WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
blob28069b29086257e922ef0ebf78cb9f5084ec3759
1 /* bnx2x_main.c: QLogic Everest network driver.
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT (5*HZ)
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("QLogic "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_FIRMWARE(FW_FILE_NAME_E1);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
92 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94 int bnx2x_num_queues;
95 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
96 MODULE_PARM_DESC(num_queues,
97 " Set number of queues (default is as a number of CPUs)");
99 static int disable_tpa;
100 module_param(disable_tpa, int, 0444);
101 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
103 static int int_mode;
104 module_param(int_mode, int, 0444);
105 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
106 "(1 INT#x; 2 MSI)");
108 static int dropless_fc;
109 module_param(dropless_fc, int, 0444);
110 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
112 static int mrrs = -1;
113 module_param(mrrs, int, 0444);
114 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
116 static int debug;
117 module_param(debug, int, 0444);
118 MODULE_PARM_DESC(debug, " Default debug msglevel");
120 static struct workqueue_struct *bnx2x_wq;
121 struct workqueue_struct *bnx2x_iov_wq;
123 struct bnx2x_mac_vals {
124 u32 xmac_addr;
125 u32 xmac_val;
126 u32 emac_addr;
127 u32 emac_val;
128 u32 umac_addr[2];
129 u32 umac_val[2];
130 u32 bmac_addr;
131 u32 bmac_val[2];
134 enum bnx2x_board_type {
135 BCM57710 = 0,
136 BCM57711,
137 BCM57711E,
138 BCM57712,
139 BCM57712_MF,
140 BCM57712_VF,
141 BCM57800,
142 BCM57800_MF,
143 BCM57800_VF,
144 BCM57810,
145 BCM57810_MF,
146 BCM57810_VF,
147 BCM57840_4_10,
148 BCM57840_2_20,
149 BCM57840_MF,
150 BCM57840_VF,
151 BCM57811,
152 BCM57811_MF,
153 BCM57840_O,
154 BCM57840_MFO,
155 BCM57811_VF
158 /* indexed by board_type, above */
159 static struct {
160 char *name;
161 } board_info[] = {
162 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
163 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
164 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
165 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
166 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
167 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
168 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
169 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
170 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
171 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
172 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
173 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
174 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
175 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
176 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
177 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
178 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
179 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
180 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
181 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
185 #ifndef PCI_DEVICE_ID_NX2_57710
186 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
187 #endif
188 #ifndef PCI_DEVICE_ID_NX2_57711
189 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711E
192 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57712
195 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712_MF
198 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_VF
201 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57800
204 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800_MF
207 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_VF
210 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57810
213 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810_MF
216 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57840_O
219 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_VF
222 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
225 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
228 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
231 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MF
234 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_VF
237 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57811
240 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811_MF
243 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_VF
246 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
247 #endif
249 static const struct pci_device_id bnx2x_pci_tbl[] = {
250 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
251 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
252 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
253 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
254 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
263 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
270 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274 { 0 }
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
279 const u32 dmae_reg_go_c[] = {
280 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
281 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
282 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
283 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
286 /* Global resources for unloading a previously loaded device */
287 #define BNX2X_PREV_WAIT_NEEDED 1
288 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
289 static LIST_HEAD(bnx2x_prev_list);
291 /* Forward declaration */
292 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
293 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
294 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
296 /****************************************************************************
297 * General service functions
298 ****************************************************************************/
300 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
302 static void __storm_memset_dma_mapping(struct bnx2x *bp,
303 u32 addr, dma_addr_t mapping)
305 REG_WR(bp, addr, U64_LO(mapping));
306 REG_WR(bp, addr + 4, U64_HI(mapping));
309 static void storm_memset_spq_addr(struct bnx2x *bp,
310 dma_addr_t mapping, u16 abs_fid)
312 u32 addr = XSEM_REG_FAST_MEMORY +
313 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
315 __storm_memset_dma_mapping(bp, addr, mapping);
318 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
319 u16 pf_id)
321 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
322 pf_id);
323 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
324 pf_id);
325 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
326 pf_id);
327 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
328 pf_id);
331 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
332 u8 enable)
334 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
335 enable);
336 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
337 enable);
338 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
339 enable);
340 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
341 enable);
344 static void storm_memset_eq_data(struct bnx2x *bp,
345 struct event_ring_data *eq_data,
346 u16 pfid)
348 size_t size = sizeof(struct event_ring_data);
350 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
352 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
355 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
356 u16 pfid)
358 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
359 REG_WR16(bp, addr, eq_prod);
362 /* used only at init
363 * locking is done by mcp
365 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
368 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
369 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
370 PCICFG_VENDOR_ID_OFFSET);
373 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
375 u32 val;
377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
378 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
379 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
380 PCICFG_VENDOR_ID_OFFSET);
382 return val;
385 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
386 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
387 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
388 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
389 #define DMAE_DP_DST_NONE "dst_addr [none]"
391 static void bnx2x_dp_dmae(struct bnx2x *bp,
392 struct dmae_command *dmae, int msglvl)
394 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
395 int i;
397 switch (dmae->opcode & DMAE_COMMAND_DST) {
398 case DMAE_CMD_DST_PCI:
399 if (src_type == DMAE_CMD_SRC_PCI)
400 DP(msglvl, "DMAE: opcode 0x%08x\n"
401 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
402 "comp_addr [%x:%08x], comp_val 0x%08x\n",
403 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
404 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
405 dmae->comp_addr_hi, dmae->comp_addr_lo,
406 dmae->comp_val);
407 else
408 DP(msglvl, "DMAE: opcode 0x%08x\n"
409 "src [%08x], len [%d*4], dst [%x:%08x]\n"
410 "comp_addr [%x:%08x], comp_val 0x%08x\n",
411 dmae->opcode, dmae->src_addr_lo >> 2,
412 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
413 dmae->comp_addr_hi, dmae->comp_addr_lo,
414 dmae->comp_val);
415 break;
416 case DMAE_CMD_DST_GRC:
417 if (src_type == DMAE_CMD_SRC_PCI)
418 DP(msglvl, "DMAE: opcode 0x%08x\n"
419 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
420 "comp_addr [%x:%08x], comp_val 0x%08x\n",
421 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
422 dmae->len, dmae->dst_addr_lo >> 2,
423 dmae->comp_addr_hi, dmae->comp_addr_lo,
424 dmae->comp_val);
425 else
426 DP(msglvl, "DMAE: opcode 0x%08x\n"
427 "src [%08x], len [%d*4], dst [%08x]\n"
428 "comp_addr [%x:%08x], comp_val 0x%08x\n",
429 dmae->opcode, dmae->src_addr_lo >> 2,
430 dmae->len, dmae->dst_addr_lo >> 2,
431 dmae->comp_addr_hi, dmae->comp_addr_lo,
432 dmae->comp_val);
433 break;
434 default:
435 if (src_type == DMAE_CMD_SRC_PCI)
436 DP(msglvl, "DMAE: opcode 0x%08x\n"
437 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
438 "comp_addr [%x:%08x] comp_val 0x%08x\n",
439 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
440 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
441 dmae->comp_val);
442 else
443 DP(msglvl, "DMAE: opcode 0x%08x\n"
444 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
445 "comp_addr [%x:%08x] comp_val 0x%08x\n",
446 dmae->opcode, dmae->src_addr_lo >> 2,
447 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
448 dmae->comp_val);
449 break;
452 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
453 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
454 i, *(((u32 *)dmae) + i));
457 /* copy command into DMAE command memory and set DMAE command go */
458 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
460 u32 cmd_offset;
461 int i;
463 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
464 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
465 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
467 REG_WR(bp, dmae_reg_go_c[idx], 1);
470 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
472 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
473 DMAE_CMD_C_ENABLE);
476 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
478 return opcode & ~DMAE_CMD_SRC_RESET;
481 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
482 bool with_comp, u8 comp_type)
484 u32 opcode = 0;
486 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
487 (dst_type << DMAE_COMMAND_DST_SHIFT));
489 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
491 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
492 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
493 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
494 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
496 #ifdef __BIG_ENDIAN
497 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
498 #else
499 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
500 #endif
501 if (with_comp)
502 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
503 return opcode;
506 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
507 struct dmae_command *dmae,
508 u8 src_type, u8 dst_type)
510 memset(dmae, 0, sizeof(struct dmae_command));
512 /* set the opcode */
513 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
514 true, DMAE_COMP_PCI);
516 /* fill in the completion parameters */
517 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
518 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
519 dmae->comp_val = DMAE_COMP_VAL;
522 /* issue a dmae command over the init-channel and wait for completion */
523 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
524 u32 *comp)
526 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
527 int rc = 0;
529 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
531 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
532 * as long as this code is called both from syscall context and
533 * from ndo_set_rx_mode() flow that may be called from BH.
536 spin_lock_bh(&bp->dmae_lock);
538 /* reset completion */
539 *comp = 0;
541 /* post the command on the channel used for initializations */
542 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
544 /* wait for completion */
545 udelay(5);
546 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
548 if (!cnt ||
549 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
550 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
551 BNX2X_ERR("DMAE timeout!\n");
552 rc = DMAE_TIMEOUT;
553 goto unlock;
555 cnt--;
556 udelay(50);
558 if (*comp & DMAE_PCI_ERR_FLAG) {
559 BNX2X_ERR("DMAE PCI error!\n");
560 rc = DMAE_PCI_ERROR;
563 unlock:
565 spin_unlock_bh(&bp->dmae_lock);
567 return rc;
570 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
571 u32 len32)
573 int rc;
574 struct dmae_command dmae;
576 if (!bp->dmae_ready) {
577 u32 *data = bnx2x_sp(bp, wb_data[0]);
579 if (CHIP_IS_E1(bp))
580 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
581 else
582 bnx2x_init_str_wr(bp, dst_addr, data, len32);
583 return;
586 /* set opcode and fixed command fields */
587 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
589 /* fill in addresses and len */
590 dmae.src_addr_lo = U64_LO(dma_addr);
591 dmae.src_addr_hi = U64_HI(dma_addr);
592 dmae.dst_addr_lo = dst_addr >> 2;
593 dmae.dst_addr_hi = 0;
594 dmae.len = len32;
596 /* issue the command and wait for completion */
597 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
598 if (rc) {
599 BNX2X_ERR("DMAE returned failure %d\n", rc);
600 #ifdef BNX2X_STOP_ON_ERROR
601 bnx2x_panic();
602 #endif
606 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
608 int rc;
609 struct dmae_command dmae;
611 if (!bp->dmae_ready) {
612 u32 *data = bnx2x_sp(bp, wb_data[0]);
613 int i;
615 if (CHIP_IS_E1(bp))
616 for (i = 0; i < len32; i++)
617 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
618 else
619 for (i = 0; i < len32; i++)
620 data[i] = REG_RD(bp, src_addr + i*4);
622 return;
625 /* set opcode and fixed command fields */
626 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
628 /* fill in addresses and len */
629 dmae.src_addr_lo = src_addr >> 2;
630 dmae.src_addr_hi = 0;
631 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
632 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
633 dmae.len = len32;
635 /* issue the command and wait for completion */
636 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
637 if (rc) {
638 BNX2X_ERR("DMAE returned failure %d\n", rc);
639 #ifdef BNX2X_STOP_ON_ERROR
640 bnx2x_panic();
641 #endif
645 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
646 u32 addr, u32 len)
648 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
649 int offset = 0;
651 while (len > dmae_wr_max) {
652 bnx2x_write_dmae(bp, phys_addr + offset,
653 addr + offset, dmae_wr_max);
654 offset += dmae_wr_max * 4;
655 len -= dmae_wr_max;
658 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
661 enum storms {
662 XSTORM,
663 TSTORM,
664 CSTORM,
665 USTORM,
666 MAX_STORMS
669 #define STORMS_NUM 4
670 #define REGS_IN_ENTRY 4
672 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
673 enum storms storm,
674 int entry)
676 switch (storm) {
677 case XSTORM:
678 return XSTORM_ASSERT_LIST_OFFSET(entry);
679 case TSTORM:
680 return TSTORM_ASSERT_LIST_OFFSET(entry);
681 case CSTORM:
682 return CSTORM_ASSERT_LIST_OFFSET(entry);
683 case USTORM:
684 return USTORM_ASSERT_LIST_OFFSET(entry);
685 case MAX_STORMS:
686 default:
687 BNX2X_ERR("unknown storm\n");
689 return -EINVAL;
692 static int bnx2x_mc_assert(struct bnx2x *bp)
694 char last_idx;
695 int i, j, rc = 0;
696 enum storms storm;
697 u32 regs[REGS_IN_ENTRY];
698 u32 bar_storm_intmem[STORMS_NUM] = {
699 BAR_XSTRORM_INTMEM,
700 BAR_TSTRORM_INTMEM,
701 BAR_CSTRORM_INTMEM,
702 BAR_USTRORM_INTMEM
704 u32 storm_assert_list_index[STORMS_NUM] = {
705 XSTORM_ASSERT_LIST_INDEX_OFFSET,
706 TSTORM_ASSERT_LIST_INDEX_OFFSET,
707 CSTORM_ASSERT_LIST_INDEX_OFFSET,
708 USTORM_ASSERT_LIST_INDEX_OFFSET
710 char *storms_string[STORMS_NUM] = {
711 "XSTORM",
712 "TSTORM",
713 "CSTORM",
714 "USTORM"
717 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
718 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
719 storm_assert_list_index[storm]);
720 if (last_idx)
721 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
722 storms_string[storm], last_idx);
724 /* print the asserts */
725 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
726 /* read a single assert entry */
727 for (j = 0; j < REGS_IN_ENTRY; j++)
728 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
729 bnx2x_get_assert_list_entry(bp,
730 storm,
731 i) +
732 sizeof(u32) * j);
734 /* log entry if it contains a valid assert */
735 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
736 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
737 storms_string[storm], i, regs[3],
738 regs[2], regs[1], regs[0]);
739 rc++;
740 } else {
741 break;
746 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
747 CHIP_IS_E1(bp) ? "everest1" :
748 CHIP_IS_E1H(bp) ? "everest1h" :
749 CHIP_IS_E2(bp) ? "everest2" : "everest3",
750 BCM_5710_FW_MAJOR_VERSION,
751 BCM_5710_FW_MINOR_VERSION,
752 BCM_5710_FW_REVISION_VERSION);
754 return rc;
757 #define MCPR_TRACE_BUFFER_SIZE (0x800)
758 #define SCRATCH_BUFFER_SIZE(bp) \
759 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
761 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
763 u32 addr, val;
764 u32 mark, offset;
765 __be32 data[9];
766 int word;
767 u32 trace_shmem_base;
768 if (BP_NOMCP(bp)) {
769 BNX2X_ERR("NO MCP - can not dump\n");
770 return;
772 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
773 (bp->common.bc_ver & 0xff0000) >> 16,
774 (bp->common.bc_ver & 0xff00) >> 8,
775 (bp->common.bc_ver & 0xff));
777 if (pci_channel_offline(bp->pdev)) {
778 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
779 return;
782 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
783 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
784 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
786 if (BP_PATH(bp) == 0)
787 trace_shmem_base = bp->common.shmem_base;
788 else
789 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
791 /* sanity */
792 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
793 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
794 SCRATCH_BUFFER_SIZE(bp)) {
795 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
796 trace_shmem_base);
797 return;
800 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
802 /* validate TRCB signature */
803 mark = REG_RD(bp, addr);
804 if (mark != MFW_TRACE_SIGNATURE) {
805 BNX2X_ERR("Trace buffer signature is missing.");
806 return ;
809 /* read cyclic buffer pointer */
810 addr += 4;
811 mark = REG_RD(bp, addr);
812 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
813 if (mark >= trace_shmem_base || mark < addr + 4) {
814 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
815 return;
817 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
819 printk("%s", lvl);
821 /* dump buffer after the mark */
822 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
823 for (word = 0; word < 8; word++)
824 data[word] = htonl(REG_RD(bp, offset + 4*word));
825 data[8] = 0x0;
826 pr_cont("%s", (char *)data);
829 /* dump buffer before the mark */
830 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
831 for (word = 0; word < 8; word++)
832 data[word] = htonl(REG_RD(bp, offset + 4*word));
833 data[8] = 0x0;
834 pr_cont("%s", (char *)data);
836 printk("%s" "end of fw dump\n", lvl);
839 static void bnx2x_fw_dump(struct bnx2x *bp)
841 bnx2x_fw_dump_lvl(bp, KERN_ERR);
844 static void bnx2x_hc_int_disable(struct bnx2x *bp)
846 int port = BP_PORT(bp);
847 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
848 u32 val = REG_RD(bp, addr);
850 /* in E1 we must use only PCI configuration space to disable
851 * MSI/MSIX capability
852 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
854 if (CHIP_IS_E1(bp)) {
855 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
856 * Use mask register to prevent from HC sending interrupts
857 * after we exit the function
859 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
861 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
862 HC_CONFIG_0_REG_INT_LINE_EN_0 |
863 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
864 } else
865 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
867 HC_CONFIG_0_REG_INT_LINE_EN_0 |
868 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
870 DP(NETIF_MSG_IFDOWN,
871 "write %x to HC %d (addr 0x%x)\n",
872 val, port, addr);
874 REG_WR(bp, addr, val);
875 if (REG_RD(bp, addr) != val)
876 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
879 static void bnx2x_igu_int_disable(struct bnx2x *bp)
881 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
883 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
884 IGU_PF_CONF_INT_LINE_EN |
885 IGU_PF_CONF_ATTN_BIT_EN);
887 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
889 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
894 static void bnx2x_int_disable(struct bnx2x *bp)
896 if (bp->common.int_block == INT_BLOCK_HC)
897 bnx2x_hc_int_disable(bp);
898 else
899 bnx2x_igu_int_disable(bp);
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
904 int i;
905 u16 j;
906 struct hc_sp_status_block_data sp_sb_data;
907 int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909 u16 start = 0, end = 0;
910 u8 cos;
911 #endif
912 if (IS_PF(bp) && disable_int)
913 bnx2x_int_disable(bp);
915 bp->stats_state = STATS_STATE_DISABLED;
916 bp->eth_stats.unrecoverable_error++;
917 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
919 BNX2X_ERR("begin crash dump -----------------\n");
921 /* Indices */
922 /* Common */
923 if (IS_PF(bp)) {
924 struct host_sp_status_block *def_sb = bp->def_status_blk;
925 int data_size, cstorm_offset;
927 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928 bp->def_idx, bp->def_att_idx, bp->attn_state,
929 bp->spq_prod_idx, bp->stats_counter);
930 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
931 def_sb->atten_status_block.attn_bits,
932 def_sb->atten_status_block.attn_bits_ack,
933 def_sb->atten_status_block.status_block_id,
934 def_sb->atten_status_block.attn_bits_index);
935 BNX2X_ERR(" def (");
936 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937 pr_cont("0x%x%s",
938 def_sb->sp_sb.index_values[i],
939 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
941 data_size = sizeof(struct hc_sp_status_block_data) /
942 sizeof(u32);
943 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944 for (i = 0; i < data_size; i++)
945 *((u32 *)&sp_sb_data + i) =
946 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947 i * sizeof(u32));
949 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
950 sp_sb_data.igu_sb_id,
951 sp_sb_data.igu_seg_id,
952 sp_sb_data.p_func.pf_id,
953 sp_sb_data.p_func.vnic_id,
954 sp_sb_data.p_func.vf_id,
955 sp_sb_data.p_func.vf_valid,
956 sp_sb_data.state);
959 for_each_eth_queue(bp, i) {
960 struct bnx2x_fastpath *fp = &bp->fp[i];
961 int loop;
962 struct hc_status_block_data_e2 sb_data_e2;
963 struct hc_status_block_data_e1x sb_data_e1x;
964 struct hc_status_block_sm *hc_sm_p =
965 CHIP_IS_E1x(bp) ?
966 sb_data_e1x.common.state_machine :
967 sb_data_e2.common.state_machine;
968 struct hc_index_data *hc_index_p =
969 CHIP_IS_E1x(bp) ?
970 sb_data_e1x.index_data :
971 sb_data_e2.index_data;
972 u8 data_size, cos;
973 u32 *sb_data_p;
974 struct bnx2x_fp_txdata txdata;
976 if (!bp->fp)
977 break;
979 if (!fp->rx_cons_sb)
980 continue;
982 /* Rx */
983 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
984 i, fp->rx_bd_prod, fp->rx_bd_cons,
985 fp->rx_comp_prod,
986 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
988 fp->rx_sge_prod, fp->last_max_sge,
989 le16_to_cpu(fp->fp_hc_idx));
991 /* Tx */
992 for_each_cos_in_tx_queue(fp, cos)
994 if (!fp->txdata_ptr[cos])
995 break;
997 txdata = *fp->txdata_ptr[cos];
999 if (!txdata.tx_cons_sb)
1000 continue;
1002 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1003 i, txdata.tx_pkt_prod,
1004 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005 txdata.tx_bd_cons,
1006 le16_to_cpu(*txdata.tx_cons_sb));
1009 loop = CHIP_IS_E1x(bp) ?
1010 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1012 /* host sb data */
1014 if (IS_FCOE_FP(fp))
1015 continue;
1017 BNX2X_ERR(" run indexes (");
1018 for (j = 0; j < HC_SB_MAX_SM; j++)
1019 pr_cont("0x%x%s",
1020 fp->sb_running_index[j],
1021 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1023 BNX2X_ERR(" indexes (");
1024 for (j = 0; j < loop; j++)
1025 pr_cont("0x%x%s",
1026 fp->sb_index_values[j],
1027 (j == loop - 1) ? ")" : " ");
1029 /* VF cannot access FW refelection for status block */
1030 if (IS_VF(bp))
1031 continue;
1033 /* fw sb data */
1034 data_size = CHIP_IS_E1x(bp) ?
1035 sizeof(struct hc_status_block_data_e1x) :
1036 sizeof(struct hc_status_block_data_e2);
1037 data_size /= sizeof(u32);
1038 sb_data_p = CHIP_IS_E1x(bp) ?
1039 (u32 *)&sb_data_e1x :
1040 (u32 *)&sb_data_e2;
1041 /* copy sb data in here */
1042 for (j = 0; j < data_size; j++)
1043 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045 j * sizeof(u32));
1047 if (!CHIP_IS_E1x(bp)) {
1048 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1049 sb_data_e2.common.p_func.pf_id,
1050 sb_data_e2.common.p_func.vf_id,
1051 sb_data_e2.common.p_func.vf_valid,
1052 sb_data_e2.common.p_func.vnic_id,
1053 sb_data_e2.common.same_igu_sb_1b,
1054 sb_data_e2.common.state);
1055 } else {
1056 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 sb_data_e1x.common.p_func.pf_id,
1058 sb_data_e1x.common.p_func.vf_id,
1059 sb_data_e1x.common.p_func.vf_valid,
1060 sb_data_e1x.common.p_func.vnic_id,
1061 sb_data_e1x.common.same_igu_sb_1b,
1062 sb_data_e1x.common.state);
1065 /* SB_SMs data */
1066 for (j = 0; j < HC_SB_MAX_SM; j++) {
1067 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068 j, hc_sm_p[j].__flags,
1069 hc_sm_p[j].igu_sb_id,
1070 hc_sm_p[j].igu_seg_id,
1071 hc_sm_p[j].time_to_expire,
1072 hc_sm_p[j].timer_value);
1075 /* Indices data */
1076 for (j = 0; j < loop; j++) {
1077 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078 hc_index_p[j].flags,
1079 hc_index_p[j].timeout);
1083 #ifdef BNX2X_STOP_ON_ERROR
1084 if (IS_PF(bp)) {
1085 /* event queue */
1086 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087 for (i = 0; i < NUM_EQ_DESC; i++) {
1088 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1090 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091 i, bp->eq_ring[i].message.opcode,
1092 bp->eq_ring[i].message.error);
1093 BNX2X_ERR("data: %x %x %x\n",
1094 data[0], data[1], data[2]);
1098 /* Rings */
1099 /* Rx */
1100 for_each_valid_rx_queue(bp, i) {
1101 struct bnx2x_fastpath *fp = &bp->fp[i];
1103 if (!bp->fp)
1104 break;
1106 if (!fp->rx_cons_sb)
1107 continue;
1109 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111 for (j = start; j != end; j = RX_BD(j + 1)) {
1112 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1115 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1116 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1119 start = RX_SGE(fp->rx_sge_prod);
1120 end = RX_SGE(fp->last_max_sge);
1121 for (j = start; j != end; j = RX_SGE(j + 1)) {
1122 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1125 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1126 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1129 start = RCQ_BD(fp->rx_comp_cons - 10);
1130 end = RCQ_BD(fp->rx_comp_cons + 503);
1131 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1134 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1139 /* Tx */
1140 for_each_valid_tx_queue(bp, i) {
1141 struct bnx2x_fastpath *fp = &bp->fp[i];
1143 if (!bp->fp)
1144 break;
1146 for_each_cos_in_tx_queue(fp, cos) {
1147 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1149 if (!fp->txdata_ptr[cos])
1150 break;
1152 if (!txdata->tx_cons_sb)
1153 continue;
1155 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157 for (j = start; j != end; j = TX_BD(j + 1)) {
1158 struct sw_tx_bd *sw_bd =
1159 &txdata->tx_buf_ring[j];
1161 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162 i, cos, j, sw_bd->skb,
1163 sw_bd->first_bd);
1166 start = TX_BD(txdata->tx_bd_cons - 10);
1167 end = TX_BD(txdata->tx_bd_cons + 254);
1168 for (j = start; j != end; j = TX_BD(j + 1)) {
1169 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1171 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172 i, cos, j, tx_bd[0], tx_bd[1],
1173 tx_bd[2], tx_bd[3]);
1177 #endif
1178 if (IS_PF(bp)) {
1179 int tmp_msg_en = bp->msg_enable;
1181 bnx2x_fw_dump(bp);
1182 bp->msg_enable |= NETIF_MSG_HW;
1183 BNX2X_ERR("Idle check (1st round) ----------\n");
1184 bnx2x_idle_chk(bp);
1185 BNX2X_ERR("Idle check (2nd round) ----------\n");
1186 bnx2x_idle_chk(bp);
1187 bp->msg_enable = tmp_msg_en;
1188 bnx2x_mc_assert(bp);
1191 BNX2X_ERR("end crash dump -----------------\n");
1195 * FLR Support for E2
1197 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1198 * initialization.
1200 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1201 #define FLR_WAIT_INTERVAL 50 /* usec */
1202 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1204 struct pbf_pN_buf_regs {
1205 int pN;
1206 u32 init_crd;
1207 u32 crd;
1208 u32 crd_freed;
1211 struct pbf_pN_cmd_regs {
1212 int pN;
1213 u32 lines_occup;
1214 u32 lines_freed;
1217 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1218 struct pbf_pN_buf_regs *regs,
1219 u32 poll_count)
1221 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1222 u32 cur_cnt = poll_count;
1224 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1225 crd = crd_start = REG_RD(bp, regs->crd);
1226 init_crd = REG_RD(bp, regs->init_crd);
1228 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1229 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1230 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1232 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1233 (init_crd - crd_start))) {
1234 if (cur_cnt--) {
1235 udelay(FLR_WAIT_INTERVAL);
1236 crd = REG_RD(bp, regs->crd);
1237 crd_freed = REG_RD(bp, regs->crd_freed);
1238 } else {
1239 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1240 regs->pN);
1241 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1242 regs->pN, crd);
1243 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1244 regs->pN, crd_freed);
1245 break;
1248 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1249 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1252 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1253 struct pbf_pN_cmd_regs *regs,
1254 u32 poll_count)
1256 u32 occup, to_free, freed, freed_start;
1257 u32 cur_cnt = poll_count;
1259 occup = to_free = REG_RD(bp, regs->lines_occup);
1260 freed = freed_start = REG_RD(bp, regs->lines_freed);
1262 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1263 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1265 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1266 if (cur_cnt--) {
1267 udelay(FLR_WAIT_INTERVAL);
1268 occup = REG_RD(bp, regs->lines_occup);
1269 freed = REG_RD(bp, regs->lines_freed);
1270 } else {
1271 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1272 regs->pN);
1273 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1274 regs->pN, occup);
1275 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1276 regs->pN, freed);
1277 break;
1280 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1281 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1284 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1285 u32 expected, u32 poll_count)
1287 u32 cur_cnt = poll_count;
1288 u32 val;
1290 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1291 udelay(FLR_WAIT_INTERVAL);
1293 return val;
1296 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1297 char *msg, u32 poll_cnt)
1299 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1300 if (val != 0) {
1301 BNX2X_ERR("%s usage count=%d\n", msg, val);
1302 return 1;
1304 return 0;
1307 /* Common routines with VF FLR cleanup */
1308 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1310 /* adjust polling timeout */
1311 if (CHIP_REV_IS_EMUL(bp))
1312 return FLR_POLL_CNT * 2000;
1314 if (CHIP_REV_IS_FPGA(bp))
1315 return FLR_POLL_CNT * 120;
1317 return FLR_POLL_CNT;
1320 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1322 struct pbf_pN_cmd_regs cmd_regs[] = {
1323 {0, (CHIP_IS_E3B0(bp)) ?
1324 PBF_REG_TQ_OCCUPANCY_Q0 :
1325 PBF_REG_P0_TQ_OCCUPANCY,
1326 (CHIP_IS_E3B0(bp)) ?
1327 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1328 PBF_REG_P0_TQ_LINES_FREED_CNT},
1329 {1, (CHIP_IS_E3B0(bp)) ?
1330 PBF_REG_TQ_OCCUPANCY_Q1 :
1331 PBF_REG_P1_TQ_OCCUPANCY,
1332 (CHIP_IS_E3B0(bp)) ?
1333 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1334 PBF_REG_P1_TQ_LINES_FREED_CNT},
1335 {4, (CHIP_IS_E3B0(bp)) ?
1336 PBF_REG_TQ_OCCUPANCY_LB_Q :
1337 PBF_REG_P4_TQ_OCCUPANCY,
1338 (CHIP_IS_E3B0(bp)) ?
1339 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1340 PBF_REG_P4_TQ_LINES_FREED_CNT}
1343 struct pbf_pN_buf_regs buf_regs[] = {
1344 {0, (CHIP_IS_E3B0(bp)) ?
1345 PBF_REG_INIT_CRD_Q0 :
1346 PBF_REG_P0_INIT_CRD ,
1347 (CHIP_IS_E3B0(bp)) ?
1348 PBF_REG_CREDIT_Q0 :
1349 PBF_REG_P0_CREDIT,
1350 (CHIP_IS_E3B0(bp)) ?
1351 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1352 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1353 {1, (CHIP_IS_E3B0(bp)) ?
1354 PBF_REG_INIT_CRD_Q1 :
1355 PBF_REG_P1_INIT_CRD,
1356 (CHIP_IS_E3B0(bp)) ?
1357 PBF_REG_CREDIT_Q1 :
1358 PBF_REG_P1_CREDIT,
1359 (CHIP_IS_E3B0(bp)) ?
1360 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1361 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1362 {4, (CHIP_IS_E3B0(bp)) ?
1363 PBF_REG_INIT_CRD_LB_Q :
1364 PBF_REG_P4_INIT_CRD,
1365 (CHIP_IS_E3B0(bp)) ?
1366 PBF_REG_CREDIT_LB_Q :
1367 PBF_REG_P4_CREDIT,
1368 (CHIP_IS_E3B0(bp)) ?
1369 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1370 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1373 int i;
1375 /* Verify the command queues are flushed P0, P1, P4 */
1376 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1377 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1379 /* Verify the transmission buffers are flushed P0, P1, P4 */
1380 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1381 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1384 #define OP_GEN_PARAM(param) \
1385 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1387 #define OP_GEN_TYPE(type) \
1388 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1390 #define OP_GEN_AGG_VECT(index) \
1391 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1393 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1395 u32 op_gen_command = 0;
1396 u32 comp_addr = BAR_CSTRORM_INTMEM +
1397 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1398 int ret = 0;
1400 if (REG_RD(bp, comp_addr)) {
1401 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1402 return 1;
1405 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1406 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1407 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1408 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1410 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1411 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1413 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1414 BNX2X_ERR("FW final cleanup did not succeed\n");
1415 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1416 (REG_RD(bp, comp_addr)));
1417 bnx2x_panic();
1418 return 1;
1420 /* Zero completion for next FLR */
1421 REG_WR(bp, comp_addr, 0);
1423 return ret;
1426 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1428 u16 status;
1430 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1431 return status & PCI_EXP_DEVSTA_TRPND;
1434 /* PF FLR specific routines
1436 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1438 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1439 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1440 CFC_REG_NUM_LCIDS_INSIDE_PF,
1441 "CFC PF usage counter timed out",
1442 poll_cnt))
1443 return 1;
1445 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1446 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1447 DORQ_REG_PF_USAGE_CNT,
1448 "DQ PF usage counter timed out",
1449 poll_cnt))
1450 return 1;
1452 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1453 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1454 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1455 "QM PF usage counter timed out",
1456 poll_cnt))
1457 return 1;
1459 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1460 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1461 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1462 "Timers VNIC usage counter timed out",
1463 poll_cnt))
1464 return 1;
1465 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1466 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1467 "Timers NUM_SCANS usage counter timed out",
1468 poll_cnt))
1469 return 1;
1471 /* Wait DMAE PF usage counter to zero */
1472 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1473 dmae_reg_go_c[INIT_DMAE_C(bp)],
1474 "DMAE command register timed out",
1475 poll_cnt))
1476 return 1;
1478 return 0;
1481 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1483 u32 val;
1485 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1486 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1488 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1489 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1491 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1492 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1494 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1495 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1497 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1498 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1500 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1501 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1503 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1504 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1506 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1507 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1508 val);
1511 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1513 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1515 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1517 /* Re-enable PF target read access */
1518 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1520 /* Poll HW usage counters */
1521 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1522 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1523 return -EBUSY;
1525 /* Zero the igu 'trailing edge' and 'leading edge' */
1527 /* Send the FW cleanup command */
1528 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1529 return -EBUSY;
1531 /* ATC cleanup */
1533 /* Verify TX hw is flushed */
1534 bnx2x_tx_hw_flushed(bp, poll_cnt);
1536 /* Wait 100ms (not adjusted according to platform) */
1537 msleep(100);
1539 /* Verify no pending pci transactions */
1540 if (bnx2x_is_pcie_pending(bp->pdev))
1541 BNX2X_ERR("PCIE Transactions still pending\n");
1543 /* Debug */
1544 bnx2x_hw_enable_status(bp);
1547 * Master enable - Due to WB DMAE writes performed before this
1548 * register is re-initialized as part of the regular function init
1550 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1552 return 0;
1555 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1557 int port = BP_PORT(bp);
1558 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1559 u32 val = REG_RD(bp, addr);
1560 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1561 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1562 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1564 if (msix) {
1565 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1566 HC_CONFIG_0_REG_INT_LINE_EN_0);
1567 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1569 if (single_msix)
1570 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1571 } else if (msi) {
1572 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1573 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1574 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1575 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1576 } else {
1577 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1578 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1579 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1580 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1582 if (!CHIP_IS_E1(bp)) {
1583 DP(NETIF_MSG_IFUP,
1584 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1586 REG_WR(bp, addr, val);
1588 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1592 if (CHIP_IS_E1(bp))
1593 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1595 DP(NETIF_MSG_IFUP,
1596 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1597 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1599 REG_WR(bp, addr, val);
1601 * Ensure that HC_CONFIG is written before leading/trailing edge config
1603 barrier();
1605 if (!CHIP_IS_E1(bp)) {
1606 /* init leading/trailing edge */
1607 if (IS_MF(bp)) {
1608 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1609 if (bp->port.pmf)
1610 /* enable nig and gpio3 attention */
1611 val |= 0x1100;
1612 } else
1613 val = 0xffff;
1615 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1616 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1620 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1622 u32 val;
1623 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1624 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1625 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1627 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1629 if (msix) {
1630 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1631 IGU_PF_CONF_SINGLE_ISR_EN);
1632 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1633 IGU_PF_CONF_ATTN_BIT_EN);
1635 if (single_msix)
1636 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1637 } else if (msi) {
1638 val &= ~IGU_PF_CONF_INT_LINE_EN;
1639 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1640 IGU_PF_CONF_ATTN_BIT_EN |
1641 IGU_PF_CONF_SINGLE_ISR_EN);
1642 } else {
1643 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1644 val |= (IGU_PF_CONF_INT_LINE_EN |
1645 IGU_PF_CONF_ATTN_BIT_EN |
1646 IGU_PF_CONF_SINGLE_ISR_EN);
1649 /* Clean previous status - need to configure igu prior to ack*/
1650 if ((!msix) || single_msix) {
1651 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1652 bnx2x_ack_int(bp);
1655 val |= IGU_PF_CONF_FUNC_EN;
1657 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1658 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1660 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1662 if (val & IGU_PF_CONF_INT_LINE_EN)
1663 pci_intx(bp->pdev, true);
1665 barrier();
1667 /* init leading/trailing edge */
1668 if (IS_MF(bp)) {
1669 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1670 if (bp->port.pmf)
1671 /* enable nig and gpio3 attention */
1672 val |= 0x1100;
1673 } else
1674 val = 0xffff;
1676 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1677 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1680 void bnx2x_int_enable(struct bnx2x *bp)
1682 if (bp->common.int_block == INT_BLOCK_HC)
1683 bnx2x_hc_int_enable(bp);
1684 else
1685 bnx2x_igu_int_enable(bp);
1688 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1690 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1691 int i, offset;
1693 if (disable_hw)
1694 /* prevent the HW from sending interrupts */
1695 bnx2x_int_disable(bp);
1697 /* make sure all ISRs are done */
1698 if (msix) {
1699 synchronize_irq(bp->msix_table[0].vector);
1700 offset = 1;
1701 if (CNIC_SUPPORT(bp))
1702 offset++;
1703 for_each_eth_queue(bp, i)
1704 synchronize_irq(bp->msix_table[offset++].vector);
1705 } else
1706 synchronize_irq(bp->pdev->irq);
1708 /* make sure sp_task is not running */
1709 cancel_delayed_work(&bp->sp_task);
1710 cancel_delayed_work(&bp->period_task);
1711 flush_workqueue(bnx2x_wq);
1714 /* fast path */
1717 * General service functions
1720 /* Return true if succeeded to acquire the lock */
1721 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1723 u32 lock_status;
1724 u32 resource_bit = (1 << resource);
1725 int func = BP_FUNC(bp);
1726 u32 hw_lock_control_reg;
1728 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1729 "Trying to take a lock on resource %d\n", resource);
1731 /* Validating that the resource is within range */
1732 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1733 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1734 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1735 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1736 return false;
1739 if (func <= 5)
1740 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1741 else
1742 hw_lock_control_reg =
1743 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1745 /* Try to acquire the lock */
1746 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1747 lock_status = REG_RD(bp, hw_lock_control_reg);
1748 if (lock_status & resource_bit)
1749 return true;
1751 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1752 "Failed to get a lock on resource %d\n", resource);
1753 return false;
1757 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1759 * @bp: driver handle
1761 * Returns the recovery leader resource id according to the engine this function
1762 * belongs to. Currently only only 2 engines is supported.
1764 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1766 if (BP_PATH(bp))
1767 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1768 else
1769 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1773 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1775 * @bp: driver handle
1777 * Tries to acquire a leader lock for current engine.
1779 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1781 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1784 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1786 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1787 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1789 /* Set the interrupt occurred bit for the sp-task to recognize it
1790 * must ack the interrupt and transition according to the IGU
1791 * state machine.
1793 atomic_set(&bp->interrupt_occurred, 1);
1795 /* The sp_task must execute only after this bit
1796 * is set, otherwise we will get out of sync and miss all
1797 * further interrupts. Hence, the barrier.
1799 smp_wmb();
1801 /* schedule sp_task to workqueue */
1802 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1805 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1807 struct bnx2x *bp = fp->bp;
1808 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1809 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1810 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1811 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1813 DP(BNX2X_MSG_SP,
1814 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1815 fp->index, cid, command, bp->state,
1816 rr_cqe->ramrod_cqe.ramrod_type);
1818 /* If cid is within VF range, replace the slowpath object with the
1819 * one corresponding to this VF
1821 if (cid >= BNX2X_FIRST_VF_CID &&
1822 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1823 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1825 switch (command) {
1826 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1827 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1828 drv_cmd = BNX2X_Q_CMD_UPDATE;
1829 break;
1831 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1832 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1833 drv_cmd = BNX2X_Q_CMD_SETUP;
1834 break;
1836 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1837 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1838 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1839 break;
1841 case (RAMROD_CMD_ID_ETH_HALT):
1842 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1843 drv_cmd = BNX2X_Q_CMD_HALT;
1844 break;
1846 case (RAMROD_CMD_ID_ETH_TERMINATE):
1847 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1848 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1849 break;
1851 case (RAMROD_CMD_ID_ETH_EMPTY):
1852 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1853 drv_cmd = BNX2X_Q_CMD_EMPTY;
1854 break;
1856 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1857 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1858 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1859 break;
1861 default:
1862 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1863 command, fp->index);
1864 return;
1867 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1868 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1869 /* q_obj->complete_cmd() failure means that this was
1870 * an unexpected completion.
1872 * In this case we don't want to increase the bp->spq_left
1873 * because apparently we haven't sent this command the first
1874 * place.
1876 #ifdef BNX2X_STOP_ON_ERROR
1877 bnx2x_panic();
1878 #else
1879 return;
1880 #endif
1882 smp_mb__before_atomic();
1883 atomic_inc(&bp->cq_spq_left);
1884 /* push the change in bp->spq_left and towards the memory */
1885 smp_mb__after_atomic();
1887 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1889 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1890 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1891 /* if Q update ramrod is completed for last Q in AFEX vif set
1892 * flow, then ACK MCP at the end
1894 * mark pending ACK to MCP bit.
1895 * prevent case that both bits are cleared.
1896 * At the end of load/unload driver checks that
1897 * sp_state is cleared, and this order prevents
1898 * races
1900 smp_mb__before_atomic();
1901 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1902 wmb();
1903 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1904 smp_mb__after_atomic();
1906 /* schedule the sp task as mcp ack is required */
1907 bnx2x_schedule_sp_task(bp);
1910 return;
1913 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1915 struct bnx2x *bp = netdev_priv(dev_instance);
1916 u16 status = bnx2x_ack_int(bp);
1917 u16 mask;
1918 int i;
1919 u8 cos;
1921 /* Return here if interrupt is shared and it's not for us */
1922 if (unlikely(status == 0)) {
1923 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1924 return IRQ_NONE;
1926 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1928 #ifdef BNX2X_STOP_ON_ERROR
1929 if (unlikely(bp->panic))
1930 return IRQ_HANDLED;
1931 #endif
1933 for_each_eth_queue(bp, i) {
1934 struct bnx2x_fastpath *fp = &bp->fp[i];
1936 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1937 if (status & mask) {
1938 /* Handle Rx or Tx according to SB id */
1939 for_each_cos_in_tx_queue(fp, cos)
1940 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1941 prefetch(&fp->sb_running_index[SM_RX_ID]);
1942 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1943 status &= ~mask;
1947 if (CNIC_SUPPORT(bp)) {
1948 mask = 0x2;
1949 if (status & (mask | 0x1)) {
1950 struct cnic_ops *c_ops = NULL;
1952 rcu_read_lock();
1953 c_ops = rcu_dereference(bp->cnic_ops);
1954 if (c_ops && (bp->cnic_eth_dev.drv_state &
1955 CNIC_DRV_STATE_HANDLES_IRQ))
1956 c_ops->cnic_handler(bp->cnic_data, NULL);
1957 rcu_read_unlock();
1959 status &= ~mask;
1963 if (unlikely(status & 0x1)) {
1965 /* schedule sp task to perform default status block work, ack
1966 * attentions and enable interrupts.
