
[tmp
].generic_features
);
11888 cfg
= !!(cfg
& PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED
);
11893 static void validate_set_si_mode(struct bnx2x
*bp
)
11895 u8 func
= BP_ABS_FUNC(bp
);
11898 val
= MF_CFG_RD(bp
, func_mf_config
[func
].mac_upper
);
11900 /* check for legal mac (upper bytes) */
11901 if (val
!= 0xffff) {
11902 bp
->mf_mode
= MULTI_FUNCTION_SI
;
11903 bp
->mf_config
[BP_VN(bp
)] =
11904 MF_CFG_RD(bp
, func_mf_config
[func
].config
);
11906 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11909 static int bnx2x_get_hwinfo(struct bnx2x
*bp
)
11911 int /*abs*/func
= BP_ABS_FUNC(bp
);
11913 u32 val
= 0, val2
= 0;
11916 /* Validate that chip access is feasible */
11917 if (REG_RD(bp
, MISC_REG_CHIP_NUM
) == 0xffffffff) {
11918 dev_err(&bp
->pdev
->dev
,
11919 "Chip read returns all Fs. Preventing probe from continuing\n");
11923 bnx2x_get_common_hwinfo(bp
);
11926 * initialize IGU parameters
11928 if (CHIP_IS_E1x(bp
)) {
11929 bp
->common
.int_block
= INT_BLOCK_HC
;
11931 bp
->igu_dsb_id
= DEF_SB_IGU_ID
;
11932 bp
->igu_base_sb
= 0;
11934 bp
->common
.int_block
= INT_BLOCK_IGU
;
11936 /* do not allow device reset during IGU info processing */
11937 bnx2x_acquire_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
11939 val
= REG_RD(bp
, IGU_REG_BLOCK_CONFIGURATION
);
11941 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
11944 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11946 val
&= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
);
11947 REG_WR(bp
, IGU_REG_BLOCK_CONFIGURATION
, val
);
11948 REG_WR(bp
, IGU_REG_RESET_MEMORIES
, 0x7f);
11950 while (tout
&& REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
11952 usleep_range(1000, 2000);
11955 if (REG_RD(bp
, IGU_REG_RESET_MEMORIES
)) {
11956 dev_err(&bp
->pdev
->dev
,
11957 "FORCING Normal Mode failed!!!\n");
11958 bnx2x_release_hw_lock(bp
,
11959 HW_LOCK_RESOURCE_RESET
);
11964 if (val
& IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN
) {
11965 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11966 bp
->common
.int_block
|= INT_BLOCK_MODE_BW_COMP
;
11968 BNX2X_DEV_INFO("IGU Normal Mode\n");
11970 rc
= bnx2x_get_igu_cam_info(bp
);
11971 bnx2x_release_hw_lock(bp
, HW_LOCK_RESOURCE_RESET
);
11977 * set base FW non-default (fast path) status block id, this value is
11978 * used to initialize the fw_sb_id saved on the fp/queue structure to
11979 * determine the id used by the FW.
11981 if (CHIP_IS_E1x(bp
))
11982 bp
->base_fw_ndsb
= BP_PORT(bp
) * FP_SB_MAX_E1x
+ BP_L_ID(bp
);
11984 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11985 * the same queue are indicated on the same IGU SB). So we prefer
11986 * FW and IGU SBs to be the same value.
11988 bp
->base_fw_ndsb
= bp
->igu_base_sb
;
11990 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11991 "base_fw_ndsb %d\n", bp
->igu_dsb_id
, bp
->igu_base_sb
,
11992 bp
->igu_sb_cnt
, bp
->base_fw_ndsb
);
11995 * Initialize MF configuration
11999 bp
->mf_sub_mode
= 0;
12002 if (!CHIP_IS_E1(bp
) && !BP_NOMCP(bp
)) {
12003 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12004 bp
->common
.shmem2_base
, SHMEM2_RD(bp
, size
),
12005 (u32
)offsetof(struct shmem2_region
, mf_cfg_addr
));
12007 if (SHMEM2_HAS(bp
, mf_cfg_addr
))
12008 bp
->common
.mf_cfg_base
= SHMEM2_RD(bp
, mf_cfg_addr
);
12010 bp
->common
.mf_cfg_base
= bp
->common
.shmem_base
+
12011 offsetof(struct shmem_region
, func_mb
) +
12012 E1H_FUNC_MAX
* sizeof(struct drv_func_mb
);
12014 * get mf configuration:
12015 * 1. Existence of MF configuration
12016 * 2. MAC address must be legal (check only upper bytes)
12017 * for Switch-Independent mode;
12018 * OVLAN must be legal for Switch-Dependent mode
12019 * 3. SF_MODE configures specific MF mode
12021 if (bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
12022 /* get mf configuration */
12024 dev_info
.shared_feature_config
.config
);
12025 val
&= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK
;
12028 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT
:
12029 validate_set_si_mode(bp
);
12031 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE
:
12032 if ((!CHIP_IS_E1x(bp
)) &&
12033 (MF_CFG_RD(bp
, func_mf_config
[func
].
12034 mac_upper
) != 0xffff) &&
12036 afex_driver_support
))) {
12037 bp
->mf_mode
= MULTI_FUNCTION_AFEX
;
12038 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
12039 func_mf_config
[func
].config
);
12041 BNX2X_DEV_INFO("can not configure afex mode\n");
12044 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED
:
12045 /* get OV configuration */
12046 val
= MF_CFG_RD(bp
,
12047 func_mf_config
[FUNC_0
].e1hov_tag
);
12048 val
&= FUNC_MF_CFG_E1HOV_TAG_MASK
;
12050 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
12051 bp
->mf_mode
= MULTI_FUNCTION_SD
;
12052 bp
->mf_config
[vn
] = MF_CFG_RD(bp
,
12053 func_mf_config
[func
].config
);
12055 BNX2X_DEV_INFO("illegal OV for SD\n");
12057 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE
:
12058 bp
->mf_mode
= MULTI_FUNCTION_SD
;
12059 bp
->mf_sub_mode
= SUB_MF_MODE_BD
;
12060 bp
->mf_config
[vn
] =
12062 func_mf_config
[func
].config
);
12064 if (SHMEM2_HAS(bp
, mtu_size
)) {
12065 int mtu_idx
= BP_FW_MB_IDX(bp
);
12069 mtu
= SHMEM2_RD(bp
, mtu_size
[mtu_idx
]);
12070 mtu_size
= (u16
)mtu
;
12071 DP(NETIF_MSG_IFUP
, "Read MTU size %04x [%08x]\n",
12074 /* if valid: update device mtu */
12075 if ((mtu_size
>= ETH_MIN_PACKET_SIZE
) &&
12077 ETH_MAX_JUMBO_PACKET_SIZE
))
12078 bp
->dev
->mtu
= mtu_size
;
12081 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE
:
12082 bp
->mf_mode
= MULTI_FUNCTION_SD
;
12083 bp
->mf_sub_mode
= SUB_MF_MODE_UFP
;
12084 bp
->mf_config
[vn
] =
12086 func_mf_config
[func
].config
);
12088 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF
:
12089 bp
->mf_config
[vn
] = 0;
12091 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE
:
12092 val2
= SHMEM_RD(bp
,
12093 dev_info
.shared_hw_config
.config_3
);
12094 val2
&= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK
;
12096 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5
:
12097 validate_set_si_mode(bp
);
12099 SUB_MF_MODE_NPAR1_DOT_5
;
12102 /* Unknown configuration */
12103 bp
->mf_config
[vn
] = 0;
12104 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12109 /* Unknown configuration: reset mf_config */
12110 bp
->mf_config
[vn
] = 0;
12111 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val
);
12115 BNX2X_DEV_INFO("%s function mode\n",
12116 IS_MF(bp
) ? "multi" : "single");
12118 switch (bp
->mf_mode
) {
12119 case MULTI_FUNCTION_SD
:
12120 val
= MF_CFG_RD(bp
, func_mf_config
[func
].e1hov_tag
) &
12121 FUNC_MF_CFG_E1HOV_TAG_MASK
;
12122 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
) {
12124 bp
->path_has_ovlan
= true;
12126 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12127 func
, bp
->mf_ov
, bp
->mf_ov
);
12128 } else if ((bp
->mf_sub_mode
== SUB_MF_MODE_UFP
) ||
12129 (bp
->mf_sub_mode
== SUB_MF_MODE_BD
)) {
12130 dev_err(&bp
->pdev
->dev
,
12131 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12133 bp
->path_has_ovlan
= true;
12135 dev_err(&bp
->pdev
->dev
,
12136 "No valid MF OV for func %d, aborting\n",
12141 case MULTI_FUNCTION_AFEX
:
12142 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func
);
12144 case MULTI_FUNCTION_SI
:
12145 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12150 dev_err(&bp
->pdev
->dev
,
12151 "VN %d is in a single function mode, aborting\n",
12158 /* check if other port on the path needs ovlan:
12159 * Since MF configuration is shared between ports
12160 * Possible mixed modes are only
12161 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12163 if (CHIP_MODE_IS_4_PORT(bp
) &&
12164 !bp
->path_has_ovlan
&&
12166 bp
->common
.mf_cfg_base
!= SHMEM_MF_CFG_ADDR_NONE
) {
12167 u8 other_port
= !BP_PORT(bp
);
12168 u8 other_func
= BP_PATH(bp
) + 2*other_port
;
12169 val
= MF_CFG_RD(bp
,
12170 func_mf_config
[other_func
].e1hov_tag
);
12171 if (val
!= FUNC_MF_CFG_E1HOV_TAG_DEFAULT
)
12172 bp
->path_has_ovlan
= true;
12176 /* adjust igu_sb_cnt to MF for E1H */
12177 if (CHIP_IS_E1H(bp
) && IS_MF(bp
))
12178 bp
->igu_sb_cnt
= min_t(u8
, bp
->igu_sb_cnt
, E1H_MAX_MF_SB_COUNT
);
12181 bnx2x_get_port_hwinfo(bp
);
12183 /* Get MAC addresses */
12184 bnx2x_get_mac_hwinfo(bp
);
12186 bnx2x_get_cnic_info(bp
);
12191 static void bnx2x_read_fwinfo(struct bnx2x
*bp
)
12193 int cnt
, i
, block_end
, rodi
;
12194 char vpd_start
[BNX2X_VPD_LEN
+1];
12195 char str_id_reg
[VENDOR_ID_LEN
+1];
12196 char str_id_cap
[VENDOR_ID_LEN
+1];
12198 char *vpd_extended_data
= NULL
;
12201 cnt
= pci_read_vpd(bp
->pdev
, 0, BNX2X_VPD_LEN
, vpd_start
);
12202 memset(bp
->fw_ver
, 0, sizeof(bp
->fw_ver
));
12204 if (cnt
< BNX2X_VPD_LEN
)
12205 goto out_not_found
;
12207 /* VPD RO tag should be first tag after identifier string, hence
12208 * we should be able to find it in first BNX2X_VPD_LEN chars
12210 i
= pci_vpd_find_tag(vpd_start
, 0, BNX2X_VPD_LEN
,
12211 PCI_VPD_LRDT_RO_DATA
);
12213 goto out_not_found
;
12215 block_end
= i
+ PCI_VPD_LRDT_TAG_SIZE
+
12216 pci_vpd_lrdt_size(&vpd_start
[i
]);
12218 i
+= PCI_VPD_LRDT_TAG_SIZE
;
12220 if (block_end
> BNX2X_VPD_LEN
) {
12221 vpd_extended_data
= kmalloc(block_end
, GFP_KERNEL
);
12222 if (vpd_extended_data
== NULL
)
12223 goto out_not_found
;
12225 /* read rest of vpd image into vpd_extended_data */
12226 memcpy(vpd_extended_data
, vpd_start
, BNX2X_VPD_LEN
);
12227 cnt
= pci_read_vpd(bp
->pdev
, BNX2X_VPD_LEN
,
12228 block_end
- BNX2X_VPD_LEN
,
12229 vpd_extended_data
+ BNX2X_VPD_LEN
);
12230 if (cnt
< (block_end
- BNX2X_VPD_LEN
))
12231 goto out_not_found
;
12232 vpd_data
= vpd_extended_data
;
12234 vpd_data
= vpd_start
;
12236 /* now vpd_data holds full vpd content in both cases */
12238 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
12239 PCI_VPD_RO_KEYWORD_MFR_ID
);
12241 goto out_not_found
;
12243 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
12245 if (len
!= VENDOR_ID_LEN
)
12246 goto out_not_found
;
12248 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
12250 /* vendor specific info */
12251 snprintf(str_id_reg
, VENDOR_ID_LEN
+ 1, "%04x", PCI_VENDOR_ID_DELL
);
12252 snprintf(str_id_cap
, VENDOR_ID_LEN
+ 1, "%04X", PCI_VENDOR_ID_DELL
);
12253 if (!strncmp(str_id_reg
, &vpd_data
[rodi
], VENDOR_ID_LEN
) ||
12254 !strncmp(str_id_cap
, &vpd_data
[rodi
], VENDOR_ID_LEN
)) {
12256 rodi
= pci_vpd_find_info_keyword(vpd_data
, i
, block_end
,
12257 PCI_VPD_RO_KEYWORD_VENDOR0
);
12259 len
= pci_vpd_info_field_size(&vpd_data
[rodi
]);
12261 rodi
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
12263 if (len
< 32 && (len
+ rodi
) <= BNX2X_VPD_LEN
) {
12264 memcpy(bp
->fw_ver
, &vpd_data
[rodi
], len
);
12265 bp
->fw_ver
[len
] = ' ';
12268 kfree(vpd_extended_data
);
12272 kfree(vpd_extended_data
);
12276 static void bnx2x_set_modes_bitmap(struct bnx2x
*bp
)
12280 if (CHIP_REV_IS_FPGA(bp
))
12281 SET_FLAGS(flags
, MODE_FPGA
);
12282 else if (CHIP_REV_IS_EMUL(bp
))
12283 SET_FLAGS(flags
, MODE_EMUL
);
12285 SET_FLAGS(flags
, MODE_ASIC
);
12287 if (CHIP_MODE_IS_4_PORT(bp
))
12288 SET_FLAGS(flags
, MODE_PORT4
);
12290 SET_FLAGS(flags
, MODE_PORT2
);
12292 if (CHIP_IS_E2(bp
))
12293 SET_FLAGS(flags
, MODE_E2
);
12294 else if (CHIP_IS_E3(bp
)) {
12295 SET_FLAGS(flags
, MODE_E3
);
12296 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
12297 SET_FLAGS(flags
, MODE_E3_A0
);
12298 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12299 SET_FLAGS(flags
, MODE_E3_B0
| MODE_COS3
);
12303 SET_FLAGS(flags
, MODE_MF
);
12304 switch (bp
->mf_mode
) {
12305 case MULTI_FUNCTION_SD
:
12306 SET_FLAGS(flags
, MODE_MF_SD
);
12308 case MULTI_FUNCTION_SI
:
12309 SET_FLAGS(flags
, MODE_MF_SI
);
12311 case MULTI_FUNCTION_AFEX
:
12312 SET_FLAGS(flags
, MODE_MF_AFEX
);
12316 SET_FLAGS(flags
, MODE_SF
);
12318 #if defined(__LITTLE_ENDIAN)
12319 SET_FLAGS(flags
, MODE_LITTLE_ENDIAN
);
12320 #else /*(__BIG_ENDIAN)*/
12321 SET_FLAGS(flags
, MODE_BIG_ENDIAN
);
