WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
blobfcca023f22e54f6e4a1dd40ae8dc083c81035874
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Broadcom GENET (Gigabit Ethernet) controller driver
5 * Copyright (c) 2014-2020 Broadcom
6 */
8 #define pr_fmt(fmt) "bcmgenet: " fmt
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
40 #include <asm/unaligned.h>
42 #include "bcmgenet.h"
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT 4
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY 0
50 #define GENET_Q16_RX_BD_CNT \
51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT \
53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
55 #define RX_BUF_LENGTH 2048
56 #define SKB_ALIGNMENT 32
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
63 TOTAL_DESC * DMA_DESC_SIZE)
65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
66 TOTAL_DESC * DMA_DESC_SIZE)
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 /* MIPS chips strapped for BE will automagically configure the
74 * peripheral registers for CPU-native byte order.
76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 __raw_writel(value, offset);
78 else
79 writel_relaxed(value, offset);
82 static inline u32 bcmgenet_readl(void __iomem *offset)
84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 return __raw_readl(offset);
86 else
87 return readl_relaxed(offset);
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 void __iomem *d, u32 value)
93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 void __iomem *d,
98 dma_addr_t addr)
100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
102 /* Register writes to GISB bus can take couple hundred nanoseconds
103 * and are done for each packet, save these expensive writes unless
104 * the platform is explicitly configured for 64-bits/LPAE.
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 if (priv->hw_params->flags & GENET_HAS_40BITS)
108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 void __iomem *d, dma_addr_t addr, u32 val)
116 dmadesc_set_addr(priv, d, addr);
117 dmadesc_set_length_status(priv, d, val);
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 void __iomem *d)
123 dma_addr_t addr;
125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
127 /* Register writes to GISB bus can take couple hundred nanoseconds
128 * and are done for each packet, save these expensive writes unless
129 * the platform is explicitly configured for 64-bits/LPAE.
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 if (priv->hw_params->flags & GENET_HAS_40BITS)
133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 return addr;
138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 NETIF_MSG_LINK)
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
145 if (GENET_IS_V1(priv))
146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 else
148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
153 if (GENET_IS_V1(priv))
154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 else
156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
159 /* These macros are defined to deal with register map change
160 * between GENET1.1 and GENET2. Only those currently being used
161 * by driver are defined.
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
165 if (GENET_IS_V1(priv))
166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 else
168 return bcmgenet_readl(priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
174 if (GENET_IS_V1(priv))
175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 else
177 bcmgenet_writel(val, priv->base +
178 priv->hw_params->tbuf_offset + TBUF_CTRL);
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
183 if (GENET_IS_V1(priv))
184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 else
186 return bcmgenet_readl(priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
192 if (GENET_IS_V1(priv))
193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 else
195 bcmgenet_writel(val, priv->base +
196 priv->hw_params->tbuf_offset + TBUF_BP_MC);
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 DMA_RING_CFG = 0,
202 DMA_CTRL,
203 DMA_STATUS,
204 DMA_SCB_BURST_SIZE,
205 DMA_ARB_CTRL,
206 DMA_PRIORITY_0,
207 DMA_PRIORITY_1,
208 DMA_PRIORITY_2,
209 DMA_INDEX2RING_0,
210 DMA_INDEX2RING_1,
211 DMA_INDEX2RING_2,
212 DMA_INDEX2RING_3,
213 DMA_INDEX2RING_4,
214 DMA_INDEX2RING_5,
215 DMA_INDEX2RING_6,
216 DMA_INDEX2RING_7,
217 DMA_RING0_TIMEOUT,
218 DMA_RING1_TIMEOUT,
219 DMA_RING2_TIMEOUT,
220 DMA_RING3_TIMEOUT,
221 DMA_RING4_TIMEOUT,
222 DMA_RING5_TIMEOUT,
223 DMA_RING6_TIMEOUT,
224 DMA_RING7_TIMEOUT,
225 DMA_RING8_TIMEOUT,
226 DMA_RING9_TIMEOUT,
227 DMA_RING10_TIMEOUT,
228 DMA_RING11_TIMEOUT,
229 DMA_RING12_TIMEOUT,
230 DMA_RING13_TIMEOUT,
231 DMA_RING14_TIMEOUT,
232 DMA_RING15_TIMEOUT,
233 DMA_RING16_TIMEOUT,
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 [DMA_RING_CFG] = 0x00,
238 [DMA_CTRL] = 0x04,
239 [DMA_STATUS] = 0x08,
240 [DMA_SCB_BURST_SIZE] = 0x0C,
241 [DMA_ARB_CTRL] = 0x2C,
242 [DMA_PRIORITY_0] = 0x30,
243 [DMA_PRIORITY_1] = 0x34,
244 [DMA_PRIORITY_2] = 0x38,
245 [DMA_RING0_TIMEOUT] = 0x2C,
246 [DMA_RING1_TIMEOUT] = 0x30,
247 [DMA_RING2_TIMEOUT] = 0x34,
248 [DMA_RING3_TIMEOUT] = 0x38,
249 [DMA_RING4_TIMEOUT] = 0x3c,
250 [DMA_RING5_TIMEOUT] = 0x40,
251 [DMA_RING6_TIMEOUT] = 0x44,
252 [DMA_RING7_TIMEOUT] = 0x48,
253 [DMA_RING8_TIMEOUT] = 0x4c,
254 [DMA_RING9_TIMEOUT] = 0x50,
255 [DMA_RING10_TIMEOUT] = 0x54,
256 [DMA_RING11_TIMEOUT] = 0x58,
257 [DMA_RING12_TIMEOUT] = 0x5c,
258 [DMA_RING13_TIMEOUT] = 0x60,
259 [DMA_RING14_TIMEOUT] = 0x64,
260 [DMA_RING15_TIMEOUT] = 0x68,
261 [DMA_RING16_TIMEOUT] = 0x6C,
262 [DMA_INDEX2RING_0] = 0x70,
263 [DMA_INDEX2RING_1] = 0x74,
264 [DMA_INDEX2RING_2] = 0x78,
265 [DMA_INDEX2RING_3] = 0x7C,
266 [DMA_INDEX2RING_4] = 0x80,
267 [DMA_INDEX2RING_5] = 0x84,
268 [DMA_INDEX2RING_6] = 0x88,
269 [DMA_INDEX2RING_7] = 0x8C,
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 [DMA_RING_CFG] = 0x00,
274 [DMA_CTRL] = 0x04,
275 [DMA_STATUS] = 0x08,
276 [DMA_SCB_BURST_SIZE] = 0x0C,
277 [DMA_ARB_CTRL] = 0x30,
278 [DMA_PRIORITY_0] = 0x34,
279 [DMA_PRIORITY_1] = 0x38,
280 [DMA_PRIORITY_2] = 0x3C,
281 [DMA_RING0_TIMEOUT] = 0x2C,
282 [DMA_RING1_TIMEOUT] = 0x30,
283 [DMA_RING2_TIMEOUT] = 0x34,
284 [DMA_RING3_TIMEOUT] = 0x38,
285 [DMA_RING4_TIMEOUT] = 0x3c,
286 [DMA_RING5_TIMEOUT] = 0x40,
287 [DMA_RING6_TIMEOUT] = 0x44,
288 [DMA_RING7_TIMEOUT] = 0x48,
289 [DMA_RING8_TIMEOUT] = 0x4c,
290 [DMA_RING9_TIMEOUT] = 0x50,
291 [DMA_RING10_TIMEOUT] = 0x54,
292 [DMA_RING11_TIMEOUT] = 0x58,
293 [DMA_RING12_TIMEOUT] = 0x5c,
294 [DMA_RING13_TIMEOUT] = 0x60,
295 [DMA_RING14_TIMEOUT] = 0x64,
296 [DMA_RING15_TIMEOUT] = 0x68,
297 [DMA_RING16_TIMEOUT] = 0x6C,
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 [DMA_CTRL] = 0x00,
302 [DMA_STATUS] = 0x04,
303 [DMA_SCB_BURST_SIZE] = 0x0C,
304 [DMA_ARB_CTRL] = 0x30,
305 [DMA_PRIORITY_0] = 0x34,
306 [DMA_PRIORITY_1] = 0x38,
307 [DMA_PRIORITY_2] = 0x3C,
308 [DMA_RING0_TIMEOUT] = 0x2C,
309 [DMA_RING1_TIMEOUT] = 0x30,
310 [DMA_RING2_TIMEOUT] = 0x34,
311 [DMA_RING3_TIMEOUT] = 0x38,
312 [DMA_RING4_TIMEOUT] = 0x3c,
313 [DMA_RING5_TIMEOUT] = 0x40,
314 [DMA_RING6_TIMEOUT] = 0x44,
315 [DMA_RING7_TIMEOUT] = 0x48,
316 [DMA_RING8_TIMEOUT] = 0x4c,
317 [DMA_RING9_TIMEOUT] = 0x50,
318 [DMA_RING10_TIMEOUT] = 0x54,
319 [DMA_RING11_TIMEOUT] = 0x58,
320 [DMA_RING12_TIMEOUT] = 0x5c,
321 [DMA_RING13_TIMEOUT] = 0x60,
322 [DMA_RING14_TIMEOUT] = 0x64,
323 [DMA_RING15_TIMEOUT] = 0x68,
324 [DMA_RING16_TIMEOUT] = 0x6C,
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
332 return netdev_priv(dev_get_drvdata(dev));
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 enum dma_reg r)
338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 u32 val, enum dma_reg r)
345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 enum dma_reg r)
352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 u32 val, enum dma_reg r)
359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
363 /* RDMA/TDMA ring registers and accessors
364 * we merge the common fields and just prefix with T/D the registers
365 * having different meaning depending on the direction
367 enum dma_ring_reg {
368 TDMA_READ_PTR = 0,
369 RDMA_WRITE_PTR = TDMA_READ_PTR,
370 TDMA_READ_PTR_HI,
371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 TDMA_CONS_INDEX,
373 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 TDMA_PROD_INDEX,
375 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 DMA_RING_BUF_SIZE,
377 DMA_START_ADDR,
378 DMA_START_ADDR_HI,
379 DMA_END_ADDR,
380 DMA_END_ADDR_HI,
381 DMA_MBUF_DONE_THRESH,
382 TDMA_FLOW_PERIOD,
383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 TDMA_WRITE_PTR,
385 RDMA_READ_PTR = TDMA_WRITE_PTR,
386 TDMA_WRITE_PTR_HI,
387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
390 /* GENET v4 supports 40-bits pointer addressing
391 * for obvious reasons the LO and HI word parts
392 * are contiguous, but this offsets the other
393 * registers.