1968 bnx2x_schedule_sp_task(bp);
1970 status &= ~0x1;
1971 if (!status)
1972 return IRQ_HANDLED;
1975 if (unlikely(status))
1976 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1977 status);
1979 return IRQ_HANDLED;
1982 /* Link */
1985 * General service functions
1988 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1990 u32 lock_status;
1991 u32 resource_bit = (1 << resource);
1992 int func = BP_FUNC(bp);
1993 u32 hw_lock_control_reg;
1994 int cnt;
1996 /* Validating that the resource is within range */
1997 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1998 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1999 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2000 return -EINVAL;
2003 if (func <= 5) {
2004 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2005 } else {
2006 hw_lock_control_reg =
2007 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2010 /* Validating that the resource is not already taken */
2011 lock_status = REG_RD(bp, hw_lock_control_reg);
2012 if (lock_status & resource_bit) {
2013 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2014 lock_status, resource_bit);
2015 return -EEXIST;
2018 /* Try for 5 second every 5ms */
2019 for (cnt = 0; cnt < 1000; cnt++) {
2020 /* Try to acquire the lock */
2021 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2022 lock_status = REG_RD(bp, hw_lock_control_reg);
2023 if (lock_status & resource_bit)
2024 return 0;
2026 usleep_range(5000, 10000);
2028 BNX2X_ERR("Timeout\n");
2029 return -EAGAIN;
2032 int bnx2x_release_leader_lock(struct bnx2x *bp)
2034 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2037 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2039 u32 lock_status;
2040 u32 resource_bit = (1 << resource);
2041 int func = BP_FUNC(bp);
2042 u32 hw_lock_control_reg;
2044 /* Validating that the resource is within range */
2045 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2046 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2047 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2048 return -EINVAL;
2051 if (func <= 5) {
2052 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2053 } else {
2054 hw_lock_control_reg =
2055 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2058 /* Validating that the resource is currently taken */
2059 lock_status = REG_RD(bp, hw_lock_control_reg);
2060 if (!(lock_status & resource_bit)) {
2061 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2062 lock_status, resource_bit);
2063 return -EFAULT;
2066 REG_WR(bp, hw_lock_control_reg, resource_bit);
2067 return 0;
2070 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2072 /* The GPIO should be swapped if swap register is set and active */
2073 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2074 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2075 int gpio_shift = gpio_num +
2076 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2077 u32 gpio_mask = (1 << gpio_shift);
2078 u32 gpio_reg;
2079 int value;
2081 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2082 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2083 return -EINVAL;
2086 /* read GPIO value */
2087 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2089 /* get the requested pin value */
2090 if ((gpio_reg & gpio_mask) == gpio_mask)
2091 value = 1;
2092 else
2093 value = 0;
2095 return value;
2098 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2100 /* The GPIO should be swapped if swap register is set and active */
2101 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2102 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2103 int gpio_shift = gpio_num +
2104 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2105 u32 gpio_mask = (1 << gpio_shift);
2106 u32 gpio_reg;
2108 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2109 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2110 return -EINVAL;
2113 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2114 /* read GPIO and mask except the float bits */
2115 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2117 switch (mode) {
2118 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2119 DP(NETIF_MSG_LINK,
2120 "Set GPIO %d (shift %d) -> output low\n",
2121 gpio_num, gpio_shift);
2122 /* clear FLOAT and set CLR */
2123 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2124 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2125 break;
2127 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2128 DP(NETIF_MSG_LINK,
2129 "Set GPIO %d (shift %d) -> output high\n",
2130 gpio_num, gpio_shift);
2131 /* clear FLOAT and set SET */
2132 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2133 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2134 break;
2136 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2137 DP(NETIF_MSG_LINK,
2138 "Set GPIO %d (shift %d) -> input\n",
2139 gpio_num, gpio_shift);
2140 /* set FLOAT */
2141 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2142 break;
2144 default:
2145 break;
2148 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2149 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2151 return 0;
2154 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2156 u32 gpio_reg = 0;
2157 int rc = 0;
2159 /* Any port swapping should be handled by caller. */
2161 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2162 /* read GPIO and mask except the float bits */
2163 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2164 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2165 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2166 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2168 switch (mode) {
2169 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2170 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2171 /* set CLR */
2172 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2173 break;
2175 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2176 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2177 /* set SET */
2178 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2179 break;
2181 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2182 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2183 /* set FLOAT */
2184 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2185 break;
2187 default:
2188 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2189 rc = -EINVAL;
2190 break;
2193 if (rc == 0)
2194 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2196 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198 return rc;
2201 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2203 /* The GPIO should be swapped if swap register is set and active */
2204 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2205 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2206 int gpio_shift = gpio_num +
2207 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2208 u32 gpio_mask = (1 << gpio_shift);
2209 u32 gpio_reg;
2211 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2212 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2213 return -EINVAL;
2216 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2217 /* read GPIO int */
2218 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2220 switch (mode) {
2221 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2222 DP(NETIF_MSG_LINK,
2223 "Clear GPIO INT %d (shift %d) -> output low\n",
2224 gpio_num, gpio_shift);
2225 /* clear SET and set CLR */
2226 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2227 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2228 break;
2230 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2231 DP(NETIF_MSG_LINK,
2232 "Set GPIO INT %d (shift %d) -> output high\n",
2233 gpio_num, gpio_shift);
2234 /* clear CLR and set SET */
2235 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2237 break;
2239 default:
2240 break;
2243 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2244 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2246 return 0;
2249 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2251 u32 spio_reg;
2253 /* Only 2 SPIOs are configurable */
2254 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2255 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2256 return -EINVAL;
2259 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2260 /* read SPIO and mask except the float bits */
2261 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2263 switch (mode) {
2264 case MISC_SPIO_OUTPUT_LOW:
2265 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2266 /* clear FLOAT and set CLR */
2267 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2268 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2269 break;
2271 case MISC_SPIO_OUTPUT_HIGH:
2272 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2273 /* clear FLOAT and set SET */
2274 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2275 spio_reg |= (spio << MISC_SPIO_SET_POS);
2276 break;
2278 case MISC_SPIO_INPUT_HI_Z:
2279 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2280 /* set FLOAT */
2281 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2282 break;
2284 default:
2285 break;
2288 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2289 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2291 return 0;
2294 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2296 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2298 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2299 ADVERTISED_Pause);
2300 switch (bp->link_vars.ieee_fc &
2301 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2302 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2303 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2304 ADVERTISED_Pause);
2305 break;
2307 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2308 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2309 break;
2311 default:
2312 break;
2316 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2318 /* Initialize link parameters structure variables
2319 * It is recommended to turn off RX FC for jumbo frames
2320 * for better performance
2322 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2323 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2324 else
2325 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2328 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2330 u32 pause_enabled = 0;
2332 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2333 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2334 pause_enabled = 1;
2336 REG_WR(bp, BAR_USTRORM_INTMEM +
2337 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2338 pause_enabled);
2341 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2342 pause_enabled ? "enabled" : "disabled");
2345 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2347 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2348 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2350 if (!BP_NOMCP(bp)) {
2351 bnx2x_set_requested_fc(bp);
2352 bnx2x_acquire_phy_lock(bp);
2354 if (load_mode == LOAD_DIAG) {
2355 struct link_params *lp = &bp->link_params;
2356 lp->loopback_mode = LOOPBACK_XGXS;
2357 /* Prefer doing PHY loopback at highest speed */
2358 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2359 if (lp->speed_cap_mask[cfx_idx] &
2360 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2361 lp->req_line_speed[cfx_idx] =
2362 SPEED_20000;
2363 else if (lp->speed_cap_mask[cfx_idx] &
2364 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2365 lp->req_line_speed[cfx_idx] =
2366 SPEED_10000;
2367 else
2368 lp->req_line_speed[cfx_idx] =
2369 SPEED_1000;
2373 if (load_mode == LOAD_LOOPBACK_EXT) {
2374 struct link_params *lp = &bp->link_params;
2375 lp->loopback_mode = LOOPBACK_EXT;
2378 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2380 bnx2x_release_phy_lock(bp);
2382 bnx2x_init_dropless_fc(bp);
2384 bnx2x_calc_fc_adv(bp);
2386 if (bp->link_vars.link_up) {
2387 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2388 bnx2x_link_report(bp);
2390 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2391 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2392 return rc;
2394 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2395 return -EINVAL;
2398 void bnx2x_link_set(struct bnx2x *bp)
2400 if (!BP_NOMCP(bp)) {
2401 bnx2x_acquire_phy_lock(bp);
2402 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2403 bnx2x_release_phy_lock(bp);
2405 bnx2x_init_dropless_fc(bp);
2407 bnx2x_calc_fc_adv(bp);
2408 } else
2409 BNX2X_ERR("Bootcode is missing - can not set link\n");
2412 static void bnx2x__link_reset(struct bnx2x *bp)
2414 if (!BP_NOMCP(bp)) {
2415 bnx2x_acquire_phy_lock(bp);
2416 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2417 bnx2x_release_phy_lock(bp);
2418 } else
2419 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2422 void bnx2x_force_link_reset(struct bnx2x *bp)
2424 bnx2x_acquire_phy_lock(bp);
2425 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2426 bnx2x_release_phy_lock(bp);
2429 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2431 u8 rc = 0;
2433 if (!BP_NOMCP(bp)) {
2434 bnx2x_acquire_phy_lock(bp);
2435 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2436 is_serdes);
2437 bnx2x_release_phy_lock(bp);
2438 } else
2439 BNX2X_ERR("Bootcode is missing - can not test link\n");
2441 return rc;
2444 /* Calculates the sum of vn_min_rates.
2445 It's needed for further normalizing of the min_rates.
2446 Returns:
2447 sum of vn_min_rates.
2449 0 - if all the min_rates are 0.
2450 In the later case fairness algorithm should be deactivated.
2451 If not all min_rates are zero then those that are zeroes will be set to 1.
2453 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2454 struct cmng_init_input *input)
2456 int all_zero = 1;
2457 int vn;
2459 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2460 u32 vn_cfg = bp->mf_config[vn];
2461 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2462 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2464 /* Skip hidden vns */
2465 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2466 vn_min_rate = 0;
2467 /* If min rate is zero - set it to 1 */
2468 else if (!vn_min_rate)
2469 vn_min_rate = DEF_MIN_RATE;
2470 else
2471 all_zero = 0;
2473 input->vnic_min_rate[vn] = vn_min_rate;
2476 /* if ETS or all min rates are zeros - disable fairness */
2477 if (BNX2X_IS_ETS_ENABLED(bp)) {
2478 input->flags.cmng_enables &=
2479 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2480 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2481 } else if (all_zero) {
2482 input->flags.cmng_enables &=
2483 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2484 DP(NETIF_MSG_IFUP,
2485 "All MIN values are zeroes fairness will be disabled\n");
2486 } else
2487 input->flags.cmng_enables |=
2488 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2491 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2492 struct cmng_init_input *input)
2494 u16 vn_max_rate;
2495 u32 vn_cfg = bp->mf_config[vn];
2497 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2498 vn_max_rate = 0;
2499 else {
2500 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2502 if (IS_MF_PERCENT_BW(bp)) {
2503 /* maxCfg in percents of linkspeed */
2504 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2505 } else /* SD modes */
2506 /* maxCfg is absolute in 100Mb units */
2507 vn_max_rate = maxCfg * 100;
2510 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2512 input->vnic_max_rate[vn] = vn_max_rate;
2515 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2517 if (CHIP_REV_IS_SLOW(bp))
2518 return CMNG_FNS_NONE;
2519 if (IS_MF(bp))
2520 return CMNG_FNS_MINMAX;
2522 return CMNG_FNS_NONE;
2525 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2527 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2529 if (BP_NOMCP(bp))
2530 return; /* what should be the default value in this case */
2532 /* For 2 port configuration the absolute function number formula
2533 * is:
2534 * abs_func = 2 * vn + BP_PORT + BP_PATH
2536 * and there are 4 functions per port
2538 * For 4 port configuration it is
2539 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2541 * and there are 2 functions per port
2543 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2544 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2546 if (func >= E1H_FUNC_MAX)
2547 break;
2549 bp->mf_config[vn] =
2550 MF_CFG_RD(bp, func_mf_config[func].config);
2552 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2553 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2554 bp->flags |= MF_FUNC_DIS;
2555 } else {
2556 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2557 bp->flags &= ~MF_FUNC_DIS;
2561 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2563 struct cmng_init_input input;
2564 memset(&input, 0, sizeof(struct cmng_init_input));
2566 input.port_rate = bp->link_vars.line_speed;
2568 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2569 int vn;
2571 /* read mf conf from shmem */
2572 if (read_cfg)
2573 bnx2x_read_mf_cfg(bp);
2575 /* vn_weight_sum and enable fairness if not 0 */
2576 bnx2x_calc_vn_min(bp, &input);
2578 /* calculate and set min-max rate for each vn */
2579 if (bp->port.pmf)
2580 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2581 bnx2x_calc_vn_max(bp, vn, &input);
2583 /* always enable rate shaping and fairness */
2584 input.flags.cmng_enables |=
2585 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2587 bnx2x_init_cmng(&input, &bp->cmng);
2588 return;
2591 /* rate shaping and fairness are disabled */
2592 DP(NETIF_MSG_IFUP,
2593 "rate shaping and fairness are disabled\n");
2596 static void storm_memset_cmng(struct bnx2x *bp,
2597 struct cmng_init *cmng,
2598 u8 port)
2600 int vn;
2601 size_t size = sizeof(struct cmng_struct_per_port);
2603 u32 addr = BAR_XSTRORM_INTMEM +
2604 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2606 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2608 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2609 int func = func_by_vn(bp, vn);
2611 addr = BAR_XSTRORM_INTMEM +
2612 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2613 size = sizeof(struct rate_shaping_vars_per_vn);
2614 __storm_memset_struct(bp, addr, size,
2615 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2617 addr = BAR_XSTRORM_INTMEM +
2618 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2619 size = sizeof(struct fairness_vars_per_vn);
2620 __storm_memset_struct(bp, addr, size,
2621 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2625 /* init cmng mode in HW according to local configuration */
2626 void bnx2x_set_local_cmng(struct bnx2x *bp)
2628 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2630 if (cmng_fns != CMNG_FNS_NONE) {
2631 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2632 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2633 } else {
2634 /* rate shaping and fairness are disabled */
2635 DP(NETIF_MSG_IFUP,
2636 "single function mode without fairness\n");
2640 /* This function is called upon link interrupt */
2641 static void bnx2x_link_attn(struct bnx2x *bp)
2643 /* Make sure that we are synced with the current statistics */
2644 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2646 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2648 bnx2x_init_dropless_fc(bp);
2650 if (bp->link_vars.link_up) {
2652 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2653 struct host_port_stats *pstats;
2655 pstats = bnx2x_sp(bp, port_stats);
2656 /* reset old mac stats */
2657 memset(&(pstats->mac_stx[0]), 0,
2658 sizeof(struct mac_stx));
2660 if (bp->state == BNX2X_STATE_OPEN)
2661 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2664 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2665 bnx2x_set_local_cmng(bp);
2667 __bnx2x_link_report(bp);
2669 if (IS_MF(bp))
2670 bnx2x_link_sync_notify(bp);
2673 void bnx2x__link_status_update(struct bnx2x *bp)
2675 if (bp->state != BNX2X_STATE_OPEN)
2676 return;
2678 /* read updated dcb configuration */
2679 if (IS_PF(bp)) {
2680 bnx2x_dcbx_pmf_update(bp);
2681 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2682 if (bp->link_vars.link_up)
2683 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2684 else
2685 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2686 /* indicate link status */
2687 bnx2x_link_report(bp);
2689 } else { /* VF */
2690 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2691 SUPPORTED_10baseT_Full |
2692 SUPPORTED_100baseT_Half |
2693 SUPPORTED_100baseT_Full |
2694 SUPPORTED_1000baseT_Full |
2695 SUPPORTED_2500baseX_Full |
2696 SUPPORTED_10000baseT_Full |
2697 SUPPORTED_TP |
2698 SUPPORTED_FIBRE |
2699 SUPPORTED_Autoneg |
2700 SUPPORTED_Pause |
2701 SUPPORTED_Asym_Pause);
2702 bp->port.advertising[0] = bp->port.supported[0];
2704 bp->link_params.bp = bp;
2705 bp->link_params.port = BP_PORT(bp);
2706 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2707 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2708 bp->link_params.req_line_speed[0] = SPEED_10000;
2709 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2710 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2711 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2712 bp->link_vars.line_speed = SPEED_10000;
2713 bp->link_vars.link_status =
2714 (LINK_STATUS_LINK_UP |
2715 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2716 bp->link_vars.link_up = 1;
2717 bp->link_vars.duplex = DUPLEX_FULL;
2718 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2719 __bnx2x_link_report(bp);
2721 bnx2x_sample_bulletin(bp);
2723 /* if bulletin board did not have an update for link status
2724 * __bnx2x_link_report will report current status
2725 * but it will NOT duplicate report in case of already reported
2726 * during sampling bulletin board.
2728 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2732 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2733 u16 vlan_val, u8 allowed_prio)
2735 struct bnx2x_func_state_params func_params = {NULL};
2736 struct bnx2x_func_afex_update_params *f_update_params =
2737 &func_params.params.afex_update;
2739 func_params.f_obj = &bp->func_obj;
2740 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2742 /* no need to wait for RAMROD completion, so don't
2743 * set RAMROD_COMP_WAIT flag
2746 f_update_params->vif_id = vifid;
2747 f_update_params->afex_default_vlan = vlan_val;
2748 f_update_params->allowed_priorities = allowed_prio;
2750 /* if ramrod can not be sent, response to MCP immediately */
2751 if (bnx2x_func_state_change(bp, &func_params) < 0)
2752 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2754 return 0;
2757 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2758 u16 vif_index, u8 func_bit_map)
2760 struct bnx2x_func_state_params func_params = {NULL};
2761 struct bnx2x_func_afex_viflists_params *update_params =
2762 &func_params.params.afex_viflists;
2763 int rc;
2764 u32 drv_msg_code;
2766 /* validate only LIST_SET and LIST_GET are received from switch */
2767 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2768 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2769 cmd_type);
2771 func_params.f_obj = &bp->func_obj;
2772 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2774 /* set parameters according to cmd_type */
2775 update_params->afex_vif_list_command = cmd_type;
2776 update_params->vif_list_index = vif_index;
2777 update_params->func_bit_map =
2778 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2779 update_params->func_to_clear = 0;
2780 drv_msg_code =
2781 (cmd_type == VIF_LIST_RULE_GET) ?
2782 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2783 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2785 /* if ramrod can not be sent, respond to MCP immediately for
2786 * SET and GET requests (other are not triggered from MCP)
2788 rc = bnx2x_func_state_change(bp, &func_params);
2789 if (rc < 0)
2790 bnx2x_fw_command(bp, drv_msg_code, 0);
2792 return 0;
2795 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2797 struct afex_stats afex_stats;
2798 u32 func = BP_ABS_FUNC(bp);
2799 u32 mf_config;
2800 u16 vlan_val;
2801 u32 vlan_prio;
2802 u16 vif_id;
2803 u8 allowed_prio;
2804 u8 vlan_mode;
2805 u32 addr_to_write, vifid, addrs, stats_type, i;
2807 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2808 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2809 DP(BNX2X_MSG_MCP,
2810 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2811 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2814 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2815 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2816 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2817 DP(BNX2X_MSG_MCP,
2818 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2819 vifid, addrs);
2820 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2821 addrs);
2824 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2825 addr_to_write = SHMEM2_RD(bp,
2826 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2827 stats_type = SHMEM2_RD(bp,
2828 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2830 DP(BNX2X_MSG_MCP,
2831 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2832 addr_to_write);
2834 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2836 /* write response to scratchpad, for MCP */
2837 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2838 REG_WR(bp, addr_to_write + i*sizeof(u32),
2839 *(((u32 *)(&afex_stats))+i));
2841 /* send ack message to MCP */
2842 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2845 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2846 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2847 bp->mf_config[BP_VN(bp)] = mf_config;
2848 DP(BNX2X_MSG_MCP,
2849 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2850 mf_config);
2852 /* if VIF_SET is "enabled" */
2853 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2854 /* set rate limit directly to internal RAM */
2855 struct cmng_init_input cmng_input;
2856 struct rate_shaping_vars_per_vn m_rs_vn;
2857 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2858 u32 addr = BAR_XSTRORM_INTMEM +
2859 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2861 bp->mf_config[BP_VN(bp)] = mf_config;
2863 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2864 m_rs_vn.vn_counter.rate =
2865 cmng_input.vnic_max_rate[BP_VN(bp)];
2866 m_rs_vn.vn_counter.quota =
2867 (m_rs_vn.vn_counter.rate *
2868 RS_PERIODIC_TIMEOUT_USEC) / 8;
2870 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2872 /* read relevant values from mf_cfg struct in shmem */
2873 vif_id =
2874 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2875 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2876 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2877 vlan_val =
2878 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2879 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2880 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2881 vlan_prio = (mf_config &
2882 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2883 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2884 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2885 vlan_mode =
2886 (MF_CFG_RD(bp,
2887 func_mf_config[func].afex_config) &
2888 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2889 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2890 allowed_prio =
2891 (MF_CFG_RD(bp,
2892 func_mf_config[func].afex_config) &
2893 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2894 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2896 /* send ramrod to FW, return in case of failure */
2897 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2898 allowed_prio))
2899 return;
2901 bp->afex_def_vlan_tag = vlan_val;
2902 bp->afex_vlan_mode = vlan_mode;
2903 } else {
2904 /* notify link down because BP->flags is disabled */
2905 bnx2x_link_report(bp);
2907 /* send INVALID VIF ramrod to FW */
2908 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2910 /* Reset the default afex VLAN */
2911 bp->afex_def_vlan_tag = -1;
2916 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2918 struct bnx2x_func_switch_update_params *switch_update_params;
2919 struct bnx2x_func_state_params func_params;
2921 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2922 switch_update_params = &func_params.params.switch_update;
2923 func_params.f_obj = &bp->func_obj;
2924 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2926 /* Prepare parameters for function state transitions */
2927 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2928 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2930 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2931 int func = BP_ABS_FUNC(bp);
2932 u32 val;
2934 /* Re-learn the S-tag from shmem */
2935 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2936 FUNC_MF_CFG_E1HOV_TAG_MASK;
2937 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2938 bp->mf_ov = val;
2939 } else {
2940 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2941 goto fail;
2944 /* Configure new S-tag in LLH */
2945 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2946 bp->mf_ov);
2948 /* Send Ramrod to update FW of change */
2949 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2950 &switch_update_params->changes);
2951 switch_update_params->vlan = bp->mf_ov;
2953 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2954 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2955 bp->mf_ov);
2956 goto fail;
2957 } else {
2958 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2959 bp->mf_ov);
2961 } else {
2962 goto fail;
2965 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2966 return;
2967 fail:
2968 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2971 static void bnx2x_pmf_update(struct bnx2x *bp)
2973 int port = BP_PORT(bp);
2974 u32 val;
2976 bp->port.pmf = 1;
2977 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2980 * We need the mb() to ensure the ordering between the writing to
2981 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2983 smp_mb();
2985 /* queue a periodic task */
2986 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2988 bnx2x_dcbx_pmf_update(bp);
2990 /* enable nig attention */
2991 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2992 if (bp->common.int_block == INT_BLOCK_HC) {
2993 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2994 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2995 } else if (!CHIP_IS_E1x(bp)) {
2996 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2997 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3000 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3003 /* end of Link */
3005 /* slow path */
3008 * General service functions
3011 /* send the MCP a request, block until there is a reply */
3012 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3014 int mb_idx = BP_FW_MB_IDX(bp);
3015 u32 seq;
3016 u32 rc = 0;
3017 u32 cnt = 1;
3018 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3020 mutex_lock(&bp->fw_mb_mutex);
3021 seq = ++bp->fw_seq;
3022 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3023 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3025 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3026 (command | seq), param);
3028 do {
3029 /* let the FW do it's magic ... */
3030 msleep(delay);
3032 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3034 /* Give the FW up to 5 second (500*10ms) */
3035 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3037 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3038 cnt*delay, rc, seq);
3040 /* is this a reply to our command? */
3041 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3042 rc &= FW_MSG_CODE_MASK;
3043 else {
3044 /* FW BUG! */
3045 BNX2X_ERR("FW failed to respond!\n");
3046 bnx2x_fw_dump(bp);
3047 rc = 0;
3049 mutex_unlock(&bp->fw_mb_mutex);
3051 return rc;
3054 static void storm_memset_func_cfg(struct bnx2x *bp,
3055 struct tstorm_eth_function_common_config *tcfg,
3056 u16 abs_fid)
3058 size_t size = sizeof(struct tstorm_eth_function_common_config);
3060 u32 addr = BAR_TSTRORM_INTMEM +
3061 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3063 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3066 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3068 if (CHIP_IS_E1x(bp)) {
3069 struct tstorm_eth_function_common_config tcfg = {0};
3071 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3074 /* Enable the function in the FW */
3075 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3076 storm_memset_func_en(bp, p->func_id, 1);
3078 /* spq */
3079 if (p->spq_active) {
3080 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3081 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3082 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3087 * bnx2x_get_common_flags - Return common flags
3089 * @bp: device handle
3090 * @fp: queue handle
3091 * @zero_stats: TRUE if statistics zeroing is needed
3093 * Return the flags that are common for the Tx-only and not normal connections.
3095 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3096 struct bnx2x_fastpath *fp,
3097 bool zero_stats)
3099 unsigned long flags = 0;
3101 /* PF driver will always initialize the Queue to an ACTIVE state */
3102 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3104 /* tx only connections collect statistics (on the same index as the
3105 * parent connection). The statistics are zeroed when the parent
3106 * connection is initialized.
3109 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3110 if (zero_stats)
3111 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3113 if (bp->flags & TX_SWITCHING)
3114 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3116 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3117 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3119 #ifdef BNX2X_STOP_ON_ERROR
3120 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3121 #endif
3123 return flags;
3126 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3127 struct bnx2x_fastpath *fp,
3128 bool leading)
3130 unsigned long flags = 0;
3132 /* calculate other queue flags */
3133 if (IS_MF_SD(bp))
3134 __set_bit(BNX2X_Q_FLG_OV, &flags);
3136 if (IS_FCOE_FP(fp)) {
3137 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3138 /* For FCoE - force usage of default priority (for afex) */
3139 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3142 if (fp->mode != TPA_MODE_DISABLED) {
3143 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3144 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3145 if (fp->mode == TPA_MODE_GRO)
3146 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3149 if (leading) {
3150 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3151 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3154 /* Always set HW VLAN stripping */
3155 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3157 /* configure silent vlan removal */
3158 if (IS_MF_AFEX(bp))
3159 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3161 return flags | bnx2x_get_common_flags(bp, fp, true);
3164 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3165 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3166 u8 cos)
3168 gen_init->stat_id = bnx2x_stats_id(fp);
3169 gen_init->spcl_id = fp->cl_id;
3171 /* Always use mini-jumbo MTU for FCoE L2 ring */
3172 if (IS_FCOE_FP(fp))
3173 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3174 else
3175 gen_init->mtu = bp->dev->mtu;
3177 gen_init->cos = cos;
3179 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3182 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3183 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3184 struct bnx2x_rxq_setup_params *rxq_init)
3186 u8 max_sge = 0;
3187 u16 sge_sz = 0;
3188 u16 tpa_agg_size = 0;
3190 if (fp->mode != TPA_MODE_DISABLED) {
3191 pause->sge_th_lo = SGE_TH_LO(bp);
3192 pause->sge_th_hi = SGE_TH_HI(bp);
3194 /* validate SGE ring has enough to cross high threshold */
3195 WARN_ON(bp->dropless_fc &&
3196 pause->sge_th_hi + FW_PREFETCH_CNT >
3197 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3199 tpa_agg_size = TPA_AGG_SIZE;
3200 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3201 SGE_PAGE_SHIFT;
3202 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3203 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3204 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3207 /* pause - not for e1 */
3208 if (!CHIP_IS_E1(bp)) {
3209 pause->bd_th_lo = BD_TH_LO(bp);
3210 pause->bd_th_hi = BD_TH_HI(bp);
3212 pause->rcq_th_lo = RCQ_TH_LO(bp);
3213 pause->rcq_th_hi = RCQ_TH_HI(bp);
3215 * validate that rings have enough entries to cross
3216 * high thresholds
3218 WARN_ON(bp->dropless_fc &&
3219 pause->bd_th_hi + FW_PREFETCH_CNT >
3220 bp->rx_ring_size);
3221 WARN_ON(bp->dropless_fc &&
3222 pause->rcq_th_hi + FW_PREFETCH_CNT >
3223 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3225 pause->pri_map = 1;
3228 /* rxq setup */
3229 rxq_init->dscr_map = fp->rx_desc_mapping;
3230 rxq_init->sge_map = fp->rx_sge_mapping;
3231 rxq_init->rcq_map = fp->rx_comp_mapping;
3232 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3234 /* This should be a maximum number of data bytes that may be
3235 * placed on the BD (not including paddings).
3237 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3238 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3240 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3241 rxq_init->tpa_agg_sz = tpa_agg_size;
3242 rxq_init->sge_buf_sz = sge_sz;
3243 rxq_init->max_sges_pkt = max_sge;
3244 rxq_init->rss_engine_id = BP_FUNC(bp);
3245 rxq_init->mcast_engine_id = BP_FUNC(bp);
3247 /* Maximum number or simultaneous TPA aggregation for this Queue.
3249 * For PF Clients it should be the maximum available number.
3250 * VF driver(s) may want to define it to a smaller value.
3252 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3254 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3255 rxq_init->fw_sb_id = fp->fw_sb_id;
3257 if (IS_FCOE_FP(fp))
3258 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3259 else
3260 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3261 /* configure silent vlan removal
3262 * if multi function mode is afex, then mask default vlan
3264 if (IS_MF_AFEX(bp)) {
3265 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3266 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3270 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3271 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3272 u8 cos)
3274 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3275 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3276 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3277 txq_init->fw_sb_id = fp->fw_sb_id;
3280 * set the tss leading client id for TX classification ==
3281 * leading RSS client id
3283 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3285 if (IS_FCOE_FP(fp)) {
3286 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3287 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3291 static void bnx2x_pf_init(struct bnx2x *bp)
3293 struct bnx2x_func_init_params func_init = {0};
3294 struct event_ring_data eq_data = { {0} };
3296 if (!CHIP_IS_E1x(bp)) {
3297 /* reset IGU PF statistics: MSIX + ATTN */
3298 /* PF */
3299 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3300 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3301 (CHIP_MODE_IS_4_PORT(bp) ?
3302 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303 /* ATTN */
3304 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3305 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3306 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3307 (CHIP_MODE_IS_4_PORT(bp) ?
3308 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3311 func_init.spq_active = true;
3312 func_init.pf_id = BP_FUNC(bp);
3313 func_init.func_id = BP_FUNC(bp);
3314 func_init.spq_map = bp->spq_mapping;
3315 func_init.spq_prod = bp->spq_prod_idx;
3317 bnx2x_func_init(bp, &func_init);
3319 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3322 * Congestion management values depend on the link rate
3323 * There is no active link so initial link rate is set to 10 Gbps.
3324 * When the link comes up The congestion management values are
3325 * re-calculated according to the actual link rate.
3327 bp->link_vars.line_speed = SPEED_10000;
3328 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3330 /* Only the PMF sets the HW */
3331 if (bp->port.pmf)
3332 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3334 /* init Event Queue - PCI bus guarantees correct endianity*/
3335 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3336 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3337 eq_data.producer = bp->eq_prod;
3338 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3339 eq_data.sb_id = DEF_SB_ID;
3340 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3343 static void bnx2x_e1h_disable(struct bnx2x *bp)
3345 int port = BP_PORT(bp);
3347 bnx2x_tx_disable(bp);
3349 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3352 static void bnx2x_e1h_enable(struct bnx2x *bp)
3354 int port = BP_PORT(bp);
3356 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3357 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3359 /* Tx queue should be only re-enabled */
3360 netif_tx_wake_all_queues(bp->dev);
3363 * Should not call netif_carrier_on since it will be called if the link
3364 * is up when checking for link state
3368 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3370 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3372 struct eth_stats_info *ether_stat =
3373 &bp->slowpath->drv_info_to_mcp.ether_stat;
3374 struct bnx2x_vlan_mac_obj *mac_obj =
3375 &bp->sp_objs->mac_obj;
3376 int i;
3378 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3379 ETH_STAT_INFO_VERSION_LEN);
3381 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3382 * mac_local field in ether_stat struct. The base address is offset by 2
3383 * bytes to account for the field being 8 bytes but a mac address is
3384 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3385 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3386 * allocated by the ether_stat struct, so the macs will land in their
3387 * proper positions.
3389 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3390 memset(ether_stat->mac_local + i, 0,
3391 sizeof(ether_stat->mac_local[0]));
3392 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3393 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3394 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3395 ETH_ALEN);
3396 ether_stat->mtu_size = bp->dev->mtu;
3397 if (bp->dev->features & NETIF_F_RXCSUM)
3398 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3399 if (bp->dev->features & NETIF_F_TSO)
3400 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3401 ether_stat->feature_flags |= bp->common.boot_mode;
3403 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3405 ether_stat->txq_size = bp->tx_ring_size;
3406 ether_stat->rxq_size = bp->rx_ring_size;
3408 #ifdef CONFIG_BNX2X_SRIOV
3409 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3410 #endif
3413 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3415 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3416 struct fcoe_stats_info *fcoe_stat =
3417 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3419 if (!CNIC_LOADED(bp))
3420 return;
3422 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3424 fcoe_stat->qos_priority =
3425 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3427 /* insert FCoE stats from ramrod response */
3428 if (!NO_FCOE(bp)) {
3429 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3430 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3431 tstorm_queue_statistics;
3433 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3434 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3435 xstorm_queue_statistics;
3437 struct fcoe_statistics_params *fw_fcoe_stat =
3438 &bp->fw_stats_data->fcoe;
3440 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3441 fcoe_stat->rx_bytes_lo,
3442 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3444 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3445 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3446 fcoe_stat->rx_bytes_lo,
3447 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3449 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3450 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3451 fcoe_stat->rx_bytes_lo,
3452 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3454 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3455 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3456 fcoe_stat->rx_bytes_lo,
3457 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3459 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3460 fcoe_stat->rx_frames_lo,
3461 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3463 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3464 fcoe_stat->rx_frames_lo,
3465 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3467 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468 fcoe_stat->rx_frames_lo,
3469 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3471 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472 fcoe_stat->rx_frames_lo,
3473 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3475 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3476 fcoe_stat->tx_bytes_lo,
3477 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3479 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3480 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3481 fcoe_stat->tx_bytes_lo,
3482 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3484 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3485 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3486 fcoe_stat->tx_bytes_lo,
3487 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3489 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3490 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3491 fcoe_stat->tx_bytes_lo,
3492 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3494 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3495 fcoe_stat->tx_frames_lo,
3496 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3498 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3499 fcoe_stat->tx_frames_lo,
3500 fcoe_q_xstorm_stats->ucast_pkts_sent);
3502 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503 fcoe_stat->tx_frames_lo,
3504 fcoe_q_xstorm_stats->bcast_pkts_sent);
3506 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507 fcoe_stat->tx_frames_lo,
3508 fcoe_q_xstorm_stats->mcast_pkts_sent);
3511 /* ask L5 driver to add data to the struct */
3512 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3515 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3517 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3518 struct iscsi_stats_info *iscsi_stat =
3519 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3521 if (!CNIC_LOADED(bp))
3522 return;
3524 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3525 ETH_ALEN);
3527 iscsi_stat->qos_priority =
3528 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3530 /* ask L5 driver to add data to the struct */
3531 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3534 /* called due to MCP event (on pmf):
3535 * reread new bandwidth configuration
3536 * configure FW
3537 * notify others function about the change
3539 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3541 /* Workaround for MFW bug.
3542 * MFW is not supposed to generate BW attention in
3543 * single function mode.
3545 if (!IS_MF(bp)) {
3546 DP(BNX2X_MSG_MCP,
3547 "Ignoring MF BW config in single function mode\n");
3548 return;
3551 if (bp->link_vars.link_up) {
3552 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3553 bnx2x_link_sync_notify(bp);
3555 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3558 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3560 bnx2x_config_mf_bw(bp);
3561 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3564 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3566 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3567 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3570 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3571 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3573 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3575 enum drv_info_opcode op_code;
3576 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3577 bool release = false;
3578 int wait;
3580 /* if drv_info version supported by MFW doesn't match - send NACK */
3581 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3582 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3583 return;
3586 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3587 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3589 /* Must prevent other flows from accessing drv_info_to_mcp */
3590 mutex_lock(&bp->drv_info_mutex);
3592 memset(&bp->slowpath->drv_info_to_mcp, 0,
3593 sizeof(union drv_info_to_mcp));
3595 switch (op_code) {
3596 case ETH_STATS_OPCODE:
3597 bnx2x_drv_info_ether_stat(bp);
3598 break;
3599 case FCOE_STATS_OPCODE:
3600 bnx2x_drv_info_fcoe_stat(bp);
3601 break;
3602 case ISCSI_STATS_OPCODE:
3603 bnx2x_drv_info_iscsi_stat(bp);
3604 break;
3605 default:
3606 /* if op code isn't supported - send NACK */
3607 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3608 goto out;
3611 /* if we got drv_info attn from MFW then these fields are defined in
3612 * shmem2 for sure
3614 SHMEM2_WR(bp, drv_info_host_addr_lo,
3615 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3616 SHMEM2_WR(bp, drv_info_host_addr_hi,
3617 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3619 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3621 /* Since possible management wants both this and get_driver_version
3622 * need to wait until management notifies us it finished utilizing
3623 * the buffer.
3625 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3626 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3627 } else if (!bp->drv_info_mng_owner) {
3628 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3630 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3631 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3633 /* Management is done; need to clear indication */
3634 if (indication & bit) {
3635 SHMEM2_WR(bp, mfw_drv_indication,
3636 indication & ~bit);
3637 release = true;
3638 break;
3641 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3644 if (!release) {
3645 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3646 bp->drv_info_mng_owner = true;
3649 out:
3650 mutex_unlock(&bp->drv_info_mutex);
3653 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3655 u8 vals[4];
3656 int i = 0;
3658 if (bnx2x_format) {
3659 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3660 &vals[0], &vals[1], &vals[2], &vals[3]);
3661 if (i > 0)
3662 vals[0] -= '0';
3663 } else {
3664 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3665 &vals[0], &vals[1], &vals[2], &vals[3]);
3668 while (i < 4)
3669 vals[i++] = 0;
3671 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3674 void bnx2x_update_mng_version(struct bnx2x *bp)
3676 u32 iscsiver = DRV_VER_NOT_LOADED;
3677 u32 fcoever = DRV_VER_NOT_LOADED;
3678 u32 ethver = DRV_VER_NOT_LOADED;
3679 int idx = BP_FW_MB_IDX(bp);
3680 u8 *version;
3682 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3683 return;
3685 mutex_lock(&bp->drv_info_mutex);
3686 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3687 if (bp->drv_info_mng_owner)
3688 goto out;
3690 if (bp->state != BNX2X_STATE_OPEN)
3691 goto out;
3693 /* Parse ethernet driver version */
3694 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3695 if (!CNIC_LOADED(bp))
3696 goto out;
3698 /* Try getting storage driver version via cnic */
3699 memset(&bp->slowpath->drv_info_to_mcp, 0,
3700 sizeof(union drv_info_to_mcp));
3701 bnx2x_drv_info_iscsi_stat(bp);
3702 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3703 iscsiver = bnx2x_update_mng_version_utility(version, false);
3705 memset(&bp->slowpath->drv_info_to_mcp, 0,
3706 sizeof(union drv_info_to_mcp));
3707 bnx2x_drv_info_fcoe_stat(bp);
3708 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3709 fcoever = bnx2x_update_mng_version_utility(version, false);
3711 out:
3712 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3713 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3714 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3716 mutex_unlock(&bp->drv_info_mutex);
3718 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3719 ethver, iscsiver, fcoever);
3722 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3724 u32 drv_ver;
3725 u32 valid_dump;
3727 if (!SHMEM2_HAS(bp, drv_info))
3728 return;
3730 /* Update Driver load time, possibly broken in y2038 */
3731 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3733 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3734 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3736 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3738 /* Check & notify On-Chip dump. */
3739 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3741 if (valid_dump & FIRST_DUMP_VALID)
3742 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3744 if (valid_dump & SECOND_DUMP_VALID)
3745 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3748 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3750 u32 cmd_ok, cmd_fail;
3752 /* sanity */
3753 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3754 event & DRV_STATUS_OEM_EVENT_MASK) {
3755 BNX2X_ERR("Received simultaneous events %08x\n", event);
3756 return;
3759 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3760 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3761 cmd_ok = DRV_MSG_CODE_DCC_OK;
3762 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3763 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3764 cmd_ok = DRV_MSG_CODE_OEM_OK;
3767 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3769 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3770 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3771 /* This is the only place besides the function initialization
3772 * where the bp->flags can change so it is done without any
3773 * locks
3775 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3776 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3777 bp->flags |= MF_FUNC_DIS;
3779 bnx2x_e1h_disable(bp);
3780 } else {
3781 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3782 bp->flags &= ~MF_FUNC_DIS;
3784 bnx2x_e1h_enable(bp);
3786 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3787 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3790 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3791 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3792 bnx2x_config_mf_bw(bp);
3793 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3794 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3797 /* Report results to MCP */
3798 if (event)
3799 bnx2x_fw_command(bp, cmd_fail, 0);
3800 else
3801 bnx2x_fw_command(bp, cmd_ok, 0);
3804 /* must be called under the spq lock */
3805 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3807 struct eth_spe *next_spe = bp->spq_prod_bd;
3809 if (bp->spq_prod_bd == bp->spq_last_bd) {
3810 bp->spq_prod_bd = bp->spq;
3811 bp->spq_prod_idx = 0;
3812 DP(BNX2X_MSG_SP, "end of spq\n");
3813 } else {
3814 bp->spq_prod_bd++;
3815 bp->spq_prod_idx++;
3817 return next_spe;
3820 /* must be called under the spq lock */
3821 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3823 int func = BP_FUNC(bp);
3826 * Make sure that BD data is updated before writing the producer:
3827 * BD data is written to the memory, the producer is read from the
3828 * memory, thus we need a full memory barrier to ensure the ordering.
3830 mb();
3832 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3833 bp->spq_prod_idx);
3837 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3839 * @cmd: command to check
3840 * @cmd_type: command type
3842 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3844 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3845 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3846 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3847 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3848 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3849 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3850 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3851 return true;
3852 else
3853 return false;
3857 * bnx2x_sp_post - place a single command on an SP ring
3859 * @bp: driver handle
3860 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3861 * @cid: SW CID the command is related to
3862 * @data_hi: command private data address (high 32 bits)
3863 * @data_lo: command private data address (low 32 bits)
3864 * @cmd_type: command type (e.g. NONE, ETH)
3866 * SP data is handled as if it's always an address pair, thus data fields are
3867 * not swapped to little endian in upper functions. Instead this function swaps
3868 * data as if it's two u32 fields.
3870 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3871 u32 data_hi, u32 data_lo, int cmd_type)
3873 struct eth_spe *spe;
3874 u16 type;
3875 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3877 #ifdef BNX2X_STOP_ON_ERROR
3878 if (unlikely(bp->panic)) {
3879 BNX2X_ERR("Can't post SP when there is panic\n");
3880 return -EIO;
3882 #endif
3884 spin_lock_bh(&bp->spq_lock);
3886 if (common) {
3887 if (!atomic_read(&bp->eq_spq_left)) {
3888 BNX2X_ERR("BUG! EQ ring full!\n");
3889 spin_unlock_bh(&bp->spq_lock);
3890 bnx2x_panic();
3891 return -EBUSY;
3893 } else if (!atomic_read(&bp->cq_spq_left)) {
3894 BNX2X_ERR("BUG! SPQ ring full!\n");
3895 spin_unlock_bh(&bp->spq_lock);
3896 bnx2x_panic();
3897 return -EBUSY;
3900 spe = bnx2x_sp_get_next(bp);
3902 /* CID needs port number to be encoded int it */
3903 spe->hdr.conn_and_cmd_data =
3904 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3905 HW_CID(bp, cid));
3907 /* In some cases, type may already contain the func-id
3908 * mainly in SRIOV related use cases, so we add it here only
3909 * if it's not already set.
3911 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3912 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3913 SPE_HDR_CONN_TYPE;
3914 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3915 SPE_HDR_FUNCTION_ID);
3916 } else {
3917 type = cmd_type;
3920 spe->hdr.type = cpu_to_le16(type);
3922 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3923 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3926 * It's ok if the actual decrement is issued towards the memory
3927 * somewhere between the spin_lock and spin_unlock. Thus no
3928 * more explicit memory barrier is needed.
3930 if (common)
3931 atomic_dec(&bp->eq_spq_left);
3932 else
3933 atomic_dec(&bp->cq_spq_left);
3935 DP(BNX2X_MSG_SP,
3936 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3937 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3938 (u32)(U64_LO(bp->spq_mapping) +
3939 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3940 HW_CID(bp, cid), data_hi, data_lo, type,
3941 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3943 bnx2x_sp_prod_update(bp);
3944 spin_unlock_bh(&bp->spq_lock);
3945 return 0;
3948 /* acquire split MCP access lock register */
3949 static int bnx2x_acquire_alr(struct bnx2x *bp)
3951 u32 j, val;
3952 int rc = 0;
3954 might_sleep();
3955 for (j = 0; j < 1000; j++) {
3956 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3957 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3958 if (val & MCPR_ACCESS_LOCK_LOCK)
3959 break;
3961 usleep_range(5000, 10000);
3963 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3964 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3965 rc = -EBUSY;
3968 return rc;
3971 /* release split MCP access lock register */
3972 static void bnx2x_release_alr(struct bnx2x *bp)
3974 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3977 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3978 #define BNX2X_DEF_SB_IDX 0x0002
3980 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3982 struct host_sp_status_block *def_sb = bp->def_status_blk;
3983 u16 rc = 0;
3985 barrier(); /* status block is written to by the chip */
3986 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3987 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3988 rc |= BNX2X_DEF_SB_ATT_IDX;
3991 if (bp->def_idx != def_sb->sp_sb.running_index) {
3992 bp->def_idx = def_sb->sp_sb.running_index;
3993 rc |= BNX2X_DEF_SB_IDX;
3996 /* Do not reorder: indices reading should complete before handling */
3997 barrier();
3998 return rc;
4002 * slow path service functions
4005 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4007 int port = BP_PORT(bp);
4008 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4009 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4010 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4011 NIG_REG_MASK_INTERRUPT_PORT0;
4012 u32 aeu_mask;
4013 u32 nig_mask = 0;
4014 u32 reg_addr;
4016 if (bp->attn_state & asserted)
4017 BNX2X_ERR("IGU ERROR\n");
4019 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4020 aeu_mask = REG_RD(bp, aeu_addr);
4022 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4023 aeu_mask, asserted);
4024 aeu_mask &= ~(asserted & 0x3ff);
4025 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4027 REG_WR(bp, aeu_addr, aeu_mask);
4028 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4030 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4031 bp->attn_state |= asserted;
4032 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4034 if (asserted & ATTN_HARD_WIRED_MASK) {
4035 if (asserted & ATTN_NIG_FOR_FUNC) {
4037 bnx2x_acquire_phy_lock(bp);
4039 /* save nig interrupt mask */
4040 nig_mask = REG_RD(bp, nig_int_mask_addr);
4042 /* If nig_mask is not set, no need to call the update
4043 * function.
4045 if (nig_mask) {
4046 REG_WR(bp, nig_int_mask_addr, 0);
4048 bnx2x_link_attn(bp);
4051 /* handle unicore attn? */
4053 if (asserted & ATTN_SW_TIMER_4_FUNC)
4054 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4056 if (asserted & GPIO_2_FUNC)
4057 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4059 if (asserted & GPIO_3_FUNC)
4060 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4062 if (asserted & GPIO_4_FUNC)
4063 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4065 if (port == 0) {
4066 if (asserted & ATTN_GENERAL_ATTN_1) {
4067 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4068 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4070 if (asserted & ATTN_GENERAL_ATTN_2) {
4071 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4072 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4074 if (asserted & ATTN_GENERAL_ATTN_3) {
4075 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4076 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4078 } else {
4079 if (asserted & ATTN_GENERAL_ATTN_4) {
4080 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4081 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4083 if (asserted & ATTN_GENERAL_ATTN_5) {
4084 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4085 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4087 if (asserted & ATTN_GENERAL_ATTN_6) {
4088 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4089 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4093 } /* if hardwired */
4095 if (bp->common.int_block == INT_BLOCK_HC)
4096 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4097 COMMAND_REG_ATTN_BITS_SET);
4098 else
4099 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4101 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4102 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4103 REG_WR(bp, reg_addr, asserted);
4105 /* now set back the mask */
4106 if (asserted & ATTN_NIG_FOR_FUNC) {
4107 /* Verify that IGU ack through BAR was written before restoring
4108 * NIG mask. This loop should exit after 2-3 iterations max.