12323 INIT_MODE_FLAGS(bp
) = flags
;
12326 static int bnx2x_init_bp(struct bnx2x
*bp
)
12331 mutex_init(&bp
->port
.phy_mutex
);
12332 mutex_init(&bp
->fw_mb_mutex
);
12333 mutex_init(&bp
->drv_info_mutex
);
12334 sema_init(&bp
->stats_lock
, 1);
12335 bp
->drv_info_mng_owner
= false;
12336 INIT_LIST_HEAD(&bp
->vlan_reg
);
12338 INIT_DELAYED_WORK(&bp
->sp_task
, bnx2x_sp_task
);
12339 INIT_DELAYED_WORK(&bp
->sp_rtnl_task
, bnx2x_sp_rtnl_task
);
12340 INIT_DELAYED_WORK(&bp
->period_task
, bnx2x_period_task
);
12341 INIT_DELAYED_WORK(&bp
->iov_task
, bnx2x_iov_task
);
12343 rc
= bnx2x_get_hwinfo(bp
);
12347 eth_zero_addr(bp
->dev
->dev_addr
);
12350 bnx2x_set_modes_bitmap(bp
);
12352 rc
= bnx2x_alloc_mem_bp(bp
);
12356 bnx2x_read_fwinfo(bp
);
12358 func
= BP_FUNC(bp
);
12360 /* need to reset chip if undi was active */
12361 if (IS_PF(bp
) && !BP_NOMCP(bp
)) {
12364 SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
12365 DRV_MSG_SEQ_NUMBER_MASK
;
12366 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp
->fw_seq
);
12368 rc
= bnx2x_prev_unload(bp
);
12370 bnx2x_free_mem_bp(bp
);
12375 if (CHIP_REV_IS_FPGA(bp
))
12376 dev_err(&bp
->pdev
->dev
, "FPGA detected\n");
12378 if (BP_NOMCP(bp
) && (func
== 0))
12379 dev_err(&bp
->pdev
->dev
, "MCP disabled, must load devices in order!\n");
12381 bp
->disable_tpa
= disable_tpa
;
12382 bp
->disable_tpa
|= !!IS_MF_STORAGE_ONLY(bp
);
12383 /* Reduce memory usage in kdump environment by disabling TPA */
12384 bp
->disable_tpa
|= is_kdump_kernel();
12386 /* Set TPA flags */
12387 if (bp
->disable_tpa
) {
12388 bp
->dev
->hw_features
&= ~(NETIF_F_LRO
| NETIF_F_GRO_HW
);
12389 bp
->dev
->features
&= ~(NETIF_F_LRO
| NETIF_F_GRO_HW
);
12392 if (CHIP_IS_E1(bp
))
12393 bp
->dropless_fc
= false;
12395 bp
->dropless_fc
= dropless_fc
| bnx2x_get_dropless_info(bp
);
12399 bp
->tx_ring_size
= IS_MF_STORAGE_ONLY(bp
) ? 0 : MAX_TX_AVAIL
;
12401 bp
->rx_ring_size
= MAX_RX_AVAIL
;
12403 /* make sure that the numbers are in the right granularity */
12404 bp
->tx_ticks
= (50 / BNX2X_BTR
) * BNX2X_BTR
;
12405 bp
->rx_ticks
= (25 / BNX2X_BTR
) * BNX2X_BTR
;
12407 bp
->current_interval
= CHIP_REV_IS_SLOW(bp
) ? 5*HZ
: HZ
;
12409 timer_setup(&bp
->timer
, bnx2x_timer
, 0);
12410 bp
->timer
.expires
= jiffies
+ bp
->current_interval
;
12412 if (SHMEM2_HAS(bp
, dcbx_lldp_params_offset
) &&
12413 SHMEM2_HAS(bp
, dcbx_lldp_dcbx_stat_offset
) &&
12414 SHMEM2_HAS(bp
, dcbx_en
) &&
12415 SHMEM2_RD(bp
, dcbx_lldp_params_offset
) &&
12416 SHMEM2_RD(bp
, dcbx_lldp_dcbx_stat_offset
) &&
12417 SHMEM2_RD(bp
, dcbx_en
[BP_PORT(bp
)])) {
12418 bnx2x_dcbx_set_state(bp
, true, BNX2X_DCBX_ENABLED_ON_NEG_ON
);
12419 bnx2x_dcbx_init_params(bp
);
12421 bnx2x_dcbx_set_state(bp
, false, BNX2X_DCBX_ENABLED_OFF
);
12424 if (CHIP_IS_E1x(bp
))
12425 bp
->cnic_base_cl_id
= FP_SB_MAX_E1x
;
12427 bp
->cnic_base_cl_id
= FP_SB_MAX_E2
;
12429 /* multiple tx priority */
12432 else if (CHIP_IS_E1x(bp
))
12433 bp
->max_cos
= BNX2X_MULTI_TX_COS_E1X
;
12434 else if (CHIP_IS_E2(bp
) || CHIP_IS_E3A0(bp
))
12435 bp
->max_cos
= BNX2X_MULTI_TX_COS_E2_E3A0
;
12436 else if (CHIP_IS_E3B0(bp
))
12437 bp
->max_cos
= BNX2X_MULTI_TX_COS_E3B0
;
12439 BNX2X_ERR("unknown chip %x revision %x\n",
12440 CHIP_NUM(bp
), CHIP_REV(bp
));
12441 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp
->max_cos
);
12443 /* We need at least one default status block for slow-path events,
12444 * second status block for the L2 queue, and a third status block for
12445 * CNIC if supported.
12448 bp
->min_msix_vec_cnt
= 1;
12449 else if (CNIC_SUPPORT(bp
))
12450 bp
->min_msix_vec_cnt
= 3;
12451 else /* PF w/o cnic */
12452 bp
->min_msix_vec_cnt
= 2;
12453 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp
->min_msix_vec_cnt
);
12455 bp
->dump_preset_idx
= 1;
12460 /****************************************************************************
12461 * General service functions
12462 ****************************************************************************/
12465 * net_device service functions
12468 /* called with rtnl_lock */
12469 static int bnx2x_open(struct net_device
*dev
)
12471 struct bnx2x
*bp
= netdev_priv(dev
);
12474 bp
->stats_init
= true;
12476 netif_carrier_off(dev
);
12478 bnx2x_set_power_state(bp
, PCI_D0
);
12480 /* If parity had happen during the unload, then attentions
12481 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12482 * want the first function loaded on the current engine to
12483 * complete the recovery.
12484 * Parity recovery is only relevant for PF driver.
12487 int other_engine
= BP_PATH(bp
) ? 0 : 1;
12488 bool other_load_status
, load_status
;
12489 bool global
= false;
12491 other_load_status
= bnx2x_get_load_status(bp
, other_engine
);
12492 load_status
= bnx2x_get_load_status(bp
, BP_PATH(bp
));
12493 if (!bnx2x_reset_is_done(bp
, BP_PATH(bp
)) ||
12494 bnx2x_chk_parity_attn(bp
, &global
, true)) {
12496 /* If there are attentions and they are in a
12497 * global blocks, set the GLOBAL_RESET bit
12498 * regardless whether it will be this function
12499 * that will complete the recovery or not.
12502 bnx2x_set_reset_global(bp
);
12504 /* Only the first function on the current
12505 * engine should try to recover in open. In case
12506 * of attentions in global blocks only the first
12507 * in the chip should try to recover.
12509 if ((!load_status
&&
12510 (!global
|| !other_load_status
)) &&
12511 bnx2x_trylock_leader_lock(bp
) &&
12512 !bnx2x_leader_reset(bp
)) {
12513 netdev_info(bp
->dev
,
12514 "Recovered in open\n");
12518 /* recovery has failed... */
12519 bnx2x_set_power_state(bp
, PCI_D3hot
);
12520 bp
->recovery_state
= BNX2X_RECOVERY_FAILED
;
12522 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12523 "If you still see this message after a few retries then power cycle is required.\n");
12530 bp
->recovery_state
= BNX2X_RECOVERY_DONE
;
12531 rc
= bnx2x_nic_load(bp
, LOAD_OPEN
);
12538 /* called with rtnl_lock */
12539 static int bnx2x_close(struct net_device
*dev
)
12541 struct bnx2x
*bp
= netdev_priv(dev
);
12543 /* Unload the driver, release IRQs */
12544 bnx2x_nic_unload(bp
, UNLOAD_CLOSE
, false);
12549 struct bnx2x_mcast_list_elem_group
12551 struct list_head mcast_group_link
;
12552 struct bnx2x_mcast_list_elem mcast_elems
[];
12555 #define MCAST_ELEMS_PER_PG \
12556 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12557 sizeof(struct bnx2x_mcast_list_elem))
12559 static void bnx2x_free_mcast_macs_list(struct list_head
*mcast_group_list
)
12561 struct bnx2x_mcast_list_elem_group
*current_mcast_group
;
12563 while (!list_empty(mcast_group_list
)) {
12564 current_mcast_group
= list_first_entry(mcast_group_list
,
12565 struct bnx2x_mcast_list_elem_group
,
12567 list_del(¤t_mcast_group
->mcast_group_link
);
12568 free_page((unsigned long)current_mcast_group
);
12572 static int bnx2x_init_mcast_macs_list(struct bnx2x
*bp
,
12573 struct bnx2x_mcast_ramrod_params
*p
,
12574 struct list_head
*mcast_group_list
)
12576 struct bnx2x_mcast_list_elem
*mc_mac
;
12577 struct netdev_hw_addr
*ha
;
12578 struct bnx2x_mcast_list_elem_group
*current_mcast_group
= NULL
;
12579 int mc_count
= netdev_mc_count(bp
->dev
);
12582 INIT_LIST_HEAD(&p
->mcast_list
);
12583 netdev_for_each_mc_addr(ha
, bp
->dev
) {
12585 current_mcast_group
=
12586 (struct bnx2x_mcast_list_elem_group
*)
12587 __get_free_page(GFP_ATOMIC
);
12588 if (!current_mcast_group
) {
12589 bnx2x_free_mcast_macs_list(mcast_group_list
);
12590 BNX2X_ERR("Failed to allocate mc MAC list\n");
12593 list_add(¤t_mcast_group
->mcast_group_link
,
12596 mc_mac
= ¤t_mcast_group
->mcast_elems
[offset
];
12597 mc_mac
->mac
= bnx2x_mc_addr(ha
);
12598 list_add_tail(&mc_mac
->link
, &p
->mcast_list
);
12600 if (offset
== MCAST_ELEMS_PER_PG
)
12603 p
->mcast_list_len
= mc_count
;
12608 * bnx2x_set_uc_list - configure a new unicast MACs list.
12610 * @bp: driver handle
12612 * We will use zero (0) as a MAC type for these MACs.
12614 static int bnx2x_set_uc_list(struct bnx2x
*bp
)
12617 struct net_device
*dev
= bp
->dev
;
12618 struct netdev_hw_addr
*ha
;
12619 struct bnx2x_vlan_mac_obj
*mac_obj
= &bp
->sp_objs
->mac_obj
;
12620 unsigned long ramrod_flags
= 0;
12622 /* First schedule a cleanup up of old configuration */
12623 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, false);
12625 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc
);
12629 netdev_for_each_uc_addr(ha
, dev
) {
12630 rc
= bnx2x_set_mac_one(bp
, bnx2x_uc_addr(ha
), mac_obj
, true,
12631 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
12632 if (rc
== -EEXIST
) {
12634 "Failed to schedule ADD operations: %d\n", rc
);
12635 /* do not treat adding same MAC as error */
12638 } else if (rc
< 0) {
12640 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12646 /* Execute the pending commands */
12647 __set_bit(RAMROD_CONT
, &ramrod_flags
);
12648 return bnx2x_set_mac_one(bp
, NULL
, mac_obj
, false /* don't care */,
12649 BNX2X_UC_LIST_MAC
, &ramrod_flags
);
12652 static int bnx2x_set_mc_list_e1x(struct bnx2x
*bp
)
12654 LIST_HEAD(mcast_group_list
);
12655 struct net_device
*dev
= bp
->dev
;
12656 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
12659 rparam
.mcast_obj
= &bp
->mcast_obj
;
12661 /* first, clear all configured multicast MACs */
12662 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
12664 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc
);
12668 /* then, configure a new MACs list */
12669 if (netdev_mc_count(dev
)) {
12670 rc
= bnx2x_init_mcast_macs_list(bp
, &rparam
, &mcast_group_list
);
12674 /* Now add the new MACs */
12675 rc
= bnx2x_config_mcast(bp
, &rparam
,
12676 BNX2X_MCAST_CMD_ADD
);
12678 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12681 bnx2x_free_mcast_macs_list(&mcast_group_list
);
12687 static int bnx2x_set_mc_list(struct bnx2x
*bp
)
12689 LIST_HEAD(mcast_group_list
);
12690 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
12691 struct net_device
*dev
= bp
->dev
;
12694 /* On older adapters, we need to flush and re-add filters */
12695 if (CHIP_IS_E1x(bp
))
12696 return bnx2x_set_mc_list_e1x(bp
);
12698 rparam
.mcast_obj
= &bp
->mcast_obj
;
12700 if (netdev_mc_count(dev
)) {
12701 rc
= bnx2x_init_mcast_macs_list(bp
, &rparam
, &mcast_group_list
);
12705 /* Override the curently configured set of mc filters */
12706 rc
= bnx2x_config_mcast(bp
, &rparam
,
12707 BNX2X_MCAST_CMD_SET
);
12709 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12712 bnx2x_free_mcast_macs_list(&mcast_group_list
);
12714 /* If no mc addresses are required, flush the configuration */
12715 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_DEL
);
12717 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12724 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12725 static void bnx2x_set_rx_mode(struct net_device
*dev
)
12727 struct bnx2x
*bp
= netdev_priv(dev
);
12729 if (bp
->state
!= BNX2X_STATE_OPEN
) {
12730 DP(NETIF_MSG_IFUP
, "state is %x, returning\n", bp
->state
);
12733 /* Schedule an SP task to handle rest of change */
12734 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_RX_MODE
,
12739 void bnx2x_set_rx_mode_inner(struct bnx2x
*bp
)
12741 u32 rx_mode
= BNX2X_RX_MODE_NORMAL
;
12743 DP(NETIF_MSG_IFUP
, "dev->flags = %x\n", bp
->dev
->flags
);
12745 netif_addr_lock_bh(bp
->dev
);
12747 if (bp
->dev
->flags
& IFF_PROMISC
) {
12748 rx_mode
= BNX2X_RX_MODE_PROMISC
;
12749 } else if ((bp
->dev
->flags
& IFF_ALLMULTI
) ||
12750 ((netdev_mc_count(bp
->dev
) > BNX2X_MAX_MULTICAST
) &&
12752 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
12755 /* some multicasts */
12756 if (bnx2x_set_mc_list(bp
) < 0)
12757 rx_mode
= BNX2X_RX_MODE_ALLMULTI
;
12759 /* release bh lock, as bnx2x_set_uc_list might sleep */
12760 netif_addr_unlock_bh(bp
->dev
);
12761 if (bnx2x_set_uc_list(bp
) < 0)
12762 rx_mode
= BNX2X_RX_MODE_PROMISC
;
12763 netif_addr_lock_bh(bp
->dev
);
12765 /* configuring mcast to a vf involves sleeping (when we
12766 * wait for the pf's response).
