1 /* bnx2x_sp.c: Qlogic Everest network driver.
3 * Copyright 2011-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
7 * Unless you and Qlogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/gpl-2.0.html (the "GPL").
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other Qlogic software provided under a
14 * license other than the GPL, without Qlogic's express prior written
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Vladislav Zolotarov
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/module.h>
25 #include <linux/crc32.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/crc32c.h>
30 #include "bnx2x_cmn.h"
33 #define BNX2X_MAX_EMUL_MULTI 16
35 /**** Exe Queue interfaces ****/
38 * bnx2x_exe_queue_init - init the Exe Queue object
41 * @o: pointer to the object
43 * @owner: pointer to the owner
44 * @validate: validate function pointer
45 * @remove: remove function pointer
46 * @optimize: optimize function pointer
47 * @exec: execute function pointer
48 * @get: get function pointer
50 static inline void bnx2x_exe_queue_init(struct bnx2x
*bp
,
51 struct bnx2x_exe_queue_obj
*o
,
53 union bnx2x_qable_obj
*owner
,
54 exe_q_validate validate
,
56 exe_q_optimize optimize
,
60 memset(o
, 0, sizeof(*o
));
62 INIT_LIST_HEAD(&o
->exe_queue
);
63 INIT_LIST_HEAD(&o
->pending_comp
);
65 spin_lock_init(&o
->lock
);
67 o
->exe_chunk_len
= exe_len
;
70 /* Owner specific callbacks */
71 o
->validate
= validate
;
73 o
->optimize
= optimize
;
77 DP(BNX2X_MSG_SP
, "Setup the execution queue with the chunk length of %d\n",
81 static inline void bnx2x_exe_queue_free_elem(struct bnx2x
*bp
,
82 struct bnx2x_exeq_elem
*elem
)
84 DP(BNX2X_MSG_SP
, "Deleting an exe_queue element\n");
88 static inline int bnx2x_exe_queue_length(struct bnx2x_exe_queue_obj
*o
)
90 struct bnx2x_exeq_elem
*elem
;
93 spin_lock_bh(&o
->lock
);
95 list_for_each_entry(elem
, &o
->exe_queue
, link
)
98 spin_unlock_bh(&o
->lock
);
104 * bnx2x_exe_queue_add - add a new element to the execution queue
108 * @elem: new command to add
109 * @restore: true - do not optimize the command
111 * If the element is optimized or is illegal, frees it.
113 static inline int bnx2x_exe_queue_add(struct bnx2x
*bp
,
114 struct bnx2x_exe_queue_obj
*o
,
115 struct bnx2x_exeq_elem
*elem
,
120 spin_lock_bh(&o
->lock
);
123 /* Try to cancel this element queue */
124 rc
= o
->optimize(bp
, o
->owner
, elem
);
128 /* Check if this request is ok */
129 rc
= o
->validate(bp
, o
->owner
, elem
);
131 DP(BNX2X_MSG_SP
, "Preamble failed: %d\n", rc
);
136 /* If so, add it to the execution queue */
137 list_add_tail(&elem
->link
, &o
->exe_queue
);
139 spin_unlock_bh(&o
->lock
);
144 bnx2x_exe_queue_free_elem(bp
, elem
);
146 spin_unlock_bh(&o
->lock
);
151 static inline void __bnx2x_exe_queue_reset_pending(
153 struct bnx2x_exe_queue_obj
*o
)
155 struct bnx2x_exeq_elem
*elem
;
157 while (!list_empty(&o
->pending_comp
)) {
158 elem
= list_first_entry(&o
->pending_comp
,
159 struct bnx2x_exeq_elem
, link
);
161 list_del(&elem
->link
);
162 bnx2x_exe_queue_free_elem(bp
, elem
);
167 * bnx2x_exe_queue_step - execute one execution chunk atomically
171 * @ramrod_flags: flags
173 * (Should be called while holding the exe_queue->lock).
175 static inline int bnx2x_exe_queue_step(struct bnx2x
*bp
,
176 struct bnx2x_exe_queue_obj
*o
,
177 unsigned long *ramrod_flags
)
179 struct bnx2x_exeq_elem
*elem
, spacer
;
182 memset(&spacer
, 0, sizeof(spacer
));
184 /* Next step should not be performed until the current is finished,
185 * unless a DRV_CLEAR_ONLY bit is set. In this case we just want to
186 * properly clear object internals without sending any command to the FW
187 * which also implies there won't be any completion to clear the
190 if (!list_empty(&o
->pending_comp
)) {
191 if (test_bit(RAMROD_DRV_CLR_ONLY
, ramrod_flags
)) {
192 DP(BNX2X_MSG_SP
, "RAMROD_DRV_CLR_ONLY requested: resetting a pending_comp list\n");
193 __bnx2x_exe_queue_reset_pending(bp
, o
);
199 /* Run through the pending commands list and create a next
202 while (!list_empty(&o
->exe_queue
)) {
203 elem
= list_first_entry(&o
->exe_queue
, struct bnx2x_exeq_elem
,
205 WARN_ON(!elem
->cmd_len
);
207 if (cur_len
+ elem
->cmd_len
<= o
->exe_chunk_len
) {
208 cur_len
+= elem
->cmd_len
;
209 /* Prevent from both lists being empty when moving an
210 * element. This will allow the call of
211 * bnx2x_exe_queue_empty() without locking.
213 list_add_tail(&spacer
.link
, &o
->pending_comp
);
215 list_move_tail(&elem
->link
, &o
->pending_comp
);
216 list_del(&spacer
.link
);
225 rc
= o
->execute(bp
, o
->owner
, &o
->pending_comp
, ramrod_flags
);
227 /* In case of an error return the commands back to the queue
228 * and reset the pending_comp.
230 list_splice_init(&o
->pending_comp
, &o
->exe_queue
);
232 /* If zero is returned, means there are no outstanding pending
233 * completions and we may dismiss the pending list.
235 __bnx2x_exe_queue_reset_pending(bp
, o
);
240 static inline bool bnx2x_exe_queue_empty(struct bnx2x_exe_queue_obj
*o
)
242 bool empty
= list_empty(&o
->exe_queue
);
244 /* Don't reorder!!! */
247 return empty
&& list_empty(&o
->pending_comp
);
250 static inline struct bnx2x_exeq_elem
*bnx2x_exe_queue_alloc_elem(
253 DP(BNX2X_MSG_SP
, "Allocating a new exe_queue element\n");
254 return kzalloc(sizeof(struct bnx2x_exeq_elem
), GFP_ATOMIC
);
257 /************************ raw_obj functions ***********************************/
258 static bool bnx2x_raw_check_pending(struct bnx2x_raw_obj
*o
)
260 return !!test_bit(o
->state
, o
->pstate
);
263 static void bnx2x_raw_clear_pending(struct bnx2x_raw_obj
*o
)
265 smp_mb__before_atomic();
266 clear_bit(o
->state
, o
->pstate
);
267 smp_mb__after_atomic();
270 static void bnx2x_raw_set_pending(struct bnx2x_raw_obj
*o
)
272 smp_mb__before_atomic();
273 set_bit(o
->state
, o
->pstate
);
274 smp_mb__after_atomic();
278 * bnx2x_state_wait - wait until the given bit(state) is cleared
281 * @state: state which is to be cleared
282 * @pstate: state buffer
285 static inline int bnx2x_state_wait(struct bnx2x
*bp
, int state
,
286 unsigned long *pstate
)
288 /* can take a while if any port is running */
291 if (CHIP_REV_IS_EMUL(bp
))
294 DP(BNX2X_MSG_SP
, "waiting for state to become %d\n", state
);
298 if (!test_bit(state
, pstate
)) {
299 #ifdef BNX2X_STOP_ON_ERROR
300 DP(BNX2X_MSG_SP
, "exit (cnt %d)\n", 5000 - cnt
);
305 usleep_range(1000, 2000);
312 BNX2X_ERR("timeout waiting for state %d\n", state
);
313 #ifdef BNX2X_STOP_ON_ERROR
320 static int bnx2x_raw_wait(struct bnx2x
*bp
, struct bnx2x_raw_obj
*raw
)
322 return bnx2x_state_wait(bp
, raw
->state
, raw
->pstate
);
325 /***************** Classification verbs: Set/Del MAC/VLAN/VLAN-MAC ************/
326 /* credit handling callbacks */
327 static bool bnx2x_get_cam_offset_mac(struct bnx2x_vlan_mac_obj
*o
, int *offset
)
329 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
333 return mp
->get_entry(mp
, offset
);
336 static bool bnx2x_get_credit_mac(struct bnx2x_vlan_mac_obj
*o
)
338 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
342 return mp
->get(mp
, 1);
345 static bool bnx2x_get_cam_offset_vlan(struct bnx2x_vlan_mac_obj
*o
, int *offset
)
347 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
351 return vp
->get_entry(vp
, offset
);
354 static bool bnx2x_get_credit_vlan(struct bnx2x_vlan_mac_obj
*o
)
356 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
360 return vp
->get(vp
, 1);
363 static bool bnx2x_get_credit_vlan_mac(struct bnx2x_vlan_mac_obj
*o
)
365 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
366 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
371 if (!vp
->get(vp
, 1)) {
379 static bool bnx2x_put_cam_offset_mac(struct bnx2x_vlan_mac_obj
*o
, int offset
)
381 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
383 return mp
->put_entry(mp
, offset
);
386 static bool bnx2x_put_credit_mac(struct bnx2x_vlan_mac_obj
*o
)
388 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
390 return mp
->put(mp
, 1);
393 static bool bnx2x_put_cam_offset_vlan(struct bnx2x_vlan_mac_obj
*o
, int offset
)
395 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
397 return vp
->put_entry(vp
, offset
);
400 static bool bnx2x_put_credit_vlan(struct bnx2x_vlan_mac_obj
*o
)
402 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
404 return vp
->put(vp
, 1);
407 static bool bnx2x_put_credit_vlan_mac(struct bnx2x_vlan_mac_obj
*o
)
409 struct bnx2x_credit_pool_obj
*mp
= o
->macs_pool
;
410 struct bnx2x_credit_pool_obj
*vp
= o
->vlans_pool
;
415 if (!vp
->put(vp
, 1)) {
424 * __bnx2x_vlan_mac_h_write_trylock - try getting the vlan mac writer lock
427 * @o: vlan_mac object
429 * Context: Non-blocking implementation; should be called under execution
432 static int __bnx2x_vlan_mac_h_write_trylock(struct bnx2x
*bp
,
433 struct bnx2x_vlan_mac_obj
*o
)
435 if (o
->head_reader
) {
436 DP(BNX2X_MSG_SP
, "vlan_mac_lock writer - There are readers; Busy\n");
440 DP(BNX2X_MSG_SP
, "vlan_mac_lock writer - Taken\n");
445 * __bnx2x_vlan_mac_h_exec_pending - execute step instead of a previous step
448 * @o: vlan_mac object
450 * details Should be called under execution queue lock; notice it might release
451 * and reclaim it during its run.
453 static void __bnx2x_vlan_mac_h_exec_pending(struct bnx2x
*bp
,
454 struct bnx2x_vlan_mac_obj
*o
)
457 unsigned long ramrod_flags
= o
->saved_ramrod_flags
;
459 DP(BNX2X_MSG_SP
, "vlan_mac_lock execute pending command with ramrod flags %lu\n",
461 o
->head_exe_request
= false;
462 o
->saved_ramrod_flags
= 0;
463 rc
= bnx2x_exe_queue_step(bp
, &o
->exe_queue
, &ramrod_flags
);
464 if ((rc
!= 0) && (rc
!= 1)) {
465 BNX2X_ERR("execution of pending commands failed with rc %d\n",
467 #ifdef BNX2X_STOP_ON_ERROR
474 * __bnx2x_vlan_mac_h_pend - Pend an execution step which couldn't run
477 * @o: vlan_mac object
478 * @ramrod_flags: ramrod flags of missed execution
480 * Context: Should be called under execution queue lock.
482 static void __bnx2x_vlan_mac_h_pend(struct bnx2x
*bp
,
483 struct bnx2x_vlan_mac_obj
*o
,
484 unsigned long ramrod_flags
)
486 o
->head_exe_request
= true;
487 o
->saved_ramrod_flags
= ramrod_flags
;
488 DP(BNX2X_MSG_SP
, "Placing pending execution with ramrod flags %lu\n",
493 * __bnx2x_vlan_mac_h_write_unlock - unlock the vlan mac head list writer lock
496 * @o: vlan_mac object
498 * Context: Should be called under execution queue lock. Notice if a pending
499 * execution exists, it would perform it - possibly releasing and
500 * reclaiming the execution queue lock.
502 static void __bnx2x_vlan_mac_h_write_unlock(struct bnx2x
*bp
,
503 struct bnx2x_vlan_mac_obj
*o
)
505 /* It's possible a new pending execution was added since this writer
506 * executed. If so, execute again. [Ad infinitum]
508 while (o
->head_exe_request
) {
509 DP(BNX2X_MSG_SP
, "vlan_mac_lock - writer release encountered a pending request\n");
510 __bnx2x_vlan_mac_h_exec_pending(bp
, o
);
516 * __bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
519 * @o: vlan_mac object
521 * Context: Should be called under the execution queue lock. May sleep. May
522 * release and reclaim execution queue lock during its run.
524 static int __bnx2x_vlan_mac_h_read_lock(struct bnx2x
*bp
,
525 struct bnx2x_vlan_mac_obj
*o
)
527 /* If we got here, we're holding lock --> no WRITER exists */
529 DP(BNX2X_MSG_SP
, "vlan_mac_lock - locked reader - number %d\n",
536 * bnx2x_vlan_mac_h_read_lock - lock the vlan mac head list reader lock
539 * @o: vlan_mac object
541 * Context: May sleep. Claims and releases execution queue lock during its run.
543 int bnx2x_vlan_mac_h_read_lock(struct bnx2x
*bp
,
544 struct bnx2x_vlan_mac_obj
*o
)
548 spin_lock_bh(&o
->exe_queue
.lock
);
549 rc
= __bnx2x_vlan_mac_h_read_lock(bp
, o
);
550 spin_unlock_bh(&o
->exe_queue
.lock
);
556 * __bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
559 * @o: vlan_mac object
561 * Context: Should be called under execution queue lock. Notice if a pending
562 * execution exists, it would be performed if this was the last
563 * reader. possibly releasing and reclaiming the execution queue lock.
565 static void __bnx2x_vlan_mac_h_read_unlock(struct bnx2x
*bp
,
566 struct bnx2x_vlan_mac_obj
*o
)
568 if (!o
->head_reader
) {
569 BNX2X_ERR("Need to release vlan mac reader lock, but lock isn't taken\n");
570 #ifdef BNX2X_STOP_ON_ERROR
575 DP(BNX2X_MSG_SP
, "vlan_mac_lock - decreased readers to %d\n",
579 /* It's possible a new pending execution was added, and that this reader
580 * was last - if so we need to execute the command.
582 if (!o
->head_reader
&& o
->head_exe_request
) {
583 DP(BNX2X_MSG_SP
, "vlan_mac_lock - reader release encountered a pending request\n");
585 /* Writer release will do the trick */
586 __bnx2x_vlan_mac_h_write_unlock(bp
, o
);
591 * bnx2x_vlan_mac_h_read_unlock - unlock the vlan mac head list reader lock
594 * @o: vlan_mac object
596 * Context: Notice if a pending execution exists, it would be performed if this
597 * was the last reader. Claims and releases the execution queue lock
600 void bnx2x_vlan_mac_h_read_unlock(struct bnx2x
*bp
,
601 struct bnx2x_vlan_mac_obj
*o
)
603 spin_lock_bh(&o
->exe_queue
.lock
);
604 __bnx2x_vlan_mac_h_read_unlock(bp
, o
);
605 spin_unlock_bh(&o
->exe_queue
.lock
);
608 static int bnx2x_get_n_elements(struct bnx2x
*bp
, struct bnx2x_vlan_mac_obj
*o
,
609 int n
, u8
*base
, u8 stride
, u8 size
)
611 struct bnx2x_vlan_mac_registry_elem
*pos
;
616 DP(BNX2X_MSG_SP
, "get_n_elements - taking vlan_mac_lock (reader)\n");
617 read_lock
= bnx2x_vlan_mac_h_read_lock(bp
, o
);
619 BNX2X_ERR("get_n_elements failed to get vlan mac reader lock; Access without lock\n");
622 list_for_each_entry(pos
, &o
->head
, link
) {
624 memcpy(next
, &pos
->u
, size
);
626 DP(BNX2X_MSG_SP
, "copied element number %d to address %p element was:\n",
628 next
+= stride
+ size
;
632 if (read_lock
== 0) {
633 DP(BNX2X_MSG_SP
, "get_n_elements - releasing vlan_mac_lock (reader)\n");
634 bnx2x_vlan_mac_h_read_unlock(bp
, o
);
637 return counter
* ETH_ALEN
;
640 /* check_add() callbacks */
641 static int bnx2x_check_mac_add(struct bnx2x
*bp
,
642 struct bnx2x_vlan_mac_obj
*o
,
643 union bnx2x_classification_ramrod_data
*data
)
645 struct bnx2x_vlan_mac_registry_elem
*pos
;
647 DP(BNX2X_MSG_SP
, "Checking MAC %pM for ADD command\n", data
->mac
.mac
);
649 if (!is_valid_ether_addr(data
->mac
.mac
))
652 /* Check if a requested MAC already exists */
653 list_for_each_entry(pos
, &o
->head
, link
)
654 if (ether_addr_equal(data
->mac
.mac
, pos
->u
.mac
.mac
) &&
655 (data
->mac
.is_inner_mac
== pos
->u
.mac
.is_inner_mac
))
661 static int bnx2x_check_vlan_add(struct bnx2x
*bp
,
662 struct bnx2x_vlan_mac_obj
*o
,
663 union bnx2x_classification_ramrod_data
*data
)
665 struct bnx2x_vlan_mac_registry_elem
*pos
;
667 DP(BNX2X_MSG_SP
, "Checking VLAN %d for ADD command\n", data
->vlan
.vlan
);
669 list_for_each_entry(pos
, &o
->head
, link
)
670 if (data
->vlan
.vlan
== pos
->u
.vlan
.vlan
)
676 static int bnx2x_check_vlan_mac_add(struct bnx2x
*bp
,
677 struct bnx2x_vlan_mac_obj
*o
,
678 union bnx2x_classification_ramrod_data
*data
)
680 struct bnx2x_vlan_mac_registry_elem
*pos
;
682 DP(BNX2X_MSG_SP
, "Checking VLAN_MAC (%pM, %d) for ADD command\n",
683 data
->vlan_mac
.mac
, data
->vlan_mac
.vlan
);
685 list_for_each_entry(pos
, &o
->head
, link
)
686 if ((data
->vlan_mac
.vlan
== pos
->u
.vlan_mac
.vlan
) &&
687 (!memcmp(data
->vlan_mac
.mac
, pos
->u
.vlan_mac
.mac
,
689 (data
->vlan_mac
.is_inner_mac
==
690 pos
->u
.vlan_mac
.is_inner_mac
))
696 /* check_del() callbacks */
697 static struct bnx2x_vlan_mac_registry_elem
*
698 bnx2x_check_mac_del(struct bnx2x
*bp
,
699 struct bnx2x_vlan_mac_obj
*o
,
700 union bnx2x_classification_ramrod_data
*data
)
702 struct bnx2x_vlan_mac_registry_elem
*pos
;
704 DP(BNX2X_MSG_SP
, "Checking MAC %pM for DEL command\n", data
->mac
.mac
);
706 list_for_each_entry(pos
, &o
->head
, link
)
707 if (ether_addr_equal(data
->mac
.mac
, pos
->u
.mac
.mac
) &&
708 (data
->mac
.is_inner_mac
== pos
->u
.mac
.is_inner_mac
))
714 static struct bnx2x_vlan_mac_registry_elem
*
715 bnx2x_check_vlan_del(struct bnx2x
*bp
,
716 struct bnx2x_vlan_mac_obj
*o
,
717 union bnx2x_classification_ramrod_data
*data
)
719 struct bnx2x_vlan_mac_registry_elem
*pos
;
721 DP(BNX2X_MSG_SP
, "Checking VLAN %d for DEL command\n", data
->vlan
.vlan
);
723 list_for_each_entry(pos
, &o
->head
, link
)
724 if (data
->vlan
.vlan
== pos
->u
.vlan
.vlan
)
730 static struct bnx2x_vlan_mac_registry_elem
*
731 bnx2x_check_vlan_mac_del(struct bnx2x
*bp
,
732 struct bnx2x_vlan_mac_obj
*o
,
733 union bnx2x_classification_ramrod_data
*data
)
735 struct bnx2x_vlan_mac_registry_elem
*pos
;
737 DP(BNX2X_MSG_SP
, "Checking VLAN_MAC (%pM, %d) for DEL command\n",
738 data
->vlan_mac
.mac
, data
->vlan_mac
.vlan
);
740 list_for_each_entry(pos
, &o
->head
, link
)
741 if ((data
->vlan_mac
.vlan
== pos
->u
.vlan_mac
.vlan
) &&
742 (!memcmp(data
->vlan_mac
.mac
, pos
->u
.vlan_mac
.mac
,
744 (data
->vlan_mac
.is_inner_mac
==
745 pos
->u
.vlan_mac
.is_inner_mac
))
751 /* check_move() callback */
752 static bool bnx2x_check_move(struct bnx2x
*bp
,
753 struct bnx2x_vlan_mac_obj
*src_o
,
754 struct bnx2x_vlan_mac_obj
*dst_o
,
755 union bnx2x_classification_ramrod_data
*data
)
757 struct bnx2x_vlan_mac_registry_elem
*pos
;
760 /* Check if we can delete the requested configuration from the first
763 pos
= src_o
->check_del(bp
, src_o
, data
);
765 /* check if configuration can be added */
766 rc
= dst_o
->check_add(bp
, dst_o
, data
);
768 /* If this classification can not be added (is already set)
769 * or can't be deleted - return an error.
777 static bool bnx2x_check_move_always_err(
779 struct bnx2x_vlan_mac_obj
*src_o
,
780 struct bnx2x_vlan_mac_obj
*dst_o
,
781 union bnx2x_classification_ramrod_data
*data
)
786 static inline u8
bnx2x_vlan_mac_get_rx_tx_flag(struct bnx2x_vlan_mac_obj
*o
)
788 struct bnx2x_raw_obj
*raw
= &o
->raw
;
791 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_TX
) ||
792 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
793 rx_tx_flag
|= ETH_CLASSIFY_CMD_HEADER_TX_CMD
;
795 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_RX
) ||
796 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
797 rx_tx_flag
|= ETH_CLASSIFY_CMD_HEADER_RX_CMD
;
802 static void bnx2x_set_mac_in_nig(struct bnx2x
*bp
,
803 bool add
, unsigned char *dev_addr
, int index
)
806 u32 reg_offset
= BP_PORT(bp
) ? NIG_REG_LLH1_FUNC_MEM
:
807 NIG_REG_LLH0_FUNC_MEM
;
809 if (!IS_MF_SI(bp
) && !IS_MF_AFEX(bp
))
812 if (index
> BNX2X_LLH_CAM_MAX_PF_LINE
)
815 DP(BNX2X_MSG_SP
, "Going to %s LLH configuration at entry %d\n",
816 (add
? "ADD" : "DELETE"), index
);
819 /* LLH_FUNC_MEM is a u64 WB register */
820 reg_offset
+= 8*index
;
822 wb_data
[0] = ((dev_addr
[2] << 24) | (dev_addr
[3] << 16) |
823 (dev_addr
[4] << 8) | dev_addr
[5]);
824 wb_data
[1] = ((dev_addr
[0] << 8) | dev_addr
[1]);
826 REG_WR_DMAE(bp
, reg_offset
, wb_data
, 2);
829 REG_WR(bp
, (BP_PORT(bp
) ? NIG_REG_LLH1_FUNC_MEM_ENABLE
:
830 NIG_REG_LLH0_FUNC_MEM_ENABLE
) + 4*index
, add
);
834 * bnx2x_vlan_mac_set_cmd_hdr_e2 - set a header in a single classify ramrod
837 * @o: queue for which we want to configure this rule
838 * @add: if true the command is an ADD command, DEL otherwise
839 * @opcode: CLASSIFY_RULE_OPCODE_XXX
840 * @hdr: pointer to a header to setup
843 static inline void bnx2x_vlan_mac_set_cmd_hdr_e2(struct bnx2x
*bp
,
844 struct bnx2x_vlan_mac_obj
*o
, bool add
, int opcode
,
845 struct eth_classify_cmd_header
*hdr
)
847 struct bnx2x_raw_obj
*raw
= &o
->raw
;
849 hdr
->client_id
= raw
->cl_id
;
850 hdr
->func_id
= raw
->func_id
;
852 /* Rx or/and Tx (internal switching) configuration ? */
853 hdr
->cmd_general_data
|=
854 bnx2x_vlan_mac_get_rx_tx_flag(o
);
857 hdr
->cmd_general_data
|= ETH_CLASSIFY_CMD_HEADER_IS_ADD
;
859 hdr
->cmd_general_data
|=
860 (opcode
<< ETH_CLASSIFY_CMD_HEADER_OPCODE_SHIFT
);
864 * bnx2x_vlan_mac_set_rdata_hdr_e2 - set the classify ramrod data header
866 * @cid: connection id
867 * @type: BNX2X_FILTER_XXX_PENDING
868 * @hdr: pointer to header to setup
871 * currently we always configure one rule and echo field to contain a CID and an
874 static inline void bnx2x_vlan_mac_set_rdata_hdr_e2(u32 cid
, int type
,
875 struct eth_classify_header
*hdr
, int rule_cnt
)
877 hdr
->echo
= cpu_to_le32((cid
& BNX2X_SWCID_MASK
) |
878 (type
<< BNX2X_SWCID_SHIFT
));
879 hdr
->rule_cnt
= (u8
)rule_cnt
;
882 /* hw_config() callbacks */
883 static void bnx2x_set_one_mac_e2(struct bnx2x
*bp
,
884 struct bnx2x_vlan_mac_obj
*o
,
885 struct bnx2x_exeq_elem
*elem
, int rule_idx
,
888 struct bnx2x_raw_obj
*raw
= &o
->raw
;
889 struct eth_classify_rules_ramrod_data
*data
=
890 (struct eth_classify_rules_ramrod_data
*)(raw
->rdata
);
891 int rule_cnt
= rule_idx
+ 1, cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
892 union eth_classify_rule_cmd
*rule_entry
= &data
->rules
[rule_idx
];
893 bool add
= (cmd
== BNX2X_VLAN_MAC_ADD
) ? true : false;
894 unsigned long *vlan_mac_flags
= &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
;
895 u8
*mac
= elem
->cmd_data
.vlan_mac
.u
.mac
.mac
;
897 /* Set LLH CAM entry: currently only iSCSI and ETH macs are
898 * relevant. In addition, current implementation is tuned for a
901 * When multiple unicast ETH MACs PF configuration in switch
902 * independent mode is required (NetQ, multiple netdev MACs,
903 * etc.), consider better utilisation of 8 per function MAC
904 * entries in the LLH register. There is also
905 * NIG_REG_P[01]_LLH_FUNC_MEM2 registers that complete the
906 * total number of CAM entries to 16.
908 * Currently we won't configure NIG for MACs other than a primary ETH
909 * MAC and iSCSI L2 MAC.
911 * If this MAC is moving from one Queue to another, no need to change
914 if (cmd
!= BNX2X_VLAN_MAC_MOVE
) {
915 if (test_bit(BNX2X_ISCSI_ETH_MAC
, vlan_mac_flags
))
916 bnx2x_set_mac_in_nig(bp
, add
, mac
,
917 BNX2X_LLH_CAM_ISCSI_ETH_LINE
);
918 else if (test_bit(BNX2X_ETH_MAC
, vlan_mac_flags
))
919 bnx2x_set_mac_in_nig(bp
, add
, mac
,
920 BNX2X_LLH_CAM_ETH_LINE
);
923 /* Reset the ramrod data buffer for the first rule */
925 memset(data
, 0, sizeof(*data
));
927 /* Setup a command header */
928 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
, o
, add
, CLASSIFY_RULE_OPCODE_MAC
,
929 &rule_entry
->mac
.header
);
931 DP(BNX2X_MSG_SP
, "About to %s MAC %pM for Queue %d\n",
932 (add
? "add" : "delete"), mac
, raw
->cl_id
);
934 /* Set a MAC itself */
935 bnx2x_set_fw_mac_addr(&rule_entry
->mac
.mac_msb
,
936 &rule_entry
->mac
.mac_mid
,
937 &rule_entry
->mac
.mac_lsb
, mac
);
938 rule_entry
->mac
.inner_mac
=
939 cpu_to_le16(elem
->cmd_data
.vlan_mac
.u
.mac
.is_inner_mac
);
941 /* MOVE: Add a rule that will add this MAC to the target Queue */
942 if (cmd
== BNX2X_VLAN_MAC_MOVE
) {
946 /* Setup ramrod data */
947 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
,
948 elem
->cmd_data
.vlan_mac
.target_obj
,
949 true, CLASSIFY_RULE_OPCODE_MAC
,
950 &rule_entry
->mac
.header
);
952 /* Set a MAC itself */
953 bnx2x_set_fw_mac_addr(&rule_entry
->mac
.mac_msb
,
954 &rule_entry
->mac
.mac_mid
,
955 &rule_entry
->mac
.mac_lsb
, mac
);
956 rule_entry
->mac
.inner_mac
=
957 cpu_to_le16(elem
->cmd_data
.vlan_mac
.