4110 if (bp->common.int_block != INT_BLOCK_HC) {
4111 u32 cnt = 0, igu_acked;
4112 do {
4113 igu_acked = REG_RD(bp,
4114 IGU_REG_ATTENTION_ACK_BITS);
4115 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4116 (++cnt < MAX_IGU_ATTN_ACK_TO));
4117 if (!igu_acked)
4118 DP(NETIF_MSG_HW,
4119 "Failed to verify IGU ack on time\n");
4120 barrier();
4122 REG_WR(bp, nig_int_mask_addr, nig_mask);
4123 bnx2x_release_phy_lock(bp);
4127 static void bnx2x_fan_failure(struct bnx2x *bp)
4129 int port = BP_PORT(bp);
4130 u32 ext_phy_config;
4131 /* mark the failure */
4132 ext_phy_config =
4133 SHMEM_RD(bp,
4134 dev_info.port_hw_config[port].external_phy_config);
4136 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4137 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4138 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4139 ext_phy_config);
4141 /* log the failure */
4142 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4143 "Please contact OEM Support for assistance\n");
4145 /* Schedule device reset (unload)
4146 * This is due to some boards consuming sufficient power when driver is
4147 * up to overheat if fan fails.
4149 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4152 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4154 int port = BP_PORT(bp);
4155 int reg_offset;
4156 u32 val;
4158 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4159 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4161 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4163 val = REG_RD(bp, reg_offset);
4164 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4165 REG_WR(bp, reg_offset, val);
4167 BNX2X_ERR("SPIO5 hw attention\n");
4169 /* Fan failure attention */
4170 bnx2x_hw_reset_phy(&bp->link_params);
4171 bnx2x_fan_failure(bp);
4174 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4175 bnx2x_acquire_phy_lock(bp);
4176 bnx2x_handle_module_detect_int(&bp->link_params);
4177 bnx2x_release_phy_lock(bp);
4180 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4182 val = REG_RD(bp, reg_offset);
4183 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4184 REG_WR(bp, reg_offset, val);
4186 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4187 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4188 bnx2x_panic();
4192 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4194 u32 val;
4196 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4198 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4199 BNX2X_ERR("DB hw attention 0x%x\n", val);
4200 /* DORQ discard attention */
4201 if (val & 0x2)
4202 BNX2X_ERR("FATAL error from DORQ\n");
4205 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4207 int port = BP_PORT(bp);
4208 int reg_offset;
4210 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4211 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4213 val = REG_RD(bp, reg_offset);
4214 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4215 REG_WR(bp, reg_offset, val);
4217 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4218 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4219 bnx2x_panic();
4223 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4225 u32 val;
4227 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4229 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4230 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4231 /* CFC error attention */
4232 if (val & 0x2)
4233 BNX2X_ERR("FATAL error from CFC\n");
4236 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4237 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4238 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4239 /* RQ_USDMDP_FIFO_OVERFLOW */
4240 if (val & 0x18000)
4241 BNX2X_ERR("FATAL error from PXP\n");
4243 if (!CHIP_IS_E1x(bp)) {
4244 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4245 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4249 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4251 int port = BP_PORT(bp);
4252 int reg_offset;
4254 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4255 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4257 val = REG_RD(bp, reg_offset);
4258 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4259 REG_WR(bp, reg_offset, val);
4261 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4262 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4263 bnx2x_panic();
4267 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4269 u32 val;
4271 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4273 if (attn & BNX2X_PMF_LINK_ASSERT) {
4274 int func = BP_FUNC(bp);
4276 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4277 bnx2x_read_mf_cfg(bp);
4278 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4279 func_mf_config[BP_ABS_FUNC(bp)].config);
4280 val = SHMEM_RD(bp,
4281 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4283 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4284 DRV_STATUS_OEM_EVENT_MASK))
4285 bnx2x_oem_event(bp,
4286 (val & (DRV_STATUS_DCC_EVENT_MASK |
4287 DRV_STATUS_OEM_EVENT_MASK)));
4289 if (val & DRV_STATUS_SET_MF_BW)
4290 bnx2x_set_mf_bw(bp);
4292 if (val & DRV_STATUS_DRV_INFO_REQ)
4293 bnx2x_handle_drv_info_req(bp);
4295 if (val & DRV_STATUS_VF_DISABLED)
4296 bnx2x_schedule_iov_task(bp,
4297 BNX2X_IOV_HANDLE_FLR);
4299 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4300 bnx2x_pmf_update(bp);
4302 if (bp->port.pmf &&
4303 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4304 bp->dcbx_enabled > 0)
4305 /* start dcbx state machine */
4306 bnx2x_dcbx_set_params(bp,
4307 BNX2X_DCBX_STATE_NEG_RECEIVED);
4308 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4309 bnx2x_handle_afex_cmd(bp,
4310 val & DRV_STATUS_AFEX_EVENT_MASK);
4311 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4312 bnx2x_handle_eee_event(bp);
4314 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4315 bnx2x_schedule_sp_rtnl(bp,
4316 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4318 if (bp->link_vars.periodic_flags &
4319 PERIODIC_FLAGS_LINK_EVENT) {
4320 /* sync with link */
4321 bnx2x_acquire_phy_lock(bp);
4322 bp->link_vars.periodic_flags &=
4323 ~PERIODIC_FLAGS_LINK_EVENT;
4324 bnx2x_release_phy_lock(bp);
4325 if (IS_MF(bp))
4326 bnx2x_link_sync_notify(bp);
4327 bnx2x_link_report(bp);
4329 /* Always call it here: bnx2x_link_report() will
4330 * prevent the link indication duplication.
4332 bnx2x__link_status_update(bp);
4333 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4335 BNX2X_ERR("MC assert!\n");
4336 bnx2x_mc_assert(bp);
4337 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4338 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4339 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4340 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4341 bnx2x_panic();
4343 } else if (attn & BNX2X_MCP_ASSERT) {
4345 BNX2X_ERR("MCP assert!\n");
4346 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4347 bnx2x_fw_dump(bp);
4349 } else
4350 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4353 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4354 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4355 if (attn & BNX2X_GRC_TIMEOUT) {
4356 val = CHIP_IS_E1(bp) ? 0 :
4357 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4358 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4360 if (attn & BNX2X_GRC_RSV) {
4361 val = CHIP_IS_E1(bp) ? 0 :
4362 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4363 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4365 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4370 * Bits map:
4371 * 0-7 - Engine0 load counter.
4372 * 8-15 - Engine1 load counter.
4373 * 16 - Engine0 RESET_IN_PROGRESS bit.
4374 * 17 - Engine1 RESET_IN_PROGRESS bit.
4375 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4376 * on the engine
4377 * 19 - Engine1 ONE_IS_LOADED.
4378 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4379 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4380 * just the one belonging to its engine).
4383 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4385 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4386 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4387 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4388 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4389 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4390 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4391 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4394 * Set the GLOBAL_RESET bit.
4396 * Should be run under rtnl lock
4398 void bnx2x_set_reset_global(struct bnx2x *bp)
4400 u32 val;
4401 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4402 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4403 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4404 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408 * Clear the GLOBAL_RESET bit.
4410 * Should be run under rtnl lock
4412 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4414 u32 val;
4415 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4416 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4417 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4418 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4422 * Checks the GLOBAL_RESET bit.
4424 * should be run under rtnl lock
4426 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4428 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4430 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4431 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4435 * Clear RESET_IN_PROGRESS bit for the current engine.
4437 * Should be run under rtnl lock
4439 static void bnx2x_set_reset_done(struct bnx2x *bp)
4441 u32 val;
4442 u32 bit = BP_PATH(bp) ?
4443 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4444 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4445 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4447 /* Clear the bit */
4448 val &= ~bit;
4449 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4451 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 * Set RESET_IN_PROGRESS for the current engine.
4457 * should be run under rtnl lock
4459 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4461 u32 val;
4462 u32 bit = BP_PATH(bp) ?
4463 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4464 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4465 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4467 /* Set the bit */
4468 val |= bit;
4469 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4470 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4474 * Checks the RESET_IN_PROGRESS bit for the given engine.
4475 * should be run under rtnl lock
4477 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4479 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4480 u32 bit = engine ?
4481 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4483 /* return false if bit is set */
4484 return (val & bit) ? false : true;
4488 * set pf load for the current pf.
4490 * should be run under rtnl lock
4492 void bnx2x_set_pf_load(struct bnx2x *bp)
4494 u32 val1, val;
4495 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4496 BNX2X_PATH0_LOAD_CNT_MASK;
4497 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4498 BNX2X_PATH0_LOAD_CNT_SHIFT;
4500 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4501 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4503 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4505 /* get the current counter value */
4506 val1 = (val & mask) >> shift;
4508 /* set bit of that PF */
4509 val1 |= (1 << bp->pf_num);
4511 /* clear the old value */
4512 val &= ~mask;
4514 /* set the new one */
4515 val |= ((val1 << shift) & mask);
4517 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4518 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4522 * bnx2x_clear_pf_load - clear pf load mark
4524 * @bp: driver handle
4526 * Should be run under rtnl lock.
4527 * Decrements the load counter for the current engine. Returns
4528 * whether other functions are still loaded
4530 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4532 u32 val1, val;
4533 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4534 BNX2X_PATH0_LOAD_CNT_MASK;
4535 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4536 BNX2X_PATH0_LOAD_CNT_SHIFT;
4538 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4539 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4540 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4542 /* get the current counter value */
4543 val1 = (val & mask) >> shift;
4545 /* clear bit of that PF */
4546 val1 &= ~(1 << bp->pf_num);
4548 /* clear the old value */
4549 val &= ~mask;
4551 /* set the new one */
4552 val |= ((val1 << shift) & mask);
4554 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4555 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4556 return val1 != 0;
4560 * Read the load status for the current engine.
4562 * should be run under rtnl lock
4564 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4566 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4567 BNX2X_PATH0_LOAD_CNT_MASK);
4568 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4569 BNX2X_PATH0_LOAD_CNT_SHIFT);
4570 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4572 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4574 val = (val & mask) >> shift;
4576 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4577 engine, val);
4579 return val != 0;
4582 static void _print_parity(struct bnx2x *bp, u32 reg)
4584 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4587 static void _print_next_block(int idx, const char *blk)
4589 pr_cont("%s%s", idx ? ", " : "", blk);
4592 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4593 int *par_num, bool print)
4595 u32 cur_bit;
4596 bool res;
4597 int i;
4599 res = false;
4601 for (i = 0; sig; i++) {
4602 cur_bit = (0x1UL << i);
4603 if (sig & cur_bit) {
4604 res |= true; /* Each bit is real error! */
4606 if (print) {
4607 switch (cur_bit) {
4608 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4609 _print_next_block((*par_num)++, "BRB");
4610 _print_parity(bp,
4611 BRB1_REG_BRB1_PRTY_STS);
4612 break;
4613 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4614 _print_next_block((*par_num)++,
4615 "PARSER");
4616 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4617 break;
4618 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4619 _print_next_block((*par_num)++, "TSDM");
4620 _print_parity(bp,
4621 TSDM_REG_TSDM_PRTY_STS);
4622 break;
4623 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4624 _print_next_block((*par_num)++,
4625 "SEARCHER");
4626 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4627 break;
4628 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4629 _print_next_block((*par_num)++, "TCM");
4630 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4631 break;
4632 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4633 _print_next_block((*par_num)++,
4634 "TSEMI");
4635 _print_parity(bp,
4636 TSEM_REG_TSEM_PRTY_STS_0);
4637 _print_parity(bp,
4638 TSEM_REG_TSEM_PRTY_STS_1);
4639 break;
4640 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4641 _print_next_block((*par_num)++, "XPB");
4642 _print_parity(bp, GRCBASE_XPB +
4643 PB_REG_PB_PRTY_STS);
4644 break;
4648 /* Clear the bit */
4649 sig &= ~cur_bit;
4653 return res;
4656 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4657 int *par_num, bool *global,
4658 bool print)
4660 u32 cur_bit;
4661 bool res;
4662 int i;
4664 res = false;
4666 for (i = 0; sig; i++) {
4667 cur_bit = (0x1UL << i);
4668 if (sig & cur_bit) {
4669 res |= true; /* Each bit is real error! */
4670 switch (cur_bit) {
4671 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4672 if (print) {
4673 _print_next_block((*par_num)++, "PBF");
4674 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4676 break;
4677 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4678 if (print) {
4679 _print_next_block((*par_num)++, "QM");
4680 _print_parity(bp, QM_REG_QM_PRTY_STS);
4682 break;
4683 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4684 if (print) {
4685 _print_next_block((*par_num)++, "TM");
4686 _print_parity(bp, TM_REG_TM_PRTY_STS);
4688 break;
4689 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4690 if (print) {
4691 _print_next_block((*par_num)++, "XSDM");
4692 _print_parity(bp,
4693 XSDM_REG_XSDM_PRTY_STS);
4695 break;
4696 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4697 if (print) {
4698 _print_next_block((*par_num)++, "XCM");
4699 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4701 break;
4702 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4703 if (print) {
4704 _print_next_block((*par_num)++,
4705 "XSEMI");
4706 _print_parity(bp,
4707 XSEM_REG_XSEM_PRTY_STS_0);
4708 _print_parity(bp,
4709 XSEM_REG_XSEM_PRTY_STS_1);
4711 break;
4712 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4713 if (print) {
4714 _print_next_block((*par_num)++,
4715 "DOORBELLQ");
4716 _print_parity(bp,
4717 DORQ_REG_DORQ_PRTY_STS);
4719 break;
4720 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4721 if (print) {
4722 _print_next_block((*par_num)++, "NIG");
4723 if (CHIP_IS_E1x(bp)) {
4724 _print_parity(bp,
4725 NIG_REG_NIG_PRTY_STS);
4726 } else {
4727 _print_parity(bp,
4728 NIG_REG_NIG_PRTY_STS_0);
4729 _print_parity(bp,
4730 NIG_REG_NIG_PRTY_STS_1);
4733 break;
4734 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4735 if (print)
4736 _print_next_block((*par_num)++,
4737 "VAUX PCI CORE");
4738 *global = true;
4739 break;
4740 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4741 if (print) {
4742 _print_next_block((*par_num)++,
4743 "DEBUG");
4744 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4746 break;
4747 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4748 if (print) {
4749 _print_next_block((*par_num)++, "USDM");
4750 _print_parity(bp,
4751 USDM_REG_USDM_PRTY_STS);
4753 break;
4754 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4755 if (print) {
4756 _print_next_block((*par_num)++, "UCM");
4757 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4759 break;
4760 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4761 if (print) {
4762 _print_next_block((*par_num)++,
4763 "USEMI");
4764 _print_parity(bp,
4765 USEM_REG_USEM_PRTY_STS_0);
4766 _print_parity(bp,
4767 USEM_REG_USEM_PRTY_STS_1);
4769 break;
4770 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4771 if (print) {
4772 _print_next_block((*par_num)++, "UPB");
4773 _print_parity(bp, GRCBASE_UPB +
4774 PB_REG_PB_PRTY_STS);
4776 break;
4777 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4778 if (print) {
4779 _print_next_block((*par_num)++, "CSDM");
4780 _print_parity(bp,
4781 CSDM_REG_CSDM_PRTY_STS);
4783 break;
4784 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4785 if (print) {
4786 _print_next_block((*par_num)++, "CCM");
4787 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4789 break;
4792 /* Clear the bit */
4793 sig &= ~cur_bit;
4797 return res;
4800 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4801 int *par_num, bool print)
4803 u32 cur_bit;
4804 bool res;
4805 int i;
4807 res = false;
4809 for (i = 0; sig; i++) {
4810 cur_bit = (0x1UL << i);
4811 if (sig & cur_bit) {
4812 res = true; /* Each bit is real error! */
4813 if (print) {
4814 switch (cur_bit) {
4815 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4816 _print_next_block((*par_num)++,
4817 "CSEMI");
4818 _print_parity(bp,
4819 CSEM_REG_CSEM_PRTY_STS_0);
4820 _print_parity(bp,
4821 CSEM_REG_CSEM_PRTY_STS_1);
4822 break;
4823 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4824 _print_next_block((*par_num)++, "PXP");
4825 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4826 _print_parity(bp,
4827 PXP2_REG_PXP2_PRTY_STS_0);
4828 _print_parity(bp,
4829 PXP2_REG_PXP2_PRTY_STS_1);
4830 break;
4831 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4832 _print_next_block((*par_num)++,
4833 "PXPPCICLOCKCLIENT");
4834 break;
4835 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4836 _print_next_block((*par_num)++, "CFC");
4837 _print_parity(bp,
4838 CFC_REG_CFC_PRTY_STS);
4839 break;
4840 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4841 _print_next_block((*par_num)++, "CDU");
4842 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4843 break;
4844 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4845 _print_next_block((*par_num)++, "DMAE");
4846 _print_parity(bp,
4847 DMAE_REG_DMAE_PRTY_STS);
4848 break;
4849 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4850 _print_next_block((*par_num)++, "IGU");
4851 if (CHIP_IS_E1x(bp))
4852 _print_parity(bp,
4853 HC_REG_HC_PRTY_STS);
4854 else
4855 _print_parity(bp,
4856 IGU_REG_IGU_PRTY_STS);
4857 break;
4858 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4859 _print_next_block((*par_num)++, "MISC");
4860 _print_parity(bp,
4861 MISC_REG_MISC_PRTY_STS);
4862 break;
4866 /* Clear the bit */
4867 sig &= ~cur_bit;
4871 return res;
4874 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4875 int *par_num, bool *global,
4876 bool print)
4878 bool res = false;
4879 u32 cur_bit;
4880 int i;
4882 for (i = 0; sig; i++) {
4883 cur_bit = (0x1UL << i);
4884 if (sig & cur_bit) {
4885 switch (cur_bit) {
4886 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4887 if (print)
4888 _print_next_block((*par_num)++,
4889 "MCP ROM");
4890 *global = true;
4891 res = true;
4892 break;
4893 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4894 if (print)
4895 _print_next_block((*par_num)++,
4896 "MCP UMP RX");
4897 *global = true;
4898 res = true;
4899 break;
4900 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4901 if (print)
4902 _print_next_block((*par_num)++,
4903 "MCP UMP TX");
4904 *global = true;
4905 res = true;
4906 break;
4907 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4908 (*par_num)++;
4909 /* clear latched SCPAD PATIRY from MCP */
4910 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4911 1UL << 10);
4912 break;
4915 /* Clear the bit */
4916 sig &= ~cur_bit;
4920 return res;
4923 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4924 int *par_num, bool print)
4926 u32 cur_bit;
4927 bool res;
4928 int i;
4930 res = false;
4932 for (i = 0; sig; i++) {
4933 cur_bit = (0x1UL << i);
4934 if (sig & cur_bit) {
4935 res = true; /* Each bit is real error! */
4936 if (print) {
4937 switch (cur_bit) {
4938 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4939 _print_next_block((*par_num)++,
4940 "PGLUE_B");
4941 _print_parity(bp,
4942 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4943 break;
4944 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4945 _print_next_block((*par_num)++, "ATC");
4946 _print_parity(bp,
4947 ATC_REG_ATC_PRTY_STS);
4948 break;
4951 /* Clear the bit */
4952 sig &= ~cur_bit;
4956 return res;
4959 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4960 u32 *sig)
4962 bool res = false;
4964 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4965 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4966 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4967 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4968 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4969 int par_num = 0;
4971 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4972 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4973 sig[0] & HW_PRTY_ASSERT_SET_0,
4974 sig[1] & HW_PRTY_ASSERT_SET_1,
4975 sig[2] & HW_PRTY_ASSERT_SET_2,
4976 sig[3] & HW_PRTY_ASSERT_SET_3,
4977 sig[4] & HW_PRTY_ASSERT_SET_4);
4978 if (print) {
4979 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4980 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4981 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4982 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4983 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4984 netdev_err(bp->dev,
4985 "Parity errors detected in blocks: ");
4986 } else {
4987 print = false;
4990 res |= bnx2x_check_blocks_with_parity0(bp,
4991 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4992 res |= bnx2x_check_blocks_with_parity1(bp,
4993 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4994 res |= bnx2x_check_blocks_with_parity2(bp,
4995 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4996 res |= bnx2x_check_blocks_with_parity3(bp,
4997 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4998 res |= bnx2x_check_blocks_with_parity4(bp,
4999 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5001 if (print)
5002 pr_cont("\n");
5005 return res;
5009 * bnx2x_chk_parity_attn - checks for parity attentions.
5011 * @bp: driver handle
5012 * @global: true if there was a global attention
5013 * @print: show parity attention in syslog
5015 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5017 struct attn_route attn = { {0} };
5018 int port = BP_PORT(bp);
5020 attn.sig[0] = REG_RD(bp,
5021 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5022 port*4);
5023 attn.sig[1] = REG_RD(bp,
5024 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5025 port*4);
5026 attn.sig[2] = REG_RD(bp,
5027 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5028 port*4);
5029 attn.sig[3] = REG_RD(bp,
5030 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5031 port*4);
5032 /* Since MCP attentions can't be disabled inside the block, we need to
5033 * read AEU registers to see whether they're currently disabled
5035 attn.sig[3] &= ((REG_RD(bp,
5036 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5037 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5038 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5039 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5041 if (!CHIP_IS_E1x(bp))
5042 attn.sig[4] = REG_RD(bp,
5043 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5044 port*4);
5046 return bnx2x_parity_attn(bp, global, print, attn.sig);
5049 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5051 u32 val;
5052 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5054 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5055 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5056 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5057 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5058 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5059 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5060 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5061 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5062 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5063 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5064 if (val &
5065 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5066 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5067 if (val &
5068 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5072 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5073 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5074 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5075 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5077 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5078 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5079 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5080 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5081 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5082 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5083 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5084 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5085 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5086 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5087 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5088 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5089 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5090 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5091 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5094 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5095 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5096 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5097 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5098 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5102 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5104 struct attn_route attn, *group_mask;
5105 int port = BP_PORT(bp);
5106 int index;
5107 u32 reg_addr;
5108 u32 val;
5109 u32 aeu_mask;
5110 bool global = false;
5112 /* need to take HW lock because MCP or other port might also
5113 try to handle this event */
5114 bnx2x_acquire_alr(bp);
5116 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5117 #ifndef BNX2X_STOP_ON_ERROR
5118 bp->recovery_state = BNX2X_RECOVERY_INIT;
5119 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5120 /* Disable HW interrupts */
5121 bnx2x_int_disable(bp);
5122 /* In case of parity errors don't handle attentions so that
5123 * other function would "see" parity errors.
5125 #else
5126 bnx2x_panic();
5127 #endif
5128 bnx2x_release_alr(bp);
5129 return;
5132 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5133 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5134 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5135 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5136 if (!CHIP_IS_E1x(bp))
5137 attn.sig[4] =
5138 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5139 else
5140 attn.sig[4] = 0;
5142 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5143 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5145 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5146 if (deasserted & (1 << index)) {
5147 group_mask = &bp->attn_group[index];
5149 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5150 index,
5151 group_mask->sig[0], group_mask->sig[1],
5152 group_mask->sig[2], group_mask->sig[3],
5153 group_mask->sig[4]);
5155 bnx2x_attn_int_deasserted4(bp,
5156 attn.sig[4] & group_mask->sig[4]);
5157 bnx2x_attn_int_deasserted3(bp,
5158 attn.sig[3] & group_mask->sig[3]);
5159 bnx2x_attn_int_deasserted1(bp,
5160 attn.sig[1] & group_mask->sig[1]);
5161 bnx2x_attn_int_deasserted2(bp,
5162 attn.sig[2] & group_mask->sig[2]);
5163 bnx2x_attn_int_deasserted0(bp,
5164 attn.sig[0] & group_mask->sig[0]);
5168 bnx2x_release_alr(bp);
5170 if (bp->common.int_block == INT_BLOCK_HC)
5171 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5172 COMMAND_REG_ATTN_BITS_CLR);
5173 else
5174 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5176 val = ~deasserted;
5177 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5178 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5179 REG_WR(bp, reg_addr, val);
5181 if (~bp->attn_state & deasserted)
5182 BNX2X_ERR("IGU ERROR\n");
5184 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5185 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5187 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5188 aeu_mask = REG_RD(bp, reg_addr);
5190 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5191 aeu_mask, deasserted);
5192 aeu_mask |= (deasserted & 0x3ff);
5193 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5195 REG_WR(bp, reg_addr, aeu_mask);
5196 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5198 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5199 bp->attn_state &= ~deasserted;
5200 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5203 static void bnx2x_attn_int(struct bnx2x *bp)
5205 /* read local copy of bits */
5206 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5207 attn_bits);
5208 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5209 attn_bits_ack);
5210 u32 attn_state = bp->attn_state;
5212 /* look for changed bits */
5213 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5214 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5216 DP(NETIF_MSG_HW,
5217 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5218 attn_bits, attn_ack, asserted, deasserted);
5220 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5221 BNX2X_ERR("BAD attention state\n");
5223 /* handle bits that were raised */
5224 if (asserted)
5225 bnx2x_attn_int_asserted(bp, asserted);
5227 if (deasserted)
5228 bnx2x_attn_int_deasserted(bp, deasserted);
5231 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5232 u16 index, u8 op, u8 update)
5234 u32 igu_addr = bp->igu_base_addr;
5235 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5236 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5237 igu_addr);
5240 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5242 /* No memory barriers */
5243 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5246 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5247 union event_ring_elem *elem)
5249 u8 err = elem->message.error;
5251 if (!bp->cnic_eth_dev.starting_cid ||
5252 (cid < bp->cnic_eth_dev.starting_cid &&
5253 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5254 return 1;
5256 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5258 if (unlikely(err)) {
5260 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5261 cid);
5262 bnx2x_panic_dump(bp, false);
5264 bnx2x_cnic_cfc_comp(bp, cid, err);
5265 return 0;
5268 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5270 struct bnx2x_mcast_ramrod_params rparam;
5271 int rc;
5273 memset(&rparam, 0, sizeof(rparam));
5275 rparam.mcast_obj = &bp->mcast_obj;
5277 netif_addr_lock_bh(bp->dev);
5279 /* Clear pending state for the last command */
5280 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5282 /* If there are pending mcast commands - send them */
5283 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5284 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5285 if (rc < 0)
5286 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5287 rc);
5290 netif_addr_unlock_bh(bp->dev);
5293 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5294 union event_ring_elem *elem)
5296 unsigned long ramrod_flags = 0;
5297 int rc = 0;
5298 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5299 u32 cid = echo & BNX2X_SWCID_MASK;
5300 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5302 /* Always push next commands out, don't wait here */
5303 __set_bit(RAMROD_CONT, &ramrod_flags);
5305 switch (echo >> BNX2X_SWCID_SHIFT) {
5306 case BNX2X_FILTER_MAC_PENDING:
5307 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5308 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5309 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5310 else
5311 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5313 break;
5314 case BNX2X_FILTER_VLAN_PENDING:
5315 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5316 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5317 break;
5318 case BNX2X_FILTER_MCAST_PENDING:
5319 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5320 /* This is only relevant for 57710 where multicast MACs are
5321 * configured as unicast MACs using the same ramrod.
5323 bnx2x_handle_mcast_eqe(bp);
5324 return;
5325 default:
5326 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5327 return;
5330 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5332 if (rc < 0)
5333 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5334 else if (rc > 0)
5335 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5338 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5340 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5342 netif_addr_lock_bh(bp->dev);
5344 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5346 /* Send rx_mode command again if was requested */
5347 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5348 bnx2x_set_storm_rx_mode(bp);
5349 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5350 &bp->sp_state))
5351 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5352 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5353 &bp->sp_state))
5354 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5356 netif_addr_unlock_bh(bp->dev);
5359 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5360 union event_ring_elem *elem)
5362 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5363 DP(BNX2X_MSG_SP,
5364 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5365 elem->message.data.vif_list_event.func_bit_map);
5366 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5367 elem->message.data.vif_list_event.func_bit_map);
5368 } else if (elem->message.data.vif_list_event.echo ==
5369 VIF_LIST_RULE_SET) {
5370 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5371 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5375 /* called with rtnl_lock */
5376 static void bnx2x_after_function_update(struct bnx2x *bp)
5378 int q, rc;
5379 struct bnx2x_fastpath *fp;
5380 struct bnx2x_queue_state_params queue_params = {NULL};
5381 struct bnx2x_queue_update_params *q_update_params =
5382 &queue_params.params.update;
5384 /* Send Q update command with afex vlan removal values for all Qs */
5385 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5387 /* set silent vlan removal values according to vlan mode */
5388 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5389 &q_update_params->update_flags);
5390 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5391 &q_update_params->update_flags);
5392 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5394 /* in access mode mark mask and value are 0 to strip all vlans */
5395 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5396 q_update_params->silent_removal_value = 0;
5397 q_update_params->silent_removal_mask = 0;
5398 } else {
5399 q_update_params->silent_removal_value =
5400 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5401 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5404 for_each_eth_queue(bp, q) {
5405 /* Set the appropriate Queue object */
5406 fp = &bp->fp[q];
5407 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5409 /* send the ramrod */
5410 rc = bnx2x_queue_state_change(bp, &queue_params);
5411 if (rc < 0)
5412 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5416 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5417 fp = &bp->fp[FCOE_IDX(bp)];
5418 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5420 /* clear pending completion bit */
5421 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5423 /* mark latest Q bit */
5424 smp_mb__before_atomic();
5425 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5426 smp_mb__after_atomic();
5428 /* send Q update ramrod for FCoE Q */
5429 rc = bnx2x_queue_state_change(bp, &queue_params);
5430 if (rc < 0)
5431 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5433 } else {
5434 /* If no FCoE ring - ACK MCP now */
5435 bnx2x_link_report(bp);
5436 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5440 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5441 struct bnx2x *bp, u32 cid)
5443 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5445 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5446 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5447 else
5448 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5451 static void bnx2x_eq_int(struct bnx2x *bp)
5453 u16 hw_cons, sw_cons, sw_prod;
5454 union event_ring_elem *elem;
5455 u8 echo;
5456 u32 cid;
5457 u8 opcode;
5458 int rc, spqe_cnt = 0;
5459 struct bnx2x_queue_sp_obj *q_obj;
5460 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5461 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5463 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5465 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5466 * when we get the next-page we need to adjust so the loop
5467 * condition below will be met. The next element is the size of a
5468 * regular element and hence incrementing by 1
5470 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5471 hw_cons++;
5473 /* This function may never run in parallel with itself for a
5474 * specific bp, thus there is no need in "paired" read memory
5475 * barrier here.
5477 sw_cons = bp->eq_cons;
5478 sw_prod = bp->eq_prod;
5480 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5481 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5483 for (; sw_cons != hw_cons;
5484 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5486 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5488 rc = bnx2x_iov_eq_sp_event(bp, elem);
5489 if (!rc) {
5490 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5491 rc);
5492 goto next_spqe;
5495 opcode = elem->message.opcode;
5497 /* handle eq element */
5498 switch (opcode) {
5499 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5500 bnx2x_vf_mbx_schedule(bp,
5501 &elem->message.data.vf_pf_event);
5502 continue;
5504 case EVENT_RING_OPCODE_STAT_QUERY:
5505 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5506 "got statistics comp event %d\n",
5507 bp->stats_comp++);
5508 /* nothing to do with stats comp */
5509 goto next_spqe;
5511 case EVENT_RING_OPCODE_CFC_DEL:
5512 /* handle according to cid range */
5514 * we may want to verify here that the bp state is
5515 * HALTING
5518 /* elem CID originates from FW; actually LE */
5519 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5521 DP(BNX2X_MSG_SP,
5522 "got delete ramrod for MULTI[%d]\n", cid);
5524 if (CNIC_LOADED(bp) &&
5525 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5526 goto next_spqe;
5528 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5530 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5531 break;
5533 goto next_spqe;
5535 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5536 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5537 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5538 if (f_obj->complete_cmd(bp, f_obj,
5539 BNX2X_F_CMD_TX_STOP))
5540 break;
5541 goto next_spqe;
5543 case EVENT_RING_OPCODE_START_TRAFFIC:
5544 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5545 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5546 if (f_obj->complete_cmd(bp, f_obj,
5547 BNX2X_F_CMD_TX_START))
5548 break;
5549 goto next_spqe;
5551 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5552 echo = elem->message.data.function_update_event.echo;
5553 if (echo == SWITCH_UPDATE) {
5554 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5555 "got FUNC_SWITCH_UPDATE ramrod\n");
5556 if (f_obj->complete_cmd(
5557 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5558 break;
5560 } else {
5561 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5563 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5564 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5565 f_obj->complete_cmd(bp, f_obj,
5566 BNX2X_F_CMD_AFEX_UPDATE);
5568 /* We will perform the Queues update from
5569 * sp_rtnl task as all Queue SP operations
5570 * should run under rtnl_lock.
5572 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5575 goto next_spqe;
5577 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5578 f_obj->complete_cmd(bp, f_obj,
5579 BNX2X_F_CMD_AFEX_VIFLISTS);
5580 bnx2x_after_afex_vif_lists(bp, elem);
5581 goto next_spqe;
5582 case EVENT_RING_OPCODE_FUNCTION_START:
5583 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5584 "got FUNC_START ramrod\n");
5585 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5586 break;
5588 goto next_spqe;
5590 case EVENT_RING_OPCODE_FUNCTION_STOP:
5591 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5592 "got FUNC_STOP ramrod\n");
5593 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5594 break;
5596 goto next_spqe;
5598 case EVENT_RING_OPCODE_SET_TIMESYNC:
5599 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5600 "got set_timesync ramrod completion\n");
5601 if (f_obj->complete_cmd(bp, f_obj,
5602 BNX2X_F_CMD_SET_TIMESYNC))
5603 break;
5604 goto next_spqe;
5607 switch (opcode | bp->state) {
5608 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5609 BNX2X_STATE_OPEN):
5610 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5611 BNX2X_STATE_OPENING_WAIT4_PORT):
5612 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5613 BNX2X_STATE_CLOSING_WAIT4_HALT):
5614 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5615 SW_CID(elem->message.data.eth_event.echo));
5616 rss_raw->clear_pending(rss_raw);
5617 break;
5619 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5620 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5621 case (EVENT_RING_OPCODE_SET_MAC |
5622 BNX2X_STATE_CLOSING_WAIT4_HALT):
5623 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5624 BNX2X_STATE_OPEN):
5625 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5626 BNX2X_STATE_DIAG):
5627 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5628 BNX2X_STATE_CLOSING_WAIT4_HALT):
5629 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5630 bnx2x_handle_classification_eqe(bp, elem);
5631 break;
5633 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5634 BNX2X_STATE_OPEN):
5635 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5636 BNX2X_STATE_DIAG):
5637 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5638 BNX2X_STATE_CLOSING_WAIT4_HALT):
5639 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5640 bnx2x_handle_mcast_eqe(bp);
5641 break;
5643 case (EVENT_RING_OPCODE_FILTERS_RULES |
5644 BNX2X_STATE_OPEN):
5645 case (EVENT_RING_OPCODE_FILTERS_RULES |
5646 BNX2X_STATE_DIAG):
5647 case (EVENT_RING_OPCODE_FILTERS_RULES |
5648 BNX2X_STATE_CLOSING_WAIT4_HALT):
5649 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5650 bnx2x_handle_rx_mode_eqe(bp);
5651 break;
5652 default:
5653 /* unknown event log error and continue */
5654 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5655 elem->message.opcode, bp->state);
5657 next_spqe:
5658 spqe_cnt++;
5659 } /* for */
5661 smp_mb__before_atomic();
5662 atomic_add(spqe_cnt, &bp->eq_spq_left);
5664 bp->eq_cons = sw_cons;
5665 bp->eq_prod = sw_prod;
5666 /* Make sure that above mem writes were issued towards the memory */
5667 smp_wmb();
5669 /* update producer */
5670 bnx2x_update_eq_prod(bp, bp->eq_prod);
5673 static void bnx2x_sp_task(struct work_struct *work)
5675 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5677 DP(BNX2X_MSG_SP, "sp task invoked\n");
5679 /* make sure the atomic interrupt_occurred has been written */
5680 smp_rmb();
5681 if (atomic_read(&bp->interrupt_occurred)) {
5683 /* what work needs to be performed? */
5684 u16 status = bnx2x_update_dsb_idx(bp);
5686 DP(BNX2X_MSG_SP, "status %x\n", status);
5687 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5688 atomic_set(&bp->interrupt_occurred, 0);
5690 /* HW attentions */
5691 if (status & BNX2X_DEF_SB_ATT_IDX) {
5692 bnx2x_attn_int(bp);
5693 status &= ~BNX2X_DEF_SB_ATT_IDX;
5696 /* SP events: STAT_QUERY and others */
5697 if (status & BNX2X_DEF_SB_IDX) {
5698 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5700 if (FCOE_INIT(bp) &&
5701 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5702 /* Prevent local bottom-halves from running as
5703 * we are going to change the local NAPI list.
5705 local_bh_disable();
5706 napi_schedule(&bnx2x_fcoe(bp, napi));
5707 local_bh_enable();
5710 /* Handle EQ completions */
5711 bnx2x_eq_int(bp);
5712 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5713 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5715 status &= ~BNX2X_DEF_SB_IDX;
5718 /* if status is non zero then perhaps something went wrong */
5719 if (unlikely(status))
5720 DP(BNX2X_MSG_SP,
5721 "got an unknown interrupt! (status 0x%x)\n", status);
5723 /* ack status block only if something was actually handled */
5724 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5725 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5728 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5729 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5730 &bp->sp_state)) {
5731 bnx2x_link_report(bp);
5732 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5736 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5738 struct net_device *dev = dev_instance;
5739 struct bnx2x *bp = netdev_priv(dev);
5741 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5742 IGU_INT_DISABLE, 0);
5744 #ifdef BNX2X_STOP_ON_ERROR
5745 if (unlikely(bp->panic))
5746 return IRQ_HANDLED;
5747 #endif
5749 if (CNIC_LOADED(bp)) {
5750 struct cnic_ops *c_ops;
5752 rcu_read_lock();
5753 c_ops = rcu_dereference(bp->cnic_ops);
5754 if (c_ops)
5755 c_ops->cnic_handler(bp->cnic_data, NULL);
5756 rcu_read_unlock();
5759 /* schedule sp task to perform default status block work, ack
5760 * attentions and enable interrupts.
5762 bnx2x_schedule_sp_task(bp);
5764 return IRQ_HANDLED;
5767 /* end of slow path */
5769 void bnx2x_drv_pulse(struct bnx2x *bp)
5771 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5772 bp->fw_drv_pulse_wr_seq);
5775 static void bnx2x_timer(struct timer_list *t)
5777 struct bnx2x *bp = from_timer(bp, t, timer);
5779 if (!netif_running(bp->dev))
5780 return;
5782 if (IS_PF(bp) &&
5783 !BP_NOMCP(bp)) {
5784 int mb_idx = BP_FW_MB_IDX(bp);
5785 u16 drv_pulse;
5786 u16 mcp_pulse;
5788 ++bp->fw_drv_pulse_wr_seq;
5789 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5790 drv_pulse = bp->fw_drv_pulse_wr_seq;
5791 bnx2x_drv_pulse(bp);
5793 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5794 MCP_PULSE_SEQ_MASK);
5795 /* The delta between driver pulse and mcp response
5796 * should not get too big. If the MFW is more than 5 pulses
5797 * behind, we should worry about it enough to generate an error
5798 * log.
5800 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5801 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5802 drv_pulse, mcp_pulse);
5805 if (bp->state == BNX2X_STATE_OPEN)
5806 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5808 /* sample pf vf bulletin board for new posts from pf */
5809 if (IS_VF(bp))
5810 bnx2x_timer_sriov(bp);
5812 mod_timer(&bp->timer, jiffies + bp->current_interval);
5815 /* end of Statistics */
5817 /* nic init */
5820 * nic init service functions
5823 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5825 u32 i;
5826 if (!(len%4) && !(addr%4))
5827 for (i = 0; i < len; i += 4)
5828 REG_WR(bp, addr + i, fill);
5829 else
5830 for (i = 0; i < len; i++)
5831 REG_WR8(bp, addr + i, fill);
5834 /* helper: writes FP SP data to FW - data_size in dwords */
5835 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5836 int fw_sb_id,
5837 u32 *sb_data_p,
5838 u32 data_size)
5840 int index;
5841 for (index = 0; index < data_size; index++)
5842 REG_WR(bp, BAR_CSTRORM_INTMEM +
5843 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5844 sizeof(u32)*index,
5845 *(sb_data_p + index));
5848 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5850 u32 *sb_data_p;
5851 u32 data_size = 0;
5852 struct hc_status_block_data_e2 sb_data_e2;
5853 struct hc_status_block_data_e1x sb_data_e1x;
5855 /* disable the function first */
5856 if (!CHIP_IS_E1x(bp)) {
5857 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5858 sb_data_e2.common.state = SB_DISABLED;
5859 sb_data_e2.common.p_func.vf_valid = false;
5860 sb_data_p = (u32 *)&sb_data_e2;
5861 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5862 } else {
5863 memset(&sb_data_e1x, 0,
5864 sizeof(struct hc_status_block_data_e1x));
5865 sb_data_e1x.common.state = SB_DISABLED;
5866 sb_data_e1x.common.p_func.vf_valid = false;
5867 sb_data_p = (u32 *)&sb_data_e1x;
5868 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5870 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5872 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5873 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5874 CSTORM_STATUS_BLOCK_SIZE);
5875 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5876 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5877 CSTORM_SYNC_BLOCK_SIZE);
5880 /* helper: writes SP SB data to FW */
5881 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5882 struct hc_sp_status_block_data *sp_sb_data)
5884 int func = BP_FUNC(bp);
5885 int i;
5886 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5887 REG_WR(bp, BAR_CSTRORM_INTMEM +
5888 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5889 i*sizeof(u32),
5890 *((u32 *)sp_sb_data + i));
5893 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5895 int func = BP_FUNC(bp);
5896 struct hc_sp_status_block_data sp_sb_data;
5897 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5899 sp_sb_data.state = SB_DISABLED;
5900 sp_sb_data.p_func.vf_valid = false;
5902 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5904 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5905 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5906 CSTORM_SP_STATUS_BLOCK_SIZE);
5907 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5908 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5909 CSTORM_SP_SYNC_BLOCK_SIZE);
5912 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5913 int igu_sb_id, int igu_seg_id)
5915 hc_sm->igu_sb_id = igu_sb_id;
5916 hc_sm->igu_seg_id = igu_seg_id;
5917 hc_sm->timer_value = 0xFF;
5918 hc_sm->time_to_expire = 0xFFFFFFFF;
5921 /* allocates state machine ids. */
5922 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5924 /* zero out state machine indices */
5925 /* rx indices */
5926 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5928 /* tx indices */
5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5930 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5932 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5934 /* map indices */
5935 /* rx indices */
5936 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5937 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5939 /* tx indices */
5940 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5941 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5942 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5943 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5944 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5945 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5947 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5950 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5951 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5953 int igu_seg_id;
5955 struct hc_status_block_data_e2 sb_data_e2;
5956 struct hc_status_block_data_e1x sb_data_e1x;
5957 struct hc_status_block_sm *hc_sm_p;
5958 int data_size;
5959 u32 *sb_data_p;
5961 if (CHIP_INT_MODE_IS_BC(bp))
5962 igu_seg_id = HC_SEG_ACCESS_NORM;
5963 else
5964 igu_seg_id = IGU_SEG_ACCESS_NORM;
5966 bnx2x_zero_fp_sb(bp, fw_sb_id);
5968 if (!CHIP_IS_E1x(bp)) {
5969 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5970 sb_data_e2.common.state = SB_ENABLED;
5971 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5972 sb_data_e2.common.p_func.vf_id = vfid;
5973 sb_data_e2.common.p_func.vf_valid = vf_valid;
5974 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5975 sb_data_e2.common.same_igu_sb_1b = true;
5976 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5977 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5978 hc_sm_p = sb_data_e2.common.state_machine;
5979 sb_data_p = (u32 *)&sb_data_e2;
5980 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5981 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5982 } else {
5983 memset(&sb_data_e1x, 0,
5984 sizeof(struct hc_status_block_data_e1x));
5985 sb_data_e1x.common.state = SB_ENABLED;
5986 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5987 sb_data_e1x.common.p_func.vf_id = 0xff;
5988 sb_data_e1x.common.p_func.vf_valid = false;
5989 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5990 sb_data_e1x.common.same_igu_sb_1b = true;
5991 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5992 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5993 hc_sm_p = sb_data_e1x.common.state_machine;
5994 sb_data_p = (u32 *)&sb_data_e1x;
5995 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5996 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5999 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6000 igu_sb_id, igu_seg_id);
6001 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6002 igu_sb_id, igu_seg_id);
6004 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6006 /* write indices to HW - PCI guarantees endianity of regpairs */
6007 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6010 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6011 u16 tx_usec, u16 rx_usec)
6013 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6014 false, rx_usec);
6015 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6016 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6017 tx_usec);
6018 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6019 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6020 tx_usec);
6021 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6022 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6023 tx_usec);
6026 static void bnx2x_init_def_sb(struct bnx2x *bp)
6028 struct host_sp_status_block *def_sb = bp->def_status_blk;
6029 dma_addr_t mapping = bp->def_status_blk_mapping;
6030 int igu_sp_sb_index;
6031 int igu_seg_id;
6032 int port = BP_PORT(bp);
6033 int func = BP_FUNC(bp);
6034 int reg_offset, reg_offset_en5;
6035 u64 section;
6036 int index;
6037 struct hc_sp_status_block_data sp_sb_data;
6038 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6040 if (CHIP_INT_MODE_IS_BC(bp)) {
6041 igu_sp_sb_index = DEF_SB_IGU_ID;
6042 igu_seg_id = HC_SEG_ACCESS_DEF;
6043 } else {
6044 igu_sp_sb_index = bp->igu_dsb_id;
6045 igu_seg_id = IGU_SEG_ACCESS_DEF;
6048 /* ATTN */
6049 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6050 atten_status_block);
6051 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6053 bp->attn_state = 0;
6055 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6056 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6057 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6058 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6059 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6060 int sindex;
6061 /* take care of sig[0]..sig[4] */
6062 for (sindex = 0; sindex < 4; sindex++)
6063 bp->attn_group[index].sig[sindex] =
6064 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6066 if (!CHIP_IS_E1x(bp))
6068 * enable5 is separate from the rest of the registers,
6069 * and therefore the address skip is 4
6070 * and not 16 between the different groups
6072 bp->attn_group[index].sig[4] = REG_RD(bp,
6073 reg_offset_en5 + 0x4*index);
6074 else
6075 bp->attn_group[index].sig[4] = 0;
6078 if (bp->common.int_block == INT_BLOCK_HC) {
6079 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6080 HC_REG_ATTN_MSG0_ADDR_L);
6082 REG_WR(bp, reg_offset, U64_LO(section));
6083 REG_WR(bp, reg_offset + 4, U64_HI(section));
6084 } else if (!CHIP_IS_E1x(bp)) {
6085 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6086 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6089 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6090 sp_sb);
6092 bnx2x_zero_sp_sb(bp);
6094 /* PCI guarantees endianity of regpairs */
6095 sp_sb_data.state = SB_ENABLED;
6096 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6097 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6098 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6099 sp_sb_data.igu_seg_id = igu_seg_id;
6100 sp_sb_data.p_func.pf_id = func;
6101 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6102 sp_sb_data.p_func.vf_id = 0xff;
6104 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6106 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6109 void bnx2x_update_coalesce(struct bnx2x *bp)
6111 int i;
6113 for_each_eth_queue(bp, i)
6114 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6115 bp->tx_ticks, bp->rx_ticks);
6118 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6120 spin_lock_init(&bp->spq_lock);
6121 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6123 bp->spq_prod_idx = 0;
6124 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6125 bp->spq_prod_bd = bp->spq;
6126 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6129 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6131 int i;
6132 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6133 union event_ring_elem *elem =
6134 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6136 elem->next_page.addr.hi =
6137 cpu_to_le32(U64_HI(bp->eq_mapping +
6138 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6139 elem->next_page.addr.lo =
6140 cpu_to_le32(U64_LO(bp->eq_mapping +
6141 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6143 bp->eq_cons = 0;
6144 bp->eq_prod = NUM_EQ_DESC;
6145 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6146 /* we want a warning message before it gets wrought... */
6147 atomic_set(&bp->eq_spq_left,
6148 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6151 /* called with netif_addr_lock_bh() */
6152 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6153 unsigned long rx_mode_flags,
6154 unsigned long rx_accept_flags,
6155 unsigned long tx_accept_flags,
6156 unsigned long ramrod_flags)
6158 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6159 int rc;
6161 memset(&ramrod_param, 0, sizeof(ramrod_param));
6163 /* Prepare ramrod parameters */
6164 ramrod_param.cid = 0;
6165 ramrod_param.cl_id = cl_id;
6166 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6167 ramrod_param.func_id = BP_FUNC(bp);
6169 ramrod_param.pstate = &bp->sp_state;
6170 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6172 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6173 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6175 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6177 ramrod_param.ramrod_flags = ramrod_flags;
6178 ramrod_param.rx_mode_flags = rx_mode_flags;
6180 ramrod_param.rx_accept_flags = rx_accept_flags;
6181 ramrod_param.tx_accept_flags = tx_accept_flags;
6183 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6184 if (rc < 0) {
6185 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6186 return rc;
6189 return 0;
6192 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6193 unsigned long *rx_accept_flags,
6194 unsigned long *tx_accept_flags)
6196 /* Clear the flags first */
6197 *rx_accept_flags = 0;
6198 *tx_accept_flags = 0;
6200 switch (rx_mode) {
6201 case BNX2X_RX_MODE_NONE:
6203 * 'drop all' supersedes any accept flags that may have been
6204 * passed to the function.