395 static const u8 genet_dma_ring_regs_v4[] = {
396 [TDMA_READ_PTR] = 0x00,
397 [TDMA_READ_PTR_HI] = 0x04,
398 [TDMA_CONS_INDEX] = 0x08,
399 [TDMA_PROD_INDEX] = 0x0C,
400 [DMA_RING_BUF_SIZE] = 0x10,
401 [DMA_START_ADDR] = 0x14,
402 [DMA_START_ADDR_HI] = 0x18,
403 [DMA_END_ADDR] = 0x1C,
404 [DMA_END_ADDR_HI] = 0x20,
405 [DMA_MBUF_DONE_THRESH] = 0x24,
406 [TDMA_FLOW_PERIOD] = 0x28,
407 [TDMA_WRITE_PTR] = 0x2C,
408 [TDMA_WRITE_PTR_HI] = 0x30,
411 static const u8 genet_dma_ring_regs_v123[] = {
412 [TDMA_READ_PTR] = 0x00,
413 [TDMA_CONS_INDEX] = 0x04,
414 [TDMA_PROD_INDEX] = 0x08,
415 [DMA_RING_BUF_SIZE] = 0x0C,
416 [DMA_START_ADDR] = 0x10,
417 [DMA_END_ADDR] = 0x14,
418 [DMA_MBUF_DONE_THRESH] = 0x18,
419 [TDMA_FLOW_PERIOD] = 0x1C,
420 [TDMA_WRITE_PTR] = 0x20,
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 unsigned int ring,
428 enum dma_ring_reg r)
430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 unsigned int ring, u32 val,
437 enum dma_ring_reg r)
439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 unsigned int ring,
446 enum dma_ring_reg r)
448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 unsigned int ring, u32 val,
455 enum dma_ring_reg r)
457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 (DMA_RING_SIZE * ring) +
459 genet_dma_ring_regs[r]);
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
464 u32 offset;
465 u32 reg;
467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 reg = bcmgenet_hfb_reg_readl(priv, offset);
469 reg |= (1 << (f_index % 32));
470 bcmgenet_hfb_reg_writel(priv, reg, offset);
471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 reg |= RBUF_HFB_EN;
473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
478 u32 offset, reg, reg1;
480 offset = HFB_FLT_ENABLE_V3PLUS;
481 reg = bcmgenet_hfb_reg_readl(priv, offset);
482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 if (f_index < 32) {
484 reg1 &= ~(1 << (f_index % 32));
485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 } else {
487 reg &= ~(1 << (f_index % 32));
488 bcmgenet_hfb_reg_writel(priv, reg, offset);
490 if (!reg && !reg1) {
491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 reg &= ~RBUF_HFB_EN;
493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 u32 f_index, u32 rx_queue)
500 u32 offset;
501 u32 reg;
503 offset = f_index / 8;
504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 reg &= ~(0xF << (4 * (f_index % 8)));
506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 u32 f_index, u32 f_length)
513 u32 offset;
514 u32 reg;
516 offset = HFB_FLT_LEN_V3PLUS +
517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 sizeof(u32);
519 reg = bcmgenet_hfb_reg_readl(priv, offset);
520 reg &= ~(0xFF << (8 * (f_index % 4)));
521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 bcmgenet_hfb_reg_writel(priv, reg, offset);
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
527 while (size) {
528 switch (*(unsigned char *)mask++) {
529 case 0x00:
530 case 0x0f:
531 case 0xf0:
532 case 0xff:
533 size--;
534 continue;
535 default:
536 return -EINVAL;
540 return 0;
543 #define VALIDATE_MASK(x) \
544 bcmgenet_hfb_validate_mask(&(x), sizeof(x))
546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
547 u32 offset, void *val, void *mask,
548 size_t size)
550 u32 index, tmp;
552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
555 while (size--) {
556 if (offset++ & 1) {
557 tmp &= ~0x300FF;
558 tmp |= (*(unsigned char *)val++);
559 switch ((*(unsigned char *)mask++)) {
560 case 0xFF:
561 tmp |= 0x30000;
562 break;
563 case 0xF0:
564 tmp |= 0x20000;
565 break;
566 case 0x0F:
567 tmp |= 0x10000;
568 break;
570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
571 if (size)
572 tmp = bcmgenet_hfb_readl(priv,
573 index * sizeof(u32));
574 } else {
575 tmp &= ~0xCFF00;
576 tmp |= (*(unsigned char *)val++) << 8;
577 switch ((*(unsigned char *)mask++)) {
578 case 0xFF:
579 tmp |= 0xC0000;
580 break;
581 case 0xF0:
582 tmp |= 0x80000;
583 break;
584 case 0x0F:
585 tmp |= 0x40000;
586 break;
588 if (!size)
589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
593 return 0;
596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
597 struct bcmgenet_rxnfc_rule *rule)
599 struct ethtool_rx_flow_spec *fs = &rule->fs;
600 u32 offset = 0, f_length = 0, f;
601 u8 val_8, mask_8;
602 __be16 val_16;
603 u16 mask_16;
604 size_t size;
606 f = fs->location;
607 if (fs->flow_type & FLOW_MAC_EXT) {
608 bcmgenet_hfb_insert_data(priv, f, 0,
609 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
610 sizeof(fs->h_ext.h_dest));
613 if (fs->flow_type & FLOW_EXT) {
614 if (fs->m_ext.vlan_etype ||
615 fs->m_ext.vlan_tci) {
616 bcmgenet_hfb_insert_data(priv, f, 12,
617 &fs->h_ext.vlan_etype,
618 &fs->m_ext.vlan_etype,
619 sizeof(fs->h_ext.vlan_etype));
620 bcmgenet_hfb_insert_data(priv, f, 14,
621 &fs->h_ext.vlan_tci,
622 &fs->m_ext.vlan_tci,
623 sizeof(fs->h_ext.vlan_tci));
624 offset += VLAN_HLEN;
625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
630 case ETHER_FLOW:
631 f_length += DIV_ROUND_UP(ETH_HLEN, 2);
632 bcmgenet_hfb_insert_data(priv, f, 0,
633 &fs->h_u.ether_spec.h_dest,
634 &fs->m_u.ether_spec.h_dest,
635 sizeof(fs->h_u.ether_spec.h_dest));
636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
637 &fs->h_u.ether_spec.h_source,
638 &fs->m_u.ether_spec.h_source,
639 sizeof(fs->h_u.ether_spec.h_source));
640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
641 &fs->h_u.ether_spec.h_proto,
642 &fs->m_u.ether_spec.h_proto,
643 sizeof(fs->h_u.ether_spec.h_proto));
644 break;
645 case IP_USER_FLOW:
646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
647 /* Specify IP Ether Type */
648 val_16 = htons(ETH_P_IP);
649 mask_16 = 0xFFFF;
650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
651 &val_16, &mask_16, sizeof(val_16));
652 bcmgenet_hfb_insert_data(priv, f, 15 + offset,
653 &fs->h_u.usr_ip4_spec.tos,
654 &fs->m_u.usr_ip4_spec.tos,
655 sizeof(fs->h_u.usr_ip4_spec.tos));
656 bcmgenet_hfb_insert_data(priv, f, 23 + offset,
657 &fs->h_u.usr_ip4_spec.proto,
658 &fs->m_u.usr_ip4_spec.proto,
659 sizeof(fs->h_u.usr_ip4_spec.proto));
660 bcmgenet_hfb_insert_data(priv, f, 26 + offset,
661 &fs->h_u.usr_ip4_spec.ip4src,
662 &fs->m_u.usr_ip4_spec.ip4src,
663 sizeof(fs->h_u.usr_ip4_spec.ip4src));
664 bcmgenet_hfb_insert_data(priv, f, 30 + offset,
665 &fs->h_u.usr_ip4_spec.ip4dst,
666 &fs->m_u.usr_ip4_spec.ip4dst,
667 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
669 break;
671 /* Only supports 20 byte IPv4 header */
672 val_8 = 0x45;
673 mask_8 = 0xFF;
674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
675 &val_8, &mask_8,
676 sizeof(val_8));
677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
678 bcmgenet_hfb_insert_data(priv, f,
679 ETH_HLEN + 20 + offset,
680 &fs->h_u.usr_ip4_spec.l4_4_bytes,
681 &fs->m_u.usr_ip4_spec.l4_4_bytes,
682 size);
683 f_length += DIV_ROUND_UP(size, 2);
684 break;
687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
689 /* Ring 0 flows can be handled by the default Descriptor Ring
690 * We'll map them to ring 0, but don't enable the filter
692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
693 rule->state = BCMGENET_RXNFC_STATE_DISABLED;
694 } else {
695 /* Other Rx rings are direct mapped here */
696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
697 fs->ring_cookie);
698 bcmgenet_hfb_enable_filter(priv, f);
699 rule->state = BCMGENET_RXNFC_STATE_ENABLED;
703 /* bcmgenet_hfb_clear
705 * Clear Hardware Filter Block and disable all filtering.