12768 bnx2x_schedule_sp_rtnl(bp
,
12769 BNX2X_SP_RTNL_VFPF_MCAST
, 0);
12773 bp
->rx_mode
= rx_mode
;
12774 /* handle ISCSI SD mode */
12775 if (IS_MF_ISCSI_ONLY(bp
))
12776 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
12778 /* Schedule the rx_mode command */
12779 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
)) {
12780 set_bit(BNX2X_FILTER_RX_MODE_SCHED
, &bp
->sp_state
);
12781 netif_addr_unlock_bh(bp
->dev
);
12786 bnx2x_set_storm_rx_mode(bp
);
12787 netif_addr_unlock_bh(bp
->dev
);
12789 /* VF will need to request the PF to make this change, and so
12790 * the VF needs to release the bottom-half lock prior to the
12791 * request (as it will likely require sleep on the VF side)
12793 netif_addr_unlock_bh(bp
->dev
);
12794 bnx2x_vfpf_storm_rx_mode(bp
);
12798 /* called with rtnl_lock */
12799 static int bnx2x_mdio_read(struct net_device
*netdev
, int prtad
,
12800 int devad
, u16 addr
)
12802 struct bnx2x
*bp
= netdev_priv(netdev
);
12806 DP(NETIF_MSG_LINK
, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12807 prtad
, devad
, addr
);
12809 /* The HW expects different devad if CL22 is used */
12810 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
12812 bnx2x_acquire_phy_lock(bp
);
12813 rc
= bnx2x_phy_read(&bp
->link_params
, prtad
, devad
, addr
, &value
);
12814 bnx2x_release_phy_lock(bp
);
12815 DP(NETIF_MSG_LINK
, "mdio_read_val 0x%x rc = 0x%x\n", value
, rc
);
12822 /* called with rtnl_lock */
12823 static int bnx2x_mdio_write(struct net_device
*netdev
, int prtad
, int devad
,
12824 u16 addr
, u16 value
)
12826 struct bnx2x
*bp
= netdev_priv(netdev
);
12830 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12831 prtad
, devad
, addr
, value
);
12833 /* The HW expects different devad if CL22 is used */
12834 devad
= (devad
== MDIO_DEVAD_NONE
) ? DEFAULT_PHY_DEV_ADDR
: devad
;
12836 bnx2x_acquire_phy_lock(bp
);
12837 rc
= bnx2x_phy_write(&bp
->link_params
, prtad
, devad
, addr
, value
);
12838 bnx2x_release_phy_lock(bp
);
12842 /* called with rtnl_lock */
12843 static int bnx2x_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
12845 struct bnx2x
*bp
= netdev_priv(dev
);
12846 struct mii_ioctl_data
*mdio
= if_mii(ifr
);
12848 if (!netif_running(dev
))
12852 case SIOCSHWTSTAMP
:
12853 return bnx2x_hwtstamp_ioctl(bp
, ifr
);
12855 DP(NETIF_MSG_LINK
, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12856 mdio
->phy_id
, mdio
->reg_num
, mdio
->val_in
);
12857 return mdio_mii_ioctl(&bp
->mdio
, mdio
, cmd
);
12861 static int bnx2x_validate_addr(struct net_device
*dev
)
12863 struct bnx2x
*bp
= netdev_priv(dev
);
12865 /* query the bulletin board for mac address configured by the PF */
12867 bnx2x_sample_bulletin(bp
);
12869 if (!is_valid_ether_addr(dev
->dev_addr
)) {
12870 BNX2X_ERR("Non-valid Ethernet address\n");
12871 return -EADDRNOTAVAIL
;
12876 static int bnx2x_get_phys_port_id(struct net_device
*netdev
,
12877 struct netdev_phys_item_id
*ppid
)
12879 struct bnx2x
*bp
= netdev_priv(netdev
);
12881 if (!(bp
->flags
& HAS_PHYS_PORT_ID
))
12882 return -EOPNOTSUPP
;
12884 ppid
->id_len
= sizeof(bp
->phys_port_id
);
12885 memcpy(ppid
->id
, bp
->phys_port_id
, ppid
->id_len
);
12890 static netdev_features_t
bnx2x_features_check(struct sk_buff
*skb
,
12891 struct net_device
*dev
,
12892 netdev_features_t features
)
12895 * A skb with gso_size + header length > 9700 will cause a
12896 * firmware panic. Drop GSO support.
12898 * Eventually the upper layer should not pass these packets down.
12900 * For speed, if the gso_size is <= 9000, assume there will
12901 * not be 700 bytes of headers and pass it through. Only do a
12902 * full (slow) validation if the gso_size is > 9000.
12904 * (Due to the way SKB_BY_FRAGS works this will also do a full
12905 * validation in that case.)
12907 if (unlikely(skb_is_gso(skb
) &&
12908 (skb_shinfo(skb
)->gso_size
> 9000) &&
12909 !skb_gso_validate_mac_len(skb
, 9700)))
12910 features
&= ~NETIF_F_GSO_MASK
;
12912 features
= vlan_features_check(skb
, features
);
12913 return vxlan_features_check(skb
, features
);
12916 static int __bnx2x_vlan_configure_vid(struct bnx2x
*bp
, u16 vid
, bool add
)
12921 unsigned long ramrod_flags
= 0;
12923 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
12924 rc
= bnx2x_set_vlan_one(bp
, vid
, &bp
->sp_objs
->vlan_obj
,
12925 add
, &ramrod_flags
);
12927 rc
= bnx2x_vfpf_update_vlan(bp
, vid
, bp
->fp
->index
, add
);
12933 static int bnx2x_vlan_configure_vid_list(struct bnx2x
*bp
)
12935 struct bnx2x_vlan_entry
*vlan
;
12938 /* Configure all non-configured entries */
12939 list_for_each_entry(vlan
, &bp
->vlan_reg
, link
) {
12943 if (bp
->vlan_cnt
>= bp
->vlan_credit
)
12946 rc
= __bnx2x_vlan_configure_vid(bp
, vlan
->vid
, true);
12948 BNX2X_ERR("Unable to config VLAN %d\n", vlan
->vid
);
12952 DP(NETIF_MSG_IFUP
, "HW configured for VLAN %d\n", vlan
->vid
);
12960 static void bnx2x_vlan_configure(struct bnx2x
*bp
, bool set_rx_mode
)
12962 bool need_accept_any_vlan
;
12964 need_accept_any_vlan
= !!bnx2x_vlan_configure_vid_list(bp
);
12966 if (bp
->accept_any_vlan
!= need_accept_any_vlan
) {
12967 bp
->accept_any_vlan
= need_accept_any_vlan
;
12968 DP(NETIF_MSG_IFUP
, "Accept all VLAN %s\n",
12969 bp
->accept_any_vlan
? "raised" : "cleared");
12972 bnx2x_set_rx_mode_inner(bp
);
12974 bnx2x_vfpf_storm_rx_mode(bp
);
12979 int bnx2x_vlan_reconfigure_vid(struct bnx2x
*bp
)
12981 /* Don't set rx mode here. Our caller will do it. */
12982 bnx2x_vlan_configure(bp
, false);
12987 static int bnx2x_vlan_rx_add_vid(struct net_device
*dev
, __be16 proto
, u16 vid
)
12989 struct bnx2x
*bp
= netdev_priv(dev
);
12990 struct bnx2x_vlan_entry
*vlan
;
12992 DP(NETIF_MSG_IFUP
, "Adding VLAN %d\n", vid
);
12994 vlan
= kmalloc(sizeof(*vlan
), GFP_KERNEL
);
13000 list_add_tail(&vlan
->link
, &bp
->vlan_reg
);
13002 if (netif_running(dev
))
13003 bnx2x_vlan_configure(bp
, true);
13008 static int bnx2x_vlan_rx_kill_vid(struct net_device
*dev
, __be16 proto
, u16 vid
)
13010 struct bnx2x
*bp
= netdev_priv(dev
);
13011 struct bnx2x_vlan_entry
*vlan
;
13012 bool found
= false;
13015 DP(NETIF_MSG_IFUP
, "Removing VLAN %d\n", vid
);
13017 list_for_each_entry(vlan
, &bp
->vlan_reg
, link
)
13018 if (vlan
->vid
== vid
) {
13024 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid
);
13028 if (netif_running(dev
) && vlan
->hw
) {
13029 rc
= __bnx2x_vlan_configure_vid(bp
, vid
, false);
13030 DP(NETIF_MSG_IFUP
, "HW deconfigured for VLAN %d\n", vid
);
13034 list_del(&vlan
->link
);
13037 if (netif_running(dev
))
13038 bnx2x_vlan_configure(bp
, true);
13040 DP(NETIF_MSG_IFUP
, "Removing VLAN result %d\n", rc
);
13045 static const struct net_device_ops bnx2x_netdev_ops
= {
13046 .ndo_open
= bnx2x_open
,
13047 .ndo_stop
= bnx2x_close
,
13048 .ndo_start_xmit
= bnx2x_start_xmit
,
13049 .ndo_select_queue
= bnx2x_select_queue
,
13050 .ndo_set_rx_mode
= bnx2x_set_rx_mode
,
13051 .ndo_set_mac_address
= bnx2x_change_mac_addr
,
13052 .ndo_validate_addr
= bnx2x_validate_addr
,
13053 .ndo_do_ioctl
= bnx2x_ioctl
,
13054 .ndo_change_mtu
= bnx2x_change_mtu
,
13055 .ndo_fix_features
= bnx2x_fix_features
,
13056 .ndo_set_features
= bnx2x_set_features
,
13057 .ndo_tx_timeout
= bnx2x_tx_timeout
,
13058 .ndo_vlan_rx_add_vid
= bnx2x_vlan_rx_add_vid
,
13059 .ndo_vlan_rx_kill_vid
= bnx2x_vlan_rx_kill_vid
,
13060 .ndo_setup_tc
= __bnx2x_setup_tc
,
13061 #ifdef CONFIG_BNX2X_SRIOV
13062 .ndo_set_vf_mac
= bnx2x_set_vf_mac
,
13063 .ndo_set_vf_vlan
= bnx2x_set_vf_vlan
,
13064 .ndo_get_vf_config
= bnx2x_get_vf_config
,
13065 .ndo_set_vf_spoofchk
= bnx2x_set_vf_spoofchk
,
13067 #ifdef NETDEV_FCOE_WWNN
13068 .ndo_fcoe_get_wwn
= bnx2x_fcoe_get_wwn
,
13071 .ndo_get_phys_port_id
= bnx2x_get_phys_port_id
,
13072 .ndo_set_vf_link_state
= bnx2x_set_vf_link_state
,
13073 .ndo_features_check
= bnx2x_features_check
,
13074 .ndo_udp_tunnel_add
= udp_tunnel_nic_add_port
,
13075 .ndo_udp_tunnel_del
= udp_tunnel_nic_del_port
,
13078 static int bnx2x_set_coherency_mask(struct bnx2x
*bp
)
13080 struct device
*dev
= &bp
->pdev
->dev
;
13082 if (dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(64)) != 0 &&
13083 dma_set_mask_and_coherent(dev
, DMA_BIT_MASK(32)) != 0) {
13084 dev_err(dev
, "System does not support DMA, aborting\n");
13091 static void bnx2x_disable_pcie_error_reporting(struct bnx2x
*bp
)
13093 if (bp
->flags
& AER_ENABLED
) {
13094 pci_disable_pcie_error_reporting(bp
->pdev
);
13095 bp
->flags
&= ~AER_ENABLED
;
13099 static int bnx2x_init_dev(struct bnx2x
*bp
, struct pci_dev
*pdev
,
13100 struct net_device
*dev
, unsigned long board_type
)
13104 bool chip_is_e1x
= (board_type
== BCM57710
||
13105 board_type
== BCM57711
||
13106 board_type
== BCM57711E
);
13108 SET_NETDEV_DEV(dev
, &pdev
->dev
);
13113 rc
= pci_enable_device(pdev
);
13115 dev_err(&bp
->pdev
->dev
,
13116 "Cannot enable PCI device, aborting\n");
13120 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
13121 dev_err(&bp
->pdev
->dev
,
13122 "Cannot find PCI device base address, aborting\n");
13124 goto err_out_disable
;
13127 if (IS_PF(bp
) && !(pci_resource_flags(pdev
, 2) & IORESOURCE_MEM
)) {
13128 dev_err(&bp
->pdev
->dev
, "Cannot find second PCI device base address, aborting\n");
13130 goto err_out_disable
;
13133 pci_read_config_dword(pdev
, PCICFG_REVISION_ID_OFFSET
, &pci_cfg_dword
);
13134 if ((pci_cfg_dword
& PCICFG_REVESION_ID_MASK
) ==
13135 PCICFG_REVESION_ID_ERROR_VAL
) {
13136 pr_err("PCI device error, probably due to fan failure, aborting\n");
13138 goto err_out_disable
;
13141 if (atomic_read(&pdev
->enable_cnt
) == 1) {
13142 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
13144 dev_err(&bp
->pdev
->dev
,
13145 "Cannot obtain PCI resources, aborting\n");
13146 goto err_out_disable
;
13149 pci_set_master(pdev
);
13150 pci_save_state(pdev
);
13154 if (!pdev
->pm_cap
) {
13155 dev_err(&bp
->pdev
->dev
,
13156 "Cannot find power management capability, aborting\n");
13158 goto err_out_release
;
13162 if (!pci_is_pcie(pdev
)) {
13163 dev_err(&bp
->pdev
->dev
, "Not PCI Express, aborting\n");
13165 goto err_out_release
;
13168 rc
= bnx2x_set_coherency_mask(bp
);
13170 goto err_out_release
;
13172 dev
->mem_start
= pci_resource_start(pdev
, 0);
13173 dev
->base_addr
= dev
->mem_start
;
13174 dev
->mem_end
= pci_resource_end(pdev
, 0);
13176 dev
->irq
= pdev
->irq
;
13178 bp
->regview
= pci_ioremap_bar(pdev
, 0);
13179 if (!bp
->regview
) {
13180 dev_err(&bp
->pdev
->dev
,
13181 "Cannot map register space, aborting\n");
13183 goto err_out_release
;
13186 /* In E1/E1H use pci device function given by kernel.
13187 * In E2/E3 read physical function from ME register since these chips
13188 * support Physical Device Assignment where kernel BDF maybe arbitrary
13189 * (depending on hypervisor).
13192 bp
->pf_num
= PCI_FUNC(pdev
->devfn
);
13195 pci_read_config_dword(bp
->pdev
,
13196 PCICFG_ME_REGISTER
, &pci_cfg_dword
);
13197 bp
->pf_num
= (u8
)((pci_cfg_dword
& ME_REG_ABS_PF_NUM
) >>
13198 ME_REG_ABS_PF_NUM_SHIFT
);
13200 BNX2X_DEV_INFO("me reg PF num: %d\n", bp
->pf_num
);
13202 /* clean indirect addresses */
13203 pci_write_config_dword(bp
->pdev
, PCICFG_GRC_ADDRESS
,
13204 PCICFG_VENDOR_ID_OFFSET
);
13206 /* Set PCIe reset type to fundamental for EEH recovery */
13207 pdev
->needs_freset
= 1;
13209 /* AER (Advanced Error reporting) configuration */
13210 rc
= pci_enable_pcie_error_reporting(pdev
);
13212 bp
->flags
|= AER_ENABLED
;
13214 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc
);
13217 * Clean the following indirect addresses for all functions since it
13218 * is not used by the driver.