6206 break;
6207 case BNX2X_RX_MODE_NORMAL:
6208 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6209 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6210 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6212 /* internal switching mode */
6213 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6214 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6215 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6217 if (bp->accept_any_vlan) {
6218 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6222 break;
6223 case BNX2X_RX_MODE_ALLMULTI:
6224 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6225 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6226 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6228 /* internal switching mode */
6229 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6230 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6231 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6233 if (bp->accept_any_vlan) {
6234 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6238 break;
6239 case BNX2X_RX_MODE_PROMISC:
6240 /* According to definition of SI mode, iface in promisc mode
6241 * should receive matched and unmatched (in resolution of port)
6242 * unicast packets.
6244 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6245 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6246 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6247 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6249 /* internal switching mode */
6250 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6251 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6253 if (IS_MF_SI(bp))
6254 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6255 else
6256 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6258 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6259 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6261 break;
6262 default:
6263 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6264 return -EINVAL;
6267 return 0;
6270 /* called with netif_addr_lock_bh() */
6271 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6273 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6274 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6275 int rc;
6277 if (!NO_FCOE(bp))
6278 /* Configure rx_mode of FCoE Queue */
6279 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6281 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6282 &tx_accept_flags);
6283 if (rc)
6284 return rc;
6286 __set_bit(RAMROD_RX, &ramrod_flags);
6287 __set_bit(RAMROD_TX, &ramrod_flags);
6289 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6290 rx_accept_flags, tx_accept_flags,
6291 ramrod_flags);
6294 static void bnx2x_init_internal_common(struct bnx2x *bp)
6296 int i;
6298 /* Zero this manually as its initialization is
6299 currently missing in the initTool */
6300 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6301 REG_WR(bp, BAR_USTRORM_INTMEM +
6302 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6303 if (!CHIP_IS_E1x(bp)) {
6304 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6305 CHIP_INT_MODE_IS_BC(bp) ?
6306 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6310 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6312 switch (load_code) {
6313 case FW_MSG_CODE_DRV_LOAD_COMMON:
6314 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6315 bnx2x_init_internal_common(bp);
6316 fallthrough;
6318 case FW_MSG_CODE_DRV_LOAD_PORT:
6319 /* nothing to do */
6320 fallthrough;
6322 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6323 /* internal memory per function is
6324 initialized inside bnx2x_pf_init */
6325 break;
6327 default:
6328 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6329 break;
6333 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6335 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6338 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6340 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6343 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6345 if (CHIP_IS_E1x(fp->bp))
6346 return BP_L_ID(fp->bp) + fp->index;
6347 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6348 return bnx2x_fp_igu_sb_id(fp);
6351 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6353 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6354 u8 cos;
6355 unsigned long q_type = 0;
6356 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6357 fp->rx_queue = fp_idx;
6358 fp->cid = fp_idx;
6359 fp->cl_id = bnx2x_fp_cl_id(fp);
6360 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6361 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6362 /* qZone id equals to FW (per path) client id */
6363 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6365 /* init shortcut */
6366 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6368 /* Setup SB indices */
6369 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6371 /* Configure Queue State object */
6372 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6373 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6375 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6377 /* init tx data */
6378 for_each_cos_in_tx_queue(fp, cos) {
6379 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6380 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6381 FP_COS_TO_TXQ(fp, cos, bp),
6382 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6383 cids[cos] = fp->txdata_ptr[cos]->cid;
6386 /* nothing more for vf to do here */
6387 if (IS_VF(bp))
6388 return;
6390 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6391 fp->fw_sb_id, fp->igu_sb_id);
6392 bnx2x_update_fpsb_idx(fp);
6393 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6394 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6395 bnx2x_sp_mapping(bp, q_rdata), q_type);
6398 * Configure classification DBs: Always enable Tx switching
6400 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6402 DP(NETIF_MSG_IFUP,
6403 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6404 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6405 fp->igu_sb_id);
6408 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6410 int i;
6412 for (i = 1; i <= NUM_TX_RINGS; i++) {
6413 struct eth_tx_next_bd *tx_next_bd =
6414 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6416 tx_next_bd->addr_hi =
6417 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6418 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6419 tx_next_bd->addr_lo =
6420 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6421 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6424 *txdata->tx_cons_sb = cpu_to_le16(0);
6426 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6427 txdata->tx_db.data.zero_fill1 = 0;
6428 txdata->tx_db.data.prod = 0;
6430 txdata->tx_pkt_prod = 0;
6431 txdata->tx_pkt_cons = 0;
6432 txdata->tx_bd_prod = 0;
6433 txdata->tx_bd_cons = 0;
6434 txdata->tx_pkt = 0;
6437 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6439 int i;
6441 for_each_tx_queue_cnic(bp, i)
6442 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6445 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6447 int i;
6448 u8 cos;
6450 for_each_eth_queue(bp, i)
6451 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6452 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6455 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6457 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6458 unsigned long q_type = 0;
6460 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6461 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6462 BNX2X_FCOE_ETH_CL_ID_IDX);
6463 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6464 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6465 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6466 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6467 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6468 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6469 fp);
6471 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6473 /* qZone id equals to FW (per path) client id */
6474 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6475 /* init shortcut */
6476 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6477 bnx2x_rx_ustorm_prods_offset(fp);
6479 /* Configure Queue State object */
6480 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6481 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6483 /* No multi-CoS for FCoE L2 client */
6484 BUG_ON(fp->max_cos != 1);
6486 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6487 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6488 bnx2x_sp_mapping(bp, q_rdata), q_type);
6490 DP(NETIF_MSG_IFUP,
6491 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6492 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6493 fp->igu_sb_id);
6496 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6498 if (!NO_FCOE(bp))
6499 bnx2x_init_fcoe_fp(bp);
6501 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6502 BNX2X_VF_ID_INVALID, false,
6503 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6505 /* ensure status block indices were read */
6506 rmb();
6507 bnx2x_init_rx_rings_cnic(bp);
6508 bnx2x_init_tx_rings_cnic(bp);
6510 /* flush all */
6511 mb();
6514 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6516 int i;
6518 /* Setup NIC internals and enable interrupts */
6519 for_each_eth_queue(bp, i)
6520 bnx2x_init_eth_fp(bp, i);
6522 /* ensure status block indices were read */
6523 rmb();
6524 bnx2x_init_rx_rings(bp);
6525 bnx2x_init_tx_rings(bp);
6527 if (IS_PF(bp)) {
6528 /* Initialize MOD_ABS interrupts */
6529 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6530 bp->common.shmem_base,
6531 bp->common.shmem2_base, BP_PORT(bp));
6533 /* initialize the default status block and sp ring */
6534 bnx2x_init_def_sb(bp);
6535 bnx2x_update_dsb_idx(bp);
6536 bnx2x_init_sp_ring(bp);
6537 } else {
6538 bnx2x_memset_stats(bp);
6542 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6544 bnx2x_init_eq_ring(bp);
6545 bnx2x_init_internal(bp, load_code);
6546 bnx2x_pf_init(bp);
6547 bnx2x_stats_init(bp);
6549 /* flush all before enabling interrupts */
6550 mb();
6552 bnx2x_int_enable(bp);
6554 /* Check for SPIO5 */
6555 bnx2x_attn_int_deasserted0(bp,
6556 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6557 AEU_INPUTS_ATTN_BITS_SPIO5);
6560 /* gzip service functions */
6561 static int bnx2x_gunzip_init(struct bnx2x *bp)
6563 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6564 &bp->gunzip_mapping, GFP_KERNEL);
6565 if (bp->gunzip_buf == NULL)
6566 goto gunzip_nomem1;
6568 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6569 if (bp->strm == NULL)
6570 goto gunzip_nomem2;
6572 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6573 if (bp->strm->workspace == NULL)
6574 goto gunzip_nomem3;
6576 return 0;
6578 gunzip_nomem3:
6579 kfree(bp->strm);
6580 bp->strm = NULL;
6582 gunzip_nomem2:
6583 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6584 bp->gunzip_mapping);
6585 bp->gunzip_buf = NULL;
6587 gunzip_nomem1:
6588 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6589 return -ENOMEM;
6592 static void bnx2x_gunzip_end(struct bnx2x *bp)
6594 if (bp->strm) {
6595 vfree(bp->strm->workspace);
6596 kfree(bp->strm);
6597 bp->strm = NULL;
6600 if (bp->gunzip_buf) {
6601 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6602 bp->gunzip_mapping);
6603 bp->gunzip_buf = NULL;
6607 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6609 int n, rc;
6611 /* check gzip header */
6612 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6613 BNX2X_ERR("Bad gzip header\n");
6614 return -EINVAL;
6617 n = 10;
6619 #define FNAME 0x8
6621 if (zbuf[3] & FNAME)
6622 while ((zbuf[n++] != 0) && (n < len));
6624 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6625 bp->strm->avail_in = len - n;
6626 bp->strm->next_out = bp->gunzip_buf;
6627 bp->strm->avail_out = FW_BUF_SIZE;
6629 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6630 if (rc != Z_OK)
6631 return rc;
6633 rc = zlib_inflate(bp->strm, Z_FINISH);
6634 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6635 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6636 bp->strm->msg);
6638 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6639 if (bp->gunzip_outlen & 0x3)
6640 netdev_err(bp->dev,
6641 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6642 bp->gunzip_outlen);
6643 bp->gunzip_outlen >>= 2;
6645 zlib_inflateEnd(bp->strm);
6647 if (rc == Z_STREAM_END)
6648 return 0;
6650 return rc;
6653 /* nic load/unload */
6656 * General service functions
6659 /* send a NIG loopback debug packet */
6660 static void bnx2x_lb_pckt(struct bnx2x *bp)
6662 u32 wb_write[3];
6664 /* Ethernet source and destination addresses */
6665 wb_write[0] = 0x55555555;
6666 wb_write[1] = 0x55555555;
6667 wb_write[2] = 0x20; /* SOP */
6668 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6670 /* NON-IP protocol */
6671 wb_write[0] = 0x09000000;
6672 wb_write[1] = 0x55555555;
6673 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6674 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6677 /* some of the internal memories
6678 * are not directly readable from the driver
6679 * to test them we send debug packets
6681 static int bnx2x_int_mem_test(struct bnx2x *bp)
6683 int factor;
6684 int count, i;
6685 u32 val = 0;
6687 if (CHIP_REV_IS_FPGA(bp))
6688 factor = 120;
6689 else if (CHIP_REV_IS_EMUL(bp))
6690 factor = 200;
6691 else
6692 factor = 1;
6694 /* Disable inputs of parser neighbor blocks */
6695 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6696 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6697 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6698 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6700 /* Write 0 to parser credits for CFC search request */
6701 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6703 /* send Ethernet packet */
6704 bnx2x_lb_pckt(bp);
6706 /* TODO do i reset NIG statistic? */
6707 /* Wait until NIG register shows 1 packet of size 0x10 */
6708 count = 1000 * factor;
6709 while (count) {
6711 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6712 val = *bnx2x_sp(bp, wb_data[0]);
6713 if (val == 0x10)
6714 break;
6716 usleep_range(10000, 20000);
6717 count--;
6719 if (val != 0x10) {
6720 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6721 return -1;
6724 /* Wait until PRS register shows 1 packet */
6725 count = 1000 * factor;
6726 while (count) {
6727 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6728 if (val == 1)
6729 break;
6731 usleep_range(10000, 20000);
6732 count--;
6734 if (val != 0x1) {
6735 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6736 return -2;
6739 /* Reset and init BRB, PRS */
6740 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6741 msleep(50);
6742 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6743 msleep(50);
6744 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6745 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6747 DP(NETIF_MSG_HW, "part2\n");
6749 /* Disable inputs of parser neighbor blocks */
6750 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6751 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6752 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6753 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6755 /* Write 0 to parser credits for CFC search request */
6756 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6758 /* send 10 Ethernet packets */
6759 for (i = 0; i < 10; i++)
6760 bnx2x_lb_pckt(bp);
6762 /* Wait until NIG register shows 10 + 1
6763 packets of size 11*0x10 = 0xb0 */
6764 count = 1000 * factor;
6765 while (count) {
6767 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6768 val = *bnx2x_sp(bp, wb_data[0]);
6769 if (val == 0xb0)
6770 break;
6772 usleep_range(10000, 20000);
6773 count--;
6775 if (val != 0xb0) {
6776 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6777 return -3;
6780 /* Wait until PRS register shows 2 packets */
6781 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6782 if (val != 2)
6783 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6785 /* Write 1 to parser credits for CFC search request */
6786 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6788 /* Wait until PRS register shows 3 packets */
6789 msleep(10 * factor);
6790 /* Wait until NIG register shows 1 packet of size 0x10 */
6791 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6792 if (val != 3)
6793 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6795 /* clear NIG EOP FIFO */
6796 for (i = 0; i < 11; i++)
6797 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6798 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6799 if (val != 1) {
6800 BNX2X_ERR("clear of NIG failed\n");
6801 return -4;
6804 /* Reset and init BRB, PRS, NIG */
6805 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6806 msleep(50);
6807 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6808 msleep(50);
6809 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6810 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6811 if (!CNIC_SUPPORT(bp))
6812 /* set NIC mode */
6813 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6815 /* Enable inputs of parser neighbor blocks */
6816 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6817 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6818 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6819 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6821 DP(NETIF_MSG_HW, "done\n");
6823 return 0; /* OK */
6826 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6828 u32 val;
6830 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6831 if (!CHIP_IS_E1x(bp))
6832 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6833 else
6834 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6835 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6836 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6838 * mask read length error interrupts in brb for parser
6839 * (parsing unit and 'checksum and crc' unit)
6840 * these errors are legal (PU reads fixed length and CAC can cause
6841 * read length error on truncated packets)
6843 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6844 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6845 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6846 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6847 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6848 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6849 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6850 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6851 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6852 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6853 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6854 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6855 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6856 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6857 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6858 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6859 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6860 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6861 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6863 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6864 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6865 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6866 if (!CHIP_IS_E1x(bp))
6867 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6868 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6869 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6871 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6872 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6873 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6874 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6876 if (!CHIP_IS_E1x(bp))
6877 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6878 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6880 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6881 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6882 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6883 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6886 static void bnx2x_reset_common(struct bnx2x *bp)
6888 u32 val = 0x1400;
6890 /* reset_common */
6891 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6892 0xd3ffff7f);
6894 if (CHIP_IS_E3(bp)) {
6895 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6896 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6899 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6902 static void bnx2x_setup_dmae(struct bnx2x *bp)
6904 bp->dmae_ready = 0;
6905 spin_lock_init(&bp->dmae_lock);
6908 static void bnx2x_init_pxp(struct bnx2x *bp)
6910 u16 devctl;
6911 int r_order, w_order;
6913 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6914 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6915 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6916 if (bp->mrrs == -1)
6917 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6918 else {
6919 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6920 r_order = bp->mrrs;
6923 bnx2x_init_pxp_arb(bp, r_order, w_order);
6926 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6928 int is_required;
6929 u32 val;
6930 int port;
6932 if (BP_NOMCP(bp))
6933 return;
6935 is_required = 0;
6936 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6937 SHARED_HW_CFG_FAN_FAILURE_MASK;
6939 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6940 is_required = 1;
6943 * The fan failure mechanism is usually related to the PHY type since
6944 * the power consumption of the board is affected by the PHY. Currently,
6945 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6947 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6948 for (port = PORT_0; port < PORT_MAX; port++) {
6949 is_required |=
6950 bnx2x_fan_failure_det_req(
6952 bp->common.shmem_base,
6953 bp->common.shmem2_base,
6954 port);
6957 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6959 if (is_required == 0)
6960 return;
6962 /* Fan failure is indicated by SPIO 5 */
6963 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6965 /* set to active low mode */
6966 val = REG_RD(bp, MISC_REG_SPIO_INT);
6967 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6968 REG_WR(bp, MISC_REG_SPIO_INT, val);
6970 /* enable interrupt to signal the IGU */
6971 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6972 val |= MISC_SPIO_SPIO5;
6973 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6976 void bnx2x_pf_disable(struct bnx2x *bp)
6978 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6979 val &= ~IGU_PF_CONF_FUNC_EN;
6981 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6982 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6983 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6986 static void bnx2x__common_init_phy(struct bnx2x *bp)
6988 u32 shmem_base[2], shmem2_base[2];
6989 /* Avoid common init in case MFW supports LFA */
6990 if (SHMEM2_RD(bp, size) >
6991 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6992 return;
6993 shmem_base[0] = bp->common.shmem_base;
6994 shmem2_base[0] = bp->common.shmem2_base;
6995 if (!CHIP_IS_E1x(bp)) {
6996 shmem_base[1] =
6997 SHMEM2_RD(bp, other_shmem_base_addr);
6998 shmem2_base[1] =
6999 SHMEM2_RD(bp, other_shmem2_base_addr);
7001 bnx2x_acquire_phy_lock(bp);
7002 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7003 bp->common.chip_id);
7004 bnx2x_release_phy_lock(bp);
7007 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7009 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7010 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7011 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7012 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7013 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7015 /* make sure this value is 0 */
7016 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7018 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7019 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7020 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7021 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7024 static void bnx2x_set_endianity(struct bnx2x *bp)
7026 #ifdef __BIG_ENDIAN
7027 bnx2x_config_endianity(bp, 1);
7028 #else
7029 bnx2x_config_endianity(bp, 0);
7030 #endif
7033 static void bnx2x_reset_endianity(struct bnx2x *bp)
7035 bnx2x_config_endianity(bp, 0);
7039 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7041 * @bp: driver handle
7043 static int bnx2x_init_hw_common(struct bnx2x *bp)
7045 u32 val;
7047 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7050 * take the RESET lock to protect undi_unload flow from accessing
7051 * registers while we're resetting the chip
7053 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055 bnx2x_reset_common(bp);
7056 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7058 val = 0xfffc;
7059 if (CHIP_IS_E3(bp)) {
7060 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7061 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7063 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7065 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7067 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7069 if (!CHIP_IS_E1x(bp)) {
7070 u8 abs_func_id;
7073 * 4-port mode or 2-port mode we need to turn of master-enable
7074 * for everyone, after that, turn it back on for self.
7075 * so, we disregard multi-function or not, and always disable
7076 * for all functions on the given path, this means 0,2,4,6 for
7077 * path 0 and 1,3,5,7 for path 1
7079 for (abs_func_id = BP_PATH(bp);
7080 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7081 if (abs_func_id == BP_ABS_FUNC(bp)) {
7082 REG_WR(bp,
7083 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7085 continue;
7088 bnx2x_pretend_func(bp, abs_func_id);
7089 /* clear pf enable */
7090 bnx2x_pf_disable(bp);
7091 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7095 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7096 if (CHIP_IS_E1(bp)) {
7097 /* enable HW interrupt from PXP on USDM overflow
7098 bit 16 on INT_MASK_0 */
7099 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7102 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7103 bnx2x_init_pxp(bp);
7104 bnx2x_set_endianity(bp);
7105 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7107 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7108 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7110 /* let the HW do it's magic ... */
7111 msleep(100);
7112 /* finish PXP init */
7113 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7114 if (val != 1) {
7115 BNX2X_ERR("PXP2 CFG failed\n");
7116 return -EBUSY;
7118 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7119 if (val != 1) {
7120 BNX2X_ERR("PXP2 RD_INIT failed\n");
7121 return -EBUSY;
7124 /* Timers bug workaround E2 only. We need to set the entire ILT to
7125 * have entries with value "0" and valid bit on.
7126 * This needs to be done by the first PF that is loaded in a path
7127 * (i.e. common phase)
7129 if (!CHIP_IS_E1x(bp)) {
7130 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7131 * (i.e. vnic3) to start even if it is marked as "scan-off".
7132 * This occurs when a different function (func2,3) is being marked
7133 * as "scan-off". Real-life scenario for example: if a driver is being
7134 * load-unloaded while func6,7 are down. This will cause the timer to access
7135 * the ilt, translate to a logical address and send a request to read/write.
7136 * Since the ilt for the function that is down is not valid, this will cause
7137 * a translation error which is unrecoverable.
7138 * The Workaround is intended to make sure that when this happens nothing fatal
7139 * will occur. The workaround:
7140 * 1. First PF driver which loads on a path will:
7141 * a. After taking the chip out of reset, by using pretend,
7142 * it will write "0" to the following registers of
7143 * the other vnics.
7144 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7145 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7146 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7147 * And for itself it will write '1' to
7148 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7149 * dmae-operations (writing to pram for example.)
7150 * note: can be done for only function 6,7 but cleaner this
7151 * way.
7152 * b. Write zero+valid to the entire ILT.
7153 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7154 * VNIC3 (of that port). The range allocated will be the
7155 * entire ILT. This is needed to prevent ILT range error.
7156 * 2. Any PF driver load flow:
7157 * a. ILT update with the physical addresses of the allocated
7158 * logical pages.
7159 * b. Wait 20msec. - note that this timeout is needed to make
7160 * sure there are no requests in one of the PXP internal
7161 * queues with "old" ILT addresses.
7162 * c. PF enable in the PGLC.
7163 * d. Clear the was_error of the PF in the PGLC. (could have
7164 * occurred while driver was down)
7165 * e. PF enable in the CFC (WEAK + STRONG)
7166 * f. Timers scan enable
7167 * 3. PF driver unload flow:
7168 * a. Clear the Timers scan_en.
7169 * b. Polling for scan_on=0 for that PF.
7170 * c. Clear the PF enable bit in the PXP.
7171 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7172 * e. Write zero+valid to all ILT entries (The valid bit must
7173 * stay set)
7174 * f. If this is VNIC 3 of a port then also init
7175 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7176 * to the last entry in the ILT.
7178 * Notes:
7179 * Currently the PF error in the PGLC is non recoverable.
7180 * In the future the there will be a recovery routine for this error.
7181 * Currently attention is masked.
7182 * Having an MCP lock on the load/unload process does not guarantee that
7183 * there is no Timer disable during Func6/7 enable. This is because the
7184 * Timers scan is currently being cleared by the MCP on FLR.
7185 * Step 2.d can be done only for PF6/7 and the driver can also check if
7186 * there is error before clearing it. But the flow above is simpler and
7187 * more general.
7188 * All ILT entries are written by zero+valid and not just PF6/7
7189 * ILT entries since in the future the ILT entries allocation for
7190 * PF-s might be dynamic.
7192 struct ilt_client_info ilt_cli;
7193 struct bnx2x_ilt ilt;
7194 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7195 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7197 /* initialize dummy TM client */
7198 ilt_cli.start = 0;
7199 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7200 ilt_cli.client_num = ILT_CLIENT_TM;
7202 /* Step 1: set zeroes to all ilt page entries with valid bit on
7203 * Step 2: set the timers first/last ilt entry to point
7204 * to the entire range to prevent ILT range error for 3rd/4th
7205 * vnic (this code assumes existence of the vnic)
7207 * both steps performed by call to bnx2x_ilt_client_init_op()
7208 * with dummy TM client
7210 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7211 * and his brother are split registers
7213 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7214 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7215 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7217 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7218 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7219 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7222 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7223 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7225 if (!CHIP_IS_E1x(bp)) {
7226 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7227 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7228 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7230 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7232 /* let the HW do it's magic ... */
7233 do {
7234 msleep(200);
7235 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7236 } while (factor-- && (val != 1));
7238 if (val != 1) {
7239 BNX2X_ERR("ATC_INIT failed\n");
7240 return -EBUSY;
7244 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7246 bnx2x_iov_init_dmae(bp);
7248 /* clean the DMAE memory */
7249 bp->dmae_ready = 1;
7250 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7252 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7254 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7256 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7258 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7260 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7261 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7262 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7263 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7265 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7267 /* QM queues pointers table */
7268 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7270 /* soft reset pulse */
7271 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7272 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7274 if (CNIC_SUPPORT(bp))
7275 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7277 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7279 if (!CHIP_REV_IS_SLOW(bp))
7280 /* enable hw interrupt from doorbell Q */
7281 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7283 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7285 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7286 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7288 if (!CHIP_IS_E1(bp))
7289 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7291 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7292 if (IS_MF_AFEX(bp)) {
7293 /* configure that VNTag and VLAN headers must be
7294 * received in afex mode
7296 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7297 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7298 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7299 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7300 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7301 } else {
7302 /* Bit-map indicating which L2 hdrs may appear
7303 * after the basic Ethernet header
7305 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7306 bp->path_has_ovlan ? 7 : 6);
7310 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7311 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7312 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7313 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7315 if (!CHIP_IS_E1x(bp)) {
7316 /* reset VFC memories */
7317 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7318 VFC_MEMORIES_RST_REG_CAM_RST |
7319 VFC_MEMORIES_RST_REG_RAM_RST);
7320 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7321 VFC_MEMORIES_RST_REG_CAM_RST |
7322 VFC_MEMORIES_RST_REG_RAM_RST);
7324 msleep(20);
7327 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7328 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7329 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7330 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7332 /* sync semi rtc */
7333 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7334 0x80000000);
7335 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7336 0x80000000);
7338 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7339 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7340 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7342 if (!CHIP_IS_E1x(bp)) {
7343 if (IS_MF_AFEX(bp)) {
7344 /* configure that VNTag and VLAN headers must be
7345 * sent in afex mode
7347 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7348 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7349 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7350 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7351 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7352 } else {
7353 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7354 bp->path_has_ovlan ? 7 : 6);
7358 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7360 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7362 if (CNIC_SUPPORT(bp)) {
7363 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7364 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7365 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7366 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7367 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7368 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7369 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7370 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7371 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7372 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7374 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7376 if (sizeof(union cdu_context) != 1024)
7377 /* we currently assume that a context is 1024 bytes */
7378 dev_alert(&bp->pdev->dev,
7379 "please adjust the size of cdu_context(%ld)\n",
7380 (long)sizeof(union cdu_context));
7382 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7383 val = (4 << 24) + (0 << 12) + 1024;
7384 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7386 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7387 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7388 /* enable context validation interrupt from CFC */
7389 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7391 /* set the thresholds to prevent CFC/CDU race */
7392 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7394 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7396 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7397 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7399 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7400 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7402 /* Reset PCIE errors for debug */
7403 REG_WR(bp, 0x2814, 0xffffffff);
7404 REG_WR(bp, 0x3820, 0xffffffff);
7406 if (!CHIP_IS_E1x(bp)) {
7407 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7408 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7409 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7410 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7411 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7412 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7413 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7414 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7415 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7416 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7417 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7420 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7421 if (!CHIP_IS_E1(bp)) {
7422 /* in E3 this done in per-port section */
7423 if (!CHIP_IS_E3(bp))
7424 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7426 if (CHIP_IS_E1H(bp))
7427 /* not applicable for E2 (and above ...) */
7428 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7430 if (CHIP_REV_IS_SLOW(bp))
7431 msleep(200);
7433 /* finish CFC init */
7434 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7435 if (val != 1) {
7436 BNX2X_ERR("CFC LL_INIT failed\n");
7437 return -EBUSY;
7439 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7440 if (val != 1) {
7441 BNX2X_ERR("CFC AC_INIT failed\n");
7442 return -EBUSY;
7444 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7445 if (val != 1) {
7446 BNX2X_ERR("CFC CAM_INIT failed\n");
7447 return -EBUSY;
7449 REG_WR(bp, CFC_REG_DEBUG0, 0);
7451 if (CHIP_IS_E1(bp)) {
7452 /* read NIG statistic
7453 to see if this is our first up since powerup */
7454 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7455 val = *bnx2x_sp(bp, wb_data[0]);
7457 /* do internal memory self test */
7458 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7459 BNX2X_ERR("internal mem self test failed\n");
7460 return -EBUSY;
7464 bnx2x_setup_fan_failure_detection(bp);
7466 /* clear PXP2 attentions */
7467 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7469 bnx2x_enable_blocks_attention(bp);
7470 bnx2x_enable_blocks_parity(bp);
7472 if (!BP_NOMCP(bp)) {
7473 if (CHIP_IS_E1x(bp))
7474 bnx2x__common_init_phy(bp);
7475 } else
7476 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7478 if (SHMEM2_HAS(bp, netproc_fw_ver))
7479 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7481 return 0;
7485 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7487 * @bp: driver handle
7489 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7491 int rc = bnx2x_init_hw_common(bp);
7493 if (rc)
7494 return rc;
7496 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7497 if (!BP_NOMCP(bp))
7498 bnx2x__common_init_phy(bp);
7500 return 0;
7503 static int bnx2x_init_hw_port(struct bnx2x *bp)
7505 int port = BP_PORT(bp);
7506 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7507 u32 low, high;
7508 u32 val, reg;
7510 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7512 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7514 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7515 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7516 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7518 /* Timers bug workaround: disables the pf_master bit in pglue at
7519 * common phase, we need to enable it here before any dmae access are
7520 * attempted. Therefore we manually added the enable-master to the
7521 * port phase (it also happens in the function phase)
7523 if (!CHIP_IS_E1x(bp))
7524 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7526 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7527 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7528 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7529 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7531 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7532 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7533 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7534 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7536 /* QM cid (connection) count */
7537 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7539 if (CNIC_SUPPORT(bp)) {
7540 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7541 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7542 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7545 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7547 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7549 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7551 if (IS_MF(bp))
7552 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7553 else if (bp->dev->mtu > 4096) {
7554 if (bp->flags & ONE_PORT_FLAG)
7555 low = 160;
7556 else {
7557 val = bp->dev->mtu;
7558 /* (24*1024 + val*4)/256 */
7559 low = 96 + (val/64) +
7560 ((val % 64) ? 1 : 0);
7562 } else
7563 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7564 high = low + 56; /* 14*1024/256 */
7565 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7566 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7569 if (CHIP_MODE_IS_4_PORT(bp))
7570 REG_WR(bp, (BP_PORT(bp) ?
7571 BRB1_REG_MAC_GUARANTIED_1 :
7572 BRB1_REG_MAC_GUARANTIED_0), 40);
7574 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7575 if (CHIP_IS_E3B0(bp)) {
7576 if (IS_MF_AFEX(bp)) {
7577 /* configure headers for AFEX mode */
7578 REG_WR(bp, BP_PORT(bp) ?
7579 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7580 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7581 REG_WR(bp, BP_PORT(bp) ?
7582 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7583 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7584 REG_WR(bp, BP_PORT(bp) ?
7585 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7586 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7587 } else {
7588 /* Ovlan exists only if we are in multi-function +
7589 * switch-dependent mode, in switch-independent there
7590 * is no ovlan headers
7592 REG_WR(bp, BP_PORT(bp) ?
7593 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7594 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7595 (bp->path_has_ovlan ? 7 : 6));
7599 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7600 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7601 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7602 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7604 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7605 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7606 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7607 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7609 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7610 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7612 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7614 if (CHIP_IS_E1x(bp)) {
7615 /* configure PBF to work without PAUSE mtu 9000 */
7616 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7618 /* update threshold */
7619 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7620 /* update init credit */
7621 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7623 /* probe changes */
7624 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7625 udelay(50);
7626 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7629 if (CNIC_SUPPORT(bp))
7630 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7632 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7633 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7635 if (CHIP_IS_E1(bp)) {
7636 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7637 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7639 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7641 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7643 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7644 /* init aeu_mask_attn_func_0/1:
7645 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7646 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7647 * bits 4-7 are used for "per vn group attention" */
7648 val = IS_MF(bp) ? 0xF7 : 0x7;
7649 /* Enable DCBX attention for all but E1 */
7650 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7651 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7653 /* SCPAD_PARITY should NOT trigger close the gates */
7654 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7655 REG_WR(bp, reg,
7656 REG_RD(bp, reg) &
7657 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7659 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7660 REG_WR(bp, reg,
7661 REG_RD(bp, reg) &
7662 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7664 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7666 if (!CHIP_IS_E1x(bp)) {
7667 /* Bit-map indicating which L2 hdrs may appear after the
7668 * basic Ethernet header
7670 if (IS_MF_AFEX(bp))
7671 REG_WR(bp, BP_PORT(bp) ?
7672 NIG_REG_P1_HDRS_AFTER_BASIC :
7673 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7674 else
7675 REG_WR(bp, BP_PORT(bp) ?
7676 NIG_REG_P1_HDRS_AFTER_BASIC :
7677 NIG_REG_P0_HDRS_AFTER_BASIC,
7678 IS_MF_SD(bp) ? 7 : 6);
7680 if (CHIP_IS_E3(bp))
7681 REG_WR(bp, BP_PORT(bp) ?
7682 NIG_REG_LLH1_MF_MODE :
7683 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7685 if (!CHIP_IS_E3(bp))
7686 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7688 if (!CHIP_IS_E1(bp)) {
7689 /* 0x2 disable mf_ov, 0x1 enable */
7690 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7691 (IS_MF_SD(bp) ? 0x1 : 0x2));
7693 if (!CHIP_IS_E1x(bp)) {
7694 val = 0;
7695 switch (bp->mf_mode) {
7696 case MULTI_FUNCTION_SD:
7697 val = 1;
7698 break;
7699 case MULTI_FUNCTION_SI:
7700 case MULTI_FUNCTION_AFEX:
7701 val = 2;
7702 break;
7705 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7706 NIG_REG_LLH0_CLS_TYPE), val);
7709 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7710 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7711 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7715 /* If SPIO5 is set to generate interrupts, enable it for this port */
7716 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7717 if (val & MISC_SPIO_SPIO5) {
7718 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7719 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7720 val = REG_RD(bp, reg_addr);
7721 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7722 REG_WR(bp, reg_addr, val);
7725 if (CHIP_IS_E3B0(bp))
7726 bp->flags |= PTP_SUPPORTED;
7728 return 0;
7731 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7733 int reg;
7734 u32 wb_write[2];
7736 if (CHIP_IS_E1(bp))
7737 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7738 else
7739 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7741 wb_write[0] = ONCHIP_ADDR1(addr);
7742 wb_write[1] = ONCHIP_ADDR2(addr);
7743 REG_WR_DMAE(bp, reg, wb_write, 2);
7746 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7748 u32 data, ctl, cnt = 100;
7749 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7750 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7751 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7752 u32 sb_bit = 1 << (idu_sb_id%32);
7753 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7754 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7756 /* Not supported in BC mode */
7757 if (CHIP_INT_MODE_IS_BC(bp))
7758 return;
7760 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7761 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7762 IGU_REGULAR_CLEANUP_SET |
7763 IGU_REGULAR_BCLEANUP;
7765 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7766 func_encode << IGU_CTRL_REG_FID_SHIFT |
7767 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7769 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7770 data, igu_addr_data);
7771 REG_WR(bp, igu_addr_data, data);
7772 barrier();
7773 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7774 ctl, igu_addr_ctl);
7775 REG_WR(bp, igu_addr_ctl, ctl);
7776 barrier();
7778 /* wait for clean up to finish */
7779 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7780 msleep(20);
7782 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7783 DP(NETIF_MSG_HW,
7784 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7785 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7789 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7791 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7794 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7796 u32 i, base = FUNC_ILT_BASE(func);
7797 for (i = base; i < base + ILT_PER_FUNC; i++)
7798 bnx2x_ilt_wr(bp, i, 0);
7801 static void bnx2x_init_searcher(struct bnx2x *bp)
7803 int port = BP_PORT(bp);
7804 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7805 /* T1 hash bits value determines the T1 number of entries */
7806 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7809 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7811 int rc;
7812 struct bnx2x_func_state_params func_params = {NULL};
7813 struct bnx2x_func_switch_update_params *switch_update_params =
7814 &func_params.params.switch_update;
7816 /* Prepare parameters for function state transitions */
7817 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7818 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7820 func_params.f_obj = &bp->func_obj;
7821 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7823 /* Function parameters */
7824 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7825 &switch_update_params->changes);
7826 if (suspend)
7827 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7828 &switch_update_params->changes);
7830 rc = bnx2x_func_state_change(bp, &func_params);
7832 return rc;
7835 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7837 int rc, i, port = BP_PORT(bp);
7838 int vlan_en = 0, mac_en[NUM_MACS];
7840 /* Close input from network */
7841 if (bp->mf_mode == SINGLE_FUNCTION) {
7842 bnx2x_set_rx_filter(&bp->link_params, 0);
7843 } else {
7844 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7845 NIG_REG_LLH0_FUNC_EN);
7846 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7847 NIG_REG_LLH0_FUNC_EN, 0);
7848 for (i = 0; i < NUM_MACS; i++) {
7849 mac_en[i] = REG_RD(bp, port ?
7850 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7851 4 * i) :
7852 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7853 4 * i));
7854 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7855 4 * i) :
7856 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7860 /* Close BMC to host */
7861 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7862 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7864 /* Suspend Tx switching to the PF. Completion of this ramrod
7865 * further guarantees that all the packets of that PF / child
7866 * VFs in BRB were processed by the Parser, so it is safe to
7867 * change the NIC_MODE register.
7869 rc = bnx2x_func_switch_update(bp, 1);
7870 if (rc) {
7871 BNX2X_ERR("Can't suspend tx-switching!\n");
7872 return rc;
7875 /* Change NIC_MODE register */
7876 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7878 /* Open input from network */
7879 if (bp->mf_mode == SINGLE_FUNCTION) {
7880 bnx2x_set_rx_filter(&bp->link_params, 1);
7881 } else {
7882 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7883 NIG_REG_LLH0_FUNC_EN, vlan_en);
7884 for (i = 0; i < NUM_MACS; i++) {
7885 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7886 4 * i) :
7887 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7888 mac_en[i]);
7892 /* Enable BMC to host */
7893 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7894 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7896 /* Resume Tx switching to the PF */
7897 rc = bnx2x_func_switch_update(bp, 0);
7898 if (rc) {
7899 BNX2X_ERR("Can't resume tx-switching!\n");
7900 return rc;
7903 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7904 return 0;
7907 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7909 int rc;
7911 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7913 if (CONFIGURE_NIC_MODE(bp)) {
7914 /* Configure searcher as part of function hw init */
7915 bnx2x_init_searcher(bp);
7917 /* Reset NIC mode */
7918 rc = bnx2x_reset_nic_mode(bp);
7919 if (rc)
7920 BNX2X_ERR("Can't change NIC mode!\n");
7921 return rc;
7924 return 0;
7927 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7928 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7929 * the addresses of the transaction, resulting in was-error bit set in the pci
7930 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7931 * to clear the interrupt which detected this from the pglueb and the was done
7932 * bit
7934 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7936 if (!CHIP_IS_E1x(bp))
7937 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7938 1 << BP_ABS_FUNC(bp));
7941 static int bnx2x_init_hw_func(struct bnx2x *bp)
7943 int port = BP_PORT(bp);
7944 int func = BP_FUNC(bp);
7945 int init_phase = PHASE_PF0 + func;
7946 struct bnx2x_ilt *ilt = BP_ILT(bp);
7947 u16 cdu_ilt_start;
7948 u32 addr, val;
7949 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7950 int i, main_mem_width, rc;
7952 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7954 /* FLR cleanup - hmmm */
7955 if (!CHIP_IS_E1x(bp)) {
7956 rc = bnx2x_pf_flr_clnup(bp);
7957 if (rc) {
7958 bnx2x_fw_dump(bp);
7959 return rc;
7963 /* set MSI reconfigure capability */
7964 if (bp->common.int_block == INT_BLOCK_HC) {
7965 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7966 val = REG_RD(bp, addr);
7967 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7968 REG_WR(bp, addr, val);
7971 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7972 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7974 ilt = BP_ILT(bp);
7975 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7977 if (IS_SRIOV(bp))
7978 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7979 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7981 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7982 * those of the VFs, so start line should be reset
7984 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7985 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7986 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7987 ilt->lines[cdu_ilt_start + i].page_mapping =
7988 bp->context[i].cxt_mapping;
7989 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7992 bnx2x_ilt_init_op(bp, INITOP_SET);
7994 if (!CONFIGURE_NIC_MODE(bp)) {
7995 bnx2x_init_searcher(bp);
7996 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7997 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7998 } else {
7999 /* Set NIC mode */
8000 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8001 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8004 if (!CHIP_IS_E1x(bp)) {
8005 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8007 /* Turn on a single ISR mode in IGU if driver is going to use
8008 * INT#x or MSI
8010 if (!(bp->flags & USING_MSIX_FLAG))
8011 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8013 * Timers workaround bug: function init part.
8014 * Need to wait 20msec after initializing ILT,
8015 * needed to make sure there are no requests in
8016 * one of the PXP internal queues with "old" ILT addresses
8018 msleep(20);
8020 * Master enable - Due to WB DMAE writes performed before this
8021 * register is re-initialized as part of the regular function
8022 * init
8024 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8025 /* Enable the function in IGU */
8026 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8029 bp->dmae_ready = 1;
8031 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8033 bnx2x_clean_pglue_errors(bp);
8035 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8036 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8037 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8038 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8039 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8040 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8041 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8042 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8043 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8044 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8045 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8046 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8047 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8049 if (!CHIP_IS_E1x(bp))
8050 REG_WR(bp, QM_REG_PF_EN, 1);
8052 if (!CHIP_IS_E1x(bp)) {
8053 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8054 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8055 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8056 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8058 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8060 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8061 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8062 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8064 bnx2x_iov_init_dq(bp);
8066 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8067 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8068 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8069 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8070 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8071 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8072 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8073 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8074 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8075 if (!CHIP_IS_E1x(bp))
8076 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8078 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8080 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8082 if (!CHIP_IS_E1x(bp))
8083 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8085 if (IS_MF(bp)) {
8086 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8087 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8088 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8089 bp->mf_ov);
8093 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8095 /* HC init per function */
8096 if (bp->common.int_block == INT_BLOCK_HC) {
8097 if (CHIP_IS_E1H(bp)) {
8098 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8100 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8101 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8103 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8105 } else {
8106 int num_segs, sb_idx, prod_offset;
8108 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8110 if (!CHIP_IS_E1x(bp)) {
8111 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8112 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8115 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8117 if (!CHIP_IS_E1x(bp)) {
8118 int dsb_idx = 0;
8120 * Producer memory:
8121 * E2 mode: address 0-135 match to the mapping memory;
8122 * 136 - PF0 default prod; 137 - PF1 default prod;
8123 * 138 - PF2 default prod; 139 - PF3 default prod;
8124 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8125 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8126 * 144-147 reserved.