961 /* Set the ramrod data header */
962 /* TODO: take this to the higher level in order to prevent multiple
964 bnx2x_vlan_mac_set_rdata_hdr_e2(raw
->cid
, raw
->state
, &data
->header
,
969 * bnx2x_vlan_mac_set_rdata_hdr_e1x - set a header in a single classify ramrod
973 * @type: the type of echo
974 * @cam_offset: offset in cam memory
975 * @hdr: pointer to a header to setup
979 static inline void bnx2x_vlan_mac_set_rdata_hdr_e1x(struct bnx2x
*bp
,
980 struct bnx2x_vlan_mac_obj
*o
, int type
, int cam_offset
,
981 struct mac_configuration_hdr
*hdr
)
983 struct bnx2x_raw_obj
*r
= &o
->raw
;
986 hdr
->offset
= (u8
)cam_offset
;
987 hdr
->client_id
= cpu_to_le16(0xff);
988 hdr
->echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
989 (type
<< BNX2X_SWCID_SHIFT
));
992 static inline void bnx2x_vlan_mac_set_cfg_entry_e1x(struct bnx2x
*bp
,
993 struct bnx2x_vlan_mac_obj
*o
, bool add
, int opcode
, u8
*mac
,
994 u16 vlan_id
, struct mac_configuration_entry
*cfg_entry
)
996 struct bnx2x_raw_obj
*r
= &o
->raw
;
997 u32 cl_bit_vec
= (1 << r
->cl_id
);
999 cfg_entry
->clients_bit_vector
= cpu_to_le32(cl_bit_vec
);
1000 cfg_entry
->pf_id
= r
->func_id
;
1001 cfg_entry
->vlan_id
= cpu_to_le16(vlan_id
);
1004 SET_FLAG(cfg_entry
->flags
, MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
1005 T_ETH_MAC_COMMAND_SET
);
1006 SET_FLAG(cfg_entry
->flags
,
1007 MAC_CONFIGURATION_ENTRY_VLAN_FILTERING_MODE
, opcode
);
1009 /* Set a MAC in a ramrod data */
1010 bnx2x_set_fw_mac_addr(&cfg_entry
->msb_mac_addr
,
1011 &cfg_entry
->middle_mac_addr
,
1012 &cfg_entry
->lsb_mac_addr
, mac
);
1014 SET_FLAG(cfg_entry
->flags
, MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
1015 T_ETH_MAC_COMMAND_INVALIDATE
);
1018 static inline void bnx2x_vlan_mac_set_rdata_e1x(struct bnx2x
*bp
,
1019 struct bnx2x_vlan_mac_obj
*o
, int type
, int cam_offset
, bool add
,
1020 u8
*mac
, u16 vlan_id
, int opcode
, struct mac_configuration_cmd
*config
)
1022 struct mac_configuration_entry
*cfg_entry
= &config
->config_table
[0];
1023 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1025 bnx2x_vlan_mac_set_rdata_hdr_e1x(bp
, o
, type
, cam_offset
,
1027 bnx2x_vlan_mac_set_cfg_entry_e1x(bp
, o
, add
, opcode
, mac
, vlan_id
,
1030 DP(BNX2X_MSG_SP
, "%s MAC %pM CLID %d CAM offset %d\n",
1031 (add
? "setting" : "clearing"),
1032 mac
, raw
->cl_id
, cam_offset
);
1036 * bnx2x_set_one_mac_e1x - fill a single MAC rule ramrod data
1038 * @bp: device handle
1039 * @o: bnx2x_vlan_mac_obj
1040 * @elem: bnx2x_exeq_elem
1041 * @rule_idx: rule_idx
1042 * @cam_offset: cam_offset
1044 static void bnx2x_set_one_mac_e1x(struct bnx2x
*bp
,
1045 struct bnx2x_vlan_mac_obj
*o
,
1046 struct bnx2x_exeq_elem
*elem
, int rule_idx
,
1049 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1050 struct mac_configuration_cmd
*config
=
1051 (struct mac_configuration_cmd
*)(raw
->rdata
);
1052 /* 57710 and 57711 do not support MOVE command,
1053 * so it's either ADD or DEL
1055 bool add
= (elem
->cmd_data
.vlan_mac
.cmd
== BNX2X_VLAN_MAC_ADD
) ?
1058 /* Reset the ramrod data buffer */
1059 memset(config
, 0, sizeof(*config
));
1061 bnx2x_vlan_mac_set_rdata_e1x(bp
, o
, raw
->state
,
1063 elem
->cmd_data
.vlan_mac
.u
.mac
.mac
, 0,
1064 ETH_VLAN_FILTER_ANY_VLAN
, config
);
1067 static void bnx2x_set_one_vlan_e2(struct bnx2x
*bp
,
1068 struct bnx2x_vlan_mac_obj
*o
,
1069 struct bnx2x_exeq_elem
*elem
, int rule_idx
,
1072 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1073 struct eth_classify_rules_ramrod_data
*data
=
1074 (struct eth_classify_rules_ramrod_data
*)(raw
->rdata
);
1075 int rule_cnt
= rule_idx
+ 1;
1076 union eth_classify_rule_cmd
*rule_entry
= &data
->rules
[rule_idx
];
1077 enum bnx2x_vlan_mac_cmd cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1078 bool add
= (cmd
== BNX2X_VLAN_MAC_ADD
) ? true : false;
1079 u16 vlan
= elem
->cmd_data
.vlan_mac
.u
.vlan
.vlan
;
1081 /* Reset the ramrod data buffer for the first rule */
1083 memset(data
, 0, sizeof(*data
));
1085 /* Set a rule header */
1086 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
, o
, add
, CLASSIFY_RULE_OPCODE_VLAN
,
1087 &rule_entry
->vlan
.header
);
1089 DP(BNX2X_MSG_SP
, "About to %s VLAN %d\n", (add
? "add" : "delete"),
1092 /* Set a VLAN itself */
1093 rule_entry
->vlan
.vlan
= cpu_to_le16(vlan
);
1095 /* MOVE: Add a rule that will add this MAC to the target Queue */
1096 if (cmd
== BNX2X_VLAN_MAC_MOVE
) {
1100 /* Setup ramrod data */
1101 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
,
1102 elem
->cmd_data
.vlan_mac
.target_obj
,
1103 true, CLASSIFY_RULE_OPCODE_VLAN
,
1104 &rule_entry
->vlan
.header
);
1106 /* Set a VLAN itself */
1107 rule_entry
->vlan
.vlan
= cpu_to_le16(vlan
);
1110 /* Set the ramrod data header */
1111 /* TODO: take this to the higher level in order to prevent multiple
1113 bnx2x_vlan_mac_set_rdata_hdr_e2(raw
->cid
, raw
->state
, &data
->header
,
1117 static void bnx2x_set_one_vlan_mac_e2(struct bnx2x
*bp
,
1118 struct bnx2x_vlan_mac_obj
*o
,
1119 struct bnx2x_exeq_elem
*elem
,
1120 int rule_idx
, int cam_offset
)
1122 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1123 struct eth_classify_rules_ramrod_data
*data
=
1124 (struct eth_classify_rules_ramrod_data
*)(raw
->rdata
);
1125 int rule_cnt
= rule_idx
+ 1;
1126 union eth_classify_rule_cmd
*rule_entry
= &data
->rules
[rule_idx
];
1127 enum bnx2x_vlan_mac_cmd cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1128 bool add
= (cmd
== BNX2X_VLAN_MAC_ADD
) ? true : false;
1129 u16 vlan
= elem
->cmd_data
.vlan_mac
.u
.vlan_mac
.vlan
;
1130 u8
*mac
= elem
->cmd_data
.vlan_mac
.u
.vlan_mac
.mac
;
1133 /* Reset the ramrod data buffer for the first rule */
1135 memset(data
, 0, sizeof(*data
));
1137 /* Set a rule header */
1138 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
, o
, add
, CLASSIFY_RULE_OPCODE_PAIR
,
1139 &rule_entry
->pair
.header
);
1141 /* Set VLAN and MAC themselves */
1142 rule_entry
->pair
.vlan
= cpu_to_le16(vlan
);
1143 bnx2x_set_fw_mac_addr(&rule_entry
->pair
.mac_msb
,
1144 &rule_entry
->pair
.mac_mid
,
1145 &rule_entry
->pair
.mac_lsb
, mac
);
1146 inner_mac
= elem
->cmd_data
.vlan_mac
.u
.vlan_mac
.is_inner_mac
;
1147 rule_entry
->pair
.inner_mac
= cpu_to_le16(inner_mac
);
1148 /* MOVE: Add a rule that will add this MAC/VLAN to the target Queue */
1149 if (cmd
== BNX2X_VLAN_MAC_MOVE
) {
1150 struct bnx2x_vlan_mac_obj
*target_obj
;
1155 /* Setup ramrod data */
1156 target_obj
= elem
->cmd_data
.vlan_mac
.target_obj
;
1157 bnx2x_vlan_mac_set_cmd_hdr_e2(bp
, target_obj
,
1158 true, CLASSIFY_RULE_OPCODE_PAIR
,
1159 &rule_entry
->pair
.header
);
1161 /* Set a VLAN itself */
1162 rule_entry
->pair
.vlan
= cpu_to_le16(vlan
);
1163 bnx2x_set_fw_mac_addr(&rule_entry
->pair
.mac_msb
,
1164 &rule_entry
->pair
.mac_mid
,
1165 &rule_entry
->pair
.mac_lsb
, mac
);
1166 rule_entry
->pair
.inner_mac
= cpu_to_le16(inner_mac
);
1169 /* Set the ramrod data header */
1170 bnx2x_vlan_mac_set_rdata_hdr_e2(raw
->cid
, raw
->state
, &data
->header
,
1175 * bnx2x_set_one_vlan_mac_e1h -
1177 * @bp: device handle
1178 * @o: bnx2x_vlan_mac_obj
1179 * @elem: bnx2x_exeq_elem
1180 * @rule_idx: rule_idx
1181 * @cam_offset: cam_offset
1183 static void bnx2x_set_one_vlan_mac_e1h(struct bnx2x
*bp
,
1184 struct bnx2x_vlan_mac_obj
*o
,
1185 struct bnx2x_exeq_elem
*elem
,
1186 int rule_idx
, int cam_offset
)
1188 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1189 struct mac_configuration_cmd
*config
=
1190 (struct mac_configuration_cmd
*)(raw
->rdata
);
1191 /* 57710 and 57711 do not support MOVE command,
1192 * so it's either ADD or DEL
1194 bool add
= (elem
->cmd_data
.vlan_mac
.cmd
== BNX2X_VLAN_MAC_ADD
) ?
1197 /* Reset the ramrod data buffer */
1198 memset(config
, 0, sizeof(*config
));
1200 bnx2x_vlan_mac_set_rdata_e1x(bp
, o
, BNX2X_FILTER_VLAN_MAC_PENDING
,
1202 elem
->cmd_data
.vlan_mac
.u
.vlan_mac
.mac
,
1203 elem
->cmd_data
.vlan_mac
.u
.vlan_mac
.vlan
,
1204 ETH_VLAN_FILTER_CLASSIFY
, config
);
1208 * bnx2x_vlan_mac_restore - reconfigure next MAC/VLAN/VLAN-MAC element
1210 * @bp: device handle
1211 * @p: command parameters
1212 * @ppos: pointer to the cookie
1214 * reconfigure next MAC/VLAN/VLAN-MAC element from the
1215 * previously configured elements list.
1217 * from command parameters only RAMROD_COMP_WAIT bit in ramrod_flags is taken
1220 * pointer to the cookie - that should be given back in the next call to make
1221 * function handle the next element. If *ppos is set to NULL it will restart the
1222 * iterator. If returned *ppos == NULL this means that the last element has been
1226 static int bnx2x_vlan_mac_restore(struct bnx2x
*bp
,
1227 struct bnx2x_vlan_mac_ramrod_params
*p
,
1228 struct bnx2x_vlan_mac_registry_elem
**ppos
)
1230 struct bnx2x_vlan_mac_registry_elem
*pos
;
1231 struct bnx2x_vlan_mac_obj
*o
= p
->vlan_mac_obj
;
1233 /* If list is empty - there is nothing to do here */
1234 if (list_empty(&o
->head
)) {
1239 /* make a step... */
1241 *ppos
= list_first_entry(&o
->head
,
1242 struct bnx2x_vlan_mac_registry_elem
,
1245 *ppos
= list_next_entry(*ppos
, link
);
1249 /* If it's the last step - return NULL */
1250 if (list_is_last(&pos
->link
, &o
->head
))
1253 /* Prepare a 'user_req' */
1254 memcpy(&p
->user_req
.u
, &pos
->u
, sizeof(pos
->u
));
1256 /* Set the command */
1257 p
->user_req
.cmd
= BNX2X_VLAN_MAC_ADD
;
1259 /* Set vlan_mac_flags */
1260 p
->user_req
.vlan_mac_flags
= pos
->vlan_mac_flags
;
1262 /* Set a restore bit */
1263 __set_bit(RAMROD_RESTORE
, &p
->ramrod_flags
);
1265 return bnx2x_config_vlan_mac(bp
, p
);
1268 /* bnx2x_exeq_get_mac/bnx2x_exeq_get_vlan/bnx2x_exeq_get_vlan_mac return a
1269 * pointer to an element with a specific criteria and NULL if such an element
1270 * hasn't been found.
1272 static struct bnx2x_exeq_elem
*bnx2x_exeq_get_mac(
1273 struct bnx2x_exe_queue_obj
*o
,
1274 struct bnx2x_exeq_elem
*elem
)
1276 struct bnx2x_exeq_elem
*pos
;
1277 struct bnx2x_mac_ramrod_data
*data
= &elem
->cmd_data
.vlan_mac
.u
.mac
;
1279 /* Check pending for execution commands */
1280 list_for_each_entry(pos
, &o
->exe_queue
, link
)
1281 if (!memcmp(&pos
->cmd_data
.vlan_mac
.u
.mac
, data
,
1283 (pos
->cmd_data
.vlan_mac
.cmd
== elem
->cmd_data
.vlan_mac
.cmd
))
1289 static struct bnx2x_exeq_elem
*bnx2x_exeq_get_vlan(
1290 struct bnx2x_exe_queue_obj
*o
,
1291 struct bnx2x_exeq_elem
*elem
)
1293 struct bnx2x_exeq_elem
*pos
;
1294 struct bnx2x_vlan_ramrod_data
*data
= &elem
->cmd_data
.vlan_mac
.u
.vlan
;
1296 /* Check pending for execution commands */
1297 list_for_each_entry(pos
, &o
->exe_queue
, link
)
1298 if (!memcmp(&pos
->cmd_data
.vlan_mac
.u
.vlan
, data
,
1300 (pos
->cmd_data
.vlan_mac
.cmd
== elem
->cmd_data
.vlan_mac
.cmd
))
1306 static struct bnx2x_exeq_elem
*bnx2x_exeq_get_vlan_mac(
1307 struct bnx2x_exe_queue_obj
*o
,
1308 struct bnx2x_exeq_elem
*elem
)
1310 struct bnx2x_exeq_elem
*pos
;
1311 struct bnx2x_vlan_mac_ramrod_data
*data
=
1312 &elem
->cmd_data
.vlan_mac
.u
.vlan_mac
;
1314 /* Check pending for execution commands */
1315 list_for_each_entry(pos
, &o
->exe_queue
, link
)
1316 if (!memcmp(&pos
->cmd_data
.vlan_mac
.u
.vlan_mac
, data
,
1318 (pos
->cmd_data
.vlan_mac
.cmd
==
1319 elem
->cmd_data
.vlan_mac
.cmd
))
1326 * bnx2x_validate_vlan_mac_add - check if an ADD command can be executed
1328 * @bp: device handle
1329 * @qo: bnx2x_qable_obj
1330 * @elem: bnx2x_exeq_elem
1332 * Checks that the requested configuration can be added. If yes and if
1333 * requested, consume CAM credit.
1335 * The 'validate' is run after the 'optimize'.
1338 static inline int bnx2x_validate_vlan_mac_add(struct bnx2x
*bp
,
1339 union bnx2x_qable_obj
*qo
,
1340 struct bnx2x_exeq_elem
*elem
)
1342 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
;
1343 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1346 /* Check the registry */
1347 rc
= o
->check_add(bp
, o
, &elem
->cmd_data
.vlan_mac
.u
);
1349 DP(BNX2X_MSG_SP
, "ADD command is not allowed considering current registry state.\n");
1353 /* Check if there is a pending ADD command for this
1354 * MAC/VLAN/VLAN-MAC. Return an error if there is.
1356 if (exeq
->get(exeq
, elem
)) {
1357 DP(BNX2X_MSG_SP
, "There is a pending ADD command already\n");
1361 /* TODO: Check the pending MOVE from other objects where this
1362 * object is a destination object.
1365 /* Consume the credit if not requested not to */
1366 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1367 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1375 * bnx2x_validate_vlan_mac_del - check if the DEL command can be executed
1377 * @bp: device handle
1378 * @qo: quable object to check
1379 * @elem: element that needs to be deleted
1381 * Checks that the requested configuration can be deleted. If yes and if
1382 * requested, returns a CAM credit.
1384 * The 'validate' is run after the 'optimize'.
1386 static inline int bnx2x_validate_vlan_mac_del(struct bnx2x
*bp
,
1387 union bnx2x_qable_obj
*qo
,
1388 struct bnx2x_exeq_elem
*elem
)
1390 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
;
1391 struct bnx2x_vlan_mac_registry_elem
*pos
;
1392 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1393 struct bnx2x_exeq_elem query_elem
;
1395 /* If this classification can not be deleted (doesn't exist)
1396 * - return a BNX2X_EXIST.
1398 pos
= o
->check_del(bp
, o
, &elem
->cmd_data
.vlan_mac
.u
);
1400 DP(BNX2X_MSG_SP
, "DEL command is not allowed considering current registry state\n");
1404 /* Check if there are pending DEL or MOVE commands for this
1405 * MAC/VLAN/VLAN-MAC. Return an error if so.
1407 memcpy(&query_elem
, elem
, sizeof(query_elem
));
1409 /* Check for MOVE commands */
1410 query_elem
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_MOVE
;
1411 if (exeq
->get(exeq
, &query_elem
)) {
1412 BNX2X_ERR("There is a pending MOVE command already\n");
1416 /* Check for DEL commands */
1417 if (exeq
->get(exeq
, elem
)) {
1418 DP(BNX2X_MSG_SP
, "There is a pending DEL command already\n");
1422 /* Return the credit to the credit pool if not requested not to */
1423 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1424 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1425 o
->put_credit(o
))) {
1426 BNX2X_ERR("Failed to return a credit\n");
1434 * bnx2x_validate_vlan_mac_move - check if the MOVE command can be executed
1436 * @bp: device handle
1437 * @qo: quable object to check (source)
1438 * @elem: element that needs to be moved
1440 * Checks that the requested configuration can be moved. If yes and if
1441 * requested, returns a CAM credit.
1443 * The 'validate' is run after the 'optimize'.
1445 static inline int bnx2x_validate_vlan_mac_move(struct bnx2x
*bp
,
1446 union bnx2x_qable_obj
*qo
,
1447 struct bnx2x_exeq_elem
*elem
)
1449 struct bnx2x_vlan_mac_obj
*src_o
= &qo
->vlan_mac
;
1450 struct bnx2x_vlan_mac_obj
*dest_o
= elem
->cmd_data
.vlan_mac
.target_obj
;
1451 struct bnx2x_exeq_elem query_elem
;
1452 struct bnx2x_exe_queue_obj
*src_exeq
= &src_o
->exe_queue
;
1453 struct bnx2x_exe_queue_obj
*dest_exeq
= &dest_o
->exe_queue
;
1455 /* Check if we can perform this operation based on the current registry
1458 if (!src_o
->check_move(bp
, src_o
, dest_o
,
1459 &elem
->cmd_data
.vlan_mac
.u
)) {
1460 DP(BNX2X_MSG_SP
, "MOVE command is not allowed considering current registry state\n");
1464 /* Check if there is an already pending DEL or MOVE command for the
1465 * source object or ADD command for a destination object. Return an
1468 memcpy(&query_elem
, elem
, sizeof(query_elem
));
1470 /* Check DEL on source */
1471 query_elem
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_DEL
;
1472 if (src_exeq
->get(src_exeq
, &query_elem
)) {
1473 BNX2X_ERR("There is a pending DEL command on the source queue already\n");
1477 /* Check MOVE on source */
1478 if (src_exeq
->get(src_exeq
, elem
)) {
1479 DP(BNX2X_MSG_SP
, "There is a pending MOVE command already\n");
1483 /* Check ADD on destination */
1484 query_elem
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_ADD
;
1485 if (dest_exeq
->get(dest_exeq
, &query_elem
)) {
1486 BNX2X_ERR("There is a pending ADD command on the destination queue already\n");
1490 /* Consume the credit if not requested not to */
1491 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT_DEST
,
1492 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1493 dest_o
->get_credit(dest_o
)))
1496 if (!(test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1497 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
) ||
1498 src_o
->put_credit(src_o
))) {
1499 /* return the credit taken from dest... */
1500 dest_o
->put_credit(dest_o
);
1507 static int bnx2x_validate_vlan_mac(struct bnx2x
*bp
,
1508 union bnx2x_qable_obj
*qo
,
1509 struct bnx2x_exeq_elem
*elem
)
1511 switch (elem
->cmd_data
.vlan_mac
.cmd
) {
1512 case BNX2X_VLAN_MAC_ADD
:
1513 return bnx2x_validate_vlan_mac_add(bp
, qo
, elem
);
1514 case BNX2X_VLAN_MAC_DEL
:
1515 return bnx2x_validate_vlan_mac_del(bp
, qo
, elem
);
1516 case BNX2X_VLAN_MAC_MOVE
:
1517 return bnx2x_validate_vlan_mac_move(bp
, qo
, elem
);
1523 static int bnx2x_remove_vlan_mac(struct bnx2x
*bp
,
1524 union bnx2x_qable_obj
*qo
,
1525 struct bnx2x_exeq_elem
*elem
)
1529 /* If consumption wasn't required, nothing to do */
1530 if (test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1531 &elem
->cmd_data
.vlan_mac
.vlan_mac_flags
))
1534 switch (elem
->cmd_data
.vlan_mac
.cmd
) {
1535 case BNX2X_VLAN_MAC_ADD
:
1536 case BNX2X_VLAN_MAC_MOVE
:
1537 rc
= qo
->vlan_mac
.put_credit(&qo
->vlan_mac
);
1539 case BNX2X_VLAN_MAC_DEL
:
1540 rc
= qo
->vlan_mac
.get_credit(&qo
->vlan_mac
);
1553 * bnx2x_wait_vlan_mac - passively wait for 5 seconds until all work completes.
1555 * @bp: device handle
1556 * @o: bnx2x_vlan_mac_obj
1559 static int bnx2x_wait_vlan_mac(struct bnx2x
*bp
,
1560 struct bnx2x_vlan_mac_obj
*o
)
1563 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1564 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1567 /* Wait for the current command to complete */
1568 rc
= raw
->wait_comp(bp
, raw
);
1572 /* Wait until there are no pending commands */
1573 if (!bnx2x_exe_queue_empty(exeq
))
1574 usleep_range(1000, 2000);
1582 static int __bnx2x_vlan_mac_execute_step(struct bnx2x
*bp
,
1583 struct bnx2x_vlan_mac_obj
*o
,
1584 unsigned long *ramrod_flags
)
1588 spin_lock_bh(&o
->exe_queue
.lock
);
1590 DP(BNX2X_MSG_SP
, "vlan_mac_execute_step - trying to take writer lock\n");
1591 rc
= __bnx2x_vlan_mac_h_write_trylock(bp
, o
);
1594 __bnx2x_vlan_mac_h_pend(bp
, o
, *ramrod_flags
);
1596 /* Calling function should not differentiate between this case
1597 * and the case in which there is already a pending ramrod
1601 rc
= bnx2x_exe_queue_step(bp
, &o
->exe_queue
, ramrod_flags
);
1603 spin_unlock_bh(&o
->exe_queue
.lock
);
1609 * bnx2x_complete_vlan_mac - complete one VLAN-MAC ramrod
1611 * @bp: device handle
1612 * @o: bnx2x_vlan_mac_obj
1613 * @cqe: completion element
1614 * @ramrod_flags: if set schedule next execution chunk
1617 static int bnx2x_complete_vlan_mac(struct bnx2x
*bp
,
1618 struct bnx2x_vlan_mac_obj
*o
,
1619 union event_ring_elem
*cqe
,
1620 unsigned long *ramrod_flags
)
1622 struct bnx2x_raw_obj
*r
= &o
->raw
;
1625 /* Clearing the pending list & raw state should be made
1626 * atomically (as execution flow assumes they represent the same).
1628 spin_lock_bh(&o
->exe_queue
.lock
);
1630 /* Reset pending list */
1631 __bnx2x_exe_queue_reset_pending(bp
, &o
->exe_queue
);
1634 r
->clear_pending(r
);
1636 spin_unlock_bh(&o
->exe_queue
.lock
);
1638 /* If ramrod failed this is most likely a SW bug */
1639 if (cqe
->message
.error
)
1642 /* Run the next bulk of pending commands if requested */
1643 if (test_bit(RAMROD_CONT
, ramrod_flags
)) {
1644 rc
= __bnx2x_vlan_mac_execute_step(bp
, o
, ramrod_flags
);
1650 /* If there is more work to do return PENDING */
1651 if (!bnx2x_exe_queue_empty(&o
->exe_queue
))
1658 * bnx2x_optimize_vlan_mac - optimize ADD and DEL commands.
1660 * @bp: device handle
1661 * @qo: bnx2x_qable_obj
1662 * @elem: bnx2x_exeq_elem
1664 static int bnx2x_optimize_vlan_mac(struct bnx2x
*bp
,
1665 union bnx2x_qable_obj
*qo
,
1666 struct bnx2x_exeq_elem
*elem
)
1668 struct bnx2x_exeq_elem query
, *pos
;
1669 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
;
1670 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
1672 memcpy(&query
, elem
, sizeof(query
));
1674 switch (elem
->cmd_data
.vlan_mac
.cmd
) {
1675 case BNX2X_VLAN_MAC_ADD
:
1676 query
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_DEL
;
1678 case BNX2X_VLAN_MAC_DEL
:
1679 query
.cmd_data
.vlan_mac
.cmd
= BNX2X_VLAN_MAC_ADD
;
1682 /* Don't handle anything other than ADD or DEL */
1686 /* If we found the appropriate element - delete it */
1687 pos
= exeq
->get(exeq
, &query
);
1690 /* Return the credit of the optimized command */
1691 if (!test_bit(BNX2X_DONT_CONSUME_CAM_CREDIT
,
1692 &pos
->cmd_data
.vlan_mac
.vlan_mac_flags
)) {
1693 if ((query
.cmd_data
.vlan_mac
.cmd
==
1694 BNX2X_VLAN_MAC_ADD
) && !o
->put_credit(o
)) {
1695 BNX2X_ERR("Failed to return the credit for the optimized ADD command\n");
1697 } else if (!o
->get_credit(o
)) { /* VLAN_MAC_DEL */
1698 BNX2X_ERR("Failed to recover the credit from the optimized DEL command\n");
1703 DP(BNX2X_MSG_SP
, "Optimizing %s command\n",
1704 (elem
->cmd_data
.vlan_mac
.cmd
== BNX2X_VLAN_MAC_ADD
) ?
1707 list_del(&pos
->link
);
1708 bnx2x_exe_queue_free_elem(bp
, pos
);
1716 * bnx2x_vlan_mac_get_registry_elem - prepare a registry element
1718 * @bp: device handle
1721 * @restore: to restore or not
1724 * prepare a registry element according to the current command request.
1726 static inline int bnx2x_vlan_mac_get_registry_elem(
1728 struct bnx2x_vlan_mac_obj
*o
,
1729 struct bnx2x_exeq_elem
*elem
,
1731 struct bnx2x_vlan_mac_registry_elem
**re
)
1733 enum bnx2x_vlan_mac_cmd cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1734 struct bnx2x_vlan_mac_registry_elem
*reg_elem
;
1736 /* Allocate a new registry element if needed. */
1738 ((cmd
== BNX2X_VLAN_MAC_ADD
) || (cmd
== BNX2X_VLAN_MAC_MOVE
))) {
1739 reg_elem
= kzalloc(sizeof(*reg_elem
), GFP_ATOMIC
);
1743 /* Get a new CAM offset */
1744 if (!o
->get_cam_offset(o
, ®_elem
->cam_offset
)) {
1745 /* This shall never happen, because we have checked the
1746 * CAM availability in the 'validate'.
1753 DP(BNX2X_MSG_SP
, "Got cam offset %d\n", reg_elem
->cam_offset
);
1755 /* Set a VLAN-MAC data */
1756 memcpy(®_elem
->u
, &elem
->cmd_data
.vlan_mac
.u
,
1757 sizeof(reg_elem
->u
));
1759 /* Copy the flags (needed for DEL and RESTORE flows) */
1760 reg_elem
->vlan_mac_flags
=
1761 elem
->cmd_data
.vlan_mac
.vlan_mac_flags
;
1762 } else /* DEL, RESTORE */
1763 reg_elem
= o
->check_del(bp
, o
, &elem
->cmd_data
.vlan_mac
.u
);
1770 * bnx2x_execute_vlan_mac - execute vlan mac command
1772 * @bp: device handle
1773 * @qo: bnx2x_qable_obj pointer
1775 * @ramrod_flags: flags
1777 * go and send a ramrod!
1779 static int bnx2x_execute_vlan_mac(struct bnx2x
*bp
,
1780 union bnx2x_qable_obj
*qo
,
1781 struct list_head
*exe_chunk
,
1782 unsigned long *ramrod_flags
)
1784 struct bnx2x_exeq_elem
*elem
;
1785 struct bnx2x_vlan_mac_obj
*o
= &qo
->vlan_mac
, *cam_obj
;
1786 struct bnx2x_raw_obj
*r
= &o
->raw
;
1788 bool restore
= test_bit(RAMROD_RESTORE
, ramrod_flags
);
1789 bool drv_only
= test_bit(RAMROD_DRV_CLR_ONLY
, ramrod_flags
);
1790 struct bnx2x_vlan_mac_registry_elem
*reg_elem
;
1791 enum bnx2x_vlan_mac_cmd cmd
;
1793 /* If DRIVER_ONLY execution is requested, cleanup a registry
1794 * and exit. Otherwise send a ramrod to FW.
1797 WARN_ON(r
->check_pending(r
));
1802 /* Fill the ramrod data */
1803 list_for_each_entry(elem
, exe_chunk
, link
) {
1804 cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1805 /* We will add to the target object in MOVE command, so
1806 * change the object for a CAM search.
