1 /* bnx2x_sriov.c: QLogic Everest network driver.
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
29 static int bnx2x_vf_op_prep(struct bnx2x
*bp
, int vfidx
,
30 struct bnx2x_virtf
**vf
,
31 struct pf_vf_bulletin_content
**bulletin
,
34 /* General service functions */
35 static void storm_memset_vf_to_pf(struct bnx2x
*bp
, u16 abs_fid
,
38 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_VF_TO_PF_OFFSET(abs_fid
),
40 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_VF_TO_PF_OFFSET(abs_fid
),
42 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_VF_TO_PF_OFFSET(abs_fid
),
44 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_VF_TO_PF_OFFSET(abs_fid
),
48 static void storm_memset_func_en(struct bnx2x
*bp
, u16 abs_fid
,
51 REG_WR8(bp
, BAR_XSTRORM_INTMEM
+ XSTORM_FUNC_EN_OFFSET(abs_fid
),
53 REG_WR8(bp
, BAR_CSTRORM_INTMEM
+ CSTORM_FUNC_EN_OFFSET(abs_fid
),
55 REG_WR8(bp
, BAR_TSTRORM_INTMEM
+ TSTORM_FUNC_EN_OFFSET(abs_fid
),
57 REG_WR8(bp
, BAR_USTRORM_INTMEM
+ USTORM_FUNC_EN_OFFSET(abs_fid
),
61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x
*bp
, u16 abs_vfid
)
66 if (bnx2x_vf(bp
, idx
, abs_vfid
) == abs_vfid
)
72 struct bnx2x_virtf
*bnx2x_vf_by_abs_fid(struct bnx2x
*bp
, u16 abs_vfid
)
74 u16 idx
= (u16
)bnx2x_vf_idx_by_abs_fid(bp
, abs_vfid
);
75 return (idx
< BNX2X_NR_VIRTFN(bp
)) ? BP_VF(bp
, idx
) : NULL
;
78 static void bnx2x_vf_igu_ack_sb(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
79 u8 igu_sb_id
, u8 segment
, u16 index
, u8 op
,
82 /* acking a VF sb through the PF - use the GRC */
84 u32 igu_addr_data
= IGU_REG_COMMAND_REG_32LSB_DATA
;
85 u32 igu_addr_ctl
= IGU_REG_COMMAND_REG_CTRL
;
86 u32 func_encode
= vf
->abs_vfid
;
87 u32 addr_encode
= IGU_CMD_E2_PROD_UPD_BASE
+ igu_sb_id
;
88 struct igu_regular cmd_data
= {0};
90 cmd_data
.sb_id_and_flags
=
91 ((index
<< IGU_REGULAR_SB_INDEX_SHIFT
) |
92 (segment
<< IGU_REGULAR_SEGMENT_ACCESS_SHIFT
) |
93 (update
<< IGU_REGULAR_BUPDATE_SHIFT
) |
94 (op
<< IGU_REGULAR_ENABLE_INT_SHIFT
));
96 ctl
= addr_encode
<< IGU_CTRL_REG_ADDRESS_SHIFT
|
97 func_encode
<< IGU_CTRL_REG_FID_SHIFT
|
98 IGU_CTRL_CMD_TYPE_WR
<< IGU_CTRL_REG_TYPE_SHIFT
;
100 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data
.sb_id_and_flags
, igu_addr_data
);
102 REG_WR(bp
, igu_addr_data
, cmd_data
.sb_id_and_flags
);
105 DP(NETIF_MSG_HW
, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 REG_WR(bp
, igu_addr_ctl
, ctl
);
111 static bool bnx2x_validate_vf_sp_objs(struct bnx2x
*bp
,
112 struct bnx2x_virtf
*vf
,
115 if (!bnx2x_leading_vfq(vf
, sp_initialized
)) {
117 BNX2X_ERR("Slowpath objects not yet initialized!\n");
119 DP(BNX2X_MSG_IOV
, "Slowpath objects not yet initialized!\n");
125 /* VFOP operations states */
126 void bnx2x_vfop_qctor_dump_tx(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
127 struct bnx2x_queue_init_params
*init_params
,
128 struct bnx2x_queue_setup_params
*setup_params
,
129 u16 q_idx
, u16 sb_idx
)
132 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
136 init_params
->tx
.sb_cq_index
,
137 init_params
->tx
.hc_rate
,
139 setup_params
->txq_params
.traffic_type
);
142 void bnx2x_vfop_qctor_dump_rx(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
143 struct bnx2x_queue_init_params
*init_params
,
144 struct bnx2x_queue_setup_params
*setup_params
,
145 u16 q_idx
, u16 sb_idx
)
147 struct bnx2x_rxq_setup_params
*rxq_params
= &setup_params
->rxq_params
;
149 DP(BNX2X_MSG_IOV
, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
150 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
154 init_params
->rx
.sb_cq_index
,
155 init_params
->rx
.hc_rate
,
156 setup_params
->gen_params
.mtu
,
158 rxq_params
->sge_buf_sz
,
159 rxq_params
->max_sges_pkt
,
160 rxq_params
->tpa_agg_sz
,
162 rxq_params
->drop_flags
,
163 rxq_params
->cache_line_log
);
166 void bnx2x_vfop_qctor_prep(struct bnx2x
*bp
,
167 struct bnx2x_virtf
*vf
,
168 struct bnx2x_vf_queue
*q
,
169 struct bnx2x_vf_queue_construct_params
*p
,
170 unsigned long q_type
)
172 struct bnx2x_queue_init_params
*init_p
= &p
->qstate
.params
.init
;
173 struct bnx2x_queue_setup_params
*setup_p
= &p
->prep_qsetup
;
177 /* Enable host coalescing in the transition to INIT state */
178 if (test_bit(BNX2X_Q_FLG_HC
, &init_p
->rx
.flags
))
179 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_p
->rx
.flags
);
181 if (test_bit(BNX2X_Q_FLG_HC
, &init_p
->tx
.flags
))
182 __set_bit(BNX2X_Q_FLG_HC_EN
, &init_p
->tx
.flags
);
185 init_p
->rx
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
186 init_p
->tx
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
189 init_p
->cxts
[0] = q
->cxt
;
193 /* Setup-op general parameters */
194 setup_p
->gen_params
.spcl_id
= vf
->sp_cl_id
;
195 setup_p
->gen_params
.stat_id
= vfq_stat_id(vf
, q
);
196 setup_p
->gen_params
.fp_hsi
= vf
->fp_hsi
;
199 * collect statistics, zero statistics, local-switching, security,
200 * OV for Flex10, RSS and MCAST for leading
202 if (test_bit(BNX2X_Q_FLG_STATS
, &setup_p
->flags
))
203 __set_bit(BNX2X_Q_FLG_ZERO_STATS
, &setup_p
->flags
);
205 /* for VFs, enable tx switching, bd coherency, and mac address
208 __set_bit(BNX2X_Q_FLG_TX_SWITCH
, &setup_p
->flags
);
209 __set_bit(BNX2X_Q_FLG_TX_SEC
, &setup_p
->flags
);
211 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF
, &setup_p
->flags
);
213 __clear_bit(BNX2X_Q_FLG_ANTI_SPOOF
, &setup_p
->flags
);
215 /* Setup-op rx parameters */
216 if (test_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
)) {
217 struct bnx2x_rxq_setup_params
*rxq_p
= &setup_p
->rxq_params
;
219 rxq_p
->cl_qzone_id
= vfq_qzone_id(vf
, q
);
220 rxq_p
->fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
221 rxq_p
->rss_engine_id
= FW_VF_HANDLE(vf
->abs_vfid
);
223 if (test_bit(BNX2X_Q_FLG_TPA
, &setup_p
->flags
))
224 rxq_p
->max_tpa_queues
= BNX2X_VF_MAX_TPA_AGG_QUEUES
;
227 /* Setup-op tx parameters */
228 if (test_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
)) {
229 setup_p
->txq_params
.tss_leading_cl_id
= vf
->leading_rss
;
230 setup_p
->txq_params
.fw_sb_id
= vf_igu_sb(vf
, q
->sb_idx
);
234 static int bnx2x_vf_queue_create(struct bnx2x
*bp
,
235 struct bnx2x_virtf
*vf
, int qid
,
236 struct bnx2x_vf_queue_construct_params
*qctor
)
238 struct bnx2x_queue_state_params
*q_params
;
241 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
243 /* Prepare ramrod information */
244 q_params
= &qctor
->qstate
;
245 q_params
->q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
246 set_bit(RAMROD_COMP_WAIT
, &q_params
->ramrod_flags
);
248 if (bnx2x_get_q_logical_state(bp
, q_params
->q_obj
) ==
249 BNX2X_Q_LOGICAL_STATE_ACTIVE
) {
250 DP(BNX2X_MSG_IOV
, "queue was already up. Aborting gracefully\n");
254 /* Run Queue 'construction' ramrods */
255 q_params
->cmd
= BNX2X_Q_CMD_INIT
;
256 rc
= bnx2x_queue_state_change(bp
, q_params
);
260 memcpy(&q_params
->params
.setup
, &qctor
->prep_qsetup
,
261 sizeof(struct bnx2x_queue_setup_params
));
262 q_params
->cmd
= BNX2X_Q_CMD_SETUP
;
263 rc
= bnx2x_queue_state_change(bp
, q_params
);
267 /* enable interrupts */
268 bnx2x_vf_igu_ack_sb(bp
, vf
, vf_igu_sb(vf
, bnx2x_vfq(vf
, qid
, sb_idx
)),
269 USTORM_ID
, 0, IGU_INT_ENABLE
, 0);
274 static int bnx2x_vf_queue_destroy(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
277 enum bnx2x_queue_cmd cmds
[] = {BNX2X_Q_CMD_HALT
,
278 BNX2X_Q_CMD_TERMINATE
,
279 BNX2X_Q_CMD_CFC_DEL
};
280 struct bnx2x_queue_state_params q_params
;
283 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
285 /* Prepare ramrod information */
286 memset(&q_params
, 0, sizeof(struct bnx2x_queue_state_params
));
287 q_params
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
288 set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
290 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) ==
291 BNX2X_Q_LOGICAL_STATE_STOPPED
) {
292 DP(BNX2X_MSG_IOV
, "queue was already stopped. Aborting gracefully\n");
296 /* Run Queue 'destruction' ramrods */
297 for (i
= 0; i
< ARRAY_SIZE(cmds
); i
++) {
298 q_params
.cmd
= cmds
[i
];
299 rc
= bnx2x_queue_state_change(bp
, &q_params
);
301 BNX2X_ERR("Failed to run Queue command %d\n", cmds
[i
]);
307 if (bnx2x_vfq(vf
, qid
, cxt
)) {
308 bnx2x_vfq(vf
, qid
, cxt
)->ustorm_ag_context
.cdu_usage
= 0;
309 bnx2x_vfq(vf
, qid
, cxt
)->xstorm_ag_context
.cdu_reserved
= 0;
316 bnx2x_vf_set_igu_info(struct bnx2x
*bp
, u8 igu_sb_id
, u8 abs_vfid
)
318 struct bnx2x_virtf
*vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
320 /* the first igu entry belonging to VFs of this PF */
321 if (!BP_VFDB(bp
)->first_vf_igu_entry
)
322 BP_VFDB(bp
)->first_vf_igu_entry
= igu_sb_id
;
324 /* the first igu entry belonging to this VF */
325 if (!vf_sb_count(vf
))
326 vf
->igu_base_id
= igu_sb_id
;
331 BP_VFDB(bp
)->vf_sbs_pool
++;
334 static int bnx2x_vf_vlan_mac_clear(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
335 int qid
, bool drv_only
, int type
)
337 struct bnx2x_vlan_mac_ramrod_params ramrod
;
340 DP(BNX2X_MSG_IOV
, "vf[%d] - deleting all %s\n", vf
->abs_vfid
,
341 (type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MACs" :
342 (type
== BNX2X_VF_FILTER_MAC
) ? "MACs" : "VLANs");
344 /* Prepare ramrod params */
345 memset(&ramrod
, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params
));
346 if (type
== BNX2X_VF_FILTER_VLAN_MAC
) {
347 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
348 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_mac_obj
);
349 } else if (type
== BNX2X_VF_FILTER_MAC
) {
350 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
351 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, mac_obj
);
353 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_obj
);
355 ramrod
.user_req
.cmd
= BNX2X_VLAN_MAC_DEL
;
357 set_bit(RAMROD_EXEC
, &ramrod
.ramrod_flags
);
359 set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod
.ramrod_flags
);
361 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
364 rc
= ramrod
.vlan_mac_obj
->delete_all(bp
,
366 &ramrod
.user_req
.vlan_mac_flags
,
367 &ramrod
.ramrod_flags
);
369 BNX2X_ERR("Failed to delete all %s\n",
370 (type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MACs" :
371 (type
== BNX2X_VF_FILTER_MAC
) ? "MACs" : "VLANs");
378 static int bnx2x_vf_mac_vlan_config(struct bnx2x
*bp
,
379 struct bnx2x_virtf
*vf
, int qid
,
380 struct bnx2x_vf_mac_vlan_filter
*filter
,
383 struct bnx2x_vlan_mac_ramrod_params ramrod
;
386 DP(BNX2X_MSG_IOV
, "vf[%d] - %s a %s filter\n",
387 vf
->abs_vfid
, filter
->add
? "Adding" : "Deleting",
388 (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) ? "VLAN-MAC" :
389 (filter
->type
== BNX2X_VF_FILTER_MAC
) ? "MAC" : "VLAN");
391 /* Prepare ramrod params */
392 memset(&ramrod
, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params
));
393 if (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) {
394 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_mac_obj
);
395 ramrod
.user_req
.u
.vlan
.vlan
= filter
->vid
;
396 memcpy(&ramrod
.user_req
.u
.mac
.mac
, filter
->mac
, ETH_ALEN
);
397 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
398 } else if (filter
->type
== BNX2X_VF_FILTER_VLAN
) {
399 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, vlan_obj
);
400 ramrod
.user_req
.u
.vlan
.vlan
= filter
->vid
;
402 set_bit(BNX2X_ETH_MAC
, &ramrod
.user_req
.vlan_mac_flags
);
403 ramrod
.vlan_mac_obj
= &bnx2x_vfq(vf
, qid
, mac_obj
);
404 memcpy(&ramrod
.user_req
.u
.mac
.mac
, filter
->mac
, ETH_ALEN
);
406 ramrod
.user_req
.cmd
= filter
->add
? BNX2X_VLAN_MAC_ADD
:
409 set_bit(RAMROD_EXEC
, &ramrod
.ramrod_flags
);
411 set_bit(RAMROD_DRV_CLR_ONLY
, &ramrod
.ramrod_flags
);
413 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
415 /* Add/Remove the filter */
416 rc
= bnx2x_config_vlan_mac(bp
, &ramrod
);
420 BNX2X_ERR("Failed to %s %s\n",
421 filter
->add
? "add" : "delete",
422 (filter
->type
== BNX2X_VF_FILTER_VLAN_MAC
) ?