13221 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F0
, 0);
13222 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F0
, 0);
13223 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F0
, 0);
13224 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F0
, 0);
13227 REG_WR(bp
, PXP2_REG_PGL_ADDR_88_F1
, 0);
13228 REG_WR(bp
, PXP2_REG_PGL_ADDR_8C_F1
, 0);
13229 REG_WR(bp
, PXP2_REG_PGL_ADDR_90_F1
, 0);
13230 REG_WR(bp
, PXP2_REG_PGL_ADDR_94_F1
, 0);
13233 /* Enable internal target-read (in case we are probed after PF
13234 * FLR). Must be done prior to any BAR read access. Only for
13239 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ
, 1);
13242 dev
->watchdog_timeo
= TX_TIMEOUT
;
13244 dev
->netdev_ops
= &bnx2x_netdev_ops
;
13245 bnx2x_set_ethtool_ops(bp
, dev
);
13247 dev
->priv_flags
|= IFF_UNICAST_FLT
;
13249 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
13250 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
|
13251 NETIF_F_RXCSUM
| NETIF_F_LRO
| NETIF_F_GRO
| NETIF_F_GRO_HW
|
13252 NETIF_F_RXHASH
| NETIF_F_HW_VLAN_CTAG_TX
;
13253 if (!chip_is_e1x
) {
13254 dev
->hw_features
|= NETIF_F_GSO_GRE
| NETIF_F_GSO_GRE_CSUM
|
13255 NETIF_F_GSO_IPXIP4
|
13256 NETIF_F_GSO_UDP_TUNNEL
|
13257 NETIF_F_GSO_UDP_TUNNEL_CSUM
|
13258 NETIF_F_GSO_PARTIAL
;
13260 dev
->hw_enc_features
=
13261 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
| NETIF_F_SG
|
13262 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
|
13263 NETIF_F_GSO_IPXIP4
|
13264 NETIF_F_GSO_GRE
| NETIF_F_GSO_GRE_CSUM
|
13265 NETIF_F_GSO_UDP_TUNNEL
| NETIF_F_GSO_UDP_TUNNEL_CSUM
|
13266 NETIF_F_GSO_PARTIAL
;
13268 dev
->gso_partial_features
= NETIF_F_GSO_GRE_CSUM
|
13269 NETIF_F_GSO_UDP_TUNNEL_CSUM
;
13272 dev
->udp_tunnel_nic_info
= &bnx2x_udp_tunnels
;
13275 dev
->vlan_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
13276 NETIF_F_TSO
| NETIF_F_TSO_ECN
| NETIF_F_TSO6
| NETIF_F_HIGHDMA
;
13280 bp
->accept_any_vlan
= true;
13282 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
13284 /* For VF we'll know whether to enable VLAN filtering after
13285 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13288 dev
->features
|= dev
->hw_features
| NETIF_F_HW_VLAN_CTAG_RX
;
13289 dev
->features
|= NETIF_F_HIGHDMA
;
13290 if (dev
->features
& NETIF_F_LRO
)
13291 dev
->features
&= ~NETIF_F_GRO_HW
;
13293 /* Add Loopback capability to the device */
13294 dev
->hw_features
|= NETIF_F_LOOPBACK
;
13297 dev
->dcbnl_ops
= &bnx2x_dcbnl_ops
;
13300 /* MTU range, 46 - 9600 */
13301 dev
->min_mtu
= ETH_MIN_PACKET_SIZE
;
13302 dev
->max_mtu
= ETH_MAX_JUMBO_PACKET_SIZE
;
13304 /* get_port_hwinfo() will set prtad and mmds properly */
13305 bp
->mdio
.prtad
= MDIO_PRTAD_NONE
;
13307 bp
->mdio
.mode_support
= MDIO_SUPPORTS_C45
| MDIO_EMULATE_C22
;
13308 bp
->mdio
.dev
= dev
;
13309 bp
->mdio
.mdio_read
= bnx2x_mdio_read
;
13310 bp
->mdio
.mdio_write
= bnx2x_mdio_write
;
13315 if (atomic_read(&pdev
->enable_cnt
) == 1)
13316 pci_release_regions(pdev
);
13319 pci_disable_device(pdev
);
13325 static int bnx2x_check_firmware(struct bnx2x
*bp
)
13327 const struct firmware
*firmware
= bp
->firmware
;
13328 struct bnx2x_fw_file_hdr
*fw_hdr
;
13329 struct bnx2x_fw_file_section
*sections
;
13330 u32 offset
, len
, num_ops
;
13331 __be16
*ops_offsets
;
13335 if (firmware
->size
< sizeof(struct bnx2x_fw_file_hdr
)) {
13336 BNX2X_ERR("Wrong FW size\n");
13340 fw_hdr
= (struct bnx2x_fw_file_hdr
*)firmware
->data
;
13341 sections
= (struct bnx2x_fw_file_section
*)fw_hdr
;
13343 /* Make sure none of the offsets and sizes make us read beyond
13344 * the end of the firmware data */
13345 for (i
= 0; i
< sizeof(*fw_hdr
) / sizeof(*sections
); i
++) {
13346 offset
= be32_to_cpu(sections
[i
].offset
);
13347 len
= be32_to_cpu(sections
[i
].len
);
13348 if (offset
+ len
> firmware
->size
) {
13349 BNX2X_ERR("Section %d length is out of bounds\n", i
);
13354 /* Likewise for the init_ops offsets */
13355 offset
= be32_to_cpu(fw_hdr
->init_ops_offsets
.offset
);
13356 ops_offsets
= (__force __be16
*)(firmware
->data
+ offset
);
13357 num_ops
= be32_to_cpu(fw_hdr
->init_ops
.len
) / sizeof(struct raw_op
);
13359 for (i
= 0; i
< be32_to_cpu(fw_hdr
->init_ops_offsets
.len
) / 2; i
++) {
13360 if (be16_to_cpu(ops_offsets
[i
]) > num_ops
) {
13361 BNX2X_ERR("Section offset %d is out of bounds\n", i
);
13366 /* Check FW version */
13367 offset
= be32_to_cpu(fw_hdr
->fw_version
.offset
);
13368 fw_ver
= firmware
->data
+ offset
;
13369 if ((fw_ver
[0] != BCM_5710_FW_MAJOR_VERSION
) ||
13370 (fw_ver
[1] != BCM_5710_FW_MINOR_VERSION
) ||
13371 (fw_ver
[2] != BCM_5710_FW_REVISION_VERSION
) ||
13372 (fw_ver
[3] != BCM_5710_FW_ENGINEERING_VERSION
)) {
13373 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13374 fw_ver
[0], fw_ver
[1], fw_ver
[2], fw_ver
[3],
13375 BCM_5710_FW_MAJOR_VERSION
,
13376 BCM_5710_FW_MINOR_VERSION
,
13377 BCM_5710_FW_REVISION_VERSION
,
13378 BCM_5710_FW_ENGINEERING_VERSION
);
13385 static void be32_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
13387 const __be32
*source
= (const __be32
*)_source
;
13388 u32
*target
= (u32
*)_target
;
13391 for (i
= 0; i
< n
/4; i
++)
13392 target
[i
] = be32_to_cpu(source
[i
]);
13396 Ops array is stored in the following format:
13397 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13399 static void bnx2x_prep_ops(const u8
*_source
, u8
*_target
, u32 n
)
13401 const __be32
*source
= (const __be32
*)_source
;
13402 struct raw_op
*target
= (struct raw_op
*)_target
;
13405 for (i
= 0, j
= 0; i
< n
/8; i
++, j
+= 2) {
13406 tmp
= be32_to_cpu(source
[j
]);
13407 target
[i
].op
= (tmp
>> 24) & 0xff;
13408 target
[i
].offset
= tmp
& 0xffffff;
13409 target
[i
].raw_data
= be32_to_cpu(source
[j
+ 1]);
13413 /* IRO array is stored in the following format:
13414 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13416 static void bnx2x_prep_iro(const u8
*_source
, u8
*_target
, u32 n
)
13418 const __be32
*source
= (const __be32
*)_source
;
13419 struct iro
*target
= (struct iro
*)_target
;
13422 for (i
= 0, j
= 0; i
< n
/sizeof(struct iro
); i
++) {
13423 target
[i
].base
= be32_to_cpu(source
[j
]);
13425 tmp
= be32_to_cpu(source
[j
]);
13426 target
[i
].m1
= (tmp
>> 16) & 0xffff;
13427 target
[i
].m2
= tmp
& 0xffff;
13429 tmp
= be32_to_cpu(source
[j
]);
13430 target
[i
].m3
= (tmp
>> 16) & 0xffff;
13431 target
[i
].size
= tmp
& 0xffff;
13436 static void be16_to_cpu_n(const u8
*_source
, u8
*_target
, u32 n
)
13438 const __be16
*source
= (const __be16
*)_source
;
13439 u16
*target
= (u16
*)_target
;
13442 for (i
= 0; i
< n
/2; i
++)
13443 target
[i
] = be16_to_cpu(source
[i
]);
13446 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13448 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13449 bp->arr = kmalloc(len, GFP_KERNEL); \
13452 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13453 (u8 *)bp->arr, len); \
13456 static int bnx2x_init_firmware(struct bnx2x
*bp
)
13458 const char *fw_file_name
;
13459 struct bnx2x_fw_file_hdr
*fw_hdr
;
13465 if (CHIP_IS_E1(bp
))
13466 fw_file_name
= FW_FILE_NAME_E1
;
13467 else if (CHIP_IS_E1H(bp
))
13468 fw_file_name
= FW_FILE_NAME_E1H
;
13469 else if (!CHIP_IS_E1x(bp
))
13470 fw_file_name
= FW_FILE_NAME_E2
;
13472 BNX2X_ERR("Unsupported chip revision\n");
13475 BNX2X_DEV_INFO("Loading %s\n", fw_file_name
);
13477 rc
= request_firmware(&bp
->firmware
, fw_file_name
, &bp
->pdev
->dev
);
13479 BNX2X_ERR("Can't load firmware file %s\n",
13481 goto request_firmware_exit
;
13484 rc
= bnx2x_check_firmware(bp
);
13486 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name
);
13487 goto request_firmware_exit
;
13490 fw_hdr
= (struct bnx2x_fw_file_hdr
*)bp
->firmware
->data
;
13492 /* Initialize the pointers to the init arrays */
13495 BNX2X_ALLOC_AND_SET(init_data
, request_firmware_exit
, be32_to_cpu_n
);
13498 BNX2X_ALLOC_AND_SET(init_ops
, init_ops_alloc_err
, bnx2x_prep_ops
);
13501 BNX2X_ALLOC_AND_SET(init_ops_offsets
, init_offsets_alloc_err
,
13504 /* STORMs firmware */
13505 INIT_TSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
13506 be32_to_cpu(fw_hdr
->tsem_int_table_data
.offset
);
13507 INIT_TSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
13508 be32_to_cpu(fw_hdr
->tsem_pram_data
.offset
);
13509 INIT_USEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
13510 be32_to_cpu(fw_hdr
->usem_int_table_data
.offset
);
13511 INIT_USEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
13512 be32_to_cpu(fw_hdr
->usem_pram_data
.offset
);
13513 INIT_XSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
13514 be32_to_cpu(fw_hdr
->xsem_int_table_data
.offset
);
13515 INIT_XSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
13516 be32_to_cpu(fw_hdr
->xsem_pram_data
.offset
);
13517 INIT_CSEM_INT_TABLE_DATA(bp
) = bp
->firmware
->data
+
13518 be32_to_cpu(fw_hdr
->csem_int_table_data
.offset
);
13519 INIT_CSEM_PRAM_DATA(bp
) = bp
->firmware
->data
+
13520 be32_to_cpu(fw_hdr
->csem_pram_data
.offset
);
13522 BNX2X_ALLOC_AND_SET(iro_arr
, iro_alloc_err
, bnx2x_prep_iro
);
13527 kfree(bp
->init_ops_offsets
);
13528 init_offsets_alloc_err
:
13529 kfree(bp
->init_ops
);
13530 init_ops_alloc_err
:
13531 kfree(bp
->init_data
);
13532 request_firmware_exit
:
13533 release_firmware(bp
->firmware
);
13534 bp
->firmware
= NULL
;
13539 static void bnx2x_release_firmware(struct bnx2x
*bp
)
13541 kfree(bp
->init_ops_offsets
);
13542 kfree(bp
->init_ops
);
13543 kfree(bp
->init_data
);
13544 release_firmware(bp
->firmware
);
13545 bp
->firmware
= NULL
;
13548 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv
= {
13549 .init_hw_cmn_chip
= bnx2x_init_hw_common_chip
,
13550 .init_hw_cmn
= bnx2x_init_hw_common
,
13551 .init_hw_port
= bnx2x_init_hw_port
,
13552 .init_hw_func
= bnx2x_init_hw_func
,
13554 .reset_hw_cmn
= bnx2x_reset_common
,
13555 .reset_hw_port
= bnx2x_reset_port
,
13556 .reset_hw_func
= bnx2x_reset_func
,
13558 .gunzip_init
= bnx2x_gunzip_init
,
13559 .gunzip_end
= bnx2x_gunzip_end
,
13561 .init_fw
= bnx2x_init_firmware
,
13562 .release_fw
= bnx2x_release_firmware
,
13565 void bnx2x__init_func_obj(struct bnx2x
*bp
)
13567 /* Prepare DMAE related driver resources */
13568 bnx2x_setup_dmae(bp
);
13570 bnx2x_init_func_obj(bp
, &bp
->func_obj
,
13571 bnx2x_sp(bp
, func_rdata
),
13572 bnx2x_sp_mapping(bp
, func_rdata
),
13573 bnx2x_sp(bp
, func_afex_rdata
),
13574 bnx2x_sp_mapping(bp
, func_afex_rdata
),
13575 &bnx2x_func_sp_drv
);
13578 /* must be called after sriov-enable */
13579 static int bnx2x_set_qm_cid_count(struct bnx2x
*bp
)
13581 int cid_count
= BNX2X_L2_MAX_CID(bp
);
13584 cid_count
+= BNX2X_VF_CIDS
;
13586 if (CNIC_SUPPORT(bp
))
13587 cid_count
+= CNIC_CID_MAX
;
13589 return roundup(cid_count
, QM_CID_ROUND
);
13593 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13594 * @pdev: pci device
13598 static int bnx2x_get_num_non_def_sbs(struct pci_dev
*pdev
, int cnic_cnt
)
13604 * If MSI-X is not supported - return number of SBs needed to support
13605 * one fast path queue: one FP queue + SB for CNIC
13607 if (!pdev
->msix_cap
) {
13608 dev_info(&pdev
->dev
, "no msix capability found\n");
13609 return 1 + cnic_cnt
;
13611 dev_info(&pdev
->dev
, "msix capability found\n");
13614 * The value in the PCI configuration space is the index of the last
13615 * entry, namely one less than the actual size of the table, which is
13616 * exactly what we want to return from this function: number of all SBs
13617 * without the default SB.
13618 * For VFs there is no default SB, then we return (index+1).