1808 if (cmd
== BNX2X_VLAN_MAC_MOVE
)
1809 cam_obj
= elem
->cmd_data
.vlan_mac
.target_obj
;
1813 rc
= bnx2x_vlan_mac_get_registry_elem(bp
, cam_obj
,
1821 /* Push a new entry into the registry */
1823 ((cmd
== BNX2X_VLAN_MAC_ADD
) ||
1824 (cmd
== BNX2X_VLAN_MAC_MOVE
)))
1825 list_add(®_elem
->link
, &cam_obj
->head
);
1827 /* Configure a single command in a ramrod data buffer */
1828 o
->set_one_rule(bp
, o
, elem
, idx
,
1829 reg_elem
->cam_offset
);
1831 /* MOVE command consumes 2 entries in the ramrod data */
1832 if (cmd
== BNX2X_VLAN_MAC_MOVE
)
1838 /* No need for an explicit memory barrier here as long we would
1839 * need to ensure the ordering of writing to the SPQ element
1840 * and updating of the SPQ producer which involves a memory
1841 * read and we will have to put a full memory barrier there
1842 * (inside bnx2x_sp_post()).
1845 rc
= bnx2x_sp_post(bp
, o
->ramrod_cmd
, r
->cid
,
1846 U64_HI(r
->rdata_mapping
),
1847 U64_LO(r
->rdata_mapping
),
1848 ETH_CONNECTION_TYPE
);
1853 /* Now, when we are done with the ramrod - clean up the registry */
1854 list_for_each_entry(elem
, exe_chunk
, link
) {
1855 cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1856 if ((cmd
== BNX2X_VLAN_MAC_DEL
) ||
1857 (cmd
== BNX2X_VLAN_MAC_MOVE
)) {
1858 reg_elem
= o
->check_del(bp
, o
,
1859 &elem
->cmd_data
.vlan_mac
.u
);
1863 o
->put_cam_offset(o
, reg_elem
->cam_offset
);
1864 list_del(®_elem
->link
);
1875 r
->clear_pending(r
);
1877 /* Cleanup a registry in case of a failure */
1878 list_for_each_entry(elem
, exe_chunk
, link
) {
1879 cmd
= elem
->cmd_data
.vlan_mac
.cmd
;
1881 if (cmd
== BNX2X_VLAN_MAC_MOVE
)
1882 cam_obj
= elem
->cmd_data
.vlan_mac
.target_obj
;
1886 /* Delete all newly added above entries */
1888 ((cmd
== BNX2X_VLAN_MAC_ADD
) ||
1889 (cmd
== BNX2X_VLAN_MAC_MOVE
))) {
1890 reg_elem
= o
->check_del(bp
, cam_obj
,
1891 &elem
->cmd_data
.vlan_mac
.u
);
1893 list_del(®_elem
->link
);
1902 static inline int bnx2x_vlan_mac_push_new_cmd(
1904 struct bnx2x_vlan_mac_ramrod_params
*p
)
1906 struct bnx2x_exeq_elem
*elem
;
1907 struct bnx2x_vlan_mac_obj
*o
= p
->vlan_mac_obj
;
1908 bool restore
= test_bit(RAMROD_RESTORE
, &p
->ramrod_flags
);
1910 /* Allocate the execution queue element */
1911 elem
= bnx2x_exe_queue_alloc_elem(bp
);
1915 /* Set the command 'length' */
1916 switch (p
->user_req
.cmd
) {
1917 case BNX2X_VLAN_MAC_MOVE
:
1924 /* Fill the object specific info */
1925 memcpy(&elem
->cmd_data
.vlan_mac
, &p
->user_req
, sizeof(p
->user_req
));
1927 /* Try to add a new command to the pending list */
1928 return bnx2x_exe_queue_add(bp
, &o
->exe_queue
, elem
, restore
);
1932 * bnx2x_config_vlan_mac - configure VLAN/MAC/VLAN_MAC filtering rules.
1934 * @bp: device handle
1938 int bnx2x_config_vlan_mac(struct bnx2x
*bp
,
1939 struct bnx2x_vlan_mac_ramrod_params
*p
)
1942 struct bnx2x_vlan_mac_obj
*o
= p
->vlan_mac_obj
;
1943 unsigned long *ramrod_flags
= &p
->ramrod_flags
;
1944 bool cont
= test_bit(RAMROD_CONT
, ramrod_flags
);
1945 struct bnx2x_raw_obj
*raw
= &o
->raw
;
1948 * Add new elements to the execution list for commands that require it.
1951 rc
= bnx2x_vlan_mac_push_new_cmd(bp
, p
);
1956 /* If nothing will be executed further in this iteration we want to
1957 * return PENDING if there are pending commands
1959 if (!bnx2x_exe_queue_empty(&o
->exe_queue
))
1962 if (test_bit(RAMROD_DRV_CLR_ONLY
, ramrod_flags
)) {
1963 DP(BNX2X_MSG_SP
, "RAMROD_DRV_CLR_ONLY requested: clearing a pending bit.\n");
1964 raw
->clear_pending(raw
);
1967 /* Execute commands if required */
1968 if (cont
|| test_bit(RAMROD_EXEC
, ramrod_flags
) ||
1969 test_bit(RAMROD_COMP_WAIT
, ramrod_flags
)) {
1970 rc
= __bnx2x_vlan_mac_execute_step(bp
, p
->vlan_mac_obj
,
1976 /* RAMROD_COMP_WAIT is a superset of RAMROD_EXEC. If it was set
1977 * then user want to wait until the last command is done.
1979 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
)) {
1980 /* Wait maximum for the current exe_queue length iterations plus
1981 * one (for the current pending command).
1983 int max_iterations
= bnx2x_exe_queue_length(&o
->exe_queue
) + 1;
1985 while (!bnx2x_exe_queue_empty(&o
->exe_queue
) &&
1988 /* Wait for the current command to complete */
1989 rc
= raw
->wait_comp(bp
, raw
);
1993 /* Make a next step */
1994 rc
= __bnx2x_vlan_mac_execute_step(bp
,
2008 * bnx2x_vlan_mac_del_all - delete elements with given vlan_mac_flags spec
2010 * @bp: device handle
2011 * @o: vlan object info
2012 * @vlan_mac_flags: vlan flags
2013 * @ramrod_flags: execution flags to be used for this deletion
2015 * if the last operation has completed successfully and there are no
2016 * more elements left, positive value if the last operation has completed
2017 * successfully and there are more previously configured elements, negative
2018 * value is current operation has failed.
2020 static int bnx2x_vlan_mac_del_all(struct bnx2x
*bp
,
2021 struct bnx2x_vlan_mac_obj
*o
,
2022 unsigned long *vlan_mac_flags
,
2023 unsigned long *ramrod_flags
)
2025 struct bnx2x_vlan_mac_registry_elem
*pos
= NULL
;
2026 struct bnx2x_vlan_mac_ramrod_params p
;
2027 struct bnx2x_exe_queue_obj
*exeq
= &o
->exe_queue
;
2028 struct bnx2x_exeq_elem
*exeq_pos
, *exeq_pos_n
;
2029 unsigned long flags
;
2033 /* Clear pending commands first */
2035 spin_lock_bh(&exeq
->lock
);
2037 list_for_each_entry_safe(exeq_pos
, exeq_pos_n
, &exeq
->exe_queue
, link
) {
2038 flags
= exeq_pos
->cmd_data
.vlan_mac
.vlan_mac_flags
;
2039 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags
) ==
2040 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags
)) {
2041 rc
= exeq
->remove(bp
, exeq
->owner
, exeq_pos
);
2043 BNX2X_ERR("Failed to remove command\n");
2044 spin_unlock_bh(&exeq
->lock
);
2047 list_del(&exeq_pos
->link
);
2048 bnx2x_exe_queue_free_elem(bp
, exeq_pos
);
2052 spin_unlock_bh(&exeq
->lock
);
2054 /* Prepare a command request */
2055 memset(&p
, 0, sizeof(p
));
2057 p
.ramrod_flags
= *ramrod_flags
;
2058 p
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
2060 /* Add all but the last VLAN-MAC to the execution queue without actually
2061 * execution anything.
2063 __clear_bit(RAMROD_COMP_WAIT
, &p
.ramrod_flags
);
2064 __clear_bit(RAMROD_EXEC
, &p
.ramrod_flags
);
2065 __clear_bit(RAMROD_CONT
, &p
.ramrod_flags
);
2067 DP(BNX2X_MSG_SP
, "vlan_mac_del_all -- taking vlan_mac_lock (reader)\n");
2068 read_lock
= bnx2x_vlan_mac_h_read_lock(bp
, o
);
2072 list_for_each_entry(pos
, &o
->head
, link
) {
2073 flags
= pos
->vlan_mac_flags
;
2074 if (BNX2X_VLAN_MAC_CMP_FLAGS(flags
) ==
2075 BNX2X_VLAN_MAC_CMP_FLAGS(*vlan_mac_flags
)) {
2076 p
.user_req
.vlan_mac_flags
= pos
->vlan_mac_flags
;
2077 memcpy(&p
.user_req
.u
, &pos
->u
, sizeof(pos
->u
));
2078 rc
= bnx2x_config_vlan_mac(bp
, &p
);
2080 BNX2X_ERR("Failed to add a new DEL command\n");
2081 bnx2x_vlan_mac_h_read_unlock(bp
, o
);
2087 DP(BNX2X_MSG_SP
, "vlan_mac_del_all -- releasing vlan_mac_lock (reader)\n");
2088 bnx2x_vlan_mac_h_read_unlock(bp
, o
);
2090 p
.ramrod_flags
= *ramrod_flags
;
2091 __set_bit(RAMROD_CONT
, &p
.ramrod_flags
);
2093 return bnx2x_config_vlan_mac(bp
, &p
);
2096 static inline void bnx2x_init_raw_obj(struct bnx2x_raw_obj
*raw
, u8 cl_id
,
2097 u32 cid
, u8 func_id
, void *rdata
, dma_addr_t rdata_mapping
, int state
,
2098 unsigned long *pstate
, bnx2x_obj_type type
)
2100 raw
->func_id
= func_id
;
2104 raw
->rdata_mapping
= rdata_mapping
;
2106 raw
->pstate
= pstate
;
2107 raw
->obj_type
= type
;
2108 raw
->check_pending
= bnx2x_raw_check_pending
;
2109 raw
->clear_pending
= bnx2x_raw_clear_pending
;
2110 raw
->set_pending
= bnx2x_raw_set_pending
;
2111 raw
->wait_comp
= bnx2x_raw_wait
;
2114 static inline void bnx2x_init_vlan_mac_common(struct bnx2x_vlan_mac_obj
*o
,
2115 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
, dma_addr_t rdata_mapping
,
2116 int state
, unsigned long *pstate
, bnx2x_obj_type type
,
2117 struct bnx2x_credit_pool_obj
*macs_pool
,
2118 struct bnx2x_credit_pool_obj
*vlans_pool
)
2120 INIT_LIST_HEAD(&o
->head
);
2122 o
->head_exe_request
= false;
2123 o
->saved_ramrod_flags
= 0;
2125 o
->macs_pool
= macs_pool
;
2126 o
->vlans_pool
= vlans_pool
;
2128 o
->delete_all
= bnx2x_vlan_mac_del_all
;
2129 o
->restore
= bnx2x_vlan_mac_restore
;
2130 o
->complete
= bnx2x_complete_vlan_mac
;
2131 o
->wait
= bnx2x_wait_vlan_mac
;
2133 bnx2x_init_raw_obj(&o
->raw
, cl_id
, cid
, func_id
, rdata
, rdata_mapping
,
2134 state
, pstate
, type
);
2137 void bnx2x_init_mac_obj(struct bnx2x
*bp
,
2138 struct bnx2x_vlan_mac_obj
*mac_obj
,
2139 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
,
2140 dma_addr_t rdata_mapping
, int state
,
2141 unsigned long *pstate
, bnx2x_obj_type type
,
2142 struct bnx2x_credit_pool_obj
*macs_pool
)
2144 union bnx2x_qable_obj
*qable_obj
= (union bnx2x_qable_obj
*)mac_obj
;
2146 bnx2x_init_vlan_mac_common(mac_obj
, cl_id
, cid
, func_id
, rdata
,
2147 rdata_mapping
, state
, pstate
, type
,
2150 /* CAM credit pool handling */
2151 mac_obj
->get_credit
= bnx2x_get_credit_mac
;
2152 mac_obj
->put_credit
= bnx2x_put_credit_mac
;
2153 mac_obj
->get_cam_offset
= bnx2x_get_cam_offset_mac
;
2154 mac_obj
->put_cam_offset
= bnx2x_put_cam_offset_mac
;
2156 if (CHIP_IS_E1x(bp
)) {
2157 mac_obj
->set_one_rule
= bnx2x_set_one_mac_e1x
;
2158 mac_obj
->check_del
= bnx2x_check_mac_del
;
2159 mac_obj
->check_add
= bnx2x_check_mac_add
;
2160 mac_obj
->check_move
= bnx2x_check_move_always_err
;
2161 mac_obj
->ramrod_cmd
= RAMROD_CMD_ID_ETH_SET_MAC
;
2164 bnx2x_exe_queue_init(bp
,
2165 &mac_obj
->exe_queue
, 1, qable_obj
,
2166 bnx2x_validate_vlan_mac
,
2167 bnx2x_remove_vlan_mac
,
2168 bnx2x_optimize_vlan_mac
,
2169 bnx2x_execute_vlan_mac
,
2170 bnx2x_exeq_get_mac
);
2172 mac_obj
->set_one_rule
= bnx2x_set_one_mac_e2
;
2173 mac_obj
->check_del
= bnx2x_check_mac_del
;
2174 mac_obj
->check_add
= bnx2x_check_mac_add
;
2175 mac_obj
->check_move
= bnx2x_check_move
;
2176 mac_obj
->ramrod_cmd
=
2177 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
;
2178 mac_obj
->get_n_elements
= bnx2x_get_n_elements
;
2181 bnx2x_exe_queue_init(bp
,
2182 &mac_obj
->exe_queue
, CLASSIFY_RULES_COUNT
,
2183 qable_obj
, bnx2x_validate_vlan_mac
,
2184 bnx2x_remove_vlan_mac
,
2185 bnx2x_optimize_vlan_mac
,
2186 bnx2x_execute_vlan_mac
,
2187 bnx2x_exeq_get_mac
);
2191 void bnx2x_init_vlan_obj(struct bnx2x
*bp
,
2192 struct bnx2x_vlan_mac_obj
*vlan_obj
,
2193 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
,
2194 dma_addr_t rdata_mapping
, int state
,
2195 unsigned long *pstate
, bnx2x_obj_type type
,
2196 struct bnx2x_credit_pool_obj
*vlans_pool
)
2198 union bnx2x_qable_obj
*qable_obj
= (union bnx2x_qable_obj
*)vlan_obj
;
2200 bnx2x_init_vlan_mac_common(vlan_obj
, cl_id
, cid
, func_id
, rdata
,
2201 rdata_mapping
, state
, pstate
, type
, NULL
,
2204 vlan_obj
->get_credit
= bnx2x_get_credit_vlan
;
2205 vlan_obj
->put_credit
= bnx2x_put_credit_vlan
;
2206 vlan_obj
->get_cam_offset
= bnx2x_get_cam_offset_vlan
;
2207 vlan_obj
->put_cam_offset
= bnx2x_put_cam_offset_vlan
;
2209 if (CHIP_IS_E1x(bp
)) {
2210 BNX2X_ERR("Do not support chips others than E2 and newer\n");
2213 vlan_obj
->set_one_rule
= bnx2x_set_one_vlan_e2
;
2214 vlan_obj
->check_del
= bnx2x_check_vlan_del
;
2215 vlan_obj
->check_add
= bnx2x_check_vlan_add
;
2216 vlan_obj
->check_move
= bnx2x_check_move
;
2217 vlan_obj
->ramrod_cmd
=
2218 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
;
2219 vlan_obj
->get_n_elements
= bnx2x_get_n_elements
;
2222 bnx2x_exe_queue_init(bp
,
2223 &vlan_obj
->exe_queue
, CLASSIFY_RULES_COUNT
,
2224 qable_obj
, bnx2x_validate_vlan_mac
,
2225 bnx2x_remove_vlan_mac
,
2226 bnx2x_optimize_vlan_mac
,
2227 bnx2x_execute_vlan_mac
,
2228 bnx2x_exeq_get_vlan
);
2232 void bnx2x_init_vlan_mac_obj(struct bnx2x
*bp
,
2233 struct bnx2x_vlan_mac_obj
*vlan_mac_obj
,
2234 u8 cl_id
, u32 cid
, u8 func_id
, void *rdata
,
2235 dma_addr_t rdata_mapping
, int state
,
2236 unsigned long *pstate
, bnx2x_obj_type type
,
2237 struct bnx2x_credit_pool_obj
*macs_pool
,
2238 struct bnx2x_credit_pool_obj
*vlans_pool
)
2240 union bnx2x_qable_obj
*qable_obj
=
2241 (union bnx2x_qable_obj
*)vlan_mac_obj
;
2243 bnx2x_init_vlan_mac_common(vlan_mac_obj
, cl_id
, cid
, func_id
, rdata
,
2244 rdata_mapping
, state
, pstate
, type
,
2245 macs_pool
, vlans_pool
);
2247 /* CAM pool handling */
2248 vlan_mac_obj
->get_credit
= bnx2x_get_credit_vlan_mac
;
2249 vlan_mac_obj
->put_credit
= bnx2x_put_credit_vlan_mac
;
2250 /* CAM offset is relevant for 57710 and 57711 chips only which have a
2251 * single CAM for both MACs and VLAN-MAC pairs. So the offset
2252 * will be taken from MACs' pool object only.
2254 vlan_mac_obj
->get_cam_offset
= bnx2x_get_cam_offset_mac
;
2255 vlan_mac_obj
->put_cam_offset
= bnx2x_put_cam_offset_mac
;
2257 if (CHIP_IS_E1(bp
)) {
2258 BNX2X_ERR("Do not support chips others than E2\n");
2260 } else if (CHIP_IS_E1H(bp
)) {
2261 vlan_mac_obj
->set_one_rule
= bnx2x_set_one_vlan_mac_e1h
;
2262 vlan_mac_obj
->check_del
= bnx2x_check_vlan_mac_del
;
2263 vlan_mac_obj
->check_add
= bnx2x_check_vlan_mac_add
;
2264 vlan_mac_obj
->check_move
= bnx2x_check_move_always_err
;
2265 vlan_mac_obj
->ramrod_cmd
= RAMROD_CMD_ID_ETH_SET_MAC
;
2268 bnx2x_exe_queue_init(bp
,
2269 &vlan_mac_obj
->exe_queue
, 1, qable_obj
,
2270 bnx2x_validate_vlan_mac
,
2271 bnx2x_remove_vlan_mac
,
2272 bnx2x_optimize_vlan_mac
,
2273 bnx2x_execute_vlan_mac
,
2274 bnx2x_exeq_get_vlan_mac
);
2276 vlan_mac_obj
->set_one_rule
= bnx2x_set_one_vlan_mac_e2
;
2277 vlan_mac_obj
->check_del
= bnx2x_check_vlan_mac_del
;
2278 vlan_mac_obj
->check_add
= bnx2x_check_vlan_mac_add
;
2279 vlan_mac_obj
->check_move
= bnx2x_check_move
;
2280 vlan_mac_obj
->ramrod_cmd
=
2281 RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES
;
2284 bnx2x_exe_queue_init(bp
,
2285 &vlan_mac_obj
->exe_queue
,
2286 CLASSIFY_RULES_COUNT
,
2287 qable_obj
, bnx2x_validate_vlan_mac
,
2288 bnx2x_remove_vlan_mac
,
2289 bnx2x_optimize_vlan_mac
,
2290 bnx2x_execute_vlan_mac
,
2291 bnx2x_exeq_get_vlan_mac
);
2294 /* RX_MODE verbs: DROP_ALL/ACCEPT_ALL/ACCEPT_ALL_MULTI/ACCEPT_ALL_VLAN/NORMAL */
2295 static inline void __storm_memset_mac_filters(struct bnx2x
*bp
,
2296 struct tstorm_eth_mac_filter_config
*mac_filters
,
2299 size_t size
= sizeof(struct tstorm_eth_mac_filter_config
);
2301 u32 addr
= BAR_TSTRORM_INTMEM
+
2302 TSTORM_MAC_FILTER_CONFIG_OFFSET(pf_id
);
2304 __storm_memset_struct(bp
, addr
, size
, (u32
*)mac_filters
);
2307 static int bnx2x_set_rx_mode_e1x(struct bnx2x
*bp
,
2308 struct bnx2x_rx_mode_ramrod_params
*p
)
2310 /* update the bp MAC filter structure */
2311 u32 mask
= (1 << p
->cl_id
);
2313 struct tstorm_eth_mac_filter_config
*mac_filters
=
2314 (struct tstorm_eth_mac_filter_config
*)p
->rdata
;
2316 /* initial setting is drop-all */
2317 u8 drop_all_ucast
= 1, drop_all_mcast
= 1;
2318 u8 accp_all_ucast
= 0, accp_all_bcast
= 0, accp_all_mcast
= 0;
2319 u8 unmatched_unicast
= 0;
2321 /* In e1x there we only take into account rx accept flag since tx switching
2323 if (test_bit(BNX2X_ACCEPT_UNICAST
, &p
->rx_accept_flags
))
2324 /* accept matched ucast */
2327 if (test_bit(BNX2X_ACCEPT_MULTICAST
, &p
->rx_accept_flags
))
2328 /* accept matched mcast */
2331 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST
, &p
->rx_accept_flags
)) {
2332 /* accept all mcast */
2336 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST
, &p
->rx_accept_flags
)) {
2337 /* accept all mcast */
2341 if (test_bit(BNX2X_ACCEPT_BROADCAST
, &p
->rx_accept_flags
))
2342 /* accept (all) bcast */
2344 if (test_bit(BNX2X_ACCEPT_UNMATCHED
, &p
->rx_accept_flags
))
2345 /* accept unmatched unicasts */
2346 unmatched_unicast
= 1;
2348 mac_filters
->ucast_drop_all
= drop_all_ucast
?
2349 mac_filters
->ucast_drop_all
| mask
:
2350 mac_filters
->ucast_drop_all
& ~mask
;
2352 mac_filters
->mcast_drop_all
= drop_all_mcast
?
2353 mac_filters
->mcast_drop_all
| mask
:
2354 mac_filters
->mcast_drop_all
& ~mask
;
2356 mac_filters
->ucast_accept_all
= accp_all_ucast
?
2357 mac_filters
->ucast_accept_all
| mask
:
2358 mac_filters
->ucast_accept_all
& ~mask
;
2360 mac_filters
->mcast_accept_all
= accp_all_mcast
?
2361 mac_filters
->mcast_accept_all
| mask
:
2362 mac_filters
->mcast_accept_all
& ~mask
;
2364 mac_filters
->bcast_accept_all
= accp_all_bcast
?
2365 mac_filters
->bcast_accept_all
| mask
:
2366 mac_filters
->bcast_accept_all
& ~mask
;
2368 mac_filters
->unmatched_unicast
= unmatched_unicast
?
2369 mac_filters
->unmatched_unicast
| mask
:
2370 mac_filters
->unmatched_unicast
& ~mask
;
2372 DP(BNX2X_MSG_SP
, "drop_ucast 0x%x\ndrop_mcast 0x%x\n accp_ucast 0x%x\n"
2373 "accp_mcast 0x%x\naccp_bcast 0x%x\n",
2374 mac_filters
->ucast_drop_all
, mac_filters
->mcast_drop_all
,
2375 mac_filters
->ucast_accept_all
, mac_filters
->mcast_accept_all
,
2376 mac_filters
->bcast_accept_all
);
2378 /* write the MAC filter structure*/
2379 __storm_memset_mac_filters(bp
, mac_filters
, p
->func_id
);
2381 /* The operation is completed */
2382 clear_bit(p
->state
, p
->pstate
);
2383 smp_mb__after_atomic();
2388 /* Setup ramrod data */
2389 static inline void bnx2x_rx_mode_set_rdata_hdr_e2(u32 cid
,
2390 struct eth_classify_header
*hdr
,
2393 hdr
->echo
= cpu_to_le32(cid
);
2394 hdr
->rule_cnt
= rule_cnt
;
2397 static inline void bnx2x_rx_mode_set_cmd_state_e2(struct bnx2x
*bp
,
2398 unsigned long *accept_flags
,
2399 struct eth_filter_rules_cmd
*cmd
,
2400 bool clear_accept_all
)
2404 /* start with 'drop-all' */
2405 state
= ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
|
2406 ETH_FILTER_RULES_CMD_MCAST_DROP_ALL
;
2408 if (test_bit(BNX2X_ACCEPT_UNICAST
, accept_flags
))
2409 state
&= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
;
2411 if (test_bit(BNX2X_ACCEPT_MULTICAST
, accept_flags
))
2412 state
&= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL
;
2414 if (test_bit(BNX2X_ACCEPT_ALL_UNICAST
, accept_flags
)) {
2415 state
&= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
;
2416 state
|= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL
;
2419 if (test_bit(BNX2X_ACCEPT_ALL_MULTICAST
, accept_flags
)) {
2420 state
|= ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL
;
2421 state
&= ~ETH_FILTER_RULES_CMD_MCAST_DROP_ALL
;
2424 if (test_bit(BNX2X_ACCEPT_BROADCAST
, accept_flags
))
2425 state
|= ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL
;
2427 if (test_bit(BNX2X_ACCEPT_UNMATCHED
, accept_flags
)) {
2428 state
&= ~ETH_FILTER_RULES_CMD_UCAST_DROP_ALL
;
2429 state
|= ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED
;
2432 if (test_bit(BNX2X_ACCEPT_ANY_VLAN
, accept_flags
))
2433 state
|= ETH_FILTER_RULES_CMD_ACCEPT_ANY_VLAN
;
2435 /* Clear ACCEPT_ALL_XXX flags for FCoE L2 Queue */
2436 if (clear_accept_all
) {
2437 state
&= ~ETH_FILTER_RULES_CMD_MCAST_ACCEPT_ALL
;
2438 state
&= ~ETH_FILTER_RULES_CMD_BCAST_ACCEPT_ALL
;
2439 state
&= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_ALL
;
2440 state
&= ~ETH_FILTER_RULES_CMD_UCAST_ACCEPT_UNMATCHED
;
2443 cmd
->state
= cpu_to_le16(state
);
2446 static int bnx2x_set_rx_mode_e2(struct bnx2x
*bp
,
2447 struct bnx2x_rx_mode_ramrod_params
*p
)
2449 struct eth_filter_rules_ramrod_data
*data
= p
->rdata
;
2453 /* Reset the ramrod data buffer */
2454 memset(data
, 0, sizeof(*data
));
2456 /* Setup ramrod data */
2458 /* Tx (internal switching) */
2459 if (test_bit(RAMROD_TX
, &p
->ramrod_flags
)) {
2460 data
->rules
[rule_idx
].client_id
= p
->cl_id
;
2461 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2463 data
->rules
[rule_idx
].cmd_general_data
=
2464 ETH_FILTER_RULES_CMD_TX_CMD
;
2466 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->tx_accept_flags
,
2467 &(data
->rules
[rule_idx
++]),
2472 if (test_bit(RAMROD_RX
, &p
->ramrod_flags
)) {
2473 data
->rules
[rule_idx
].client_id
= p
->cl_id
;
2474 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2476 data
->rules
[rule_idx
].cmd_general_data
=
2477 ETH_FILTER_RULES_CMD_RX_CMD
;
2479 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->rx_accept_flags
,
2480 &(data
->rules
[rule_idx
++]),
2484 /* If FCoE Queue configuration has been requested configure the Rx and
2485 * internal switching modes for this queue in separate rules.
2487 * FCoE queue shell never be set to ACCEPT_ALL packets of any sort:
2488 * MCAST_ALL, UCAST_ALL, BCAST_ALL and UNMATCHED.
2490 if (test_bit(BNX2X_RX_MODE_FCOE_ETH
, &p
->rx_mode_flags
)) {
2491 /* Tx (internal switching) */
2492 if (test_bit(RAMROD_TX
, &p
->ramrod_flags
)) {
2493 data
->rules
[rule_idx
].client_id
= bnx2x_fcoe(bp
, cl_id
);
2494 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2496 data
->rules
[rule_idx
].cmd_general_data
=
2497 ETH_FILTER_RULES_CMD_TX_CMD
;
2499 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->tx_accept_flags
,
2500 &(data
->rules
[rule_idx
]),
2506 if (test_bit(RAMROD_RX
, &p
->ramrod_flags
)) {
2507 data
->rules
[rule_idx
].client_id
= bnx2x_fcoe(bp
, cl_id
);
2508 data
->rules
[rule_idx
].func_id
= p
->func_id
;
2510 data
->rules
[rule_idx
].cmd_general_data
=
2511 ETH_FILTER_RULES_CMD_RX_CMD
;
2513 bnx2x_rx_mode_set_cmd_state_e2(bp
, &p
->rx_accept_flags
,
2514 &(data
->rules
[rule_idx
]),
2520 /* Set the ramrod header (most importantly - number of rules to
2523 bnx2x_rx_mode_set_rdata_hdr_e2(p
->cid
, &data
->header
, rule_idx
);
2525 DP(BNX2X_MSG_SP
, "About to configure %d rules, rx_accept_flags 0x%lx, tx_accept_flags 0x%lx\n",
2526 data
->header
.rule_cnt
, p
->rx_accept_flags
,
2527 p
->tx_accept_flags
);
2529 /* No need for an explicit memory barrier here as long as we
2530 * ensure the ordering of writing to the SPQ element
2531 * and updating of the SPQ producer which involves a memory
2532 * read. If the memory read is removed we will have to put a
2533 * full memory barrier there (inside bnx2x_sp_post()).