707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
709 u32 base, i;
711 base = f_index * priv->hw_params->hfb_filter_size;
712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
718 u32 i;
720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
721 return;
723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
728 bcmgenet_rdma_writel(priv, 0x0, i);
730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
731 bcmgenet_hfb_reg_writel(priv, 0x0,
732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
735 bcmgenet_hfb_clear_filter(priv, i);
738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
740 int i;
742 INIT_LIST_HEAD(&priv->rxnfc_list);
743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
744 return;
746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
751 bcmgenet_hfb_clear(priv);
754 static int bcmgenet_begin(struct net_device *dev)
756 struct bcmgenet_priv *priv = netdev_priv(dev);
758 /* Turn on the clock */
759 return clk_prepare_enable(priv->clk);
762 static void bcmgenet_complete(struct net_device *dev)
764 struct bcmgenet_priv *priv = netdev_priv(dev);
766 /* Turn off the clock */
767 clk_disable_unprepare(priv->clk);
770 static int bcmgenet_get_link_ksettings(struct net_device *dev,
771 struct ethtool_link_ksettings *cmd)
773 if (!netif_running(dev))
774 return -EINVAL;
776 if (!dev->phydev)
777 return -ENODEV;
779 phy_ethtool_ksettings_get(dev->phydev, cmd);
781 return 0;
784 static int bcmgenet_set_link_ksettings(struct net_device *dev,
785 const struct ethtool_link_ksettings *cmd)
787 if (!netif_running(dev))
788 return -EINVAL;
790 if (!dev->phydev)
791 return -ENODEV;
793 return phy_ethtool_ksettings_set(dev->phydev, cmd);
796 static int bcmgenet_set_features(struct net_device *dev,
797 netdev_features_t features)
799 struct bcmgenet_priv *priv = netdev_priv(dev);
800 u32 reg;
801 int ret;
803 ret = clk_prepare_enable(priv->clk);
804 if (ret)
805 return ret;
807 /* Make sure we reflect the value of CRC_CMD_FWD */
808 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
811 clk_disable_unprepare(priv->clk);
813 return ret;
816 static u32 bcmgenet_get_msglevel(struct net_device *dev)
818 struct bcmgenet_priv *priv = netdev_priv(dev);
820 return priv->msg_enable;
823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
825 struct bcmgenet_priv *priv = netdev_priv(dev);
827 priv->msg_enable = level;
830 static int bcmgenet_get_coalesce(struct net_device *dev,
831 struct ethtool_coalesce *ec)
833 struct bcmgenet_priv *priv = netdev_priv(dev);
834 struct bcmgenet_rx_ring *ring;
835 unsigned int i;
837 ec->tx_max_coalesced_frames =
838 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
839 DMA_MBUF_DONE_THRESH);
840 ec->rx_max_coalesced_frames =
841 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
842 DMA_MBUF_DONE_THRESH);
843 ec->rx_coalesce_usecs =
844 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
846 for (i = 0; i < priv->hw_params->rx_queues; i++) {
847 ring = &priv->rx_rings[i];
848 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
850 ring = &priv->rx_rings[DESC_INDEX];
851 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
853 return 0;
856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
857 u32 usecs, u32 pkts)
859 struct bcmgenet_priv *priv = ring->priv;
860 unsigned int i = ring->index;
861 u32 reg;
863 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
865 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
866 reg &= ~DMA_TIMEOUT_MASK;
867 reg |= DIV_ROUND_UP(usecs * 1000, 8192);
868 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
872 struct ethtool_coalesce *ec)
874 struct dim_cq_moder moder;
875 u32 usecs, pkts;
877 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
878 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
879 usecs = ring->rx_coalesce_usecs;
880 pkts = ring->rx_max_coalesced_frames;
882 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
883 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
884 usecs = moder.usec;
885 pkts = moder.pkts;
888 ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
889 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
892 static int bcmgenet_set_coalesce(struct net_device *dev,
893 struct ethtool_coalesce *ec)
895 struct bcmgenet_priv *priv = netdev_priv(dev);
896 unsigned int i;
898 /* Base system clock is 125Mhz, DMA timeout is this reference clock
899 * divided by 1024, which yields roughly 8.192us, our maximum value
900 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
902 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
903 ec->tx_max_coalesced_frames == 0 ||
904 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
905 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
906 return -EINVAL;
908 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
909 return -EINVAL;
911 /* GENET TDMA hardware does not support a configurable timeout, but will
912 * always generate an interrupt either after MBDONE packets have been
913 * transmitted, or when the ring is empty.