13620 pci_read_config_word(pdev
, pdev
->msix_cap
+ PCI_MSIX_FLAGS
, &control
);
13622 index
= control
& PCI_MSIX_FLAGS_QSIZE
;
13627 static int set_max_cos_est(int chip_id
)
13633 return BNX2X_MULTI_TX_COS_E1X
;
13636 return BNX2X_MULTI_TX_COS_E2_E3A0
;
13641 case BCM57840_4_10
:
13642 case BCM57840_2_20
:
13648 return BNX2X_MULTI_TX_COS_E3B0
;
13656 pr_err("Unknown board_type (%d), aborting\n", chip_id
);
13661 static int set_is_vf(int chip_id
)
13675 /* nig_tsgen registers relative address */
13676 #define tsgen_ctrl 0x0
13677 #define tsgen_freecount 0x10
13678 #define tsgen_synctime_t0 0x20
13679 #define tsgen_offset_t0 0x28
13680 #define tsgen_drift_t0 0x30
13681 #define tsgen_synctime_t1 0x58
13682 #define tsgen_offset_t1 0x60
13683 #define tsgen_drift_t1 0x68
13685 /* FW workaround for setting drift */
13686 static int bnx2x_send_update_drift_ramrod(struct bnx2x
*bp
, int drift_dir
,
13687 int best_val
, int best_period
)
13689 struct bnx2x_func_state_params func_params
= {NULL
};
13690 struct bnx2x_func_set_timesync_params
*set_timesync_params
=
13691 &func_params
.params
.set_timesync
;
13693 /* Prepare parameters for function state transitions */
13694 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
13695 __set_bit(RAMROD_RETRY
, &func_params
.ramrod_flags
);
13697 func_params
.f_obj
= &bp
->func_obj
;
13698 func_params
.cmd
= BNX2X_F_CMD_SET_TIMESYNC
;
13700 /* Function parameters */
13701 set_timesync_params
->drift_adjust_cmd
= TS_DRIFT_ADJUST_SET
;
13702 set_timesync_params
->offset_cmd
= TS_OFFSET_KEEP
;
13703 set_timesync_params
->add_sub_drift_adjust_value
=
13704 drift_dir
? TS_ADD_VALUE
: TS_SUB_VALUE
;
13705 set_timesync_params
->drift_adjust_value
= best_val
;
13706 set_timesync_params
->drift_adjust_period
= best_period
;
13708 return bnx2x_func_state_change(bp
, &func_params
);
13711 static int bnx2x_ptp_adjfreq(struct ptp_clock_info
*ptp
, s32 ppb
)
13713 struct bnx2x
*bp
= container_of(ptp
, struct bnx2x
, ptp_clock_info
);
13716 int val
, period
, period1
, period2
, dif
, dif1
, dif2
;
13717 int best_dif
= BNX2X_MAX_PHC_DRIFT
, best_period
= 0, best_val
= 0;
13719 DP(BNX2X_MSG_PTP
, "PTP adjfreq called, ppb = %d\n", ppb
);
13721 if (!netif_running(bp
->dev
)) {
13723 "PTP adjfreq called while the interface is down\n");
13734 best_period
= 0x1FFFFFF;
13735 } else if (ppb
>= BNX2X_MAX_PHC_DRIFT
) {
13739 /* Changed not to allow val = 8, 16, 24 as these values
13740 * are not supported in workaround.
13742 for (val
= 0; val
<= 31; val
++) {
13743 if ((val
& 0x7) == 0)
13745 period1
= val
* 1000000 / ppb
;
13746 period2
= period1
+ 1;
13748 dif1
= ppb
- (val
* 1000000 / period1
);
13750 dif1
= BNX2X_MAX_PHC_DRIFT
;
13753 dif2
= ppb
- (val
* 1000000 / period2
);
13756 dif
= (dif1
< dif2
) ? dif1
: dif2
;
13757 period
= (dif1
< dif2
) ? period1
: period2
;
13758 if (dif
< best_dif
) {
13761 best_period
= period
;
13766 rc
= bnx2x_send_update_drift_ramrod(bp
, drift_dir
, best_val
,
13769 BNX2X_ERR("Failed to set drift\n");
13773 DP(BNX2X_MSG_PTP
, "Configured val = %d, period = %d\n", best_val
,
13779 static int bnx2x_ptp_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
13781 struct bnx2x
*bp
= container_of(ptp
, struct bnx2x
, ptp_clock_info
);
13783 if (!netif_running(bp
->dev
)) {
13785 "PTP adjtime called while the interface is down\n");
13789 DP(BNX2X_MSG_PTP
, "PTP adjtime called, delta = %llx\n", delta
);
13791 timecounter_adjtime(&bp
->timecounter
, delta
);
13796 static int bnx2x_ptp_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
)
13798 struct bnx2x
*bp
= container_of(ptp
, struct bnx2x
, ptp_clock_info
);
13801 if (!netif_running(bp
->dev
)) {
13803 "PTP gettime called while the interface is down\n");
13807 ns
= timecounter_read(&bp
->timecounter
);
13809 DP(BNX2X_MSG_PTP
, "PTP gettime called, ns = %llu\n", ns
);
13811 *ts
= ns_to_timespec64(ns
);
13816 static int bnx2x_ptp_settime(struct ptp_clock_info
*ptp
,
13817 const struct timespec64
*ts
)
13819 struct bnx2x
*bp
= container_of(ptp
, struct bnx2x
, ptp_clock_info
);
13822 if (!netif_running(bp
->dev
)) {
13824 "PTP settime called while the interface is down\n");
13828 ns
= timespec64_to_ns(ts
);
13830 DP(BNX2X_MSG_PTP
, "PTP settime called, ns = %llu\n", ns
);
13832 /* Re-init the timecounter */
13833 timecounter_init(&bp
->timecounter
, &bp
->cyclecounter
, ns
);
13838 /* Enable (or disable) ancillary features of the phc subsystem */
13839 static int bnx2x_ptp_enable(struct ptp_clock_info
*ptp
,
13840 struct ptp_clock_request
*rq
, int on
)
13842 struct bnx2x
*bp
= container_of(ptp
, struct bnx2x
, ptp_clock_info
);
13844 BNX2X_ERR("PHC ancillary features are not supported\n");
13848 void bnx2x_register_phc(struct bnx2x
*bp
)
13850 /* Fill the ptp_clock_info struct and register PTP clock*/
13851 bp
->ptp_clock_info
.owner
= THIS_MODULE
;
13852 snprintf(bp
->ptp_clock_info
.name
, 16, "%s", bp
->dev
->name
);
13853 bp
->ptp_clock_info
.max_adj
= BNX2X_MAX_PHC_DRIFT
; /* In PPB */
13854 bp
->ptp_clock_info
.n_alarm
= 0;
13855 bp
->ptp_clock_info
.n_ext_ts
= 0;
13856 bp
->ptp_clock_info
.n_per_out
= 0;
13857 bp
->ptp_clock_info
.pps
= 0;
13858 bp
->ptp_clock_info
.adjfreq
= bnx2x_ptp_adjfreq
;
13859 bp
->ptp_clock_info
.adjtime
= bnx2x_ptp_adjtime
;
13860 bp
->ptp_clock_info
.gettime64
= bnx2x_ptp_gettime
;
13861 bp
->ptp_clock_info
.settime64
= bnx2x_ptp_settime
;
13862 bp
->ptp_clock_info
.enable
= bnx2x_ptp_enable
;
13864 bp
->ptp_clock
= ptp_clock_register(&bp
->ptp_clock_info
, &bp
->pdev
->dev
);
13865 if (IS_ERR(bp
->ptp_clock
)) {
13866 bp
->ptp_clock
= NULL
;
13867 BNX2X_ERR("PTP clock registration failed\n");
13871 static int bnx2x_init_one(struct pci_dev
*pdev
,
13872 const struct pci_device_id
*ent
)
13874 struct net_device
*dev
= NULL
;
13876 int rc
, max_non_def_sbs
;
13877 int rx_count
, tx_count
, rss_count
, doorbell_size
;
13882 /* Management FW 'remembers' living interfaces. Allow it some time
13883 * to forget previously living interfaces, allowing a proper re-load.
13885 if (is_kdump_kernel()) {
13886 ktime_t now
= ktime_get_boottime();
13887 ktime_t fw_ready_time
= ktime_set(5, 0);
13889 if (ktime_before(now
, fw_ready_time
))
13890 msleep(ktime_ms_delta(fw_ready_time
, now
));
13893 /* An estimated maximum supported CoS number according to the chip
13895 * We will try to roughly estimate the maximum number of CoSes this chip
13896 * may support in order to minimize the memory allocated for Tx
13897 * netdev_queue's. This number will be accurately calculated during the
13898 * initialization of bp->max_cos based on the chip versions AND chip
13899 * revision in the bnx2x_init_bp().
13901 max_cos_est
= set_max_cos_est(ent
->driver_data
);
13902 if (max_cos_est
< 0)
13903 return max_cos_est
;
13904 is_vf
= set_is_vf(ent
->driver_data
);
13905 cnic_cnt
= is_vf
? 0 : 1;
13907 max_non_def_sbs
= bnx2x_get_num_non_def_sbs(pdev
, cnic_cnt
);
13909 /* add another SB for VF as it has no default SB */
13910 max_non_def_sbs
+= is_vf
? 1 : 0;
13912 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13913 rss_count
= max_non_def_sbs
- cnic_cnt
;
13918 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13919 rx_count
= rss_count
+ cnic_cnt
;
13921 /* Maximum number of netdev Tx queues:
13922 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13924 tx_count
= rss_count
* max_cos_est
+ cnic_cnt
;
13926 /* dev zeroed in init_etherdev */
13927 dev
= alloc_etherdev_mqs(sizeof(*bp
), tx_count
, rx_count
);
13931 bp
= netdev_priv(dev
);
13935 bp
->flags
|= IS_VF_FLAG
;
13937 bp
->igu_sb_cnt
= max_non_def_sbs
;
13938 bp
->igu_base_addr
= IS_VF(bp
) ? PXP_VF_ADDR_IGU_START
: BAR_IGU_INTMEM
;
13939 bp
->msg_enable
= debug
;
13940 bp
->cnic_support
= cnic_cnt
;
13941 bp
->cnic_probe
= bnx2x_cnic_probe
;
13943 pci_set_drvdata(pdev
, dev
);
13945 rc
= bnx2x_init_dev(bp
, pdev
, dev
, ent
->driver_data
);
13951 BNX2X_DEV_INFO("This is a %s function\n",
13952 IS_PF(bp
) ? "physical" : "virtual");
13953 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp
) ? "on" : "off");
13954 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs
);
13955 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13956 tx_count
, rx_count
);
13958 rc
= bnx2x_init_bp(bp
);
13960 goto init_one_exit
;
13962 /* Map doorbells here as we need the real value of bp->max_cos which
13963 * is initialized in bnx2x_init_bp() to determine the number of
13967 bp
->doorbells
= bnx2x_vf_doorbells(bp
);
13968 rc
= bnx2x_vf_pci_alloc(bp
);
13970 goto init_one_freemem
;
13972 doorbell_size
= BNX2X_L2_MAX_CID(bp
) * (1 << BNX2X_DB_SHIFT
);
13973 if (doorbell_size
> pci_resource_len(pdev
, 2)) {
13974 dev_err(&bp
->pdev
->dev
,
13975 "Cannot map doorbells, bar size too small, aborting\n");
13977 goto init_one_freemem
;
13979 bp
->doorbells
= ioremap(pci_resource_start(pdev
, 2),
13982 if (!bp
->doorbells
) {
13983 dev_err(&bp
->pdev
->dev
,
13984 "Cannot map doorbell space, aborting\n");
13986 goto init_one_freemem
;
13990 rc
= bnx2x_vfpf_acquire(bp
, tx_count
, rx_count
);
13992 goto init_one_freemem
;
13994 #ifdef CONFIG_BNX2X_SRIOV
13995 /* VF with OLD Hypervisor or old PF do not support filtering */
13996 if (bp
->acquire_resp
.pfdev_info
.pf_cap
& PFVF_CAP_VLAN_FILTER
) {
13997 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
13998 dev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
14003 /* Enable SRIOV if capability found in configuration space */
14004 rc
= bnx2x_iov_init_one(bp
, int_mode
, BNX2X_MAX_NUM_OF_VFS
);
14006 goto init_one_freemem
;
14008 /* calc qm_cid_count */
14009 bp
->qm_cid_count
= bnx2x_set_qm_cid_count(bp
);
14010 BNX2X_DEV_INFO("qm_cid_count %d\n", bp
->qm_cid_count
);
14012 /* disable FCOE L2 queue for E1x*/
14013 if (CHIP_IS_E1x(bp
))
14014 bp
->flags
|= NO_FCOE_FLAG
;
14016 /* Set bp->num_queues for MSI-X mode*/
14017 bnx2x_set_num_queues(bp
);
14019 /* Configure interrupt mode: try to enable MSI-X/MSI if
14022 rc
= bnx2x_set_int_mode(bp
);
14024 dev_err(&pdev
->dev
, "Cannot set interrupts\n");
14025 goto init_one_freemem
;
14027 BNX2X_DEV_INFO("set interrupts successfully\n");
14029 /* register the net device */
14030 rc
= register_netdev(dev
);
14032 dev_err(&pdev
->dev
, "Cannot register net device\n");
14033 goto init_one_freemem
;
14035 BNX2X_DEV_INFO("device name after netdev register %s\n", dev
->name
);
14037 if (!NO_FCOE(bp
)) {
14038 /* Add storage MAC address */
14040 dev_addr_add(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
14044 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14045 board_info
[ent
->driver_data
].name
,
14046 (CHIP_REV(bp
) >> 12) + 'A', (CHIP_METAL(bp
) >> 4),
14047 dev
->base_addr
, bp
->pdev
->irq
, dev
->dev_addr
);
14048 pcie_print_link_status(bp
->pdev
);
14050 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
))
14051 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_DISABLED
);
14056 bnx2x_free_mem_bp(bp
);
14059 bnx2x_disable_pcie_error_reporting(bp
);
14062 iounmap(bp
->regview
);
14064 if (IS_PF(bp
) && bp
->doorbells
)
14065 iounmap(bp
->doorbells
);
14069 if (atomic_read(&pdev
->enable_cnt
) == 1)
14070 pci_release_regions(pdev
);
14072 pci_disable_device(pdev
);
14077 static void __bnx2x_remove(struct pci_dev
*pdev
,
14078 struct net_device
*dev
,
14080 bool remove_netdev
)
14082 /* Delete storage MAC address */
14083 if (!NO_FCOE(bp
)) {
14085 dev_addr_del(bp
->dev
, bp
->fip_mac
, NETDEV_HW_ADDR_T_SAN
);
14090 /* Delete app tlvs from dcbnl */
14091 bnx2x_dcbnl_update_applist(bp
, true);
14096 (bp
->flags
& BC_SUPPORTS_RMMOD_CMD
))
14097 bnx2x_fw_command(bp
, DRV_MSG_CODE_RMMOD
, 0);
14099 /* Close the interface - either directly or implicitly */
14100 if (remove_netdev
) {
14101 unregister_netdev(dev
);
14108 bnx2x_iov_remove_one(bp
);
14110 /* Power on: we can't let PCI layer write to us while we are in D3 */
14112 bnx2x_set_power_state(bp
, PCI_D0
);
14113 bnx2x_set_os_driver_state(bp
, OS_DRIVER_STATE_NOT_LOADED
);
14115 /* Set endianity registers to reset values in case next driver
14116 * boots in different endianty environment.
14118 bnx2x_reset_endianity(bp
);
14121 /* Disable MSI/MSI-X */
14122 bnx2x_disable_msi(bp
);
14126 bnx2x_set_power_state(bp
, PCI_D3hot
);
14128 /* Make sure RESET task is not scheduled before continuing */
14129 cancel_delayed_work_sync(&bp
->sp_rtnl_task
);
14131 /* send message via vfpf channel to release the resources of this vf */
14133 bnx2x_vfpf_release(bp
);
14135 /* Assumes no further PCIe PM changes will occur */
14136 if (system_state
== SYSTEM_POWER_OFF
) {
14137 pci_wake_from_d3(pdev
, bp
->wol
);
14138 pci_set_power_state(pdev
, PCI_D3hot
);
14141 bnx2x_disable_pcie_error_reporting(bp
);
14142 if (remove_netdev
) {
14144 iounmap(bp
->regview
);
14146 /* For vfs, doorbells are part of the regview and were unmapped
14147 * along with it. FW is only loaded by PF.