2537 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_FILTER_RULES
, p
->cid
,
2538 U64_HI(p
->rdata_mapping
),
2539 U64_LO(p
->rdata_mapping
),
2540 ETH_CONNECTION_TYPE
);
2544 /* Ramrod completion is pending */
2548 static int bnx2x_wait_rx_mode_comp_e2(struct bnx2x
*bp
,
2549 struct bnx2x_rx_mode_ramrod_params
*p
)
2551 return bnx2x_state_wait(bp
, p
->state
, p
->pstate
);
2554 static int bnx2x_empty_rx_mode_wait(struct bnx2x
*bp
,
2555 struct bnx2x_rx_mode_ramrod_params
*p
)
2561 int bnx2x_config_rx_mode(struct bnx2x
*bp
,
2562 struct bnx2x_rx_mode_ramrod_params
*p
)
2566 /* Configure the new classification in the chip */
2567 rc
= p
->rx_mode_obj
->config_rx_mode(bp
, p
);
2571 /* Wait for a ramrod completion if was requested */
2572 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
)) {
2573 rc
= p
->rx_mode_obj
->wait_comp(bp
, p
);
2581 void bnx2x_init_rx_mode_obj(struct bnx2x
*bp
,
2582 struct bnx2x_rx_mode_obj
*o
)
2584 if (CHIP_IS_E1x(bp
)) {
2585 o
->wait_comp
= bnx2x_empty_rx_mode_wait
;
2586 o
->config_rx_mode
= bnx2x_set_rx_mode_e1x
;
2588 o
->wait_comp
= bnx2x_wait_rx_mode_comp_e2
;
2589 o
->config_rx_mode
= bnx2x_set_rx_mode_e2
;
2593 /********************* Multicast verbs: SET, CLEAR ****************************/
2594 static inline u8
bnx2x_mcast_bin_from_mac(u8
*mac
)
2596 return (crc32c_le(0, mac
, ETH_ALEN
) >> 24) & 0xff;
2599 struct bnx2x_mcast_mac_elem
{
2600 struct list_head link
;
2602 u8 pad
[2]; /* For a natural alignment of the following buffer */
2605 struct bnx2x_mcast_bin_elem
{
2606 struct list_head link
;
2608 int type
; /* BNX2X_MCAST_CMD_SET_{ADD, DEL} */
2611 union bnx2x_mcast_elem
{
2612 struct bnx2x_mcast_bin_elem bin_elem
;
2613 struct bnx2x_mcast_mac_elem mac_elem
;
2616 struct bnx2x_mcast_elem_group
{
2617 struct list_head mcast_group_link
;
2618 union bnx2x_mcast_elem mcast_elems
[];
2621 #define MCAST_MAC_ELEMS_PER_PG \
2622 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_elem_group)) / \
2623 sizeof(union bnx2x_mcast_elem))
2625 struct bnx2x_pending_mcast_cmd
{
2626 struct list_head link
;
2627 struct list_head group_head
;
2628 int type
; /* BNX2X_MCAST_CMD_X */
2630 struct list_head macs_head
;
2631 u32 macs_num
; /* Needed for DEL command */
2632 int next_bin
; /* Needed for RESTORE flow with aprox match */
2635 bool set_convert
; /* in case type == BNX2X_MCAST_CMD_SET, this is set
2636 * when macs_head had been converted to a list of
2637 * bnx2x_mcast_bin_elem.
2640 bool done
; /* set to true, when the command has been handled,
2641 * practically used in 57712 handling only, where one pending
2642 * command may be handled in a few operations. As long as for
2643 * other chips every operation handling is completed in a
2644 * single ramrod, there is no need to utilize this field.
2648 static int bnx2x_mcast_wait(struct bnx2x
*bp
,
2649 struct bnx2x_mcast_obj
*o
)
2651 if (bnx2x_state_wait(bp
, o
->sched_state
, o
->raw
.pstate
) ||
2652 o
->raw
.wait_comp(bp
, &o
->raw
))
2658 static void bnx2x_free_groups(struct list_head
*mcast_group_list
)
2660 struct bnx2x_mcast_elem_group
*current_mcast_group
;
2662 while (!list_empty(mcast_group_list
)) {
2663 current_mcast_group
= list_first_entry(mcast_group_list
,
2664 struct bnx2x_mcast_elem_group
,
2666 list_del(¤t_mcast_group
->mcast_group_link
);
2667 free_page((unsigned long)current_mcast_group
);
2671 static int bnx2x_mcast_enqueue_cmd(struct bnx2x
*bp
,
2672 struct bnx2x_mcast_obj
*o
,
2673 struct bnx2x_mcast_ramrod_params
*p
,
2674 enum bnx2x_mcast_cmd cmd
)
2676 struct bnx2x_pending_mcast_cmd
*new_cmd
;
2677 struct bnx2x_mcast_list_elem
*pos
;
2678 struct bnx2x_mcast_elem_group
*elem_group
;
2679 struct bnx2x_mcast_mac_elem
*mac_elem
;
2680 int total_elems
= 0, macs_list_len
= 0, offset
= 0;
2682 /* When adding MACs we'll need to store their values */
2683 if (cmd
== BNX2X_MCAST_CMD_ADD
|| cmd
== BNX2X_MCAST_CMD_SET
)
2684 macs_list_len
= p
->mcast_list_len
;
2686 /* If the command is empty ("handle pending commands only"), break */
2687 if (!p
->mcast_list_len
)
2690 /* Add mcast is called under spin_lock, thus calling with GFP_ATOMIC */
2691 new_cmd
= kzalloc(sizeof(*new_cmd
), GFP_ATOMIC
);
2695 INIT_LIST_HEAD(&new_cmd
->data
.macs_head
);
2696 INIT_LIST_HEAD(&new_cmd
->group_head
);
2697 new_cmd
->type
= cmd
;
2698 new_cmd
->done
= false;
2700 DP(BNX2X_MSG_SP
, "About to enqueue a new %d command. macs_list_len=%d\n",
2701 cmd
, macs_list_len
);
2704 case BNX2X_MCAST_CMD_ADD
:
2705 case BNX2X_MCAST_CMD_SET
:
2706 /* For a set command, we need to allocate sufficient memory for
2707 * all the bins, since we can't analyze at this point how much
2708 * memory would be required.
2710 total_elems
= macs_list_len
;
2711 if (cmd
== BNX2X_MCAST_CMD_SET
) {
2712 if (total_elems
< BNX2X_MCAST_BINS_NUM
)
2713 total_elems
= BNX2X_MCAST_BINS_NUM
;
2715 while (total_elems
> 0) {
2716 elem_group
= (struct bnx2x_mcast_elem_group
*)
2717 __get_free_page(GFP_ATOMIC
| __GFP_ZERO
);
2719 bnx2x_free_groups(&new_cmd
->group_head
);
2723 total_elems
-= MCAST_MAC_ELEMS_PER_PG
;
2724 list_add_tail(&elem_group
->mcast_group_link
,
2725 &new_cmd
->group_head
);
2727 elem_group
= list_first_entry(&new_cmd
->group_head
,
2728 struct bnx2x_mcast_elem_group
,
2730 list_for_each_entry(pos
, &p
->mcast_list
, link
) {
2731 mac_elem
= &elem_group
->mcast_elems
[offset
].mac_elem
;
2732 memcpy(mac_elem
->mac
, pos
->mac
, ETH_ALEN
);
2733 /* Push the MACs of the current command into the pending
2734 * command MACs list: FIFO
2736 list_add_tail(&mac_elem
->link
,
2737 &new_cmd
->data
.macs_head
);
2739 if (offset
== MCAST_MAC_ELEMS_PER_PG
) {
2741 elem_group
= list_next_entry(elem_group
,
2747 case BNX2X_MCAST_CMD_DEL
:
2748 new_cmd
->data
.macs_num
= p
->mcast_list_len
;
2751 case BNX2X_MCAST_CMD_RESTORE
:
2752 new_cmd
->data
.next_bin
= 0;
2757 BNX2X_ERR("Unknown command: %d\n", cmd
);
2761 /* Push the new pending command to the tail of the pending list: FIFO */
2762 list_add_tail(&new_cmd
->link
, &o
->pending_cmds_head
);
2770 * bnx2x_mcast_get_next_bin - get the next set bin (index)
2772 * @o: multicast object info
2773 * @last: index to start looking from (including)
2775 * returns the next found (set) bin or a negative value if none is found.
2777 static inline int bnx2x_mcast_get_next_bin(struct bnx2x_mcast_obj
*o
, int last
)
2779 int i
, j
, inner_start
= last
% BIT_VEC64_ELEM_SZ
;
2781 for (i
= last
/ BIT_VEC64_ELEM_SZ
; i
< BNX2X_MCAST_VEC_SZ
; i
++) {
2782 if (o
->registry
.aprox_match
.vec
[i
])
2783 for (j
= inner_start
; j
< BIT_VEC64_ELEM_SZ
; j
++) {
2784 int cur_bit
= j
+ BIT_VEC64_ELEM_SZ
* i
;
2785 if (BIT_VEC64_TEST_BIT(o
->registry
.aprox_match
.
2798 * bnx2x_mcast_clear_first_bin - find the first set bin and clear it
2802 * returns the index of the found bin or -1 if none is found
2804 static inline int bnx2x_mcast_clear_first_bin(struct bnx2x_mcast_obj
*o
)
2806 int cur_bit
= bnx2x_mcast_get_next_bin(o
, 0);
2809 BIT_VEC64_CLEAR_BIT(o
->registry
.aprox_match
.vec
, cur_bit
);
2814 static inline u8
bnx2x_mcast_get_rx_tx_flag(struct bnx2x_mcast_obj
*o
)
2816 struct bnx2x_raw_obj
*raw
= &o
->raw
;
2819 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_TX
) ||
2820 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
2821 rx_tx_flag
|= ETH_MULTICAST_RULES_CMD_TX_CMD
;
2823 if ((raw
->obj_type
== BNX2X_OBJ_TYPE_RX
) ||
2824 (raw
->obj_type
== BNX2X_OBJ_TYPE_RX_TX
))
2825 rx_tx_flag
|= ETH_MULTICAST_RULES_CMD_RX_CMD
;
2830 static void bnx2x_mcast_set_one_rule_e2(struct bnx2x
*bp
,
2831 struct bnx2x_mcast_obj
*o
, int idx
,
2832 union bnx2x_mcast_config_data
*cfg_data
,
2833 enum bnx2x_mcast_cmd cmd
)
2835 struct bnx2x_raw_obj
*r
= &o
->raw
;
2836 struct eth_multicast_rules_ramrod_data
*data
=
2837 (struct eth_multicast_rules_ramrod_data
*)(r
->rdata
);
2838 u8 func_id
= r
->func_id
;
2839 u8 rx_tx_add_flag
= bnx2x_mcast_get_rx_tx_flag(o
);
2842 if ((cmd
== BNX2X_MCAST_CMD_ADD
) || (cmd
== BNX2X_MCAST_CMD_RESTORE
) ||
2843 (cmd
== BNX2X_MCAST_CMD_SET_ADD
))
2844 rx_tx_add_flag
|= ETH_MULTICAST_RULES_CMD_IS_ADD
;
2846 data
->rules
[idx
].cmd_general_data
|= rx_tx_add_flag
;
2848 /* Get a bin and update a bins' vector */
2850 case BNX2X_MCAST_CMD_ADD
:
2851 bin
= bnx2x_mcast_bin_from_mac(cfg_data
->mac
);
2852 BIT_VEC64_SET_BIT(o
->registry
.aprox_match
.vec
, bin
);
2855 case BNX2X_MCAST_CMD_DEL
:
2856 /* If there were no more bins to clear
2857 * (bnx2x_mcast_clear_first_bin() returns -1) then we would
2858 * clear any (0xff) bin.
2859 * See bnx2x_mcast_validate_e2() for explanation when it may
2862 bin
= bnx2x_mcast_clear_first_bin(o
);
2865 case BNX2X_MCAST_CMD_RESTORE
:
2866 bin
= cfg_data
->bin
;
2869 case BNX2X_MCAST_CMD_SET_ADD
:
2870 bin
= cfg_data
->bin
;
2871 BIT_VEC64_SET_BIT(o
->registry
.aprox_match
.vec
, bin
);
2874 case BNX2X_MCAST_CMD_SET_DEL
:
2875 bin
= cfg_data
->bin
;
2876 BIT_VEC64_CLEAR_BIT(o
->registry
.aprox_match
.vec
, bin
);
2880 BNX2X_ERR("Unknown command: %d\n", cmd
);
2884 DP(BNX2X_MSG_SP
, "%s bin %d\n",
2885 ((rx_tx_add_flag
& ETH_MULTICAST_RULES_CMD_IS_ADD
) ?
2886 "Setting" : "Clearing"), bin
);
2888 data
->rules
[idx
].bin_id
= (u8
)bin
;
2889 data
->rules
[idx
].func_id
= func_id
;
2890 data
->rules
[idx
].engine_id
= o
->engine_id
;
2894 * bnx2x_mcast_handle_restore_cmd_e2 - restore configuration from the registry
2896 * @bp: device handle
2897 * @o: multicast object info
2898 * @start_bin: index in the registry to start from (including)
2899 * @rdata_idx: index in the ramrod data to start from
2901 * returns last handled bin index or -1 if all bins have been handled
2903 static inline int bnx2x_mcast_handle_restore_cmd_e2(
2904 struct bnx2x
*bp
, struct bnx2x_mcast_obj
*o
, int start_bin
,
2907 int cur_bin
, cnt
= *rdata_idx
;
2908 union bnx2x_mcast_config_data cfg_data
= {NULL
};
2910 /* go through the registry and configure the bins from it */
2911 for (cur_bin
= bnx2x_mcast_get_next_bin(o
, start_bin
); cur_bin
>= 0;
2912 cur_bin
= bnx2x_mcast_get_next_bin(o
, cur_bin
+ 1)) {
2914 cfg_data
.bin
= (u8
)cur_bin
;
2915 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
,
2916 BNX2X_MCAST_CMD_RESTORE
);
2920 DP(BNX2X_MSG_SP
, "About to configure a bin %d\n", cur_bin
);
2922 /* Break if we reached the maximum number
2925 if (cnt
>= o
->max_cmd_len
)
2934 static inline void bnx2x_mcast_hdl_pending_add_e2(struct bnx2x
*bp
,
2935 struct bnx2x_mcast_obj
*o
, struct bnx2x_pending_mcast_cmd
*cmd_pos
,
2938 struct bnx2x_mcast_mac_elem
*pmac_pos
, *pmac_pos_n
;
2939 int cnt
= *line_idx
;
2940 union bnx2x_mcast_config_data cfg_data
= {NULL
};
2942 list_for_each_entry_safe(pmac_pos
, pmac_pos_n
, &cmd_pos
->data
.macs_head
,
2945 cfg_data
.mac
= &pmac_pos
->mac
[0];
2946 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
, cmd_pos
->type
);
2950 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
2953 list_del(&pmac_pos
->link
);
2955 /* Break if we reached the maximum number
2958 if (cnt
>= o
->max_cmd_len
)
2964 /* if no more MACs to configure - we are done */
2965 if (list_empty(&cmd_pos
->data
.macs_head
))
2966 cmd_pos
->done
= true;
2969 static inline void bnx2x_mcast_hdl_pending_del_e2(struct bnx2x
*bp
,
2970 struct bnx2x_mcast_obj
*o
, struct bnx2x_pending_mcast_cmd
*cmd_pos
,
2973 int cnt
= *line_idx
;
2975 while (cmd_pos
->data
.macs_num
) {
2976 o
->set_one_rule(bp
, o
, cnt
, NULL
, cmd_pos
->type
);
2980 cmd_pos
->data
.macs_num
--;
2982 DP(BNX2X_MSG_SP
, "Deleting MAC. %d left,cnt is %d\n",
2983 cmd_pos
->data
.macs_num
, cnt
);
2985 /* Break if we reached the maximum
2988 if (cnt
>= o
->max_cmd_len
)
2994 /* If we cleared all bins - we are done */
2995 if (!cmd_pos
->data
.macs_num
)
2996 cmd_pos
->done
= true;
2999 static inline void bnx2x_mcast_hdl_pending_restore_e2(struct bnx2x
*bp
,
3000 struct bnx2x_mcast_obj
*o
, struct bnx2x_pending_mcast_cmd
*cmd_pos
,
3003 cmd_pos
->data
.next_bin
= o
->hdl_restore(bp
, o
, cmd_pos
->data
.next_bin
,
3006 if (cmd_pos
->data
.next_bin
< 0)
3007 /* If o->set_restore returned -1 we are done */
3008 cmd_pos
->done
= true;
3010 /* Start from the next bin next time */
3011 cmd_pos
->data
.next_bin
++;
3015 bnx2x_mcast_hdl_pending_set_e2_convert(struct bnx2x
*bp
,
3016 struct bnx2x_mcast_obj
*o
,
3017 struct bnx2x_pending_mcast_cmd
*cmd_pos
)
3019 u64 cur
[BNX2X_MCAST_VEC_SZ
], req
[BNX2X_MCAST_VEC_SZ
];
3020 struct bnx2x_mcast_mac_elem
*pmac_pos
, *pmac_pos_n
;
3021 struct bnx2x_mcast_bin_elem
*p_item
;
3022 struct bnx2x_mcast_elem_group
*elem_group
;
3023 int cnt
= 0, mac_cnt
= 0, offset
= 0, i
;
3025 memset(req
, 0, sizeof(u64
) * BNX2X_MCAST_VEC_SZ
);
3026 memcpy(cur
, o
->registry
.aprox_match
.vec
,
3027 sizeof(u64
) * BNX2X_MCAST_VEC_SZ
);
3029 /* Fill `current' with the required set of bins to configure */
3030 list_for_each_entry_safe(pmac_pos
, pmac_pos_n
, &cmd_pos
->data
.macs_head
,
3032 int bin
= bnx2x_mcast_bin_from_mac(pmac_pos
->mac
);
3034 DP(BNX2X_MSG_SP
, "Set contains %pM mcast MAC\n",
3037 BIT_VEC64_SET_BIT(req
, bin
);
3038 list_del(&pmac_pos
->link
);
3042 /* We no longer have use for the MACs; Need to re-use memory for
3043 * a list that will be used to configure bins.
3045 cmd_pos
->set_convert
= true;
3046 INIT_LIST_HEAD(&cmd_pos
->data
.macs_head
);
3047 elem_group
= list_first_entry(&cmd_pos
->group_head
,
3048 struct bnx2x_mcast_elem_group
,
3050 for (i
= 0; i
< BNX2X_MCAST_BINS_NUM
; i
++) {
3051 bool b_current
= !!BIT_VEC64_TEST_BIT(cur
, i
);
3052 bool b_required
= !!BIT_VEC64_TEST_BIT(req
, i
);
3054 if (b_current
== b_required
)
3057 p_item
= &elem_group
->mcast_elems
[offset
].bin_elem
;
3059 p_item
->type
= b_required
? BNX2X_MCAST_CMD_SET_ADD
3060 : BNX2X_MCAST_CMD_SET_DEL
;
3061 list_add_tail(&p_item
->link
, &cmd_pos
->data
.macs_head
);
3064 if (offset
== MCAST_MAC_ELEMS_PER_PG
) {
3066 elem_group
= list_next_entry(elem_group
,
3071 /* We now definitely know how many commands are hiding here.
3072 * Also need to correct the disruption we've added to guarantee this
3073 * would be enqueued.
3075 o
->total_pending_num
-= (o
->max_cmd_len
+ mac_cnt
);
3076 o
->total_pending_num
+= cnt
;
3078 DP(BNX2X_MSG_SP
, "o->total_pending_num=%d\n", o
->total_pending_num
);
3082 bnx2x_mcast_hdl_pending_set_e2(struct bnx2x
*bp
,
3083 struct bnx2x_mcast_obj
*o
,
3084 struct bnx2x_pending_mcast_cmd
*cmd_pos
,
3087 union bnx2x_mcast_config_data cfg_data
= {NULL
};
3088 struct bnx2x_mcast_bin_elem
*p_item
, *p_item_n
;
3090 /* This is actually a 2-part scheme - it starts by converting the MACs
3091 * into a list of bins to be added/removed, and correcting the numbers
3092 * on the object. this is now allowed, as we're now sure that all
3093 * previous configured requests have already applied.
3094 * The second part is actually adding rules for the newly introduced
3095 * entries [like all the rest of the hdl_pending functions].
3097 if (!cmd_pos
->set_convert
)
3098 bnx2x_mcast_hdl_pending_set_e2_convert(bp
, o
, cmd_pos
);
3100 list_for_each_entry_safe(p_item
, p_item_n
, &cmd_pos
->data
.macs_head
,
3102 cfg_data
.bin
= (u8
)p_item
->bin
;
3103 o
->set_one_rule(bp
, o
, *cnt
, &cfg_data
, p_item
->type
);
3106 list_del(&p_item
->link
);
3108 /* Break if we reached the maximum number of rules. */
3109 if (*cnt
>= o
->max_cmd_len
)
3113 /* if no more MACs to configure - we are done */
3114 if (list_empty(&cmd_pos
->data
.macs_head
))
3115 cmd_pos
->done
= true;
3118 static inline int bnx2x_mcast_handle_pending_cmds_e2(struct bnx2x
*bp
,
3119 struct bnx2x_mcast_ramrod_params
*p
)
3121 struct bnx2x_pending_mcast_cmd
*cmd_pos
, *cmd_pos_n
;
3123 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3125 list_for_each_entry_safe(cmd_pos
, cmd_pos_n
, &o
->pending_cmds_head
,
3127 switch (cmd_pos
->type
) {
3128 case BNX2X_MCAST_CMD_ADD
:
3129 bnx2x_mcast_hdl_pending_add_e2(bp
, o
, cmd_pos
, &cnt
);
3132 case BNX2X_MCAST_CMD_DEL
:
3133 bnx2x_mcast_hdl_pending_del_e2(bp
, o
, cmd_pos
, &cnt
);
3136 case BNX2X_MCAST_CMD_RESTORE
:
3137 bnx2x_mcast_hdl_pending_restore_e2(bp
, o
, cmd_pos
,
3141 case BNX2X_MCAST_CMD_SET
:
3142 bnx2x_mcast_hdl_pending_set_e2(bp
, o
, cmd_pos
, &cnt
);
3146 BNX2X_ERR("Unknown command: %d\n", cmd_pos
->type
);
3150 /* If the command has been completed - remove it from the list
3151 * and free the memory
3153 if (cmd_pos
->done
) {
3154 list_del(&cmd_pos
->link
);
3155 bnx2x_free_groups(&cmd_pos
->group_head
);
3159 /* Break if we reached the maximum number of rules */
3160 if (cnt
>= o
->max_cmd_len
)
3167 static inline void bnx2x_mcast_hdl_add(struct bnx2x
*bp
,
3168 struct bnx2x_mcast_obj
*o
, struct bnx2x_mcast_ramrod_params
*p
,
3171 struct bnx2x_mcast_list_elem
*mlist_pos
;
3172 union bnx2x_mcast_config_data cfg_data
= {NULL
};
3173 int cnt
= *line_idx
;
3175 list_for_each_entry(mlist_pos
, &p
->mcast_list
, link
) {
3176 cfg_data
.mac
= mlist_pos
->mac
;
3177 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
, BNX2X_MCAST_CMD_ADD
);
3181 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
3188 static inline void bnx2x_mcast_hdl_del(struct bnx2x
*bp
,
3189 struct bnx2x_mcast_obj
*o
, struct bnx2x_mcast_ramrod_params
*p
,
3192 int cnt
= *line_idx
, i
;
3194 for (i
= 0; i
< p
->mcast_list_len
; i
++) {
3195 o
->set_one_rule(bp
, o
, cnt
, NULL
, BNX2X_MCAST_CMD_DEL
);
3199 DP(BNX2X_MSG_SP
, "Deleting MAC. %d left\n",
3200 p
->mcast_list_len
- i
- 1);
3207 * bnx2x_mcast_handle_current_cmd - send command if room
3209 * @bp: device handle
3210 * @p: ramrod mcast info
3212 * @start_cnt: first line in the ramrod data that may be used
3214 * This function is called iff there is enough place for the current command in
3216 * Returns number of lines filled in the ramrod data in total.
3218 static inline int bnx2x_mcast_handle_current_cmd(struct bnx2x
*bp
,
3219 struct bnx2x_mcast_ramrod_params
*p
,
3220 enum bnx2x_mcast_cmd cmd
,
3223 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3224 int cnt
= start_cnt
;
3226 DP(BNX2X_MSG_SP
, "p->mcast_list_len=%d\n", p
->mcast_list_len
);
3229 case BNX2X_MCAST_CMD_ADD
:
3230 bnx2x_mcast_hdl_add(bp
, o
, p
, &cnt
);
3233 case BNX2X_MCAST_CMD_DEL
:
3234 bnx2x_mcast_hdl_del(bp
, o
, p
, &cnt
);
3237 case BNX2X_MCAST_CMD_RESTORE
:
3238 o
->hdl_restore(bp
, o
, 0, &cnt
);
3242 BNX2X_ERR("Unknown command: %d\n", cmd
);
3246 /* The current command has been handled */
3247 p
->mcast_list_len
= 0;
3252 static int bnx2x_mcast_validate_e2(struct bnx2x
*bp
,
3253 struct bnx2x_mcast_ramrod_params
*p
,
3254 enum bnx2x_mcast_cmd cmd
)
3256 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3257 int reg_sz
= o
->get_registry_size(o
);
3260 /* DEL command deletes all currently configured MACs */
3261 case BNX2X_MCAST_CMD_DEL
:
3262 o
->set_registry_size(o
, 0);
3265 /* RESTORE command will restore the entire multicast configuration */
3266 case BNX2X_MCAST_CMD_RESTORE
:
3267 /* Here we set the approximate amount of work to do, which in
3268 * fact may be only less as some MACs in postponed ADD
3269 * command(s) scheduled before this command may fall into
3270 * the same bin and the actual number of bins set in the
3271 * registry would be less than we estimated here. See
3272 * bnx2x_mcast_set_one_rule_e2() for further details.
3274 p
->mcast_list_len
= reg_sz
;
3277 case BNX2X_MCAST_CMD_ADD
:
3278 case BNX2X_MCAST_CMD_CONT
:
3279 /* Here we assume that all new MACs will fall into new bins.
3280 * However we will correct the real registry size after we
3281 * handle all pending commands.
3283 o
->set_registry_size(o
, reg_sz
+ p
->mcast_list_len
);
3286 case BNX2X_MCAST_CMD_SET
:
3287 /* We can only learn how many commands would actually be used
3288 * when this is being configured. So for now, simply guarantee
3289 * the command will be enqueued [to refrain from adding logic
3290 * that handles this and THEN learns it needs several ramrods].
3291 * Just like for ADD/Cont, the mcast_list_len might be an over
3292 * estimation; or even more so, since we don't take into
3293 * account the possibility of removal of existing bins.
3295 o
->set_registry_size(o
, reg_sz
+ p
->mcast_list_len
);
3296 o
->total_pending_num
+= o
->max_cmd_len
;
3300 BNX2X_ERR("Unknown command: %d\n", cmd
);
3304 /* Increase the total number of MACs pending to be configured */
3305 o
->total_pending_num
+= p
->mcast_list_len
;
3310 static void bnx2x_mcast_revert_e2(struct bnx2x
*bp
,
3311 struct bnx2x_mcast_ramrod_params
*p
,
3313 enum bnx2x_mcast_cmd cmd
)
3315 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3317 o
->set_registry_size(o
, old_num_bins
);
3318 o
->total_pending_num
-= p
->mcast_list_len
;
3320 if (cmd
== BNX2X_MCAST_CMD_SET
)
3321 o
->total_pending_num
-= o
->max_cmd_len
;
3325 * bnx2x_mcast_set_rdata_hdr_e2 - sets a header values
3327 * @bp: device handle
3328 * @p: ramrod parameters
3329 * @len: number of rules to handle
3331 static inline void bnx2x_mcast_set_rdata_hdr_e2(struct bnx2x
*bp
,
3332 struct bnx2x_mcast_ramrod_params
*p
,
3335 struct bnx2x_raw_obj
*r
= &p
->mcast_obj
->raw
;
3336 struct eth_multicast_rules_ramrod_data
*data
=
3337 (struct eth_multicast_rules_ramrod_data
*)(r
->rdata
);
3339 data
->header
.echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
3340 (BNX2X_FILTER_MCAST_PENDING
<<
3341 BNX2X_SWCID_SHIFT
));
3342 data
->header
.rule_cnt
= len
;
3346 * bnx2x_mcast_refresh_registry_e2 - recalculate the actual number of set bins
3348 * @bp: device handle
3351 * Recalculate the actual number of set bins in the registry using Brian
3352 * Kernighan's algorithm: it's execution complexity is as a number of set bins.
3354 * returns 0 for the compliance with bnx2x_mcast_refresh_registry_e1().
3356 static inline int bnx2x_mcast_refresh_registry_e2(struct bnx2x
*bp
,
3357 struct bnx2x_mcast_obj
*o
)
3362 for (i
= 0; i
< BNX2X_MCAST_VEC_SZ
; i
++) {
3363 elem
= o
->registry
.aprox_match
.vec
[i
];
3368 o
->set_registry_size(o
, cnt
);
3373 static int bnx2x_mcast_setup_e2(struct bnx2x
*bp
,
3374 struct bnx2x_mcast_ramrod_params
*p
,
3375 enum bnx2x_mcast_cmd cmd
)
3377 struct bnx2x_raw_obj
*raw
= &p
->mcast_obj
->raw
;
3378 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3379 struct eth_multicast_rules_ramrod_data
*data
=
3380 (struct eth_multicast_rules_ramrod_data
*)(raw
->rdata
);
3383 /* Reset the ramrod data buffer */
3384 memset(data
, 0, sizeof(*data
));
3386 cnt
= bnx2x_mcast_handle_pending_cmds_e2(bp
, p
);
3388 /* If there are no more pending commands - clear SCHEDULED state */
3389 if (list_empty(&o
->pending_cmds_head
))
3392 /* The below may be true iff there was enough room in ramrod
3393 * data for all pending commands and for the current
3394 * command. Otherwise the current command would have been added
3395 * to the pending commands and p->mcast_list_len would have been
3398 if (p
->mcast_list_len
> 0)
3399 cnt
= bnx2x_mcast_handle_current_cmd(bp
, p
, cmd
, cnt
);
3401 /* We've pulled out some MACs - update the total number of
3404 o
->total_pending_num
-= cnt
;
3407 WARN_ON(o
->total_pending_num
< 0);
3408 WARN_ON(cnt
> o
->max_cmd_len
);
3410 bnx2x_mcast_set_rdata_hdr_e2(bp
, p
, (u8
)cnt
);
3412 /* Update a registry size if there are no more pending operations.