916 /* Program all TX queues with the same values, as there is no
917 * ethtool knob to do coalescing on a per-queue basis
919 for (i = 0; i < priv->hw_params->tx_queues; i++)
920 bcmgenet_tdma_ring_writel(priv, i,
921 ec->tx_max_coalesced_frames,
922 DMA_MBUF_DONE_THRESH);
923 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
924 ec->tx_max_coalesced_frames,
925 DMA_MBUF_DONE_THRESH);
927 for (i = 0; i < priv->hw_params->rx_queues; i++)
928 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
929 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
931 return 0;
934 /* standard ethtool support functions. */
935 enum bcmgenet_stat_type {
936 BCMGENET_STAT_NETDEV = -1,
937 BCMGENET_STAT_MIB_RX,
938 BCMGENET_STAT_MIB_TX,
939 BCMGENET_STAT_RUNT,
940 BCMGENET_STAT_MISC,
941 BCMGENET_STAT_SOFT,
944 struct bcmgenet_stats {
945 char stat_string[ETH_GSTRING_LEN];
946 int stat_sizeof;
947 int stat_offset;
948 enum bcmgenet_stat_type type;
949 /* reg offset from UMAC base for misc counters */
950 u16 reg_offset;
953 #define STAT_NETDEV(m) { \
954 .stat_string = __stringify(m), \
955 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
956 .stat_offset = offsetof(struct net_device_stats, m), \
957 .type = BCMGENET_STAT_NETDEV, \
960 #define STAT_GENET_MIB(str, m, _type) { \
961 .stat_string = str, \
962 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
963 .stat_offset = offsetof(struct bcmgenet_priv, m), \
964 .type = _type, \
967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
972 #define STAT_GENET_MISC(str, m, offset) { \
973 .stat_string = str, \
974 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
975 .stat_offset = offsetof(struct bcmgenet_priv, m), \
976 .type = BCMGENET_STAT_MISC, \
977 .reg_offset = offset, \
980 #define STAT_GENET_Q(num) \
981 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
982 tx_rings[num].packets), \
983 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
984 tx_rings[num].bytes), \
985 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
986 rx_rings[num].bytes), \
987 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
988 rx_rings[num].packets), \
989 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
990 rx_rings[num].errors), \
991 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
992 rx_rings[num].dropped)
994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
995 * between the end of TX stats and the beginning of the RX RUNT
997 #define BCMGENET_STAT_OFFSET 0xc
999 /* Hardware counters must be kept in sync because the order/offset
1000 * is important here (order in structure declaration = order in hardware)
1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003 /* general stats */
1004 STAT_NETDEV(rx_packets),
1005 STAT_NETDEV(tx_packets),
1006 STAT_NETDEV(rx_bytes),
1007 STAT_NETDEV(tx_bytes),
1008 STAT_NETDEV(rx_errors),
1009 STAT_NETDEV(tx_errors),
1010 STAT_NETDEV(rx_dropped),
1011 STAT_NETDEV(tx_dropped),
1012 STAT_NETDEV(multicast),
1013 /* UniMAC RSV counters */
1014 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043 /* UniMAC TSV counters */
1044 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073 /* UniMAC RUNT counters */
1074 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078 /* Misc UniMAC counters */
1079 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080 UMAC_RBUF_OVFL_CNT_V1),
1081 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082 UMAC_RBUF_ERR_CNT_V1),
1083 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089 mib.tx_realloc_tsb_failed),
1090 /* Per TX queues */
1091 STAT_GENET_Q(0),
1092 STAT_GENET_Q(1),
1093 STAT_GENET_Q(2),
1094 STAT_GENET_Q(3),
1095 STAT_GENET_Q(16),
1098 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
1100 static void bcmgenet_get_drvinfo(struct net_device *dev,
1101 struct ethtool_drvinfo *info)
1103 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1108 switch (string_set) {
1109 case ETH_SS_STATS:
1110 return BCMGENET_STATS_LEN;
1111 default:
1112 return -EOPNOTSUPP;
1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117 u8 *data)
1119 int i;
1121 switch (stringset) {
1122 case ETH_SS_STATS:
1123 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124 memcpy(data + i * ETH_GSTRING_LEN,
1125 bcmgenet_gstrings_stats[i].stat_string,
1126 ETH_GSTRING_LEN);
1128 break;
1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1134 u16 new_offset;
1135 u32 val;
1137 switch (offset) {
1138 case UMAC_RBUF_OVFL_CNT_V1:
1139 if (GENET_IS_V2(priv))
1140 new_offset = RBUF_OVFL_CNT_V2;
1141 else
1142 new_offset = RBUF_OVFL_CNT_V3PLUS;
1144 val = bcmgenet_rbuf_readl(priv, new_offset);
1145 /* clear if overflowed */
1146 if (val == ~0)
1147 bcmgenet_rbuf_writel(priv, 0, new_offset);
1148 break;
1149 case UMAC_RBUF_ERR_CNT_V1:
1150 if (GENET_IS_V2(priv))
1151 new_offset = RBUF_ERR_CNT_V2;
1152 else
1153 new_offset = RBUF_ERR_CNT_V3PLUS;
1155 val = bcmgenet_rbuf_readl(priv, new_offset);
1156 /* clear if overflowed */
1157 if (val == ~0)
1158 bcmgenet_rbuf_writel(priv, 0, new_offset);
1159 break;
1160 default:
1161 val = bcmgenet_umac_readl(priv, offset);
1162 /* clear if overflowed */
1163 if (val == ~0)
1164 bcmgenet_umac_writel(priv, 0, offset);
1165 break;
1168 return val;
1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1173 int i, j = 0;
1175 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176 const struct bcmgenet_stats *s;
1177 u8 offset = 0;
1178 u32 val = 0;
1179 char *p;
1181 s = &bcmgenet_gstrings_stats[i];
1182 switch (s->type) {
1183 case BCMGENET_STAT_NETDEV:
1184 case BCMGENET_STAT_SOFT:
1185 continue;
1186 case BCMGENET_STAT_RUNT:
1187 offset += BCMGENET_STAT_OFFSET;
1188 fallthrough;
1189 case BCMGENET_STAT_MIB_TX:
1190 offset += BCMGENET_STAT_OFFSET;
1191 fallthrough;
1192 case BCMGENET_STAT_MIB_RX:
1193 val = bcmgenet_umac_readl(priv,
1194 UMAC_MIB_START + j + offset);
1195 offset = 0; /* Reset Offset */
1196 break;
1197 case BCMGENET_STAT_MISC:
1198 if (GENET_IS_V1(priv)) {
1199 val = bcmgenet_umac_readl(priv, s->reg_offset);
1200 /* clear if overflowed */
1201 if (val == ~0)
1202 bcmgenet_umac_writel(priv, 0,
1203 s->reg_offset);
1204 } else {
1205 val = bcmgenet_update_stat_misc(priv,
1206 s->reg_offset);
1208 break;
1211 j += s->stat_sizeof;
1212 p = (char *)priv + s->stat_offset;
1213 *(u32 *)p = val;
1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218 struct ethtool_stats *stats,
1219 u64 *data)
1221 struct bcmgenet_priv *priv = netdev_priv(dev);
1222 int i;
1224 if (netif_running(dev))
1225 bcmgenet_update_mib_counters(priv);
1227 dev->netdev_ops->ndo_get_stats(dev);
1229 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230 const struct bcmgenet_stats *s;
1231 char *p;
1233 s = &bcmgenet_gstrings_stats[i];
1234 if (s->type == BCMGENET_STAT_NETDEV)
1235 p = (char *)&dev->stats;
1236 else
1237 p = (char *)priv;
1238 p += s->stat_offset;
1239 if (sizeof(unsigned long) != sizeof(u32) &&
1240 s->stat_sizeof == sizeof(unsigned long))
1241 data[i] = *(unsigned long *)p;
1242 else
1243 data[i] = *(u32 *)p;
1247 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1249 struct bcmgenet_priv *priv = netdev_priv(dev);
1250 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1251 u32 reg;
1253 if (enable && !priv->clk_eee_enabled) {
1254 clk_prepare_enable(priv->clk_eee);
1255 priv->clk_eee_enabled = true;
1258 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1259 if (enable)
1260 reg |= EEE_EN;
1261 else
1262 reg &= ~EEE_EN;
1263 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1265 /* Enable EEE and switch to a 27Mhz clock automatically */
1266 reg = bcmgenet_readl(priv->base + off);
1267 if (enable)
1268 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1269 else
1270 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1271 bcmgenet_writel(reg, priv->base + off);
1273 /* Do the same for thing for RBUF */
1274 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1275 if (enable)
1276 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1277 else
1278 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1279 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1281 if (!enable && priv->clk_eee_enabled) {
1282 clk_disable_unprepare(priv->clk_eee);
1283 priv->clk_eee_enabled = false;
1286 priv->eee.eee_enabled = enable;
1287 priv->eee.eee_active = enable;
1290 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1292 struct bcmgenet_priv *priv = netdev_priv(dev);
1293 struct ethtool_eee *p = &priv->eee;
1295 if (GENET_IS_V1(priv))
1296 return -EOPNOTSUPP;
1298 if (!dev->phydev)
1299 return -ENODEV;
1301 e->eee_enabled = p->eee_enabled;
1302 e->eee_active = p->eee_active;
1303 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1305 return phy_ethtool_get_eee(dev->phydev, e);
1308 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1310 struct bcmgenet_priv *priv = netdev_priv(dev);
1311 struct ethtool_eee *p = &priv->eee;
1312 int ret = 0;
1314 if (GENET_IS_V1(priv))
1315 return -EOPNOTSUPP;
1317 if (!dev->phydev)
1318 return -ENODEV;
1320 p->eee_enabled = e->eee_enabled;
1322 if (!p->eee_enabled) {
1323 bcmgenet_eee_enable_set(dev, false);
1324 } else {
1325 ret = phy_init_eee(dev->phydev, 0);
1326 if (ret) {
1327 netif_err(priv, hw, dev, "EEE initialization failed\n");
1328 return ret;
1331 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1332 bcmgenet_eee_enable_set(dev, true);
1335 return phy_ethtool_set_eee(dev->phydev, e);
1338 static int bcmgenet_validate_flow(struct net_device *dev,
1339 struct ethtool_rxnfc *cmd)
1341 struct ethtool_usrip4_spec *l4_mask;
1342 struct ethhdr *eth_mask;
1344 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1345 netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1346 cmd->fs.location);
1347 return -EINVAL;
1350 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1351 case IP_USER_FLOW:
1352 l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1353 /* don't allow mask which isn't valid */
1354 if (VALIDATE_MASK(l4_mask->ip4src) ||
1355 VALIDATE_MASK(l4_mask->ip4dst) ||
1356 VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1357 VALIDATE_MASK(l4_mask->proto) ||
1358 VALIDATE_MASK(l4_mask->ip_ver) ||
1359 VALIDATE_MASK(l4_mask->tos)) {
1360 netdev_err(dev, "rxnfc: Unsupported mask\n");
1361 return -EINVAL;
1363 break;
1364 case ETHER_FLOW:
1365 eth_mask = &cmd->fs.m_u.ether_spec;
1366 /* don't allow mask which isn't valid */
1367 if (VALIDATE_MASK(eth_mask->h_dest) ||
1368 VALIDATE_MASK(eth_mask->h_source) ||