8128 * E1.5 mode - In backward compatible mode;
8129 * for non default SB; each even line in the memory
8130 * holds the U producer and each odd line hold
8131 * the C producer. The first 128 producers are for
8132 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8133 * producers are for the DSB for each PF.
8134 * Each PF has five segments: (the order inside each
8135 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8136 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8137 * 144-147 attn prods;
8139 /* non-default-status-blocks */
8140 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8141 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8142 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8143 prod_offset = (bp->igu_base_sb + sb_idx) *
8144 num_segs;
8146 for (i = 0; i < num_segs; i++) {
8147 addr = IGU_REG_PROD_CONS_MEMORY +
8148 (prod_offset + i) * 4;
8149 REG_WR(bp, addr, 0);
8151 /* send consumer update with value 0 */
8152 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8153 USTORM_ID, 0, IGU_INT_NOP, 1);
8154 bnx2x_igu_clear_sb(bp,
8155 bp->igu_base_sb + sb_idx);
8158 /* default-status-blocks */
8159 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8160 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8162 if (CHIP_MODE_IS_4_PORT(bp))
8163 dsb_idx = BP_FUNC(bp);
8164 else
8165 dsb_idx = BP_VN(bp);
8167 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8168 IGU_BC_BASE_DSB_PROD + dsb_idx :
8169 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8172 * igu prods come in chunks of E1HVN_MAX (4) -
8173 * does not matters what is the current chip mode
8175 for (i = 0; i < (num_segs * E1HVN_MAX);
8176 i += E1HVN_MAX) {
8177 addr = IGU_REG_PROD_CONS_MEMORY +
8178 (prod_offset + i)*4;
8179 REG_WR(bp, addr, 0);
8181 /* send consumer update with 0 */
8182 if (CHIP_INT_MODE_IS_BC(bp)) {
8183 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184 USTORM_ID, 0, IGU_INT_NOP, 1);
8185 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186 CSTORM_ID, 0, IGU_INT_NOP, 1);
8187 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8188 XSTORM_ID, 0, IGU_INT_NOP, 1);
8189 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8190 TSTORM_ID, 0, IGU_INT_NOP, 1);
8191 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8193 } else {
8194 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8195 USTORM_ID, 0, IGU_INT_NOP, 1);
8196 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8197 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8199 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8201 /* !!! These should become driver const once
8202 rf-tool supports split-68 const */
8203 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8204 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8205 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8206 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8207 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8208 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8212 /* Reset PCIE errors for debug */
8213 REG_WR(bp, 0x2114, 0xffffffff);
8214 REG_WR(bp, 0x2120, 0xffffffff);
8216 if (CHIP_IS_E1x(bp)) {
8217 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8218 main_mem_base = HC_REG_MAIN_MEMORY +
8219 BP_PORT(bp) * (main_mem_size * 4);
8220 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8221 main_mem_width = 8;
8223 val = REG_RD(bp, main_mem_prty_clr);
8224 if (val)
8225 DP(NETIF_MSG_HW,
8226 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8227 val);
8229 /* Clear "false" parity errors in MSI-X table */
8230 for (i = main_mem_base;
8231 i < main_mem_base + main_mem_size * 4;
8232 i += main_mem_width) {
8233 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8234 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8235 i, main_mem_width / 4);
8237 /* Clear HC parity attention */
8238 REG_RD(bp, main_mem_prty_clr);
8241 #ifdef BNX2X_STOP_ON_ERROR
8242 /* Enable STORMs SP logging */
8243 REG_WR8(bp, BAR_USTRORM_INTMEM +
8244 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8245 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8246 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8247 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8248 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8249 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8250 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8251 #endif
8253 bnx2x_phy_probe(&bp->link_params);
8255 return 0;
8258 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8260 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8262 if (!CHIP_IS_E1x(bp))
8263 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8264 sizeof(struct host_hc_status_block_e2));
8265 else
8266 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8267 sizeof(struct host_hc_status_block_e1x));
8269 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8272 void bnx2x_free_mem(struct bnx2x *bp)
8274 int i;
8276 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8277 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8279 if (IS_VF(bp))
8280 return;
8282 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8283 sizeof(struct host_sp_status_block));
8285 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8286 sizeof(struct bnx2x_slowpath));
8288 for (i = 0; i < L2_ILT_LINES(bp); i++)
8289 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8290 bp->context[i].size);
8291 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8293 BNX2X_FREE(bp->ilt->lines);
8295 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8297 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8298 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8300 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8302 bnx2x_iov_free_mem(bp);
8305 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8307 if (!CHIP_IS_E1x(bp)) {
8308 /* size = the status block + ramrod buffers */
8309 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8310 sizeof(struct host_hc_status_block_e2));
8311 if (!bp->cnic_sb.e2_sb)
8312 goto alloc_mem_err;
8313 } else {
8314 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8315 sizeof(struct host_hc_status_block_e1x));
8316 if (!bp->cnic_sb.e1x_sb)
8317 goto alloc_mem_err;
8320 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8321 /* allocate searcher T2 table, as it wasn't allocated before */
8322 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8323 if (!bp->t2)
8324 goto alloc_mem_err;
8327 /* write address to which L5 should insert its values */
8328 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8329 &bp->slowpath->drv_info_to_mcp;
8331 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8332 goto alloc_mem_err;
8334 return 0;
8336 alloc_mem_err:
8337 bnx2x_free_mem_cnic(bp);
8338 BNX2X_ERR("Can't allocate memory\n");
8339 return -ENOMEM;
8342 int bnx2x_alloc_mem(struct bnx2x *bp)
8344 int i, allocated, context_size;
8346 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8347 /* allocate searcher T2 table */
8348 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8349 if (!bp->t2)
8350 goto alloc_mem_err;
8353 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8354 sizeof(struct host_sp_status_block));
8355 if (!bp->def_status_blk)
8356 goto alloc_mem_err;
8358 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8359 sizeof(struct bnx2x_slowpath));
8360 if (!bp->slowpath)
8361 goto alloc_mem_err;
8363 /* Allocate memory for CDU context:
8364 * This memory is allocated separately and not in the generic ILT
8365 * functions because CDU differs in few aspects:
8366 * 1. There are multiple entities allocating memory for context -
8367 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8368 * its own ILT lines.
8369 * 2. Since CDU page-size is not a single 4KB page (which is the case
8370 * for the other ILT clients), to be efficient we want to support
8371 * allocation of sub-page-size in the last entry.
8372 * 3. Context pointers are used by the driver to pass to FW / update
8373 * the context (for the other ILT clients the pointers are used just to
8374 * free the memory during unload).
8376 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8378 for (i = 0, allocated = 0; allocated < context_size; i++) {
8379 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8380 (context_size - allocated));
8381 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8382 bp->context[i].size);
8383 if (!bp->context[i].vcxt)
8384 goto alloc_mem_err;
8385 allocated += bp->context[i].size;
8387 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8388 GFP_KERNEL);
8389 if (!bp->ilt->lines)
8390 goto alloc_mem_err;
8392 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8393 goto alloc_mem_err;
8395 if (bnx2x_iov_alloc_mem(bp))
8396 goto alloc_mem_err;
8398 /* Slow path ring */
8399 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8400 if (!bp->spq)
8401 goto alloc_mem_err;
8403 /* EQ */
8404 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8405 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8406 if (!bp->eq_ring)
8407 goto alloc_mem_err;
8409 return 0;
8411 alloc_mem_err:
8412 bnx2x_free_mem(bp);
8413 BNX2X_ERR("Can't allocate memory\n");
8414 return -ENOMEM;
8418 * Init service functions
8421 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8422 struct bnx2x_vlan_mac_obj *obj, bool set,
8423 int mac_type, unsigned long *ramrod_flags)
8425 int rc;
8426 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8428 memset(&ramrod_param, 0, sizeof(ramrod_param));
8430 /* Fill general parameters */
8431 ramrod_param.vlan_mac_obj = obj;
8432 ramrod_param.ramrod_flags = *ramrod_flags;
8434 /* Fill a user request section if needed */
8435 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8436 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8438 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8440 /* Set the command: ADD or DEL */
8441 if (set)
8442 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8443 else
8444 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8447 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8449 if (rc == -EEXIST) {
8450 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8451 /* do not treat adding same MAC as error */
8452 rc = 0;
8453 } else if (rc < 0)
8454 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8456 return rc;
8459 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8460 struct bnx2x_vlan_mac_obj *obj, bool set,
8461 unsigned long *ramrod_flags)
8463 int rc;
8464 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8466 memset(&ramrod_param, 0, sizeof(ramrod_param));
8468 /* Fill general parameters */
8469 ramrod_param.vlan_mac_obj = obj;
8470 ramrod_param.ramrod_flags = *ramrod_flags;
8472 /* Fill a user request section if needed */
8473 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8474 ramrod_param.user_req.u.vlan.vlan = vlan;
8475 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8476 /* Set the command: ADD or DEL */
8477 if (set)
8478 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8479 else
8480 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8483 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8485 if (rc == -EEXIST) {
8486 /* Do not treat adding same vlan as error. */
8487 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8488 rc = 0;
8489 } else if (rc < 0) {
8490 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8493 return rc;
8496 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8498 struct bnx2x_vlan_entry *vlan;
8500 /* Mark that hw forgot all entries */
8501 list_for_each_entry(vlan, &bp->vlan_reg, link)
8502 vlan->hw = false;
8504 bp->vlan_cnt = 0;
8507 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8509 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8510 unsigned long ramrod_flags = 0, vlan_flags = 0;
8511 int rc;
8513 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8514 __set_bit(BNX2X_VLAN, &vlan_flags);
8515 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8516 if (rc)
8517 return rc;
8519 bnx2x_clear_vlan_info(bp);
8521 return 0;
8524 int bnx2x_del_all_macs(struct bnx2x *bp,
8525 struct bnx2x_vlan_mac_obj *mac_obj,
8526 int mac_type, bool wait_for_comp)
8528 int rc;
8529 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8531 /* Wait for completion of requested */
8532 if (wait_for_comp)
8533 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8535 /* Set the mac type of addresses we want to clear */
8536 __set_bit(mac_type, &vlan_mac_flags);
8538 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8539 if (rc < 0)
8540 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8542 return rc;
8545 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8547 if (IS_PF(bp)) {
8548 unsigned long ramrod_flags = 0;
8550 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8551 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8552 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8553 &bp->sp_objs->mac_obj, set,
8554 BNX2X_ETH_MAC, &ramrod_flags);
8555 } else { /* vf */
8556 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8557 bp->fp->index, set);
8561 int bnx2x_setup_leading(struct bnx2x *bp)
8563 if (IS_PF(bp))
8564 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8565 else /* VF */
8566 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8570 * bnx2x_set_int_mode - configure interrupt mode
8572 * @bp: driver handle
8574 * In case of MSI-X it will also try to enable MSI-X.
8576 int bnx2x_set_int_mode(struct bnx2x *bp)
8578 int rc = 0;
8580 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8581 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8582 return -EINVAL;
8585 switch (int_mode) {
8586 case BNX2X_INT_MODE_MSIX:
8587 /* attempt to enable msix */
8588 rc = bnx2x_enable_msix(bp);
8590 /* msix attained */
8591 if (!rc)
8592 return 0;
8594 /* vfs use only msix */
8595 if (rc && IS_VF(bp))
8596 return rc;
8598 /* failed to enable multiple MSI-X */
8599 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8600 bp->num_queues,
8601 1 + bp->num_cnic_queues);
8603 fallthrough;
8604 case BNX2X_INT_MODE_MSI:
8605 bnx2x_enable_msi(bp);
8607 fallthrough;
8608 case BNX2X_INT_MODE_INTX:
8609 bp->num_ethernet_queues = 1;
8610 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8611 BNX2X_DEV_INFO("set number of queues to 1\n");
8612 break;
8613 default:
8614 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8615 return -EINVAL;
8617 return 0;
8620 /* must be called prior to any HW initializations */
8621 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8623 if (IS_SRIOV(bp))
8624 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8625 return L2_ILT_LINES(bp);
8628 void bnx2x_ilt_set_info(struct bnx2x *bp)
8630 struct ilt_client_info *ilt_client;
8631 struct bnx2x_ilt *ilt = BP_ILT(bp);
8632 u16 line = 0;
8634 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8635 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8637 /* CDU */
8638 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8639 ilt_client->client_num = ILT_CLIENT_CDU;
8640 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8641 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8642 ilt_client->start = line;
8643 line += bnx2x_cid_ilt_lines(bp);
8645 if (CNIC_SUPPORT(bp))
8646 line += CNIC_ILT_LINES;
8647 ilt_client->end = line - 1;
8649 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650 ilt_client->start,
8651 ilt_client->end,
8652 ilt_client->page_size,
8653 ilt_client->flags,
8654 ilog2(ilt_client->page_size >> 12));
8656 /* QM */
8657 if (QM_INIT(bp->qm_cid_count)) {
8658 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8659 ilt_client->client_num = ILT_CLIENT_QM;
8660 ilt_client->page_size = QM_ILT_PAGE_SZ;
8661 ilt_client->flags = 0;
8662 ilt_client->start = line;
8664 /* 4 bytes for each cid */
8665 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8666 QM_ILT_PAGE_SZ);
8668 ilt_client->end = line - 1;
8670 DP(NETIF_MSG_IFUP,
8671 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8672 ilt_client->start,
8673 ilt_client->end,
8674 ilt_client->page_size,
8675 ilt_client->flags,
8676 ilog2(ilt_client->page_size >> 12));
8679 if (CNIC_SUPPORT(bp)) {
8680 /* SRC */
8681 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8682 ilt_client->client_num = ILT_CLIENT_SRC;
8683 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8684 ilt_client->flags = 0;
8685 ilt_client->start = line;
8686 line += SRC_ILT_LINES;
8687 ilt_client->end = line - 1;
8689 DP(NETIF_MSG_IFUP,
8690 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8691 ilt_client->start,
8692 ilt_client->end,
8693 ilt_client->page_size,
8694 ilt_client->flags,
8695 ilog2(ilt_client->page_size >> 12));
8697 /* TM */
8698 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8699 ilt_client->client_num = ILT_CLIENT_TM;
8700 ilt_client->page_size = TM_ILT_PAGE_SZ;
8701 ilt_client->flags = 0;
8702 ilt_client->start = line;
8703 line += TM_ILT_LINES;
8704 ilt_client->end = line - 1;
8706 DP(NETIF_MSG_IFUP,
8707 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8708 ilt_client->start,
8709 ilt_client->end,
8710 ilt_client->page_size,
8711 ilt_client->flags,
8712 ilog2(ilt_client->page_size >> 12));
8715 BUG_ON(line > ILT_MAX_LINES);
8719 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8721 * @bp: driver handle
8722 * @fp: pointer to fastpath
8723 * @init_params: pointer to parameters structure
8725 * parameters configured:
8726 * - HC configuration
8727 * - Queue's CDU context
8729 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8730 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8732 u8 cos;
8733 int cxt_index, cxt_offset;
8735 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8736 if (!IS_FCOE_FP(fp)) {
8737 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8738 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8740 /* If HC is supported, enable host coalescing in the transition
8741 * to INIT state.
8743 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8744 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8746 /* HC rate */
8747 init_params->rx.hc_rate = bp->rx_ticks ?
8748 (1000000 / bp->rx_ticks) : 0;
8749 init_params->tx.hc_rate = bp->tx_ticks ?
8750 (1000000 / bp->tx_ticks) : 0;
8752 /* FW SB ID */
8753 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8754 fp->fw_sb_id;
8757 * CQ index among the SB indices: FCoE clients uses the default
8758 * SB, therefore it's different.
8760 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8761 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8764 /* set maximum number of COSs supported by this queue */
8765 init_params->max_cos = fp->max_cos;
8767 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8768 fp->index, init_params->max_cos);
8770 /* set the context pointers queue object */
8771 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8772 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8773 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8774 ILT_PAGE_CIDS);
8775 init_params->cxts[cos] =
8776 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8780 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8781 struct bnx2x_queue_state_params *q_params,
8782 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8783 int tx_index, bool leading)
8785 memset(tx_only_params, 0, sizeof(*tx_only_params));
8787 /* Set the command */
8788 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8790 /* Set tx-only QUEUE flags: don't zero statistics */
8791 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8793 /* choose the index of the cid to send the slow path on */
8794 tx_only_params->cid_index = tx_index;
8796 /* Set general TX_ONLY_SETUP parameters */
8797 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8799 /* Set Tx TX_ONLY_SETUP parameters */
8800 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8802 DP(NETIF_MSG_IFUP,
8803 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8804 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8805 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8806 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8808 /* send the ramrod */
8809 return bnx2x_queue_state_change(bp, q_params);
8813 * bnx2x_setup_queue - setup queue
8815 * @bp: driver handle
8816 * @fp: pointer to fastpath
8817 * @leading: is leading
8819 * This function performs 2 steps in a Queue state machine
8820 * actually: 1) RESET->INIT 2) INIT->SETUP
8823 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8824 bool leading)
8826 struct bnx2x_queue_state_params q_params = {NULL};
8827 struct bnx2x_queue_setup_params *setup_params =
8828 &q_params.params.setup;
8829 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8830 &q_params.params.tx_only;
8831 int rc;
8832 u8 tx_index;
8834 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8836 /* reset IGU state skip FCoE L2 queue */
8837 if (!IS_FCOE_FP(fp))
8838 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8839 IGU_INT_ENABLE, 0);
8841 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8842 /* We want to wait for completion in this context */
8843 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8845 /* Prepare the INIT parameters */
8846 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8848 /* Set the command */
8849 q_params.cmd = BNX2X_Q_CMD_INIT;
8851 /* Change the state to INIT */
8852 rc = bnx2x_queue_state_change(bp, &q_params);
8853 if (rc) {
8854 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8855 return rc;
8858 DP(NETIF_MSG_IFUP, "init complete\n");
8860 /* Now move the Queue to the SETUP state... */
8861 memset(setup_params, 0, sizeof(*setup_params));
8863 /* Set QUEUE flags */
8864 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8866 /* Set general SETUP parameters */
8867 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8868 FIRST_TX_COS_INDEX);
8870 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8871 &setup_params->rxq_params);
8873 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8874 FIRST_TX_COS_INDEX);
8876 /* Set the command */
8877 q_params.cmd = BNX2X_Q_CMD_SETUP;
8879 if (IS_FCOE_FP(fp))
8880 bp->fcoe_init = true;
8882 /* Change the state to SETUP */
8883 rc = bnx2x_queue_state_change(bp, &q_params);
8884 if (rc) {
8885 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8886 return rc;
8889 /* loop through the relevant tx-only indices */
8890 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8891 tx_index < fp->max_cos;
8892 tx_index++) {
8894 /* prepare and send tx-only ramrod*/
8895 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8896 tx_only_params, tx_index, leading);
8897 if (rc) {
8898 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8899 fp->index, tx_index);
8900 return rc;
8904 return rc;
8907 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8909 struct bnx2x_fastpath *fp = &bp->fp[index];
8910 struct bnx2x_fp_txdata *txdata;
8911 struct bnx2x_queue_state_params q_params = {NULL};
8912 int rc, tx_index;
8914 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8916 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8917 /* We want to wait for completion in this context */
8918 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8920 /* close tx-only connections */
8921 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8922 tx_index < fp->max_cos;
8923 tx_index++){
8925 /* ascertain this is a normal queue*/
8926 txdata = fp->txdata_ptr[tx_index];
8928 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8929 txdata->txq_index);
8931 /* send halt terminate on tx-only connection */
8932 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8933 memset(&q_params.params.terminate, 0,
8934 sizeof(q_params.params.terminate));
8935 q_params.params.terminate.cid_index = tx_index;
8937 rc = bnx2x_queue_state_change(bp, &q_params);
8938 if (rc)
8939 return rc;
8941 /* send halt terminate on tx-only connection */
8942 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8943 memset(&q_params.params.cfc_del, 0,
8944 sizeof(q_params.params.cfc_del));
8945 q_params.params.cfc_del.cid_index = tx_index;
8946 rc = bnx2x_queue_state_change(bp, &q_params);
8947 if (rc)
8948 return rc;
8950 /* Stop the primary connection: */
8951 /* ...halt the connection */
8952 q_params.cmd = BNX2X_Q_CMD_HALT;
8953 rc = bnx2x_queue_state_change(bp, &q_params);
8954 if (rc)
8955 return rc;
8957 /* ...terminate the connection */
8958 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8959 memset(&q_params.params.terminate, 0,
8960 sizeof(q_params.params.terminate));
8961 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8962 rc = bnx2x_queue_state_change(bp, &q_params);
8963 if (rc)
8964 return rc;
8965 /* ...delete cfc entry */
8966 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8967 memset(&q_params.params.cfc_del, 0,
8968 sizeof(q_params.params.cfc_del));
8969 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8970 return bnx2x_queue_state_change(bp, &q_params);
8973 static void bnx2x_reset_func(struct bnx2x *bp)
8975 int port = BP_PORT(bp);
8976 int func = BP_FUNC(bp);
8977 int i;
8979 /* Disable the function in the FW */
8980 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8981 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8982 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8983 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8985 /* FP SBs */
8986 for_each_eth_queue(bp, i) {
8987 struct bnx2x_fastpath *fp = &bp->fp[i];
8988 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8989 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8990 SB_DISABLED);
8993 if (CNIC_LOADED(bp))
8994 /* CNIC SB */
8995 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8996 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8997 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8999 /* SP SB */
9000 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9001 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9002 SB_DISABLED);
9004 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9005 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9008 /* Configure IGU */
9009 if (bp->common.int_block == INT_BLOCK_HC) {
9010 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9011 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9012 } else {
9013 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9014 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9017 if (CNIC_LOADED(bp)) {
9018 /* Disable Timer scan */
9019 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9021 * Wait for at least 10ms and up to 2 second for the timers
9022 * scan to complete
9024 for (i = 0; i < 200; i++) {
9025 usleep_range(10000, 20000);
9026 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9027 break;
9030 /* Clear ILT */
9031 bnx2x_clear_func_ilt(bp, func);
9033 /* Timers workaround bug for E2: if this is vnic-3,
9034 * we need to set the entire ilt range for this timers.
9036 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9037 struct ilt_client_info ilt_cli;
9038 /* use dummy TM client */
9039 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9040 ilt_cli.start = 0;
9041 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9042 ilt_cli.client_num = ILT_CLIENT_TM;
9044 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9047 /* this assumes that reset_port() called before reset_func()*/
9048 if (!CHIP_IS_E1x(bp))
9049 bnx2x_pf_disable(bp);
9051 bp->dmae_ready = 0;
9054 static void bnx2x_reset_port(struct bnx2x *bp)
9056 int port = BP_PORT(bp);
9057 u32 val;
9059 /* Reset physical Link */
9060 bnx2x__link_reset(bp);
9062 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9064 /* Do not rcv packets to BRB */
9065 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9066 /* Do not direct rcv packets that are not for MCP to the BRB */
9067 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9068 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9070 /* Configure AEU */
9071 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9073 msleep(100);
9074 /* Check for BRB port occupancy */
9075 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9076 if (val)
9077 DP(NETIF_MSG_IFDOWN,
9078 "BRB1 is not empty %d blocks are occupied\n", val);
9080 /* TODO: Close Doorbell port? */
9083 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9085 struct bnx2x_func_state_params func_params = {NULL};
9087 /* Prepare parameters for function state transitions */
9088 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9090 func_params.f_obj = &bp->func_obj;
9091 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9093 func_params.params.hw_init.load_phase = load_code;
9095 return bnx2x_func_state_change(bp, &func_params);
9098 static int bnx2x_func_stop(struct bnx2x *bp)
9100 struct bnx2x_func_state_params func_params = {NULL};
9101 int rc;
9103 /* Prepare parameters for function state transitions */
9104 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9105 func_params.f_obj = &bp->func_obj;
9106 func_params.cmd = BNX2X_F_CMD_STOP;
9109 * Try to stop the function the 'good way'. If fails (in case
9110 * of a parity error during bnx2x_chip_cleanup()) and we are
9111 * not in a debug mode, perform a state transaction in order to
9112 * enable further HW_RESET transaction.
9114 rc = bnx2x_func_state_change(bp, &func_params);
9115 if (rc) {
9116 #ifdef BNX2X_STOP_ON_ERROR
9117 return rc;
9118 #else
9119 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9120 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9121 return bnx2x_func_state_change(bp, &func_params);
9122 #endif
9125 return 0;
9129 * bnx2x_send_unload_req - request unload mode from the MCP.
9131 * @bp: driver handle
9132 * @unload_mode: requested function's unload mode
9134 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9136 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9138 u32 reset_code = 0;
9139 int port = BP_PORT(bp);
9141 /* Select the UNLOAD request mode */
9142 if (unload_mode == UNLOAD_NORMAL)
9143 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9145 else if (bp->flags & NO_WOL_FLAG)
9146 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9148 else if (bp->wol) {
9149 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9150 u8 *mac_addr = bp->dev->dev_addr;
9151 struct pci_dev *pdev = bp->pdev;
9152 u32 val;
9153 u16 pmc;
9155 /* The mac address is written to entries 1-4 to
9156 * preserve entry 0 which is used by the PMF
9158 u8 entry = (BP_VN(bp) + 1)*8;
9160 val = (mac_addr[0] << 8) | mac_addr[1];
9161 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9163 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9164 (mac_addr[4] << 8) | mac_addr[5];
9165 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9167 /* Enable the PME and clear the status */
9168 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9169 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9170 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9172 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9174 } else
9175 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9177 /* Send the request to the MCP */
9178 if (!BP_NOMCP(bp))
9179 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9180 else {
9181 int path = BP_PATH(bp);
9183 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9184 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9185 bnx2x_load_count[path][2]);
9186 bnx2x_load_count[path][0]--;
9187 bnx2x_load_count[path][1 + port]--;
9188 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9189 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9190 bnx2x_load_count[path][2]);
9191 if (bnx2x_load_count[path][0] == 0)
9192 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9193 else if (bnx2x_load_count[path][1 + port] == 0)
9194 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9195 else
9196 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9199 return reset_code;
9203 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9205 * @bp: driver handle
9206 * @keep_link: true iff link should be kept up
9208 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9210 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9212 /* Report UNLOAD_DONE to MCP */
9213 if (!BP_NOMCP(bp))
9214 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9217 static int bnx2x_func_wait_started(struct bnx2x *bp)
9219 int tout = 50;
9220 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9222 if (!bp->port.pmf)
9223 return 0;
9226 * (assumption: No Attention from MCP at this stage)
9227 * PMF probably in the middle of TX disable/enable transaction
9228 * 1. Sync IRS for default SB
9229 * 2. Sync SP queue - this guarantees us that attention handling started
9230 * 3. Wait, that TX disable/enable transaction completes
9232 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9233 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9234 * received completion for the transaction the state is TX_STOPPED.
9235 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9236 * transaction.
9239 /* make sure default SB ISR is done */
9240 if (msix)
9241 synchronize_irq(bp->msix_table[0].vector);
9242 else
9243 synchronize_irq(bp->pdev->irq);
9245 flush_workqueue(bnx2x_wq);
9246 flush_workqueue(bnx2x_iov_wq);
9248 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9249 BNX2X_F_STATE_STARTED && tout--)
9250 msleep(20);
9252 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9253 BNX2X_F_STATE_STARTED) {
9254 #ifdef BNX2X_STOP_ON_ERROR
9255 BNX2X_ERR("Wrong function state\n");
9256 return -EBUSY;
9257 #else
9259 * Failed to complete the transaction in a "good way"
9260 * Force both transactions with CLR bit
9262 struct bnx2x_func_state_params func_params = {NULL};
9264 DP(NETIF_MSG_IFDOWN,
9265 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9267 func_params.f_obj = &bp->func_obj;
9268 __set_bit(RAMROD_DRV_CLR_ONLY,
9269 &func_params.ramrod_flags);
9271 /* STARTED-->TX_ST0PPED */
9272 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9273 bnx2x_func_state_change(bp, &func_params);
9275 /* TX_ST0PPED-->STARTED */
9276 func_params.cmd = BNX2X_F_CMD_TX_START;
9277 return bnx2x_func_state_change(bp, &func_params);
9278 #endif
9281 return 0;
9284 static void bnx2x_disable_ptp(struct bnx2x *bp)
9286 int port = BP_PORT(bp);
9288 /* Disable sending PTP packets to host */
9289 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9290 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9292 /* Reset PTP event detection rules */
9293 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9294 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9295 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9296 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9297 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9298 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9299 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9300 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9302 /* Disable the PTP feature */
9303 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9304 NIG_REG_P0_PTP_EN, 0x0);
9307 /* Called during unload, to stop PTP-related stuff */
9308 static void bnx2x_stop_ptp(struct bnx2x *bp)
9310 /* Cancel PTP work queue. Should be done after the Tx queues are
9311 * drained to prevent additional scheduling.
9313 cancel_work_sync(&bp->ptp_task);
9315 if (bp->ptp_tx_skb) {
9316 dev_kfree_skb_any(bp->ptp_tx_skb);
9317 bp->ptp_tx_skb = NULL;
9320 /* Disable PTP in HW */
9321 bnx2x_disable_ptp(bp);
9323 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9326 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9328 int port = BP_PORT(bp);
9329 int i, rc = 0;
9330 u8 cos;
9331 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9332 u32 reset_code;
9334 /* Wait until tx fastpath tasks complete */
9335 for_each_tx_queue(bp, i) {
9336 struct bnx2x_fastpath *fp = &bp->fp[i];
9338 for_each_cos_in_tx_queue(fp, cos)
9339 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9340 #ifdef BNX2X_STOP_ON_ERROR
9341 if (rc)
9342 return;
9343 #endif
9346 /* Give HW time to discard old tx messages */
9347 usleep_range(1000, 2000);
9349 /* Clean all ETH MACs */
9350 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9351 false);
9352 if (rc < 0)
9353 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9355 /* Clean up UC list */
9356 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9357 true);
9358 if (rc < 0)
9359 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9360 rc);
9362 /* The whole *vlan_obj structure may be not initialized if VLAN
9363 * filtering offload is not supported by hardware. Currently this is
9364 * true for all hardware covered by CHIP_IS_E1x().
9366 if (!CHIP_IS_E1x(bp)) {
9367 /* Remove all currently configured VLANs */
9368 rc = bnx2x_del_all_vlans(bp);
9369 if (rc < 0)
9370 BNX2X_ERR("Failed to delete all VLANs\n");
9373 /* Disable LLH */
9374 if (!CHIP_IS_E1(bp))
9375 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9377 /* Set "drop all" (stop Rx).
9378 * We need to take a netif_addr_lock() here in order to prevent
9379 * a race between the completion code and this code.
9381 netif_addr_lock_bh(bp->dev);
9382 /* Schedule the rx_mode command */
9383 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9384 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9385 else if (bp->slowpath)
9386 bnx2x_set_storm_rx_mode(bp);
9388 /* Cleanup multicast configuration */
9389 rparam.mcast_obj = &bp->mcast_obj;
9390 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9391 if (rc < 0)
9392 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9394 netif_addr_unlock_bh(bp->dev);
9396 bnx2x_iov_chip_cleanup(bp);
9399 * Send the UNLOAD_REQUEST to the MCP. This will return if
9400 * this function should perform FUNC, PORT or COMMON HW
9401 * reset.
9403 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9406 * (assumption: No Attention from MCP at this stage)
9407 * PMF probably in the middle of TX disable/enable transaction
9409 rc = bnx2x_func_wait_started(bp);
9410 if (rc) {
9411 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9412 #ifdef BNX2X_STOP_ON_ERROR
9413 return;
9414 #endif
9417 /* Close multi and leading connections
9418 * Completions for ramrods are collected in a synchronous way
9420 for_each_eth_queue(bp, i)
9421 if (bnx2x_stop_queue(bp, i))
9422 #ifdef BNX2X_STOP_ON_ERROR
9423 return;
9424 #else
9425 goto unload_error;
9426 #endif
9428 if (CNIC_LOADED(bp)) {
9429 for_each_cnic_queue(bp, i)
9430 if (bnx2x_stop_queue(bp, i))
9431 #ifdef BNX2X_STOP_ON_ERROR
9432 return;
9433 #else
9434 goto unload_error;
9435 #endif
9438 /* If SP settings didn't get completed so far - something
9439 * very wrong has happen.
9441 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9442 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9444 #ifndef BNX2X_STOP_ON_ERROR
9445 unload_error:
9446 #endif
9447 rc = bnx2x_func_stop(bp);
9448 if (rc) {
9449 BNX2X_ERR("Function stop failed!\n");
9450 #ifdef BNX2X_STOP_ON_ERROR
9451 return;
9452 #endif
9455 /* stop_ptp should be after the Tx queues are drained to prevent
9456 * scheduling to the cancelled PTP work queue. It should also be after
9457 * function stop ramrod is sent, since as part of this ramrod FW access
9458 * PTP registers.
9460 if (bp->flags & PTP_SUPPORTED) {
9461 bnx2x_stop_ptp(bp);
9462 if (bp->ptp_clock) {
9463 ptp_clock_unregister(bp->ptp_clock);
9464 bp->ptp_clock = NULL;
9468 /* Disable HW interrupts, NAPI */
9469 bnx2x_netif_stop(bp, 1);
9470 /* Delete all NAPI objects */
9471 bnx2x_del_all_napi(bp);
9472 if (CNIC_LOADED(bp))
9473 bnx2x_del_all_napi_cnic(bp);
9475 /* Release IRQs */
9476 bnx2x_free_irq(bp);
9478 /* Reset the chip, unless PCI function is offline. If we reach this
9479 * point following a PCI error handling, it means device is really
9480 * in a bad state and we're about to remove it, so reset the chip
9481 * is not a good idea.
9483 if (!pci_channel_offline(bp->pdev)) {
9484 rc = bnx2x_reset_hw(bp, reset_code);
9485 if (rc)
9486 BNX2X_ERR("HW_RESET failed\n");
9489 /* Report UNLOAD_DONE to MCP */
9490 bnx2x_send_unload_done(bp, keep_link);
9493 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9495 u32 val;
9497 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9499 if (CHIP_IS_E1(bp)) {
9500 int port = BP_PORT(bp);
9501 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9502 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9504 val = REG_RD(bp, addr);
9505 val &= ~(0x300);
9506 REG_WR(bp, addr, val);
9507 } else {
9508 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9509 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9510 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9511 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9515 /* Close gates #2, #3 and #4: */
9516 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9518 u32 val;
9520 /* Gates #2 and #4a are closed/opened for "not E1" only */
9521 if (!CHIP_IS_E1(bp)) {
9522 /* #4 */
9523 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9524 /* #2 */
9525 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9528 /* #3 */
9529 if (CHIP_IS_E1x(bp)) {
9530 /* Prevent interrupts from HC on both ports */
9531 val = REG_RD(bp, HC_REG_CONFIG_1);
9532 REG_WR(bp, HC_REG_CONFIG_1,
9533 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9534 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9536 val = REG_RD(bp, HC_REG_CONFIG_0);
9537 REG_WR(bp, HC_REG_CONFIG_0,
9538 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9539 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9540 } else {
9541 /* Prevent incoming interrupts in IGU */
9542 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9544 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9545 (!close) ?
9546 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9547 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9550 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9551 close ? "closing" : "opening");
9554 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9556 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9558 /* Do some magic... */
9559 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9560 *magic_val = val & SHARED_MF_CLP_MAGIC;
9561 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9565 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9567 * @bp: driver handle
9568 * @magic_val: old value of the `magic' bit.
9570 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9572 /* Restore the `magic' bit value... */
9573 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9574 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9575 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9579 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9581 * @bp: driver handle
9582 * @magic_val: old value of 'magic' bit.
9584 * Takes care of CLP configurations.
9586 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9588 u32 shmem;
9589 u32 validity_offset;
9591 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9593 /* Set `magic' bit in order to save MF config */
9594 if (!CHIP_IS_E1(bp))
9595 bnx2x_clp_reset_prep(bp, magic_val);
9597 /* Get shmem offset */
9598 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9599 validity_offset =
9600 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9602 /* Clear validity map flags */
9603 if (shmem > 0)
9604 REG_WR(bp, shmem + validity_offset, 0);
9607 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9608 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9611 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9613 * @bp: driver handle
9615 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9617 /* special handling for emulation and FPGA,
9618 wait 10 times longer */
9619 if (CHIP_REV_IS_SLOW(bp))
9620 msleep(MCP_ONE_TIMEOUT*10);
9621 else
9622 msleep(MCP_ONE_TIMEOUT);
9626 * initializes bp->common.shmem_base and waits for validity signature to appear
9628 static int bnx2x_init_shmem(struct bnx2x *bp)
9630 int cnt = 0;
9631 u32 val = 0;
9633 do {
9634 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9636 /* If we read all 0xFFs, means we are in PCI error state and
9637 * should bail out to avoid crashes on adapter's FW reads.
9639 if (bp->common.shmem_base == 0xFFFFFFFF) {
9640 bp->flags |= NO_MCP_FLAG;
9641 return -ENODEV;
9644 if (bp->common.shmem_base) {
9645 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9646 if (val & SHR_MEM_VALIDITY_MB)
9647 return 0;
9650 bnx2x_mcp_wait_one(bp);
9652 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9654 BNX2X_ERR("BAD MCP validity signature\n");
9656 return -ENODEV;
9659 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9661 int rc = bnx2x_init_shmem(bp);
9663 /* Restore the `magic' bit value */
9664 if (!CHIP_IS_E1(bp))
9665 bnx2x_clp_reset_done(bp, magic_val);
9667 return rc;
9670 static void bnx2x_pxp_prep(struct bnx2x *bp)
9672 if (!CHIP_IS_E1(bp)) {
9673 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9674 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9679 * Reset the whole chip except for:
9680 * - PCIE core
9681 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9682 * one reset bit)
9683 * - IGU
9684 * - MISC (including AEU)
9685 * - GRC
9686 * - RBCN, RBCP
9688 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9690 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9691 u32 global_bits2, stay_reset2;
9694 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9695 * (per chip) blocks.
9697 global_bits2 =
9698 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9699 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9701 /* Don't reset the following blocks.
9702 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9703 * reset, as in 4 port device they might still be owned
9704 * by the MCP (there is only one leader per path).
9706 not_reset_mask1 =
9707 MISC_REGISTERS_RESET_REG_1_RST_HC |
9708 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9709 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9711 not_reset_mask2 =
9712 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9713 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9714 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9715 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9716 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9717 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9718 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9719 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9720 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9721 MISC_REGISTERS_RESET_REG_2_PGLC |
9722 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9723 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9724 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9725 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9726 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9727 MISC_REGISTERS_RESET_REG_2_UMAC1;
9730 * Keep the following blocks in reset:
9731 * - all xxMACs are handled by the bnx2x_link code.
9733 stay_reset2 =
9734 MISC_REGISTERS_RESET_REG_2_XMAC |
9735 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9737 /* Full reset masks according to the chip */
9738 reset_mask1 = 0xffffffff;
9740 if (CHIP_IS_E1(bp))
9741 reset_mask2 = 0xffff;
9742 else if (CHIP_IS_E1H(bp))
9743 reset_mask2 = 0x1ffff;
9744 else if (CHIP_IS_E2(bp))
9745 reset_mask2 = 0xfffff;
9746 else /* CHIP_IS_E3 */
9747 reset_mask2 = 0x3ffffff;
9749 /* Don't reset global blocks unless we need to */
9750 if (!global)
9751 reset_mask2 &= ~global_bits2;
9754 * In case of attention in the QM, we need to reset PXP
9755 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9756 * because otherwise QM reset would release 'close the gates' shortly
9757 * before resetting the PXP, then the PSWRQ would send a write
9758 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9759 * read the payload data from PSWWR, but PSWWR would not
9760 * respond. The write queue in PGLUE would stuck, dmae commands
9761 * would not return. Therefore it's important to reset the second
9762 * reset register (containing the
9763 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9764 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9765 * bit).
9767 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9768 reset_mask2 & (~not_reset_mask2));
9770 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9771 reset_mask1 & (~not_reset_mask1));
9773 barrier();
9775 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9776 reset_mask2 & (~stay_reset2));
9778 barrier();
9780 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9784 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9785 * It should get cleared in no more than 1s.
9787 * @bp: driver handle
9789 * It should get cleared in no more than 1s. Returns 0 if
9790 * pending writes bit gets cleared.
9792 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9794 u32 cnt = 1000;
9795 u32 pend_bits = 0;
9797 do {
9798 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9800 if (pend_bits == 0)
9801 break;
9803 usleep_range(1000, 2000);
9804 } while (cnt-- > 0);
9806 if (cnt <= 0) {
9807 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9808 pend_bits);
9809 return -EBUSY;
9812 return 0;
9815 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9817 int cnt = 1000;
9818 u32 val = 0;
9819 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9820 u32 tags_63_32 = 0;
9822 /* Empty the Tetris buffer, wait for 1s */
9823 do {
9824 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9825 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9826 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9827 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9828 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9829 if (CHIP_IS_E3(bp))
9830 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9832 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9833 ((port_is_idle_0 & 0x1) == 0x1) &&
9834 ((port_is_idle_1 & 0x1) == 0x1) &&
9835 (pgl_exp_rom2 == 0xffffffff) &&
9836 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9837 break;
9838 usleep_range(1000, 2000);
9839 } while (cnt-- > 0);
9841 if (cnt <= 0) {
9842 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9843 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9844 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9845 pgl_exp_rom2);
9846 return -EAGAIN;
9849 barrier();
9851 /* Close gates #2, #3 and #4 */
9852 bnx2x_set_234_gates(bp, true);
9854 /* Poll for IGU VQs for 57712 and newer chips */
9855 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9856 return -EAGAIN;
9858 /* TBD: Indicate that "process kill" is in progress to MCP */
9860 /* Clear "unprepared" bit */
9861 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9862 barrier();
9864 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9865 * PSWHST, GRC and PSWRD Tetris buffer.
9867 usleep_range(1000, 2000);
9869 /* Prepare to chip reset: */
9870 /* MCP */
9871 if (global)
9872 bnx2x_reset_mcp_prep(bp, &val);
9874 /* PXP */
9875 bnx2x_pxp_prep(bp);
9876 barrier();
9878 /* reset the chip */
9879 bnx2x_process_kill_chip_reset(bp, global);
9880 barrier();
9882 /* clear errors in PGB */
9883 if (!CHIP_IS_E1x(bp))
9884 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9886 /* Recover after reset: */
9887 /* MCP */
9888 if (global && bnx2x_reset_mcp_comp(bp, val))
9889 return -EAGAIN;
9891 /* TBD: Add resetting the NO_MCP mode DB here */
9893 /* Open the gates #2, #3 and #4 */
9894 bnx2x_set_234_gates(bp, false);
9896 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9897 * reset state, re-enable attentions. */
9899 return 0;
9902 static int bnx2x_leader_reset(struct bnx2x *bp)
9904 int rc = 0;
9905 bool global = bnx2x_reset_is_global(bp);
9906 u32 load_code;
9908 /* if not going to reset MCP - load "fake" driver to reset HW while
9909 * driver is owner of the HW
9911 if (!global && !BP_NOMCP(bp)) {
9912 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9913 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9914 if (!load_code) {
9915 BNX2X_ERR("MCP response failure, aborting\n");
9916 rc = -EAGAIN;
9917 goto exit_leader_reset;
9919 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9920 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9921 BNX2X_ERR("MCP unexpected resp, aborting\n");
9922 rc = -EAGAIN;
9923 goto exit_leader_reset2;
9925 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9926 if (!load_code) {
9927 BNX2X_ERR("MCP response failure, aborting\n");
9928 rc = -EAGAIN;
9929 goto exit_leader_reset2;
9933 /* Try to recover after the failure */
9934 if (bnx2x_process_kill(bp, global)) {
9935 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9936 BP_PATH(bp));
9937 rc = -EAGAIN;
9938 goto exit_leader_reset2;
9942 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9943 * state.
9945 bnx2x_set_reset_done(bp);
9946 if (global)
9947 bnx2x_clear_reset_global(bp);
9949 exit_leader_reset2:
9950 /* unload "fake driver" if it was loaded */
9951 if (!global && !BP_NOMCP(bp)) {
9952 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9953 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9955 exit_leader_reset:
9956 bp->is_leader = 0;
9957 bnx2x_release_leader_lock(bp);
9958 smp_mb();
9959 return rc;
9962 static void bnx2x_recovery_failed(struct bnx2x *bp)
9964 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9966 /* Disconnect this device */
9967 netif_device_detach(bp->dev);
9970 * Block ifup for all function on this engine until "process kill"
9971 * or power cycle.
9973 bnx2x_set_reset_in_progress(bp);
9975 /* Shut down the power */
9976 bnx2x_set_power_state(bp, PCI_D3hot);
9978 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9980 smp_mb();
9984 * Assumption: runs under rtnl lock. This together with the fact
9985 * that it's called only from bnx2x_sp_rtnl() ensure that it
9986 * will never be called when netif_running(bp->dev) is false.
9988 static void bnx2x_parity_recover(struct bnx2x *bp)
9990 u32 error_recovered, error_unrecovered;
9991 bool is_parity, global = false;
9992 #ifdef CONFIG_BNX2X_SRIOV
9993 int vf_idx;
9995 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
9996 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
9998 if (vf)
9999 vf->state = VF_LOST;
10001 #endif
10002 DP(NETIF_MSG_HW, "Handling parity\n");
10003 while (1) {
10004 switch (bp->recovery_state) {
10005 case BNX2X_RECOVERY_INIT:
10006 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10007 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10008 WARN_ON(!is_parity);
10010 /* Try to get a LEADER_LOCK HW lock */
10011 if (bnx2x_trylock_leader_lock(bp)) {
10012 bnx2x_set_reset_in_progress(bp);
10014 * Check if there is a global attention and if
10015 * there was a global attention, set the global
10016 * reset bit.