3414 * We don't want to change the value of the registry size if there are
3415 * pending operations because we want it to always be equal to the
3416 * exact or the approximate number (see bnx2x_mcast_validate_e2()) of
3417 * set bins after the last requested operation in order to properly
3418 * evaluate the size of the next DEL/RESTORE operation.
3420 * Note that we update the registry itself during command(s) handling
3421 * - see bnx2x_mcast_set_one_rule_e2(). That's because for 57712 we
3422 * aggregate multiple commands (ADD/DEL/RESTORE) into one ramrod but
3423 * with a limited amount of update commands (per MAC/bin) and we don't
3424 * know in this scope what the actual state of bins configuration is
3425 * going to be after this ramrod.
3427 if (!o
->total_pending_num
)
3428 bnx2x_mcast_refresh_registry_e2(bp
, o
);
3430 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3431 * RAMROD_PENDING status immediately. due to the SET option, it's also
3432 * possible that after evaluating the differences there's no need for
3433 * a ramrod. In that case, we can skip it as well.
3435 if (test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
) || !cnt
) {
3436 raw
->clear_pending(raw
);
3439 /* No need for an explicit memory barrier here as long as we
3440 * ensure the ordering of writing to the SPQ element
3441 * and updating of the SPQ producer which involves a memory
3442 * read. If the memory read is removed we will have to put a
3443 * full memory barrier there (inside bnx2x_sp_post()).
3447 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_MULTICAST_RULES
,
3448 raw
->cid
, U64_HI(raw
->rdata_mapping
),
3449 U64_LO(raw
->rdata_mapping
),
3450 ETH_CONNECTION_TYPE
);
3454 /* Ramrod completion is pending */
3459 static int bnx2x_mcast_validate_e1h(struct bnx2x
*bp
,
3460 struct bnx2x_mcast_ramrod_params
*p
,
3461 enum bnx2x_mcast_cmd cmd
)
3463 if (cmd
== BNX2X_MCAST_CMD_SET
) {
3464 BNX2X_ERR("Can't use `set' command on e1h!\n");
3468 /* Mark, that there is a work to do */
3469 if ((cmd
== BNX2X_MCAST_CMD_DEL
) || (cmd
== BNX2X_MCAST_CMD_RESTORE
))
3470 p
->mcast_list_len
= 1;
3475 static void bnx2x_mcast_revert_e1h(struct bnx2x
*bp
,
3476 struct bnx2x_mcast_ramrod_params
*p
,
3478 enum bnx2x_mcast_cmd cmd
)
3483 #define BNX2X_57711_SET_MC_FILTER(filter, bit) \
3485 (filter)[(bit) >> 5] |= (1 << ((bit) & 0x1f)); \
3488 static inline void bnx2x_mcast_hdl_add_e1h(struct bnx2x
*bp
,
3489 struct bnx2x_mcast_obj
*o
,
3490 struct bnx2x_mcast_ramrod_params
*p
,
3493 struct bnx2x_mcast_list_elem
*mlist_pos
;
3496 list_for_each_entry(mlist_pos
, &p
->mcast_list
, link
) {
3497 bit
= bnx2x_mcast_bin_from_mac(mlist_pos
->mac
);
3498 BNX2X_57711_SET_MC_FILTER(mc_filter
, bit
);
3500 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC, bin %d\n",
3501 mlist_pos
->mac
, bit
);
3503 /* bookkeeping... */
3504 BIT_VEC64_SET_BIT(o
->registry
.aprox_match
.vec
,
3509 static inline void bnx2x_mcast_hdl_restore_e1h(struct bnx2x
*bp
,
3510 struct bnx2x_mcast_obj
*o
, struct bnx2x_mcast_ramrod_params
*p
,
3515 for (bit
= bnx2x_mcast_get_next_bin(o
, 0);
3517 bit
= bnx2x_mcast_get_next_bin(o
, bit
+ 1)) {
3518 BNX2X_57711_SET_MC_FILTER(mc_filter
, bit
);
3519 DP(BNX2X_MSG_SP
, "About to set bin %d\n", bit
);
3523 /* On 57711 we write the multicast MACs' approximate match
3524 * table by directly into the TSTORM's internal RAM. So we don't
3525 * really need to handle any tricks to make it work.
3527 static int bnx2x_mcast_setup_e1h(struct bnx2x
*bp
,
3528 struct bnx2x_mcast_ramrod_params
*p
,
3529 enum bnx2x_mcast_cmd cmd
)
3532 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3533 struct bnx2x_raw_obj
*r
= &o
->raw
;
3535 /* If CLEAR_ONLY has been requested - clear the registry
3536 * and clear a pending bit.
3538 if (!test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
3539 u32 mc_filter
[MC_HASH_SIZE
] = {0};
3541 /* Set the multicast filter bits before writing it into
3542 * the internal memory.
3545 case BNX2X_MCAST_CMD_ADD
:
3546 bnx2x_mcast_hdl_add_e1h(bp
, o
, p
, mc_filter
);
3549 case BNX2X_MCAST_CMD_DEL
:
3551 "Invalidating multicast MACs configuration\n");
3553 /* clear the registry */
3554 memset(o
->registry
.aprox_match
.vec
, 0,
3555 sizeof(o
->registry
.aprox_match
.vec
));
3558 case BNX2X_MCAST_CMD_RESTORE
:
3559 bnx2x_mcast_hdl_restore_e1h(bp
, o
, p
, mc_filter
);
3563 BNX2X_ERR("Unknown command: %d\n", cmd
);
3567 /* Set the mcast filter in the internal memory */
3568 for (i
= 0; i
< MC_HASH_SIZE
; i
++)
3569 REG_WR(bp
, MC_HASH_OFFSET(bp
, i
), mc_filter
[i
]);
3571 /* clear the registry */
3572 memset(o
->registry
.aprox_match
.vec
, 0,
3573 sizeof(o
->registry
.aprox_match
.vec
));
3576 r
->clear_pending(r
);
3581 static int bnx2x_mcast_validate_e1(struct bnx2x
*bp
,
3582 struct bnx2x_mcast_ramrod_params
*p
,
3583 enum bnx2x_mcast_cmd cmd
)
3585 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3586 int reg_sz
= o
->get_registry_size(o
);
3588 if (cmd
== BNX2X_MCAST_CMD_SET
) {
3589 BNX2X_ERR("Can't use `set' command on e1!\n");
3594 /* DEL command deletes all currently configured MACs */
3595 case BNX2X_MCAST_CMD_DEL
:
3596 o
->set_registry_size(o
, 0);
3599 /* RESTORE command will restore the entire multicast configuration */
3600 case BNX2X_MCAST_CMD_RESTORE
:
3601 p
->mcast_list_len
= reg_sz
;
3602 DP(BNX2X_MSG_SP
, "Command %d, p->mcast_list_len=%d\n",
3603 cmd
, p
->mcast_list_len
);
3606 case BNX2X_MCAST_CMD_ADD
:
3607 case BNX2X_MCAST_CMD_CONT
:
3608 /* Multicast MACs on 57710 are configured as unicast MACs and
3609 * there is only a limited number of CAM entries for that
3612 if (p
->mcast_list_len
> o
->max_cmd_len
) {
3613 BNX2X_ERR("Can't configure more than %d multicast MACs on 57710\n",
3617 /* Every configured MAC should be cleared if DEL command is
3618 * called. Only the last ADD command is relevant as long as
3619 * every ADD commands overrides the previous configuration.
3621 DP(BNX2X_MSG_SP
, "p->mcast_list_len=%d\n", p
->mcast_list_len
);
3622 if (p
->mcast_list_len
> 0)
3623 o
->set_registry_size(o
, p
->mcast_list_len
);
3628 BNX2X_ERR("Unknown command: %d\n", cmd
);
3632 /* We want to ensure that commands are executed one by one for 57710.
3633 * Therefore each none-empty command will consume o->max_cmd_len.
3635 if (p
->mcast_list_len
)
3636 o
->total_pending_num
+= o
->max_cmd_len
;
3641 static void bnx2x_mcast_revert_e1(struct bnx2x
*bp
,
3642 struct bnx2x_mcast_ramrod_params
*p
,
3644 enum bnx2x_mcast_cmd cmd
)
3646 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3648 o
->set_registry_size(o
, old_num_macs
);
3650 /* If current command hasn't been handled yet and we are
3651 * here means that it's meant to be dropped and we have to
3652 * update the number of outstanding MACs accordingly.
3654 if (p
->mcast_list_len
)
3655 o
->total_pending_num
-= o
->max_cmd_len
;
3658 static void bnx2x_mcast_set_one_rule_e1(struct bnx2x
*bp
,
3659 struct bnx2x_mcast_obj
*o
, int idx
,
3660 union bnx2x_mcast_config_data
*cfg_data
,
3661 enum bnx2x_mcast_cmd cmd
)
3663 struct bnx2x_raw_obj
*r
= &o
->raw
;
3664 struct mac_configuration_cmd
*data
=
3665 (struct mac_configuration_cmd
*)(r
->rdata
);
3668 if ((cmd
== BNX2X_MCAST_CMD_ADD
) || (cmd
== BNX2X_MCAST_CMD_RESTORE
)) {
3669 bnx2x_set_fw_mac_addr(&data
->config_table
[idx
].msb_mac_addr
,
3670 &data
->config_table
[idx
].middle_mac_addr
,
3671 &data
->config_table
[idx
].lsb_mac_addr
,
3674 data
->config_table
[idx
].vlan_id
= 0;
3675 data
->config_table
[idx
].pf_id
= r
->func_id
;
3676 data
->config_table
[idx
].clients_bit_vector
=
3677 cpu_to_le32(1 << r
->cl_id
);
3679 SET_FLAG(data
->config_table
[idx
].flags
,
3680 MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
3681 T_ETH_MAC_COMMAND_SET
);
3686 * bnx2x_mcast_set_rdata_hdr_e1 - set header values in mac_configuration_cmd
3688 * @bp: device handle
3689 * @p: ramrod parameters
3690 * @len: number of rules to handle
3692 static inline void bnx2x_mcast_set_rdata_hdr_e1(struct bnx2x
*bp
,
3693 struct bnx2x_mcast_ramrod_params
*p
,
3696 struct bnx2x_raw_obj
*r
= &p
->mcast_obj
->raw
;
3697 struct mac_configuration_cmd
*data
=
3698 (struct mac_configuration_cmd
*)(r
->rdata
);
3700 u8 offset
= (CHIP_REV_IS_SLOW(bp
) ?
3701 BNX2X_MAX_EMUL_MULTI
*(1 + r
->func_id
) :
3702 BNX2X_MAX_MULTICAST
*(1 + r
->func_id
));
3704 data
->hdr
.offset
= offset
;
3705 data
->hdr
.client_id
= cpu_to_le16(0xff);
3706 data
->hdr
.echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
3707 (BNX2X_FILTER_MCAST_PENDING
<<
3708 BNX2X_SWCID_SHIFT
));
3709 data
->hdr
.length
= len
;
3713 * bnx2x_mcast_handle_restore_cmd_e1 - restore command for 57710
3715 * @bp: device handle
3716 * @o: multicast info
3717 * @start_idx: index in the registry to start from
3718 * @rdata_idx: index in the ramrod data to start from
3720 * restore command for 57710 is like all other commands - always a stand alone
3721 * command - start_idx and rdata_idx will always be 0. This function will always
3723 * returns -1 to comply with 57712 variant.
3725 static inline int bnx2x_mcast_handle_restore_cmd_e1(
3726 struct bnx2x
*bp
, struct bnx2x_mcast_obj
*o
, int start_idx
,
3729 struct bnx2x_mcast_mac_elem
*elem
;
3731 union bnx2x_mcast_config_data cfg_data
= {NULL
};
3733 /* go through the registry and configure the MACs from it. */
3734 list_for_each_entry(elem
, &o
->registry
.exact_match
.macs
, link
) {
3735 cfg_data
.mac
= &elem
->mac
[0];
3736 o
->set_one_rule(bp
, o
, i
, &cfg_data
, BNX2X_MCAST_CMD_RESTORE
);
3740 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
3749 static inline int bnx2x_mcast_handle_pending_cmds_e1(
3750 struct bnx2x
*bp
, struct bnx2x_mcast_ramrod_params
*p
)
3752 struct bnx2x_pending_mcast_cmd
*cmd_pos
;
3753 struct bnx2x_mcast_mac_elem
*pmac_pos
;
3754 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3755 union bnx2x_mcast_config_data cfg_data
= {NULL
};
3758 /* If nothing to be done - return */
3759 if (list_empty(&o
->pending_cmds_head
))
3762 /* Handle the first command */
3763 cmd_pos
= list_first_entry(&o
->pending_cmds_head
,
3764 struct bnx2x_pending_mcast_cmd
, link
);
3766 switch (cmd_pos
->type
) {
3767 case BNX2X_MCAST_CMD_ADD
:
3768 list_for_each_entry(pmac_pos
, &cmd_pos
->data
.macs_head
, link
) {
3769 cfg_data
.mac
= &pmac_pos
->mac
[0];
3770 o
->set_one_rule(bp
, o
, cnt
, &cfg_data
, cmd_pos
->type
);
3774 DP(BNX2X_MSG_SP
, "About to configure %pM mcast MAC\n",
3779 case BNX2X_MCAST_CMD_DEL
:
3780 cnt
= cmd_pos
->data
.macs_num
;
3781 DP(BNX2X_MSG_SP
, "About to delete %d multicast MACs\n", cnt
);
3784 case BNX2X_MCAST_CMD_RESTORE
:
3785 o
->hdl_restore(bp
, o
, 0, &cnt
);
3789 BNX2X_ERR("Unknown command: %d\n", cmd_pos
->type
);
3793 list_del(&cmd_pos
->link
);
3794 bnx2x_free_groups(&cmd_pos
->group_head
);
3801 * bnx2x_get_fw_mac_addr - revert the bnx2x_set_fw_mac_addr().
3808 static inline void bnx2x_get_fw_mac_addr(__le16
*fw_hi
, __le16
*fw_mid
,
3809 __le16
*fw_lo
, u8
*mac
)
3811 mac
[1] = ((u8
*)fw_hi
)[0];
3812 mac
[0] = ((u8
*)fw_hi
)[1];
3813 mac
[3] = ((u8
*)fw_mid
)[0];
3814 mac
[2] = ((u8
*)fw_mid
)[1];
3815 mac
[5] = ((u8
*)fw_lo
)[0];
3816 mac
[4] = ((u8
*)fw_lo
)[1];
3820 * bnx2x_mcast_refresh_registry_e1 -
3822 * @bp: device handle
3823 * @o: multicast info
3825 * Check the ramrod data first entry flag to see if it's a DELETE or ADD command
3826 * and update the registry correspondingly: if ADD - allocate a memory and add
3827 * the entries to the registry (list), if DELETE - clear the registry and free
3830 static inline int bnx2x_mcast_refresh_registry_e1(struct bnx2x
*bp
,
3831 struct bnx2x_mcast_obj
*o
)
3833 struct bnx2x_raw_obj
*raw
= &o
->raw
;
3834 struct bnx2x_mcast_mac_elem
*elem
;
3835 struct mac_configuration_cmd
*data
=
3836 (struct mac_configuration_cmd
*)(raw
->rdata
);
3838 /* If first entry contains a SET bit - the command was ADD,
3839 * otherwise - DEL_ALL
3841 if (GET_FLAG(data
->config_table
[0].flags
,
3842 MAC_CONFIGURATION_ENTRY_ACTION_TYPE
)) {
3843 int i
, len
= data
->hdr
.length
;
3845 /* Break if it was a RESTORE command */
3846 if (!list_empty(&o
->registry
.exact_match
.macs
))
3849 elem
= kcalloc(len
, sizeof(*elem
), GFP_ATOMIC
);
3851 BNX2X_ERR("Failed to allocate registry memory\n");
3855 for (i
= 0; i
< len
; i
++, elem
++) {
3856 bnx2x_get_fw_mac_addr(
3857 &data
->config_table
[i
].msb_mac_addr
,
3858 &data
->config_table
[i
].middle_mac_addr
,
3859 &data
->config_table
[i
].lsb_mac_addr
,
3861 DP(BNX2X_MSG_SP
, "Adding registry entry for [%pM]\n",
3863 list_add_tail(&elem
->link
,
3864 &o
->registry
.exact_match
.macs
);
3867 elem
= list_first_entry(&o
->registry
.exact_match
.macs
,
3868 struct bnx2x_mcast_mac_elem
, link
);
3869 DP(BNX2X_MSG_SP
, "Deleting a registry\n");
3871 INIT_LIST_HEAD(&o
->registry
.exact_match
.macs
);
3877 static int bnx2x_mcast_setup_e1(struct bnx2x
*bp
,
3878 struct bnx2x_mcast_ramrod_params
*p
,
3879 enum bnx2x_mcast_cmd cmd
)
3881 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3882 struct bnx2x_raw_obj
*raw
= &o
->raw
;
3883 struct mac_configuration_cmd
*data
=
3884 (struct mac_configuration_cmd
*)(raw
->rdata
);
3887 /* Reset the ramrod data buffer */
3888 memset(data
, 0, sizeof(*data
));
3890 /* First set all entries as invalid */
3891 for (i
= 0; i
< o
->max_cmd_len
; i
++)
3892 SET_FLAG(data
->config_table
[i
].flags
,
3893 MAC_CONFIGURATION_ENTRY_ACTION_TYPE
,
3894 T_ETH_MAC_COMMAND_INVALIDATE
);
3896 /* Handle pending commands first */
3897 cnt
= bnx2x_mcast_handle_pending_cmds_e1(bp
, p
);
3899 /* If there are no more pending commands - clear SCHEDULED state */
3900 if (list_empty(&o
->pending_cmds_head
))
3903 /* The below may be true iff there were no pending commands */
3905 cnt
= bnx2x_mcast_handle_current_cmd(bp
, p
, cmd
, 0);
3907 /* For 57710 every command has o->max_cmd_len length to ensure that
3908 * commands are done one at a time.
3910 o
->total_pending_num
-= o
->max_cmd_len
;
3914 WARN_ON(cnt
> o
->max_cmd_len
);
3916 /* Set ramrod header (in particular, a number of entries to update) */
3917 bnx2x_mcast_set_rdata_hdr_e1(bp
, p
, (u8
)cnt
);
3919 /* update a registry: we need the registry contents to be always up
3920 * to date in order to be able to execute a RESTORE opcode. Here
3921 * we use the fact that for 57710 we sent one command at a time
3922 * hence we may take the registry update out of the command handling
3923 * and do it in a simpler way here.
3925 rc
= bnx2x_mcast_refresh_registry_e1(bp
, o
);
3929 /* If CLEAR_ONLY was requested - don't send a ramrod and clear
3930 * RAMROD_PENDING status immediately.
3932 if (test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
3933 raw
->clear_pending(raw
);
3936 /* No need for an explicit memory barrier here as long as we
3937 * ensure the ordering of writing to the SPQ element
3938 * and updating of the SPQ producer which involves a memory
3939 * read. If the memory read is removed we will have to put a
3940 * full memory barrier there (inside bnx2x_sp_post()).
3944 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_SET_MAC
, raw
->cid
,
3945 U64_HI(raw
->rdata_mapping
),
3946 U64_LO(raw
->rdata_mapping
),
3947 ETH_CONNECTION_TYPE
);
3951 /* Ramrod completion is pending */
3956 static int bnx2x_mcast_get_registry_size_exact(struct bnx2x_mcast_obj
*o
)
3958 return o
->registry
.exact_match
.num_macs_set
;
3961 static int bnx2x_mcast_get_registry_size_aprox(struct bnx2x_mcast_obj
*o
)
3963 return o
->registry
.aprox_match
.num_bins_set
;
3966 static void bnx2x_mcast_set_registry_size_exact(struct bnx2x_mcast_obj
*o
,
3969 o
->registry
.exact_match
.num_macs_set
= n
;
3972 static void bnx2x_mcast_set_registry_size_aprox(struct bnx2x_mcast_obj
*o
,
3975 o
->registry
.aprox_match
.num_bins_set
= n
;
3978 int bnx2x_config_mcast(struct bnx2x
*bp
,
3979 struct bnx2x_mcast_ramrod_params
*p
,
3980 enum bnx2x_mcast_cmd cmd
)
3982 struct bnx2x_mcast_obj
*o
= p
->mcast_obj
;
3983 struct bnx2x_raw_obj
*r
= &o
->raw
;
3984 int rc
= 0, old_reg_size
;
3986 /* This is needed to recover number of currently configured mcast macs
3987 * in case of failure.
3989 old_reg_size
= o
->get_registry_size(o
);
3991 /* Do some calculations and checks */
3992 rc
= o
->validate(bp
, p
, cmd
);
3996 /* Return if there is no work to do */
3997 if ((!p
->mcast_list_len
) && (!o
->check_sched(o
)))
4000 DP(BNX2X_MSG_SP
, "o->total_pending_num=%d p->mcast_list_len=%d o->max_cmd_len=%d\n",
4001 o
->total_pending_num
, p
->mcast_list_len
, o
->max_cmd_len
);
4003 /* Enqueue the current command to the pending list if we can't complete
4004 * it in the current iteration
4006 if (r
->check_pending(r
) ||
4007 ((o
->max_cmd_len
> 0) && (o
->total_pending_num
> o
->max_cmd_len
))) {
4008 rc
= o
->enqueue_cmd(bp
, p
->mcast_obj
, p
, cmd
);
4012 /* As long as the current command is in a command list we
4013 * don't need to handle it separately.
4015 p
->mcast_list_len
= 0;
4018 if (!r
->check_pending(r
)) {
4020 /* Set 'pending' state */
4023 /* Configure the new classification in the chip */
4024 rc
= o
->config_mcast(bp
, p
, cmd
);
4028 /* Wait for a ramrod completion if was requested */
4029 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
))
4030 rc
= o
->wait_comp(bp
, o
);
4036 r
->clear_pending(r
);
4039 o
->revert(bp
, p
, old_reg_size
, cmd
);
4044 static void bnx2x_mcast_clear_sched(struct bnx2x_mcast_obj
*o
)
4046 smp_mb__before_atomic();
4047 clear_bit(o
->sched_state
, o
->raw
.pstate
);
4048 smp_mb__after_atomic();
4051 static void bnx2x_mcast_set_sched(struct bnx2x_mcast_obj
*o
)
4053 smp_mb__before_atomic();
4054 set_bit(o
->sched_state
, o
->raw
.pstate
);
4055 smp_mb__after_atomic();
4058 static bool bnx2x_mcast_check_sched(struct bnx2x_mcast_obj
*o
)
4060 return !!test_bit(o
->sched_state
, o
->raw
.pstate
);
4063 static bool bnx2x_mcast_check_pending(struct bnx2x_mcast_obj
*o
)
4065 return o
->raw
.check_pending(&o
->raw
) || o
->check_sched(o
);
4068 void bnx2x_init_mcast_obj(struct bnx2x
*bp
,
4069 struct bnx2x_mcast_obj
*mcast_obj
,
4070 u8 mcast_cl_id
, u32 mcast_cid
, u8 func_id
,
4071 u8 engine_id
, void *rdata
, dma_addr_t rdata_mapping
,
4072 int state
, unsigned long *pstate
, bnx2x_obj_type type
)
4074 memset(mcast_obj
, 0, sizeof(*mcast_obj
));
4076 bnx2x_init_raw_obj(&mcast_obj
->raw
, mcast_cl_id
, mcast_cid
, func_id
,
4077 rdata
, rdata_mapping
, state
, pstate
, type
);
4079 mcast_obj
->engine_id
= engine_id
;
4081 INIT_LIST_HEAD(&mcast_obj
->pending_cmds_head
);
4083 mcast_obj
->sched_state
= BNX2X_FILTER_MCAST_SCHED
;
4084 mcast_obj
->check_sched
= bnx2x_mcast_check_sched
;
4085 mcast_obj
->set_sched
= bnx2x_mcast_set_sched
;
4086 mcast_obj
->clear_sched
= bnx2x_mcast_clear_sched
;
4088 if (CHIP_IS_E1(bp
)) {
4089 mcast_obj
->config_mcast
= bnx2x_mcast_setup_e1
;
4090 mcast_obj
->enqueue_cmd
= bnx2x_mcast_enqueue_cmd
;
4091 mcast_obj
->hdl_restore
=
4092 bnx2x_mcast_handle_restore_cmd_e1
;
4093 mcast_obj
->check_pending
= bnx2x_mcast_check_pending
;
4095 if (CHIP_REV_IS_SLOW(bp
))
4096 mcast_obj
->max_cmd_len
= BNX2X_MAX_EMUL_MULTI
;
4098 mcast_obj
->max_cmd_len
= BNX2X_MAX_MULTICAST
;
4100 mcast_obj
->wait_comp
= bnx2x_mcast_wait
;
4101 mcast_obj
->set_one_rule
= bnx2x_mcast_set_one_rule_e1
;
4102 mcast_obj
->validate
= bnx2x_mcast_validate_e1
;
4103 mcast_obj
->revert
= bnx2x_mcast_revert_e1
;
4104 mcast_obj
->get_registry_size
=
4105 bnx2x_mcast_get_registry_size_exact
;
4106 mcast_obj
->set_registry_size
=
4107 bnx2x_mcast_set_registry_size_exact
;
4109 /* 57710 is the only chip that uses the exact match for mcast
4112 INIT_LIST_HEAD(&mcast_obj
->registry
.exact_match
.macs
);
4114 } else if (CHIP_IS_E1H(bp
)) {
4115 mcast_obj
->config_mcast
= bnx2x_mcast_setup_e1h
;
4116 mcast_obj
->enqueue_cmd
= NULL
;
4117 mcast_obj
->hdl_restore
= NULL
;
4118 mcast_obj
->check_pending
= bnx2x_mcast_check_pending
;
4120 /* 57711 doesn't send a ramrod, so it has unlimited credit
4123 mcast_obj
->max_cmd_len
= -1;
4124 mcast_obj
->wait_comp
= bnx2x_mcast_wait
;
4125 mcast_obj
->set_one_rule
= NULL
;
4126 mcast_obj
->validate
= bnx2x_mcast_validate_e1h
;
4127 mcast_obj
->revert
= bnx2x_mcast_revert_e1h
;
4128 mcast_obj
->get_registry_size
=
4129 bnx2x_mcast_get_registry_size_aprox
;
4130 mcast_obj
->set_registry_size
=
4131 bnx2x_mcast_set_registry_size_aprox
;
4133 mcast_obj
->config_mcast
= bnx2x_mcast_setup_e2
;
4134 mcast_obj
->enqueue_cmd
= bnx2x_mcast_enqueue_cmd
;
4135 mcast_obj
->hdl_restore
=
4136 bnx2x_mcast_handle_restore_cmd_e2
;
4137 mcast_obj
->check_pending
= bnx2x_mcast_check_pending
;
4138 /* TODO: There should be a proper HSI define for this number!!!
4140 mcast_obj
->max_cmd_len
= 16;
4141 mcast_obj
->wait_comp
= bnx2x_mcast_wait
;
4142 mcast_obj
->set_one_rule
= bnx2x_mcast_set_one_rule_e2
;
4143 mcast_obj
->validate
= bnx2x_mcast_validate_e2
;
4144 mcast_obj
->revert
= bnx2x_mcast_revert_e2
;
4145 mcast_obj
->get_registry_size
=
4146 bnx2x_mcast_get_registry_size_aprox
;
4147 mcast_obj
->set_registry_size
=
4148 bnx2x_mcast_set_registry_size_aprox
;
4152 /*************************** Credit handling **********************************/
4155 * atomic_add_ifless - add if the result is less than a given value.
4157 * @v: pointer of type atomic_t
4158 * @a: the amount to add to v...
4159 * @u: ...if (v + a) is less than u.
4161 * returns true if (v + a) was less than u, and false otherwise.
4164 static inline bool __atomic_add_ifless(atomic_t
*v
, int a
, int u
)
4170 if (unlikely(c
+ a
>= u
))
4173 old
= atomic_cmpxchg((v
), c
, c
+ a
);
4174 if (likely(old
== c
))
4183 * atomic_dec_ifmoe - dec if the result is more or equal than a given value.
4185 * @v: pointer of type atomic_t
4186 * @a: the amount to dec from v...
4187 * @u: ...if (v - a) is more or equal than u.