1369 VALIDATE_MASK(eth_mask->h_proto)) {
1370 netdev_err(dev, "rxnfc: Unsupported mask\n");
1371 return -EINVAL;
1373 break;
1374 default:
1375 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1376 cmd->fs.flow_type);
1377 return -EINVAL;
1380 if ((cmd->fs.flow_type & FLOW_EXT)) {
1381 /* don't allow mask which isn't valid */
1382 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1383 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1384 netdev_err(dev, "rxnfc: Unsupported mask\n");
1385 return -EINVAL;
1387 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1388 netdev_err(dev, "rxnfc: user-def not supported\n");
1389 return -EINVAL;
1393 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1394 /* don't allow mask which isn't valid */
1395 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1396 netdev_err(dev, "rxnfc: Unsupported mask\n");
1397 return -EINVAL;
1401 return 0;
1404 static int bcmgenet_insert_flow(struct net_device *dev,
1405 struct ethtool_rxnfc *cmd)
1407 struct bcmgenet_priv *priv = netdev_priv(dev);
1408 struct bcmgenet_rxnfc_rule *loc_rule;
1409 int err;
1411 if (priv->hw_params->hfb_filter_size < 128) {
1412 netdev_err(dev, "rxnfc: Not supported by this device\n");
1413 return -EINVAL;
1416 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1417 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1418 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1419 cmd->fs.ring_cookie);
1420 return -EINVAL;
1423 err = bcmgenet_validate_flow(dev, cmd);
1424 if (err)
1425 return err;
1427 loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1428 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1429 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1430 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1431 list_del(&loc_rule->list);
1432 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1434 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1435 memcpy(&loc_rule->fs, &cmd->fs,
1436 sizeof(struct ethtool_rx_flow_spec));
1438 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1440 list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1442 return 0;
1445 static int bcmgenet_delete_flow(struct net_device *dev,
1446 struct ethtool_rxnfc *cmd)
1448 struct bcmgenet_priv *priv = netdev_priv(dev);
1449 struct bcmgenet_rxnfc_rule *rule;
1450 int err = 0;
1452 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1453 return -EINVAL;
1455 rule = &priv->rxnfc_rules[cmd->fs.location];
1456 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1457 err = -ENOENT;
1458 goto out;
1461 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1462 bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1463 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1464 list_del(&rule->list);
1465 bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1467 rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1468 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1470 out:
1471 return err;
1474 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1476 struct bcmgenet_priv *priv = netdev_priv(dev);
1477 int err = 0;
1479 switch (cmd->cmd) {
1480 case ETHTOOL_SRXCLSRLINS:
1481 err = bcmgenet_insert_flow(dev, cmd);
1482 break;
1483 case ETHTOOL_SRXCLSRLDEL:
1484 err = bcmgenet_delete_flow(dev, cmd);
1485 break;
1486 default:
1487 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1488 cmd->cmd);
1489 return -EINVAL;
1492 return err;
1495 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1496 int loc)
1498 struct bcmgenet_priv *priv = netdev_priv(dev);
1499 struct bcmgenet_rxnfc_rule *rule;
1500 int err = 0;
1502 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1503 return -EINVAL;
1505 rule = &priv->rxnfc_rules[loc];
1506 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1507 err = -ENOENT;
1508 else
1509 memcpy(&cmd->fs, &rule->fs,
1510 sizeof(struct ethtool_rx_flow_spec));
1512 return err;
1515 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1517 struct list_head *pos;
1518 int res = 0;
1520 list_for_each(pos, &priv->rxnfc_list)
1521 res++;
1523 return res;
1526 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1527 u32 *rule_locs)
1529 struct bcmgenet_priv *priv = netdev_priv(dev);
1530 struct bcmgenet_rxnfc_rule *rule;
1531 int err = 0;
1532 int i = 0;
1534 switch (cmd->cmd) {
1535 case ETHTOOL_GRXRINGS:
1536 cmd->data = priv->hw_params->rx_queues ?: 1;
1537 break;
1538 case ETHTOOL_GRXCLSRLCNT:
1539 cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1540 cmd->data = MAX_NUM_OF_FS_RULES;
1541 break;
1542 case ETHTOOL_GRXCLSRULE:
1543 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1544 break;
1545 case ETHTOOL_GRXCLSRLALL:
1546 list_for_each_entry(rule, &priv->rxnfc_list, list)
1547 if (i < cmd->rule_cnt)
1548 rule_locs[i++] = rule->fs.location;
1549 cmd->rule_cnt = i;
1550 cmd->data = MAX_NUM_OF_FS_RULES;
1551 break;
1552 default:
1553 err = -EOPNOTSUPP;
1554 break;
1557 return err;
1560 /* standard ethtool support functions. */
1561 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1562 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1563 ETHTOOL_COALESCE_MAX_FRAMES |
1564 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1565 .begin = bcmgenet_begin,
1566 .complete = bcmgenet_complete,
1567 .get_strings = bcmgenet_get_strings,
1568 .get_sset_count = bcmgenet_get_sset_count,
1569 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
1570 .get_drvinfo = bcmgenet_get_drvinfo,
1571 .get_link = ethtool_op_get_link,
1572 .get_msglevel = bcmgenet_get_msglevel,
1573 .set_msglevel = bcmgenet_set_msglevel,
1574 .get_wol = bcmgenet_get_wol,
1575 .set_wol = bcmgenet_set_wol,
1576 .get_eee = bcmgenet_get_eee,
1577 .set_eee = bcmgenet_set_eee,
1578 .nway_reset = phy_ethtool_nway_reset,
1579 .get_coalesce = bcmgenet_get_coalesce,
1580 .set_coalesce = bcmgenet_set_coalesce,
1581 .get_link_ksettings = bcmgenet_get_link_ksettings,
1582 .set_link_ksettings = bcmgenet_set_link_ksettings,
1583 .get_ts_info = ethtool_op_get_ts_info,
1584 .get_rxnfc = bcmgenet_get_rxnfc,
1585 .set_rxnfc = bcmgenet_set_rxnfc,
1588 /* Power down the unimac, based on mode. */
1589 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1590 enum bcmgenet_power_mode mode)
1592 int ret = 0;
1593 u32 reg;
1595 switch (mode) {
1596 case GENET_POWER_CABLE_SENSE:
1597 phy_detach(priv->dev->phydev);
1598 break;
1600 case GENET_POWER_WOL_MAGIC:
1601 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1602 break;
1604 case GENET_POWER_PASSIVE:
1605 /* Power down LED */
1606 if (priv->hw_params->flags & GENET_HAS_EXT) {
1607 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1608 if (GENET_IS_V5(priv))
1609 reg |= EXT_PWR_DOWN_PHY_EN |
1610 EXT_PWR_DOWN_PHY_RD |
1611 EXT_PWR_DOWN_PHY_SD |
1612 EXT_PWR_DOWN_PHY_RX |
1613 EXT_PWR_DOWN_PHY_TX |
1614 EXT_IDDQ_GLBL_PWR;
1615 else
1616 reg |= EXT_PWR_DOWN_PHY;
1618 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1619 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1621 bcmgenet_phy_power_set(priv->dev, false);
1623 break;
1624 default:
1625 break;
1628 return ret;
1631 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1632 enum bcmgenet_power_mode mode)
1634 u32 reg;
1636 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1637 return;
1639 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1641 switch (mode) {
1642 case GENET_POWER_PASSIVE:
1643 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1644 if (GENET_IS_V5(priv)) {
1645 reg &= ~(EXT_PWR_DOWN_PHY_EN |
1646 EXT_PWR_DOWN_PHY_RD |
1647 EXT_PWR_DOWN_PHY_SD |
1648 EXT_PWR_DOWN_PHY_RX |
1649 EXT_PWR_DOWN_PHY_TX |
1650 EXT_IDDQ_GLBL_PWR);
1651 reg |= EXT_PHY_RESET;
1652 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1653 mdelay(1);
1655 reg &= ~EXT_PHY_RESET;
1656 } else {
1657 reg &= ~EXT_PWR_DOWN_PHY;
1658 reg |= EXT_PWR_DN_EN_LD;
1660 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1661 bcmgenet_phy_power_set(priv->dev, true);
1662 break;
1664 case GENET_POWER_CABLE_SENSE:
1665 /* enable APD */
1666 if (!GENET_IS_V5(priv)) {
1667 reg |= EXT_PWR_DN_EN_LD;
1668 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670 break;
1671 case GENET_POWER_WOL_MAGIC:
1672 bcmgenet_wol_power_up_cfg(priv, mode);
1673 return;
1674 default:
1675 break;
1679 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1680 struct bcmgenet_tx_ring *ring)
1682 struct enet_cb *tx_cb_ptr;
1684 tx_cb_ptr = ring->cbs;
1685 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1687 /* Advancing local write pointer */
1688 if (ring->write_ptr == ring->end_ptr)
1689 ring->write_ptr = ring->cb_ptr;
1690 else
1691 ring->write_ptr++;
1693 return tx_cb_ptr;
1696 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1697 struct bcmgenet_tx_ring *ring)
1699 struct enet_cb *tx_cb_ptr;
1701 tx_cb_ptr = ring->cbs;
1702 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1704 /* Rewinding local write pointer */
1705 if (ring->write_ptr == ring->cb_ptr)
1706 ring->write_ptr = ring->end_ptr;
1707 else
1708 ring->write_ptr--;
1710 return tx_cb_ptr;
1713 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1715 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1716 INTRL2_CPU_MASK_SET);
1719 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1721 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1722 INTRL2_CPU_MASK_CLEAR);
1725 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1727 bcmgenet_intrl2_1_writel(ring->priv,
1728 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1729 INTRL2_CPU_MASK_SET);
1732 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1734 bcmgenet_intrl2_1_writel(ring->priv,
1735 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1736 INTRL2_CPU_MASK_CLEAR);
1739 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1741 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1742 INTRL2_CPU_MASK_SET);
1745 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1747 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1748 INTRL2_CPU_MASK_CLEAR);
1751 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1753 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1754 INTRL2_CPU_MASK_CLEAR);
1757 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1759 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1760 INTRL2_CPU_MASK_SET);
1763 /* Simple helper to free a transmit control block's resources
1764 * Returns an skb when the last transmit control block associated with the
1765 * skb is freed. The skb should be freed by the caller if necessary.