14151 iounmap(bp
->doorbells
);
14153 bnx2x_release_firmware(bp
);
14155 bnx2x_vf_pci_dealloc(bp
);
14157 bnx2x_free_mem_bp(bp
);
14161 if (atomic_read(&pdev
->enable_cnt
) == 1)
14162 pci_release_regions(pdev
);
14164 pci_disable_device(pdev
);
14168 static void bnx2x_remove_one(struct pci_dev
*pdev
)
14170 struct net_device
*dev
= pci_get_drvdata(pdev
);
14174 dev_err(&pdev
->dev
, "BAD net device from bnx2x_init_one\n");
14177 bp
= netdev_priv(dev
);
14179 __bnx2x_remove(pdev
, dev
, bp
, true);
14182 static int bnx2x_eeh_nic_unload(struct bnx2x
*bp
)
14184 bp
->state
= BNX2X_STATE_CLOSING_WAIT4_HALT
;
14186 bp
->rx_mode
= BNX2X_RX_MODE_NONE
;
14188 if (CNIC_LOADED(bp
))
14189 bnx2x_cnic_notify(bp
, CNIC_CTL_STOP_CMD
);
14192 bnx2x_tx_disable(bp
);
14193 /* Delete all NAPI objects */
14194 bnx2x_del_all_napi(bp
);
14195 if (CNIC_LOADED(bp
))
14196 bnx2x_del_all_napi_cnic(bp
);
14197 netdev_reset_tc(bp
->dev
);
14199 del_timer_sync(&bp
->timer
);
14200 cancel_delayed_work_sync(&bp
->sp_task
);
14201 cancel_delayed_work_sync(&bp
->period_task
);
14203 if (!down_timeout(&bp
->stats_lock
, HZ
/ 10)) {
14204 bp
->stats_state
= STATS_STATE_DISABLED
;
14205 up(&bp
->stats_lock
);
14208 bnx2x_save_statistics(bp
);
14210 netif_carrier_off(bp
->dev
);
14216 * bnx2x_io_error_detected - called when PCI error is detected
14217 * @pdev: Pointer to PCI device
14218 * @state: The current pci connection state
14220 * This function is called after a PCI bus error affecting
14221 * this device has been detected.
14223 static pci_ers_result_t
bnx2x_io_error_detected(struct pci_dev
*pdev
,
14224 pci_channel_state_t state
)
14226 struct net_device
*dev
= pci_get_drvdata(pdev
);
14227 struct bnx2x
*bp
= netdev_priv(dev
);
14231 BNX2X_ERR("IO error detected\n");
14233 netif_device_detach(dev
);
14235 if (state
== pci_channel_io_perm_failure
) {
14237 return PCI_ERS_RESULT_DISCONNECT
;
14240 if (netif_running(dev
))
14241 bnx2x_eeh_nic_unload(bp
);
14243 bnx2x_prev_path_mark_eeh(bp
);
14245 pci_disable_device(pdev
);
14249 /* Request a slot reset */
14250 return PCI_ERS_RESULT_NEED_RESET
;
14254 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14255 * @pdev: Pointer to PCI device
14257 * Restart the card from scratch, as if from a cold-boot.
14259 static pci_ers_result_t
bnx2x_io_slot_reset(struct pci_dev
*pdev
)
14261 struct net_device
*dev
= pci_get_drvdata(pdev
);
14262 struct bnx2x
*bp
= netdev_priv(dev
);
14266 BNX2X_ERR("IO slot reset initializing...\n");
14267 if (pci_enable_device(pdev
)) {
14268 dev_err(&pdev
->dev
,
14269 "Cannot re-enable PCI device after reset\n");
14271 return PCI_ERS_RESULT_DISCONNECT
;
14274 pci_set_master(pdev
);
14275 pci_restore_state(pdev
);
14276 pci_save_state(pdev
);
14278 if (netif_running(dev
))
14279 bnx2x_set_power_state(bp
, PCI_D0
);
14281 if (netif_running(dev
)) {
14282 BNX2X_ERR("IO slot reset --> driver unload\n");
14284 /* MCP should have been reset; Need to wait for validity */
14285 if (bnx2x_init_shmem(bp
)) {
14287 return PCI_ERS_RESULT_DISCONNECT
;
14290 if (IS_PF(bp
) && SHMEM2_HAS(bp
, drv_capabilities_flag
)) {
14294 drv_capabilities_flag
[BP_FW_MB_IDX(bp
)]);
14295 SHMEM2_WR(bp
, drv_capabilities_flag
[BP_FW_MB_IDX(bp
)],
14296 v
& ~DRV_FLAGS_CAPABILITIES_LOADED_L2
);
14298 bnx2x_drain_tx_queues(bp
);
14299 bnx2x_send_unload_req(bp
, UNLOAD_RECOVERY
);
14300 bnx2x_netif_stop(bp
, 1);
14301 bnx2x_free_irq(bp
);
14303 /* Report UNLOAD_DONE to MCP */
14304 bnx2x_send_unload_done(bp
, true);
14309 bnx2x_prev_unload(bp
);
14311 /* We should have reseted the engine, so It's fair to
14312 * assume the FW will no longer write to the bnx2x driver.
14314 bnx2x_squeeze_objects(bp
);
14315 bnx2x_free_skbs(bp
);
14316 for_each_rx_queue(bp
, i
)
14317 bnx2x_free_rx_sge_range(bp
, bp
->fp
+ i
, NUM_RX_SGE
);
14318 bnx2x_free_fp_mem(bp
);
14319 bnx2x_free_mem(bp
);
14321 bp
->state
= BNX2X_STATE_CLOSED
;
14326 return PCI_ERS_RESULT_RECOVERED
;
14330 * bnx2x_io_resume - called when traffic can start flowing again
14331 * @pdev: Pointer to PCI device
14333 * This callback is called when the error recovery driver tells us that
14334 * its OK to resume normal operation.
14336 static void bnx2x_io_resume(struct pci_dev
*pdev
)
14338 struct net_device
*dev
= pci_get_drvdata(pdev
);
14339 struct bnx2x
*bp
= netdev_priv(dev
);
14341 if (bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) {
14342 netdev_err(bp
->dev
, "Handling parity error recovery. Try again later\n");
14348 bp
->fw_seq
= SHMEM_RD(bp
, func_mb
[BP_FW_MB_IDX(bp
)].drv_mb_header
) &
14349 DRV_MSG_SEQ_NUMBER_MASK
;
14351 if (netif_running(dev
))
14352 bnx2x_nic_load(bp
, LOAD_NORMAL
);
14354 netif_device_attach(dev
);
14359 static const struct pci_error_handlers bnx2x_err_handler
= {
14360 .error_detected
= bnx2x_io_error_detected
,
14361 .slot_reset
= bnx2x_io_slot_reset
,
14362 .resume
= bnx2x_io_resume
,
14365 static void bnx2x_shutdown(struct pci_dev
*pdev
)
14367 struct net_device
*dev
= pci_get_drvdata(pdev
);
14373 bp
= netdev_priv(dev
);
14378 netif_device_detach(dev
);
14381 /* Don't remove the netdevice, as there are scenarios which will cause
14382 * the kernel to hang, e.g., when trying to remove bnx2i while the
14383 * rootfs is mounted from SAN.
14385 __bnx2x_remove(pdev
, dev
, bp
, false);
14388 static struct pci_driver bnx2x_pci_driver
= {
14389 .name
= DRV_MODULE_NAME
,
14390 .id_table
= bnx2x_pci_tbl
,
14391 .probe
= bnx2x_init_one
,
14392 .remove
= bnx2x_remove_one
,
14393 .driver
.pm
= &bnx2x_pm_ops
,
14394 .err_handler
= &bnx2x_err_handler
,
14395 #ifdef CONFIG_BNX2X_SRIOV
14396 .sriov_configure
= bnx2x_sriov_configure
,
14398 .shutdown
= bnx2x_shutdown
,
14401 static int __init
bnx2x_init(void)
14405 bnx2x_wq
= create_singlethread_workqueue("bnx2x");
14406 if (bnx2x_wq
== NULL
) {
14407 pr_err("Cannot create workqueue\n");
14410 bnx2x_iov_wq
= create_singlethread_workqueue("bnx2x_iov");
14411 if (!bnx2x_iov_wq
) {
14412 pr_err("Cannot create iov workqueue\n");
14413 destroy_workqueue(bnx2x_wq
);
14417 ret
= pci_register_driver(&bnx2x_pci_driver
);
14419 pr_err("Cannot register driver\n");
14420 destroy_workqueue(bnx2x_wq
);
14421 destroy_workqueue(bnx2x_iov_wq
);
14426 static void __exit
bnx2x_cleanup(void)
14428 struct list_head
*pos
, *q
;
14430 pci_unregister_driver(&bnx2x_pci_driver
);
14432 destroy_workqueue(bnx2x_wq
);
14433 destroy_workqueue(bnx2x_iov_wq
);
14435 /* Free globally allocated resources */
14436 list_for_each_safe(pos
, q
, &bnx2x_prev_list
) {
14437 struct bnx2x_prev_path_list
*tmp
=
14438 list_entry(pos
, struct bnx2x_prev_path_list
, list
);
14444 void bnx2x_notify_link_changed(struct bnx2x
*bp
)
14446 REG_WR(bp
, MISC_REG_AEU_GENERAL_ATTN_12
+ BP_FUNC(bp
)*sizeof(u32
), 1);
14449 module_init(bnx2x_init
);
14450 module_exit(bnx2x_cleanup
);
14453 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14454 * @bp: driver handle
14456 * This function will wait until the ramrod completion returns.
14457 * Return 0 if success, -ENODEV if ramrod doesn't return.
14459 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x
*bp
)
14461 unsigned long ramrod_flags
= 0;
14463 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
14464 return bnx2x_set_mac_one(bp
, bp
->cnic_eth_dev
.iscsi_mac
,
14465 &bp
->iscsi_l2_mac_obj
, true,
14466 BNX2X_ISCSI_ETH_MAC
, &ramrod_flags
);
14469 /* count denotes the number of new completions we have seen */
14470 static void bnx2x_cnic_sp_post(struct bnx2x
*bp
, int count
)
14472 struct eth_spe
*spe
;
14473 int cxt_index
, cxt_offset
;
14475 #ifdef BNX2X_STOP_ON_ERROR
14476 if (unlikely(bp
->panic
))
14480 spin_lock_bh(&bp
->spq_lock
);
14481 BUG_ON(bp
->cnic_spq_pending
< count
);
14482 bp
->cnic_spq_pending
-= count
;
14484 for (; bp
->cnic_kwq_pending
; bp
->cnic_kwq_pending
--) {
14485 u16 type
= (le16_to_cpu(bp
->cnic_kwq_cons
->hdr
.type
)
14486 & SPE_HDR_CONN_TYPE
) >>
14487 SPE_HDR_CONN_TYPE_SHIFT
;
14488 u8 cmd
= (le32_to_cpu(bp
->cnic_kwq_cons
->hdr
.conn_and_cmd_data
)
14489 >> SPE_HDR_CMD_ID_SHIFT
) & 0xff;
14491 /* Set validation for iSCSI L2 client before sending SETUP
14494 if (type
== ETH_CONNECTION_TYPE
) {
14495 if (cmd
== RAMROD_CMD_ID_ETH_CLIENT_SETUP
) {
14496 cxt_index
= BNX2X_ISCSI_ETH_CID(bp
) /
14498 cxt_offset
= BNX2X_ISCSI_ETH_CID(bp
) -
14499 (cxt_index
* ILT_PAGE_CIDS
);
14500 bnx2x_set_ctx_validation(bp
,
14501 &bp
->context
[cxt_index
].
14502 vcxt
[cxt_offset
].eth
,
14503 BNX2X_ISCSI_ETH_CID(bp
));
14508 * There may be not more than 8 L2, not more than 8 L5 SPEs
14509 * and in the air. We also check that number of outstanding
14510 * COMMON ramrods is not more than the EQ and SPQ can
14513 if (type
== ETH_CONNECTION_TYPE
) {
14514 if (!atomic_read(&bp
->cq_spq_left
))
14517 atomic_dec(&bp
->cq_spq_left
);
14518 } else if (type
== NONE_CONNECTION_TYPE
) {
14519 if (!atomic_read(&bp
->eq_spq_left
))
14522 atomic_dec(&bp
->eq_spq_left
);
14523 } else if ((type
== ISCSI_CONNECTION_TYPE
) ||
14524 (type
== FCOE_CONNECTION_TYPE
)) {
14525 if (bp
->cnic_spq_pending
>=
14526 bp
->cnic_eth_dev
.max_kwqe_pending
)
14529 bp
->cnic_spq_pending
++;
14531 BNX2X_ERR("Unknown SPE type: %d\n", type
);
14536 spe
= bnx2x_sp_get_next(bp
);
14537 *spe
= *bp
->cnic_kwq_cons
;
14539 DP(BNX2X_MSG_SP
, "pending on SPQ %d, on KWQ %d count %d\n",
14540 bp
->cnic_spq_pending
, bp
->cnic_kwq_pending
, count
);
14542 if (bp
->cnic_kwq_cons
== bp
->cnic_kwq_last
)
14543 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
14545 bp
->cnic_kwq_cons
++;
14547 bnx2x_sp_prod_update(bp
);
14548 spin_unlock_bh(&bp
->spq_lock
);
14551 static int bnx2x_cnic_sp_queue(struct net_device
*dev
,
14552 struct kwqe_16
*kwqes
[], u32 count
)
14554 struct bnx2x
*bp
= netdev_priv(dev
);
14557 #ifdef BNX2X_STOP_ON_ERROR
14558 if (unlikely(bp
->panic
)) {
14559 BNX2X_ERR("Can't post to SP queue while panic\n");
14564 if ((bp
->recovery_state
!= BNX2X_RECOVERY_DONE
) &&
14565 (bp
->recovery_state
!= BNX2X_RECOVERY_NIC_LOADING
)) {
14566 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14570 spin_lock_bh(&bp
->spq_lock
);
14572 for (i
= 0; i
< count
; i
++) {
14573 struct eth_spe
*spe
= (struct eth_spe
*)kwqes
[i
];
14575 if (bp
->cnic_kwq_pending
== MAX_SP_DESC_CNT
)
14578 *bp
->cnic_kwq_prod
= *spe
;
14580 bp
->cnic_kwq_pending
++;
14582 DP(BNX2X_MSG_SP
, "L5 SPQE %x %x %x:%x pos %d\n",
14583 spe
->hdr
.conn_and_cmd_data
, spe
->hdr
.type
,
14584 spe
->data
.update_data_addr
.hi
,
14585 spe
->data
.update_data_addr
.lo
,
14586 bp
->cnic_kwq_pending
);
14588 if (bp
->cnic_kwq_prod
== bp
->cnic_kwq_last
)
14589 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
14591 bp
->cnic_kwq_prod
++;
14594 spin_unlock_bh(&bp
->spq_lock
);
14596 if (bp
->cnic_spq_pending
< bp
->cnic_eth_dev
.max_kwqe_pending
)
14597 bnx2x_cnic_sp_post(bp
, 0);
14602 static int bnx2x_cnic_ctl_send(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
14604 struct cnic_ops
*c_ops
;
14607 mutex_lock(&bp
->cnic_mutex
);
14608 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
14609 lockdep_is_held(&bp
->cnic_mutex
));
14611 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
14612 mutex_unlock(&bp
->cnic_mutex
);
14617 static int bnx2x_cnic_ctl_send_bh(struct bnx2x
*bp
, struct cnic_ctl_info
*ctl
)
14619 struct cnic_ops
*c_ops
;
14623 c_ops
= rcu_dereference(bp
->cnic_ops
);
14625 rc
= c_ops
->cnic_ctl(bp
->cnic_data
, ctl
);
14632 * for commands that have no data
14634 int bnx2x_cnic_notify(struct bnx2x
*bp
, int cmd
)
14636 struct cnic_ctl_info ctl
= {0};
14640 return bnx2x_cnic_ctl_send(bp
, &ctl
);
14643 static void bnx2x_cnic_cfc_comp(struct bnx2x
*bp
, int cid
, u8 err
)
14645 struct cnic_ctl_info ctl
= {0};
14647 /* first we tell CNIC and only then we count this as a completion */
14648 ctl
.cmd
= CNIC_CTL_COMPLETION_CMD
;
14649 ctl
.data
.comp
.cid
= cid
;
14650 ctl
.data
.comp
.error
= err
;
14652 bnx2x_cnic_ctl_send_bh(bp
, &ctl
);
14653 bnx2x_cnic_sp_post(bp
, 0);
14656 /* Called with netif_addr_lock_bh() taken.