4189 * returns true if (v - a) was more or equal than u, and false
4192 static inline bool __atomic_dec_ifmoe(atomic_t
*v
, int a
, int u
)
4198 if (unlikely(c
- a
< u
))
4201 old
= atomic_cmpxchg((v
), c
, c
- a
);
4202 if (likely(old
== c
))
4210 static bool bnx2x_credit_pool_get(struct bnx2x_credit_pool_obj
*o
, int cnt
)
4215 rc
= __atomic_dec_ifmoe(&o
->credit
, cnt
, 0);
4221 static bool bnx2x_credit_pool_put(struct bnx2x_credit_pool_obj
*o
, int cnt
)
4227 /* Don't let to refill if credit + cnt > pool_sz */
4228 rc
= __atomic_add_ifless(&o
->credit
, cnt
, o
->pool_sz
+ 1);
4235 static int bnx2x_credit_pool_check(struct bnx2x_credit_pool_obj
*o
)
4240 cur_credit
= atomic_read(&o
->credit
);
4245 static bool bnx2x_credit_pool_always_true(struct bnx2x_credit_pool_obj
*o
,
4251 static bool bnx2x_credit_pool_get_entry(
4252 struct bnx2x_credit_pool_obj
*o
,
4259 /* Find "internal cam-offset" then add to base for this object... */
4260 for (vec
= 0; vec
< BNX2X_POOL_VEC_SIZE
; vec
++) {
4262 /* Skip the current vector if there are no free entries in it */
4263 if (!o
->pool_mirror
[vec
])
4266 /* If we've got here we are going to find a free entry */
4267 for (idx
= vec
* BIT_VEC64_ELEM_SZ
, i
= 0;
4268 i
< BIT_VEC64_ELEM_SZ
; idx
++, i
++)
4270 if (BIT_VEC64_TEST_BIT(o
->pool_mirror
, idx
)) {
4272 BIT_VEC64_CLEAR_BIT(o
->pool_mirror
, idx
);
4273 *offset
= o
->base_pool_offset
+ idx
;
4281 static bool bnx2x_credit_pool_put_entry(
4282 struct bnx2x_credit_pool_obj
*o
,
4285 if (offset
< o
->base_pool_offset
)
4288 offset
-= o
->base_pool_offset
;
4290 if (offset
>= o
->pool_sz
)
4293 /* Return the entry to the pool */
4294 BIT_VEC64_SET_BIT(o
->pool_mirror
, offset
);
4299 static bool bnx2x_credit_pool_put_entry_always_true(
4300 struct bnx2x_credit_pool_obj
*o
,
4306 static bool bnx2x_credit_pool_get_entry_always_true(
4307 struct bnx2x_credit_pool_obj
*o
,
4314 * bnx2x_init_credit_pool - initialize credit pool internals.
4317 * @base: Base entry in the CAM to use.
4318 * @credit: pool size.
4320 * If base is negative no CAM entries handling will be performed.
4321 * If credit is negative pool operations will always succeed (unlimited pool).
4324 void bnx2x_init_credit_pool(struct bnx2x_credit_pool_obj
*p
,
4325 int base
, int credit
)
4327 /* Zero the object first */
4328 memset(p
, 0, sizeof(*p
));
4330 /* Set the table to all 1s */
4331 memset(&p
->pool_mirror
, 0xff, sizeof(p
->pool_mirror
));
4333 /* Init a pool as full */
4334 atomic_set(&p
->credit
, credit
);
4336 /* The total poll size */
4337 p
->pool_sz
= credit
;
4339 p
->base_pool_offset
= base
;
4341 /* Commit the change */
4344 p
->check
= bnx2x_credit_pool_check
;
4346 /* if pool credit is negative - disable the checks */
4348 p
->put
= bnx2x_credit_pool_put
;
4349 p
->get
= bnx2x_credit_pool_get
;
4350 p
->put_entry
= bnx2x_credit_pool_put_entry
;
4351 p
->get_entry
= bnx2x_credit_pool_get_entry
;
4353 p
->put
= bnx2x_credit_pool_always_true
;
4354 p
->get
= bnx2x_credit_pool_always_true
;
4355 p
->put_entry
= bnx2x_credit_pool_put_entry_always_true
;
4356 p
->get_entry
= bnx2x_credit_pool_get_entry_always_true
;
4359 /* If base is negative - disable entries handling */
4361 p
->put_entry
= bnx2x_credit_pool_put_entry_always_true
;
4362 p
->get_entry
= bnx2x_credit_pool_get_entry_always_true
;
4366 void bnx2x_init_mac_credit_pool(struct bnx2x
*bp
,
4367 struct bnx2x_credit_pool_obj
*p
, u8 func_id
,
4370 /* TODO: this will be defined in consts as well... */
4371 #define BNX2X_CAM_SIZE_EMUL 5
4375 if (CHIP_IS_E1(bp
)) {
4376 /* In E1, Multicast is saved in cam... */
4377 if (!CHIP_REV_IS_SLOW(bp
))
4378 cam_sz
= (MAX_MAC_CREDIT_E1
/ 2) - BNX2X_MAX_MULTICAST
;
4380 cam_sz
= BNX2X_CAM_SIZE_EMUL
- BNX2X_MAX_EMUL_MULTI
;
4382 bnx2x_init_credit_pool(p
, func_id
* cam_sz
, cam_sz
);
4384 } else if (CHIP_IS_E1H(bp
)) {
4385 /* CAM credit is equaly divided between all active functions
4388 if ((func_num
> 0)) {
4389 if (!CHIP_REV_IS_SLOW(bp
))
4390 cam_sz
= (MAX_MAC_CREDIT_E1H
/ (2*func_num
));
4392 cam_sz
= BNX2X_CAM_SIZE_EMUL
;
4393 bnx2x_init_credit_pool(p
, func_id
* cam_sz
, cam_sz
);
4395 /* this should never happen! Block MAC operations. */
4396 bnx2x_init_credit_pool(p
, 0, 0);
4401 /* CAM credit is equaly divided between all active functions
4405 if (!CHIP_REV_IS_SLOW(bp
))
4406 cam_sz
= PF_MAC_CREDIT_E2(bp
, func_num
);
4408 cam_sz
= BNX2X_CAM_SIZE_EMUL
;
4410 /* No need for CAM entries handling for 57712 and
4413 bnx2x_init_credit_pool(p
, -1, cam_sz
);
4415 /* this should never happen! Block MAC operations. */
4416 bnx2x_init_credit_pool(p
, 0, 0);
4421 void bnx2x_init_vlan_credit_pool(struct bnx2x
*bp
,
4422 struct bnx2x_credit_pool_obj
*p
,
4426 if (CHIP_IS_E1x(bp
)) {
4427 /* There is no VLAN credit in HW on 57710 and 57711 only
4428 * MAC / MAC-VLAN can be set
4430 bnx2x_init_credit_pool(p
, 0, -1);
4432 /* CAM credit is equally divided between all active functions
4436 int credit
= PF_VLAN_CREDIT_E2(bp
, func_num
);
4438 bnx2x_init_credit_pool(p
, -1/*unused for E2*/, credit
);
4440 /* this should never happen! Block VLAN operations. */
4441 bnx2x_init_credit_pool(p
, 0, 0);
4445 /****************** RSS Configuration ******************/
4447 * bnx2x_debug_print_ind_table - prints the indirection table configuration.
4449 * @bp: driver handle
4450 * @p: pointer to rss configuration
4452 * Prints it when NETIF_MSG_IFUP debug level is configured.
4454 static inline void bnx2x_debug_print_ind_table(struct bnx2x
*bp
,
4455 struct bnx2x_config_rss_params
*p
)
4459 DP(BNX2X_MSG_SP
, "Setting indirection table to:\n");
4460 DP(BNX2X_MSG_SP
, "0x0000: ");
4461 for (i
= 0; i
< T_ETH_INDIRECTION_TABLE_SIZE
; i
++) {
4462 DP_CONT(BNX2X_MSG_SP
, "0x%02x ", p
->ind_table
[i
]);
4464 /* Print 4 bytes in a line */
4465 if ((i
+ 1 < T_ETH_INDIRECTION_TABLE_SIZE
) &&
4466 (((i
+ 1) & 0x3) == 0)) {
4467 DP_CONT(BNX2X_MSG_SP
, "\n");
4468 DP(BNX2X_MSG_SP
, "0x%04x: ", i
+ 1);
4472 DP_CONT(BNX2X_MSG_SP
, "\n");
4476 * bnx2x_setup_rss - configure RSS
4478 * @bp: device handle
4479 * @p: rss configuration
4481 * sends on UPDATE ramrod for that matter.
4483 static int bnx2x_setup_rss(struct bnx2x
*bp
,
4484 struct bnx2x_config_rss_params
*p
)
4486 struct bnx2x_rss_config_obj
*o
= p
->rss_obj
;
4487 struct bnx2x_raw_obj
*r
= &o
->raw
;
4488 struct eth_rss_update_ramrod_data
*data
=
4489 (struct eth_rss_update_ramrod_data
*)(r
->rdata
);
4494 memset(data
, 0, sizeof(*data
));
4496 DP(BNX2X_MSG_SP
, "Configuring RSS\n");
4498 /* Set an echo field */
4499 data
->echo
= cpu_to_le32((r
->cid
& BNX2X_SWCID_MASK
) |
4500 (r
->state
<< BNX2X_SWCID_SHIFT
));
4503 if (test_bit(BNX2X_RSS_MODE_DISABLED
, &p
->rss_flags
))
4504 rss_mode
= ETH_RSS_MODE_DISABLED
;
4505 else if (test_bit(BNX2X_RSS_MODE_REGULAR
, &p
->rss_flags
))
4506 rss_mode
= ETH_RSS_MODE_REGULAR
;
4508 data
->rss_mode
= rss_mode
;
4510 DP(BNX2X_MSG_SP
, "rss_mode=%d\n", rss_mode
);
4512 /* RSS capabilities */
4513 if (test_bit(BNX2X_RSS_IPV4
, &p
->rss_flags
))
4514 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_CAPABILITY
;
4516 if (test_bit(BNX2X_RSS_IPV4_TCP
, &p
->rss_flags
))
4517 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_TCP_CAPABILITY
;
4519 if (test_bit(BNX2X_RSS_IPV4_UDP
, &p
->rss_flags
))
4520 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_UDP_CAPABILITY
;
4522 if (test_bit(BNX2X_RSS_IPV6
, &p
->rss_flags
))
4523 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_CAPABILITY
;
4525 if (test_bit(BNX2X_RSS_IPV6_TCP
, &p
->rss_flags
))
4526 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_TCP_CAPABILITY
;
4528 if (test_bit(BNX2X_RSS_IPV6_UDP
, &p
->rss_flags
))
4529 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_UDP_CAPABILITY
;
4531 if (test_bit(BNX2X_RSS_IPV4_VXLAN
, &p
->rss_flags
))
4532 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV4_VXLAN_CAPABILITY
;
4534 if (test_bit(BNX2X_RSS_IPV6_VXLAN
, &p
->rss_flags
))
4535 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_IPV6_VXLAN_CAPABILITY
;
4537 if (test_bit(BNX2X_RSS_TUNN_INNER_HDRS
, &p
->rss_flags
))
4538 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_TUNN_INNER_HDRS_CAPABILITY
;
4541 if (test_bit(BNX2X_RSS_SET_SRCH
, &p
->rss_flags
)) {
4542 u8
*dst
= (u8
*)(data
->rss_key
) + sizeof(data
->rss_key
);
4543 const u8
*src
= (const u8
*)p
->rss_key
;
4546 /* Apparently, bnx2x reads this array in reverse order
4547 * We need to byte swap rss_key to comply with Toeplitz specs.
4549 for (i
= 0; i
< sizeof(data
->rss_key
); i
++)
4552 caps
|= ETH_RSS_UPDATE_RAMROD_DATA_UPDATE_RSS_KEY
;
4555 data
->capabilities
= cpu_to_le16(caps
);
4558 data
->rss_result_mask
= p
->rss_result_mask
;
4561 data
->rss_engine_id
= o
->engine_id
;
4563 DP(BNX2X_MSG_SP
, "rss_engine_id=%d\n", data
->rss_engine_id
);
4565 /* Indirection table */
4566 memcpy(data
->indirection_table
, p
->ind_table
,
4567 T_ETH_INDIRECTION_TABLE_SIZE
);
4569 /* Remember the last configuration */
4570 memcpy(o
->ind_table
, p
->ind_table
, T_ETH_INDIRECTION_TABLE_SIZE
);
4572 /* Print the indirection table */
4573 if (netif_msg_ifup(bp
))
4574 bnx2x_debug_print_ind_table(bp
, p
);
4576 /* No need for an explicit memory barrier here as long as we
4577 * ensure the ordering of writing to the SPQ element
4578 * and updating of the SPQ producer which involves a memory
4579 * read. If the memory read is removed we will have to put a
4580 * full memory barrier there (inside bnx2x_sp_post()).
4584 rc
= bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_RSS_UPDATE
, r
->cid
,
4585 U64_HI(r
->rdata_mapping
),
4586 U64_LO(r
->rdata_mapping
),
4587 ETH_CONNECTION_TYPE
);
4595 void bnx2x_get_rss_ind_table(struct bnx2x_rss_config_obj
*rss_obj
,
4598 memcpy(ind_table
, rss_obj
->ind_table
, sizeof(rss_obj
->ind_table
));
4601 int bnx2x_config_rss(struct bnx2x
*bp
,
4602 struct bnx2x_config_rss_params
*p
)
4605 struct bnx2x_rss_config_obj
*o
= p
->rss_obj
;
4606 struct bnx2x_raw_obj
*r
= &o
->raw
;
4608 /* Do nothing if only driver cleanup was requested */
4609 if (test_bit(RAMROD_DRV_CLR_ONLY
, &p
->ramrod_flags
)) {
4610 DP(BNX2X_MSG_SP
, "Not configuring RSS ramrod_flags=%lx\n",
4617 rc
= o
->config_rss(bp
, p
);
4619 r
->clear_pending(r
);
4623 if (test_bit(RAMROD_COMP_WAIT
, &p
->ramrod_flags
))
4624 rc
= r
->wait_comp(bp
, r
);
4629 void bnx2x_init_rss_config_obj(struct bnx2x
*bp
,
4630 struct bnx2x_rss_config_obj
*rss_obj
,
4631 u8 cl_id
, u32 cid
, u8 func_id
, u8 engine_id
,
4632 void *rdata
, dma_addr_t rdata_mapping
,
4633 int state
, unsigned long *pstate
,
4634 bnx2x_obj_type type
)
4636 bnx2x_init_raw_obj(&rss_obj
->raw
, cl_id
, cid
, func_id
, rdata
,
4637 rdata_mapping
, state
, pstate
, type
);
4639 rss_obj
->engine_id
= engine_id
;
4640 rss_obj
->config_rss
= bnx2x_setup_rss
;
4643 /********************** Queue state object ***********************************/
4646 * bnx2x_queue_state_change - perform Queue state change transition
4648 * @bp: device handle
4649 * @params: parameters to perform the transition
4651 * returns 0 in case of successfully completed transition, negative error
4652 * code in case of failure, positive (EBUSY) value if there is a completion
4653 * to that is still pending (possible only if RAMROD_COMP_WAIT is
4654 * not set in params->ramrod_flags for asynchronous commands).
4657 int bnx2x_queue_state_change(struct bnx2x
*bp
,
4658 struct bnx2x_queue_state_params
*params
)
4660 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
4661 int rc
, pending_bit
;
4662 unsigned long *pending
= &o
->pending
;
4664 /* Check that the requested transition is legal */
4665 rc
= o
->check_transition(bp
, o
, params
);
4667 BNX2X_ERR("check transition returned an error. rc %d\n", rc
);
4671 /* Set "pending" bit */
4672 DP(BNX2X_MSG_SP
, "pending bit was=%lx\n", o
->pending
);
4673 pending_bit
= o
->set_pending(o
, params
);
4674 DP(BNX2X_MSG_SP
, "pending bit now=%lx\n", o
->pending
);
4676 /* Don't send a command if only driver cleanup was requested */
4677 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
))
4678 o
->complete_cmd(bp
, o
, pending_bit
);
4681 rc
= o
->send_cmd(bp
, params
);
4683 o
->next_state
= BNX2X_Q_STATE_MAX
;
4684 clear_bit(pending_bit
, pending
);
4685 smp_mb__after_atomic();
4689 if (test_bit(RAMROD_COMP_WAIT
, ¶ms
->ramrod_flags
)) {
4690 rc
= o
->wait_comp(bp
, o
, pending_bit
);
4698 return !!test_bit(pending_bit
, pending
);
4701 static int bnx2x_queue_set_pending(struct bnx2x_queue_sp_obj
*obj
,
4702 struct bnx2x_queue_state_params
*params
)
4704 enum bnx2x_queue_cmd cmd
= params
->cmd
, bit
;
4706 /* ACTIVATE and DEACTIVATE commands are implemented on top of
4709 if ((cmd
== BNX2X_Q_CMD_ACTIVATE
) ||
4710 (cmd
== BNX2X_Q_CMD_DEACTIVATE
))
4711 bit
= BNX2X_Q_CMD_UPDATE
;
4715 set_bit(bit
, &obj
->pending
);
4719 static int bnx2x_queue_wait_comp(struct bnx2x
*bp
,
4720 struct bnx2x_queue_sp_obj
*o
,
4721 enum bnx2x_queue_cmd cmd
)
4723 return bnx2x_state_wait(bp
, cmd
, &o
->pending
);
4727 * bnx2x_queue_comp_cmd - complete the state change command.
4729 * @bp: device handle
4731 * @cmd: command to exec
4733 * Checks that the arrived completion is expected.
4735 static int bnx2x_queue_comp_cmd(struct bnx2x
*bp
,
4736 struct bnx2x_queue_sp_obj
*o
,
4737 enum bnx2x_queue_cmd cmd
)
4739 unsigned long cur_pending
= o
->pending
;
4741 if (!test_and_clear_bit(cmd
, &cur_pending
)) {
4742 BNX2X_ERR("Bad MC reply %d for queue %d in state %d pending 0x%lx, next_state %d\n",
4743 cmd
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
4744 o
->state
, cur_pending
, o
->next_state
);
4748 if (o
->next_tx_only
>= o
->max_cos
)
4749 /* >= because tx only must always be smaller than cos since the
4750 * primary connection supports COS 0
4752 BNX2X_ERR("illegal value for next tx_only: %d. max cos was %d",
4753 o
->next_tx_only
, o
->max_cos
);
4756 "Completing command %d for queue %d, setting state to %d\n",
4757 cmd
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
], o
->next_state
);
4759 if (o
->next_tx_only
) /* print num tx-only if any exist */
4760 DP(BNX2X_MSG_SP
, "primary cid %d: num tx-only cons %d\n",
4761 o
->cids
[BNX2X_PRIMARY_CID_INDEX
], o
->next_tx_only
);
4763 o
->state
= o
->next_state
;
4764 o
->num_tx_only
= o
->next_tx_only
;
4765 o
->next_state
= BNX2X_Q_STATE_MAX
;
4767 /* It's important that o->state and o->next_state are
4768 * updated before o->pending.
4772 clear_bit(cmd
, &o
->pending
);
4773 smp_mb__after_atomic();
4778 static void bnx2x_q_fill_setup_data_e2(struct bnx2x
*bp
,
4779 struct bnx2x_queue_state_params
*cmd_params
,
4780 struct client_init_ramrod_data
*data
)
4782 struct bnx2x_queue_setup_params
*params
= &cmd_params
->params
.setup
;
4786 /* IPv6 TPA supported for E2 and above only */
4787 data
->rx
.tpa_en
|= test_bit(BNX2X_Q_FLG_TPA_IPV6
, ¶ms
->flags
) *
4788 CLIENT_INIT_RX_DATA_TPA_EN_IPV6
;
4791 static void bnx2x_q_fill_init_general_data(struct bnx2x
*bp
,
4792 struct bnx2x_queue_sp_obj
*o
,
4793 struct bnx2x_general_setup_params
*params
,
4794 struct client_init_general_data
*gen_data
,
4795 unsigned long *flags
)
4797 gen_data
->client_id
= o
->cl_id
;
4799 if (test_bit(BNX2X_Q_FLG_STATS
, flags
)) {
4800 gen_data
->statistics_counter_id
=
4802 gen_data
->statistics_en_flg
= 1;
4803 gen_data
->statistics_zero_flg
=
4804 test_bit(BNX2X_Q_FLG_ZERO_STATS
, flags
);
4806 gen_data
->statistics_counter_id
=
4807 DISABLE_STATISTIC_COUNTER_ID_VALUE
;
4809 gen_data
->is_fcoe_flg
= test_bit(BNX2X_Q_FLG_FCOE
, flags
);
4810 gen_data
->activate_flg
= test_bit(BNX2X_Q_FLG_ACTIVE
, flags
);
4811 gen_data
->sp_client_id
= params
->spcl_id
;
4812 gen_data
->mtu
= cpu_to_le16(params
->mtu
);
4813 gen_data
->func_id
= o
->func_id
;
4815 gen_data
->cos
= params
->cos
;
4817 gen_data
->traffic_type
=
4818 test_bit(BNX2X_Q_FLG_FCOE
, flags
) ?
4819 LLFC_TRAFFIC_TYPE_FCOE
: LLFC_TRAFFIC_TYPE_NW
;
4821 gen_data
->fp_hsi_ver
= params
->fp_hsi
;
4823 DP(BNX2X_MSG_SP
, "flags: active %d, cos %d, stats en %d\n",
4824 gen_data
->activate_flg
, gen_data
->cos
, gen_data
->statistics_en_flg
);
4827 static void bnx2x_q_fill_init_tx_data(struct bnx2x_queue_sp_obj
*o
,
4828 struct bnx2x_txq_setup_params
*params
,
4829 struct client_init_tx_data
*tx_data
,
4830 unsigned long *flags
)
4832 tx_data
->enforce_security_flg
=
4833 test_bit(BNX2X_Q_FLG_TX_SEC
, flags
);
4834 tx_data
->default_vlan
=
4835 cpu_to_le16(params
->default_vlan
);
4836 tx_data
->default_vlan_flg
=
4837 test_bit(BNX2X_Q_FLG_DEF_VLAN
, flags
);
4838 tx_data
->tx_switching_flg
=
4839 test_bit(BNX2X_Q_FLG_TX_SWITCH
, flags
);
4840 tx_data
->anti_spoofing_flg
=
4841 test_bit(BNX2X_Q_FLG_ANTI_SPOOF
, flags
);
4842 tx_data
->force_default_pri_flg
=
4843 test_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI
, flags
);
4844 tx_data
->refuse_outband_vlan_flg
=
4845 test_bit(BNX2X_Q_FLG_REFUSE_OUTBAND_VLAN
, flags
);
4846 tx_data
->tunnel_lso_inc_ip_id
=
4847 test_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID
, flags
);
4848 tx_data
->tunnel_non_lso_pcsum_location
=
4849 test_bit(BNX2X_Q_FLG_PCSUM_ON_PKT
, flags
) ? CSUM_ON_PKT
:
4852 tx_data
->tx_status_block_id
= params
->fw_sb_id
;
4853 tx_data
->tx_sb_index_number
= params
->sb_cq_index
;
4854 tx_data
->tss_leading_client_id
= params
->tss_leading_cl_id
;
4856 tx_data
->tx_bd_page_base
.lo
=
4857 cpu_to_le32(U64_LO(params
->dscr_map
));
4858 tx_data
->tx_bd_page_base
.hi
=
4859 cpu_to_le32(U64_HI(params
->dscr_map
));
4861 /* Don't configure any Tx switching mode during queue SETUP */
4865 static void bnx2x_q_fill_init_pause_data(struct bnx2x_queue_sp_obj
*o
,
4866 struct rxq_pause_params
*params
,
4867 struct client_init_rx_data
*rx_data
)
4869 /* flow control data */
4870 rx_data
->cqe_pause_thr_low
= cpu_to_le16(params
->rcq_th_lo
);
4871 rx_data
->cqe_pause_thr_high
= cpu_to_le16(params
->rcq_th_hi
);
4872 rx_data
->bd_pause_thr_low
= cpu_to_le16(params
->bd_th_lo
);
4873 rx_data
->bd_pause_thr_high
= cpu_to_le16(params
->bd_th_hi
);
4874 rx_data
->sge_pause_thr_low
= cpu_to_le16(params
->sge_th_lo
);
4875 rx_data
->sge_pause_thr_high
= cpu_to_le16(params
->sge_th_hi
);
4876 rx_data
->rx_cos_mask
= cpu_to_le16(params
->pri_map
);
4879 static void bnx2x_q_fill_init_rx_data(struct bnx2x_queue_sp_obj
*o
,
4880 struct bnx2x_rxq_setup_params
*params
,
4881 struct client_init_rx_data
*rx_data
,
4882 unsigned long *flags
)
4884 rx_data
->tpa_en
= test_bit(BNX2X_Q_FLG_TPA
, flags
) *
4885 CLIENT_INIT_RX_DATA_TPA_EN_IPV4
;
4886 rx_data
->tpa_en
|= test_bit(BNX2X_Q_FLG_TPA_GRO
, flags
) *
4887 CLIENT_INIT_RX_DATA_TPA_MODE
;
4888 rx_data
->vmqueue_mode_en_flg
= 0;
4890 rx_data
->cache_line_alignment_log_size
=
4891 params
->cache_line_log
;
4892 rx_data
->enable_dynamic_hc
=
4893 test_bit(BNX2X_Q_FLG_DHC
, flags
);
4894 rx_data
->max_sges_for_packet
= params
->max_sges_pkt
;
4895 rx_data
->client_qzone_id
= params
->cl_qzone_id
;
4896 rx_data
->max_agg_size
= cpu_to_le16(params
->tpa_agg_sz
);
4898 /* Always start in DROP_ALL mode */
4899 rx_data
->state
= cpu_to_le16(CLIENT_INIT_RX_DATA_UCAST_DROP_ALL
|
4900 CLIENT_INIT_RX_DATA_MCAST_DROP_ALL
);
4902 /* We don't set drop flags */
4903 rx_data
->drop_ip_cs_err_flg
= 0;
4904 rx_data
->drop_tcp_cs_err_flg
= 0;
4905 rx_data
->drop_ttl0_flg
= 0;
4906 rx_data
->drop_udp_cs_err_flg
= 0;
4907 rx_data
->inner_vlan_removal_enable_flg
=
4908 test_bit(BNX2X_Q_FLG_VLAN
, flags
);
4909 rx_data
->outer_vlan_removal_enable_flg
=
4910 test_bit(BNX2X_Q_FLG_OV
, flags
);
4911 rx_data
->status_block_id
= params
->fw_sb_id
;
4912 rx_data
->rx_sb_index_number
= params
->sb_cq_index
;
4913 rx_data
->max_tpa_queues
= params
->max_tpa_queues
;
4914 rx_data
->max_bytes_on_bd
= cpu_to_le16(params
->buf_sz
);
4915 rx_data
->sge_buff_size
= cpu_to_le16(params
->sge_buf_sz
);
4916 rx_data
->bd_page_base
.lo
=
4917 cpu_to_le32(U64_LO(params
->dscr_map
));
4918 rx_data
->bd_page_base
.hi
=
4919 cpu_to_le32(U64_HI(params
->dscr_map
));
4920 rx_data
->sge_page_base
.lo
=
4921 cpu_to_le32(U64_LO(params
->sge_map
));
4922 rx_data
->sge_page_base
.hi
=
4923 cpu_to_le32(U64_HI(params
->sge_map
));
4924 rx_data
->cqe_page_base
.lo
=
4925 cpu_to_le32(U64_LO(params
->rcq_map
));
4926 rx_data
->cqe_page_base
.hi
=
4927 cpu_to_le32(U64_HI(params
->rcq_map
));
4928 rx_data
->is_leading_rss
= test_bit(BNX2X_Q_FLG_LEADING_RSS
, flags
);
4930 if (test_bit(BNX2X_Q_FLG_MCAST
, flags
)) {
4931 rx_data
->approx_mcast_engine_id
= params
->mcast_engine_id
;
4932 rx_data
->is_approx_mcast
= 1;
4935 rx_data
->rss_engine_id
= params
->rss_engine_id
;
4937 /* silent vlan removal */
4938 rx_data
->silent_vlan_removal_flg
=
4939 test_bit(BNX2X_Q_FLG_SILENT_VLAN_REM
, flags
);
4940 rx_data
->silent_vlan_value
=
4941 cpu_to_le16(params
->silent_removal_value
);
4942 rx_data
->silent_vlan_mask
=
4943 cpu_to_le16(params
->silent_removal_mask
);
4946 /* initialize the general, tx and rx parts of a queue object */
4947 static void bnx2x_q_fill_setup_data_cmn(struct bnx2x
*bp
,
4948 struct bnx2x_queue_state_params
*cmd_params
,
4949 struct client_init_ramrod_data
*data
)
4951 bnx2x_q_fill_init_general_data(bp
, cmd_params
->q_obj
,
4952 &cmd_params
->params
.setup
.gen_params
,
4954 &cmd_params
->params
.setup
.flags
);
4956 bnx2x_q_fill_init_tx_data(cmd_params
->q_obj
,
4957 &cmd_params
->params
.setup
.txq_params
,
4959 &cmd_params
->params
.setup
.flags
);
4961 bnx2x_q_fill_init_rx_data(cmd_params
->q_obj
,
4962 &cmd_params
->params
.setup
.rxq_params
,
4964 &cmd_params
->params
.setup
.flags
);
4966 bnx2x_q_fill_init_pause_data(cmd_params
->q_obj
,
4967 &cmd_params
->params
.setup
.pause_params
,
4971 /* initialize the general and tx parts of a tx-only queue object */
4972 static void bnx2x_q_fill_setup_tx_only(struct bnx2x
*bp
,
4973 struct bnx2x_queue_state_params
*cmd_params
,
4974 struct tx_queue_init_ramrod_data
*data
)
4976 bnx2x_q_fill_init_general_data(bp
, cmd_params
->q_obj
,
4977 &cmd_params
->params
.tx_only
.gen_params
,
4979 &cmd_params
->params
.tx_only
.flags
);
4981 bnx2x_q_fill_init_tx_data(cmd_params
->q_obj
,
4982 &cmd_params
->params
.tx_only
.txq_params
,
4984 &cmd_params
->params
.tx_only
.flags
);
4986 DP(BNX2X_MSG_SP
, "cid %d, tx bd page lo %x hi %x",
4987 cmd_params
->q_obj
->cids
[0],
4988 data
->tx
.tx_bd_page_base
.lo
,
4989 data
->tx
.tx_bd_page_base
.hi
);
4993 * bnx2x_q_init - init HW/FW queue
4995 * @bp: device handle
4998 * HW/FW initial Queue configuration:
5000 * - CDU context validation
5003 static inline int bnx2x_q_init(struct bnx2x
*bp
,
5004 struct bnx2x_queue_state_params
*params
)
5006 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5007 struct bnx2x_queue_init_params
*init
= ¶ms
->params
.init
;
5011 /* Tx HC configuration */
5012 if (test_bit(BNX2X_Q_TYPE_HAS_TX
, &o
->type
) &&
5013 test_bit(BNX2X_Q_FLG_HC
, &init
->tx
.flags
)) {
5014 hc_usec
= init
->tx
.hc_rate
? 1000000 / init
->tx
.hc_rate
: 0;
5016 bnx2x_update_coalesce_sb_index(bp
, init
->tx
.fw_sb_id
,
5017 init
->tx
.sb_cq_index
,
5018 !test_bit(BNX2X_Q_FLG_HC_EN
, &init
->tx
.flags
),
5022 /* Rx HC configuration */
5023 if (test_bit(BNX2X_Q_TYPE_HAS_RX
, &o
->type
) &&
5024 test_bit(BNX2X_Q_FLG_HC
, &init
->rx
.flags
)) {
5025 hc_usec
= init
->rx
.hc_rate
? 1000000 / init
->rx
.hc_rate
: 0;
5027 bnx2x_update_coalesce_sb_index(bp
, init
->rx
.fw_sb_id
,
5028 init
->rx
.sb_cq_index
,
5029 !test_bit(BNX2X_Q_FLG_HC_EN
, &init
->rx
.flags
),
5033 /* Set CDU context validation values */
5034 for (cos
= 0; cos
< o
->max_cos
; cos
++) {
5035 DP(BNX2X_MSG_SP
, "setting context validation. cid %d, cos %d\n",
5037 DP(BNX2X_MSG_SP
, "context pointer %p\n", init
->cxts
[cos
]);
5038 bnx2x_set_ctx_validation(bp
, init
->cxts
[cos
], o
->cids
[cos
]);
5041 /* As no ramrod is sent, complete the command immediately */
5042 o
->complete_cmd(bp
, o
, BNX2X_Q_CMD_INIT
);
5049 static inline int bnx2x_q_send_setup_e1x(struct bnx2x
*bp
,
5050 struct bnx2x_queue_state_params
*params
)
5052 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5053 struct client_init_ramrod_data
*rdata
=
5054 (struct client_init_ramrod_data
*)o
->rdata
;
5055 dma_addr_t data_mapping
= o
->rdata_mapping
;
5056 int ramrod
= RAMROD_CMD_ID_ETH_CLIENT_SETUP
;
5058 /* Clear the ramrod data */
5059 memset(rdata
, 0, sizeof(*rdata
));
5061 /* Fill the ramrod data */
5062 bnx2x_q_fill_setup_data_cmn(bp
, params
, rdata
);
5064 /* No need for an explicit memory barrier here as long as we
5065 * ensure the ordering of writing to the SPQ element
5066 * and updating of the SPQ producer which involves a memory
5067 * read. If the memory read is removed we will have to put a
5068 * full memory barrier there (inside bnx2x_sp_post()).