1767 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1768 struct enet_cb *cb)
1770 struct sk_buff *skb;
1772 skb = cb->skb;
1774 if (skb) {
1775 cb->skb = NULL;
1776 if (cb == GENET_CB(skb)->first_cb)
1777 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1778 dma_unmap_len(cb, dma_len),
1779 DMA_TO_DEVICE);
1780 else
1781 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1782 dma_unmap_len(cb, dma_len),
1783 DMA_TO_DEVICE);
1784 dma_unmap_addr_set(cb, dma_addr, 0);
1786 if (cb == GENET_CB(skb)->last_cb)
1787 return skb;
1789 } else if (dma_unmap_addr(cb, dma_addr)) {
1790 dma_unmap_page(dev,
1791 dma_unmap_addr(cb, dma_addr),
1792 dma_unmap_len(cb, dma_len),
1793 DMA_TO_DEVICE);
1794 dma_unmap_addr_set(cb, dma_addr, 0);
1797 return NULL;
1800 /* Simple helper to free a receive control block's resources */
1801 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1802 struct enet_cb *cb)
1804 struct sk_buff *skb;
1806 skb = cb->skb;
1807 cb->skb = NULL;
1809 if (dma_unmap_addr(cb, dma_addr)) {
1810 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1811 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1812 dma_unmap_addr_set(cb, dma_addr, 0);
1815 return skb;
1818 /* Unlocked version of the reclaim routine */
1819 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1820 struct bcmgenet_tx_ring *ring)
1822 struct bcmgenet_priv *priv = netdev_priv(dev);
1823 unsigned int txbds_processed = 0;
1824 unsigned int bytes_compl = 0;
1825 unsigned int pkts_compl = 0;
1826 unsigned int txbds_ready;
1827 unsigned int c_index;
1828 struct sk_buff *skb;
1830 /* Clear status before servicing to reduce spurious interrupts */
1831 if (ring->index == DESC_INDEX)
1832 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1833 INTRL2_CPU_CLEAR);
1834 else
1835 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1836 INTRL2_CPU_CLEAR);
1838 /* Compute how many buffers are transmitted since last xmit call */
1839 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1840 & DMA_C_INDEX_MASK;
1841 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1843 netif_dbg(priv, tx_done, dev,
1844 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1845 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1847 /* Reclaim transmitted buffers */
1848 while (txbds_processed < txbds_ready) {
1849 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1850 &priv->tx_cbs[ring->clean_ptr]);
1851 if (skb) {
1852 pkts_compl++;
1853 bytes_compl += GENET_CB(skb)->bytes_sent;
1854 dev_consume_skb_any(skb);
1857 txbds_processed++;
1858 if (likely(ring->clean_ptr < ring->end_ptr))
1859 ring->clean_ptr++;
1860 else
1861 ring->clean_ptr = ring->cb_ptr;
1864 ring->free_bds += txbds_processed;
1865 ring->c_index = c_index;
1867 ring->packets += pkts_compl;
1868 ring->bytes += bytes_compl;
1870 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1871 pkts_compl, bytes_compl);
1873 return txbds_processed;
1876 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1877 struct bcmgenet_tx_ring *ring)
1879 unsigned int released;
1881 spin_lock_bh(&ring->lock);
1882 released = __bcmgenet_tx_reclaim(dev, ring);
1883 spin_unlock_bh(&ring->lock);
1885 return released;
1888 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1890 struct bcmgenet_tx_ring *ring =
1891 container_of(napi, struct bcmgenet_tx_ring, napi);
1892 unsigned int work_done = 0;
1893 struct netdev_queue *txq;
1895 spin_lock(&ring->lock);
1896 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1897 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1898 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1899 netif_tx_wake_queue(txq);
1901 spin_unlock(&ring->lock);
1903 if (work_done == 0) {
1904 napi_complete(napi);
1905 ring->int_enable(ring);
1907 return 0;
1910 return budget;
1913 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1915 struct bcmgenet_priv *priv = netdev_priv(dev);
1916 int i;
1918 if (netif_is_multiqueue(dev)) {
1919 for (i = 0; i < priv->hw_params->tx_queues; i++)
1920 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1923 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1926 /* Reallocate the SKB to put enough headroom in front of it and insert
1927 * the transmit checksum offsets in the descriptors
1929 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1930 struct sk_buff *skb)
1932 struct bcmgenet_priv *priv = netdev_priv(dev);
1933 struct status_64 *status = NULL;
1934 struct sk_buff *new_skb;
1935 u16 offset;
1936 u8 ip_proto;
1937 __be16 ip_ver;
1938 u32 tx_csum_info;
1940 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1941 /* If 64 byte status block enabled, must make sure skb has
1942 * enough headroom for us to insert 64B status block.
1944 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1945 if (!new_skb) {
1946 dev_kfree_skb_any(skb);
1947 priv->mib.tx_realloc_tsb_failed++;
1948 dev->stats.tx_dropped++;
1949 return NULL;
1951 dev_consume_skb_any(skb);
1952 skb = new_skb;
1953 priv->mib.tx_realloc_tsb++;
1956 skb_push(skb, sizeof(*status));
1957 status = (struct status_64 *)skb->data;
1959 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1960 ip_ver = skb->protocol;
1961 switch (ip_ver) {
1962 case htons(ETH_P_IP):
1963 ip_proto = ip_hdr(skb)->protocol;
1964 break;
1965 case htons(ETH_P_IPV6):
1966 ip_proto = ipv6_hdr(skb)->nexthdr;
1967 break;
1968 default:
1969 /* don't use UDP flag */
1970 ip_proto = 0;
1971 break;
1974 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1975 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1976 (offset + skb->csum_offset) |
1977 STATUS_TX_CSUM_LV;
1979 /* Set the special UDP flag for UDP */
1980 if (ip_proto == IPPROTO_UDP)
1981 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1983 status->tx_csum_info = tx_csum_info;
1986 return skb;
1989 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1991 struct bcmgenet_priv *priv = netdev_priv(dev);
1992 struct device *kdev = &priv->pdev->dev;
1993 struct bcmgenet_tx_ring *ring = NULL;
1994 struct enet_cb *tx_cb_ptr;
1995 struct netdev_queue *txq;
1996 int nr_frags, index;
1997 dma_addr_t mapping;
1998 unsigned int size;
1999 skb_frag_t *frag;
2000 u32 len_stat;
2001 int ret;
2002 int i;
2004 index = skb_get_queue_mapping(skb);
2005 /* Mapping strategy:
2006 * queue_mapping = 0, unclassified, packet xmited through ring16
2007 * queue_mapping = 1, goes to ring 0. (highest priority queue
2008 * queue_mapping = 2, goes to ring 1.