424 (filter
->type
== BNX2X_VF_FILTER_MAC
) ?
429 filter
->applied
= true;
434 int bnx2x_vf_mac_vlan_config_list(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
435 struct bnx2x_vf_mac_vlan_filters
*filters
,
436 int qid
, bool drv_only
)
440 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
442 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
445 /* Prepare ramrod params */
446 for (i
= 0; i
< filters
->count
; i
++) {
447 rc
= bnx2x_vf_mac_vlan_config(bp
, vf
, qid
,
448 &filters
->filters
[i
], drv_only
);
453 /* Rollback if needed */
454 if (i
!= filters
->count
) {
455 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
458 if (!filters
->filters
[i
].applied
)
460 filters
->filters
[i
].add
= !filters
->filters
[i
].add
;
461 bnx2x_vf_mac_vlan_config(bp
, vf
, qid
,
462 &filters
->filters
[i
],
467 /* It's our responsibility to free the filters */
473 int bnx2x_vf_queue_setup(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, int qid
,
474 struct bnx2x_vf_queue_construct_params
*qctor
)
478 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
480 rc
= bnx2x_vf_queue_create(bp
, vf
, qid
, qctor
);
484 /* Schedule the configuration of any pending vlan filters */
485 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_HYPERVISOR_VLAN
,
489 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf
->abs_vfid
, qid
, rc
);
493 static int bnx2x_vf_queue_flr(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
498 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
500 /* If needed, clean the filtering data base */
501 if ((qid
== LEADING_IDX
) &&
502 bnx2x_validate_vf_sp_objs(bp
, vf
, false)) {
503 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
504 BNX2X_VF_FILTER_VLAN_MAC
);
507 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
508 BNX2X_VF_FILTER_VLAN
);
511 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
, true,
512 BNX2X_VF_FILTER_MAC
);
517 /* Terminate queue */
518 if (bnx2x_vfq(vf
, qid
, sp_obj
).state
!= BNX2X_Q_STATE_RESET
) {
519 struct bnx2x_queue_state_params qstate
;
521 memset(&qstate
, 0, sizeof(struct bnx2x_queue_state_params
));
522 qstate
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
523 qstate
.q_obj
->state
= BNX2X_Q_STATE_STOPPED
;
524 qstate
.cmd
= BNX2X_Q_CMD_TERMINATE
;
525 set_bit(RAMROD_COMP_WAIT
, &qstate
.ramrod_flags
);
526 rc
= bnx2x_queue_state_change(bp
, &qstate
);
533 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf
->abs_vfid
, qid
, rc
);
537 int bnx2x_vf_mcast(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
538 bnx2x_mac_addr_t
*mcasts
, int mc_num
, bool drv_only
)
540 struct bnx2x_mcast_list_elem
*mc
= NULL
;
541 struct bnx2x_mcast_ramrod_params mcast
;
544 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
546 /* Prepare Multicast command */
547 memset(&mcast
, 0, sizeof(struct bnx2x_mcast_ramrod_params
));
548 mcast
.mcast_obj
= &vf
->mcast_obj
;
550 set_bit(RAMROD_DRV_CLR_ONLY
, &mcast
.ramrod_flags
);
552 set_bit(RAMROD_COMP_WAIT
, &mcast
.ramrod_flags
);
554 mc
= kcalloc(mc_num
, sizeof(struct bnx2x_mcast_list_elem
),
557 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
563 INIT_LIST_HEAD(&mcast
.mcast_list
);
564 for (i
= 0; i
< mc_num
; i
++) {
565 mc
[i
].mac
= mcasts
[i
];
566 list_add_tail(&mc
[i
].link
,
571 mcast
.mcast_list_len
= mc_num
;
572 rc
= bnx2x_config_mcast(bp
, &mcast
, BNX2X_MCAST_CMD_SET
);
574 BNX2X_ERR("Failed to set multicasts\n");
576 /* clear existing mcasts */
577 rc
= bnx2x_config_mcast(bp
, &mcast
, BNX2X_MCAST_CMD_DEL
);
579 BNX2X_ERR("Failed to remove multicasts\n");
587 static void bnx2x_vf_prep_rx_mode(struct bnx2x
*bp
, u8 qid
,
588 struct bnx2x_rx_mode_ramrod_params
*ramrod
,
589 struct bnx2x_virtf
*vf
,
590 unsigned long accept_flags
)
592 struct bnx2x_vf_queue
*vfq
= vfq_get(vf
, qid
);
594 memset(ramrod
, 0, sizeof(*ramrod
));
595 ramrod
->cid
= vfq
->cid
;
596 ramrod
->cl_id
= vfq_cl_id(vf
, vfq
);
597 ramrod
->rx_mode_obj
= &bp
->rx_mode_obj
;
598 ramrod
->func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
599 ramrod
->rx_accept_flags
= accept_flags
;
600 ramrod
->tx_accept_flags
= accept_flags
;
601 ramrod
->pstate
= &vf
->filter_state
;
602 ramrod
->state
= BNX2X_FILTER_RX_MODE_PENDING
;
604 set_bit(BNX2X_FILTER_RX_MODE_PENDING
, &vf
->filter_state
);
605 set_bit(RAMROD_RX
, &ramrod
->ramrod_flags
);
606 set_bit(RAMROD_TX
, &ramrod
->ramrod_flags
);
608 ramrod
->rdata
= bnx2x_vf_sp(bp
, vf
, rx_mode_rdata
.e2
);
609 ramrod
->rdata_mapping
= bnx2x_vf_sp_map(bp
, vf
, rx_mode_rdata
.e2
);
612 int bnx2x_vf_rxmode(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
613 int qid
, unsigned long accept_flags
)
615 struct bnx2x_rx_mode_ramrod_params ramrod
;
617 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
619 bnx2x_vf_prep_rx_mode(bp
, qid
, &ramrod
, vf
, accept_flags
);
620 set_bit(RAMROD_COMP_WAIT
, &ramrod
.ramrod_flags
);
621 vfq_get(vf
, qid
)->accept_flags
= ramrod
.rx_accept_flags
;
622 return bnx2x_config_rx_mode(bp
, &ramrod
);
625 int bnx2x_vf_queue_teardown(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, int qid
)
629 DP(BNX2X_MSG_IOV
, "vf[%d:%d]\n", vf
->abs_vfid
, qid
);
631 /* Remove all classification configuration for leading queue */
632 if (qid
== LEADING_IDX
) {
633 rc
= bnx2x_vf_rxmode(bp
, vf
, qid
, 0);
637 /* Remove filtering if feasible */
638 if (bnx2x_validate_vf_sp_objs(bp
, vf
, true)) {
639 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
641 BNX2X_VF_FILTER_VLAN_MAC
);
644 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
646 BNX2X_VF_FILTER_VLAN
);
649 rc
= bnx2x_vf_vlan_mac_clear(bp
, vf
, qid
,
651 BNX2X_VF_FILTER_MAC
);
654 rc
= bnx2x_vf_mcast(bp
, vf
, NULL
, 0, false);
661 rc
= bnx2x_vf_queue_destroy(bp
, vf
, qid
);
666 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
667 vf
->abs_vfid
, qid
, rc
);
671 /* VF enable primitives
672 * when pretend is required the caller is responsible
673 * for calling pretend prior to calling these routines
676 /* internal vf enable - until vf is enabled internally all transactions
677 * are blocked. This routine should always be called last with pretend.
679 static void bnx2x_vf_enable_internal(struct bnx2x
*bp
, u8 enable
)
681 REG_WR(bp
, PGLUE_B_REG_INTERNAL_VFID_ENABLE
, enable
? 1 : 0);
684 /* clears vf error in all semi blocks */
685 static void bnx2x_vf_semi_clear_err(struct bnx2x
*bp
, u8 abs_vfid
)
687 REG_WR(bp
, TSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
688 REG_WR(bp
, USEM_REG_VFPF_ERR_NUM
, abs_vfid
);
689 REG_WR(bp
, CSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
690 REG_WR(bp
, XSEM_REG_VFPF_ERR_NUM
, abs_vfid
);
693 static void bnx2x_vf_pglue_clear_err(struct bnx2x
*bp
, u8 abs_vfid
)
695 u32 was_err_group
= (2 * BP_PATH(bp
) + abs_vfid
) >> 5;
698 switch (was_err_group
) {
700 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR
;
703 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR
;
706 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR
;
709 was_err_reg
= PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR
;
712 REG_WR(bp
, was_err_reg
, 1 << (abs_vfid
& 0x1f));
715 static void bnx2x_vf_igu_reset(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
720 /* Set VF masks and configuration - pretend */
721 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
723 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_LSB
, 0);
724 REG_WR(bp
, IGU_REG_SB_INT_BEFORE_MASK_MSB
, 0);
725 REG_WR(bp
, IGU_REG_SB_MASK_LSB
, 0);
726 REG_WR(bp
, IGU_REG_SB_MASK_MSB
, 0);
727 REG_WR(bp
, IGU_REG_PBA_STATUS_LSB
, 0);
728 REG_WR(bp
, IGU_REG_PBA_STATUS_MSB
, 0);
730 val
= REG_RD(bp
, IGU_REG_VF_CONFIGURATION
);
731 val
|= (IGU_VF_CONF_FUNC_EN
| IGU_VF_CONF_MSI_MSIX_EN
);
732 val
&= ~IGU_VF_CONF_PARENT_MASK
;
733 val
|= (BP_ABS_FUNC(bp
) >> 1) << IGU_VF_CONF_PARENT_SHIFT
;
734 REG_WR(bp
, IGU_REG_VF_CONFIGURATION
, val
);
737 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
740 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
742 /* iterate over all queues, clear sb consumer */
743 for (i
= 0; i
< vf_sb_count(vf
); i
++) {
744 u8 igu_sb_id
= vf_igu_sb(vf
, i
);
746 /* zero prod memory */
747 REG_WR(bp
, IGU_REG_PROD_CONS_MEMORY
+ igu_sb_id
* 4, 0);
749 /* clear sb state machine */
750 bnx2x_igu_clear_sb_gen(bp
, vf
->abs_vfid
, igu_sb_id
,
753 /* disable + update */
754 bnx2x_vf_igu_ack_sb(bp
, vf
, igu_sb_id
, USTORM_ID
, 0,
759 void bnx2x_vf_enable_access(struct bnx2x
*bp
, u8 abs_vfid
)
761 /* set the VF-PF association in the FW */
762 storm_memset_vf_to_pf(bp
, FW_VF_HANDLE(abs_vfid
), BP_FUNC(bp
));
763 storm_memset_func_en(bp
, FW_VF_HANDLE(abs_vfid
), 1);
766 bnx2x_vf_semi_clear_err(bp
, abs_vfid
);
767 bnx2x_vf_pglue_clear_err(bp
, abs_vfid
);
769 /* internal vf-enable - pretend */
770 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, abs_vfid
));
771 DP(BNX2X_MSG_IOV
, "enabling internal access for vf %x\n", abs_vfid
);
772 bnx2x_vf_enable_internal(bp
, true);
773 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
776 static void bnx2x_vf_enable_traffic(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
778 /* Reset vf in IGU interrupts are still disabled */
779 bnx2x_vf_igu_reset(bp
, vf
);
781 /* pretend to enable the vf with the PBF */
782 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
783 REG_WR(bp
, PBF_REG_DISABLE_VF
, 0);
784 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
787 static u8
bnx2x_vf_is_pcie_pending(struct bnx2x
*bp
, u8 abs_vfid
)
790 struct bnx2x_virtf
*vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
795 dev
= pci_get_domain_bus_and_slot(vf
->domain
, vf
->bus
, vf
->devfn
);
797 return bnx2x_is_pcie_pending(dev
);
801 int bnx2x_vf_flr_clnup_epilog(struct bnx2x
*bp
, u8 abs_vfid
)
803 /* Verify no pending pci transactions */
804 if (bnx2x_vf_is_pcie_pending(bp
, abs_vfid
))
805 BNX2X_ERR("PCIE Transactions still pending\n");
810 /* must be called after the number of PF queues and the number of VFs are
814 bnx2x_iov_static_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
816 struct vf_pf_resc_request
*resc
= &vf
->alloc_resc
;
818 /* will be set only during VF-ACQUIRE */
822 resc
->num_mac_filters
= VF_MAC_CREDIT_CNT
;
823 resc
->num_vlan_filters
= VF_VLAN_CREDIT_CNT
;
825 /* no real limitation */
826 resc
->num_mc_filters
= 0;
828 /* num_sbs already set */
829 resc
->num_sbs
= vf
->sb_count
;
833 static void bnx2x_vf_free_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
835 /* reset the state variables */
836 bnx2x_iov_static_resc(bp
, vf
);
840 static void bnx2x_vf_flr_clnup_hw(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
842 u32 poll_cnt
= bnx2x_flr_clnup_poll_count(bp
);
844 /* DQ usage counter */
845 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
846 bnx2x_flr_clnup_poll_hw_counter(bp
, DORQ_REG_VF_USAGE_CNT
,
847 "DQ VF usage counter timed out",
849 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
851 /* FW cleanup command - poll for the results */
852 if (bnx2x_send_final_clnup(bp
, (u8
)FW_VF_HANDLE(vf
->abs_vfid
),
854 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf
->abs_vfid
);
856 /* verify TX hw is flushed */
857 bnx2x_tx_hw_flushed(bp
, poll_cnt
);
860 static void bnx2x_vf_flr(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
864 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
866 /* the cleanup operations are valid if and only if the VF
867 * was first acquired.