5070 return bnx2x_sp_post(bp
, ramrod
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
5071 U64_HI(data_mapping
),
5072 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
5075 static inline int bnx2x_q_send_setup_e2(struct bnx2x
*bp
,
5076 struct bnx2x_queue_state_params
*params
)
5078 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5079 struct client_init_ramrod_data
*rdata
=
5080 (struct client_init_ramrod_data
*)o
->rdata
;
5081 dma_addr_t data_mapping
= o
->rdata_mapping
;
5082 int ramrod
= RAMROD_CMD_ID_ETH_CLIENT_SETUP
;
5084 /* Clear the ramrod data */
5085 memset(rdata
, 0, sizeof(*rdata
));
5087 /* Fill the ramrod data */
5088 bnx2x_q_fill_setup_data_cmn(bp
, params
, rdata
);
5089 bnx2x_q_fill_setup_data_e2(bp
, params
, rdata
);
5091 /* No need for an explicit memory barrier here as long as we
5092 * ensure the ordering of writing to the SPQ element
5093 * and updating of the SPQ producer which involves a memory
5094 * read. If the memory read is removed we will have to put a
5095 * full memory barrier there (inside bnx2x_sp_post()).
5097 return bnx2x_sp_post(bp
, ramrod
, o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
5098 U64_HI(data_mapping
),
5099 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
5102 static inline int bnx2x_q_send_setup_tx_only(struct bnx2x
*bp
,
5103 struct bnx2x_queue_state_params
*params
)
5105 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5106 struct tx_queue_init_ramrod_data
*rdata
=
5107 (struct tx_queue_init_ramrod_data
*)o
->rdata
;
5108 dma_addr_t data_mapping
= o
->rdata_mapping
;
5109 int ramrod
= RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP
;
5110 struct bnx2x_queue_setup_tx_only_params
*tx_only_params
=
5111 ¶ms
->params
.tx_only
;
5112 u8 cid_index
= tx_only_params
->cid_index
;
5114 if (cid_index
>= o
->max_cos
) {
5115 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5116 o
->cl_id
, cid_index
);
5120 DP(BNX2X_MSG_SP
, "parameters received: cos: %d sp-id: %d\n",
5121 tx_only_params
->gen_params
.cos
,
5122 tx_only_params
->gen_params
.spcl_id
);
5124 /* Clear the ramrod data */
5125 memset(rdata
, 0, sizeof(*rdata
));
5127 /* Fill the ramrod data */
5128 bnx2x_q_fill_setup_tx_only(bp
, params
, rdata
);
5130 DP(BNX2X_MSG_SP
, "sending tx-only ramrod: cid %d, client-id %d, sp-client id %d, cos %d\n",
5131 o
->cids
[cid_index
], rdata
->general
.client_id
,
5132 rdata
->general
.sp_client_id
, rdata
->general
.cos
);
5134 /* No need for an explicit memory barrier here as long as we
5135 * ensure the ordering of writing to the SPQ element
5136 * and updating of the SPQ producer which involves a memory
5137 * read. If the memory read is removed we will have to put a
5138 * full memory barrier there (inside bnx2x_sp_post()).
5140 return bnx2x_sp_post(bp
, ramrod
, o
->cids
[cid_index
],
5141 U64_HI(data_mapping
),
5142 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
5145 static void bnx2x_q_fill_update_data(struct bnx2x
*bp
,
5146 struct bnx2x_queue_sp_obj
*obj
,
5147 struct bnx2x_queue_update_params
*params
,
5148 struct client_update_ramrod_data
*data
)
5150 /* Client ID of the client to update */
5151 data
->client_id
= obj
->cl_id
;
5153 /* Function ID of the client to update */
5154 data
->func_id
= obj
->func_id
;
5156 /* Default VLAN value */
5157 data
->default_vlan
= cpu_to_le16(params
->def_vlan
);
5159 /* Inner VLAN stripping */
5160 data
->inner_vlan_removal_enable_flg
=
5161 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM
, ¶ms
->update_flags
);
5162 data
->inner_vlan_removal_change_flg
=
5163 test_bit(BNX2X_Q_UPDATE_IN_VLAN_REM_CHNG
,
5164 ¶ms
->update_flags
);
5166 /* Outer VLAN stripping */
5167 data
->outer_vlan_removal_enable_flg
=
5168 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM
, ¶ms
->update_flags
);
5169 data
->outer_vlan_removal_change_flg
=
5170 test_bit(BNX2X_Q_UPDATE_OUT_VLAN_REM_CHNG
,
5171 ¶ms
->update_flags
);
5173 /* Drop packets that have source MAC that doesn't belong to this
5176 data
->anti_spoofing_enable_flg
=
5177 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF
, ¶ms
->update_flags
);
5178 data
->anti_spoofing_change_flg
=
5179 test_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG
, ¶ms
->update_flags
);
5181 /* Activate/Deactivate */
5182 data
->activate_flg
=
5183 test_bit(BNX2X_Q_UPDATE_ACTIVATE
, ¶ms
->update_flags
);
5184 data
->activate_change_flg
=
5185 test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
, ¶ms
->update_flags
);
5187 /* Enable default VLAN */
5188 data
->default_vlan_enable_flg
=
5189 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
, ¶ms
->update_flags
);
5190 data
->default_vlan_change_flg
=
5191 test_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG
,
5192 ¶ms
->update_flags
);
5194 /* silent vlan removal */
5195 data
->silent_vlan_change_flg
=
5196 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
5197 ¶ms
->update_flags
);
5198 data
->silent_vlan_removal_flg
=
5199 test_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
, ¶ms
->update_flags
);
5200 data
->silent_vlan_value
= cpu_to_le16(params
->silent_removal_value
);
5201 data
->silent_vlan_mask
= cpu_to_le16(params
->silent_removal_mask
);
5204 data
->tx_switching_flg
=
5205 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING
, ¶ms
->update_flags
);
5206 data
->tx_switching_change_flg
=
5207 test_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG
,
5208 ¶ms
->update_flags
);
5211 data
->handle_ptp_pkts_flg
=
5212 test_bit(BNX2X_Q_UPDATE_PTP_PKTS
, ¶ms
->update_flags
);
5213 data
->handle_ptp_pkts_change_flg
=
5214 test_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG
, ¶ms
->update_flags
);
5217 static inline int bnx2x_q_send_update(struct bnx2x
*bp
,
5218 struct bnx2x_queue_state_params
*params
)
5220 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5221 struct client_update_ramrod_data
*rdata
=
5222 (struct client_update_ramrod_data
*)o
->rdata
;
5223 dma_addr_t data_mapping
= o
->rdata_mapping
;
5224 struct bnx2x_queue_update_params
*update_params
=
5225 ¶ms
->params
.update
;
5226 u8 cid_index
= update_params
->cid_index
;
5228 if (cid_index
>= o
->max_cos
) {
5229 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5230 o
->cl_id
, cid_index
);
5234 /* Clear the ramrod data */
5235 memset(rdata
, 0, sizeof(*rdata
));
5237 /* Fill the ramrod data */
5238 bnx2x_q_fill_update_data(bp
, o
, update_params
, rdata
);
5240 /* No need for an explicit memory barrier here as long as we
5241 * ensure the ordering of writing to the SPQ element
5242 * and updating of the SPQ producer which involves a memory
5243 * read. If the memory read is removed we will have to put a
5244 * full memory barrier there (inside bnx2x_sp_post()).
5246 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_CLIENT_UPDATE
,
5247 o
->cids
[cid_index
], U64_HI(data_mapping
),
5248 U64_LO(data_mapping
), ETH_CONNECTION_TYPE
);
5252 * bnx2x_q_send_deactivate - send DEACTIVATE command
5254 * @bp: device handle
5257 * implemented using the UPDATE command.
5259 static inline int bnx2x_q_send_deactivate(struct bnx2x
*bp
,
5260 struct bnx2x_queue_state_params
*params
)
5262 struct bnx2x_queue_update_params
*update
= ¶ms
->params
.update
;
5264 memset(update
, 0, sizeof(*update
));
5266 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
, &update
->update_flags
);
5268 return bnx2x_q_send_update(bp
, params
);
5272 * bnx2x_q_send_activate - send ACTIVATE command
5274 * @bp: device handle
5277 * implemented using the UPDATE command.
5279 static inline int bnx2x_q_send_activate(struct bnx2x
*bp
,
5280 struct bnx2x_queue_state_params
*params
)
5282 struct bnx2x_queue_update_params
*update
= ¶ms
->params
.update
;
5284 memset(update
, 0, sizeof(*update
));
5286 __set_bit(BNX2X_Q_UPDATE_ACTIVATE
, &update
->update_flags
);
5287 __set_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
, &update
->update_flags
);
5289 return bnx2x_q_send_update(bp
, params
);
5292 static void bnx2x_q_fill_update_tpa_data(struct bnx2x
*bp
,
5293 struct bnx2x_queue_sp_obj
*obj
,
5294 struct bnx2x_queue_update_tpa_params
*params
,
5295 struct tpa_update_ramrod_data
*data
)
5297 data
->client_id
= obj
->cl_id
;
5298 data
->complete_on_both_clients
= params
->complete_on_both_clients
;
5299 data
->dont_verify_rings_pause_thr_flg
=
5300 params
->dont_verify_thr
;
5301 data
->max_agg_size
= cpu_to_le16(params
->max_agg_sz
);
5302 data
->max_sges_for_packet
= params
->max_sges_pkt
;
5303 data
->max_tpa_queues
= params
->max_tpa_queues
;
5304 data
->sge_buff_size
= cpu_to_le16(params
->sge_buff_sz
);
5305 data
->sge_page_base_hi
= cpu_to_le32(U64_HI(params
->sge_map
));
5306 data
->sge_page_base_lo
= cpu_to_le32(U64_LO(params
->sge_map
));
5307 data
->sge_pause_thr_high
= cpu_to_le16(params
->sge_pause_thr_high
);
5308 data
->sge_pause_thr_low
= cpu_to_le16(params
->sge_pause_thr_low
);
5309 data
->tpa_mode
= params
->tpa_mode
;
5310 data
->update_ipv4
= params
->update_ipv4
;
5311 data
->update_ipv6
= params
->update_ipv6
;
5314 static inline int bnx2x_q_send_update_tpa(struct bnx2x
*bp
,
5315 struct bnx2x_queue_state_params
*params
)
5317 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5318 struct tpa_update_ramrod_data
*rdata
=
5319 (struct tpa_update_ramrod_data
*)o
->rdata
;
5320 dma_addr_t data_mapping
= o
->rdata_mapping
;
5321 struct bnx2x_queue_update_tpa_params
*update_tpa_params
=
5322 ¶ms
->params
.update_tpa
;
5325 /* Clear the ramrod data */
5326 memset(rdata
, 0, sizeof(*rdata
));
5328 /* Fill the ramrod data */
5329 bnx2x_q_fill_update_tpa_data(bp
, o
, update_tpa_params
, rdata
);
5331 /* Add the function id inside the type, so that sp post function
5332 * doesn't automatically add the PF func-id, this is required
5333 * for operations done by PFs on behalf of their VFs
5335 type
= ETH_CONNECTION_TYPE
|
5336 ((o
->func_id
) << SPE_HDR_FUNCTION_ID_SHIFT
);
5338 /* No need for an explicit memory barrier here as long as we
5339 * ensure the ordering of writing to the SPQ element
5340 * and updating of the SPQ producer which involves a memory
5341 * read. If the memory read is removed we will have to put a
5342 * full memory barrier there (inside bnx2x_sp_post()).
5344 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_TPA_UPDATE
,
5345 o
->cids
[BNX2X_PRIMARY_CID_INDEX
],
5346 U64_HI(data_mapping
),
5347 U64_LO(data_mapping
), type
);
5350 static inline int bnx2x_q_send_halt(struct bnx2x
*bp
,
5351 struct bnx2x_queue_state_params
*params
)
5353 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5355 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_HALT
,
5356 o
->cids
[BNX2X_PRIMARY_CID_INDEX
], 0, o
->cl_id
,
5357 ETH_CONNECTION_TYPE
);
5360 static inline int bnx2x_q_send_cfc_del(struct bnx2x
*bp
,
5361 struct bnx2x_queue_state_params
*params
)
5363 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5364 u8 cid_idx
= params
->params
.cfc_del
.cid_index
;
5366 if (cid_idx
>= o
->max_cos
) {
5367 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5372 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_CFC_DEL
,
5373 o
->cids
[cid_idx
], 0, 0, NONE_CONNECTION_TYPE
);
5376 static inline int bnx2x_q_send_terminate(struct bnx2x
*bp
,
5377 struct bnx2x_queue_state_params
*params
)
5379 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5380 u8 cid_index
= params
->params
.terminate
.cid_index
;
5382 if (cid_index
>= o
->max_cos
) {
5383 BNX2X_ERR("queue[%d]: cid_index (%d) is out of range\n",
5384 o
->cl_id
, cid_index
);
5388 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_TERMINATE
,
5389 o
->cids
[cid_index
], 0, 0, ETH_CONNECTION_TYPE
);
5392 static inline int bnx2x_q_send_empty(struct bnx2x
*bp
,
5393 struct bnx2x_queue_state_params
*params
)
5395 struct bnx2x_queue_sp_obj
*o
= params
->q_obj
;
5397 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_ETH_EMPTY
,
5398 o
->cids
[BNX2X_PRIMARY_CID_INDEX
], 0, 0,
5399 ETH_CONNECTION_TYPE
);
5402 static inline int bnx2x_queue_send_cmd_cmn(struct bnx2x
*bp
,
5403 struct bnx2x_queue_state_params
*params
)
5405 switch (params
->cmd
) {
5406 case BNX2X_Q_CMD_INIT
:
5407 return bnx2x_q_init(bp
, params
);
5408 case BNX2X_Q_CMD_SETUP_TX_ONLY
:
5409 return bnx2x_q_send_setup_tx_only(bp
, params
);
5410 case BNX2X_Q_CMD_DEACTIVATE
:
5411 return bnx2x_q_send_deactivate(bp
, params
);
5412 case BNX2X_Q_CMD_ACTIVATE
:
5413 return bnx2x_q_send_activate(bp
, params
);
5414 case BNX2X_Q_CMD_UPDATE
:
5415 return bnx2x_q_send_update(bp
, params
);
5416 case BNX2X_Q_CMD_UPDATE_TPA
:
5417 return bnx2x_q_send_update_tpa(bp
, params
);
5418 case BNX2X_Q_CMD_HALT
:
5419 return bnx2x_q_send_halt(bp
, params
);
5420 case BNX2X_Q_CMD_CFC_DEL
:
5421 return bnx2x_q_send_cfc_del(bp
, params
);
5422 case BNX2X_Q_CMD_TERMINATE
:
5423 return bnx2x_q_send_terminate(bp
, params
);
5424 case BNX2X_Q_CMD_EMPTY
:
5425 return bnx2x_q_send_empty(bp
, params
);
5427 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
5432 static int bnx2x_queue_send_cmd_e1x(struct bnx2x
*bp
,
5433 struct bnx2x_queue_state_params
*params
)
5435 switch (params
->cmd
) {
5436 case BNX2X_Q_CMD_SETUP
:
5437 return bnx2x_q_send_setup_e1x(bp
, params
);
5438 case BNX2X_Q_CMD_INIT
:
5439 case BNX2X_Q_CMD_SETUP_TX_ONLY
:
5440 case BNX2X_Q_CMD_DEACTIVATE
:
5441 case BNX2X_Q_CMD_ACTIVATE
:
5442 case BNX2X_Q_CMD_UPDATE
:
5443 case BNX2X_Q_CMD_UPDATE_TPA
:
5444 case BNX2X_Q_CMD_HALT
:
5445 case BNX2X_Q_CMD_CFC_DEL
:
5446 case BNX2X_Q_CMD_TERMINATE
:
5447 case BNX2X_Q_CMD_EMPTY
:
5448 return bnx2x_queue_send_cmd_cmn(bp
, params
);
5450 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
5455 static int bnx2x_queue_send_cmd_e2(struct bnx2x
*bp
,
5456 struct bnx2x_queue_state_params
*params
)
5458 switch (params
->cmd
) {
5459 case BNX2X_Q_CMD_SETUP
:
5460 return bnx2x_q_send_setup_e2(bp
, params
);
5461 case BNX2X_Q_CMD_INIT
:
5462 case BNX2X_Q_CMD_SETUP_TX_ONLY
:
5463 case BNX2X_Q_CMD_DEACTIVATE
:
5464 case BNX2X_Q_CMD_ACTIVATE
:
5465 case BNX2X_Q_CMD_UPDATE
:
5466 case BNX2X_Q_CMD_UPDATE_TPA
:
5467 case BNX2X_Q_CMD_HALT
:
5468 case BNX2X_Q_CMD_CFC_DEL
:
5469 case BNX2X_Q_CMD_TERMINATE
:
5470 case BNX2X_Q_CMD_EMPTY
:
5471 return bnx2x_queue_send_cmd_cmn(bp
, params
);
5473 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
5479 * bnx2x_queue_chk_transition - check state machine of a regular Queue
5481 * @bp: device handle
5483 * @params: queue state
5486 * It both checks if the requested command is legal in a current
5487 * state and, if it's legal, sets a `next_state' in the object
5488 * that will be used in the completion flow to set the `state'
5491 * returns 0 if a requested command is a legal transition,
5492 * -EINVAL otherwise.
5494 static int bnx2x_queue_chk_transition(struct bnx2x
*bp
,
5495 struct bnx2x_queue_sp_obj
*o
,
5496 struct bnx2x_queue_state_params
*params
)
5498 enum bnx2x_q_state state
= o
->state
, next_state
= BNX2X_Q_STATE_MAX
;
5499 enum bnx2x_queue_cmd cmd
= params
->cmd
;
5500 struct bnx2x_queue_update_params
*update_params
=
5501 ¶ms
->params
.update
;
5502 u8 next_tx_only
= o
->num_tx_only
;
5504 /* Forget all pending for completion commands if a driver only state
5505 * transition has been requested.
5507 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
)) {
5509 o
->next_state
= BNX2X_Q_STATE_MAX
;
5512 /* Don't allow a next state transition if we are in the middle of
5516 BNX2X_ERR("Blocking transition since pending was %lx\n",
5522 case BNX2X_Q_STATE_RESET
:
5523 if (cmd
== BNX2X_Q_CMD_INIT
)
5524 next_state
= BNX2X_Q_STATE_INITIALIZED
;
5527 case BNX2X_Q_STATE_INITIALIZED
:
5528 if (cmd
== BNX2X_Q_CMD_SETUP
) {
5529 if (test_bit(BNX2X_Q_FLG_ACTIVE
,
5530 ¶ms
->params
.setup
.flags
))
5531 next_state
= BNX2X_Q_STATE_ACTIVE
;
5533 next_state
= BNX2X_Q_STATE_INACTIVE
;
5537 case BNX2X_Q_STATE_ACTIVE
:
5538 if (cmd
== BNX2X_Q_CMD_DEACTIVATE
)
5539 next_state
= BNX2X_Q_STATE_INACTIVE
;
5541 else if ((cmd
== BNX2X_Q_CMD_EMPTY
) ||
5542 (cmd
== BNX2X_Q_CMD_UPDATE_TPA
))
5543 next_state
= BNX2X_Q_STATE_ACTIVE
;
5545 else if (cmd
== BNX2X_Q_CMD_SETUP_TX_ONLY
) {
5546 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5550 else if (cmd
== BNX2X_Q_CMD_HALT
)
5551 next_state
= BNX2X_Q_STATE_STOPPED
;
5553 else if (cmd
== BNX2X_Q_CMD_UPDATE
) {
5554 /* If "active" state change is requested, update the
5555 * state accordingly.
5557 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
,
5558 &update_params
->update_flags
) &&
5559 !test_bit(BNX2X_Q_UPDATE_ACTIVATE
,
5560 &update_params
->update_flags
))
5561 next_state
= BNX2X_Q_STATE_INACTIVE
;
5563 next_state
= BNX2X_Q_STATE_ACTIVE
;
5567 case BNX2X_Q_STATE_MULTI_COS
:
5568 if (cmd
== BNX2X_Q_CMD_TERMINATE
)
5569 next_state
= BNX2X_Q_STATE_MCOS_TERMINATED
;
5571 else if (cmd
== BNX2X_Q_CMD_SETUP_TX_ONLY
) {
5572 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5573 next_tx_only
= o
->num_tx_only
+ 1;
5576 else if ((cmd
== BNX2X_Q_CMD_EMPTY
) ||
5577 (cmd
== BNX2X_Q_CMD_UPDATE_TPA
))
5578 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5580 else if (cmd
== BNX2X_Q_CMD_UPDATE
) {
5581 /* If "active" state change is requested, update the
5582 * state accordingly.
5584 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
,
5585 &update_params
->update_flags
) &&
5586 !test_bit(BNX2X_Q_UPDATE_ACTIVATE
,
5587 &update_params
->update_flags
))
5588 next_state
= BNX2X_Q_STATE_INACTIVE
;
5590 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5594 case BNX2X_Q_STATE_MCOS_TERMINATED
:
5595 if (cmd
== BNX2X_Q_CMD_CFC_DEL
) {
5596 next_tx_only
= o
->num_tx_only
- 1;
5597 if (next_tx_only
== 0)
5598 next_state
= BNX2X_Q_STATE_ACTIVE
;
5600 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5604 case BNX2X_Q_STATE_INACTIVE
:
5605 if (cmd
== BNX2X_Q_CMD_ACTIVATE
)
5606 next_state
= BNX2X_Q_STATE_ACTIVE
;
5608 else if ((cmd
== BNX2X_Q_CMD_EMPTY
) ||
5609 (cmd
== BNX2X_Q_CMD_UPDATE_TPA
))
5610 next_state
= BNX2X_Q_STATE_INACTIVE
;
5612 else if (cmd
== BNX2X_Q_CMD_HALT
)
5613 next_state
= BNX2X_Q_STATE_STOPPED
;
5615 else if (cmd
== BNX2X_Q_CMD_UPDATE
) {
5616 /* If "active" state change is requested, update the
5617 * state accordingly.
5619 if (test_bit(BNX2X_Q_UPDATE_ACTIVATE_CHNG
,
5620 &update_params
->update_flags
) &&
5621 test_bit(BNX2X_Q_UPDATE_ACTIVATE
,
5622 &update_params
->update_flags
)){
5623 if (o
->num_tx_only
== 0)
5624 next_state
= BNX2X_Q_STATE_ACTIVE
;
5625 else /* tx only queues exist for this queue */
5626 next_state
= BNX2X_Q_STATE_MULTI_COS
;
5628 next_state
= BNX2X_Q_STATE_INACTIVE
;
5632 case BNX2X_Q_STATE_STOPPED
:
5633 if (cmd
== BNX2X_Q_CMD_TERMINATE
)
5634 next_state
= BNX2X_Q_STATE_TERMINATED
;
5637 case BNX2X_Q_STATE_TERMINATED
:
5638 if (cmd
== BNX2X_Q_CMD_CFC_DEL
)
5639 next_state
= BNX2X_Q_STATE_RESET
;
5643 BNX2X_ERR("Illegal state: %d\n", state
);
5646 /* Transition is assured */
5647 if (next_state
!= BNX2X_Q_STATE_MAX
) {
5648 DP(BNX2X_MSG_SP
, "Good state transition: %d(%d)->%d\n",
5649 state
, cmd
, next_state
);
5650 o
->next_state
= next_state
;
5651 o
->next_tx_only
= next_tx_only
;
5655 DP(BNX2X_MSG_SP
, "Bad state transition request: %d %d\n", state
, cmd
);
5660 void bnx2x_init_queue_obj(struct bnx2x
*bp
,
5661 struct bnx2x_queue_sp_obj
*obj
,
5662 u8 cl_id
, u32
*cids
, u8 cid_cnt
, u8 func_id
,
5664 dma_addr_t rdata_mapping
, unsigned long type
)
5666 memset(obj
, 0, sizeof(*obj
));
5668 /* We support only BNX2X_MULTI_TX_COS Tx CoS at the moment */
5669 BUG_ON(BNX2X_MULTI_TX_COS
< cid_cnt
);
5671 memcpy(obj
->cids
, cids
, sizeof(obj
->cids
[0]) * cid_cnt
);
5672 obj
->max_cos
= cid_cnt
;
5674 obj
->func_id
= func_id
;
5676 obj
->rdata_mapping
= rdata_mapping
;
5678 obj
->next_state
= BNX2X_Q_STATE_MAX
;
5680 if (CHIP_IS_E1x(bp
))
5681 obj
->send_cmd
= bnx2x_queue_send_cmd_e1x
;
5683 obj
->send_cmd
= bnx2x_queue_send_cmd_e2
;
5685 obj
->check_transition
= bnx2x_queue_chk_transition
;
5687 obj
->complete_cmd
= bnx2x_queue_comp_cmd
;
5688 obj
->wait_comp
= bnx2x_queue_wait_comp
;
5689 obj
->set_pending
= bnx2x_queue_set_pending
;
5692 /* return a queue object's logical state*/
5693 int bnx2x_get_q_logical_state(struct bnx2x
*bp
,
5694 struct bnx2x_queue_sp_obj
*obj
)
5696 switch (obj
->state
) {
5697 case BNX2X_Q_STATE_ACTIVE
:
5698 case BNX2X_Q_STATE_MULTI_COS
:
5699 return BNX2X_Q_LOGICAL_STATE_ACTIVE
;
5700 case BNX2X_Q_STATE_RESET
:
5701 case BNX2X_Q_STATE_INITIALIZED
:
5702 case BNX2X_Q_STATE_MCOS_TERMINATED
:
5703 case BNX2X_Q_STATE_INACTIVE
:
5704 case BNX2X_Q_STATE_STOPPED
:
5705 case BNX2X_Q_STATE_TERMINATED
:
5706 case BNX2X_Q_STATE_FLRED
:
5707 return BNX2X_Q_LOGICAL_STATE_STOPPED
;
5713 /********************** Function state object *********************************/
5714 enum bnx2x_func_state
bnx2x_func_get_state(struct bnx2x
*bp
,
5715 struct bnx2x_func_sp_obj
*o
)
5717 /* in the middle of transaction - return INVALID state */
5719 return BNX2X_F_STATE_MAX
;
5721 /* unsure the order of reading of o->pending and o->state
5722 * o->pending should be read first
5729 static int bnx2x_func_wait_comp(struct bnx2x
*bp
,
5730 struct bnx2x_func_sp_obj
*o
,
5731 enum bnx2x_func_cmd cmd
)
5733 return bnx2x_state_wait(bp
, cmd
, &o
->pending
);
5737 * bnx2x_func_state_change_comp - complete the state machine transition
5739 * @bp: device handle
5743 * Called on state change transition. Completes the state
5744 * machine transition only - no HW interaction.
5746 static inline int bnx2x_func_state_change_comp(struct bnx2x
*bp
,
5747 struct bnx2x_func_sp_obj
*o
,
5748 enum bnx2x_func_cmd cmd
)
5750 unsigned long cur_pending
= o
->pending
;
5752 if (!test_and_clear_bit(cmd
, &cur_pending
)) {
5753 BNX2X_ERR("Bad MC reply %d for func %d in state %d pending 0x%lx, next_state %d\n",
5754 cmd
, BP_FUNC(bp
), o
->state
,
5755 cur_pending
, o
->next_state
);
5760 "Completing command %d for func %d, setting state to %d\n",
5761 cmd
, BP_FUNC(bp
), o
->next_state
);
5763 o
->state
= o
->next_state
;
5764 o
->next_state
= BNX2X_F_STATE_MAX
;
5766 /* It's important that o->state and o->next_state are
5767 * updated before o->pending.