14657 * Sets an rx_mode config for an iSCSI ETH client.
14659 * Completion should be checked outside.
14661 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x
*bp
, bool start
)
14663 unsigned long accept_flags
= 0, ramrod_flags
= 0;
14664 u8 cl_id
= bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
14665 int sched_state
= BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
;
14668 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14669 * because it's the only way for UIO Queue to accept
14670 * multicasts (in non-promiscuous mode only one Queue per
14671 * function will receive multicast packets (leading in our
14674 __set_bit(BNX2X_ACCEPT_UNICAST
, &accept_flags
);
14675 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &accept_flags
);
14676 __set_bit(BNX2X_ACCEPT_BROADCAST
, &accept_flags
);
14677 __set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
14679 /* Clear STOP_PENDING bit if START is requested */
14680 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &bp
->sp_state
);
14682 sched_state
= BNX2X_FILTER_ISCSI_ETH_START_SCHED
;
14684 /* Clear START_PENDING bit if STOP is requested */
14685 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &bp
->sp_state
);
14687 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING
, &bp
->sp_state
))
14688 set_bit(sched_state
, &bp
->sp_state
);
14690 __set_bit(RAMROD_RX
, &ramrod_flags
);
14691 bnx2x_set_q_rx_mode(bp
, cl_id
, 0, accept_flags
, 0,
14696 static int bnx2x_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*ctl
)
14698 struct bnx2x
*bp
= netdev_priv(dev
);
14701 switch (ctl
->cmd
) {
14702 case DRV_CTL_CTXTBL_WR_CMD
: {
14703 u32 index
= ctl
->data
.io
.offset
;
14704 dma_addr_t addr
= ctl
->data
.io
.dma_addr
;
14706 bnx2x_ilt_wr(bp
, index
, addr
);
14710 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD
: {
14711 int count
= ctl
->data
.credit
.credit_count
;
14713 bnx2x_cnic_sp_post(bp
, count
);
14717 /* rtnl_lock is held. */
14718 case DRV_CTL_START_L2_CMD
: {
14719 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
14720 unsigned long sp_bits
= 0;
14722 /* Configure the iSCSI classification object */
14723 bnx2x_init_mac_obj(bp
, &bp
->iscsi_l2_mac_obj
,
14724 cp
->iscsi_l2_client_id
,
14725 cp
->iscsi_l2_cid
, BP_FUNC(bp
),
14726 bnx2x_sp(bp
, mac_rdata
),
14727 bnx2x_sp_mapping(bp
, mac_rdata
),
14728 BNX2X_FILTER_MAC_PENDING
,
14729 &bp
->sp_state
, BNX2X_OBJ_TYPE_RX
,
14732 /* Set iSCSI MAC address */
14733 rc
= bnx2x_set_iscsi_eth_mac_addr(bp
);
14739 /* Start accepting on iSCSI L2 ring */
14741 netif_addr_lock_bh(dev
);
14742 bnx2x_set_iscsi_eth_rx_mode(bp
, true);
14743 netif_addr_unlock_bh(dev
);
14745 /* bits to wait on */
14746 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
14747 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED
, &sp_bits
);
14749 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
14750 BNX2X_ERR("rx_mode completion timed out!\n");
14755 /* rtnl_lock is held. */
14756 case DRV_CTL_STOP_L2_CMD
: {
14757 unsigned long sp_bits
= 0;
14759 /* Stop accepting on iSCSI L2 ring */
14760 netif_addr_lock_bh(dev
);
14761 bnx2x_set_iscsi_eth_rx_mode(bp
, false);
14762 netif_addr_unlock_bh(dev
);
14764 /* bits to wait on */
14765 __set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &sp_bits
);
14766 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED
, &sp_bits
);
14768 if (!bnx2x_wait_sp_comp(bp
, sp_bits
))
14769 BNX2X_ERR("rx_mode completion timed out!\n");
14773 /* Unset iSCSI L2 MAC */
14774 rc
= bnx2x_del_all_macs(bp
, &bp
->iscsi_l2_mac_obj
,
14775 BNX2X_ISCSI_ETH_MAC
, true);
14778 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD
: {
14779 int count
= ctl
->data
.credit
.credit_count
;
14781 smp_mb__before_atomic();
14782 atomic_add(count
, &bp
->cq_spq_left
);
14783 smp_mb__after_atomic();
14786 case DRV_CTL_ULP_REGISTER_CMD
: {
14787 int ulp_type
= ctl
->data
.register_data
.ulp_type
;
14789 if (CHIP_IS_E3(bp
)) {
14790 int idx
= BP_FW_MB_IDX(bp
);
14791 u32 cap
= SHMEM2_RD(bp
, drv_capabilities_flag
[idx
]);
14792 int path
= BP_PATH(bp
);
14793 int port
= BP_PORT(bp
);
14795 u32 scratch_offset
;
14798 /* first write capability to shmem2 */
14799 if (ulp_type
== CNIC_ULP_ISCSI
)
14800 cap
|= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI
;
14801 else if (ulp_type
== CNIC_ULP_FCOE
)
14802 cap
|= DRV_FLAGS_CAPABILITIES_LOADED_FCOE
;
14803 SHMEM2_WR(bp
, drv_capabilities_flag
[idx
], cap
);
14805 if ((ulp_type
!= CNIC_ULP_FCOE
) ||
14806 (!SHMEM2_HAS(bp
, ncsi_oem_data_addr
)) ||
14807 (!(bp
->flags
& BC_SUPPORTS_FCOE_FEATURES
)))
14810 /* if reached here - should write fcoe capabilities */
14811 scratch_offset
= SHMEM2_RD(bp
, ncsi_oem_data_addr
);
14812 if (!scratch_offset
)
14814 scratch_offset
+= offsetof(struct glob_ncsi_oem_data
,
14815 fcoe_features
[path
][port
]);
14816 host_addr
= (u32
*) &(ctl
->data
.register_data
.
14818 for (i
= 0; i
< sizeof(struct fcoe_capabilities
);
14820 REG_WR(bp
, scratch_offset
+ i
,
14821 *(host_addr
+ i
/4));
14823 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
14827 case DRV_CTL_ULP_UNREGISTER_CMD
: {
14828 int ulp_type
= ctl
->data
.ulp_type
;
14830 if (CHIP_IS_E3(bp
)) {
14831 int idx
= BP_FW_MB_IDX(bp
);
14834 cap
= SHMEM2_RD(bp
, drv_capabilities_flag
[idx
]);
14835 if (ulp_type
== CNIC_ULP_ISCSI
)
14836 cap
&= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI
;
14837 else if (ulp_type
== CNIC_ULP_FCOE
)
14838 cap
&= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE
;
14839 SHMEM2_WR(bp
, drv_capabilities_flag
[idx
], cap
);
14841 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
14846 BNX2X_ERR("unknown command %x\n", ctl
->cmd
);
14850 /* For storage-only interfaces, change driver state */
14851 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp
)) {
14852 switch (ctl
->drv_state
) {
14856 bnx2x_set_os_driver_state(bp
,
14857 OS_DRIVER_STATE_ACTIVE
);
14860 bnx2x_set_os_driver_state(bp
,
14861 OS_DRIVER_STATE_DISABLED
);
14864 bnx2x_set_os_driver_state(bp
,
14865 OS_DRIVER_STATE_NOT_LOADED
);
14868 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl
->drv_state
);
14875 static int bnx2x_get_fc_npiv(struct net_device
*dev
,
14876 struct cnic_fc_npiv_tbl
*cnic_tbl
)
14878 struct bnx2x
*bp
= netdev_priv(dev
);
14879 struct bdn_fc_npiv_tbl
*tbl
= NULL
;
14880 u32 offset
, entries
;
14884 if (!SHMEM2_HAS(bp
, fc_npiv_nvram_tbl_addr
[0]))
14887 DP(BNX2X_MSG_MCP
, "About to read the FC-NPIV table\n");
14889 tbl
= kmalloc(sizeof(*tbl
), GFP_KERNEL
);
14891 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14895 offset
= SHMEM2_RD(bp
, fc_npiv_nvram_tbl_addr
[BP_PORT(bp
)]);
14897 DP(BNX2X_MSG_MCP
, "No FC-NPIV in NVRAM\n");
14900 DP(BNX2X_MSG_MCP
, "Offset of FC-NPIV in NVRAM: %08x\n", offset
);
14902 /* Read the table contents from nvram */
14903 if (bnx2x_nvram_read(bp
, offset
, (u8
*)tbl
, sizeof(*tbl
))) {
14904 BNX2X_ERR("Failed to read FC-NPIV table\n");
14908 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14909 * the number of entries back to cpu endianness.
14911 entries
= tbl
->fc_npiv_cfg
.num_of_npiv
;
14912 entries
= (__force u32
)be32_to_cpu((__force __be32
)entries
);
14913 tbl
->fc_npiv_cfg
.num_of_npiv
= entries
;
14915 if (!tbl
->fc_npiv_cfg
.num_of_npiv
) {
14917 "No FC-NPIV table [valid, simply not present]\n");
14919 } else if (tbl
->fc_npiv_cfg
.num_of_npiv
> MAX_NUMBER_NPIV
) {
14920 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14921 tbl
->fc_npiv_cfg
.num_of_npiv
);
14924 DP(BNX2X_MSG_MCP
, "Read 0x%08x entries from NVRAM\n",
14925 tbl
->fc_npiv_cfg
.num_of_npiv
);
14928 /* Copy the data into cnic-provided struct */
14929 cnic_tbl
->count
= tbl
->fc_npiv_cfg
.num_of_npiv
;
14930 for (i
= 0; i
< cnic_tbl
->count
; i
++) {
14931 memcpy(cnic_tbl
->wwpn
[i
], tbl
->settings
[i
].npiv_wwpn
, 8);
14932 memcpy(cnic_tbl
->wwnn
[i
], tbl
->settings
[i
].npiv_wwnn
, 8);
14941 void bnx2x_setup_cnic_irq_info(struct bnx2x
*bp
)
14943 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
14945 if (bp
->flags
& USING_MSIX_FLAG
) {
14946 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
14947 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
14948 cp
->irq_arr
[0].vector
= bp
->msix_table
[1].vector
;
14950 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
14951 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
14953 if (!CHIP_IS_E1x(bp
))
14954 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e2_sb
;
14956 cp
->irq_arr
[0].status_blk
= (void *)bp
->cnic_sb
.e1x_sb
;
14958 cp
->irq_arr
[0].status_blk_num
= bnx2x_cnic_fw_sb_id(bp
);
14959 cp
->irq_arr
[0].status_blk_num2
= bnx2x_cnic_igu_sb_id(bp
);
14960 cp
->irq_arr
[1].status_blk
= bp
->def_status_blk
;
14961 cp
->irq_arr
[1].status_blk_num
= DEF_SB_ID
;
14962 cp
->irq_arr
[1].status_blk_num2
= DEF_SB_IGU_ID
;
14967 void bnx2x_setup_cnic_info(struct bnx2x
*bp
)
14969 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
14971 cp
->ctx_tbl_offset
= FUNC_ILT_BASE(BP_FUNC(bp
)) +
14972 bnx2x_cid_ilt_lines(bp
);
14973 cp
->starting_cid
= bnx2x_cid_ilt_lines(bp
) * ILT_PAGE_CIDS
;
14974 cp
->fcoe_init_cid
= BNX2X_FCOE_ETH_CID(bp
);
14975 cp
->iscsi_l2_cid
= BNX2X_ISCSI_ETH_CID(bp
);
14977 DP(NETIF_MSG_IFUP
, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14978 BNX2X_1st_NON_L2_ETH_CID(bp
), cp
->starting_cid
, cp
->fcoe_init_cid
,
14981 if (NO_ISCSI_OOO(bp
))
14982 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI_OOO
;
14985 static int bnx2x_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
14988 struct bnx2x
*bp
= netdev_priv(dev
);
14989 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
14992 DP(NETIF_MSG_IFUP
, "Register_cnic called\n");
14995 BNX2X_ERR("NULL ops received\n");
14999 if (!CNIC_SUPPORT(bp
)) {
15000 BNX2X_ERR("Can't register CNIC when not supported\n");
15001 return -EOPNOTSUPP
;
15004 if (!CNIC_LOADED(bp
)) {
15005 rc
= bnx2x_load_cnic(bp
);
15007 BNX2X_ERR("CNIC-related load failed\n");
15012 bp
->cnic_enabled
= true;
15014 bp
->cnic_kwq
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
15018 bp
->cnic_kwq_cons
= bp
->cnic_kwq
;
15019 bp
->cnic_kwq_prod
= bp
->cnic_kwq
;
15020 bp
->cnic_kwq_last
= bp
->cnic_kwq
+ MAX_SP_DESC_CNT
;
15022 bp
->cnic_spq_pending
= 0;
15023 bp
->cnic_kwq_pending
= 0;
15025 bp
->cnic_data
= data
;
15028 cp
->drv_state
|= CNIC_DRV_STATE_REGD
;
15029 cp
->iro_arr
= bp
->iro_arr
;
15031 bnx2x_setup_cnic_irq_info(bp
);
15033 rcu_assign_pointer(bp
->cnic_ops
, ops
);
15035 /* Schedule driver to read CNIC driver versions */
15036 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_GET_DRV_VERSION
, 0);
15041 static int bnx2x_unregister_cnic(struct net_device
*dev
)
15043 struct bnx2x
*bp
= netdev_priv(dev
);
15044 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
15046 mutex_lock(&bp
->cnic_mutex
);
15048 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
15049 mutex_unlock(&bp
->cnic_mutex
);
15051 bp
->cnic_enabled
= false;
15052 kfree(bp
->cnic_kwq
);
15053 bp
->cnic_kwq
= NULL
;
15058 static struct cnic_eth_dev
*bnx2x_cnic_probe(struct net_device
*dev
)
15060 struct bnx2x
*bp
= netdev_priv(dev
);
15061 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
15063 /* If both iSCSI and FCoE are disabled - return NULL in
15064 * order to indicate CNIC that it should not try to work
15065 * with this device.