869 for (i
= 0; i
< vf_rxq_count(vf
); i
++) {
870 rc
= bnx2x_vf_queue_flr(bp
, vf
, i
);
875 /* remove multicasts */
876 bnx2x_vf_mcast(bp
, vf
, NULL
, 0, true);
878 /* dispatch final cleanup and wait for HW queues to flush */
879 bnx2x_vf_flr_clnup_hw(bp
, vf
);
881 /* release VF resources */
882 bnx2x_vf_free_resc(bp
, vf
);
884 vf
->malicious
= false;
886 /* re-open the mailbox */
887 bnx2x_vf_enable_mbx(bp
, vf
->abs_vfid
);
890 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
891 vf
->abs_vfid
, i
, rc
);
894 static void bnx2x_vf_flr_clnup(struct bnx2x
*bp
)
896 struct bnx2x_virtf
*vf
;
899 for (i
= 0; i
< BNX2X_NR_VIRTFN(bp
); i
++) {
900 /* VF should be RESET & in FLR cleanup states */
901 if (bnx2x_vf(bp
, i
, state
) != VF_RESET
||
902 !bnx2x_vf(bp
, i
, flr_clnup_stage
))
905 DP(BNX2X_MSG_IOV
, "next vf to cleanup: %d. Num of vfs: %d\n",
906 i
, BNX2X_NR_VIRTFN(bp
));
910 /* lock the vf pf channel */
911 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_FLR
);
913 /* invoke the VF FLR SM */
914 bnx2x_vf_flr(bp
, vf
);
916 /* mark the VF to be ACKED and continue */
917 vf
->flr_clnup_stage
= false;
918 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_FLR
);
921 /* Acknowledge the handled VFs.
922 * we are acknowledge all the vfs which an flr was requested for, even
923 * if amongst them there are such that we never opened, since the mcp
924 * will interrupt us immediately again if we only ack some of the bits,
925 * resulting in an endless loop. This can happen for example in KVM
926 * where an 'all ones' flr request is sometimes given by hyper visor
928 DP(BNX2X_MSG_MCP
, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
929 bp
->vfdb
->flrd_vfs
[0], bp
->vfdb
->flrd_vfs
[1]);
930 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
931 SHMEM2_WR(bp
, drv_ack_vf_disabled
[BP_FW_MB_IDX(bp
)][i
],
932 bp
->vfdb
->flrd_vfs
[i
]);
934 bnx2x_fw_command(bp
, DRV_MSG_CODE_VF_DISABLED_DONE
, 0);
936 /* clear the acked bits - better yet if the MCP implemented
937 * write to clear semantics
939 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
940 SHMEM2_WR(bp
, drv_ack_vf_disabled
[BP_FW_MB_IDX(bp
)][i
], 0);
943 void bnx2x_vf_handle_flr_event(struct bnx2x
*bp
)
948 for (i
= 0; i
< FLRD_VFS_DWORDS
; i
++)
949 bp
->vfdb
->flrd_vfs
[i
] = SHMEM2_RD(bp
, mcp_vf_disabled
[i
]);
952 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
953 bp
->vfdb
->flrd_vfs
[0], bp
->vfdb
->flrd_vfs
[1]);
956 struct bnx2x_virtf
*vf
= BP_VF(bp
, i
);
959 if (vf
->abs_vfid
< 32)
960 reset
= bp
->vfdb
->flrd_vfs
[0] & (1 << vf
->abs_vfid
);
962 reset
= bp
->vfdb
->flrd_vfs
[1] &
963 (1 << (vf
->abs_vfid
- 32));
966 /* set as reset and ready for cleanup */
967 vf
->state
= VF_RESET
;
968 vf
->flr_clnup_stage
= true;
971 "Initiating Final cleanup for VF %d\n",
976 /* do the FLR cleanup for all marked VFs*/
977 bnx2x_vf_flr_clnup(bp
);
980 /* IOV global initialization routines */
981 void bnx2x_iov_init_dq(struct bnx2x
*bp
)
986 /* Set the DQ such that the CID reflect the abs_vfid */
987 REG_WR(bp
, DORQ_REG_VF_NORM_VF_BASE
, 0);
988 REG_WR(bp
, DORQ_REG_MAX_RVFID_SIZE
, ilog2(BNX2X_MAX_NUM_OF_VFS
));
990 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
993 REG_WR(bp
, DORQ_REG_VF_NORM_CID_BASE
, BNX2X_FIRST_VF_CID
);
995 /* The VF window size is the log2 of the max number of CIDs per VF */
996 REG_WR(bp
, DORQ_REG_VF_NORM_CID_WND_SIZE
, BNX2X_VF_CID_WND
);
998 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
999 * the Pf doorbell size although the 2 are independent.
1001 REG_WR(bp
, DORQ_REG_VF_NORM_CID_OFST
, 3);
1003 /* No security checks for now -
1004 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1005 * CID range 0 - 0x1ffff
1007 REG_WR(bp
, DORQ_REG_VF_TYPE_MASK_0
, 1);
1008 REG_WR(bp
, DORQ_REG_VF_TYPE_VALUE_0
, 0);
1009 REG_WR(bp
, DORQ_REG_VF_TYPE_MIN_MCID_0
, 0);
1010 REG_WR(bp
, DORQ_REG_VF_TYPE_MAX_MCID_0
, 0x1ffff);
1012 /* set the VF doorbell threshold. This threshold represents the amount
1013 * of doorbells allowed in the main DORQ fifo for a specific VF.
1015 REG_WR(bp
, DORQ_REG_VF_USAGE_CT_LIMIT
, 64);
1018 void bnx2x_iov_init_dmae(struct bnx2x
*bp
)
1020 if (pci_find_ext_capability(bp
->pdev
, PCI_EXT_CAP_ID_SRIOV
))
1021 REG_WR(bp
, DMAE_REG_BACKWARD_COMP_EN
, 0);
1024 static int bnx2x_vf_domain(struct bnx2x
*bp
, int vfid
)
1026 struct pci_dev
*dev
= bp
->pdev
;
1028 return pci_domain_nr(dev
->bus
);
1031 static int bnx2x_vf_bus(struct bnx2x
*bp
, int vfid
)
1033 struct pci_dev
*dev
= bp
->pdev
;
1034 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1036 return dev
->bus
->number
+ ((dev
->devfn
+ iov
->offset
+
1037 iov
->stride
* vfid
) >> 8);
1040 static int bnx2x_vf_devfn(struct bnx2x
*bp
, int vfid
)
1042 struct pci_dev
*dev
= bp
->pdev
;
1043 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1045 return (dev
->devfn
+ iov
->offset
+ iov
->stride
* vfid
) & 0xff;
1048 static void bnx2x_vf_set_bars(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1051 struct pci_dev
*dev
= bp
->pdev
;
1052 struct bnx2x_sriov
*iov
= &bp
->vfdb
->sriov
;
1054 for (i
= 0, n
= 0; i
< PCI_SRIOV_NUM_BARS
; i
+= 2, n
++) {
1055 u64 start
= pci_resource_start(dev
, PCI_IOV_RESOURCES
+ i
);
1056 u32 size
= pci_resource_len(dev
, PCI_IOV_RESOURCES
+ i
);
1059 vf
->bars
[n
].bar
= start
+ size
* vf
->abs_vfid
;
1060 vf
->bars
[n
].size
= size
;
1065 bnx2x_get_vf_igu_cam_info(struct bnx2x
*bp
)
1069 u8 fid
, current_pf
= 0;
1071 /* IGU in normal mode - read CAM */
1072 for (sb_id
= 0; sb_id
< IGU_REG_MAPPING_MEMORY_SIZE
; sb_id
++) {
1073 val
= REG_RD(bp
, IGU_REG_MAPPING_MEMORY
+ sb_id
* 4);
1074 if (!(val
& IGU_REG_MAPPING_MEMORY_VALID
))
1076 fid
= GET_FIELD((val
), IGU_REG_MAPPING_MEMORY_FID
);
1077 if (fid
& IGU_FID_ENCODE_IS_PF
)
1078 current_pf
= fid
& IGU_FID_PF_NUM_MASK
;
1079 else if (current_pf
== BP_FUNC(bp
))
1080 bnx2x_vf_set_igu_info(bp
, sb_id
,
1081 (fid
& IGU_FID_VF_NUM_MASK
));
1082 DP(BNX2X_MSG_IOV
, "%s[%d], igu_sb_id=%d, msix=%d\n",
1083 ((fid
& IGU_FID_ENCODE_IS_PF
) ? "PF" : "VF"),
1084 ((fid
& IGU_FID_ENCODE_IS_PF
) ? (fid
& IGU_FID_PF_NUM_MASK
) :
1085 (fid
& IGU_FID_VF_NUM_MASK
)), sb_id
,
1086 GET_FIELD((val
), IGU_REG_MAPPING_MEMORY_VECTOR
));
1088 DP(BNX2X_MSG_IOV
, "vf_sbs_pool is %d\n", BP_VFDB(bp
)->vf_sbs_pool
);
1089 return BP_VFDB(bp
)->vf_sbs_pool
;
1092 static void __bnx2x_iov_free_vfdb(struct bnx2x
*bp
)
1095 kfree(bp
->vfdb
->vfqs
);
1096 kfree(bp
->vfdb
->vfs
);
1102 static int bnx2x_sriov_pci_cfg_info(struct bnx2x
*bp
, struct bnx2x_sriov
*iov
)
1105 struct pci_dev
*dev
= bp
->pdev
;
1107 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_SRIOV
);
1109 BNX2X_ERR("failed to find SRIOV capability in device\n");
1114 DP(BNX2X_MSG_IOV
, "sriov ext pos %d\n", pos
);
1115 pci_read_config_word(dev
, pos
+ PCI_SRIOV_CTRL
, &iov
->ctrl
);
1116 pci_read_config_word(dev
, pos
+ PCI_SRIOV_TOTAL_VF
, &iov
->total
);
1117 pci_read_config_word(dev
, pos
+ PCI_SRIOV_INITIAL_VF
, &iov
->initial
);
1118 pci_read_config_word(dev
, pos
+ PCI_SRIOV_VF_OFFSET
, &iov
->offset
);
1119 pci_read_config_word(dev
, pos
+ PCI_SRIOV_VF_STRIDE
, &iov
->stride
);
1120 pci_read_config_dword(dev
, pos
+ PCI_SRIOV_SUP_PGSIZE
, &iov
->pgsz
);
1121 pci_read_config_dword(dev
, pos
+ PCI_SRIOV_CAP
, &iov
->cap
);
1122 pci_read_config_byte(dev
, pos
+ PCI_SRIOV_FUNC_LINK
, &iov
->link
);
1127 static int bnx2x_sriov_info(struct bnx2x
*bp
, struct bnx2x_sriov
*iov
)
1131 /* read the SRIOV capability structure
1132 * The fields can be read via configuration read or
1133 * directly from the device (starting at offset PCICFG_OFFSET)
1135 if (bnx2x_sriov_pci_cfg_info(bp
, iov
))
1138 /* get the number of SRIOV bars */
1141 /* read the first_vfid */
1142 val
= REG_RD(bp
, PCICFG_OFFSET
+ GRC_CONFIG_REG_PF_INIT_VF
);
1143 iov
->first_vf_in_pf
= ((val
& GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK
)
1144 * 8) - (BNX2X_MAX_NUM_OF_VFS
* BP_PATH(bp
));
1147 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1149 iov
->first_vf_in_pf
, iov
->nres
, iov
->cap
, iov
->ctrl
, iov
->total
,
1150 iov
->initial
, iov
->nr_virtfn
, iov
->offset
, iov
->stride
, iov
->pgsz
);
1155 /* must be called after PF bars are mapped */
1156 int bnx2x_iov_init_one(struct bnx2x
*bp
, int int_mode_param
,
1160 struct bnx2x_sriov
*iov
;
1161 struct pci_dev
*dev
= bp
->pdev
;
1169 /* verify sriov capability is present in configuration space */
1170 if (!pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_SRIOV
))
1173 /* verify chip revision */
1174 if (CHIP_IS_E1x(bp
))
1177 /* check if SRIOV support is turned off */
1181 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1182 if (BNX2X_L2_MAX_CID(bp
) >= BNX2X_FIRST_VF_CID
) {
1183 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1184 BNX2X_L2_MAX_CID(bp
), BNX2X_FIRST_VF_CID
);
1188 /* SRIOV can be enabled only with MSIX */
1189 if (int_mode_param
== BNX2X_INT_MODE_MSI
||
1190 int_mode_param
== BNX2X_INT_MODE_INTX
) {
1191 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1196 /* verify ari is enabled */
1197 if (!pci_ari_enabled(bp
->pdev
->bus
)) {
1198 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1202 /* verify igu is in normal mode */
1203 if (CHIP_INT_MODE_IS_BC(bp
)) {
1204 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1208 /* allocate the vfs database */
1209 bp
->vfdb
= kzalloc(sizeof(*(bp
->vfdb
)), GFP_KERNEL
);
1211 BNX2X_ERR("failed to allocate vf database\n");
1216 /* get the sriov info - Linux already collected all the pertinent
1217 * information, however the sriov structure is for the private use
1218 * of the pci module. Also we want this information regardless
1219 * of the hyper-visor.