10019 if (global)
10020 bnx2x_set_reset_global(bp);
10022 bp->is_leader = 1;
10025 /* Stop the driver */
10026 /* If interface has been removed - break */
10027 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10028 return;
10030 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10032 /* Ensure "is_leader", MCP command sequence and
10033 * "recovery_state" update values are seen on other
10034 * CPUs.
10036 smp_mb();
10037 break;
10039 case BNX2X_RECOVERY_WAIT:
10040 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10041 if (bp->is_leader) {
10042 int other_engine = BP_PATH(bp) ? 0 : 1;
10043 bool other_load_status =
10044 bnx2x_get_load_status(bp, other_engine);
10045 bool load_status =
10046 bnx2x_get_load_status(bp, BP_PATH(bp));
10047 global = bnx2x_reset_is_global(bp);
10050 * In case of a parity in a global block, let
10051 * the first leader that performs a
10052 * leader_reset() reset the global blocks in
10053 * order to clear global attentions. Otherwise
10054 * the gates will remain closed for that
10055 * engine.
10057 if (load_status ||
10058 (global && other_load_status)) {
10059 /* Wait until all other functions get
10060 * down.
10062 schedule_delayed_work(&bp->sp_rtnl_task,
10063 HZ/10);
10064 return;
10065 } else {
10066 /* If all other functions got down -
10067 * try to bring the chip back to
10068 * normal. In any case it's an exit
10069 * point for a leader.
10071 if (bnx2x_leader_reset(bp)) {
10072 bnx2x_recovery_failed(bp);
10073 return;
10076 /* If we are here, means that the
10077 * leader has succeeded and doesn't
10078 * want to be a leader any more. Try
10079 * to continue as a none-leader.
10081 break;
10083 } else { /* non-leader */
10084 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10085 /* Try to get a LEADER_LOCK HW lock as
10086 * long as a former leader may have
10087 * been unloaded by the user or
10088 * released a leadership by another
10089 * reason.
10091 if (bnx2x_trylock_leader_lock(bp)) {
10092 /* I'm a leader now! Restart a
10093 * switch case.
10095 bp->is_leader = 1;
10096 break;
10099 schedule_delayed_work(&bp->sp_rtnl_task,
10100 HZ/10);
10101 return;
10103 } else {
10105 * If there was a global attention, wait
10106 * for it to be cleared.
10108 if (bnx2x_reset_is_global(bp)) {
10109 schedule_delayed_work(
10110 &bp->sp_rtnl_task,
10111 HZ/10);
10112 return;
10115 error_recovered =
10116 bp->eth_stats.recoverable_error;
10117 error_unrecovered =
10118 bp->eth_stats.unrecoverable_error;
10119 bp->recovery_state =
10120 BNX2X_RECOVERY_NIC_LOADING;
10121 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10122 error_unrecovered++;
10123 netdev_err(bp->dev,
10124 "Recovery failed. Power cycle needed\n");
10125 /* Disconnect this device */
10126 netif_device_detach(bp->dev);
10127 /* Shut down the power */
10128 bnx2x_set_power_state(
10129 bp, PCI_D3hot);
10130 smp_mb();
10131 } else {
10132 bp->recovery_state =
10133 BNX2X_RECOVERY_DONE;
10134 error_recovered++;
10135 smp_mb();
10137 bp->eth_stats.recoverable_error =
10138 error_recovered;
10139 bp->eth_stats.unrecoverable_error =
10140 error_unrecovered;
10142 return;
10145 default:
10146 return;
10151 static int bnx2x_udp_port_update(struct bnx2x *bp)
10153 struct bnx2x_func_switch_update_params *switch_update_params;
10154 struct bnx2x_func_state_params func_params = {NULL};
10155 u16 vxlan_port = 0, geneve_port = 0;
10156 int rc;
10158 switch_update_params = &func_params.params.switch_update;
10160 /* Prepare parameters for function state transitions */
10161 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10162 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10164 func_params.f_obj = &bp->func_obj;
10165 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10167 /* Function parameters */
10168 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10169 &switch_update_params->changes);
10171 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10172 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10173 switch_update_params->geneve_dst_port = geneve_port;
10176 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10177 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10178 switch_update_params->vxlan_dst_port = vxlan_port;
10181 /* Re-enable inner-rss for the offloaded UDP tunnels */
10182 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10183 &switch_update_params->changes);
10185 rc = bnx2x_func_state_change(bp, &func_params);
10186 if (rc)
10187 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10188 vxlan_port, geneve_port, rc);
10189 else
10190 DP(BNX2X_MSG_SP,
10191 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10192 vxlan_port, geneve_port);
10194 return rc;
10197 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10199 struct bnx2x *bp = netdev_priv(netdev);
10200 struct udp_tunnel_info ti;
10202 udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10203 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10205 return bnx2x_udp_port_update(bp);
10208 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10209 .sync_table = bnx2x_udp_tunnel_sync,
10210 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10211 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10212 .tables = {
10213 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
10214 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10218 static int bnx2x_close(struct net_device *dev);
10220 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10221 * scheduled on a general queue in order to prevent a dead lock.
10223 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10225 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10227 rtnl_lock();
10229 if (!netif_running(bp->dev)) {
10230 rtnl_unlock();
10231 return;
10234 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10235 #ifdef BNX2X_STOP_ON_ERROR
10236 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10237 "you will need to reboot when done\n");
10238 goto sp_rtnl_not_reset;
10239 #endif
10241 * Clear all pending SP commands as we are going to reset the
10242 * function anyway.
10244 bp->sp_rtnl_state = 0;
10245 smp_mb();
10247 bnx2x_parity_recover(bp);
10249 rtnl_unlock();
10250 return;
10253 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10254 #ifdef BNX2X_STOP_ON_ERROR
10255 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10256 "you will need to reboot when done\n");
10257 goto sp_rtnl_not_reset;
10258 #endif
10261 * Clear all pending SP commands as we are going to reset the
10262 * function anyway.
10264 bp->sp_rtnl_state = 0;
10265 smp_mb();
10267 /* Immediately indicate link as down */
10268 bp->link_vars.link_up = 0;
10269 bp->force_link_down = true;
10270 netif_carrier_off(bp->dev);
10271 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10273 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10274 /* When ret value shows failure of allocation failure,
10275 * the nic is rebooted again. If open still fails, a error
10276 * message to notify the user.
10278 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10279 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10280 if (bnx2x_nic_load(bp, LOAD_NORMAL))
10281 BNX2X_ERR("Open the NIC fails again!\n");
10283 rtnl_unlock();
10284 return;
10286 #ifdef BNX2X_STOP_ON_ERROR
10287 sp_rtnl_not_reset:
10288 #endif
10289 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10290 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10291 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10292 bnx2x_after_function_update(bp);
10294 * in case of fan failure we need to reset id if the "stop on error"
10295 * debug flag is set, since we trying to prevent permanent overheating
10296 * damage
10298 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10299 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10300 netif_device_detach(bp->dev);
10301 bnx2x_close(bp->dev);
10302 rtnl_unlock();
10303 return;
10306 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10307 DP(BNX2X_MSG_SP,
10308 "sending set mcast vf pf channel message from rtnl sp-task\n");
10309 bnx2x_vfpf_set_mcast(bp->dev);
10311 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10312 &bp->sp_rtnl_state)){
10313 if (netif_carrier_ok(bp->dev)) {
10314 bnx2x_tx_disable(bp);
10315 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10319 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10320 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10321 bnx2x_set_rx_mode_inner(bp);
10324 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10325 &bp->sp_rtnl_state))
10326 bnx2x_pf_set_vfs_vlan(bp);
10328 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10329 bnx2x_dcbx_stop_hw_tx(bp);
10330 bnx2x_dcbx_resume_hw_tx(bp);
10333 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10334 &bp->sp_rtnl_state))
10335 bnx2x_update_mng_version(bp);
10337 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10338 bnx2x_handle_update_svid_cmd(bp);
10340 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10341 * can be called from other contexts as well)
10343 rtnl_unlock();
10345 /* enable SR-IOV if applicable */
10346 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10347 &bp->sp_rtnl_state)) {
10348 bnx2x_disable_sriov(bp);
10349 bnx2x_enable_sriov(bp);
10353 static void bnx2x_period_task(struct work_struct *work)
10355 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10357 if (!netif_running(bp->dev))
10358 goto period_task_exit;
10360 if (CHIP_REV_IS_SLOW(bp)) {
10361 BNX2X_ERR("period task called on emulation, ignoring\n");
10362 goto period_task_exit;
10365 bnx2x_acquire_phy_lock(bp);
10367 * The barrier is needed to ensure the ordering between the writing to
10368 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10369 * the reading here.
10371 smp_mb();
10372 if (bp->port.pmf) {
10373 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10375 /* Re-queue task in 1 sec */
10376 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10379 bnx2x_release_phy_lock(bp);
10380 period_task_exit:
10381 return;
10385 * Init service functions
10388 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10390 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10391 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10392 return base + (BP_ABS_FUNC(bp)) * stride;
10395 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10396 u8 port, u32 reset_reg,
10397 struct bnx2x_mac_vals *vals)
10399 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10400 u32 base_addr;
10402 if (!(mask & reset_reg))
10403 return false;
10405 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10406 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10407 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10408 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10409 REG_WR(bp, vals->umac_addr[port], 0);
10411 return true;
10414 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10415 struct bnx2x_mac_vals *vals)
10417 u32 val, base_addr, offset, mask, reset_reg;
10418 bool mac_stopped = false;
10419 u8 port = BP_PORT(bp);
10421 /* reset addresses as they also mark which values were changed */
10422 memset(vals, 0, sizeof(*vals));
10424 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10426 if (!CHIP_IS_E3(bp)) {
10427 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10428 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10429 if ((mask & reset_reg) && val) {
10430 u32 wb_data[2];
10431 BNX2X_DEV_INFO("Disable bmac Rx\n");
10432 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10433 : NIG_REG_INGRESS_BMAC0_MEM;
10434 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10435 : BIGMAC_REGISTER_BMAC_CONTROL;
10438 * use rd/wr since we cannot use dmae. This is safe
10439 * since MCP won't access the bus due to the request
10440 * to unload, and no function on the path can be
10441 * loaded at this time.
10443 wb_data[0] = REG_RD(bp, base_addr + offset);
10444 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10445 vals->bmac_addr = base_addr + offset;
10446 vals->bmac_val[0] = wb_data[0];
10447 vals->bmac_val[1] = wb_data[1];
10448 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10449 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10450 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10452 BNX2X_DEV_INFO("Disable emac Rx\n");
10453 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10454 vals->emac_val = REG_RD(bp, vals->emac_addr);
10455 REG_WR(bp, vals->emac_addr, 0);
10456 mac_stopped = true;
10457 } else {
10458 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10459 BNX2X_DEV_INFO("Disable xmac Rx\n");
10460 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10461 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10462 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10463 val & ~(1 << 1));
10464 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10465 val | (1 << 1));
10466 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10467 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10468 REG_WR(bp, vals->xmac_addr, 0);
10469 mac_stopped = true;
10472 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10473 reset_reg, vals);
10474 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10475 reset_reg, vals);
10478 if (mac_stopped)
10479 msleep(20);
10482 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10483 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10484 0x1848 + ((f) << 4))
10485 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10486 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10487 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10489 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10490 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10491 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10493 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10495 /* UNDI marks its presence in DORQ -
10496 * it initializes CID offset for normal bell to 0x7
10498 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10499 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10500 return false;
10502 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10503 BNX2X_DEV_INFO("UNDI previously loaded\n");
10504 return true;
10507 return false;
10510 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10512 u16 rcq, bd;
10513 u32 addr, tmp_reg;
10515 if (BP_FUNC(bp) < 2)
10516 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10517 else
10518 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10520 tmp_reg = REG_RD(bp, addr);
10521 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10522 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10524 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10525 REG_WR(bp, addr, tmp_reg);
10527 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10528 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10531 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10533 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10534 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10535 if (!rc) {
10536 BNX2X_ERR("MCP response failure, aborting\n");
10537 return -EBUSY;
10540 return 0;
10543 static struct bnx2x_prev_path_list *
10544 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10546 struct bnx2x_prev_path_list *tmp_list;
10548 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10549 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10550 bp->pdev->bus->number == tmp_list->bus &&
10551 BP_PATH(bp) == tmp_list->path)
10552 return tmp_list;
10554 return NULL;
10557 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10559 struct bnx2x_prev_path_list *tmp_list;
10560 int rc;
10562 rc = down_interruptible(&bnx2x_prev_sem);
10563 if (rc) {
10564 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10565 return rc;
10568 tmp_list = bnx2x_prev_path_get_entry(bp);
10569 if (tmp_list) {
10570 tmp_list->aer = 1;
10571 rc = 0;
10572 } else {
10573 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10574 BP_PATH(bp));
10577 up(&bnx2x_prev_sem);
10579 return rc;
10582 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10584 struct bnx2x_prev_path_list *tmp_list;
10585 bool rc = false;
10587 if (down_trylock(&bnx2x_prev_sem))
10588 return false;
10590 tmp_list = bnx2x_prev_path_get_entry(bp);
10591 if (tmp_list) {
10592 if (tmp_list->aer) {
10593 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10594 BP_PATH(bp));
10595 } else {
10596 rc = true;
10597 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10598 BP_PATH(bp));
10602 up(&bnx2x_prev_sem);
10604 return rc;
10607 bool bnx2x_port_after_undi(struct bnx2x *bp)
10609 struct bnx2x_prev_path_list *entry;
10610 bool val;
10612 down(&bnx2x_prev_sem);
10614 entry = bnx2x_prev_path_get_entry(bp);
10615 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10617 up(&bnx2x_prev_sem);
10619 return val;
10622 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10624 struct bnx2x_prev_path_list *tmp_list;
10625 int rc;
10627 rc = down_interruptible(&bnx2x_prev_sem);
10628 if (rc) {
10629 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10630 return rc;
10633 /* Check whether the entry for this path already exists */
10634 tmp_list = bnx2x_prev_path_get_entry(bp);
10635 if (tmp_list) {
10636 if (!tmp_list->aer) {
10637 BNX2X_ERR("Re-Marking the path.\n");
10638 } else {
10639 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10640 BP_PATH(bp));
10641 tmp_list->aer = 0;
10643 up(&bnx2x_prev_sem);
10644 return 0;
10646 up(&bnx2x_prev_sem);
10648 /* Create an entry for this path and add it */
10649 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10650 if (!tmp_list) {
10651 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10652 return -ENOMEM;
10655 tmp_list->bus = bp->pdev->bus->number;
10656 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10657 tmp_list->path = BP_PATH(bp);
10658 tmp_list->aer = 0;
10659 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10661 rc = down_interruptible(&bnx2x_prev_sem);
10662 if (rc) {
10663 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10664 kfree(tmp_list);
10665 } else {
10666 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10667 BP_PATH(bp));
10668 list_add(&tmp_list->list, &bnx2x_prev_list);
10669 up(&bnx2x_prev_sem);
10672 return rc;
10675 static int bnx2x_do_flr(struct bnx2x *bp)
10677 struct pci_dev *dev = bp->pdev;
10679 if (CHIP_IS_E1x(bp)) {
10680 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10681 return -EINVAL;
10684 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10685 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10686 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10687 bp->common.bc_ver);
10688 return -EINVAL;
10691 if (!pci_wait_for_pending_transaction(dev))
10692 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10694 BNX2X_DEV_INFO("Initiating FLR\n");
10695 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10697 return 0;
10700 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10702 int rc;
10704 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10706 /* Test if previous unload process was already finished for this path */
10707 if (bnx2x_prev_is_path_marked(bp))
10708 return bnx2x_prev_mcp_done(bp);
10710 BNX2X_DEV_INFO("Path is unmarked\n");
10712 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10713 if (bnx2x_prev_is_after_undi(bp))
10714 goto out;
10716 /* If function has FLR capabilities, and existing FW version matches
10717 * the one required, then FLR will be sufficient to clean any residue
10718 * left by previous driver
10720 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10722 if (!rc) {
10723 /* fw version is good */
10724 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10725 rc = bnx2x_do_flr(bp);
10728 if (!rc) {
10729 /* FLR was performed */
10730 BNX2X_DEV_INFO("FLR successful\n");
10731 return 0;
10734 BNX2X_DEV_INFO("Could not FLR\n");
10736 out:
10737 /* Close the MCP request, return failure*/
10738 rc = bnx2x_prev_mcp_done(bp);
10739 if (!rc)
10740 rc = BNX2X_PREV_WAIT_NEEDED;
10742 return rc;
10745 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10747 u32 reset_reg, tmp_reg = 0, rc;
10748 bool prev_undi = false;
10749 struct bnx2x_mac_vals mac_vals;
10751 /* It is possible a previous function received 'common' answer,
10752 * but hasn't loaded yet, therefore creating a scenario of
10753 * multiple functions receiving 'common' on the same path.
10755 BNX2X_DEV_INFO("Common unload Flow\n");
10757 memset(&mac_vals, 0, sizeof(mac_vals));
10759 if (bnx2x_prev_is_path_marked(bp))
10760 return bnx2x_prev_mcp_done(bp);
10762 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10764 /* Reset should be performed after BRB is emptied */
10765 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10766 u32 timer_count = 1000;
10768 /* Close the MAC Rx to prevent BRB from filling up */
10769 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10771 /* close LLH filters for both ports towards the BRB */
10772 bnx2x_set_rx_filter(&bp->link_params, 0);
10773 bp->link_params.port ^= 1;
10774 bnx2x_set_rx_filter(&bp->link_params, 0);
10775 bp->link_params.port ^= 1;
10777 /* Check if the UNDI driver was previously loaded */
10778 if (bnx2x_prev_is_after_undi(bp)) {
10779 prev_undi = true;
10780 /* clear the UNDI indication */
10781 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10782 /* clear possible idle check errors */
10783 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10785 if (!CHIP_IS_E1x(bp))
10786 /* block FW from writing to host */
10787 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10789 /* wait until BRB is empty */
10790 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10791 while (timer_count) {
10792 u32 prev_brb = tmp_reg;
10794 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10795 if (!tmp_reg)
10796 break;
10798 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10800 /* reset timer as long as BRB actually gets emptied */
10801 if (prev_brb > tmp_reg)
10802 timer_count = 1000;
10803 else
10804 timer_count--;
10806 /* If UNDI resides in memory, manually increment it */
10807 if (prev_undi)
10808 bnx2x_prev_unload_undi_inc(bp, 1);
10810 udelay(10);
10813 if (!timer_count)
10814 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10817 /* No packets are in the pipeline, path is ready for reset */
10818 bnx2x_reset_common(bp);
10820 if (mac_vals.xmac_addr)
10821 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10822 if (mac_vals.umac_addr[0])
10823 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10824 if (mac_vals.umac_addr[1])
10825 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10826 if (mac_vals.emac_addr)
10827 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10828 if (mac_vals.bmac_addr) {
10829 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10830 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10833 rc = bnx2x_prev_mark_path(bp, prev_undi);
10834 if (rc) {
10835 bnx2x_prev_mcp_done(bp);
10836 return rc;
10839 return bnx2x_prev_mcp_done(bp);
10842 static int bnx2x_prev_unload(struct bnx2x *bp)
10844 int time_counter = 10;
10845 u32 rc, fw, hw_lock_reg, hw_lock_val;
10846 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10848 /* clear hw from errors which may have resulted from an interrupted
10849 * dmae transaction.
10851 bnx2x_clean_pglue_errors(bp);
10853 /* Release previously held locks */
10854 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10855 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10856 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10858 hw_lock_val = REG_RD(bp, hw_lock_reg);
10859 if (hw_lock_val) {
10860 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10861 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10862 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10863 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10866 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10867 REG_WR(bp, hw_lock_reg, 0xffffffff);
10868 } else
10869 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10871 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10872 BNX2X_DEV_INFO("Release previously held alr\n");
10873 bnx2x_release_alr(bp);
10876 do {
10877 int aer = 0;
10878 /* Lock MCP using an unload request */
10879 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10880 if (!fw) {
10881 BNX2X_ERR("MCP response failure, aborting\n");
10882 rc = -EBUSY;
10883 break;
10886 rc = down_interruptible(&bnx2x_prev_sem);
10887 if (rc) {
10888 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10889 rc);
10890 } else {
10891 /* If Path is marked by EEH, ignore unload status */
10892 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10893 bnx2x_prev_path_get_entry(bp)->aer);
10894 up(&bnx2x_prev_sem);
10897 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10898 rc = bnx2x_prev_unload_common(bp);
10899 break;
10902 /* non-common reply from MCP might require looping */
10903 rc = bnx2x_prev_unload_uncommon(bp);
10904 if (rc != BNX2X_PREV_WAIT_NEEDED)
10905 break;
10907 msleep(20);
10908 } while (--time_counter);
10910 if (!time_counter || rc) {
10911 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10912 rc = -EPROBE_DEFER;
10915 /* Mark function if its port was used to boot from SAN */
10916 if (bnx2x_port_after_undi(bp))
10917 bp->link_params.feature_config_flags |=
10918 FEATURE_CONFIG_BOOT_FROM_SAN;
10920 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10922 return rc;
10925 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10927 u32 val, val2, val3, val4, id, boot_mode;
10928 u16 pmc;
10930 /* Get the chip revision id and number. */
10931 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10932 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10933 id = ((val & 0xffff) << 16);
10934 val = REG_RD(bp, MISC_REG_CHIP_REV);
10935 id |= ((val & 0xf) << 12);
10937 /* Metal is read from PCI regs, but we can't access >=0x400 from
10938 * the configuration space (so we need to reg_rd)
10940 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10941 id |= (((val >> 24) & 0xf) << 4);
10942 val = REG_RD(bp, MISC_REG_BOND_ID);
10943 id |= (val & 0xf);
10944 bp->common.chip_id = id;
10946 /* force 57811 according to MISC register */
10947 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10948 if (CHIP_IS_57810(bp))
10949 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10950 (bp->common.chip_id & 0x0000FFFF);
10951 else if (CHIP_IS_57810_MF(bp))
10952 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10953 (bp->common.chip_id & 0x0000FFFF);
10954 bp->common.chip_id |= 0x1;
10957 /* Set doorbell size */
10958 bp->db_size = (1 << BNX2X_DB_SHIFT);
10960 if (!CHIP_IS_E1x(bp)) {
10961 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10962 if ((val & 1) == 0)
10963 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10964 else
10965 val = (val >> 1) & 1;
10966 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10967 "2_PORT_MODE");
10968 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10969 CHIP_2_PORT_MODE;
10971 if (CHIP_MODE_IS_4_PORT(bp))
10972 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10973 else
10974 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10975 } else {
10976 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10977 bp->pfid = bp->pf_num; /* 0..7 */
10980 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10982 bp->link_params.chip_id = bp->common.chip_id;
10983 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10985 val = (REG_RD(bp, 0x2874) & 0x55);
10986 if ((bp->common.chip_id & 0x1) ||
10987 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10988 bp->flags |= ONE_PORT_FLAG;
10989 BNX2X_DEV_INFO("single port device\n");
10992 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10993 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10994 (val & MCPR_NVM_CFG4_FLASH_SIZE));
10995 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10996 bp->common.flash_size, bp->common.flash_size);
10998 bnx2x_init_shmem(bp);
11000 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11001 MISC_REG_GENERIC_CR_1 :
11002 MISC_REG_GENERIC_CR_0));
11004 bp->link_params.shmem_base = bp->common.shmem_base;
11005 bp->link_params.shmem2_base = bp->common.shmem2_base;
11006 if (SHMEM2_RD(bp, size) >
11007 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11008 bp->link_params.lfa_base =
11009 REG_RD(bp, bp->common.shmem2_base +
11010 (u32)offsetof(struct shmem2_region,
11011 lfa_host_addr[BP_PORT(bp)]));
11012 else
11013 bp->link_params.lfa_base = 0;
11014 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11015 bp->common.shmem_base, bp->common.shmem2_base);
11017 if (!bp->common.shmem_base) {
11018 BNX2X_DEV_INFO("MCP not active\n");
11019 bp->flags |= NO_MCP_FLAG;
11020 return;
11023 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11024 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11026 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11027 SHARED_HW_CFG_LED_MODE_MASK) >>
11028 SHARED_HW_CFG_LED_MODE_SHIFT);
11030 bp->link_params.feature_config_flags = 0;
11031 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11032 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11033 bp->link_params.feature_config_flags |=
11034 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11035 else
11036 bp->link_params.feature_config_flags &=
11037 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11039 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11040 bp->common.bc_ver = val;
11041 BNX2X_DEV_INFO("bc_ver %X\n", val);
11042 if (val < BNX2X_BC_VER) {
11043 /* for now only warn
11044 * later we might need to enforce this */
11045 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11046 BNX2X_BC_VER, val);
11048 bp->link_params.feature_config_flags |=
11049 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11050 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11052 bp->link_params.feature_config_flags |=
11053 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11054 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11055 bp->link_params.feature_config_flags |=
11056 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11057 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11058 bp->link_params.feature_config_flags |=
11059 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11060 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11062 bp->link_params.feature_config_flags |=
11063 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11064 FEATURE_CONFIG_MT_SUPPORT : 0;
11066 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11067 BC_SUPPORTS_PFC_STATS : 0;
11069 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11070 BC_SUPPORTS_FCOE_FEATURES : 0;
11072 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11073 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11075 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11076 BC_SUPPORTS_RMMOD_CMD : 0;
11078 boot_mode = SHMEM_RD(bp,
11079 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11080 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11081 switch (boot_mode) {
11082 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11083 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11084 break;
11085 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11086 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11087 break;
11088 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11089 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11090 break;
11091 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11092 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11093 break;
11096 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11097 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11099 BNX2X_DEV_INFO("%sWoL capable\n",
11100 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11102 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11103 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11104 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11105 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11107 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11108 val, val2, val3, val4);
11111 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11112 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11114 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11116 int pfid = BP_FUNC(bp);
11117 int igu_sb_id;
11118 u32 val;
11119 u8 fid, igu_sb_cnt = 0;
11121 bp->igu_base_sb = 0xff;
11122 if (CHIP_INT_MODE_IS_BC(bp)) {
11123 int vn = BP_VN(bp);
11124 igu_sb_cnt = bp->igu_sb_cnt;
11125 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11126 FP_SB_MAX_E1x;
11128 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11129 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11131 return 0;
11134 /* IGU in normal mode - read CAM */
11135 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11136 igu_sb_id++) {
11137 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11138 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11139 continue;
11140 fid = IGU_FID(val);
11141 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11142 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11143 continue;
11144 if (IGU_VEC(val) == 0)
11145 /* default status block */
11146 bp->igu_dsb_id = igu_sb_id;
11147 else {
11148 if (bp->igu_base_sb == 0xff)
11149 bp->igu_base_sb = igu_sb_id;
11150 igu_sb_cnt++;
11155 #ifdef CONFIG_PCI_MSI
11156 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11157 * optional that number of CAM entries will not be equal to the value
11158 * advertised in PCI.
11159 * Driver should use the minimal value of both as the actual status
11160 * block count
11162 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11163 #endif
11165 if (igu_sb_cnt == 0) {
11166 BNX2X_ERR("CAM configuration error\n");
11167 return -EINVAL;
11170 return 0;
11173 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11175 int cfg_size = 0, idx, port = BP_PORT(bp);
11177 /* Aggregation of supported attributes of all external phys */
11178 bp->port.supported[0] = 0;
11179 bp->port.supported[1] = 0;
11180 switch (bp->link_params.num_phys) {
11181 case 1:
11182 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11183 cfg_size = 1;
11184 break;
11185 case 2:
11186 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11187 cfg_size = 1;
11188 break;
11189 case 3:
11190 if (bp->link_params.multi_phy_config &
11191 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11192 bp->port.supported[1] =
11193 bp->link_params.phy[EXT_PHY1].supported;
11194 bp->port.supported[0] =
11195 bp->link_params.phy[EXT_PHY2].supported;
11196 } else {
11197 bp->port.supported[0] =
11198 bp->link_params.phy[EXT_PHY1].supported;
11199 bp->port.supported[1] =
11200 bp->link_params.phy[EXT_PHY2].supported;
11202 cfg_size = 2;
11203 break;
11206 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11207 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11208 SHMEM_RD(bp,
11209 dev_info.port_hw_config[port].external_phy_config),
11210 SHMEM_RD(bp,
11211 dev_info.port_hw_config[port].external_phy_config2));
11212 return;
11215 if (CHIP_IS_E3(bp))
11216 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11217 else {
11218 switch (switch_cfg) {
11219 case SWITCH_CFG_1G:
11220 bp->port.phy_addr = REG_RD(
11221 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11222 break;
11223 case SWITCH_CFG_10G:
11224 bp->port.phy_addr = REG_RD(
11225 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11226 break;
11227 default:
11228 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11229 bp->port.link_config[0]);
11230 return;
11233 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11234 /* mask what we support according to speed_cap_mask per configuration */
11235 for (idx = 0; idx < cfg_size; idx++) {
11236 if (!(bp->link_params.speed_cap_mask[idx] &
11237 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11238 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11240 if (!(bp->link_params.speed_cap_mask[idx] &
11241 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11242 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11244 if (!(bp->link_params.speed_cap_mask[idx] &
11245 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11246 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11248 if (!(bp->link_params.speed_cap_mask[idx] &
11249 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11250 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11252 if (!(bp->link_params.speed_cap_mask[idx] &
11253 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11254 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11255 SUPPORTED_1000baseT_Full);
11257 if (!(bp->link_params.speed_cap_mask[idx] &
11258 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11259 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11261 if (!(bp->link_params.speed_cap_mask[idx] &
11262 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11263 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11265 if (!(bp->link_params.speed_cap_mask[idx] &
11266 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11267 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11270 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11271 bp->port.supported[1]);
11274 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11276 u32 link_config, idx, cfg_size = 0;
11277 bp->port.advertising[0] = 0;
11278 bp->port.advertising[1] = 0;
11279 switch (bp->link_params.num_phys) {
11280 case 1:
11281 case 2:
11282 cfg_size = 1;
11283 break;
11284 case 3:
11285 cfg_size = 2;
11286 break;
11288 for (idx = 0; idx < cfg_size; idx++) {
11289 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11290 link_config = bp->port.link_config[idx];
11291 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11292 case PORT_FEATURE_LINK_SPEED_AUTO:
11293 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11294 bp->link_params.req_line_speed[idx] =
11295 SPEED_AUTO_NEG;
11296 bp->port.advertising[idx] |=
11297 bp->port.supported[idx];
11298 if (bp->link_params.phy[EXT_PHY1].type ==
11299 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11300 bp->port.advertising[idx] |=
11301 (SUPPORTED_100baseT_Half |
11302 SUPPORTED_100baseT_Full);
11303 } else {
11304 /* force 10G, no AN */
11305 bp->link_params.req_line_speed[idx] =
11306 SPEED_10000;
11307 bp->port.advertising[idx] |=
11308 (ADVERTISED_10000baseT_Full |
11309 ADVERTISED_FIBRE);
11310 continue;
11312 break;
11314 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11315 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11316 bp->link_params.req_line_speed[idx] =
11317 SPEED_10;
11318 bp->port.advertising[idx] |=
11319 (ADVERTISED_10baseT_Full |
11320 ADVERTISED_TP);
11321 } else {
11322 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11323 link_config,
11324 bp->link_params.speed_cap_mask[idx]);
11325 return;
11327 break;
11329 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11330 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11331 bp->link_params.req_line_speed[idx] =
11332 SPEED_10;
11333 bp->link_params.req_duplex[idx] =
11334 DUPLEX_HALF;
11335 bp->port.advertising[idx] |=
11336 (ADVERTISED_10baseT_Half |
11337 ADVERTISED_TP);
11338 } else {
11339 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11340 link_config,
11341 bp->link_params.speed_cap_mask[idx]);
11342 return;
11344 break;
11346 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11347 if (bp->port.supported[idx] &
11348 SUPPORTED_100baseT_Full) {
11349 bp->link_params.req_line_speed[idx] =
11350 SPEED_100;
11351 bp->port.advertising[idx] |=
11352 (ADVERTISED_100baseT_Full |
11353 ADVERTISED_TP);
11354 } else {
11355 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11356 link_config,
11357 bp->link_params.speed_cap_mask[idx]);
11358 return;
11360 break;
11362 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11363 if (bp->port.supported[idx] &
11364 SUPPORTED_100baseT_Half) {
11365 bp->link_params.req_line_speed[idx] =
11366 SPEED_100;
11367 bp->link_params.req_duplex[idx] =
11368 DUPLEX_HALF;
11369 bp->port.advertising[idx] |=
11370 (ADVERTISED_100baseT_Half |
11371 ADVERTISED_TP);
11372 } else {
11373 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11374 link_config,
11375 bp->link_params.speed_cap_mask[idx]);
11376 return;
11378 break;
11380 case PORT_FEATURE_LINK_SPEED_1G:
11381 if (bp->port.supported[idx] &
11382 SUPPORTED_1000baseT_Full) {
11383 bp->link_params.req_line_speed[idx] =
11384 SPEED_1000;
11385 bp->port.advertising[idx] |=
11386 (ADVERTISED_1000baseT_Full |
11387 ADVERTISED_TP);
11388 } else if (bp->port.supported[idx] &
11389 SUPPORTED_1000baseKX_Full) {
11390 bp->link_params.req_line_speed[idx] =
11391 SPEED_1000;
11392 bp->port.advertising[idx] |=
11393 ADVERTISED_1000baseKX_Full;
11394 } else {
11395 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11396 link_config,
11397 bp->link_params.speed_cap_mask[idx]);
11398 return;
11400 break;
11402 case PORT_FEATURE_LINK_SPEED_2_5G:
11403 if (bp->port.supported[idx] &
11404 SUPPORTED_2500baseX_Full) {
11405 bp->link_params.req_line_speed[idx] =
11406 SPEED_2500;
11407 bp->port.advertising[idx] |=
11408 (ADVERTISED_2500baseX_Full |
11409 ADVERTISED_TP);
11410 } else {
11411 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11412 link_config,
11413 bp->link_params.speed_cap_mask[idx]);
11414 return;
11416 break;
11418 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11419 if (bp->port.supported[idx] &
11420 SUPPORTED_10000baseT_Full) {
11421 bp->link_params.req_line_speed[idx] =
11422 SPEED_10000;
11423 bp->port.advertising[idx] |=
11424 (ADVERTISED_10000baseT_Full |
11425 ADVERTISED_FIBRE);
11426 } else if (bp->port.supported[idx] &
11427 SUPPORTED_10000baseKR_Full) {
11428 bp->link_params.req_line_speed[idx] =
11429 SPEED_10000;
11430 bp->port.advertising[idx] |=
11431 (ADVERTISED_10000baseKR_Full |
11432 ADVERTISED_FIBRE);
11433 } else {
11434 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11435 link_config,
11436 bp->link_params.speed_cap_mask[idx]);
11437 return;
11439 break;
11440 case PORT_FEATURE_LINK_SPEED_20G:
11441 bp->link_params.req_line_speed[idx] = SPEED_20000;
11443 break;
11444 default:
11445 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11446 link_config);
11447 bp->link_params.req_line_speed[idx] =
11448 SPEED_AUTO_NEG;
11449 bp->port.advertising[idx] =
11450 bp->port.supported[idx];
11451 break;
11454 bp->link_params.req_flow_ctrl[idx] = (link_config &
11455 PORT_FEATURE_FLOW_CONTROL_MASK);
11456 if (bp->link_params.req_flow_ctrl[idx] ==
11457 BNX2X_FLOW_CTRL_AUTO) {
11458 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11459 bp->link_params.req_flow_ctrl[idx] =
11460 BNX2X_FLOW_CTRL_NONE;
11461 else
11462 bnx2x_set_requested_fc(bp);
11465 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11466 bp->link_params.req_line_speed[idx],
11467 bp->link_params.req_duplex[idx],
11468 bp->link_params.req_flow_ctrl[idx],
11469 bp->port.advertising[idx]);
11473 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11475 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11476 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11477 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11478 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11481 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11483 int port = BP_PORT(bp);
11484 u32 config;
11485 u32 ext_phy_type, ext_phy_config, eee_mode;
11487 bp->link_params.bp = bp;
11488 bp->link_params.port = port;
11490 bp->link_params.lane_config =
11491 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11493 bp->link_params.speed_cap_mask[0] =
11494 SHMEM_RD(bp,
11495 dev_info.port_hw_config[port].speed_capability_mask) &
11496 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11497 bp->link_params.speed_cap_mask[1] =
11498 SHMEM_RD(bp,
11499 dev_info.port_hw_config[port].speed_capability_mask2) &
11500 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11501 bp->port.link_config[0] =
11502 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11504 bp->port.link_config[1] =
11505 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11507 bp->link_params.multi_phy_config =
11508 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11509 /* If the device is capable of WoL, set the default state according
11510 * to the HW
11512 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11513 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11514 (config & PORT_FEATURE_WOL_ENABLED));
11516 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11517 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11518 bp->flags |= NO_ISCSI_FLAG;
11519 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11520 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11521 bp->flags |= NO_FCOE_FLAG;
11523 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11524 bp->link_params.lane_config,
11525 bp->link_params.speed_cap_mask[0],
11526 bp->port.link_config[0]);
11528 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11529 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11530 bnx2x_phy_probe(&bp->link_params);
11531 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11533 bnx2x_link_settings_requested(bp);
11536 * If connected directly, work with the internal PHY, otherwise, work
11537 * with the external PHY
11539 ext_phy_config =
11540 SHMEM_RD(bp,
11541 dev_info.port_hw_config[port].external_phy_config);
11542 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11543 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11544 bp->mdio.prtad = bp->port.phy_addr;
11546 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11547 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11548 bp->mdio.prtad =
11549 XGXS_EXT_PHY_ADDR(ext_phy_config);
11551 /* Configure link feature according to nvram value */
11552 eee_mode = (((SHMEM_RD(bp, dev_info.
11553 port_feature_config[port].eee_power_mode)) &
11554 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11555 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11556 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11557 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11558 EEE_MODE_ENABLE_LPI |
11559 EEE_MODE_OUTPUT_TIME;
11560 } else {
11561 bp->link_params.eee_mode = 0;
11565 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11567 u32 no_flags = NO_ISCSI_FLAG;
11568 int port = BP_PORT(bp);
11569 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11570 drv_lic_key[port].max_iscsi_conn);
11572 if (!CNIC_SUPPORT(bp)) {
11573 bp->flags |= no_flags;
11574 return;
11577 /* Get the number of maximum allowed iSCSI connections */
11578 bp->cnic_eth_dev.max_iscsi_conn =
11579 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11580 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11582 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11583 bp->cnic_eth_dev.max_iscsi_conn);
11586 * If maximum allowed number of connections is zero -
11587 * disable the feature.
11589 if (!bp->cnic_eth_dev.max_iscsi_conn)
11590 bp->flags |= no_flags;
11593 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11595 /* Port info */
11596 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11597 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11598 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11599 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11601 /* Node info */
11602 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11603 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11604 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11605 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11608 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11610 u8 count = 0;
11612 if (IS_MF(bp)) {
11613 u8 fid;
11615 /* iterate over absolute function ids for this path: */
11616 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11617 if (IS_MF_SD(bp)) {
11618 u32 cfg = MF_CFG_RD(bp,
11619 func_mf_config[fid].config);
11621 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11622 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11623 FUNC_MF_CFG_PROTOCOL_FCOE))
11624 count++;
11625 } else {
11626 u32 cfg = MF_CFG_RD(bp,
11627 func_ext_config[fid].
11628 func_cfg);
11630 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11631 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11632 count++;
11635 } else { /* SF */
11636 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11638 for (port = 0; port < port_cnt; port++) {
11639 u32 lic = SHMEM_RD(bp,
11640 drv_lic_key[port].max_fcoe_conn) ^
11641 FW_ENCODE_32BIT_PATTERN;
11642 if (lic)
11643 count++;
11647 return count;
11650 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11652 int port = BP_PORT(bp);
11653 int func = BP_ABS_FUNC(bp);
11654 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11655 drv_lic_key[port].max_fcoe_conn);
11656 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11658 if (!CNIC_SUPPORT(bp)) {
11659 bp->flags |= NO_FCOE_FLAG;
11660 return;
11663 /* Get the number of maximum allowed FCoE connections */
11664 bp->cnic_eth_dev.max_fcoe_conn =
11665 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11666 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11668 /* Calculate the number of maximum allowed FCoE tasks */
11669 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11671 /* check if FCoE resources must be shared between different functions */
11672 if (num_fcoe_func)
11673 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11675 /* Read the WWN: */
11676 if (!IS_MF(bp)) {
11677 /* Port info */
11678 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11679 SHMEM_RD(bp,
11680 dev_info.port_hw_config[port].
11681 fcoe_wwn_port_name_upper);
11682 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11683 SHMEM_RD(bp,
11684 dev_info.port_hw_config[port].
11685 fcoe_wwn_port_name_lower);
11687 /* Node info */
11688 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11689 SHMEM_RD(bp,
11690 dev_info.port_hw_config[port].
11691 fcoe_wwn_node_name_upper);
11692 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11693 SHMEM_RD(bp,
11694 dev_info.port_hw_config[port].
11695 fcoe_wwn_node_name_lower);
11696 } else if (!IS_MF_SD(bp)) {
11697 /* Read the WWN info only if the FCoE feature is enabled for
11698 * this function.
11700 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11701 bnx2x_get_ext_wwn_info(bp, func);
11702 } else {
11703 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11704 bnx2x_get_ext_wwn_info(bp, func);
11707 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11710 * If maximum allowed number of connections is zero -
11711 * disable the feature.
11713 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11714 bp->flags |= NO_FCOE_FLAG;
11715 eth_zero_addr(bp->fip_mac);
11719 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11722 * iSCSI may be dynamically disabled but reading
11723 * info here we will decrease memory usage by driver
11724 * if the feature is disabled for good
11726 bnx2x_get_iscsi_info(bp);
11727 bnx2x_get_fcoe_info(bp);
11730 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11732 u32 val, val2;
11733 int func = BP_ABS_FUNC(bp);
11734 int port = BP_PORT(bp);
11735 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11736 u8 *fip_mac = bp->fip_mac;
11738 if (IS_MF(bp)) {
11739 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11740 * FCoE MAC then the appropriate feature should be disabled.
11741 * In non SD mode features configuration comes from struct
11742 * func_ext_config.
11744 if (!IS_MF_SD(bp)) {
11745 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11746 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11747 val2 = MF_CFG_RD(bp, func_ext_config[func].
11748 iscsi_mac_addr_upper);
11749 val = MF_CFG_RD(bp, func_ext_config[func].
11750 iscsi_mac_addr_lower);
11751 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11752 BNX2X_DEV_INFO
11753 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11754 } else {
11755 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11758 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11759 val2 = MF_CFG_RD(bp, func_ext_config[func].
11760 fcoe_mac_addr_upper);
11761 val = MF_CFG_RD(bp, func_ext_config[func].
11762 fcoe_mac_addr_lower);
11763 bnx2x_set_mac_buf(fip_mac, val, val2);
11764 BNX2X_DEV_INFO
11765 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11766 } else {
11767 bp->flags |= NO_FCOE_FLAG;
11770 bp->mf_ext_config = cfg;
11772 } else { /* SD MODE */
11773 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11774 /* use primary mac as iscsi mac */
11775 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11777 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11778 BNX2X_DEV_INFO
11779 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11780 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11781 /* use primary mac as fip mac */
11782 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11783 BNX2X_DEV_INFO("SD FCoE MODE\n");
11784 BNX2X_DEV_INFO
11785 ("Read FIP MAC: %pM\n", fip_mac);
11789 /* If this is a storage-only interface, use SAN mac as
11790 * primary MAC. Notice that for SD this is already the case,
11791 * as the SAN mac was copied from the primary MAC.
11793 if (IS_MF_FCOE_AFEX(bp))
11794 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11795 } else {
11796 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11797 iscsi_mac_upper);
11798 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11799 iscsi_mac_lower);
11800 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11802 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11803 fcoe_fip_mac_upper);
11804 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805 fcoe_fip_mac_lower);
11806 bnx2x_set_mac_buf(fip_mac, val, val2);
11809 /* Disable iSCSI OOO if MAC configuration is invalid. */
11810 if (!is_valid_ether_addr(iscsi_mac)) {
11811 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11812 eth_zero_addr(iscsi_mac);
11815 /* Disable FCoE if MAC configuration is invalid. */
11816 if (!is_valid_ether_addr(fip_mac)) {
11817 bp->flags |= NO_FCOE_FLAG;
11818 eth_zero_addr(bp->fip_mac);
11822 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11824 u32 val, val2;
11825 int func = BP_ABS_FUNC(bp);
11826 int port = BP_PORT(bp);
11828 /* Zero primary MAC configuration */
11829 eth_zero_addr(bp->dev->dev_addr);
11831 if (BP_NOMCP(bp)) {
11832 BNX2X_ERROR("warning: random MAC workaround active\n");
11833 eth_hw_addr_random(bp->dev);
11834 } else if (IS_MF(bp)) {
11835 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11836 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11837 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11838 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11839 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11841 if (CNIC_SUPPORT(bp))
11842 bnx2x_get_cnic_mac_hwinfo(bp);
11843 } else {
11844 /* in SF read MACs from port configuration */
11845 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11846 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11847 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11849 if (CNIC_SUPPORT(bp))
11850 bnx2x_get_cnic_mac_hwinfo(bp);
11853 if (!BP_NOMCP(bp)) {
11854 /* Read physical port identifier from shmem */
11855 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11856 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11857 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11858 bp->flags |= HAS_PHYS_PORT_ID;
11861 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11863 if (!is_valid_ether_addr(bp->dev->dev_addr))
11864 dev_err(&bp->pdev->dev,
11865 "bad Ethernet MAC address configuration: %pM\n"
11866 "change it manually before bringing up the appropriate network interface\n",
11867 bp->dev->dev_addr);
11870 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11872 int tmp;
11873 u32 cfg;
11875 if (IS_VF(bp))
11876 return false;
11878 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11879 /* Take function: tmp = func */
11880 tmp = BP_ABS_FUNC(bp);
11881 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11882 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11883 } else {
11884 /* Take port: tmp = port */
11885 tmp = BP_PORT(bp);
11886 cfg = SHMEM_RD(bp,
11887 dev_info.port_hw_config[tmp].generic_features);
11888 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11890 return cfg;
11893 static void validate_set_si_mode(struct bnx2x *bp)
11895 u8 func = BP_ABS_FUNC(bp);
11896 u32 val;
11898 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11900 /* check for legal mac (upper bytes) */
11901 if (val != 0xffff) {
11902 bp->mf_mode = MULTI_FUNCTION_SI;
11903 bp->mf_config[BP_VN(bp)] =
11904 MF_CFG_RD(bp, func_mf_config[func].config);
11905 } else
11906 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11909 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11911 int /*abs*/func = BP_ABS_FUNC(bp);
11912 int vn;
11913 u32 val = 0, val2 = 0;
11914 int rc = 0;
11916 /* Validate that chip access is feasible */
11917 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11918 dev_err(&bp->pdev->dev,
11919 "Chip read returns all Fs. Preventing probe from continuing\n");
11920 return -EINVAL;
11923 bnx2x_get_common_hwinfo(bp);
11926 * initialize IGU parameters
11928 if (CHIP_IS_E1x(bp)) {
11929 bp->common.int_block = INT_BLOCK_HC;
11931 bp->igu_dsb_id = DEF_SB_IGU_ID;
11932 bp->igu_base_sb = 0;
11933 } else {
11934 bp->common.int_block = INT_BLOCK_IGU;
11936 /* do not allow device reset during IGU info processing */
11937 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11939 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11941 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11942 int tout = 5000;
11944 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11946 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11947 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11948 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11950 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11951 tout--;
11952 usleep_range(1000, 2000);
11955 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11956 dev_err(&bp->pdev->dev,
11957 "FORCING Normal Mode failed!!!\n");
11958 bnx2x_release_hw_lock(bp,
11959 HW_LOCK_RESOURCE_RESET);
11960 return -EPERM;
11964 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11965 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11966 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11967 } else
11968 BNX2X_DEV_INFO("IGU Normal Mode\n");
11970 rc = bnx2x_get_igu_cam_info(bp);
11971 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11972 if (rc)
11973 return rc;
11977 * set base FW non-default (fast path) status block id, this value is
11978 * used to initialize the fw_sb_id saved on the fp/queue structure to
11979 * determine the id used by the FW.