5771 clear_bit(cmd
, &o
->pending
);
5772 smp_mb__after_atomic();
5778 * bnx2x_func_comp_cmd - complete the state change command
5780 * @bp: device handle
5784 * Checks that the arrived completion is expected.
5786 static int bnx2x_func_comp_cmd(struct bnx2x
*bp
,
5787 struct bnx2x_func_sp_obj
*o
,
5788 enum bnx2x_func_cmd cmd
)
5790 /* Complete the state machine part first, check if it's a
5793 int rc
= bnx2x_func_state_change_comp(bp
, o
, cmd
);
5798 * bnx2x_func_chk_transition - perform function state machine transition
5800 * @bp: device handle
5802 * @params: state parameters
5804 * It both checks if the requested command is legal in a current
5805 * state and, if it's legal, sets a `next_state' in the object
5806 * that will be used in the completion flow to set the `state'
5809 * returns 0 if a requested command is a legal transition,
5810 * -EINVAL otherwise.
5812 static int bnx2x_func_chk_transition(struct bnx2x
*bp
,
5813 struct bnx2x_func_sp_obj
*o
,
5814 struct bnx2x_func_state_params
*params
)
5816 enum bnx2x_func_state state
= o
->state
, next_state
= BNX2X_F_STATE_MAX
;
5817 enum bnx2x_func_cmd cmd
= params
->cmd
;
5819 /* Forget all pending for completion commands if a driver only state
5820 * transition has been requested.
5822 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
)) {
5824 o
->next_state
= BNX2X_F_STATE_MAX
;
5827 /* Don't allow a next state transition if we are in the middle of
5834 case BNX2X_F_STATE_RESET
:
5835 if (cmd
== BNX2X_F_CMD_HW_INIT
)
5836 next_state
= BNX2X_F_STATE_INITIALIZED
;
5839 case BNX2X_F_STATE_INITIALIZED
:
5840 if (cmd
== BNX2X_F_CMD_START
)
5841 next_state
= BNX2X_F_STATE_STARTED
;
5843 else if (cmd
== BNX2X_F_CMD_HW_RESET
)
5844 next_state
= BNX2X_F_STATE_RESET
;
5847 case BNX2X_F_STATE_STARTED
:
5848 if (cmd
== BNX2X_F_CMD_STOP
)
5849 next_state
= BNX2X_F_STATE_INITIALIZED
;
5850 /* afex ramrods can be sent only in started mode, and only
5851 * if not pending for function_stop ramrod completion
5852 * for these events - next state remained STARTED.
5854 else if ((cmd
== BNX2X_F_CMD_AFEX_UPDATE
) &&
5855 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5856 next_state
= BNX2X_F_STATE_STARTED
;
5858 else if ((cmd
== BNX2X_F_CMD_AFEX_VIFLISTS
) &&
5859 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5860 next_state
= BNX2X_F_STATE_STARTED
;
5862 /* Switch_update ramrod can be sent in either started or
5863 * tx_stopped state, and it doesn't change the state.
5865 else if ((cmd
== BNX2X_F_CMD_SWITCH_UPDATE
) &&
5866 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5867 next_state
= BNX2X_F_STATE_STARTED
;
5869 else if ((cmd
== BNX2X_F_CMD_SET_TIMESYNC
) &&
5870 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5871 next_state
= BNX2X_F_STATE_STARTED
;
5873 else if (cmd
== BNX2X_F_CMD_TX_STOP
)
5874 next_state
= BNX2X_F_STATE_TX_STOPPED
;
5877 case BNX2X_F_STATE_TX_STOPPED
:
5878 if ((cmd
== BNX2X_F_CMD_SWITCH_UPDATE
) &&
5879 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5880 next_state
= BNX2X_F_STATE_TX_STOPPED
;
5882 else if ((cmd
== BNX2X_F_CMD_SET_TIMESYNC
) &&
5883 (!test_bit(BNX2X_F_CMD_STOP
, &o
->pending
)))
5884 next_state
= BNX2X_F_STATE_TX_STOPPED
;
5886 else if (cmd
== BNX2X_F_CMD_TX_START
)
5887 next_state
= BNX2X_F_STATE_STARTED
;
5891 BNX2X_ERR("Unknown state: %d\n", state
);
5894 /* Transition is assured */
5895 if (next_state
!= BNX2X_F_STATE_MAX
) {
5896 DP(BNX2X_MSG_SP
, "Good function state transition: %d(%d)->%d\n",
5897 state
, cmd
, next_state
);
5898 o
->next_state
= next_state
;
5902 DP(BNX2X_MSG_SP
, "Bad function state transition request: %d %d\n",
5909 * bnx2x_func_init_func - performs HW init at function stage
5911 * @bp: device handle
5914 * Init HW when the current phase is
5915 * FW_MSG_CODE_DRV_LOAD_FUNCTION: initialize only FUNCTION-only
5918 static inline int bnx2x_func_init_func(struct bnx2x
*bp
,
5919 const struct bnx2x_func_sp_drv_ops
*drv
)
5921 return drv
->init_hw_func(bp
);
5925 * bnx2x_func_init_port - performs HW init at port stage
5927 * @bp: device handle
5930 * Init HW when the current phase is
5931 * FW_MSG_CODE_DRV_LOAD_PORT: initialize PORT-only and
5932 * FUNCTION-only HW blocks.
5935 static inline int bnx2x_func_init_port(struct bnx2x
*bp
,
5936 const struct bnx2x_func_sp_drv_ops
*drv
)
5938 int rc
= drv
->init_hw_port(bp
);
5942 return bnx2x_func_init_func(bp
, drv
);
5946 * bnx2x_func_init_cmn_chip - performs HW init at chip-common stage
5948 * @bp: device handle
5951 * Init HW when the current phase is
5952 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON_CHIP,
5953 * PORT-only and FUNCTION-only HW blocks.
5955 static inline int bnx2x_func_init_cmn_chip(struct bnx2x
*bp
,
5956 const struct bnx2x_func_sp_drv_ops
*drv
)
5958 int rc
= drv
->init_hw_cmn_chip(bp
);
5962 return bnx2x_func_init_port(bp
, drv
);
5966 * bnx2x_func_init_cmn - performs HW init at common stage
5968 * @bp: device handle
5971 * Init HW when the current phase is
5972 * FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: initialize COMMON,
5973 * PORT-only and FUNCTION-only HW blocks.
5975 static inline int bnx2x_func_init_cmn(struct bnx2x
*bp
,
5976 const struct bnx2x_func_sp_drv_ops
*drv
)
5978 int rc
= drv
->init_hw_cmn(bp
);
5982 return bnx2x_func_init_port(bp
, drv
);
5985 static int bnx2x_func_hw_init(struct bnx2x
*bp
,
5986 struct bnx2x_func_state_params
*params
)
5988 u32 load_code
= params
->params
.hw_init
.load_phase
;
5989 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
5990 const struct bnx2x_func_sp_drv_ops
*drv
= o
->drv
;
5993 DP(BNX2X_MSG_SP
, "function %d load_code %x\n",
5994 BP_ABS_FUNC(bp
), load_code
);
5996 /* Prepare buffers for unzipping the FW */
5997 rc
= drv
->gunzip_init(bp
);
6002 rc
= drv
->init_fw(bp
);
6004 BNX2X_ERR("Error loading firmware\n");
6008 /* Handle the beginning of COMMON_XXX pases separately... */
6009 switch (load_code
) {
6010 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP
:
6011 rc
= bnx2x_func_init_cmn_chip(bp
, drv
);
6016 case FW_MSG_CODE_DRV_LOAD_COMMON
:
6017 rc
= bnx2x_func_init_cmn(bp
, drv
);
6022 case FW_MSG_CODE_DRV_LOAD_PORT
:
6023 rc
= bnx2x_func_init_port(bp
, drv
);
6028 case FW_MSG_CODE_DRV_LOAD_FUNCTION
:
6029 rc
= bnx2x_func_init_func(bp
, drv
);
6035 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code
);
6040 drv
->gunzip_end(bp
);
6042 /* In case of success, complete the command immediately: no ramrods
6046 o
->complete_cmd(bp
, o
, BNX2X_F_CMD_HW_INIT
);
6052 * bnx2x_func_reset_func - reset HW at function stage
6054 * @bp: device handle
6057 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_FUNCTION stage: reset only
6058 * FUNCTION-only HW blocks.
6060 static inline void bnx2x_func_reset_func(struct bnx2x
*bp
,
6061 const struct bnx2x_func_sp_drv_ops
*drv
)
6063 drv
->reset_hw_func(bp
);
6067 * bnx2x_func_reset_port - reset HW at port stage
6069 * @bp: device handle
6072 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_PORT stage: reset
6073 * FUNCTION-only and PORT-only HW blocks.
6077 * It's important to call reset_port before reset_func() as the last thing
6078 * reset_func does is pf_disable() thus disabling PGLUE_B, which
6079 * makes impossible any DMAE transactions.
6081 static inline void bnx2x_func_reset_port(struct bnx2x
*bp
,
6082 const struct bnx2x_func_sp_drv_ops
*drv
)
6084 drv
->reset_hw_port(bp
);
6085 bnx2x_func_reset_func(bp
, drv
);
6089 * bnx2x_func_reset_cmn - reset HW at common stage
6091 * @bp: device handle
6094 * Reset HW at FW_MSG_CODE_DRV_UNLOAD_COMMON and
6095 * FW_MSG_CODE_DRV_UNLOAD_COMMON_CHIP stages: reset COMMON,
6096 * COMMON_CHIP, FUNCTION-only and PORT-only HW blocks.
6098 static inline void bnx2x_func_reset_cmn(struct bnx2x
*bp
,
6099 const struct bnx2x_func_sp_drv_ops
*drv
)
6101 bnx2x_func_reset_port(bp
, drv
);
6102 drv
->reset_hw_cmn(bp
);
6105 static inline int bnx2x_func_hw_reset(struct bnx2x
*bp
,
6106 struct bnx2x_func_state_params
*params
)
6108 u32 reset_phase
= params
->params
.hw_reset
.reset_phase
;
6109 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6110 const struct bnx2x_func_sp_drv_ops
*drv
= o
->drv
;
6112 DP(BNX2X_MSG_SP
, "function %d reset_phase %x\n", BP_ABS_FUNC(bp
),
6115 switch (reset_phase
) {
6116 case FW_MSG_CODE_DRV_UNLOAD_COMMON
:
6117 bnx2x_func_reset_cmn(bp
, drv
);
6119 case FW_MSG_CODE_DRV_UNLOAD_PORT
:
6120 bnx2x_func_reset_port(bp
, drv
);
6122 case FW_MSG_CODE_DRV_UNLOAD_FUNCTION
:
6123 bnx2x_func_reset_func(bp
, drv
);
6126 BNX2X_ERR("Unknown reset_phase (0x%x) from MCP\n",
6131 /* Complete the command immediately: no ramrods have been sent. */
6132 o
->complete_cmd(bp
, o
, BNX2X_F_CMD_HW_RESET
);
6137 static inline int bnx2x_func_send_start(struct bnx2x
*bp
,
6138 struct bnx2x_func_state_params
*params
)
6140 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6141 struct function_start_data
*rdata
=
6142 (struct function_start_data
*)o
->rdata
;
6143 dma_addr_t data_mapping
= o
->rdata_mapping
;
6144 struct bnx2x_func_start_params
*start_params
= ¶ms
->params
.start
;
6146 memset(rdata
, 0, sizeof(*rdata
));
6148 /* Fill the ramrod data with provided parameters */
6149 rdata
->function_mode
= (u8
)start_params
->mf_mode
;
6150 rdata
->sd_vlan_tag
= cpu_to_le16(start_params
->sd_vlan_tag
);
6151 rdata
->path_id
= BP_PATH(bp
);
6152 rdata
->network_cos_mode
= start_params
->network_cos_mode
;
6153 rdata
->dmae_cmd_id
= BNX2X_FW_DMAE_C
;
6155 rdata
->vxlan_dst_port
= cpu_to_le16(start_params
->vxlan_dst_port
);
6156 rdata
->geneve_dst_port
= cpu_to_le16(start_params
->geneve_dst_port
);
6157 rdata
->inner_clss_l2gre
= start_params
->inner_clss_l2gre
;
6158 rdata
->inner_clss_l2geneve
= start_params
->inner_clss_l2geneve
;
6159 rdata
->inner_clss_vxlan
= start_params
->inner_clss_vxlan
;
6160 rdata
->inner_rss
= start_params
->inner_rss
;
6162 rdata
->sd_accept_mf_clss_fail
= start_params
->class_fail
;
6163 if (start_params
->class_fail_ethtype
) {
6164 rdata
->sd_accept_mf_clss_fail_match_ethtype
= 1;
6165 rdata
->sd_accept_mf_clss_fail_ethtype
=
6166 cpu_to_le16(start_params
->class_fail_ethtype
);
6169 rdata
->sd_vlan_force_pri_flg
= start_params
->sd_vlan_force_pri
;
6170 rdata
->sd_vlan_force_pri_val
= start_params
->sd_vlan_force_pri_val
;
6171 if (start_params
->sd_vlan_eth_type
)
6172 rdata
->sd_vlan_eth_type
=
6173 cpu_to_le16(start_params
->sd_vlan_eth_type
);
6175 rdata
->sd_vlan_eth_type
=
6176 cpu_to_le16(0x8100);
6178 rdata
->no_added_tags
= start_params
->no_added_tags
;
6180 rdata
->c2s_pri_tt_valid
= start_params
->c2s_pri_valid
;
6181 if (rdata
->c2s_pri_tt_valid
) {
6182 memcpy(rdata
->c2s_pri_trans_table
.val
,
6183 start_params
->c2s_pri
,
6184 MAX_VLAN_PRIORITIES
);
6185 rdata
->c2s_pri_default
= start_params
->c2s_pri_default
;
6187 /* No need for an explicit memory barrier here as long we would
6188 * need to ensure the ordering of writing to the SPQ element
6189 * and updating of the SPQ producer which involves a memory
6190 * read and we will have to put a full memory barrier there
6191 * (inside bnx2x_sp_post()).
6194 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_START
, 0,
6195 U64_HI(data_mapping
),
6196 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
6199 static inline int bnx2x_func_send_switch_update(struct bnx2x
*bp
,
6200 struct bnx2x_func_state_params
*params
)
6202 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6203 struct function_update_data
*rdata
=
6204 (struct function_update_data
*)o
->rdata
;
6205 dma_addr_t data_mapping
= o
->rdata_mapping
;
6206 struct bnx2x_func_switch_update_params
*switch_update_params
=
6207 ¶ms
->params
.switch_update
;
6209 memset(rdata
, 0, sizeof(*rdata
));
6211 /* Fill the ramrod data with provided parameters */
6212 if (test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG
,
6213 &switch_update_params
->changes
)) {
6214 rdata
->tx_switch_suspend_change_flg
= 1;
6215 rdata
->tx_switch_suspend
=
6216 test_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND
,
6217 &switch_update_params
->changes
);
6220 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG
,
6221 &switch_update_params
->changes
)) {
6222 rdata
->sd_vlan_tag_change_flg
= 1;
6223 rdata
->sd_vlan_tag
=
6224 cpu_to_le16(switch_update_params
->vlan
);
6227 if (test_bit(BNX2X_F_UPDATE_SD_VLAN_ETH_TYPE_CHNG
,
6228 &switch_update_params
->changes
)) {
6229 rdata
->sd_vlan_eth_type_change_flg
= 1;
6230 rdata
->sd_vlan_eth_type
=
6231 cpu_to_le16(switch_update_params
->vlan_eth_type
);
6234 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_CHNG
,
6235 &switch_update_params
->changes
)) {
6236 rdata
->sd_vlan_force_pri_change_flg
= 1;
6237 if (test_bit(BNX2X_F_UPDATE_VLAN_FORCE_PRIO_FLAG
,
6238 &switch_update_params
->changes
))
6239 rdata
->sd_vlan_force_pri_flg
= 1;
6240 rdata
->sd_vlan_force_pri_flg
=
6241 switch_update_params
->vlan_force_prio
;
6244 if (test_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG
,
6245 &switch_update_params
->changes
)) {
6246 rdata
->update_tunn_cfg_flg
= 1;
6247 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GRE
,
6248 &switch_update_params
->changes
))
6249 rdata
->inner_clss_l2gre
= 1;
6250 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_VXLAN
,
6251 &switch_update_params
->changes
))
6252 rdata
->inner_clss_vxlan
= 1;
6253 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_CLSS_L2GENEVE
,
6254 &switch_update_params
->changes
))
6255 rdata
->inner_clss_l2geneve
= 1;
6256 if (test_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS
,
6257 &switch_update_params
->changes
))
6258 rdata
->inner_rss
= 1;
6259 rdata
->vxlan_dst_port
=
6260 cpu_to_le16(switch_update_params
->vxlan_dst_port
);
6261 rdata
->geneve_dst_port
=
6262 cpu_to_le16(switch_update_params
->geneve_dst_port
);
6265 rdata
->echo
= SWITCH_UPDATE
;
6267 /* No need for an explicit memory barrier here as long as we
6268 * ensure the ordering of writing to the SPQ element
6269 * and updating of the SPQ producer which involves a memory
6270 * read. If the memory read is removed we will have to put a
6271 * full memory barrier there (inside bnx2x_sp_post()).
6273 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE
, 0,
6274 U64_HI(data_mapping
),
6275 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
6278 static inline int bnx2x_func_send_afex_update(struct bnx2x
*bp
,
6279 struct bnx2x_func_state_params
*params
)
6281 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6282 struct function_update_data
*rdata
=
6283 (struct function_update_data
*)o
->afex_rdata
;
6284 dma_addr_t data_mapping
= o
->afex_rdata_mapping
;
6285 struct bnx2x_func_afex_update_params
*afex_update_params
=
6286 ¶ms
->params
.afex_update
;
6288 memset(rdata
, 0, sizeof(*rdata
));
6290 /* Fill the ramrod data with provided parameters */
6291 rdata
->vif_id_change_flg
= 1;
6292 rdata
->vif_id
= cpu_to_le16(afex_update_params
->vif_id
);
6293 rdata
->afex_default_vlan_change_flg
= 1;
6294 rdata
->afex_default_vlan
=
6295 cpu_to_le16(afex_update_params
->afex_default_vlan
);
6296 rdata
->allowed_priorities_change_flg
= 1;
6297 rdata
->allowed_priorities
= afex_update_params
->allowed_priorities
;
6298 rdata
->echo
= AFEX_UPDATE
;
6300 /* No need for an explicit memory barrier here as long as we
6301 * ensure the ordering of writing to the SPQ element
6302 * and updating of the SPQ producer which involves a memory
6303 * read. If the memory read is removed we will have to put a
6304 * full memory barrier there (inside bnx2x_sp_post()).
6307 "afex: sending func_update vif_id 0x%x dvlan 0x%x prio 0x%x\n",
6309 rdata
->afex_default_vlan
, rdata
->allowed_priorities
);
6311 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_UPDATE
, 0,
6312 U64_HI(data_mapping
),
6313 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
6317 inline int bnx2x_func_send_afex_viflists(struct bnx2x
*bp
,
6318 struct bnx2x_func_state_params
*params
)
6320 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6321 struct afex_vif_list_ramrod_data
*rdata
=
6322 (struct afex_vif_list_ramrod_data
*)o
->afex_rdata
;
6323 struct bnx2x_func_afex_viflists_params
*afex_vif_params
=
6324 ¶ms
->params
.afex_viflists
;
6325 u64
*p_rdata
= (u64
*)rdata
;
6327 memset(rdata
, 0, sizeof(*rdata
));
6329 /* Fill the ramrod data with provided parameters */
6330 rdata
->vif_list_index
= cpu_to_le16(afex_vif_params
->vif_list_index
);
6331 rdata
->func_bit_map
= afex_vif_params
->func_bit_map
;
6332 rdata
->afex_vif_list_command
= afex_vif_params
->afex_vif_list_command
;
6333 rdata
->func_to_clear
= afex_vif_params
->func_to_clear
;
6335 /* send in echo type of sub command */
6336 rdata
->echo
= afex_vif_params
->afex_vif_list_command
;
6338 /* No need for an explicit memory barrier here as long we would
6339 * need to ensure the ordering of writing to the SPQ element
6340 * and updating of the SPQ producer which involves a memory
6341 * read and we will have to put a full memory barrier there
6342 * (inside bnx2x_sp_post()).
6345 DP(BNX2X_MSG_SP
, "afex: ramrod lists, cmd 0x%x index 0x%x func_bit_map 0x%x func_to_clr 0x%x\n",
6346 rdata
->afex_vif_list_command
, rdata
->vif_list_index
,
6347 rdata
->func_bit_map
, rdata
->func_to_clear
);
6349 /* this ramrod sends data directly and not through DMA mapping */
6350 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_AFEX_VIF_LISTS
, 0,
6351 U64_HI(*p_rdata
), U64_LO(*p_rdata
),
6352 NONE_CONNECTION_TYPE
);
6355 static inline int bnx2x_func_send_stop(struct bnx2x
*bp
,
6356 struct bnx2x_func_state_params
*params
)
6358 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_FUNCTION_STOP
, 0, 0, 0,
6359 NONE_CONNECTION_TYPE
);
6362 static inline int bnx2x_func_send_tx_stop(struct bnx2x
*bp
,
6363 struct bnx2x_func_state_params
*params
)
6365 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_STOP_TRAFFIC
, 0, 0, 0,
6366 NONE_CONNECTION_TYPE
);
6368 static inline int bnx2x_func_send_tx_start(struct bnx2x
*bp
,
6369 struct bnx2x_func_state_params
*params
)
6371 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6372 struct flow_control_configuration
*rdata
=
6373 (struct flow_control_configuration
*)o
->rdata
;
6374 dma_addr_t data_mapping
= o
->rdata_mapping
;
6375 struct bnx2x_func_tx_start_params
*tx_start_params
=
6376 ¶ms
->params
.tx_start
;
6379 memset(rdata
, 0, sizeof(*rdata
));
6381 rdata
->dcb_enabled
= tx_start_params
->dcb_enabled
;
6382 rdata
->dcb_version
= tx_start_params
->dcb_version
;
6383 rdata
->dont_add_pri_0_en
= tx_start_params
->dont_add_pri_0_en
;
6385 for (i
= 0; i
< ARRAY_SIZE(rdata
->traffic_type_to_priority_cos
); i
++)
6386 rdata
->traffic_type_to_priority_cos
[i
] =
6387 tx_start_params
->traffic_type_to_priority_cos
[i
];
6389 for (i
= 0; i
< MAX_TRAFFIC_TYPES
; i
++)
6390 rdata
->dcb_outer_pri
[i
] = tx_start_params
->dcb_outer_pri
[i
];
6391 /* No need for an explicit memory barrier here as long as we
6392 * ensure the ordering of writing to the SPQ element
6393 * and updating of the SPQ producer which involves a memory
6394 * read. If the memory read is removed we will have to put a
6395 * full memory barrier there (inside bnx2x_sp_post()).
6397 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_START_TRAFFIC
, 0,
6398 U64_HI(data_mapping
),
6399 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
6403 int bnx2x_func_send_set_timesync(struct bnx2x
*bp
,
6404 struct bnx2x_func_state_params
*params
)
6406 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6407 struct set_timesync_ramrod_data
*rdata
=
6408 (struct set_timesync_ramrod_data
*)o
->rdata
;
6409 dma_addr_t data_mapping
= o
->rdata_mapping
;
6410 struct bnx2x_func_set_timesync_params
*set_timesync_params
=
6411 ¶ms
->params
.set_timesync
;
6413 memset(rdata
, 0, sizeof(*rdata
));
6415 /* Fill the ramrod data with provided parameters */
6416 rdata
->drift_adjust_cmd
= set_timesync_params
->drift_adjust_cmd
;
6417 rdata
->offset_cmd
= set_timesync_params
->offset_cmd
;
6418 rdata
->add_sub_drift_adjust_value
=
6419 set_timesync_params
->add_sub_drift_adjust_value
;
6420 rdata
->drift_adjust_value
= set_timesync_params
->drift_adjust_value
;
6421 rdata
->drift_adjust_period
= set_timesync_params
->drift_adjust_period
;
6422 rdata
->offset_delta
.lo
=
6423 cpu_to_le32(U64_LO(set_timesync_params
->offset_delta
));
6424 rdata
->offset_delta
.hi
=
6425 cpu_to_le32(U64_HI(set_timesync_params
->offset_delta
));
6427 DP(BNX2X_MSG_SP
, "Set timesync command params: drift_cmd = %d, offset_cmd = %d, add_sub_drift = %d, drift_val = %d, drift_period = %d, offset_lo = %d, offset_hi = %d\n",
6428 rdata
->drift_adjust_cmd
, rdata
->offset_cmd
,
6429 rdata
->add_sub_drift_adjust_value
, rdata
->drift_adjust_value
,
6430 rdata
->drift_adjust_period
, rdata
->offset_delta
.lo
,
6431 rdata
->offset_delta
.hi
);
6433 return bnx2x_sp_post(bp
, RAMROD_CMD_ID_COMMON_SET_TIMESYNC
, 0,
6434 U64_HI(data_mapping
),
6435 U64_LO(data_mapping
), NONE_CONNECTION_TYPE
);
6438 static int bnx2x_func_send_cmd(struct bnx2x
*bp
,
6439 struct bnx2x_func_state_params
*params
)
6441 switch (params
->cmd
) {
6442 case BNX2X_F_CMD_HW_INIT
:
6443 return bnx2x_func_hw_init(bp
, params
);
6444 case BNX2X_F_CMD_START
:
6445 return bnx2x_func_send_start(bp
, params
);
6446 case BNX2X_F_CMD_STOP
:
6447 return bnx2x_func_send_stop(bp
, params
);
6448 case BNX2X_F_CMD_HW_RESET
:
6449 return bnx2x_func_hw_reset(bp
, params
);
6450 case BNX2X_F_CMD_AFEX_UPDATE
:
6451 return bnx2x_func_send_afex_update(bp
, params
);
6452 case BNX2X_F_CMD_AFEX_VIFLISTS
:
6453 return bnx2x_func_send_afex_viflists(bp
, params
);
6454 case BNX2X_F_CMD_TX_STOP
:
6455 return bnx2x_func_send_tx_stop(bp
, params
);
6456 case BNX2X_F_CMD_TX_START
:
6457 return bnx2x_func_send_tx_start(bp
, params
);
6458 case BNX2X_F_CMD_SWITCH_UPDATE
:
6459 return bnx2x_func_send_switch_update(bp
, params
);
6460 case BNX2X_F_CMD_SET_TIMESYNC
:
6461 return bnx2x_func_send_set_timesync(bp
, params
);
6463 BNX2X_ERR("Unknown command: %d\n", params
->cmd
);
6468 void bnx2x_init_func_obj(struct bnx2x
*bp
,
6469 struct bnx2x_func_sp_obj
*obj
,
6470 void *rdata
, dma_addr_t rdata_mapping
,
6471 void *afex_rdata
, dma_addr_t afex_rdata_mapping
,
6472 struct bnx2x_func_sp_drv_ops
*drv_iface
)
6474 memset(obj
, 0, sizeof(*obj
));
6476 mutex_init(&obj
->one_pending_mutex
);
6479 obj
->rdata_mapping
= rdata_mapping
;
6480 obj
->afex_rdata
= afex_rdata
;
6481 obj
->afex_rdata_mapping
= afex_rdata_mapping
;
6482 obj
->send_cmd
= bnx2x_func_send_cmd
;
6483 obj
->check_transition
= bnx2x_func_chk_transition
;
6484 obj
->complete_cmd
= bnx2x_func_comp_cmd
;
6485 obj
->wait_comp
= bnx2x_func_wait_comp
;
6487 obj
->drv
= drv_iface
;
6491 * bnx2x_func_state_change - perform Function state change transition
6493 * @bp: device handle
6494 * @params: parameters to perform the transaction
6496 * returns 0 in case of successfully completed transition,
6497 * negative error code in case of failure, positive
6498 * (EBUSY) value if there is a completion to that is
6499 * still pending (possible only if RAMROD_COMP_WAIT is
6500 * not set in params->ramrod_flags for asynchronous
6503 int bnx2x_func_state_change(struct bnx2x
*bp
,
6504 struct bnx2x_func_state_params
*params
)
6506 struct bnx2x_func_sp_obj
*o
= params
->f_obj
;
6508 enum bnx2x_func_cmd cmd
= params
->cmd
;
6509 unsigned long *pending
= &o
->pending
;
6511 mutex_lock(&o
->one_pending_mutex
);
6513 /* Check that the requested transition is legal */
6514 rc
= o
->check_transition(bp
, o
, params
);
6515 if ((rc
== -EBUSY
) &&
6516 (test_bit(RAMROD_RETRY
, ¶ms
->ramrod_flags
))) {
6517 while ((rc
== -EBUSY
) && (--cnt
> 0)) {
6518 mutex_unlock(&o
->one_pending_mutex
);
6520 mutex_lock(&o
->one_pending_mutex
);
6521 rc
= o
->check_transition(bp
, o
, params
);
6524 mutex_unlock(&o
->one_pending_mutex
);
6525 BNX2X_ERR("timeout waiting for previous ramrod completion\n");
6529 mutex_unlock(&o
->one_pending_mutex
);
6533 /* Set "pending" bit */
6534 set_bit(cmd
, pending
);
6536 /* Don't send a command if only driver cleanup was requested */
6537 if (test_bit(RAMROD_DRV_CLR_ONLY
, ¶ms
->ramrod_flags
)) {
6538 bnx2x_func_state_change_comp(bp
, o
, cmd
);
6539 mutex_unlock(&o
->one_pending_mutex
);
6542 rc
= o
->send_cmd(bp
, params
);
6544 mutex_unlock(&o
->one_pending_mutex
);
6547 o
->next_state
= BNX2X_F_STATE_MAX
;
6548 clear_bit(cmd
, pending
);
6549 smp_mb__after_atomic();
6553 if (test_bit(RAMROD_COMP_WAIT
, ¶ms
->ramrod_flags
)) {
6554 rc
= o
->wait_comp(bp
, o
, cmd
);
6562 return !!test_bit(cmd
, pending
);