1221 iov
= &(bp
->vfdb
->sriov
);
1222 err
= bnx2x_sriov_info(bp
, iov
);
1226 /* SR-IOV capability was enabled but there are no VFs*/
1227 if (iov
->total
== 0)
1230 iov
->nr_virtfn
= min_t(u16
, iov
->total
, num_vfs_param
);
1232 DP(BNX2X_MSG_IOV
, "num_vfs_param was %d, nr_virtfn was %d\n",
1233 num_vfs_param
, iov
->nr_virtfn
);
1235 /* allocate the vf array */
1236 bp
->vfdb
->vfs
= kcalloc(BNX2X_NR_VIRTFN(bp
),
1237 sizeof(struct bnx2x_virtf
),
1239 if (!bp
->vfdb
->vfs
) {
1240 BNX2X_ERR("failed to allocate vf array\n");
1245 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1246 for_each_vf(bp
, i
) {
1247 bnx2x_vf(bp
, i
, index
) = i
;
1248 bnx2x_vf(bp
, i
, abs_vfid
) = iov
->first_vf_in_pf
+ i
;
1249 bnx2x_vf(bp
, i
, state
) = VF_FREE
;
1250 mutex_init(&bnx2x_vf(bp
, i
, op_mutex
));
1251 bnx2x_vf(bp
, i
, op_current
) = CHANNEL_TLV_NONE
;
1252 /* enable spoofchk by default */
1253 bnx2x_vf(bp
, i
, spoofchk
) = 1;
1256 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1257 if (!bnx2x_get_vf_igu_cam_info(bp
)) {
1258 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1263 /* allocate the queue arrays for all VFs */
1264 bp
->vfdb
->vfqs
= kcalloc(BNX2X_MAX_NUM_VF_QUEUES
,
1265 sizeof(struct bnx2x_vf_queue
),
1268 if (!bp
->vfdb
->vfqs
) {
1269 BNX2X_ERR("failed to allocate vf queue array\n");
1274 /* Prepare the VFs event synchronization mechanism */
1275 mutex_init(&bp
->vfdb
->event_mutex
);
1277 mutex_init(&bp
->vfdb
->bulletin_mutex
);
1279 if (SHMEM2_HAS(bp
, sriov_switch_mode
))
1280 SHMEM2_WR(bp
, sriov_switch_mode
, SRIOV_SWITCH_MODE_VEB
);
1284 DP(BNX2X_MSG_IOV
, "Failed err=%d\n", err
);
1285 __bnx2x_iov_free_vfdb(bp
);
1289 void bnx2x_iov_remove_one(struct bnx2x
*bp
)
1293 /* if SRIOV is not enabled there's nothing to do */
1297 bnx2x_disable_sriov(bp
);
1299 /* disable access to all VFs */
1300 for (vf_idx
= 0; vf_idx
< bp
->vfdb
->sriov
.total
; vf_idx
++) {
1301 bnx2x_pretend_func(bp
,
1303 bp
->vfdb
->sriov
.first_vf_in_pf
+
1305 DP(BNX2X_MSG_IOV
, "disabling internal access for vf %d\n",
1306 bp
->vfdb
->sriov
.first_vf_in_pf
+ vf_idx
);
1307 bnx2x_vf_enable_internal(bp
, 0);
1308 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
1311 /* free vf database */
1312 __bnx2x_iov_free_vfdb(bp
);
1315 void bnx2x_iov_free_mem(struct bnx2x
*bp
)
1322 /* free vfs hw contexts */
1323 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1324 struct hw_dma
*cxt
= &bp
->vfdb
->context
[i
];
1325 BNX2X_PCI_FREE(cxt
->addr
, cxt
->mapping
, cxt
->size
);
1328 BNX2X_PCI_FREE(BP_VFDB(bp
)->sp_dma
.addr
,
1329 BP_VFDB(bp
)->sp_dma
.mapping
,
1330 BP_VFDB(bp
)->sp_dma
.size
);
1332 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp
)->addr
,
1333 BP_VF_MBX_DMA(bp
)->mapping
,
1334 BP_VF_MBX_DMA(bp
)->size
);
1336 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp
)->addr
,
1337 BP_VF_BULLETIN_DMA(bp
)->mapping
,
1338 BP_VF_BULLETIN_DMA(bp
)->size
);
1341 int bnx2x_iov_alloc_mem(struct bnx2x
*bp
)
1349 /* allocate vfs hw contexts */
1350 tot_size
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ BNX2X_NR_VIRTFN(bp
)) *
1351 BNX2X_CIDS_PER_VF
* sizeof(union cdu_context
);
1353 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1354 struct hw_dma
*cxt
= BP_VF_CXT_PAGE(bp
, i
);
1355 cxt
->size
= min_t(size_t, tot_size
, CDU_ILT_PAGE_SZ
);
1358 cxt
->addr
= BNX2X_PCI_ALLOC(&cxt
->mapping
, cxt
->size
);
1365 tot_size
-= cxt
->size
;
1368 /* allocate vfs ramrods dma memory - client_init and set_mac */
1369 tot_size
= BNX2X_NR_VIRTFN(bp
) * sizeof(struct bnx2x_vf_sp
);
1370 BP_VFDB(bp
)->sp_dma
.addr
= BNX2X_PCI_ALLOC(&BP_VFDB(bp
)->sp_dma
.mapping
,
1372 if (!BP_VFDB(bp
)->sp_dma
.addr
)
1374 BP_VFDB(bp
)->sp_dma
.size
= tot_size
;
1376 /* allocate mailboxes */
1377 tot_size
= BNX2X_NR_VIRTFN(bp
) * MBX_MSG_ALIGNED_SIZE
;
1378 BP_VF_MBX_DMA(bp
)->addr
= BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp
)->mapping
,
1380 if (!BP_VF_MBX_DMA(bp
)->addr
)
1383 BP_VF_MBX_DMA(bp
)->size
= tot_size
;
1385 /* allocate local bulletin boards */
1386 tot_size
= BNX2X_NR_VIRTFN(bp
) * BULLETIN_CONTENT_SIZE
;
1387 BP_VF_BULLETIN_DMA(bp
)->addr
= BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp
)->mapping
,
1389 if (!BP_VF_BULLETIN_DMA(bp
)->addr
)
1392 BP_VF_BULLETIN_DMA(bp
)->size
= tot_size
;
1400 static void bnx2x_vfq_init(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
1401 struct bnx2x_vf_queue
*q
)
1403 u8 cl_id
= vfq_cl_id(vf
, q
);
1404 u8 func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
1405 unsigned long q_type
= 0;
1407 set_bit(BNX2X_Q_TYPE_HAS_TX
, &q_type
);
1408 set_bit(BNX2X_Q_TYPE_HAS_RX
, &q_type
);
1410 /* Queue State object */
1411 bnx2x_init_queue_obj(bp
, &q
->sp_obj
,
1412 cl_id
, &q
->cid
, 1, func_id
,
1413 bnx2x_vf_sp(bp
, vf
, q_data
),
1414 bnx2x_vf_sp_map(bp
, vf
, q_data
),
1417 /* sp indication is set only when vlan/mac/etc. are initialized */
1418 q
->sp_initialized
= false;
1421 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1422 vf
->abs_vfid
, q
->sp_obj
.func_id
, q
->cid
);
1425 static int bnx2x_max_speed_cap(struct bnx2x
*bp
)
1427 u32 supported
= bp
->port
.supported
[bnx2x_get_link_cfg_idx(bp
)];
1430 (SUPPORTED_20000baseMLD2_Full
| SUPPORTED_20000baseKR2_Full
))
1433 return 10000; /* assume lowest supported speed is 10G */
1436 int bnx2x_iov_link_update_vf(struct bnx2x
*bp
, int idx
)
1438 struct bnx2x_link_report_data
*state
= &bp
->last_reported_link
;
1439 struct pf_vf_bulletin_content
*bulletin
;
1440 struct bnx2x_virtf
*vf
;
1444 /* sanity and init */
1445 rc
= bnx2x_vf_op_prep(bp
, idx
, &vf
, &bulletin
, false);
1449 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
1451 if (vf
->link_cfg
== IFLA_VF_LINK_STATE_AUTO
) {
1452 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1454 bulletin
->link_speed
= state
->line_speed
;
1455 bulletin
->link_flags
= 0;
1456 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
1457 &state
->link_report_flags
))
1458 bulletin
->link_flags
|= VFPF_LINK_REPORT_LINK_DOWN
;
1459 if (test_bit(BNX2X_LINK_REPORT_FD
,
1460 &state
->link_report_flags
))
1461 bulletin
->link_flags
|= VFPF_LINK_REPORT_FULL_DUPLEX
;
1462 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
1463 &state
->link_report_flags
))
1464 bulletin
->link_flags
|= VFPF_LINK_REPORT_RX_FC_ON
;
1465 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
1466 &state
->link_report_flags
))
1467 bulletin
->link_flags
|= VFPF_LINK_REPORT_TX_FC_ON
;
1468 } else if (vf
->link_cfg
== IFLA_VF_LINK_STATE_DISABLE
&&
1469 !(bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)) {
1470 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1471 bulletin
->link_flags
|= VFPF_LINK_REPORT_LINK_DOWN
;
1472 } else if (vf
->link_cfg
== IFLA_VF_LINK_STATE_ENABLE
&&
1473 (bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)) {
1474 bulletin
->valid_bitmap
|= 1 << LINK_VALID
;
1475 bulletin
->link_speed
= bnx2x_max_speed_cap(bp
);
1476 bulletin
->link_flags
&= ~VFPF_LINK_REPORT_LINK_DOWN
;
1482 DP(NETIF_MSG_LINK
| BNX2X_MSG_IOV
,
1483 "vf %d mode %u speed %d flags %x\n", idx
,
1484 vf
->link_cfg
, bulletin
->link_speed
, bulletin
->link_flags
);
1486 /* Post update on VF's bulletin board */
1487 rc
= bnx2x_post_vf_bulletin(bp
, idx
);
1489 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx
);
1495 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
1499 int bnx2x_set_vf_link_state(struct net_device
*dev
, int idx
, int link_state
)
1501 struct bnx2x
*bp
= netdev_priv(dev
);
1502 struct bnx2x_virtf
*vf
= BP_VF(bp
, idx
);
1507 if (vf
->link_cfg
== link_state
)
1508 return 0; /* nothing todo */
1510 vf
->link_cfg
= link_state
;
1512 return bnx2x_iov_link_update_vf(bp
, idx
);
1515 void bnx2x_iov_link_update(struct bnx2x
*bp
)
1522 for_each_vf(bp
, vfid
)
1523 bnx2x_iov_link_update_vf(bp
, vfid
);
1526 /* called by bnx2x_nic_load */
1527 int bnx2x_iov_nic_init(struct bnx2x
*bp
)
1531 if (!IS_SRIOV(bp
)) {
1532 DP(BNX2X_MSG_IOV
, "vfdb was not allocated\n");
1536 DP(BNX2X_MSG_IOV
, "num of vfs: %d\n", (bp
)->vfdb
->sriov
.nr_virtfn
);
1538 /* let FLR complete ... */
1541 /* initialize vf database */
1542 for_each_vf(bp
, vfid
) {
1543 struct bnx2x_virtf
*vf
= BP_VF(bp
, vfid
);
1545 int base_vf_cid
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ vfid
) *
1548 union cdu_context
*base_cxt
= (union cdu_context
*)
1549 BP_VF_CXT_PAGE(bp
, base_vf_cid
/ILT_PAGE_CIDS
)->addr
+
1550 (base_vf_cid
& (ILT_PAGE_CIDS
-1));
1553 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1554 vf
->abs_vfid
, vf_sb_count(vf
), base_vf_cid
,
1555 BNX2X_FIRST_VF_CID
+ base_vf_cid
, base_cxt
);
1557 /* init statically provisioned resources */
1558 bnx2x_iov_static_resc(bp
, vf
);
1560 /* queues are initialized during VF-ACQUIRE */
1561 vf
->filter_state
= 0;
1562 vf
->sp_cl_id
= bnx2x_fp(bp
, 0, cl_id
);
1564 bnx2x_init_credit_pool(&vf
->vf_vlans_pool
, 0,
1565 vf_vlan_rules_cnt(vf
));
1566 bnx2x_init_credit_pool(&vf
->vf_macs_pool
, 0,
1567 vf_mac_rules_cnt(vf
));
1569 /* init mcast object - This object will be re-initialized
1570 * during VF-ACQUIRE with the proper cl_id and cid.
1571 * It needs to be initialized here so that it can be safely
1572 * handled by a subsequent FLR flow.