15067 if (NO_ISCSI(bp
) && NO_FCOE(bp
))
15070 cp
->drv_owner
= THIS_MODULE
;
15071 cp
->chip_id
= CHIP_ID(bp
);
15072 cp
->pdev
= bp
->pdev
;
15073 cp
->io_base
= bp
->regview
;
15074 cp
->io_base2
= bp
->doorbells
;
15075 cp
->max_kwqe_pending
= 8;
15076 cp
->ctx_blk_size
= CDU_ILT_PAGE_SZ
;
15077 cp
->ctx_tbl_offset
= FUNC_ILT_BASE(BP_FUNC(bp
)) +
15078 bnx2x_cid_ilt_lines(bp
);
15079 cp
->ctx_tbl_len
= CNIC_ILT_LINES
;
15080 cp
->starting_cid
= bnx2x_cid_ilt_lines(bp
) * ILT_PAGE_CIDS
;
15081 cp
->drv_submit_kwqes_16
= bnx2x_cnic_sp_queue
;
15082 cp
->drv_ctl
= bnx2x_drv_ctl
;
15083 cp
->drv_get_fc_npiv_tbl
= bnx2x_get_fc_npiv
;
15084 cp
->drv_register_cnic
= bnx2x_register_cnic
;
15085 cp
->drv_unregister_cnic
= bnx2x_unregister_cnic
;
15086 cp
->fcoe_init_cid
= BNX2X_FCOE_ETH_CID(bp
);
15087 cp
->iscsi_l2_client_id
=
15088 bnx2x_cnic_eth_cl_id(bp
, BNX2X_ISCSI_ETH_CL_ID_IDX
);
15089 cp
->iscsi_l2_cid
= BNX2X_ISCSI_ETH_CID(bp
);
15091 if (NO_ISCSI_OOO(bp
))
15092 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI_OOO
;
15095 cp
->drv_state
|= CNIC_DRV_STATE_NO_ISCSI
;
15098 cp
->drv_state
|= CNIC_DRV_STATE_NO_FCOE
;
15101 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15103 cp
->ctx_tbl_offset
,
15109 static u32
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath
*fp
)
15111 struct bnx2x
*bp
= fp
->bp
;
15112 u32 offset
= BAR_USTRORM_INTMEM
;
15115 return bnx2x_vf_ustorm_prods_offset(bp
, fp
);
15116 else if (!CHIP_IS_E1x(bp
))
15117 offset
+= USTORM_RX_PRODS_E2_OFFSET(fp
->cl_qzone_id
);
15119 offset
+= USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp
), fp
->cl_id
);
15124 /* called only on E1H or E2.
15125 * When pretending to be PF, the pretend value is the function number 0...7
15126 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15129 int bnx2x_pretend_func(struct bnx2x
*bp
, u16 pretend_func_val
)
15133 if (CHIP_IS_E1H(bp
) && pretend_func_val
>= E1H_FUNC_MAX
)
15136 /* get my own pretend register */
15137 pretend_reg
= bnx2x_get_pretend_reg(bp
);
15138 REG_WR(bp
, pretend_reg
, pretend_func_val
);
15139 REG_RD(bp
, pretend_reg
);
15143 static void bnx2x_ptp_task(struct work_struct
*work
)
15145 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, ptp_task
);
15146 int port
= BP_PORT(bp
);
15149 struct skb_shared_hwtstamps shhwtstamps
;
15153 /* FW may take a while to complete timestamping; try a bit and if it's
15154 * still not complete, may indicate an error state - bail out then.
15156 for (i
= 0; i
< 10; i
++) {
15157 /* Read Tx timestamp registers */
15158 val_seq
= REG_RD(bp
, port
? NIG_REG_P1_TLLH_PTP_BUF_SEQID
:
15159 NIG_REG_P0_TLLH_PTP_BUF_SEQID
);
15160 if (val_seq
& 0x10000) {
15168 /* There is a valid timestamp value */
15169 timestamp
= REG_RD(bp
, port
? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB
:
15170 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB
);
15172 timestamp
|= REG_RD(bp
, port
? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB
:
15173 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB
);
15174 /* Reset timestamp register to allow new timestamp */
15175 REG_WR(bp
, port
? NIG_REG_P1_TLLH_PTP_BUF_SEQID
:
15176 NIG_REG_P0_TLLH_PTP_BUF_SEQID
, 0x10000);
15177 ns
= timecounter_cyc2time(&bp
->timecounter
, timestamp
);
15179 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
15180 shhwtstamps
.hwtstamp
= ns_to_ktime(ns
);
15181 skb_tstamp_tx(bp
->ptp_tx_skb
, &shhwtstamps
);
15183 DP(BNX2X_MSG_PTP
, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15187 "Tx timestamp is not recorded (register read=%u)\n",
15189 bp
->eth_stats
.ptp_skip_tx_ts
++;
15192 dev_kfree_skb_any(bp
->ptp_tx_skb
);
15193 bp
->ptp_tx_skb
= NULL
;
15196 void bnx2x_set_rx_ts(struct bnx2x
*bp
, struct sk_buff
*skb
)
15198 int port
= BP_PORT(bp
);
15201 timestamp
= REG_RD(bp
, port
? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB
:
15202 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB
);
15204 timestamp
|= REG_RD(bp
, port
? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB
:
15205 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB
);
15207 /* Reset timestamp register to allow new timestamp */
15208 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID
:
15209 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID
, 0x10000);
15211 ns
= timecounter_cyc2time(&bp
->timecounter
, timestamp
);
15213 skb_hwtstamps(skb
)->hwtstamp
= ns_to_ktime(ns
);
15215 DP(BNX2X_MSG_PTP
, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15220 static u64
bnx2x_cyclecounter_read(const struct cyclecounter
*cc
)
15222 struct bnx2x
*bp
= container_of(cc
, struct bnx2x
, cyclecounter
);
15223 int port
= BP_PORT(bp
);
15227 REG_RD_DMAE(bp
, port
? NIG_REG_TIMESYNC_GEN_REG
+ tsgen_synctime_t1
:
15228 NIG_REG_TIMESYNC_GEN_REG
+ tsgen_synctime_t0
, wb_data
, 2);
15229 phc_cycles
= wb_data
[1];
15230 phc_cycles
= (phc_cycles
<< 32) + wb_data
[0];
15232 DP(BNX2X_MSG_PTP
, "PHC read cycles = %llu\n", phc_cycles
);
15237 static void bnx2x_init_cyclecounter(struct bnx2x
*bp
)
15239 memset(&bp
->cyclecounter
, 0, sizeof(bp
->cyclecounter
));
15240 bp
->cyclecounter
.read
= bnx2x_cyclecounter_read
;
15241 bp
->cyclecounter
.mask
= CYCLECOUNTER_MASK(64);
15242 bp
->cyclecounter
.shift
= 0;
15243 bp
->cyclecounter
.mult
= 1;
15246 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x
*bp
)
15248 struct bnx2x_func_state_params func_params
= {NULL
};
15249 struct bnx2x_func_set_timesync_params
*set_timesync_params
=
15250 &func_params
.params
.set_timesync
;
15252 /* Prepare parameters for function state transitions */
15253 __set_bit(RAMROD_COMP_WAIT
, &func_params
.ramrod_flags
);
15254 __set_bit(RAMROD_RETRY
, &func_params
.ramrod_flags
);
15256 func_params
.f_obj
= &bp
->func_obj
;
15257 func_params
.cmd
= BNX2X_F_CMD_SET_TIMESYNC
;
15259 /* Function parameters */
15260 set_timesync_params
->drift_adjust_cmd
= TS_DRIFT_ADJUST_RESET
;
15261 set_timesync_params
->offset_cmd
= TS_OFFSET_KEEP
;
15263 return bnx2x_func_state_change(bp
, &func_params
);
15266 static int bnx2x_enable_ptp_packets(struct bnx2x
*bp
)
15268 struct bnx2x_queue_state_params q_params
;
15271 /* send queue update ramrod to enable PTP packets */
15272 memset(&q_params
, 0, sizeof(q_params
));
15273 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
15274 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
15275 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG
,
15276 &q_params
.params
.update
.update_flags
);
15277 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS
,
15278 &q_params
.params
.update
.update_flags
);
15280 /* send the ramrod on all the queues of the PF */
15281 for_each_eth_queue(bp
, i
) {
15282 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
15284 /* Set the appropriate Queue object */
15285 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
15287 /* Update the Queue state */
15288 rc
= bnx2x_queue_state_change(bp
, &q_params
);
15290 BNX2X_ERR("Failed to enable PTP packets\n");
15298 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15299 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15300 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15301 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15302 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15303 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15304 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15305 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15306 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15307 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15308 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15309 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15311 int bnx2x_configure_ptp_filters(struct bnx2x
*bp
)
15313 int port
= BP_PORT(bp
);
15317 if (!bp
->hwtstamp_ioctl_called
)
15320 param
= port
? NIG_REG_P1_TLLH_PTP_PARAM_MASK
:
15321 NIG_REG_P0_TLLH_PTP_PARAM_MASK
;
15322 rule
= port
? NIG_REG_P1_TLLH_PTP_RULE_MASK
:
15323 NIG_REG_P0_TLLH_PTP_RULE_MASK
;
15324 switch (bp
->tx_type
) {
15325 case HWTSTAMP_TX_ON
:
15326 bp
->flags
|= TX_TIMESTAMPING_EN
;
15327 REG_WR(bp
, param
, BNX2X_PTP_TX_ON_PARAM_MASK
);
15328 REG_WR(bp
, rule
, BNX2X_PTP_TX_ON_RULE_MASK
);
15330 case HWTSTAMP_TX_ONESTEP_SYNC
:
15331 case HWTSTAMP_TX_ONESTEP_P2P
:
15332 BNX2X_ERR("One-step timestamping is not supported\n");
15336 param
= port
? NIG_REG_P1_LLH_PTP_PARAM_MASK
:
15337 NIG_REG_P0_LLH_PTP_PARAM_MASK
;
15338 rule
= port
? NIG_REG_P1_LLH_PTP_RULE_MASK
:
15339 NIG_REG_P0_LLH_PTP_RULE_MASK
;
15340 switch (bp
->rx_filter
) {
15341 case HWTSTAMP_FILTER_NONE
:
15343 case HWTSTAMP_FILTER_ALL
:
15344 case HWTSTAMP_FILTER_SOME
:
15345 case HWTSTAMP_FILTER_NTP_ALL
:
15346 bp
->rx_filter
= HWTSTAMP_FILTER_NONE
;
15348 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
15349 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
15350 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
15351 bp
->rx_filter
= HWTSTAMP_FILTER_PTP_V1_L4_EVENT
;
15352 /* Initialize PTP detection for UDP/IPv4 events */
15353 REG_WR(bp
, param
, BNX2X_PTP_V1_L4_PARAM_MASK
);
15354 REG_WR(bp
, rule
, BNX2X_PTP_V1_L4_RULE_MASK
);
15356 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
15357 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
15358 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
15359 bp
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_L4_EVENT
;
15360 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15361 REG_WR(bp
, param
, BNX2X_PTP_V2_L4_PARAM_MASK
);
15362 REG_WR(bp
, rule
, BNX2X_PTP_V2_L4_RULE_MASK
);
15364 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
15365 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
15366 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
15367 bp
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_L2_EVENT
;
15368 /* Initialize PTP detection L2 events */
15369 REG_WR(bp
, param
, BNX2X_PTP_V2_L2_PARAM_MASK
);
15370 REG_WR(bp
, rule
, BNX2X_PTP_V2_L2_RULE_MASK
);
15373 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
15374 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
15375 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
15376 bp
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
15377 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15378 REG_WR(bp
, param
, BNX2X_PTP_V2_PARAM_MASK
);
15379 REG_WR(bp
, rule
, BNX2X_PTP_V2_RULE_MASK
);
15383 /* Indicate to FW that this PF expects recorded PTP packets */
15384 rc
= bnx2x_enable_ptp_packets(bp
);
15388 /* Enable sending PTP packets to host */
15389 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_TO_HOST
:
15390 NIG_REG_P0_LLH_PTP_TO_HOST
, 0x1);
15395 static int bnx2x_hwtstamp_ioctl(struct bnx2x
*bp
, struct ifreq
*ifr
)
15397 struct hwtstamp_config config
;
15400 DP(BNX2X_MSG_PTP
, "HWTSTAMP IOCTL called\n");
15402 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
15405 DP(BNX2X_MSG_PTP
, "Requested tx_type: %d, requested rx_filters = %d\n",
15406 config
.tx_type
, config
.rx_filter
);
15408 if (config
.flags
) {
15409 BNX2X_ERR("config.flags is reserved for future use\n");
15413 bp
->hwtstamp_ioctl_called
= true;
15414 bp
->tx_type
= config
.tx_type
;
15415 bp
->rx_filter
= config
.rx_filter
;
15417 rc
= bnx2x_configure_ptp_filters(bp
);
15421 config
.rx_filter
= bp
->rx_filter
;
15423 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
15427 /* Configures HW for PTP */
15428 static int bnx2x_configure_ptp(struct bnx2x
*bp
)
15430 int rc
, port
= BP_PORT(bp
);
15433 /* Reset PTP event detection rules - will be configured in the IOCTL */
15434 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_PARAM_MASK
:
15435 NIG_REG_P0_LLH_PTP_PARAM_MASK
, 0x7FF);
15436 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_RULE_MASK
:
15437 NIG_REG_P0_LLH_PTP_RULE_MASK
, 0x3FFF);
15438 REG_WR(bp
, port
? NIG_REG_P1_TLLH_PTP_PARAM_MASK
:
15439 NIG_REG_P0_TLLH_PTP_PARAM_MASK
, 0x7FF);
15440 REG_WR(bp
, port
? NIG_REG_P1_TLLH_PTP_RULE_MASK
:
15441 NIG_REG_P0_TLLH_PTP_RULE_MASK
, 0x3FFF);
15443 /* Disable PTP packets to host - will be configured in the IOCTL*/
15444 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_TO_HOST
:
15445 NIG_REG_P0_LLH_PTP_TO_HOST
, 0x0);
15447 /* Enable the PTP feature */
15448 REG_WR(bp
, port
? NIG_REG_P1_PTP_EN
:
15449 NIG_REG_P0_PTP_EN
, 0x3F);
15451 /* Enable the free-running counter */
15454 REG_WR_DMAE(bp
, NIG_REG_TIMESYNC_GEN_REG
+ tsgen_ctrl
, wb_data
, 2);
15456 /* Reset drift register (offset register is not reset) */
15457 rc
= bnx2x_send_reset_timesync_ramrod(bp
);
15459 BNX2X_ERR("Failed to reset PHC drift register\n");
15463 /* Reset possibly old timestamps */
15464 REG_WR(bp
, port
? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID
:
15465 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID
, 0x10000);
15466 REG_WR(bp
, port
? NIG_REG_P1_TLLH_PTP_BUF_SEQID
:
15467 NIG_REG_P0_TLLH_PTP_BUF_SEQID
, 0x10000);
15472 /* Called during load, to initialize PTP-related stuff */
15473 void bnx2x_init_ptp(struct bnx2x
*bp
)
15477 /* Configure PTP in HW */
15478 rc
= bnx2x_configure_ptp(bp
);
15480 BNX2X_ERR("Stopping PTP initialization\n");
15484 /* Init work queue for Tx timestamping */
15485 INIT_WORK(&bp
->ptp_task
, bnx2x_ptp_task
);
15487 /* Init cyclecounter and timecounter. This is done only in the first
15488 * load. If done in every load, PTP application will fail when doing
15489 * unload / load (e.g. MTU change) while it is running.
15491 if (!bp
->timecounter_init_done
) {
15492 bnx2x_init_cyclecounter(bp
);
15493 timecounter_init(&bp
->timecounter
, &bp
->cyclecounter
,
15494 ktime_to_ns(ktime_get_real()));
15495 bp
->timecounter_init_done
= true;
15498 DP(BNX2X_MSG_PTP
, "PTP initialization ended successfully\n");