11981 if (CHIP_IS_E1x(bp))
11982 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11983 else /*
11984 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11985 * the same queue are indicated on the same IGU SB). So we prefer
11986 * FW and IGU SBs to be the same value.
11988 bp->base_fw_ndsb = bp->igu_base_sb;
11990 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11991 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11992 bp->igu_sb_cnt, bp->base_fw_ndsb);
11995 * Initialize MF configuration
11997 bp->mf_ov = 0;
11998 bp->mf_mode = 0;
11999 bp->mf_sub_mode = 0;
12000 vn = BP_VN(bp);
12002 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12003 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12004 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12005 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12007 if (SHMEM2_HAS(bp, mf_cfg_addr))
12008 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12009 else
12010 bp->common.mf_cfg_base = bp->common.shmem_base +
12011 offsetof(struct shmem_region, func_mb) +
12012 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12014 * get mf configuration:
12015 * 1. Existence of MF configuration
12016 * 2. MAC address must be legal (check only upper bytes)
12017 * for Switch-Independent mode;
12018 * OVLAN must be legal for Switch-Dependent mode
12019 * 3. SF_MODE configures specific MF mode
12021 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12022 /* get mf configuration */
12023 val = SHMEM_RD(bp,
12024 dev_info.shared_feature_config.config);
12025 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12027 switch (val) {
12028 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12029 validate_set_si_mode(bp);
12030 break;
12031 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12032 if ((!CHIP_IS_E1x(bp)) &&
12033 (MF_CFG_RD(bp, func_mf_config[func].
12034 mac_upper) != 0xffff) &&
12035 (SHMEM2_HAS(bp,
12036 afex_driver_support))) {
12037 bp->mf_mode = MULTI_FUNCTION_AFEX;
12038 bp->mf_config[vn] = MF_CFG_RD(bp,
12039 func_mf_config[func].config);
12040 } else {
12041 BNX2X_DEV_INFO("can not configure afex mode\n");
12043 break;
12044 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12045 /* get OV configuration */
12046 val = MF_CFG_RD(bp,
12047 func_mf_config[FUNC_0].e1hov_tag);
12048 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12050 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12051 bp->mf_mode = MULTI_FUNCTION_SD;
12052 bp->mf_config[vn] = MF_CFG_RD(bp,
12053 func_mf_config[func].config);
12054 } else
12055 BNX2X_DEV_INFO("illegal OV for SD\n");
12056 break;
12057 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12058 bp->mf_mode = MULTI_FUNCTION_SD;
12059 bp->mf_sub_mode = SUB_MF_MODE_BD;
12060 bp->mf_config[vn] =
12061 MF_CFG_RD(bp,
12062 func_mf_config[func].config);
12064 if (SHMEM2_HAS(bp, mtu_size)) {
12065 int mtu_idx = BP_FW_MB_IDX(bp);
12066 u16 mtu_size;
12067 u32 mtu;
12069 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12070 mtu_size = (u16)mtu;
12071 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12072 mtu_size, mtu);
12074 /* if valid: update device mtu */
12075 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12076 (mtu_size <=
12077 ETH_MAX_JUMBO_PACKET_SIZE))
12078 bp->dev->mtu = mtu_size;
12080 break;
12081 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12082 bp->mf_mode = MULTI_FUNCTION_SD;
12083 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12084 bp->mf_config[vn] =
12085 MF_CFG_RD(bp,
12086 func_mf_config[func].config);
12087 break;
12088 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12089 bp->mf_config[vn] = 0;
12090 break;
12091 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12092 val2 = SHMEM_RD(bp,
12093 dev_info.shared_hw_config.config_3);
12094 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12095 switch (val2) {
12096 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12097 validate_set_si_mode(bp);
12098 bp->mf_sub_mode =
12099 SUB_MF_MODE_NPAR1_DOT_5;
12100 break;
12101 default:
12102 /* Unknown configuration */
12103 bp->mf_config[vn] = 0;
12104 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12105 val);
12107 break;
12108 default:
12109 /* Unknown configuration: reset mf_config */
12110 bp->mf_config[vn] = 0;
12111 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12115 BNX2X_DEV_INFO("%s function mode\n",
12116 IS_MF(bp) ? "multi" : "single");
12118 switch (bp->mf_mode) {
12119 case MULTI_FUNCTION_SD:
12120 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12121 FUNC_MF_CFG_E1HOV_TAG_MASK;
12122 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12123 bp->mf_ov = val;
12124 bp->path_has_ovlan = true;
12126 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12127 func, bp->mf_ov, bp->mf_ov);
12128 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12129 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12130 dev_err(&bp->pdev->dev,
12131 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12132 func);
12133 bp->path_has_ovlan = true;
12134 } else {
12135 dev_err(&bp->pdev->dev,
12136 "No valid MF OV for func %d, aborting\n",
12137 func);
12138 return -EPERM;
12140 break;
12141 case MULTI_FUNCTION_AFEX:
12142 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12143 break;
12144 case MULTI_FUNCTION_SI:
12145 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12146 func);
12147 break;
12148 default:
12149 if (vn) {
12150 dev_err(&bp->pdev->dev,
12151 "VN %d is in a single function mode, aborting\n",
12152 vn);
12153 return -EPERM;
12155 break;
12158 /* check if other port on the path needs ovlan:
12159 * Since MF configuration is shared between ports
12160 * Possible mixed modes are only
12161 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12163 if (CHIP_MODE_IS_4_PORT(bp) &&
12164 !bp->path_has_ovlan &&
12165 !IS_MF(bp) &&
12166 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12167 u8 other_port = !BP_PORT(bp);
12168 u8 other_func = BP_PATH(bp) + 2*other_port;
12169 val = MF_CFG_RD(bp,
12170 func_mf_config[other_func].e1hov_tag);
12171 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12172 bp->path_has_ovlan = true;
12176 /* adjust igu_sb_cnt to MF for E1H */
12177 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12178 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12180 /* port info */
12181 bnx2x_get_port_hwinfo(bp);
12183 /* Get MAC addresses */
12184 bnx2x_get_mac_hwinfo(bp);
12186 bnx2x_get_cnic_info(bp);
12188 return rc;
12191 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12193 int cnt, i, block_end, rodi;
12194 char vpd_start[BNX2X_VPD_LEN+1];
12195 char str_id_reg[VENDOR_ID_LEN+1];
12196 char str_id_cap[VENDOR_ID_LEN+1];
12197 char *vpd_data;
12198 char *vpd_extended_data = NULL;
12199 u8 len;
12201 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12202 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12204 if (cnt < BNX2X_VPD_LEN)
12205 goto out_not_found;
12207 /* VPD RO tag should be first tag after identifier string, hence
12208 * we should be able to find it in first BNX2X_VPD_LEN chars
12210 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12211 PCI_VPD_LRDT_RO_DATA);
12212 if (i < 0)
12213 goto out_not_found;
12215 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12216 pci_vpd_lrdt_size(&vpd_start[i]);
12218 i += PCI_VPD_LRDT_TAG_SIZE;
12220 if (block_end > BNX2X_VPD_LEN) {
12221 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12222 if (vpd_extended_data == NULL)
12223 goto out_not_found;
12225 /* read rest of vpd image into vpd_extended_data */
12226 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12227 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12228 block_end - BNX2X_VPD_LEN,
12229 vpd_extended_data + BNX2X_VPD_LEN);
12230 if (cnt < (block_end - BNX2X_VPD_LEN))
12231 goto out_not_found;
12232 vpd_data = vpd_extended_data;
12233 } else
12234 vpd_data = vpd_start;
12236 /* now vpd_data holds full vpd content in both cases */
12238 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12239 PCI_VPD_RO_KEYWORD_MFR_ID);
12240 if (rodi < 0)
12241 goto out_not_found;
12243 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12245 if (len != VENDOR_ID_LEN)
12246 goto out_not_found;
12248 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12250 /* vendor specific info */
12251 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12252 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12253 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12254 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12256 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12257 PCI_VPD_RO_KEYWORD_VENDOR0);
12258 if (rodi >= 0) {
12259 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12261 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12263 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12264 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12265 bp->fw_ver[len] = ' ';
12268 kfree(vpd_extended_data);
12269 return;
12271 out_not_found:
12272 kfree(vpd_extended_data);
12273 return;
12276 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12278 u32 flags = 0;
12280 if (CHIP_REV_IS_FPGA(bp))
12281 SET_FLAGS(flags, MODE_FPGA);
12282 else if (CHIP_REV_IS_EMUL(bp))
12283 SET_FLAGS(flags, MODE_EMUL);
12284 else
12285 SET_FLAGS(flags, MODE_ASIC);
12287 if (CHIP_MODE_IS_4_PORT(bp))
12288 SET_FLAGS(flags, MODE_PORT4);
12289 else
12290 SET_FLAGS(flags, MODE_PORT2);
12292 if (CHIP_IS_E2(bp))
12293 SET_FLAGS(flags, MODE_E2);
12294 else if (CHIP_IS_E3(bp)) {
12295 SET_FLAGS(flags, MODE_E3);
12296 if (CHIP_REV(bp) == CHIP_REV_Ax)
12297 SET_FLAGS(flags, MODE_E3_A0);
12298 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12299 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12302 if (IS_MF(bp)) {
12303 SET_FLAGS(flags, MODE_MF);
12304 switch (bp->mf_mode) {
12305 case MULTI_FUNCTION_SD:
12306 SET_FLAGS(flags, MODE_MF_SD);
12307 break;
12308 case MULTI_FUNCTION_SI:
12309 SET_FLAGS(flags, MODE_MF_SI);
12310 break;
12311 case MULTI_FUNCTION_AFEX:
12312 SET_FLAGS(flags, MODE_MF_AFEX);
12313 break;
12315 } else
12316 SET_FLAGS(flags, MODE_SF);
12318 #if defined(__LITTLE_ENDIAN)
12319 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12320 #else /*(__BIG_ENDIAN)*/
12321 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12322 #endif
12323 INIT_MODE_FLAGS(bp) = flags;
12326 static int bnx2x_init_bp(struct bnx2x *bp)
12328 int func;
12329 int rc;
12331 mutex_init(&bp->port.phy_mutex);
12332 mutex_init(&bp->fw_mb_mutex);
12333 mutex_init(&bp->drv_info_mutex);
12334 sema_init(&bp->stats_lock, 1);
12335 bp->drv_info_mng_owner = false;
12336 INIT_LIST_HEAD(&bp->vlan_reg);
12338 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12339 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12340 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12341 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12342 if (IS_PF(bp)) {
12343 rc = bnx2x_get_hwinfo(bp);
12344 if (rc)
12345 return rc;
12346 } else {
12347 eth_zero_addr(bp->dev->dev_addr);
12350 bnx2x_set_modes_bitmap(bp);
12352 rc = bnx2x_alloc_mem_bp(bp);
12353 if (rc)
12354 return rc;
12356 bnx2x_read_fwinfo(bp);
12358 func = BP_FUNC(bp);
12360 /* need to reset chip if undi was active */
12361 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12362 /* init fw_seq */
12363 bp->fw_seq =
12364 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12365 DRV_MSG_SEQ_NUMBER_MASK;
12366 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12368 rc = bnx2x_prev_unload(bp);
12369 if (rc) {
12370 bnx2x_free_mem_bp(bp);
12371 return rc;
12375 if (CHIP_REV_IS_FPGA(bp))
12376 dev_err(&bp->pdev->dev, "FPGA detected\n");
12378 if (BP_NOMCP(bp) && (func == 0))
12379 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12381 bp->disable_tpa = disable_tpa;
12382 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12383 /* Reduce memory usage in kdump environment by disabling TPA */
12384 bp->disable_tpa |= is_kdump_kernel();
12386 /* Set TPA flags */
12387 if (bp->disable_tpa) {
12388 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12389 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12392 if (CHIP_IS_E1(bp))
12393 bp->dropless_fc = false;
12394 else
12395 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12397 bp->mrrs = mrrs;
12399 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12400 if (IS_VF(bp))
12401 bp->rx_ring_size = MAX_RX_AVAIL;
12403 /* make sure that the numbers are in the right granularity */
12404 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12405 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12407 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12409 timer_setup(&bp->timer, bnx2x_timer, 0);
12410 bp->timer.expires = jiffies + bp->current_interval;
12412 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12413 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12414 SHMEM2_HAS(bp, dcbx_en) &&
12415 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12416 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12417 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12418 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12419 bnx2x_dcbx_init_params(bp);
12420 } else {
12421 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12424 if (CHIP_IS_E1x(bp))
12425 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12426 else
12427 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12429 /* multiple tx priority */
12430 if (IS_VF(bp))
12431 bp->max_cos = 1;
12432 else if (CHIP_IS_E1x(bp))
12433 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12434 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12435 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12436 else if (CHIP_IS_E3B0(bp))
12437 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12438 else
12439 BNX2X_ERR("unknown chip %x revision %x\n",
12440 CHIP_NUM(bp), CHIP_REV(bp));
12441 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12443 /* We need at least one default status block for slow-path events,
12444 * second status block for the L2 queue, and a third status block for
12445 * CNIC if supported.
12447 if (IS_VF(bp))
12448 bp->min_msix_vec_cnt = 1;
12449 else if (CNIC_SUPPORT(bp))
12450 bp->min_msix_vec_cnt = 3;
12451 else /* PF w/o cnic */
12452 bp->min_msix_vec_cnt = 2;
12453 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12455 bp->dump_preset_idx = 1;
12457 return rc;
12460 /****************************************************************************
12461 * General service functions
12462 ****************************************************************************/
12465 * net_device service functions
12468 /* called with rtnl_lock */
12469 static int bnx2x_open(struct net_device *dev)
12471 struct bnx2x *bp = netdev_priv(dev);
12472 int rc;
12474 bp->stats_init = true;
12476 netif_carrier_off(dev);
12478 bnx2x_set_power_state(bp, PCI_D0);
12480 /* If parity had happen during the unload, then attentions
12481 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12482 * want the first function loaded on the current engine to
12483 * complete the recovery.
12484 * Parity recovery is only relevant for PF driver.
12486 if (IS_PF(bp)) {
12487 int other_engine = BP_PATH(bp) ? 0 : 1;
12488 bool other_load_status, load_status;
12489 bool global = false;
12491 other_load_status = bnx2x_get_load_status(bp, other_engine);
12492 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12493 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12494 bnx2x_chk_parity_attn(bp, &global, true)) {
12495 do {
12496 /* If there are attentions and they are in a
12497 * global blocks, set the GLOBAL_RESET bit
12498 * regardless whether it will be this function
12499 * that will complete the recovery or not.
12501 if (global)
12502 bnx2x_set_reset_global(bp);
12504 /* Only the first function on the current
12505 * engine should try to recover in open. In case
12506 * of attentions in global blocks only the first
12507 * in the chip should try to recover.
12509 if ((!load_status &&
12510 (!global || !other_load_status)) &&
12511 bnx2x_trylock_leader_lock(bp) &&
12512 !bnx2x_leader_reset(bp)) {
12513 netdev_info(bp->dev,
12514 "Recovered in open\n");
12515 break;
12518 /* recovery has failed... */
12519 bnx2x_set_power_state(bp, PCI_D3hot);
12520 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12522 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12523 "If you still see this message after a few retries then power cycle is required.\n");
12525 return -EAGAIN;
12526 } while (0);
12530 bp->recovery_state = BNX2X_RECOVERY_DONE;
12531 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12532 if (rc)
12533 return rc;
12535 return 0;
12538 /* called with rtnl_lock */
12539 static int bnx2x_close(struct net_device *dev)
12541 struct bnx2x *bp = netdev_priv(dev);
12543 /* Unload the driver, release IRQs */
12544 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12546 return 0;
12549 struct bnx2x_mcast_list_elem_group
12551 struct list_head mcast_group_link;
12552 struct bnx2x_mcast_list_elem mcast_elems[];
12555 #define MCAST_ELEMS_PER_PG \
12556 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12557 sizeof(struct bnx2x_mcast_list_elem))
12559 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12561 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12563 while (!list_empty(mcast_group_list)) {
12564 current_mcast_group = list_first_entry(mcast_group_list,
12565 struct bnx2x_mcast_list_elem_group,
12566 mcast_group_link);
12567 list_del(&current_mcast_group->mcast_group_link);
12568 free_page((unsigned long)current_mcast_group);
12572 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12573 struct bnx2x_mcast_ramrod_params *p,
12574 struct list_head *mcast_group_list)
12576 struct bnx2x_mcast_list_elem *mc_mac;
12577 struct netdev_hw_addr *ha;
12578 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12579 int mc_count = netdev_mc_count(bp->dev);
12580 int offset = 0;
12582 INIT_LIST_HEAD(&p->mcast_list);
12583 netdev_for_each_mc_addr(ha, bp->dev) {
12584 if (!offset) {
12585 current_mcast_group =
12586 (struct bnx2x_mcast_list_elem_group *)
12587 __get_free_page(GFP_ATOMIC);
12588 if (!current_mcast_group) {
12589 bnx2x_free_mcast_macs_list(mcast_group_list);
12590 BNX2X_ERR("Failed to allocate mc MAC list\n");
12591 return -ENOMEM;
12593 list_add(&current_mcast_group->mcast_group_link,
12594 mcast_group_list);
12596 mc_mac = &current_mcast_group->mcast_elems[offset];
12597 mc_mac->mac = bnx2x_mc_addr(ha);
12598 list_add_tail(&mc_mac->link, &p->mcast_list);
12599 offset++;
12600 if (offset == MCAST_ELEMS_PER_PG)
12601 offset = 0;
12603 p->mcast_list_len = mc_count;
12604 return 0;
12608 * bnx2x_set_uc_list - configure a new unicast MACs list.
12610 * @bp: driver handle
12612 * We will use zero (0) as a MAC type for these MACs.
12614 static int bnx2x_set_uc_list(struct bnx2x *bp)
12616 int rc;
12617 struct net_device *dev = bp->dev;
12618 struct netdev_hw_addr *ha;
12619 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12620 unsigned long ramrod_flags = 0;
12622 /* First schedule a cleanup up of old configuration */
12623 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12624 if (rc < 0) {
12625 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12626 return rc;
12629 netdev_for_each_uc_addr(ha, dev) {
12630 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12631 BNX2X_UC_LIST_MAC, &ramrod_flags);
12632 if (rc == -EEXIST) {
12633 DP(BNX2X_MSG_SP,
12634 "Failed to schedule ADD operations: %d\n", rc);
12635 /* do not treat adding same MAC as error */
12636 rc = 0;
12638 } else if (rc < 0) {
12640 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12641 rc);
12642 return rc;
12646 /* Execute the pending commands */
12647 __set_bit(RAMROD_CONT, &ramrod_flags);
12648 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12649 BNX2X_UC_LIST_MAC, &ramrod_flags);
12652 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12654 LIST_HEAD(mcast_group_list);
12655 struct net_device *dev = bp->dev;
12656 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12657 int rc = 0;
12659 rparam.mcast_obj = &bp->mcast_obj;
12661 /* first, clear all configured multicast MACs */
12662 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12663 if (rc < 0) {
12664 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12665 return rc;
12668 /* then, configure a new MACs list */
12669 if (netdev_mc_count(dev)) {
12670 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12671 if (rc)
12672 return rc;
12674 /* Now add the new MACs */
12675 rc = bnx2x_config_mcast(bp, &rparam,
12676 BNX2X_MCAST_CMD_ADD);
12677 if (rc < 0)
12678 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12679 rc);
12681 bnx2x_free_mcast_macs_list(&mcast_group_list);
12684 return rc;
12687 static int bnx2x_set_mc_list(struct bnx2x *bp)
12689 LIST_HEAD(mcast_group_list);
12690 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12691 struct net_device *dev = bp->dev;
12692 int rc = 0;
12694 /* On older adapters, we need to flush and re-add filters */
12695 if (CHIP_IS_E1x(bp))
12696 return bnx2x_set_mc_list_e1x(bp);
12698 rparam.mcast_obj = &bp->mcast_obj;
12700 if (netdev_mc_count(dev)) {
12701 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12702 if (rc)
12703 return rc;
12705 /* Override the curently configured set of mc filters */
12706 rc = bnx2x_config_mcast(bp, &rparam,
12707 BNX2X_MCAST_CMD_SET);
12708 if (rc < 0)
12709 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12710 rc);
12712 bnx2x_free_mcast_macs_list(&mcast_group_list);
12713 } else {
12714 /* If no mc addresses are required, flush the configuration */
12715 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12716 if (rc < 0)
12717 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12718 rc);
12721 return rc;
12724 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12725 static void bnx2x_set_rx_mode(struct net_device *dev)
12727 struct bnx2x *bp = netdev_priv(dev);
12729 if (bp->state != BNX2X_STATE_OPEN) {
12730 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12731 return;
12732 } else {
12733 /* Schedule an SP task to handle rest of change */
12734 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12735 NETIF_MSG_IFUP);
12739 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12741 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12743 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12745 netif_addr_lock_bh(bp->dev);
12747 if (bp->dev->flags & IFF_PROMISC) {
12748 rx_mode = BNX2X_RX_MODE_PROMISC;
12749 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12750 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12751 CHIP_IS_E1(bp))) {
12752 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12753 } else {
12754 if (IS_PF(bp)) {
12755 /* some multicasts */
12756 if (bnx2x_set_mc_list(bp) < 0)
12757 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12759 /* release bh lock, as bnx2x_set_uc_list might sleep */
12760 netif_addr_unlock_bh(bp->dev);
12761 if (bnx2x_set_uc_list(bp) < 0)
12762 rx_mode = BNX2X_RX_MODE_PROMISC;
12763 netif_addr_lock_bh(bp->dev);
12764 } else {
12765 /* configuring mcast to a vf involves sleeping (when we
12766 * wait for the pf's response).
12768 bnx2x_schedule_sp_rtnl(bp,
12769 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12773 bp->rx_mode = rx_mode;
12774 /* handle ISCSI SD mode */
12775 if (IS_MF_ISCSI_ONLY(bp))
12776 bp->rx_mode = BNX2X_RX_MODE_NONE;
12778 /* Schedule the rx_mode command */
12779 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12780 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12781 netif_addr_unlock_bh(bp->dev);
12782 return;
12785 if (IS_PF(bp)) {
12786 bnx2x_set_storm_rx_mode(bp);
12787 netif_addr_unlock_bh(bp->dev);
12788 } else {
12789 /* VF will need to request the PF to make this change, and so
12790 * the VF needs to release the bottom-half lock prior to the
12791 * request (as it will likely require sleep on the VF side)
12793 netif_addr_unlock_bh(bp->dev);
12794 bnx2x_vfpf_storm_rx_mode(bp);
12798 /* called with rtnl_lock */
12799 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12800 int devad, u16 addr)
12802 struct bnx2x *bp = netdev_priv(netdev);
12803 u16 value;
12804 int rc;
12806 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12807 prtad, devad, addr);
12809 /* The HW expects different devad if CL22 is used */
12810 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12812 bnx2x_acquire_phy_lock(bp);
12813 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12814 bnx2x_release_phy_lock(bp);
12815 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12817 if (!rc)
12818 rc = value;
12819 return rc;
12822 /* called with rtnl_lock */
12823 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12824 u16 addr, u16 value)
12826 struct bnx2x *bp = netdev_priv(netdev);
12827 int rc;
12829 DP(NETIF_MSG_LINK,
12830 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12831 prtad, devad, addr, value);
12833 /* The HW expects different devad if CL22 is used */
12834 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12836 bnx2x_acquire_phy_lock(bp);
12837 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12838 bnx2x_release_phy_lock(bp);
12839 return rc;
12842 /* called with rtnl_lock */
12843 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12845 struct bnx2x *bp = netdev_priv(dev);
12846 struct mii_ioctl_data *mdio = if_mii(ifr);
12848 if (!netif_running(dev))
12849 return -EAGAIN;
12851 switch (cmd) {
12852 case SIOCSHWTSTAMP:
12853 return bnx2x_hwtstamp_ioctl(bp, ifr);
12854 default:
12855 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12856 mdio->phy_id, mdio->reg_num, mdio->val_in);
12857 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12861 static int bnx2x_validate_addr(struct net_device *dev)
12863 struct bnx2x *bp = netdev_priv(dev);
12865 /* query the bulletin board for mac address configured by the PF */
12866 if (IS_VF(bp))
12867 bnx2x_sample_bulletin(bp);
12869 if (!is_valid_ether_addr(dev->dev_addr)) {
12870 BNX2X_ERR("Non-valid Ethernet address\n");
12871 return -EADDRNOTAVAIL;
12873 return 0;
12876 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12877 struct netdev_phys_item_id *ppid)
12879 struct bnx2x *bp = netdev_priv(netdev);
12881 if (!(bp->flags & HAS_PHYS_PORT_ID))
12882 return -EOPNOTSUPP;
12884 ppid->id_len = sizeof(bp->phys_port_id);
12885 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12887 return 0;
12890 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12891 struct net_device *dev,
12892 netdev_features_t features)
12895 * A skb with gso_size + header length > 9700 will cause a
12896 * firmware panic. Drop GSO support.
12898 * Eventually the upper layer should not pass these packets down.
12900 * For speed, if the gso_size is <= 9000, assume there will
12901 * not be 700 bytes of headers and pass it through. Only do a
12902 * full (slow) validation if the gso_size is > 9000.
12904 * (Due to the way SKB_BY_FRAGS works this will also do a full
12905 * validation in that case.)
12907 if (unlikely(skb_is_gso(skb) &&
12908 (skb_shinfo(skb)->gso_size > 9000) &&
12909 !skb_gso_validate_mac_len(skb, 9700)))
12910 features &= ~NETIF_F_GSO_MASK;
12912 features = vlan_features_check(skb, features);
12913 return vxlan_features_check(skb, features);
12916 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12918 int rc;
12920 if (IS_PF(bp)) {
12921 unsigned long ramrod_flags = 0;
12923 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12924 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12925 add, &ramrod_flags);
12926 } else {
12927 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12930 return rc;
12933 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12935 struct bnx2x_vlan_entry *vlan;
12936 int rc = 0;
12938 /* Configure all non-configured entries */
12939 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12940 if (vlan->hw)
12941 continue;
12943 if (bp->vlan_cnt >= bp->vlan_credit)
12944 return -ENOBUFS;
12946 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12947 if (rc) {
12948 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12949 return rc;
12952 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12953 vlan->hw = true;
12954 bp->vlan_cnt++;
12957 return 0;
12960 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12962 bool need_accept_any_vlan;
12964 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12966 if (bp->accept_any_vlan != need_accept_any_vlan) {
12967 bp->accept_any_vlan = need_accept_any_vlan;
12968 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12969 bp->accept_any_vlan ? "raised" : "cleared");
12970 if (set_rx_mode) {
12971 if (IS_PF(bp))
12972 bnx2x_set_rx_mode_inner(bp);
12973 else
12974 bnx2x_vfpf_storm_rx_mode(bp);
12979 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12981 /* Don't set rx mode here. Our caller will do it. */
12982 bnx2x_vlan_configure(bp, false);
12984 return 0;
12987 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12989 struct bnx2x *bp = netdev_priv(dev);
12990 struct bnx2x_vlan_entry *vlan;
12992 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12994 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12995 if (!vlan)
12996 return -ENOMEM;
12998 vlan->vid = vid;
12999 vlan->hw = false;
13000 list_add_tail(&vlan->link, &bp->vlan_reg);
13002 if (netif_running(dev))
13003 bnx2x_vlan_configure(bp, true);
13005 return 0;
13008 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13010 struct bnx2x *bp = netdev_priv(dev);
13011 struct bnx2x_vlan_entry *vlan;
13012 bool found = false;
13013 int rc = 0;
13015 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13017 list_for_each_entry(vlan, &bp->vlan_reg, link)
13018 if (vlan->vid == vid) {
13019 found = true;
13020 break;
13023 if (!found) {
13024 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13025 return -EINVAL;
13028 if (netif_running(dev) && vlan->hw) {
13029 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13030 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13031 bp->vlan_cnt--;
13034 list_del(&vlan->link);
13035 kfree(vlan);
13037 if (netif_running(dev))
13038 bnx2x_vlan_configure(bp, true);
13040 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13042 return rc;
13045 static const struct net_device_ops bnx2x_netdev_ops = {
13046 .ndo_open = bnx2x_open,
13047 .ndo_stop = bnx2x_close,
13048 .ndo_start_xmit = bnx2x_start_xmit,
13049 .ndo_select_queue = bnx2x_select_queue,
13050 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13051 .ndo_set_mac_address = bnx2x_change_mac_addr,
13052 .ndo_validate_addr = bnx2x_validate_addr,
13053 .ndo_do_ioctl = bnx2x_ioctl,
13054 .ndo_change_mtu = bnx2x_change_mtu,
13055 .ndo_fix_features = bnx2x_fix_features,
13056 .ndo_set_features = bnx2x_set_features,
13057 .ndo_tx_timeout = bnx2x_tx_timeout,
13058 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13059 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13060 .ndo_setup_tc = __bnx2x_setup_tc,
13061 #ifdef CONFIG_BNX2X_SRIOV
13062 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13063 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13064 .ndo_get_vf_config = bnx2x_get_vf_config,
13065 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk,
13066 #endif
13067 #ifdef NETDEV_FCOE_WWNN
13068 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13069 #endif
13071 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13072 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13073 .ndo_features_check = bnx2x_features_check,
13074 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
13075 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
13078 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13080 struct device *dev = &bp->pdev->dev;
13082 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13083 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13084 dev_err(dev, "System does not support DMA, aborting\n");
13085 return -EIO;
13088 return 0;
13091 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13093 if (bp->flags & AER_ENABLED) {
13094 pci_disable_pcie_error_reporting(bp->pdev);
13095 bp->flags &= ~AER_ENABLED;
13099 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13100 struct net_device *dev, unsigned long board_type)
13102 int rc;
13103 u32 pci_cfg_dword;
13104 bool chip_is_e1x = (board_type == BCM57710 ||
13105 board_type == BCM57711 ||
13106 board_type == BCM57711E);
13108 SET_NETDEV_DEV(dev, &pdev->dev);
13110 bp->dev = dev;
13111 bp->pdev = pdev;
13113 rc = pci_enable_device(pdev);
13114 if (rc) {
13115 dev_err(&bp->pdev->dev,
13116 "Cannot enable PCI device, aborting\n");
13117 goto err_out;
13120 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13121 dev_err(&bp->pdev->dev,
13122 "Cannot find PCI device base address, aborting\n");
13123 rc = -ENODEV;
13124 goto err_out_disable;
13127 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13128 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13129 rc = -ENODEV;
13130 goto err_out_disable;
13133 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13134 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13135 PCICFG_REVESION_ID_ERROR_VAL) {
13136 pr_err("PCI device error, probably due to fan failure, aborting\n");
13137 rc = -ENODEV;
13138 goto err_out_disable;
13141 if (atomic_read(&pdev->enable_cnt) == 1) {
13142 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13143 if (rc) {
13144 dev_err(&bp->pdev->dev,
13145 "Cannot obtain PCI resources, aborting\n");
13146 goto err_out_disable;
13149 pci_set_master(pdev);
13150 pci_save_state(pdev);
13153 if (IS_PF(bp)) {
13154 if (!pdev->pm_cap) {
13155 dev_err(&bp->pdev->dev,
13156 "Cannot find power management capability, aborting\n");
13157 rc = -EIO;
13158 goto err_out_release;
13162 if (!pci_is_pcie(pdev)) {
13163 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13164 rc = -EIO;
13165 goto err_out_release;
13168 rc = bnx2x_set_coherency_mask(bp);
13169 if (rc)
13170 goto err_out_release;
13172 dev->mem_start = pci_resource_start(pdev, 0);
13173 dev->base_addr = dev->mem_start;
13174 dev->mem_end = pci_resource_end(pdev, 0);
13176 dev->irq = pdev->irq;
13178 bp->regview = pci_ioremap_bar(pdev, 0);
13179 if (!bp->regview) {
13180 dev_err(&bp->pdev->dev,
13181 "Cannot map register space, aborting\n");
13182 rc = -ENOMEM;
13183 goto err_out_release;
13186 /* In E1/E1H use pci device function given by kernel.
13187 * In E2/E3 read physical function from ME register since these chips
13188 * support Physical Device Assignment where kernel BDF maybe arbitrary
13189 * (depending on hypervisor).
13191 if (chip_is_e1x) {
13192 bp->pf_num = PCI_FUNC(pdev->devfn);
13193 } else {
13194 /* chip is E2/3*/
13195 pci_read_config_dword(bp->pdev,
13196 PCICFG_ME_REGISTER, &pci_cfg_dword);
13197 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13198 ME_REG_ABS_PF_NUM_SHIFT);
13200 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13202 /* clean indirect addresses */
13203 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13204 PCICFG_VENDOR_ID_OFFSET);
13206 /* Set PCIe reset type to fundamental for EEH recovery */
13207 pdev->needs_freset = 1;
13209 /* AER (Advanced Error reporting) configuration */
13210 rc = pci_enable_pcie_error_reporting(pdev);
13211 if (!rc)
13212 bp->flags |= AER_ENABLED;
13213 else
13214 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13217 * Clean the following indirect addresses for all functions since it
13218 * is not used by the driver.
13220 if (IS_PF(bp)) {
13221 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13222 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13223 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13224 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13226 if (chip_is_e1x) {
13227 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13228 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13229 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13230 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13233 /* Enable internal target-read (in case we are probed after PF
13234 * FLR). Must be done prior to any BAR read access. Only for
13235 * 57712 and up
13237 if (!chip_is_e1x)
13238 REG_WR(bp,
13239 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13242 dev->watchdog_timeo = TX_TIMEOUT;
13244 dev->netdev_ops = &bnx2x_netdev_ops;
13245 bnx2x_set_ethtool_ops(bp, dev);
13247 dev->priv_flags |= IFF_UNICAST_FLT;
13249 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13250 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13251 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13252 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13253 if (!chip_is_e1x) {
13254 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13255 NETIF_F_GSO_IPXIP4 |
13256 NETIF_F_GSO_UDP_TUNNEL |
13257 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13258 NETIF_F_GSO_PARTIAL;
13260 dev->hw_enc_features =
13261 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13262 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13263 NETIF_F_GSO_IPXIP4 |
13264 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13265 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13266 NETIF_F_GSO_PARTIAL;
13268 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13269 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13271 if (IS_PF(bp))
13272 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13275 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13276 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13278 if (IS_PF(bp)) {
13279 if (chip_is_e1x)
13280 bp->accept_any_vlan = true;
13281 else
13282 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13284 /* For VF we'll know whether to enable VLAN filtering after
13285 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13288 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13289 dev->features |= NETIF_F_HIGHDMA;
13290 if (dev->features & NETIF_F_LRO)
13291 dev->features &= ~NETIF_F_GRO_HW;
13293 /* Add Loopback capability to the device */
13294 dev->hw_features |= NETIF_F_LOOPBACK;
13296 #ifdef BCM_DCBNL
13297 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13298 #endif
13300 /* MTU range, 46 - 9600 */
13301 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13302 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13304 /* get_port_hwinfo() will set prtad and mmds properly */
13305 bp->mdio.prtad = MDIO_PRTAD_NONE;
13306 bp->mdio.mmds = 0;
13307 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13308 bp->mdio.dev = dev;
13309 bp->mdio.mdio_read = bnx2x_mdio_read;
13310 bp->mdio.mdio_write = bnx2x_mdio_write;
13312 return 0;
13314 err_out_release:
13315 if (atomic_read(&pdev->enable_cnt) == 1)
13316 pci_release_regions(pdev);
13318 err_out_disable:
13319 pci_disable_device(pdev);
13321 err_out:
13322 return rc;
13325 static int bnx2x_check_firmware(struct bnx2x *bp)
13327 const struct firmware *firmware = bp->firmware;
13328 struct bnx2x_fw_file_hdr *fw_hdr;
13329 struct bnx2x_fw_file_section *sections;
13330 u32 offset, len, num_ops;
13331 __be16 *ops_offsets;
13332 int i;
13333 const u8 *fw_ver;
13335 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13336 BNX2X_ERR("Wrong FW size\n");
13337 return -EINVAL;
13340 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13341 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13343 /* Make sure none of the offsets and sizes make us read beyond
13344 * the end of the firmware data */
13345 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13346 offset = be32_to_cpu(sections[i].offset);
13347 len = be32_to_cpu(sections[i].len);
13348 if (offset + len > firmware->size) {
13349 BNX2X_ERR("Section %d length is out of bounds\n", i);
13350 return -EINVAL;
13354 /* Likewise for the init_ops offsets */
13355 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13356 ops_offsets = (__force __be16 *)(firmware->data + offset);
13357 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13359 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13360 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13361 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13362 return -EINVAL;
13366 /* Check FW version */
13367 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13368 fw_ver = firmware->data + offset;
13369 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13370 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13371 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13372 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13373 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13374 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13375 BCM_5710_FW_MAJOR_VERSION,
13376 BCM_5710_FW_MINOR_VERSION,
13377 BCM_5710_FW_REVISION_VERSION,
13378 BCM_5710_FW_ENGINEERING_VERSION);
13379 return -EINVAL;
13382 return 0;
13385 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13387 const __be32 *source = (const __be32 *)_source;
13388 u32 *target = (u32 *)_target;
13389 u32 i;
13391 for (i = 0; i < n/4; i++)
13392 target[i] = be32_to_cpu(source[i]);
13396 Ops array is stored in the following format:
13397 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13399 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13401 const __be32 *source = (const __be32 *)_source;
13402 struct raw_op *target = (struct raw_op *)_target;
13403 u32 i, j, tmp;
13405 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13406 tmp = be32_to_cpu(source[j]);
13407 target[i].op = (tmp >> 24) & 0xff;
13408 target[i].offset = tmp & 0xffffff;
13409 target[i].raw_data = be32_to_cpu(source[j + 1]);
13413 /* IRO array is stored in the following format:
13414 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13416 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13418 const __be32 *source = (const __be32 *)_source;
13419 struct iro *target = (struct iro *)_target;
13420 u32 i, j, tmp;
13422 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13423 target[i].base = be32_to_cpu(source[j]);
13424 j++;
13425 tmp = be32_to_cpu(source[j]);
13426 target[i].m1 = (tmp >> 16) & 0xffff;
13427 target[i].m2 = tmp & 0xffff;
13428 j++;
13429 tmp = be32_to_cpu(source[j]);
13430 target[i].m3 = (tmp >> 16) & 0xffff;
13431 target[i].size = tmp & 0xffff;
13432 j++;
13436 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13438 const __be16 *source = (const __be16 *)_source;
13439 u16 *target = (u16 *)_target;
13440 u32 i;
13442 for (i = 0; i < n/2; i++)
13443 target[i] = be16_to_cpu(source[i]);
13446 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13447 do { \
13448 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13449 bp->arr = kmalloc(len, GFP_KERNEL); \
13450 if (!bp->arr) \
13451 goto lbl; \
13452 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13453 (u8 *)bp->arr, len); \
13454 } while (0)
13456 static int bnx2x_init_firmware(struct bnx2x *bp)
13458 const char *fw_file_name;
13459 struct bnx2x_fw_file_hdr *fw_hdr;
13460 int rc;
13462 if (bp->firmware)
13463 return 0;
13465 if (CHIP_IS_E1(bp))
13466 fw_file_name = FW_FILE_NAME_E1;
13467 else if (CHIP_IS_E1H(bp))
13468 fw_file_name = FW_FILE_NAME_E1H;
13469 else if (!CHIP_IS_E1x(bp))
13470 fw_file_name = FW_FILE_NAME_E2;
13471 else {
13472 BNX2X_ERR("Unsupported chip revision\n");
13473 return -EINVAL;
13475 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13477 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13478 if (rc) {
13479 BNX2X_ERR("Can't load firmware file %s\n",
13480 fw_file_name);
13481 goto request_firmware_exit;
13484 rc = bnx2x_check_firmware(bp);
13485 if (rc) {
13486 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13487 goto request_firmware_exit;
13490 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13492 /* Initialize the pointers to the init arrays */
13493 /* Blob */
13494 rc = -ENOMEM;
13495 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13497 /* Opcodes */
13498 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13500 /* Offsets */
13501 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13502 be16_to_cpu_n);
13504 /* STORMs firmware */
13505 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13506 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13507 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13508 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13509 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13510 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13511 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13512 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13513 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13514 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13515 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13516 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13517 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13518 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13519 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13520 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13521 /* IRO */
13522 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13524 return 0;
13526 iro_alloc_err:
13527 kfree(bp->init_ops_offsets);
13528 init_offsets_alloc_err:
13529 kfree(bp->init_ops);
13530 init_ops_alloc_err:
13531 kfree(bp->init_data);
13532 request_firmware_exit:
13533 release_firmware(bp->firmware);
13534 bp->firmware = NULL;
13536 return rc;
13539 static void bnx2x_release_firmware(struct bnx2x *bp)
13541 kfree(bp->init_ops_offsets);
13542 kfree(bp->init_ops);
13543 kfree(bp->init_data);
13544 release_firmware(bp->firmware);
13545 bp->firmware = NULL;
13548 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13549 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13550 .init_hw_cmn = bnx2x_init_hw_common,
13551 .init_hw_port = bnx2x_init_hw_port,
13552 .init_hw_func = bnx2x_init_hw_func,
13554 .reset_hw_cmn = bnx2x_reset_common,
13555 .reset_hw_port = bnx2x_reset_port,
13556 .reset_hw_func = bnx2x_reset_func,
13558 .gunzip_init = bnx2x_gunzip_init,
13559 .gunzip_end = bnx2x_gunzip_end,
13561 .init_fw = bnx2x_init_firmware,
13562 .release_fw = bnx2x_release_firmware,
13565 void bnx2x__init_func_obj(struct bnx2x *bp)
13567 /* Prepare DMAE related driver resources */
13568 bnx2x_setup_dmae(bp);
13570 bnx2x_init_func_obj(bp, &bp->func_obj,
13571 bnx2x_sp(bp, func_rdata),
13572 bnx2x_sp_mapping(bp, func_rdata),
13573 bnx2x_sp(bp, func_afex_rdata),
13574 bnx2x_sp_mapping(bp, func_afex_rdata),
13575 &bnx2x_func_sp_drv);
13578 /* must be called after sriov-enable */
13579 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13581 int cid_count = BNX2X_L2_MAX_CID(bp);
13583 if (IS_SRIOV(bp))
13584 cid_count += BNX2X_VF_CIDS;
13586 if (CNIC_SUPPORT(bp))
13587 cid_count += CNIC_CID_MAX;
13589 return roundup(cid_count, QM_CID_ROUND);
13593 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13594 * @pdev: pci device
13595 * @cnic_cnt: count
13598 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13600 int index;
13601 u16 control = 0;
13604 * If MSI-X is not supported - return number of SBs needed to support
13605 * one fast path queue: one FP queue + SB for CNIC
13607 if (!pdev->msix_cap) {
13608 dev_info(&pdev->dev, "no msix capability found\n");
13609 return 1 + cnic_cnt;
13611 dev_info(&pdev->dev, "msix capability found\n");
13614 * The value in the PCI configuration space is the index of the last
13615 * entry, namely one less than the actual size of the table, which is
13616 * exactly what we want to return from this function: number of all SBs
13617 * without the default SB.
13618 * For VFs there is no default SB, then we return (index+1).