1574 bnx2x_init_mcast_obj(bp
, &vf
->mcast_obj
, 0xFF,
1576 bnx2x_vf_sp(bp
, vf
, mcast_rdata
),
1577 bnx2x_vf_sp_map(bp
, vf
, mcast_rdata
),
1578 BNX2X_FILTER_MCAST_PENDING
,
1580 BNX2X_OBJ_TYPE_RX_TX
);
1582 /* set the mailbox message addresses */
1583 BP_VF_MBX(bp
, vfid
)->msg
= (struct bnx2x_vf_mbx_msg
*)
1584 (((u8
*)BP_VF_MBX_DMA(bp
)->addr
) + vfid
*
1585 MBX_MSG_ALIGNED_SIZE
);
1587 BP_VF_MBX(bp
, vfid
)->msg_mapping
= BP_VF_MBX_DMA(bp
)->mapping
+
1588 vfid
* MBX_MSG_ALIGNED_SIZE
;
1590 /* Enable vf mailbox */
1591 bnx2x_vf_enable_mbx(bp
, vf
->abs_vfid
);
1595 for_each_vf(bp
, vfid
) {
1596 struct bnx2x_virtf
*vf
= BP_VF(bp
, vfid
);
1598 /* fill in the BDF and bars */
1599 vf
->domain
= bnx2x_vf_domain(bp
, vfid
);
1600 vf
->bus
= bnx2x_vf_bus(bp
, vfid
);
1601 vf
->devfn
= bnx2x_vf_devfn(bp
, vfid
);
1602 bnx2x_vf_set_bars(bp
, vf
);
1605 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1606 vf
->abs_vfid
, vf
->bus
, vf
->devfn
,
1607 (unsigned)vf
->bars
[0].bar
, vf
->bars
[0].size
,
1608 (unsigned)vf
->bars
[1].bar
, vf
->bars
[1].size
,
1609 (unsigned)vf
->bars
[2].bar
, vf
->bars
[2].size
);
1615 /* called by bnx2x_chip_cleanup */
1616 int bnx2x_iov_chip_cleanup(struct bnx2x
*bp
)
1623 /* release all the VFs */
1625 bnx2x_vf_release(bp
, BP_VF(bp
, i
));
1630 /* called by bnx2x_init_hw_func, returns the next ilt line */
1631 int bnx2x_iov_init_ilt(struct bnx2x
*bp
, u16 line
)
1634 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
1639 /* set vfs ilt lines */
1640 for (i
= 0; i
< BNX2X_VF_CIDS
/ILT_PAGE_CIDS
; i
++) {
1641 struct hw_dma
*hw_cxt
= BP_VF_CXT_PAGE(bp
, i
);
1643 ilt
->lines
[line
+i
].page
= hw_cxt
->addr
;
1644 ilt
->lines
[line
+i
].page_mapping
= hw_cxt
->mapping
;
1645 ilt
->lines
[line
+i
].size
= hw_cxt
->size
; /* doesn't matter */
1650 static u8
bnx2x_iov_is_vf_cid(struct bnx2x
*bp
, u16 cid
)
1652 return ((cid
>= BNX2X_FIRST_VF_CID
) &&
1653 ((cid
- BNX2X_FIRST_VF_CID
) < BNX2X_VF_CIDS
));
1657 void bnx2x_vf_handle_classification_eqe(struct bnx2x
*bp
,
1658 struct bnx2x_vf_queue
*vfq
,
1659 union event_ring_elem
*elem
)
1661 unsigned long ramrod_flags
= 0;
1663 u32 echo
= le32_to_cpu(elem
->message
.data
.eth_event
.echo
);
1665 /* Always push next commands out, don't wait here */
1666 set_bit(RAMROD_CONT
, &ramrod_flags
);
1668 switch (echo
>> BNX2X_SWCID_SHIFT
) {
1669 case BNX2X_FILTER_MAC_PENDING
:
1670 rc
= vfq
->mac_obj
.complete(bp
, &vfq
->mac_obj
, elem
,
1673 case BNX2X_FILTER_VLAN_PENDING
:
1674 rc
= vfq
->vlan_obj
.complete(bp
, &vfq
->vlan_obj
, elem
,
1678 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo
);
1682 BNX2X_ERR("Failed to schedule new commands: %d\n", rc
);
1684 DP(BNX2X_MSG_IOV
, "Scheduled next pending commands...\n");
1688 void bnx2x_vf_handle_mcast_eqe(struct bnx2x
*bp
,
1689 struct bnx2x_virtf
*vf
)
1691 struct bnx2x_mcast_ramrod_params rparam
= {NULL
};
1694 rparam
.mcast_obj
= &vf
->mcast_obj
;
1695 vf
->mcast_obj
.raw
.clear_pending(&vf
->mcast_obj
.raw
);
1697 /* If there are pending mcast commands - send them */
1698 if (vf
->mcast_obj
.check_pending(&vf
->mcast_obj
)) {
1699 rc
= bnx2x_config_mcast(bp
, &rparam
, BNX2X_MCAST_CMD_CONT
);
1701 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1707 void bnx2x_vf_handle_filters_eqe(struct bnx2x
*bp
,
1708 struct bnx2x_virtf
*vf
)
1710 smp_mb__before_atomic();
1711 clear_bit(BNX2X_FILTER_RX_MODE_PENDING
, &vf
->filter_state
);
1712 smp_mb__after_atomic();
1715 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x
*bp
,
1716 struct bnx2x_virtf
*vf
)
1718 vf
->rss_conf_obj
.raw
.clear_pending(&vf
->rss_conf_obj
.raw
);
1721 int bnx2x_iov_eq_sp_event(struct bnx2x
*bp
, union event_ring_elem
*elem
)
1723 struct bnx2x_virtf
*vf
;
1724 int qidx
= 0, abs_vfid
;
1731 /* first get the cid - the only events we handle here are cfc-delete
1732 * and set-mac completion
1734 opcode
= elem
->message
.opcode
;
1737 case EVENT_RING_OPCODE_CFC_DEL
:
1738 cid
= SW_CID(elem
->message
.data
.cfc_del_event
.cid
);
1739 DP(BNX2X_MSG_IOV
, "checking cfc-del comp cid=%d\n", cid
);
1741 case EVENT_RING_OPCODE_CLASSIFICATION_RULES
:
1742 case EVENT_RING_OPCODE_MULTICAST_RULES
:
1743 case EVENT_RING_OPCODE_FILTERS_RULES
:
1744 case EVENT_RING_OPCODE_RSS_UPDATE_RULES
:
1745 cid
= SW_CID(elem
->message
.data
.eth_event
.echo
);
1746 DP(BNX2X_MSG_IOV
, "checking filtering comp cid=%d\n", cid
);
1748 case EVENT_RING_OPCODE_VF_FLR
:
1749 abs_vfid
= elem
->message
.data
.vf_flr_event
.vf_id
;
1750 DP(BNX2X_MSG_IOV
, "Got VF FLR notification abs_vfid=%d\n",
1753 case EVENT_RING_OPCODE_MALICIOUS_VF
:
1754 abs_vfid
= elem
->message
.data
.malicious_vf_event
.vf_id
;
1755 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1757 elem
->message
.data
.malicious_vf_event
.err_id
);
1763 /* check if the cid is the VF range */
1764 if (!bnx2x_iov_is_vf_cid(bp
, cid
)) {
1765 DP(BNX2X_MSG_IOV
, "cid is outside vf range: %d\n", cid
);
1769 /* extract vf and rxq index from vf_cid - relies on the following:
1770 * 1. vfid on cid reflects the true abs_vfid
1771 * 2. The max number of VFs (per path) is 64
1773 qidx
= cid
& ((1 << BNX2X_VF_CID_WND
)-1);
1774 abs_vfid
= (cid
>> BNX2X_VF_CID_WND
) & (BNX2X_MAX_NUM_OF_VFS
-1);
1776 vf
= bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
1779 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1785 case EVENT_RING_OPCODE_CFC_DEL
:
1786 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] cfc delete ramrod\n",
1787 vf
->abs_vfid
, qidx
);
1788 vfq_get(vf
, qidx
)->sp_obj
.complete_cmd(bp
,
1791 BNX2X_Q_CMD_CFC_DEL
);
1793 case EVENT_RING_OPCODE_CLASSIFICATION_RULES
:
1794 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set mac/vlan ramrod\n",
1795 vf
->abs_vfid
, qidx
);
1796 bnx2x_vf_handle_classification_eqe(bp
, vfq_get(vf
, qidx
), elem
);
1798 case EVENT_RING_OPCODE_MULTICAST_RULES
:
1799 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set mcast ramrod\n",
1800 vf
->abs_vfid
, qidx
);
1801 bnx2x_vf_handle_mcast_eqe(bp
, vf
);
1803 case EVENT_RING_OPCODE_FILTERS_RULES
:
1804 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] set rx-mode ramrod\n",
1805 vf
->abs_vfid
, qidx
);
1806 bnx2x_vf_handle_filters_eqe(bp
, vf
);
1808 case EVENT_RING_OPCODE_RSS_UPDATE_RULES
:
1809 DP(BNX2X_MSG_IOV
, "got VF [%d:%d] RSS update ramrod\n",
1810 vf
->abs_vfid
, qidx
);
1811 bnx2x_vf_handle_rss_update_eqe(bp
, vf
);
1813 case EVENT_RING_OPCODE_VF_FLR
:
1814 /* Do nothing for now */
1816 case EVENT_RING_OPCODE_MALICIOUS_VF
:
1817 vf
->malicious
= true;
1824 static struct bnx2x_virtf
*bnx2x_vf_by_cid(struct bnx2x
*bp
, int vf_cid
)
1826 /* extract the vf from vf_cid - relies on the following:
1827 * 1. vfid on cid reflects the true abs_vfid
1828 * 2. The max number of VFs (per path) is 64
1830 int abs_vfid
= (vf_cid
>> BNX2X_VF_CID_WND
) & (BNX2X_MAX_NUM_OF_VFS
-1);
1831 return bnx2x_vf_by_abs_fid(bp
, abs_vfid
);
1834 void bnx2x_iov_set_queue_sp_obj(struct bnx2x
*bp
, int vf_cid
,
1835 struct bnx2x_queue_sp_obj
**q_obj
)
1837 struct bnx2x_virtf
*vf
;
1842 vf
= bnx2x_vf_by_cid(bp
, vf_cid
);
1845 /* extract queue index from vf_cid - relies on the following:
1846 * 1. vfid on cid reflects the true abs_vfid
1847 * 2. The max number of VFs (per path) is 64
1849 int q_index
= vf_cid
& ((1 << BNX2X_VF_CID_WND
)-1);
1850 *q_obj
= &bnx2x_vfq(vf
, q_index
, sp_obj
);
1852 BNX2X_ERR("No vf matching cid %d\n", vf_cid
);
1856 void bnx2x_iov_adjust_stats_req(struct bnx2x
*bp
)
1859 int first_queue_query_index
, num_queues_req
;
1860 dma_addr_t cur_data_offset
;
1861 struct stats_query_entry
*cur_query_entry
;
1863 bool is_fcoe
= false;
1871 /* fcoe adds one global request and one queue request */
1872 num_queues_req
= BNX2X_NUM_ETH_QUEUES(bp
) + is_fcoe
;
1873 first_queue_query_index
= BNX2X_FIRST_QUEUE_QUERY_IDX
-
1876 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1877 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1878 BNX2X_NUM_ETH_QUEUES(bp
), is_fcoe
, first_queue_query_index
,
1879 first_queue_query_index
+ num_queues_req
);
1881 cur_data_offset
= bp
->fw_stats_data_mapping
+
1882 offsetof(struct bnx2x_fw_stats_data
, queue_stats
) +
1883 num_queues_req
* sizeof(struct per_queue_stats
);
1885 cur_query_entry
= &bp
->fw_stats_req
->
1886 query
[first_queue_query_index
+ num_queues_req
];
1888 for_each_vf(bp
, i
) {
1890 struct bnx2x_virtf
*vf
= BP_VF(bp
, i
);
1892 if (vf
->state
!= VF_ENABLED
) {
1893 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1894 "vf %d not enabled so no stats for it\n",
1899 if (vf
->malicious
) {
1900 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1901 "vf %d malicious so no stats for it\n",
1906 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1907 "add addresses for vf %d\n", vf
->abs_vfid
);
1908 for_each_vfq(vf
, j
) {
1909 struct bnx2x_vf_queue
*rxq
= vfq_get(vf
, j
);
1911 dma_addr_t q_stats_addr
=
1912 vf
->fw_stat_map
+ j
* vf
->stats_stride
;
1914 /* collect stats fro active queues only */
1915 if (bnx2x_get_q_logical_state(bp
, &rxq
->sp_obj
) ==
1916 BNX2X_Q_LOGICAL_STATE_STOPPED
)
1919 /* create stats query entry for this queue */
1920 cur_query_entry
->kind
= STATS_TYPE_QUEUE
;
1921 cur_query_entry
->index
= vfq_stat_id(vf
, rxq
);
1922 cur_query_entry
->funcID
=
1923 cpu_to_le16(FW_VF_HANDLE(vf
->abs_vfid
));
1924 cur_query_entry
->address
.hi
=
1925 cpu_to_le32(U64_HI(q_stats_addr
));
1926 cur_query_entry
->address
.lo
=
1927 cpu_to_le32(U64_LO(q_stats_addr
));
1928 DP_AND((BNX2X_MSG_IOV
| BNX2X_MSG_STATS
),
1929 "added address %x %x for vf %d queue %d client %d\n",
1930 cur_query_entry
->address
.hi
,
1931 cur_query_entry
->address
.lo
,
1932 cur_query_entry
->funcID
,
1933 j
, cur_query_entry
->index
);
1935 cur_data_offset
+= sizeof(struct per_queue_stats
);
1938 /* all stats are coalesced to the leading queue */
1939 if (vf
->cfg_flags
& VF_CFG_STATS_COALESCE
)
1943 bp
->fw_stats_req
->hdr
.cmd_num
= bp
->fw_stats_num
+ stats_count
;
1946 /* VF API helpers */
1947 static void bnx2x_vf_qtbl_set_q(struct bnx2x
*bp
, u8 abs_vfid
, u8 qid
,
1950 u32 reg
= PXP_REG_HST_ZONE_PERMISSION_TABLE
+ qid
* 4;
1951 u32 val
= enable
? (abs_vfid
| (1 << 6)) : 0;
1953 REG_WR(bp
, reg
, val
);
1956 static void bnx2x_vf_clr_qtbl(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1961 bnx2x_vf_qtbl_set_q(bp
, vf
->abs_vfid
,
1962 vfq_qzone_id(vf
, vfq_get(vf
, i
)), false);
1965 static void bnx2x_vf_igu_disable(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1969 /* clear the VF configuration - pretend */
1970 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf
->abs_vfid
));
1971 val
= REG_RD(bp
, IGU_REG_VF_CONFIGURATION
);
1972 val
&= ~(IGU_VF_CONF_MSI_MSIX_EN
| IGU_VF_CONF_SINGLE_ISR_EN
|
1973 IGU_VF_CONF_FUNC_EN
| IGU_VF_CONF_PARENT_MASK
);
1974 REG_WR(bp
, IGU_REG_VF_CONFIGURATION
, val
);
1975 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
1978 u8
bnx2x_vf_max_queue_cnt(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
1980 return min_t(u8
, min_t(u8
, vf_sb_count(vf
), BNX2X_CIDS_PER_VF
),
1981 BNX2X_VF_MAX_QUEUES
);
1985 int bnx2x_vf_chk_avail_resc(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
1986 struct vf_pf_resc_request
*req_resc
)
1988 u8 rxq_cnt
= vf_rxq_count(vf
) ? : bnx2x_vf_max_queue_cnt(bp
, vf
);
1989 u8 txq_cnt
= vf_txq_count(vf
) ? : bnx2x_vf_max_queue_cnt(bp
, vf
);
1991 return ((req_resc
->num_rxqs
<= rxq_cnt
) &&
1992 (req_resc
->num_txqs
<= txq_cnt
) &&
1993 (req_resc
->num_sbs
<= vf_sb_count(vf
)) &&
1994 (req_resc
->num_mac_filters
<= vf_mac_rules_cnt(vf
)) &&
1995 (req_resc
->num_vlan_filters
<= vf_vlan_rules_cnt(vf
)));
1999 int bnx2x_vf_acquire(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2000 struct vf_pf_resc_request
*resc
)
2002 int base_vf_cid
= (BP_VFDB(bp
)->sriov
.first_vf_in_pf
+ vf
->index
) *
2005 union cdu_context
*base_cxt
= (union cdu_context
*)
2006 BP_VF_CXT_PAGE(bp
, base_vf_cid
/ILT_PAGE_CIDS
)->addr
+
2007 (base_vf_cid
& (ILT_PAGE_CIDS
-1));
2010 /* if state is 'acquired' the VF was not released or FLR'd, in
2011 * this case the returned resources match the acquired already
2012 * acquired resources. Verify that the requested numbers do
2013 * not exceed the already acquired numbers.