2009 * queue_mapping = 3, goes to ring 2.
2010 * queue_mapping = 4, goes to ring 3.
2012 if (index == 0)
2013 index = DESC_INDEX;
2014 else
2015 index -= 1;
2017 ring = &priv->tx_rings[index];
2018 txq = netdev_get_tx_queue(dev, ring->queue);
2020 nr_frags = skb_shinfo(skb)->nr_frags;
2022 spin_lock(&ring->lock);
2023 if (ring->free_bds <= (nr_frags + 1)) {
2024 if (!netif_tx_queue_stopped(txq)) {
2025 netif_tx_stop_queue(txq);
2026 netdev_err(dev,
2027 "%s: tx ring %d full when queue %d awake\n",
2028 __func__, index, ring->queue);
2030 ret = NETDEV_TX_BUSY;
2031 goto out;
2034 /* Retain how many bytes will be sent on the wire, without TSB inserted
2035 * by transmit checksum offload
2037 GENET_CB(skb)->bytes_sent = skb->len;
2039 /* add the Transmit Status Block */
2040 skb = bcmgenet_add_tsb(dev, skb);
2041 if (!skb) {
2042 ret = NETDEV_TX_OK;
2043 goto out;
2046 for (i = 0; i <= nr_frags; i++) {
2047 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2049 BUG_ON(!tx_cb_ptr);
2051 if (!i) {
2052 /* Transmit single SKB or head of fragment list */
2053 GENET_CB(skb)->first_cb = tx_cb_ptr;
2054 size = skb_headlen(skb);
2055 mapping = dma_map_single(kdev, skb->data, size,
2056 DMA_TO_DEVICE);
2057 } else {
2058 /* xmit fragment */
2059 frag = &skb_shinfo(skb)->frags[i - 1];
2060 size = skb_frag_size(frag);
2061 mapping = skb_frag_dma_map(kdev, frag, 0, size,
2062 DMA_TO_DEVICE);
2065 ret = dma_mapping_error(kdev, mapping);
2066 if (ret) {
2067 priv->mib.tx_dma_failed++;
2068 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2069 ret = NETDEV_TX_OK;
2070 goto out_unmap_frags;
2072 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2073 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2075 tx_cb_ptr->skb = skb;
2077 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2078 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2080 /* Note: if we ever change from DMA_TX_APPEND_CRC below we
2081 * will need to restore software padding of "runt" packets
2083 if (!i) {
2084 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2085 if (skb->ip_summed == CHECKSUM_PARTIAL)
2086 len_stat |= DMA_TX_DO_CSUM;
2088 if (i == nr_frags)
2089 len_stat |= DMA_EOP;
2091 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2094 GENET_CB(skb)->last_cb = tx_cb_ptr;
2095 skb_tx_timestamp(skb);
2097 /* Decrement total BD count and advance our write pointer */
2098 ring->free_bds -= nr_frags + 1;
2099 ring->prod_index += nr_frags + 1;
2100 ring->prod_index &= DMA_P_INDEX_MASK;
2102 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2104 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2105 netif_tx_stop_queue(txq);
2107 if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2108 /* Packets are ready, update producer index */
2109 bcmgenet_tdma_ring_writel(priv, ring->index,
2110 ring->prod_index, TDMA_PROD_INDEX);
2111 out:
2112 spin_unlock(&ring->lock);
2114 return ret;
2116 out_unmap_frags:
2117 /* Back up for failed control block mapping */
2118 bcmgenet_put_txcb(priv, ring);
2120 /* Unmap successfully mapped control blocks */
2121 while (i-- > 0) {
2122 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2123 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2126 dev_kfree_skb(skb);
2127 goto out;
2130 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2131 struct enet_cb *cb)
2133 struct device *kdev = &priv->pdev->dev;
2134 struct sk_buff *skb;
2135 struct sk_buff *rx_skb;
2136 dma_addr_t mapping;
2138 /* Allocate a new Rx skb */
2139 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2140 GFP_ATOMIC | __GFP_NOWARN);
2141 if (!skb) {
2142 priv->mib.alloc_rx_buff_failed++;
2143 netif_err(priv, rx_err, priv->dev,
2144 "%s: Rx skb allocation failed\n", __func__);
2145 return NULL;
2148 /* DMA-map the new Rx skb */
2149 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2150 DMA_FROM_DEVICE);
2151 if (dma_mapping_error(kdev, mapping)) {
2152 priv->mib.rx_dma_failed++;
2153 dev_kfree_skb_any(skb);
2154 netif_err(priv, rx_err, priv->dev,
2155 "%s: Rx skb DMA mapping failed\n", __func__);
2156 return NULL;
2159 /* Grab the current Rx skb from the ring and DMA-unmap it */
2160 rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2162 /* Put the new Rx skb on the ring */
2163 cb->skb = skb;
2164 dma_unmap_addr_set(cb, dma_addr, mapping);
2165 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2166 dmadesc_set_addr(priv, cb->bd_addr, mapping);
2168 /* Return the current Rx skb to caller */
2169 return rx_skb;
2172 /* bcmgenet_desc_rx - descriptor based rx process.
2173 * this could be called from bottom half, or from NAPI polling method.
2175 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2176 unsigned int budget)
2178 struct bcmgenet_priv *priv = ring->priv;
2179 struct net_device *dev = priv->dev;
2180 struct enet_cb *cb;
2181 struct sk_buff *skb;
2182 u32 dma_length_status;
2183 unsigned long dma_flag;
2184 int len;
2185 unsigned int rxpktprocessed = 0, rxpkttoprocess;
2186 unsigned int bytes_processed = 0;
2187 unsigned int p_index, mask;
2188 unsigned int discards;
2190 /* Clear status before servicing to reduce spurious interrupts */
2191 if (ring->index == DESC_INDEX) {
2192 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2193 INTRL2_CPU_CLEAR);
2194 } else {
2195 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2196 bcmgenet_intrl2_1_writel(priv,
2197 mask,
2198 INTRL2_CPU_CLEAR);
2201 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2203 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2204 DMA_P_INDEX_DISCARD_CNT_MASK;
2205 if (discards > ring->old_discards) {
2206 discards = discards - ring->old_discards;
2207 ring->errors += discards;
2208 ring->old_discards += discards;
2210 /* Clear HW register when we reach 75% of maximum 0xFFFF */
2211 if (ring->old_discards >= 0xC000) {
2212 ring->old_discards = 0;
2213 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2214 RDMA_PROD_INDEX);
2218 p_index &= DMA_P_INDEX_MASK;
2219 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2221 netif_dbg(priv, rx_status, dev,
2222 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2224 while ((rxpktprocessed < rxpkttoprocess) &&
2225 (rxpktprocessed < budget)) {
2226 struct status_64 *status;
2227 __be16 rx_csum;
2229 cb = &priv->rx_cbs[ring->read_ptr];
2230 skb = bcmgenet_rx_refill(priv, cb);
2232 if (unlikely(!skb)) {
2233 ring->dropped++;
2234 goto next;
2237 status = (struct status_64 *)skb->data;
2238 dma_length_status = status->length_status;
2239 if (dev->features & NETIF_F_RXCSUM) {
2240 rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2241 skb->csum = (__force __wsum)ntohs(rx_csum);
2242 skb->ip_summed = CHECKSUM_COMPLETE;
2245 /* DMA flags and length are still valid no matter how
2246 * we got the Receive Status Vector (64B RSB or register)
2248 dma_flag = dma_length_status & 0xffff;
2249 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2251 netif_dbg(priv, rx_status, dev,
2252 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2253 __func__, p_index, ring->c_index,
2254 ring->read_ptr, dma_length_status);
2256 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2257 netif_err(priv, rx_status, dev,
2258 "dropping fragmented packet!\n");
2259 ring->errors++;
2260 dev_kfree_skb_any(skb);
2261 goto next;
2264 /* report errors */
2265 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2266 DMA_RX_OV |
2267 DMA_RX_NO |
2268 DMA_RX_LG |
2269 DMA_RX_RXER))) {
2270 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2271 (unsigned int)dma_flag);
2272 if (dma_flag & DMA_RX_CRC_ERROR)
2273 dev->stats.rx_crc_errors++;
2274 if (dma_flag & DMA_RX_OV)
2275 dev->stats.rx_over_errors++;
2276 if (dma_flag & DMA_RX_NO)
2277 dev->stats.rx_frame_errors++;
2278 if (dma_flag & DMA_RX_LG)
2279 dev->stats.rx_length_errors++;
2280 dev->stats.rx_errors++;
2281 dev_kfree_skb_any(skb);
2282 goto next;
2283 } /* error packet */
2285 skb_put(skb, len);
2287 /* remove RSB and hardware 2bytes added for IP alignment */
2288 skb_pull(skb, 66);
2289 len -= 66;
2291 if (priv->crc_fwd_en) {
2292 skb_trim(skb, len - ETH_FCS_LEN);
2293 len -= ETH_FCS_LEN;
2296 bytes_processed += len;
2298 /*Finish setting up the received SKB and send it to the kernel*/
2299 skb->protocol = eth_type_trans(skb, priv->dev);
2300 ring->packets++;
2301 ring->bytes += len;
2302 if (dma_flag & DMA_RX_MULT)
2303 dev->stats.multicast++;
2305 /* Notify kernel */
2306 napi_gro_receive(&ring->napi, skb);