13620 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13622 index = control & PCI_MSIX_FLAGS_QSIZE;
13624 return index;
13627 static int set_max_cos_est(int chip_id)
13629 switch (chip_id) {
13630 case BCM57710:
13631 case BCM57711:
13632 case BCM57711E:
13633 return BNX2X_MULTI_TX_COS_E1X;
13634 case BCM57712:
13635 case BCM57712_MF:
13636 return BNX2X_MULTI_TX_COS_E2_E3A0;
13637 case BCM57800:
13638 case BCM57800_MF:
13639 case BCM57810:
13640 case BCM57810_MF:
13641 case BCM57840_4_10:
13642 case BCM57840_2_20:
13643 case BCM57840_O:
13644 case BCM57840_MFO:
13645 case BCM57840_MF:
13646 case BCM57811:
13647 case BCM57811_MF:
13648 return BNX2X_MULTI_TX_COS_E3B0;
13649 case BCM57712_VF:
13650 case BCM57800_VF:
13651 case BCM57810_VF:
13652 case BCM57840_VF:
13653 case BCM57811_VF:
13654 return 1;
13655 default:
13656 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13657 return -ENODEV;
13661 static int set_is_vf(int chip_id)
13663 switch (chip_id) {
13664 case BCM57712_VF:
13665 case BCM57800_VF:
13666 case BCM57810_VF:
13667 case BCM57840_VF:
13668 case BCM57811_VF:
13669 return true;
13670 default:
13671 return false;
13675 /* nig_tsgen registers relative address */
13676 #define tsgen_ctrl 0x0
13677 #define tsgen_freecount 0x10
13678 #define tsgen_synctime_t0 0x20
13679 #define tsgen_offset_t0 0x28
13680 #define tsgen_drift_t0 0x30
13681 #define tsgen_synctime_t1 0x58
13682 #define tsgen_offset_t1 0x60
13683 #define tsgen_drift_t1 0x68
13685 /* FW workaround for setting drift */
13686 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13687 int best_val, int best_period)
13689 struct bnx2x_func_state_params func_params = {NULL};
13690 struct bnx2x_func_set_timesync_params *set_timesync_params =
13691 &func_params.params.set_timesync;
13693 /* Prepare parameters for function state transitions */
13694 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13695 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13697 func_params.f_obj = &bp->func_obj;
13698 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13700 /* Function parameters */
13701 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13702 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13703 set_timesync_params->add_sub_drift_adjust_value =
13704 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13705 set_timesync_params->drift_adjust_value = best_val;
13706 set_timesync_params->drift_adjust_period = best_period;
13708 return bnx2x_func_state_change(bp, &func_params);
13711 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13713 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13714 int rc;
13715 int drift_dir = 1;
13716 int val, period, period1, period2, dif, dif1, dif2;
13717 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13719 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13721 if (!netif_running(bp->dev)) {
13722 DP(BNX2X_MSG_PTP,
13723 "PTP adjfreq called while the interface is down\n");
13724 return -ENETDOWN;
13727 if (ppb < 0) {
13728 ppb = -ppb;
13729 drift_dir = 0;
13732 if (ppb == 0) {
13733 best_val = 1;
13734 best_period = 0x1FFFFFF;
13735 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13736 best_val = 31;
13737 best_period = 1;
13738 } else {
13739 /* Changed not to allow val = 8, 16, 24 as these values
13740 * are not supported in workaround.
13742 for (val = 0; val <= 31; val++) {
13743 if ((val & 0x7) == 0)
13744 continue;
13745 period1 = val * 1000000 / ppb;
13746 period2 = period1 + 1;
13747 if (period1 != 0)
13748 dif1 = ppb - (val * 1000000 / period1);
13749 else
13750 dif1 = BNX2X_MAX_PHC_DRIFT;
13751 if (dif1 < 0)
13752 dif1 = -dif1;
13753 dif2 = ppb - (val * 1000000 / period2);
13754 if (dif2 < 0)
13755 dif2 = -dif2;
13756 dif = (dif1 < dif2) ? dif1 : dif2;
13757 period = (dif1 < dif2) ? period1 : period2;
13758 if (dif < best_dif) {
13759 best_dif = dif;
13760 best_val = val;
13761 best_period = period;
13766 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13767 best_period);
13768 if (rc) {
13769 BNX2X_ERR("Failed to set drift\n");
13770 return -EFAULT;
13773 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13774 best_period);
13776 return 0;
13779 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13781 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783 if (!netif_running(bp->dev)) {
13784 DP(BNX2X_MSG_PTP,
13785 "PTP adjtime called while the interface is down\n");
13786 return -ENETDOWN;
13789 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13791 timecounter_adjtime(&bp->timecounter, delta);
13793 return 0;
13796 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13798 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13799 u64 ns;
13801 if (!netif_running(bp->dev)) {
13802 DP(BNX2X_MSG_PTP,
13803 "PTP gettime called while the interface is down\n");
13804 return -ENETDOWN;
13807 ns = timecounter_read(&bp->timecounter);
13809 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13811 *ts = ns_to_timespec64(ns);
13813 return 0;
13816 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13817 const struct timespec64 *ts)
13819 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13820 u64 ns;
13822 if (!netif_running(bp->dev)) {
13823 DP(BNX2X_MSG_PTP,
13824 "PTP settime called while the interface is down\n");
13825 return -ENETDOWN;
13828 ns = timespec64_to_ns(ts);
13830 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13832 /* Re-init the timecounter */
13833 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13835 return 0;
13838 /* Enable (or disable) ancillary features of the phc subsystem */
13839 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13840 struct ptp_clock_request *rq, int on)
13842 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13844 BNX2X_ERR("PHC ancillary features are not supported\n");
13845 return -ENOTSUPP;
13848 void bnx2x_register_phc(struct bnx2x *bp)
13850 /* Fill the ptp_clock_info struct and register PTP clock*/
13851 bp->ptp_clock_info.owner = THIS_MODULE;
13852 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13853 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13854 bp->ptp_clock_info.n_alarm = 0;
13855 bp->ptp_clock_info.n_ext_ts = 0;
13856 bp->ptp_clock_info.n_per_out = 0;
13857 bp->ptp_clock_info.pps = 0;
13858 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13859 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13860 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13861 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13862 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13864 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13865 if (IS_ERR(bp->ptp_clock)) {
13866 bp->ptp_clock = NULL;
13867 BNX2X_ERR("PTP clock registration failed\n");
13871 static int bnx2x_init_one(struct pci_dev *pdev,
13872 const struct pci_device_id *ent)
13874 struct net_device *dev = NULL;
13875 struct bnx2x *bp;
13876 int rc, max_non_def_sbs;
13877 int rx_count, tx_count, rss_count, doorbell_size;
13878 int max_cos_est;
13879 bool is_vf;
13880 int cnic_cnt;
13882 /* Management FW 'remembers' living interfaces. Allow it some time
13883 * to forget previously living interfaces, allowing a proper re-load.
13885 if (is_kdump_kernel()) {
13886 ktime_t now = ktime_get_boottime();
13887 ktime_t fw_ready_time = ktime_set(5, 0);
13889 if (ktime_before(now, fw_ready_time))
13890 msleep(ktime_ms_delta(fw_ready_time, now));
13893 /* An estimated maximum supported CoS number according to the chip
13894 * version.
13895 * We will try to roughly estimate the maximum number of CoSes this chip
13896 * may support in order to minimize the memory allocated for Tx
13897 * netdev_queue's. This number will be accurately calculated during the
13898 * initialization of bp->max_cos based on the chip versions AND chip
13899 * revision in the bnx2x_init_bp().
13901 max_cos_est = set_max_cos_est(ent->driver_data);
13902 if (max_cos_est < 0)
13903 return max_cos_est;
13904 is_vf = set_is_vf(ent->driver_data);
13905 cnic_cnt = is_vf ? 0 : 1;
13907 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13909 /* add another SB for VF as it has no default SB */
13910 max_non_def_sbs += is_vf ? 1 : 0;
13912 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13913 rss_count = max_non_def_sbs - cnic_cnt;
13915 if (rss_count < 1)
13916 return -EINVAL;
13918 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13919 rx_count = rss_count + cnic_cnt;
13921 /* Maximum number of netdev Tx queues:
13922 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13924 tx_count = rss_count * max_cos_est + cnic_cnt;
13926 /* dev zeroed in init_etherdev */
13927 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13928 if (!dev)
13929 return -ENOMEM;
13931 bp = netdev_priv(dev);
13933 bp->flags = 0;
13934 if (is_vf)
13935 bp->flags |= IS_VF_FLAG;
13937 bp->igu_sb_cnt = max_non_def_sbs;
13938 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13939 bp->msg_enable = debug;
13940 bp->cnic_support = cnic_cnt;
13941 bp->cnic_probe = bnx2x_cnic_probe;
13943 pci_set_drvdata(pdev, dev);
13945 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13946 if (rc < 0) {
13947 free_netdev(dev);
13948 return rc;
13951 BNX2X_DEV_INFO("This is a %s function\n",
13952 IS_PF(bp) ? "physical" : "virtual");
13953 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13954 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13955 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13956 tx_count, rx_count);
13958 rc = bnx2x_init_bp(bp);
13959 if (rc)
13960 goto init_one_exit;
13962 /* Map doorbells here as we need the real value of bp->max_cos which
13963 * is initialized in bnx2x_init_bp() to determine the number of
13964 * l2 connections.
13966 if (IS_VF(bp)) {
13967 bp->doorbells = bnx2x_vf_doorbells(bp);
13968 rc = bnx2x_vf_pci_alloc(bp);
13969 if (rc)
13970 goto init_one_freemem;
13971 } else {
13972 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13973 if (doorbell_size > pci_resource_len(pdev, 2)) {
13974 dev_err(&bp->pdev->dev,
13975 "Cannot map doorbells, bar size too small, aborting\n");
13976 rc = -ENOMEM;
13977 goto init_one_freemem;
13979 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
13980 doorbell_size);
13982 if (!bp->doorbells) {
13983 dev_err(&bp->pdev->dev,
13984 "Cannot map doorbell space, aborting\n");
13985 rc = -ENOMEM;
13986 goto init_one_freemem;
13989 if (IS_VF(bp)) {
13990 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13991 if (rc)
13992 goto init_one_freemem;
13994 #ifdef CONFIG_BNX2X_SRIOV
13995 /* VF with OLD Hypervisor or old PF do not support filtering */
13996 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13997 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13998 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14000 #endif
14003 /* Enable SRIOV if capability found in configuration space */
14004 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14005 if (rc)
14006 goto init_one_freemem;
14008 /* calc qm_cid_count */
14009 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14010 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14012 /* disable FCOE L2 queue for E1x*/
14013 if (CHIP_IS_E1x(bp))
14014 bp->flags |= NO_FCOE_FLAG;
14016 /* Set bp->num_queues for MSI-X mode*/
14017 bnx2x_set_num_queues(bp);
14019 /* Configure interrupt mode: try to enable MSI-X/MSI if
14020 * needed.
14022 rc = bnx2x_set_int_mode(bp);
14023 if (rc) {
14024 dev_err(&pdev->dev, "Cannot set interrupts\n");
14025 goto init_one_freemem;
14027 BNX2X_DEV_INFO("set interrupts successfully\n");
14029 /* register the net device */
14030 rc = register_netdev(dev);
14031 if (rc) {
14032 dev_err(&pdev->dev, "Cannot register net device\n");
14033 goto init_one_freemem;
14035 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14037 if (!NO_FCOE(bp)) {
14038 /* Add storage MAC address */
14039 rtnl_lock();
14040 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14041 rtnl_unlock();
14043 BNX2X_DEV_INFO(
14044 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14045 board_info[ent->driver_data].name,
14046 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14047 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14048 pcie_print_link_status(bp->pdev);
14050 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14051 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14053 return 0;
14055 init_one_freemem:
14056 bnx2x_free_mem_bp(bp);
14058 init_one_exit:
14059 bnx2x_disable_pcie_error_reporting(bp);
14061 if (bp->regview)
14062 iounmap(bp->regview);
14064 if (IS_PF(bp) && bp->doorbells)
14065 iounmap(bp->doorbells);
14067 free_netdev(dev);
14069 if (atomic_read(&pdev->enable_cnt) == 1)
14070 pci_release_regions(pdev);
14072 pci_disable_device(pdev);
14074 return rc;
14077 static void __bnx2x_remove(struct pci_dev *pdev,
14078 struct net_device *dev,
14079 struct bnx2x *bp,
14080 bool remove_netdev)
14082 /* Delete storage MAC address */
14083 if (!NO_FCOE(bp)) {
14084 rtnl_lock();
14085 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14086 rtnl_unlock();
14089 #ifdef BCM_DCBNL
14090 /* Delete app tlvs from dcbnl */
14091 bnx2x_dcbnl_update_applist(bp, true);
14092 #endif
14094 if (IS_PF(bp) &&
14095 !BP_NOMCP(bp) &&
14096 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14097 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14099 /* Close the interface - either directly or implicitly */
14100 if (remove_netdev) {
14101 unregister_netdev(dev);
14102 } else {
14103 rtnl_lock();
14104 dev_close(dev);
14105 rtnl_unlock();
14108 bnx2x_iov_remove_one(bp);
14110 /* Power on: we can't let PCI layer write to us while we are in D3 */
14111 if (IS_PF(bp)) {
14112 bnx2x_set_power_state(bp, PCI_D0);
14113 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14115 /* Set endianity registers to reset values in case next driver
14116 * boots in different endianty environment.
14118 bnx2x_reset_endianity(bp);
14121 /* Disable MSI/MSI-X */
14122 bnx2x_disable_msi(bp);
14124 /* Power off */
14125 if (IS_PF(bp))
14126 bnx2x_set_power_state(bp, PCI_D3hot);
14128 /* Make sure RESET task is not scheduled before continuing */
14129 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14131 /* send message via vfpf channel to release the resources of this vf */
14132 if (IS_VF(bp))
14133 bnx2x_vfpf_release(bp);
14135 /* Assumes no further PCIe PM changes will occur */
14136 if (system_state == SYSTEM_POWER_OFF) {
14137 pci_wake_from_d3(pdev, bp->wol);
14138 pci_set_power_state(pdev, PCI_D3hot);
14141 bnx2x_disable_pcie_error_reporting(bp);
14142 if (remove_netdev) {
14143 if (bp->regview)
14144 iounmap(bp->regview);
14146 /* For vfs, doorbells are part of the regview and were unmapped
14147 * along with it. FW is only loaded by PF.
14149 if (IS_PF(bp)) {
14150 if (bp->doorbells)
14151 iounmap(bp->doorbells);
14153 bnx2x_release_firmware(bp);
14154 } else {
14155 bnx2x_vf_pci_dealloc(bp);
14157 bnx2x_free_mem_bp(bp);
14159 free_netdev(dev);
14161 if (atomic_read(&pdev->enable_cnt) == 1)
14162 pci_release_regions(pdev);
14164 pci_disable_device(pdev);
14168 static void bnx2x_remove_one(struct pci_dev *pdev)
14170 struct net_device *dev = pci_get_drvdata(pdev);
14171 struct bnx2x *bp;
14173 if (!dev) {
14174 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14175 return;
14177 bp = netdev_priv(dev);
14179 __bnx2x_remove(pdev, dev, bp, true);
14182 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14184 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14186 bp->rx_mode = BNX2X_RX_MODE_NONE;
14188 if (CNIC_LOADED(bp))
14189 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14191 /* Stop Tx */
14192 bnx2x_tx_disable(bp);
14193 /* Delete all NAPI objects */
14194 bnx2x_del_all_napi(bp);
14195 if (CNIC_LOADED(bp))
14196 bnx2x_del_all_napi_cnic(bp);
14197 netdev_reset_tc(bp->dev);
14199 del_timer_sync(&bp->timer);
14200 cancel_delayed_work_sync(&bp->sp_task);
14201 cancel_delayed_work_sync(&bp->period_task);
14203 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14204 bp->stats_state = STATS_STATE_DISABLED;
14205 up(&bp->stats_lock);
14208 bnx2x_save_statistics(bp);
14210 netif_carrier_off(bp->dev);
14212 return 0;
14216 * bnx2x_io_error_detected - called when PCI error is detected
14217 * @pdev: Pointer to PCI device
14218 * @state: The current pci connection state
14220 * This function is called after a PCI bus error affecting
14221 * this device has been detected.
14223 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14224 pci_channel_state_t state)
14226 struct net_device *dev = pci_get_drvdata(pdev);
14227 struct bnx2x *bp = netdev_priv(dev);
14229 rtnl_lock();
14231 BNX2X_ERR("IO error detected\n");
14233 netif_device_detach(dev);
14235 if (state == pci_channel_io_perm_failure) {
14236 rtnl_unlock();
14237 return PCI_ERS_RESULT_DISCONNECT;
14240 if (netif_running(dev))
14241 bnx2x_eeh_nic_unload(bp);
14243 bnx2x_prev_path_mark_eeh(bp);
14245 pci_disable_device(pdev);
14247 rtnl_unlock();
14249 /* Request a slot reset */
14250 return PCI_ERS_RESULT_NEED_RESET;
14254 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14255 * @pdev: Pointer to PCI device
14257 * Restart the card from scratch, as if from a cold-boot.
14259 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14261 struct net_device *dev = pci_get_drvdata(pdev);
14262 struct bnx2x *bp = netdev_priv(dev);
14263 int i;
14265 rtnl_lock();
14266 BNX2X_ERR("IO slot reset initializing...\n");
14267 if (pci_enable_device(pdev)) {
14268 dev_err(&pdev->dev,
14269 "Cannot re-enable PCI device after reset\n");
14270 rtnl_unlock();
14271 return PCI_ERS_RESULT_DISCONNECT;
14274 pci_set_master(pdev);
14275 pci_restore_state(pdev);
14276 pci_save_state(pdev);
14278 if (netif_running(dev))
14279 bnx2x_set_power_state(bp, PCI_D0);
14281 if (netif_running(dev)) {
14282 BNX2X_ERR("IO slot reset --> driver unload\n");
14284 /* MCP should have been reset; Need to wait for validity */
14285 if (bnx2x_init_shmem(bp)) {
14286 rtnl_unlock();
14287 return PCI_ERS_RESULT_DISCONNECT;
14290 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14291 u32 v;
14293 v = SHMEM2_RD(bp,
14294 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14295 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14296 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14298 bnx2x_drain_tx_queues(bp);
14299 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14300 bnx2x_netif_stop(bp, 1);
14301 bnx2x_free_irq(bp);
14303 /* Report UNLOAD_DONE to MCP */
14304 bnx2x_send_unload_done(bp, true);
14306 bp->sp_state = 0;
14307 bp->port.pmf = 0;
14309 bnx2x_prev_unload(bp);
14311 /* We should have reseted the engine, so It's fair to
14312 * assume the FW will no longer write to the bnx2x driver.
14314 bnx2x_squeeze_objects(bp);
14315 bnx2x_free_skbs(bp);
14316 for_each_rx_queue(bp, i)
14317 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14318 bnx2x_free_fp_mem(bp);
14319 bnx2x_free_mem(bp);
14321 bp->state = BNX2X_STATE_CLOSED;
14324 rtnl_unlock();
14326 return PCI_ERS_RESULT_RECOVERED;
14330 * bnx2x_io_resume - called when traffic can start flowing again
14331 * @pdev: Pointer to PCI device
14333 * This callback is called when the error recovery driver tells us that
14334 * its OK to resume normal operation.
14336 static void bnx2x_io_resume(struct pci_dev *pdev)
14338 struct net_device *dev = pci_get_drvdata(pdev);
14339 struct bnx2x *bp = netdev_priv(dev);
14341 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14342 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14343 return;
14346 rtnl_lock();
14348 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14349 DRV_MSG_SEQ_NUMBER_MASK;
14351 if (netif_running(dev))
14352 bnx2x_nic_load(bp, LOAD_NORMAL);
14354 netif_device_attach(dev);
14356 rtnl_unlock();
14359 static const struct pci_error_handlers bnx2x_err_handler = {
14360 .error_detected = bnx2x_io_error_detected,
14361 .slot_reset = bnx2x_io_slot_reset,
14362 .resume = bnx2x_io_resume,
14365 static void bnx2x_shutdown(struct pci_dev *pdev)
14367 struct net_device *dev = pci_get_drvdata(pdev);
14368 struct bnx2x *bp;
14370 if (!dev)
14371 return;
14373 bp = netdev_priv(dev);
14374 if (!bp)
14375 return;
14377 rtnl_lock();
14378 netif_device_detach(dev);
14379 rtnl_unlock();
14381 /* Don't remove the netdevice, as there are scenarios which will cause
14382 * the kernel to hang, e.g., when trying to remove bnx2i while the
14383 * rootfs is mounted from SAN.
14385 __bnx2x_remove(pdev, dev, bp, false);
14388 static struct pci_driver bnx2x_pci_driver = {
14389 .name = DRV_MODULE_NAME,
14390 .id_table = bnx2x_pci_tbl,
14391 .probe = bnx2x_init_one,
14392 .remove = bnx2x_remove_one,
14393 .driver.pm = &bnx2x_pm_ops,
14394 .err_handler = &bnx2x_err_handler,
14395 #ifdef CONFIG_BNX2X_SRIOV
14396 .sriov_configure = bnx2x_sriov_configure,
14397 #endif
14398 .shutdown = bnx2x_shutdown,
14401 static int __init bnx2x_init(void)
14403 int ret;
14405 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14406 if (bnx2x_wq == NULL) {
14407 pr_err("Cannot create workqueue\n");
14408 return -ENOMEM;
14410 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14411 if (!bnx2x_iov_wq) {
14412 pr_err("Cannot create iov workqueue\n");
14413 destroy_workqueue(bnx2x_wq);
14414 return -ENOMEM;
14417 ret = pci_register_driver(&bnx2x_pci_driver);
14418 if (ret) {
14419 pr_err("Cannot register driver\n");
14420 destroy_workqueue(bnx2x_wq);
14421 destroy_workqueue(bnx2x_iov_wq);
14423 return ret;
14426 static void __exit bnx2x_cleanup(void)
14428 struct list_head *pos, *q;
14430 pci_unregister_driver(&bnx2x_pci_driver);
14432 destroy_workqueue(bnx2x_wq);
14433 destroy_workqueue(bnx2x_iov_wq);
14435 /* Free globally allocated resources */
14436 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14437 struct bnx2x_prev_path_list *tmp =
14438 list_entry(pos, struct bnx2x_prev_path_list, list);
14439 list_del(pos);
14440 kfree(tmp);
14444 void bnx2x_notify_link_changed(struct bnx2x *bp)
14446 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14449 module_init(bnx2x_init);
14450 module_exit(bnx2x_cleanup);
14453 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14454 * @bp: driver handle
14456 * This function will wait until the ramrod completion returns.
14457 * Return 0 if success, -ENODEV if ramrod doesn't return.
14459 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14461 unsigned long ramrod_flags = 0;
14463 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14464 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14465 &bp->iscsi_l2_mac_obj, true,
14466 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14469 /* count denotes the number of new completions we have seen */
14470 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14472 struct eth_spe *spe;
14473 int cxt_index, cxt_offset;
14475 #ifdef BNX2X_STOP_ON_ERROR
14476 if (unlikely(bp->panic))
14477 return;
14478 #endif
14480 spin_lock_bh(&bp->spq_lock);
14481 BUG_ON(bp->cnic_spq_pending < count);
14482 bp->cnic_spq_pending -= count;
14484 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14485 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14486 & SPE_HDR_CONN_TYPE) >>
14487 SPE_HDR_CONN_TYPE_SHIFT;
14488 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14489 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14491 /* Set validation for iSCSI L2 client before sending SETUP
14492 * ramrod
14494 if (type == ETH_CONNECTION_TYPE) {
14495 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14496 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14497 ILT_PAGE_CIDS;
14498 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14499 (cxt_index * ILT_PAGE_CIDS);
14500 bnx2x_set_ctx_validation(bp,
14501 &bp->context[cxt_index].
14502 vcxt[cxt_offset].eth,
14503 BNX2X_ISCSI_ETH_CID(bp));
14508 * There may be not more than 8 L2, not more than 8 L5 SPEs
14509 * and in the air. We also check that number of outstanding
14510 * COMMON ramrods is not more than the EQ and SPQ can
14511 * accommodate.
14513 if (type == ETH_CONNECTION_TYPE) {
14514 if (!atomic_read(&bp->cq_spq_left))
14515 break;
14516 else
14517 atomic_dec(&bp->cq_spq_left);
14518 } else if (type == NONE_CONNECTION_TYPE) {
14519 if (!atomic_read(&bp->eq_spq_left))
14520 break;
14521 else
14522 atomic_dec(&bp->eq_spq_left);
14523 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14524 (type == FCOE_CONNECTION_TYPE)) {
14525 if (bp->cnic_spq_pending >=
14526 bp->cnic_eth_dev.max_kwqe_pending)
14527 break;
14528 else
14529 bp->cnic_spq_pending++;
14530 } else {
14531 BNX2X_ERR("Unknown SPE type: %d\n", type);
14532 bnx2x_panic();
14533 break;
14536 spe = bnx2x_sp_get_next(bp);
14537 *spe = *bp->cnic_kwq_cons;
14539 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14540 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14542 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14543 bp->cnic_kwq_cons = bp->cnic_kwq;
14544 else
14545 bp->cnic_kwq_cons++;
14547 bnx2x_sp_prod_update(bp);
14548 spin_unlock_bh(&bp->spq_lock);
14551 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14552 struct kwqe_16 *kwqes[], u32 count)
14554 struct bnx2x *bp = netdev_priv(dev);
14555 int i;
14557 #ifdef BNX2X_STOP_ON_ERROR
14558 if (unlikely(bp->panic)) {
14559 BNX2X_ERR("Can't post to SP queue while panic\n");
14560 return -EIO;
14562 #endif
14564 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14565 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14566 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14567 return -EAGAIN;
14570 spin_lock_bh(&bp->spq_lock);
14572 for (i = 0; i < count; i++) {
14573 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14575 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14576 break;
14578 *bp->cnic_kwq_prod = *spe;
14580 bp->cnic_kwq_pending++;
14582 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14583 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14584 spe->data.update_data_addr.hi,
14585 spe->data.update_data_addr.lo,
14586 bp->cnic_kwq_pending);
14588 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14589 bp->cnic_kwq_prod = bp->cnic_kwq;
14590 else
14591 bp->cnic_kwq_prod++;
14594 spin_unlock_bh(&bp->spq_lock);
14596 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14597 bnx2x_cnic_sp_post(bp, 0);
14599 return i;
14602 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14604 struct cnic_ops *c_ops;
14605 int rc = 0;
14607 mutex_lock(&bp->cnic_mutex);
14608 c_ops = rcu_dereference_protected(bp->cnic_ops,
14609 lockdep_is_held(&bp->cnic_mutex));
14610 if (c_ops)
14611 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14612 mutex_unlock(&bp->cnic_mutex);
14614 return rc;
14617 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14619 struct cnic_ops *c_ops;
14620 int rc = 0;
14622 rcu_read_lock();
14623 c_ops = rcu_dereference(bp->cnic_ops);
14624 if (c_ops)
14625 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14626 rcu_read_unlock();
14628 return rc;
14632 * for commands that have no data
14634 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14636 struct cnic_ctl_info ctl = {0};
14638 ctl.cmd = cmd;
14640 return bnx2x_cnic_ctl_send(bp, &ctl);
14643 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14645 struct cnic_ctl_info ctl = {0};
14647 /* first we tell CNIC and only then we count this as a completion */
14648 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14649 ctl.data.comp.cid = cid;
14650 ctl.data.comp.error = err;
14652 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14653 bnx2x_cnic_sp_post(bp, 0);
14656 /* Called with netif_addr_lock_bh() taken.
14657 * Sets an rx_mode config for an iSCSI ETH client.
14658 * Doesn't block.
14659 * Completion should be checked outside.
14661 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14663 unsigned long accept_flags = 0, ramrod_flags = 0;
14664 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14665 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14667 if (start) {
14668 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14669 * because it's the only way for UIO Queue to accept
14670 * multicasts (in non-promiscuous mode only one Queue per
14671 * function will receive multicast packets (leading in our
14672 * case).
14674 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14675 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14676 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14677 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14679 /* Clear STOP_PENDING bit if START is requested */
14680 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14682 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14683 } else
14684 /* Clear START_PENDING bit if STOP is requested */
14685 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14687 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14688 set_bit(sched_state, &bp->sp_state);
14689 else {
14690 __set_bit(RAMROD_RX, &ramrod_flags);
14691 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14692 ramrod_flags);
14696 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14698 struct bnx2x *bp = netdev_priv(dev);
14699 int rc = 0;
14701 switch (ctl->cmd) {
14702 case DRV_CTL_CTXTBL_WR_CMD: {
14703 u32 index = ctl->data.io.offset;
14704 dma_addr_t addr = ctl->data.io.dma_addr;
14706 bnx2x_ilt_wr(bp, index, addr);
14707 break;
14710 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14711 int count = ctl->data.credit.credit_count;
14713 bnx2x_cnic_sp_post(bp, count);
14714 break;
14717 /* rtnl_lock is held. */
14718 case DRV_CTL_START_L2_CMD: {
14719 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14720 unsigned long sp_bits = 0;
14722 /* Configure the iSCSI classification object */
14723 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14724 cp->iscsi_l2_client_id,
14725 cp->iscsi_l2_cid, BP_FUNC(bp),
14726 bnx2x_sp(bp, mac_rdata),
14727 bnx2x_sp_mapping(bp, mac_rdata),
14728 BNX2X_FILTER_MAC_PENDING,
14729 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14730 &bp->macs_pool);
14732 /* Set iSCSI MAC address */
14733 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14734 if (rc)
14735 break;
14737 barrier();
14739 /* Start accepting on iSCSI L2 ring */
14741 netif_addr_lock_bh(dev);
14742 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14743 netif_addr_unlock_bh(dev);
14745 /* bits to wait on */
14746 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14747 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14749 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14750 BNX2X_ERR("rx_mode completion timed out!\n");
14752 break;
14755 /* rtnl_lock is held. */
14756 case DRV_CTL_STOP_L2_CMD: {
14757 unsigned long sp_bits = 0;
14759 /* Stop accepting on iSCSI L2 ring */
14760 netif_addr_lock_bh(dev);
14761 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14762 netif_addr_unlock_bh(dev);
14764 /* bits to wait on */
14765 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14766 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14768 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14769 BNX2X_ERR("rx_mode completion timed out!\n");
14771 barrier();
14773 /* Unset iSCSI L2 MAC */
14774 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14775 BNX2X_ISCSI_ETH_MAC, true);
14776 break;
14778 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14779 int count = ctl->data.credit.credit_count;
14781 smp_mb__before_atomic();
14782 atomic_add(count, &bp->cq_spq_left);
14783 smp_mb__after_atomic();
14784 break;
14786 case DRV_CTL_ULP_REGISTER_CMD: {
14787 int ulp_type = ctl->data.register_data.ulp_type;
14789 if (CHIP_IS_E3(bp)) {
14790 int idx = BP_FW_MB_IDX(bp);
14791 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14792 int path = BP_PATH(bp);
14793 int port = BP_PORT(bp);
14794 int i;
14795 u32 scratch_offset;
14796 u32 *host_addr;
14798 /* first write capability to shmem2 */
14799 if (ulp_type == CNIC_ULP_ISCSI)
14800 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14801 else if (ulp_type == CNIC_ULP_FCOE)
14802 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14803 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14805 if ((ulp_type != CNIC_ULP_FCOE) ||
14806 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14807 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14808 break;
14810 /* if reached here - should write fcoe capabilities */
14811 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14812 if (!scratch_offset)
14813 break;
14814 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14815 fcoe_features[path][port]);
14816 host_addr = (u32 *) &(ctl->data.register_data.
14817 fcoe_features);
14818 for (i = 0; i < sizeof(struct fcoe_capabilities);
14819 i += 4)
14820 REG_WR(bp, scratch_offset + i,
14821 *(host_addr + i/4));
14823 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14824 break;
14827 case DRV_CTL_ULP_UNREGISTER_CMD: {
14828 int ulp_type = ctl->data.ulp_type;
14830 if (CHIP_IS_E3(bp)) {
14831 int idx = BP_FW_MB_IDX(bp);
14832 u32 cap;
14834 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14835 if (ulp_type == CNIC_ULP_ISCSI)
14836 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14837 else if (ulp_type == CNIC_ULP_FCOE)
14838 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14839 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14841 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14842 break;
14845 default:
14846 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14847 rc = -EINVAL;
14850 /* For storage-only interfaces, change driver state */
14851 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14852 switch (ctl->drv_state) {
14853 case DRV_NOP:
14854 break;
14855 case DRV_ACTIVE:
14856 bnx2x_set_os_driver_state(bp,
14857 OS_DRIVER_STATE_ACTIVE);
14858 break;
14859 case DRV_INACTIVE:
14860 bnx2x_set_os_driver_state(bp,
14861 OS_DRIVER_STATE_DISABLED);
14862 break;
14863 case DRV_UNLOADED:
14864 bnx2x_set_os_driver_state(bp,
14865 OS_DRIVER_STATE_NOT_LOADED);
14866 break;
14867 default:
14868 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14872 return rc;
14875 static int bnx2x_get_fc_npiv(struct net_device *dev,
14876 struct cnic_fc_npiv_tbl *cnic_tbl)
14878 struct bnx2x *bp = netdev_priv(dev);
14879 struct bdn_fc_npiv_tbl *tbl = NULL;
14880 u32 offset, entries;
14881 int rc = -EINVAL;
14882 int i;
14884 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14885 goto out;
14887 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14889 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14890 if (!tbl) {
14891 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14892 goto out;
14895 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14896 if (!offset) {
14897 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14898 goto out;
14900 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14902 /* Read the table contents from nvram */
14903 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14904 BNX2X_ERR("Failed to read FC-NPIV table\n");
14905 goto out;
14908 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14909 * the number of entries back to cpu endianness.
14911 entries = tbl->fc_npiv_cfg.num_of_npiv;
14912 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14913 tbl->fc_npiv_cfg.num_of_npiv = entries;
14915 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14916 DP(BNX2X_MSG_MCP,
14917 "No FC-NPIV table [valid, simply not present]\n");
14918 goto out;
14919 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14920 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14921 tbl->fc_npiv_cfg.num_of_npiv);
14922 goto out;
14923 } else {
14924 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14925 tbl->fc_npiv_cfg.num_of_npiv);
14928 /* Copy the data into cnic-provided struct */
14929 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14930 for (i = 0; i < cnic_tbl->count; i++) {
14931 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14932 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14935 rc = 0;
14936 out:
14937 kfree(tbl);
14938 return rc;
14941 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14943 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14945 if (bp->flags & USING_MSIX_FLAG) {
14946 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14947 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14948 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14949 } else {
14950 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14951 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14953 if (!CHIP_IS_E1x(bp))
14954 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14955 else
14956 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14958 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14959 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14960 cp->irq_arr[1].status_blk = bp->def_status_blk;
14961 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14962 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14964 cp->num_irq = 2;
14967 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14969 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14971 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14972 bnx2x_cid_ilt_lines(bp);
14973 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14974 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14975 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14977 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14978 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14979 cp->iscsi_l2_cid);
14981 if (NO_ISCSI_OOO(bp))
14982 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14985 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14986 void *data)
14988 struct bnx2x *bp = netdev_priv(dev);
14989 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14990 int rc;
14992 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14994 if (ops == NULL) {
14995 BNX2X_ERR("NULL ops received\n");
14996 return -EINVAL;
14999 if (!CNIC_SUPPORT(bp)) {
15000 BNX2X_ERR("Can't register CNIC when not supported\n");
15001 return -EOPNOTSUPP;
15004 if (!CNIC_LOADED(bp)) {
15005 rc = bnx2x_load_cnic(bp);
15006 if (rc) {
15007 BNX2X_ERR("CNIC-related load failed\n");
15008 return rc;
15012 bp->cnic_enabled = true;
15014 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15015 if (!bp->cnic_kwq)
15016 return -ENOMEM;
15018 bp->cnic_kwq_cons = bp->cnic_kwq;
15019 bp->cnic_kwq_prod = bp->cnic_kwq;
15020 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15022 bp->cnic_spq_pending = 0;
15023 bp->cnic_kwq_pending = 0;
15025 bp->cnic_data = data;
15027 cp->num_irq = 0;
15028 cp->drv_state |= CNIC_DRV_STATE_REGD;
15029 cp->iro_arr = bp->iro_arr;
15031 bnx2x_setup_cnic_irq_info(bp);
15033 rcu_assign_pointer(bp->cnic_ops, ops);
15035 /* Schedule driver to read CNIC driver versions */
15036 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15038 return 0;
15041 static int bnx2x_unregister_cnic(struct net_device *dev)
15043 struct bnx2x *bp = netdev_priv(dev);
15044 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15046 mutex_lock(&bp->cnic_mutex);
15047 cp->drv_state = 0;
15048 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15049 mutex_unlock(&bp->cnic_mutex);
15050 synchronize_rcu();
15051 bp->cnic_enabled = false;
15052 kfree(bp->cnic_kwq);
15053 bp->cnic_kwq = NULL;
15055 return 0;
15058 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15060 struct bnx2x *bp = netdev_priv(dev);
15061 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15063 /* If both iSCSI and FCoE are disabled - return NULL in
15064 * order to indicate CNIC that it should not try to work
15065 * with this device.
15067 if (NO_ISCSI(bp) && NO_FCOE(bp))
15068 return NULL;
15070 cp->drv_owner = THIS_MODULE;
15071 cp->chip_id = CHIP_ID(bp);
15072 cp->pdev = bp->pdev;
15073 cp->io_base = bp->regview;
15074 cp->io_base2 = bp->doorbells;
15075 cp->max_kwqe_pending = 8;
15076 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15077 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15078 bnx2x_cid_ilt_lines(bp);
15079 cp->ctx_tbl_len = CNIC_ILT_LINES;
15080 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15081 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15082 cp->drv_ctl = bnx2x_drv_ctl;
15083 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15084 cp->drv_register_cnic = bnx2x_register_cnic;
15085 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15086 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15087 cp->iscsi_l2_client_id =
15088 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15089 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15091 if (NO_ISCSI_OOO(bp))
15092 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15094 if (NO_ISCSI(bp))
15095 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15097 if (NO_FCOE(bp))
15098 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15100 BNX2X_DEV_INFO(
15101 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15102 cp->ctx_blk_size,
15103 cp->ctx_tbl_offset,
15104 cp->ctx_tbl_len,
15105 cp->starting_cid);
15106 return cp;
15109 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15111 struct bnx2x *bp = fp->bp;
15112 u32 offset = BAR_USTRORM_INTMEM;
15114 if (IS_VF(bp))
15115 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15116 else if (!CHIP_IS_E1x(bp))
15117 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15118 else
15119 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15121 return offset;
15124 /* called only on E1H or E2.
15125 * When pretending to be PF, the pretend value is the function number 0...7
15126 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15127 * combination
15129 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15131 u32 pretend_reg;
15133 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15134 return -1;
15136 /* get my own pretend register */
15137 pretend_reg = bnx2x_get_pretend_reg(bp);
15138 REG_WR(bp, pretend_reg, pretend_func_val);
15139 REG_RD(bp, pretend_reg);
15140 return 0;
15143 static void bnx2x_ptp_task(struct work_struct *work)
15145 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15146 int port = BP_PORT(bp);
15147 u32 val_seq;
15148 u64 timestamp, ns;
15149 struct skb_shared_hwtstamps shhwtstamps;
15150 bool bail = true;
15151 int i;
15153 /* FW may take a while to complete timestamping; try a bit and if it's
15154 * still not complete, may indicate an error state - bail out then.
15156 for (i = 0; i < 10; i++) {
15157 /* Read Tx timestamp registers */
15158 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15159 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15160 if (val_seq & 0x10000) {
15161 bail = false;
15162 break;
15164 msleep(1 << i);
15167 if (!bail) {
15168 /* There is a valid timestamp value */
15169 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15170 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15171 timestamp <<= 32;
15172 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15173 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15174 /* Reset timestamp register to allow new timestamp */
15175 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15176 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15177 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15179 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15180 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15181 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15183 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15184 timestamp, ns);
15185 } else {
15186 DP(BNX2X_MSG_PTP,
15187 "Tx timestamp is not recorded (register read=%u)\n",
15188 val_seq);
15189 bp->eth_stats.ptp_skip_tx_ts++;
15192 dev_kfree_skb_any(bp->ptp_tx_skb);
15193 bp->ptp_tx_skb = NULL;
15196 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15198 int port = BP_PORT(bp);
15199 u64 timestamp, ns;
15201 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15202 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15203 timestamp <<= 32;
15204 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15205 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15207 /* Reset timestamp register to allow new timestamp */
15208 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15209 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15211 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15213 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15215 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15216 timestamp, ns);
15219 /* Read the PHC */
15220 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15222 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15223 int port = BP_PORT(bp);
15224 u32 wb_data[2];
15225 u64 phc_cycles;
15227 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15228 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15229 phc_cycles = wb_data[1];
15230 phc_cycles = (phc_cycles << 32) + wb_data[0];
15232 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15234 return phc_cycles;
15237 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15239 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15240 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15241 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15242 bp->cyclecounter.shift = 0;
15243 bp->cyclecounter.mult = 1;
15246 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15248 struct bnx2x_func_state_params func_params = {NULL};
15249 struct bnx2x_func_set_timesync_params *set_timesync_params =
15250 &func_params.params.set_timesync;
15252 /* Prepare parameters for function state transitions */
15253 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15254 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15256 func_params.f_obj = &bp->func_obj;
15257 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15259 /* Function parameters */
15260 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15261 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15263 return bnx2x_func_state_change(bp, &func_params);
15266 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15268 struct bnx2x_queue_state_params q_params;
15269 int rc, i;
15271 /* send queue update ramrod to enable PTP packets */
15272 memset(&q_params, 0, sizeof(q_params));
15273 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15274 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15275 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15276 &q_params.params.update.update_flags);
15277 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15278 &q_params.params.update.update_flags);
15280 /* send the ramrod on all the queues of the PF */
15281 for_each_eth_queue(bp, i) {
15282 struct bnx2x_fastpath *fp = &bp->fp[i];
15284 /* Set the appropriate Queue object */
15285 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15287 /* Update the Queue state */
15288 rc = bnx2x_queue_state_change(bp, &q_params);
15289 if (rc) {
15290 BNX2X_ERR("Failed to enable PTP packets\n");
15291 return rc;
15295 return 0;
15298 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15299 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15300 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15301 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15302 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15303 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15304 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15305 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15306 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15307 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15308 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15309 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15311 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15313 int port = BP_PORT(bp);
15314 u32 param, rule;
15315 int rc;
15317 if (!bp->hwtstamp_ioctl_called)
15318 return 0;
15320 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15321 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15322 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15323 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15324 switch (bp->tx_type) {
15325 case HWTSTAMP_TX_ON:
15326 bp->flags |= TX_TIMESTAMPING_EN;
15327 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15328 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15329 break;
15330 case HWTSTAMP_TX_ONESTEP_SYNC:
15331 case HWTSTAMP_TX_ONESTEP_P2P:
15332 BNX2X_ERR("One-step timestamping is not supported\n");
15333 return -ERANGE;
15336 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15337 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15338 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15339 NIG_REG_P0_LLH_PTP_RULE_MASK;
15340 switch (bp->rx_filter) {
15341 case HWTSTAMP_FILTER_NONE:
15342 break;
15343 case HWTSTAMP_FILTER_ALL:
15344 case HWTSTAMP_FILTER_SOME:
15345 case HWTSTAMP_FILTER_NTP_ALL:
15346 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15347 break;
15348 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15349 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15350 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15351 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15352 /* Initialize PTP detection for UDP/IPv4 events */
15353 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15354 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15355 break;
15356 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15357 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15358 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15359 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15360 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15361 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15362 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15363 break;
15364 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15365 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15366 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15367 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15368 /* Initialize PTP detection L2 events */
15369 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15370 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15372 break;
15373 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15374 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15375 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15376 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15377 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15378 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15379 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15380 break;
15383 /* Indicate to FW that this PF expects recorded PTP packets */
15384 rc = bnx2x_enable_ptp_packets(bp);
15385 if (rc)
15386 return rc;
15388 /* Enable sending PTP packets to host */
15389 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15390 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15392 return 0;
15395 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15397 struct hwtstamp_config config;
15398 int rc;
15400 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15402 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15403 return -EFAULT;
15405 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15406 config.tx_type, config.rx_filter);
15408 if (config.flags) {
15409 BNX2X_ERR("config.flags is reserved for future use\n");
15410 return -EINVAL;
15413 bp->hwtstamp_ioctl_called = true;
15414 bp->tx_type = config.tx_type;
15415 bp->rx_filter = config.rx_filter;
15417 rc = bnx2x_configure_ptp_filters(bp);
15418 if (rc)
15419 return rc;
15421 config.rx_filter = bp->rx_filter;
15423 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15424 -EFAULT : 0;
15427 /* Configures HW for PTP */
15428 static int bnx2x_configure_ptp(struct bnx2x *bp)
15430 int rc, port = BP_PORT(bp);
15431 u32 wb_data[2];
15433 /* Reset PTP event detection rules - will be configured in the IOCTL */
15434 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15435 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15436 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15437 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15438 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15439 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15440 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15441 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15443 /* Disable PTP packets to host - will be configured in the IOCTL*/
15444 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15445 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15447 /* Enable the PTP feature */
15448 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15449 NIG_REG_P0_PTP_EN, 0x3F);
15451 /* Enable the free-running counter */
15452 wb_data[0] = 0;
15453 wb_data[1] = 0;
15454 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15456 /* Reset drift register (offset register is not reset) */
15457 rc = bnx2x_send_reset_timesync_ramrod(bp);
15458 if (rc) {
15459 BNX2X_ERR("Failed to reset PHC drift register\n");
15460 return -EFAULT;
15463 /* Reset possibly old timestamps */
15464 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15465 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15466 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15467 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15469 return 0;
15472 /* Called during load, to initialize PTP-related stuff */
15473 void bnx2x_init_ptp(struct bnx2x *bp)
15475 int rc;
15477 /* Configure PTP in HW */
15478 rc = bnx2x_configure_ptp(bp);
15479 if (rc) {
15480 BNX2X_ERR("Stopping PTP initialization\n");
15481 return;
15484 /* Init work queue for Tx timestamping */
15485 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15487 /* Init cyclecounter and timecounter. This is done only in the first
15488 * load. If done in every load, PTP application will fail when doing
15489 * unload / load (e.g. MTU change) while it is running.
15491 if (!bp->timecounter_init_done) {
15492 bnx2x_init_cyclecounter(bp);
15493 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15494 ktime_to_ns(ktime_get_real()));
15495 bp->timecounter_init_done = true;
15498 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");