2015 if (vf
->state
== VF_ACQUIRED
) {
2016 DP(BNX2X_MSG_IOV
, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2019 if (!bnx2x_vf_chk_avail_resc(bp
, vf
, resc
)) {
2020 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2027 /* Otherwise vf state must be 'free' or 'reset' */
2028 if (vf
->state
!= VF_FREE
&& vf
->state
!= VF_RESET
) {
2029 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2030 vf
->abs_vfid
, vf
->state
);
2034 /* static allocation:
2035 * the global maximum number are fixed per VF. Fail the request if
2036 * requested number exceed these globals
2038 if (!bnx2x_vf_chk_avail_resc(bp
, vf
, resc
)) {
2040 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2041 /* set the max resource in the vf */
2045 /* Set resources counters - 0 request means max available */
2046 vf_sb_count(vf
) = resc
->num_sbs
;
2047 vf_rxq_count(vf
) = resc
->num_rxqs
? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2048 vf_txq_count(vf
) = resc
->num_txqs
? : bnx2x_vf_max_queue_cnt(bp
, vf
);
2051 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2052 vf_sb_count(vf
), vf_rxq_count(vf
),
2053 vf_txq_count(vf
), vf_mac_rules_cnt(vf
),
2054 vf_vlan_rules_cnt(vf
));
2056 /* Initialize the queues */
2058 DP(BNX2X_MSG_IOV
, "vf->vfqs was not allocated\n");
2062 for_each_vfq(vf
, i
) {
2063 struct bnx2x_vf_queue
*q
= vfq_get(vf
, i
);
2066 BNX2X_ERR("q number %d was not allocated\n", i
);
2071 q
->cxt
= &((base_cxt
+ i
)->eth
);
2072 q
->cid
= BNX2X_FIRST_VF_CID
+ base_vf_cid
+ i
;
2074 DP(BNX2X_MSG_IOV
, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2075 vf
->abs_vfid
, i
, q
->index
, q
->cid
, q
->cxt
);
2077 /* init SP objects */
2078 bnx2x_vfq_init(bp
, vf
, q
);
2080 vf
->state
= VF_ACQUIRED
;
2084 int bnx2x_vf_init(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
, dma_addr_t
*sb_map
)
2086 struct bnx2x_func_init_params func_init
= {0};
2089 /* the sb resources are initialized at this point, do the
2090 * FW/HW initializations
2092 for_each_vf_sb(vf
, i
)
2093 bnx2x_init_sb(bp
, (dma_addr_t
)sb_map
[i
], vf
->abs_vfid
, true,
2094 vf_igu_sb(vf
, i
), vf_igu_sb(vf
, i
));
2097 if (vf
->state
!= VF_ACQUIRED
) {
2098 DP(BNX2X_MSG_IOV
, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2099 vf
->abs_vfid
, vf
->state
);
2103 /* let FLR complete ... */
2106 /* FLR cleanup epilogue */
2107 if (bnx2x_vf_flr_clnup_epilog(bp
, vf
->abs_vfid
))
2110 /* reset IGU VF statistics: MSIX */
2111 REG_WR(bp
, IGU_REG_STATISTIC_NUM_MESSAGE_SENT
+ vf
->abs_vfid
* 4 , 0);
2113 /* function setup */
2114 func_init
.pf_id
= BP_FUNC(bp
);
2115 func_init
.func_id
= FW_VF_HANDLE(vf
->abs_vfid
);
2116 bnx2x_func_init(bp
, &func_init
);
2119 bnx2x_vf_enable_access(bp
, vf
->abs_vfid
);
2120 bnx2x_vf_enable_traffic(bp
, vf
);
2122 /* queue protection table */
2124 bnx2x_vf_qtbl_set_q(bp
, vf
->abs_vfid
,
2125 vfq_qzone_id(vf
, vfq_get(vf
, i
)), true);
2127 vf
->state
= VF_ENABLED
;
2129 /* update vf bulletin board */
2130 bnx2x_post_vf_bulletin(bp
, vf
->index
);
2135 struct set_vf_state_cookie
{
2136 struct bnx2x_virtf
*vf
;
2140 static void bnx2x_set_vf_state(void *cookie
)
2142 struct set_vf_state_cookie
*p
= (struct set_vf_state_cookie
*)cookie
;
2144 p
->vf
->state
= p
->state
;
2147 int bnx2x_vf_close(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2151 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2153 /* Close all queues */
2154 for (i
= 0; i
< vf_rxq_count(vf
); i
++) {
2155 rc
= bnx2x_vf_queue_teardown(bp
, vf
, i
);
2160 /* disable the interrupts */
2161 DP(BNX2X_MSG_IOV
, "disabling igu\n");
2162 bnx2x_vf_igu_disable(bp
, vf
);
2164 /* disable the VF */
2165 DP(BNX2X_MSG_IOV
, "clearing qtbl\n");
2166 bnx2x_vf_clr_qtbl(bp
, vf
);
2168 /* need to make sure there are no outstanding stats ramrods which may
2169 * cause the device to access the VF's stats buffer which it will free
2170 * as soon as we return from the close flow.
2173 struct set_vf_state_cookie cookie
;
2176 cookie
.state
= VF_ACQUIRED
;
2177 rc
= bnx2x_stats_safe_exec(bp
, bnx2x_set_vf_state
, &cookie
);
2182 DP(BNX2X_MSG_IOV
, "set state to acquired\n");
2186 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf
->abs_vfid
, rc
);
2190 /* VF release can be called either: 1. The VF was acquired but
2191 * not enabled 2. the vf was enabled or in the process of being
2194 int bnx2x_vf_free(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2198 DP(BNX2X_MSG_IOV
, "VF[%d] STATE: %s\n", vf
->abs_vfid
,
2199 vf
->state
== VF_FREE
? "Free" :
2200 vf
->state
== VF_ACQUIRED
? "Acquired" :
2201 vf
->state
== VF_ENABLED
? "Enabled" :
2202 vf
->state
== VF_RESET
? "Reset" :
2205 switch (vf
->state
) {
2207 rc
= bnx2x_vf_close(bp
, vf
);
2210 fallthrough
; /* to release resources */
2212 DP(BNX2X_MSG_IOV
, "about to free resources\n");
2213 bnx2x_vf_free_resc(bp
, vf
);
2223 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf
->abs_vfid
, rc
);
2227 int bnx2x_vf_rss_update(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2228 struct bnx2x_config_rss_params
*rss
)
2230 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2231 set_bit(RAMROD_COMP_WAIT
, &rss
->ramrod_flags
);
2232 return bnx2x_config_rss(bp
, rss
);
2235 int bnx2x_vf_tpa_update(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2236 struct vfpf_tpa_tlv
*tlv
,
2237 struct bnx2x_queue_update_tpa_params
*params
)
2239 aligned_u64
*sge_addr
= tlv
->tpa_client_info
.sge_addr
;
2240 struct bnx2x_queue_state_params qstate
;
2243 DP(BNX2X_MSG_IOV
, "vf[%d]\n", vf
->abs_vfid
);
2245 /* Set ramrod params */
2246 memset(&qstate
, 0, sizeof(struct bnx2x_queue_state_params
));
2247 memcpy(&qstate
.params
.update_tpa
, params
,
2248 sizeof(struct bnx2x_queue_update_tpa_params
));
2249 qstate
.cmd
= BNX2X_Q_CMD_UPDATE_TPA
;
2250 set_bit(RAMROD_COMP_WAIT
, &qstate
.ramrod_flags
);
2252 for (qid
= 0; qid
< vf_rxq_count(vf
); qid
++) {
2253 qstate
.q_obj
= &bnx2x_vfq(vf
, qid
, sp_obj
);
2254 qstate
.params
.update_tpa
.sge_map
= sge_addr
[qid
];
2255 DP(BNX2X_MSG_IOV
, "sge_addr[%d:%d] %08x:%08x\n",
2256 vf
->abs_vfid
, qid
, U64_HI(sge_addr
[qid
]),
2257 U64_LO(sge_addr
[qid
]));
2258 rc
= bnx2x_queue_state_change(bp
, &qstate
);
2260 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2261 U64_HI(sge_addr
[qid
]), U64_LO(sge_addr
[qid
]),
2270 /* VF release ~ VF close + VF release-resources
2271 * Release is the ultimate SW shutdown and is called whenever an
2272 * irrecoverable error is encountered.
2274 int bnx2x_vf_release(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
)
2278 DP(BNX2X_MSG_IOV
, "PF releasing vf %d\n", vf
->abs_vfid
);
2279 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_RELEASE_VF
);
2281 rc
= bnx2x_vf_free(bp
, vf
);
2284 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2286 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_RELEASE_VF
);
2290 void bnx2x_lock_vf_pf_channel(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2291 enum channel_tlvs tlv
)
2293 /* we don't lock the channel for unsupported tlvs */
2294 if (!bnx2x_tlv_supported(tlv
)) {
2295 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2299 /* lock the channel */
2300 mutex_lock(&vf
->op_mutex
);
2302 /* record the locking op */
2303 vf
->op_current
= tlv
;
2306 DP(BNX2X_MSG_IOV
, "VF[%d]: vf pf channel locked by %d\n",
2310 void bnx2x_unlock_vf_pf_channel(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2311 enum channel_tlvs expected_tlv
)
2313 enum channel_tlvs current_tlv
;
2316 BNX2X_ERR("VF was %p\n", vf
);
2320 current_tlv
= vf
->op_current
;
2322 /* we don't unlock the channel for unsupported tlvs */
2323 if (!bnx2x_tlv_supported(expected_tlv
))
2326 WARN(expected_tlv
!= vf
->op_current
,
2327 "lock mismatch: expected %d found %d", expected_tlv
,
2330 /* record the locking op */
2331 vf
->op_current
= CHANNEL_TLV_NONE
;
2333 /* lock the channel */
2334 mutex_unlock(&vf
->op_mutex
);
2336 /* log the unlock */
2337 DP(BNX2X_MSG_IOV
, "VF[%d]: vf pf channel unlocked by %d\n",
2338 vf
->abs_vfid
, current_tlv
);
2341 static int bnx2x_set_pf_tx_switching(struct bnx2x
*bp
, bool enable
)
2343 struct bnx2x_queue_state_params q_params
;
2347 /* Verify changes are needed and record current Tx switching state */
2348 prev_flags
= bp
->flags
;
2350 bp
->flags
|= TX_SWITCHING
;
2352 bp
->flags
&= ~TX_SWITCHING
;
2353 if (prev_flags
== bp
->flags
)
2356 /* Verify state enables the sending of queue ramrods */
2357 if ((bp
->state
!= BNX2X_STATE_OPEN
) ||
2358 (bnx2x_get_q_logical_state(bp
,
2359 &bnx2x_sp_obj(bp
, &bp
->fp
[0]).q_obj
) !=
2360 BNX2X_Q_LOGICAL_STATE_ACTIVE
))
2363 /* send q. update ramrod to configure Tx switching */
2364 memset(&q_params
, 0, sizeof(q_params
));
2365 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2366 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2367 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG
,
2368 &q_params
.params
.update
.update_flags
);
2370 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING
,
2371 &q_params
.params
.update
.update_flags
);
2373 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING
,
2374 &q_params
.params
.update
.update_flags
);
2376 /* send the ramrod on all the queues of the PF */
2377 for_each_eth_queue(bp
, i
) {
2378 struct bnx2x_fastpath
*fp
= &bp
->fp
[i
];
2381 /* Set the appropriate Queue object */
2382 q_params
.q_obj
= &bnx2x_sp_obj(bp
, fp
).q_obj
;
2384 for (tx_idx
= FIRST_TX_COS_INDEX
;
2385 tx_idx
< fp
->max_cos
; tx_idx
++) {
2386 q_params
.params
.update
.cid_index
= tx_idx
;
2388 /* Update the Queue state */
2389 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2391 BNX2X_ERR("Failed to configure Tx switching\n");
2397 DP(BNX2X_MSG_IOV
, "%s Tx Switching\n", enable
? "Enabled" : "Disabled");
2401 int bnx2x_sriov_configure(struct pci_dev
*dev
, int num_vfs_param
)
2403 struct bnx2x
*bp
= netdev_priv(pci_get_drvdata(dev
));
2405 if (!IS_SRIOV(bp
)) {
2406 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2410 DP(BNX2X_MSG_IOV
, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2411 num_vfs_param
, BNX2X_NR_VIRTFN(bp
));
2413 /* HW channel is only operational when PF is up */
2414 if (bp
->state
!= BNX2X_STATE_OPEN
) {
2415 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2419 /* we are always bound by the total_vfs in the configuration space */
2420 if (num_vfs_param
> BNX2X_NR_VIRTFN(bp
)) {
2421 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2422 num_vfs_param
, BNX2X_NR_VIRTFN(bp
));
2423 num_vfs_param
= BNX2X_NR_VIRTFN(bp
);
2426 bp
->requested_nr_virtfn
= num_vfs_param
;
2427 if (num_vfs_param
== 0) {
2428 bnx2x_set_pf_tx_switching(bp
, false);
2429 bnx2x_disable_sriov(bp
);
2432 return bnx2x_enable_sriov(bp
);
2436 #define IGU_ENTRY_SIZE 4
2438 int bnx2x_enable_sriov(struct bnx2x
*bp
)
2440 int rc
= 0, req_vfs
= bp
->requested_nr_virtfn
;
2441 int vf_idx
, sb_idx
, vfq_idx
, qcount
, first_vf
;
2442 u32 igu_entry
, address
;
2448 first_vf
= bp
->vfdb
->sriov
.first_vf_in_pf
;
2450 /* statically distribute vf sb pool between VFs */
2451 num_vf_queues
= min_t(u16
, BNX2X_VF_MAX_QUEUES
,
2452 BP_VFDB(bp
)->vf_sbs_pool
/ req_vfs
);
2454 /* zero previous values learned from igu cam */
2455 for (vf_idx
= 0; vf_idx
< req_vfs
; vf_idx
++) {
2456 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
2459 vf_sb_count(BP_VF(bp
, vf_idx
)) = 0;
2461 bp
->vfdb
->vf_sbs_pool
= 0;
2463 /* prepare IGU cam */
2464 sb_idx
= BP_VFDB(bp
)->first_vf_igu_entry
;
2465 address
= IGU_REG_MAPPING_MEMORY
+ sb_idx
* IGU_ENTRY_SIZE
;
2466 for (vf_idx
= first_vf
; vf_idx
< first_vf
+ req_vfs
; vf_idx
++) {
2467 for (vfq_idx
= 0; vfq_idx
< num_vf_queues
; vfq_idx
++) {
2468 igu_entry
= vf_idx
<< IGU_REG_MAPPING_MEMORY_FID_SHIFT
|
2469 vfq_idx
<< IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT
|
2470 IGU_REG_MAPPING_MEMORY_VALID
;
2471 DP(BNX2X_MSG_IOV
, "assigning sb %d to vf %d\n",
2473 REG_WR(bp
, address
, igu_entry
);
2475 address
+= IGU_ENTRY_SIZE
;
2479 /* Reinitialize vf database according to igu cam */
2480 bnx2x_get_vf_igu_cam_info(bp
);
2482 DP(BNX2X_MSG_IOV
, "vf_sbs_pool %d, num_vf_queues %d\n",
2483 BP_VFDB(bp
)->vf_sbs_pool
, num_vf_queues
);
2486 for_each_vf(bp
, vf_idx
) {
2487 struct bnx2x_virtf
*vf
= BP_VF(bp
, vf_idx
);
2489 /* set local queue arrays */
2490 vf
->vfqs
= &bp
->vfdb
->vfqs
[qcount
];
2491 qcount
+= vf_sb_count(vf
);
2492 bnx2x_iov_static_resc(bp
, vf
);
2495 /* prepare msix vectors in VF configuration space - the value in the
2496 * PCI configuration space should be the index of the last entry,
2497 * namely one less than the actual size of the table
2499 for (vf_idx
= first_vf
; vf_idx
< first_vf
+ req_vfs
; vf_idx
++) {
2500 bnx2x_pretend_func(bp
, HW_VF_HANDLE(bp
, vf_idx
));
2501 REG_WR(bp
, PCICFG_OFFSET
+ GRC_CONFIG_REG_VF_MSIX_CONTROL
,
2503 DP(BNX2X_MSG_IOV
, "set msix vec num in VF %d cfg space to %d\n",
2504 vf_idx
, num_vf_queues
- 1);
2506 bnx2x_pretend_func(bp
, BP_ABS_FUNC(bp
));
2508 /* enable sriov. This will probe all the VFs, and consequentially cause
2509 * the "acquire" messages to appear on the VF PF channel.
2511 DP(BNX2X_MSG_IOV
, "about to call enable sriov\n");
2512 bnx2x_disable_sriov(bp
);
2514 rc
= bnx2x_set_pf_tx_switching(bp
, true);
2518 rc
= pci_enable_sriov(bp
->pdev
, req_vfs
);
2520 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc
);
2523 DP(BNX2X_MSG_IOV
, "sriov enabled (%d vfs)\n", req_vfs
);
2527 void bnx2x_pf_set_vfs_vlan(struct bnx2x
*bp
)
2530 struct pf_vf_bulletin_content
*bulletin
;
2532 DP(BNX2X_MSG_IOV
, "configuring vlan for VFs from sp-task\n");
2533 for_each_vf(bp
, vfidx
) {
2534 bulletin
= BP_VF_BULLETIN(bp
, vfidx
);
2535 if (bulletin
->valid_bitmap
& (1 << VLAN_VALID
))
2536 bnx2x_set_vf_vlan(bp
->dev
, vfidx
, bulletin
->vlan
, 0,
2537 htons(ETH_P_8021Q
));
2541 void bnx2x_disable_sriov(struct bnx2x
*bp
)
2543 if (pci_vfs_assigned(bp
->pdev
)) {
2545 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2549 pci_disable_sriov(bp
->pdev
);
2552 static int bnx2x_vf_op_prep(struct bnx2x
*bp
, int vfidx
,
2553 struct bnx2x_virtf
**vf
,
2554 struct pf_vf_bulletin_content
**bulletin
,
2557 if (bp
->state
!= BNX2X_STATE_OPEN
) {
2558 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2562 if (!IS_SRIOV(bp
)) {
2563 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2567 if (vfidx
>= BNX2X_NR_VIRTFN(bp
)) {
2568 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2569 vfidx
, BNX2X_NR_VIRTFN(bp
));
2574 *vf
= BP_VF(bp
, vfidx
);
2575 *bulletin
= BP_VF_BULLETIN(bp
, vfidx
);
2578 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx
);
2582 if (test_queue
&& !(*vf
)->vfqs
) {
2583 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2589 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2597 int bnx2x_get_vf_config(struct net_device
*dev
, int vfidx
,
2598 struct ifla_vf_info
*ivi
)
2600 struct bnx2x
*bp
= netdev_priv(dev
);
2601 struct bnx2x_virtf
*vf
= NULL
;
2602 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2603 struct bnx2x_vlan_mac_obj
*mac_obj
;
2604 struct bnx2x_vlan_mac_obj
*vlan_obj
;
2607 /* sanity and init */
2608 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2612 mac_obj
= &bnx2x_leading_vfq(vf
, mac_obj
);
2613 vlan_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2614 if (!mac_obj
|| !vlan_obj
) {
2615 BNX2X_ERR("VF partially initialized\n");
2621 ivi
->max_tx_rate
= 10000; /* always 10G. TBA take from link struct */
2622 ivi
->min_tx_rate
= 0;
2623 ivi
->spoofchk
= vf
->spoofchk
? 1 : 0;
2624 ivi
->linkstate
= vf
->link_cfg
;
2625 if (vf
->state
== VF_ENABLED
) {
2626 /* mac and vlan are in vlan_mac objects */
2627 if (bnx2x_validate_vf_sp_objs(bp
, vf
, false)) {
2628 mac_obj
->get_n_elements(bp
, mac_obj
, 1, (u8
*)&ivi
->mac
,
2630 vlan_obj
->get_n_elements(bp
, vlan_obj
, 1,
2631 (u8
*)&ivi
->vlan
, 0,
2635 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2637 if (bulletin
->valid_bitmap
& (1 << MAC_ADDR_VALID
))
2638 /* mac configured by ndo so its in bulletin board */
2639 memcpy(&ivi
->mac
, bulletin
->mac
, ETH_ALEN
);
2641 /* function has not been loaded yet. Show mac as 0s */
2642 eth_zero_addr(ivi
->mac
);
2645 if (bulletin
->valid_bitmap
& (1 << VLAN_VALID
))
2646 /* vlan configured by ndo so its in bulletin board */
2647 memcpy(&ivi
->vlan
, &bulletin
->vlan
, VLAN_HLEN
);
2649 /* function has not been loaded yet. Show vlans as 0s */
2650 memset(&ivi
->vlan
, 0, VLAN_HLEN
);
2652 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2658 /* New mac for VF. Consider these cases:
2659 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2660 * supply at acquire.
2661 * 2. VF has already been acquired but has not yet initialized - store in local
2662 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2663 * will configure this mac when it is ready.
2664 * 3. VF has already initialized but has not yet setup a queue - post the new
2665 * mac on VF's bulletin board right now. VF will configure this mac when it
2667 * 4. VF has already set a queue - delete any macs already configured for this
2668 * queue and manually config the new mac.
2669 * In any event, once this function has been called refuse any attempts by the
2670 * VF to configure any mac for itself except for this mac. In case of a race
2671 * where the VF fails to see the new post on its bulletin board before sending a
2672 * mac configuration request, the PF will simply fail the request and VF can try
2673 * again after consulting its bulletin board.
2675 int bnx2x_set_vf_mac(struct net_device
*dev
, int vfidx
, u8
*mac
)
2677 struct bnx2x
*bp
= netdev_priv(dev
);
2678 int rc
, q_logical_state
;
2679 struct bnx2x_virtf
*vf
= NULL
;
2680 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2682 if (!is_valid_ether_addr(mac
)) {
2683 BNX2X_ERR("mac address invalid\n");
2687 /* sanity and init */
2688 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2692 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2694 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2695 * configuration requests from vf unless match this mac
2697 bulletin
->valid_bitmap
|= 1 << MAC_ADDR_VALID
;
2698 memcpy(bulletin
->mac
, mac
, ETH_ALEN
);
2700 /* Post update on VF's bulletin board */
2701 rc
= bnx2x_post_vf_bulletin(bp
, vfidx
);
2703 /* release lock before checking return code */
2704 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2707 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx
);
2712 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
));
2713 if (vf
->state
== VF_ENABLED
&&
2714 q_logical_state
== BNX2X_Q_LOGICAL_STATE_ACTIVE
) {
2715 /* configure the mac in device on this vf's queue */
2716 unsigned long ramrod_flags
= 0;
2717 struct bnx2x_vlan_mac_obj
*mac_obj
;
2719 /* User should be able to see failure reason in system logs */
2720 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2723 /* must lock vfpf channel to protect against vf flows */
2724 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_MAC
);
2726 /* remove existing eth macs */
2727 mac_obj
= &bnx2x_leading_vfq(vf
, mac_obj
);
2728 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_ETH_MAC
, true);
2730 BNX2X_ERR("failed to delete eth macs\n");
2735 /* remove existing uc list macs */
2736 rc
= bnx2x_del_all_macs(bp
, mac_obj
, BNX2X_UC_LIST_MAC
, true);
2738 BNX2X_ERR("failed to delete uc_list macs\n");
2743 /* configure the new mac to device */
2744 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2745 bnx2x_set_mac_one(bp
, (u8
*)&bulletin
->mac
, mac_obj
, true,
2746 BNX2X_ETH_MAC
, &ramrod_flags
);
2749 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_MAC
);
2755 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x
*bp
,
2756 struct bnx2x_virtf
*vf
, bool accept
)
2758 struct bnx2x_rx_mode_ramrod_params rx_ramrod
;
2759 unsigned long accept_flags
;
2761 /* need to remove/add the VF's accept_any_vlan bit */
2762 accept_flags
= bnx2x_leading_vfq(vf
, accept_flags
);
2764 set_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
2766 clear_bit(BNX2X_ACCEPT_ANY_VLAN
, &accept_flags
);
2768 bnx2x_vf_prep_rx_mode(bp
, LEADING_IDX
, &rx_ramrod
, vf
,
2770 bnx2x_leading_vfq(vf
, accept_flags
) = accept_flags
;
2771 bnx2x_config_rx_mode(bp
, &rx_ramrod
);
2774 static int bnx2x_set_vf_vlan_filter(struct bnx2x
*bp
, struct bnx2x_virtf
*vf
,
2777 struct bnx2x_vlan_mac_ramrod_params ramrod_param
;
2778 unsigned long ramrod_flags
= 0;
2781 /* configure the new vlan to device */
2782 memset(&ramrod_param
, 0, sizeof(ramrod_param
));
2783 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2784 ramrod_param
.vlan_mac_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2785 ramrod_param
.ramrod_flags
= ramrod_flags
;
2786 ramrod_param
.user_req
.u
.vlan
.vlan
= vlan
;
2787 ramrod_param
.user_req
.cmd
= add
? BNX2X_VLAN_MAC_ADD
2788 : BNX2X_VLAN_MAC_DEL
;
2789 rc
= bnx2x_config_vlan_mac(bp
, &ramrod_param
);
2791 BNX2X_ERR("failed to configure vlan\n");
2798 int bnx2x_set_vf_vlan(struct net_device
*dev
, int vfidx
, u16 vlan
, u8 qos
,
2801 struct pf_vf_bulletin_content
*bulletin
= NULL
;
2802 struct bnx2x
*bp
= netdev_priv(dev
);
2803 struct bnx2x_vlan_mac_obj
*vlan_obj
;
2804 unsigned long vlan_mac_flags
= 0;
2805 unsigned long ramrod_flags
= 0;
2806 struct bnx2x_virtf
*vf
= NULL
;
2810 BNX2X_ERR("illegal vlan value %d\n", vlan
);
2814 if (vlan_proto
!= htons(ETH_P_8021Q
))
2815 return -EPROTONOSUPPORT
;
2817 DP(BNX2X_MSG_IOV
, "configuring VF %d with VLAN %d qos %d\n",
2820 /* sanity and init */
2821 rc
= bnx2x_vf_op_prep(bp
, vfidx
, &vf
, &bulletin
, true);
2825 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2826 * to the VF since it doesn't have anything to do with it. But it useful
2827 * to store it here in case the VF is not up yet and we can only
2828 * configure the vlan later when it does. Treat vlan id 0 as remove the
2831 mutex_lock(&bp
->vfdb
->bulletin_mutex
);
2834 bulletin
->valid_bitmap
|= 1 << VLAN_VALID
;
2836 bulletin
->valid_bitmap
&= ~(1 << VLAN_VALID
);
2837 bulletin
->vlan
= vlan
;
2839 /* Post update on VF's bulletin board */
2840 rc
= bnx2x_post_vf_bulletin(bp
, vfidx
);
2842 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx
);
2843 mutex_unlock(&bp
->vfdb
->bulletin_mutex
);
2845 /* is vf initialized and queue set up? */
2846 if (vf
->state
!= VF_ENABLED
||
2847 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
)) !=
2848 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2851 /* User should be able to see error in system logs */
2852 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2855 /* must lock vfpf channel to protect against vf flows */
2856 bnx2x_lock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_VLAN
);
2858 /* remove existing vlans */
2859 __set_bit(RAMROD_COMP_WAIT
, &ramrod_flags
);
2860 vlan_obj
= &bnx2x_leading_vfq(vf
, vlan_obj
);
2861 rc
= vlan_obj
->delete_all(bp
, vlan_obj
, &vlan_mac_flags
,
2864 BNX2X_ERR("failed to delete vlans\n");
2869 /* clear accept_any_vlan when HV forces vlan, otherwise
2870 * according to VF capabilities
2872 if (vlan
|| !(vf
->cfg_flags
& VF_CFG_VLAN_FILTER
))
2873 bnx2x_set_vf_vlan_acceptance(bp
, vf
, !vlan
);
2875 rc
= bnx2x_set_vf_vlan_filter(bp
, vf
, vlan
, true);
2879 /* send queue update ramrods to configure default vlan and
2880 * silent vlan removal
2882 for_each_vfq(vf
, i
) {
2883 struct bnx2x_queue_state_params q_params
= {NULL
};
2884 struct bnx2x_queue_update_params
*update_params
;
2886 q_params
.q_obj
= &bnx2x_vfq(vf
, i
, sp_obj
);
2888 /* validate the Q is UP */
2889 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) !=
2890 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2893 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2894 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2895 update_params
= &q_params
.params
.update
;
2896 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG
,
2897 &update_params
->update_flags
);
2898 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG
,
2899 &update_params
->update_flags
);
2901 /* if vlan is 0 then we want to leave the VF traffic
2902 * untagged, and leave the incoming traffic untouched
2903 * (i.e. do not remove any vlan tags).
2905 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
,
2906 &update_params
->update_flags
);
2907 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
2908 &update_params
->update_flags
);
2910 /* configure default vlan to vf queue and set silent
2911 * vlan removal (the vf remains unaware of this vlan).
2913 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN
,
2914 &update_params
->update_flags
);
2915 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM
,
2916 &update_params
->update_flags
);
2917 update_params
->def_vlan
= vlan
;
2918 update_params
->silent_removal_value
=
2919 vlan
& VLAN_VID_MASK
;
2920 update_params
->silent_removal_mask
= VLAN_VID_MASK
;
2923 /* Update the Queue state */
2924 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2926 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2932 bnx2x_unlock_vf_pf_channel(bp
, vf
, CHANNEL_TLV_PF_SET_VLAN
);
2936 "updated VF[%d] vlan configuration (vlan = %d)\n",
2942 int bnx2x_set_vf_spoofchk(struct net_device
*dev
, int idx
, bool val
)
2944 struct bnx2x
*bp
= netdev_priv(dev
);
2945 struct bnx2x_virtf
*vf
;
2948 vf
= BP_VF(bp
, idx
);
2953 if (vf
->spoofchk
== val
)
2956 vf
->spoofchk
= val
? 1 : 0;
2958 DP(BNX2X_MSG_IOV
, "%s spoofchk for VF %d\n",
2959 val
? "enabling" : "disabling", idx
);
2961 /* is vf initialized and queue set up? */
2962 if (vf
->state
!= VF_ENABLED
||
2963 bnx2x_get_q_logical_state(bp
, &bnx2x_leading_vfq(vf
, sp_obj
)) !=
2964 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2967 /* User should be able to see error in system logs */
2968 if (!bnx2x_validate_vf_sp_objs(bp
, vf
, true))
2971 /* send queue update ramrods to configure spoofchk */
2972 for_each_vfq(vf
, i
) {
2973 struct bnx2x_queue_state_params q_params
= {NULL
};
2974 struct bnx2x_queue_update_params
*update_params
;
2976 q_params
.q_obj
= &bnx2x_vfq(vf
, i
, sp_obj
);
2978 /* validate the Q is UP */
2979 if (bnx2x_get_q_logical_state(bp
, q_params
.q_obj
) !=
2980 BNX2X_Q_LOGICAL_STATE_ACTIVE
)
2983 __set_bit(RAMROD_COMP_WAIT
, &q_params
.ramrod_flags
);
2984 q_params
.cmd
= BNX2X_Q_CMD_UPDATE
;
2985 update_params
= &q_params
.params
.update
;
2986 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF_CHNG
,
2987 &update_params
->update_flags
);
2989 __set_bit(BNX2X_Q_UPDATE_ANTI_SPOOF
,
2990 &update_params
->update_flags
);
2992 __clear_bit(BNX2X_Q_UPDATE_ANTI_SPOOF
,
2993 &update_params
->update_flags
);
2996 /* Update the Queue state */
2997 rc
= bnx2x_queue_state_change(bp
, &q_params
);
2999 BNX2X_ERR("Failed to %s spoofchk on VF %d - vfq %d\n",
3000 val
? "enable" : "disable", idx
, i
);
3007 "%s spoofchk for VF[%d]\n", val
? "Enabled" : "Disabled",
3013 /* crc is the first field in the bulletin board. Compute the crc over the
3014 * entire bulletin board excluding the crc field itself. Use the length field
3015 * as the Bulletin Board was posted by a PF with possibly a different version
3016 * from the vf which will sample it. Therefore, the length is computed by the
3017 * PF and then used blindly by the VF.
3019 u32
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content
*bulletin
)
3021 return crc32(BULLETIN_CRC_SEED
,
3022 ((u8
*)bulletin
) + sizeof(bulletin
->crc
),
3023 bulletin
->length
- sizeof(bulletin
->crc
));
3026 /* Check for new posts on the bulletin board */
3027 enum sample_bulletin_result
bnx2x_sample_bulletin(struct bnx2x
*bp
)
3029 struct pf_vf_bulletin_content
*bulletin
;
3032 /* sampling structure in mid post may result with corrupted data
3033 * validate crc to ensure coherency.
3035 for (attempts
= 0; attempts
< BULLETIN_ATTEMPTS
; attempts
++) {
3038 /* sample the bulletin board */
3039 memcpy(&bp
->shadow_bulletin
, bp
->pf2vf_bulletin
,
3040 sizeof(union pf_vf_bulletin
));
3042 crc
= bnx2x_crc_vf_bulletin(&bp
->shadow_bulletin
.content
);
3044 if (bp
->shadow_bulletin
.content
.crc
== crc
)
3047 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
3048 bp
->shadow_bulletin
.content
.crc
, crc
);
3051 if (attempts
>= BULLETIN_ATTEMPTS
) {
3052 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
3054 return PFVF_BULLETIN_CRC_ERR
;
3056 bulletin
= &bp
->shadow_bulletin
.content
;
3058 /* bulletin board hasn't changed since last sample */
3059 if (bp
->old_bulletin
.version
== bulletin
->version
)
3060 return PFVF_BULLETIN_UNCHANGED
;
3062 /* the mac address in bulletin board is valid and is new */
3063 if (bulletin
->valid_bitmap
& 1 << MAC_ADDR_VALID
&&
3064 !ether_addr_equal(bulletin
->mac
, bp
->old_bulletin
.mac
)) {
3065 /* update new mac to net device */
3066 memcpy(bp
->dev
->dev_addr
, bulletin
->mac
, ETH_ALEN
);
3069 if (bulletin
->valid_bitmap
& (1 << LINK_VALID
)) {
3070 DP(BNX2X_MSG_IOV
, "link update speed %d flags %x\n",
3071 bulletin
->link_speed
, bulletin
->link_flags
);
3073 bp
->vf_link_vars
.line_speed
= bulletin
->link_speed
;
3074 bp
->vf_link_vars
.link_report_flags
= 0;
3076 if (bulletin
->link_flags
& VFPF_LINK_REPORT_LINK_DOWN
)
3077 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN
,
3078 &bp
->vf_link_vars
.link_report_flags
);
3080 if (bulletin
->link_flags
& VFPF_LINK_REPORT_FULL_DUPLEX
)
3081 __set_bit(BNX2X_LINK_REPORT_FD
,
3082 &bp
->vf_link_vars
.link_report_flags
);
3083 /* Rx Flow Control is ON */
3084 if (bulletin
->link_flags
& VFPF_LINK_REPORT_RX_FC_ON
)
3085 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON
,
3086 &bp
->vf_link_vars
.link_report_flags
);
3087 /* Tx Flow Control is ON */
3088 if (bulletin
->link_flags
& VFPF_LINK_REPORT_TX_FC_ON
)
3089 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON
,
3090 &bp
->vf_link_vars
.link_report_flags
);
3091 __bnx2x_link_report(bp
);
3094 /* copy new bulletin board to bp */
3095 memcpy(&bp
->old_bulletin
, bulletin
,
3096 sizeof(struct pf_vf_bulletin_content
));
3098 return PFVF_BULLETIN_UPDATED
;
3101 void bnx2x_timer_sriov(struct bnx2x
*bp
)
3103 bnx2x_sample_bulletin(bp
);
3105 /* if channel is down we need to self destruct */
3106 if (bp
->old_bulletin
.valid_bitmap
& 1 << CHANNEL_DOWN
)
3107 bnx2x_schedule_sp_rtnl(bp
, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN
,
3111 void __iomem
*bnx2x_vf_doorbells(struct bnx2x
*bp
)
3113 /* vf doorbells are embedded within the regview */
3114 return bp
->regview
+ PXP_VF_ADDR_DB_START
;
3117 void bnx2x_vf_pci_dealloc(struct bnx2x
*bp
)
3119 BNX2X_PCI_FREE(bp
->vf2pf_mbox
, bp
->vf2pf_mbox_mapping
,
3120 sizeof(struct bnx2x_vf_mbx_msg
));
3121 BNX2X_PCI_FREE(bp
->pf2vf_bulletin
, bp
->pf2vf_bulletin_mapping
,
3122 sizeof(union pf_vf_bulletin
));
3125 int bnx2x_vf_pci_alloc(struct bnx2x
*bp
)
3127 mutex_init(&bp
->vf2pf_mutex
);
3129 /* allocate vf2pf mailbox for vf to pf channel */
3130 bp
->vf2pf_mbox
= BNX2X_PCI_ALLOC(&bp
->vf2pf_mbox_mapping
,
3131 sizeof(struct bnx2x_vf_mbx_msg
));
3132 if (!bp
->vf2pf_mbox
)
3135 /* allocate pf 2 vf bulletin board */
3136 bp
->pf2vf_bulletin
= BNX2X_PCI_ALLOC(&bp
->pf2vf_bulletin_mapping
,
3137 sizeof(union pf_vf_bulletin
));
3138 if (!bp
->pf2vf_bulletin
)
3141 bnx2x_vf_bulletin_finalize(&bp
->pf2vf_bulletin
->content
, true);
3146 bnx2x_vf_pci_dealloc(bp
);
3150 void bnx2x_iov_channel_down(struct bnx2x
*bp
)
3153 struct pf_vf_bulletin_content
*bulletin
;
3158 for_each_vf(bp
, vf_idx
) {
3159 /* locate this VFs bulletin board and update the channel down
3162 bulletin
= BP_VF_BULLETIN(bp
, vf_idx
);
3163 bulletin
->valid_bitmap
|= 1 << CHANNEL_DOWN
;
3165 /* update vf bulletin board */
3166 bnx2x_post_vf_bulletin(bp
, vf_idx
);
3170 void bnx2x_iov_task(struct work_struct
*work
)
3172 struct bnx2x
*bp
= container_of(work
, struct bnx2x
, iov_task
.work
);
3174 if (!netif_running(bp
->dev
))
3177 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR
,
3178 &bp
->iov_task_state
))
3179 bnx2x_vf_handle_flr_event(bp
);
3181 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG
,
3182 &bp
->iov_task_state
))
3186 void bnx2x_schedule_iov_task(struct bnx2x
*bp
, enum bnx2x_iov_flag flag
)
3188 smp_mb__before_atomic();
3189 set_bit(flag
, &bp
->iov_task_state
);
3190 smp_mb__after_atomic();
3191 DP(BNX2X_MSG_IOV
, "Scheduling iov task [Flag: %d]\n", flag
);
3192 queue_delayed_work(bnx2x_iov_wq
, &bp
->iov_task
, 0);