2307 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2309 next:
2310 rxpktprocessed++;
2311 if (likely(ring->read_ptr < ring->end_ptr))
2312 ring->read_ptr++;
2313 else
2314 ring->read_ptr = ring->cb_ptr;
2316 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2317 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2320 ring->dim.bytes = bytes_processed;
2321 ring->dim.packets = rxpktprocessed;
2323 return rxpktprocessed;
2326 /* Rx NAPI polling method */
2327 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2329 struct bcmgenet_rx_ring *ring = container_of(napi,
2330 struct bcmgenet_rx_ring, napi);
2331 struct dim_sample dim_sample = {};
2332 unsigned int work_done;
2334 work_done = bcmgenet_desc_rx(ring, budget);
2336 if (work_done < budget) {
2337 napi_complete_done(napi, work_done);
2338 ring->int_enable(ring);
2341 if (ring->dim.use_dim) {
2342 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2343 ring->dim.bytes, &dim_sample);
2344 net_dim(&ring->dim.dim, dim_sample);
2347 return work_done;
2350 static void bcmgenet_dim_work(struct work_struct *work)
2352 struct dim *dim = container_of(work, struct dim, work);
2353 struct bcmgenet_net_dim *ndim =
2354 container_of(dim, struct bcmgenet_net_dim, dim);
2355 struct bcmgenet_rx_ring *ring =
2356 container_of(ndim, struct bcmgenet_rx_ring, dim);
2357 struct dim_cq_moder cur_profile =
2358 net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2360 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2361 dim->state = DIM_START_MEASURE;
2364 /* Assign skb to RX DMA descriptor. */
2365 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2366 struct bcmgenet_rx_ring *ring)
2368 struct enet_cb *cb;
2369 struct sk_buff *skb;
2370 int i;
2372 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2374 /* loop here for each buffer needing assign */
2375 for (i = 0; i < ring->size; i++) {
2376 cb = ring->cbs + i;
2377 skb = bcmgenet_rx_refill(priv, cb);
2378 if (skb)
2379 dev_consume_skb_any(skb);
2380 if (!cb->skb)
2381 return -ENOMEM;
2384 return 0;
2387 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2389 struct sk_buff *skb;
2390 struct enet_cb *cb;
2391 int i;
2393 for (i = 0; i < priv->num_rx_bds; i++) {
2394 cb = &priv->rx_cbs[i];
2396 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2397 if (skb)
2398 dev_consume_skb_any(skb);
2402 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2404 u32 reg;
2406 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2407 if (reg & CMD_SW_RESET)
2408 return;
2409 if (enable)
2410 reg |= mask;
2411 else
2412 reg &= ~mask;
2413 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2415 /* UniMAC stops on a packet boundary, wait for a full-size packet
2416 * to be processed
2418 if (enable == 0)
2419 usleep_range(1000, 2000);
2422 static void reset_umac(struct bcmgenet_priv *priv)
2424 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2425 bcmgenet_rbuf_ctrl_set(priv, 0);
2426 udelay(10);
2428 /* issue soft reset and disable MAC while updating its registers */
2429 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2430 udelay(2);
2433 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2435 /* Mask all interrupts.*/
2436 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2437 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2438 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2439 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2442 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2444 u32 int0_enable = 0;
2446 /* Monitor cable plug/unplugged event for internal PHY, external PHY
2447 * and MoCA PHY
2449 if (priv->internal_phy) {
2450 int0_enable |= UMAC_IRQ_LINK_EVENT;
2451 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2452 int0_enable |= UMAC_IRQ_PHY_DET_R;
2453 } else if (priv->ext_phy) {
2454 int0_enable |= UMAC_IRQ_LINK_EVENT;
2455 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2456 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2457 int0_enable |= UMAC_IRQ_LINK_EVENT;
2459 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2462 static void init_umac(struct bcmgenet_priv *priv)
2464 struct device *kdev = &priv->pdev->dev;
2465 u32 reg;
2466 u32 int0_enable = 0;
2468 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2470 reset_umac(priv);
2472 /* clear tx/rx counter */
2473 bcmgenet_umac_writel(priv,
2474 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2475 UMAC_MIB_CTRL);
2476 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2478 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2480 /* init tx registers, enable TSB */
2481 reg = bcmgenet_tbuf_ctrl_get(priv);
2482 reg |= TBUF_64B_EN;
2483 bcmgenet_tbuf_ctrl_set(priv, reg);
2485 /* init rx registers, enable ip header optimization and RSB */
2486 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2487 reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2488 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2490 /* enable rx checksumming */
2491 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2492 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2493 /* If UniMAC forwards CRC, we need to skip over it to get
2494 * a valid CHK bit to be set in the per-packet status word
2496 if (priv->crc_fwd_en)
2497 reg |= RBUF_SKIP_FCS;
2498 else
2499 reg &= ~RBUF_SKIP_FCS;
2500 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2502 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2503 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2505 bcmgenet_intr_disable(priv);
2507 /* Configure backpressure vectors for MoCA */
2508 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2509 reg = bcmgenet_bp_mc_get(priv);
2510 reg |= BIT(priv->hw_params->bp_in_en_shift);
2512 /* bp_mask: back pressure mask */
2513 if (netif_is_multiqueue(priv->dev))
2514 reg |= priv->hw_params->bp_in_mask;
2515 else
2516 reg &= ~priv->hw_params->bp_in_mask;
2517 bcmgenet_bp_mc_set(priv, reg);
2520 /* Enable MDIO interrupts on GENET v3+ */
2521 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2522 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2524 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526 dev_dbg(kdev, "done init umac\n");
2529 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2530 void (*cb)(struct work_struct *work))
2532 struct bcmgenet_net_dim *dim = &ring->dim;
2534 INIT_WORK(&dim->dim.work, cb);
2535 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2536 dim->event_ctr = 0;
2537 dim->packets = 0;
2538 dim->bytes = 0;
2541 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2543 struct bcmgenet_net_dim *dim = &ring->dim;
2544 struct dim_cq_moder moder;
2545 u32 usecs, pkts;
2547 usecs = ring->rx_coalesce_usecs;
2548 pkts = ring->rx_max_coalesced_frames;
2550 /* If DIM was enabled, re-apply default parameters */
2551 if (dim->use_dim) {
2552 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2553 usecs = moder.usec;
2554 pkts = moder.pkts;
2557 bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2560 /* Initialize a Tx ring along with corresponding hardware registers */
2561 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2562 unsigned int index, unsigned int size,
2563 unsigned int start_ptr, unsigned int end_ptr)
2565 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2566 u32 words_per_bd = WORDS_PER_BD(priv);
2567 u32 flow_period_val = 0;
2569 spin_lock_init(&ring->lock);
2570 ring->priv = priv;
2571 ring->index = index;
2572 if (index == DESC_INDEX) {
2573 ring->queue = 0;
2574 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2575 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2576 } else {
2577 ring->queue = index + 1;
2578 ring->int_enable = bcmgenet_tx_ring_int_enable;
2579 ring->int_disable = bcmgenet_tx_ring_int_disable;
2581 ring->cbs = priv->tx_cbs + start_ptr;
2582 ring->size = size;
2583 ring->clean_ptr = start_ptr;
2584 ring->c_index = 0;
2585 ring->free_bds = size;
2586 ring->write_ptr = start_ptr;
2587 ring->cb_ptr = start_ptr;
2588 ring->end_ptr = end_ptr - 1;
2589 ring->prod_index = 0;
2591 /* Set flow period for ring != 16 */
2592 if (index != DESC_INDEX)
2593 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2595 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2596 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2597 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2598 /* Disable rate control for now */
2599 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2600 TDMA_FLOW_PERIOD);
2601 bcmgenet_tdma_ring_writel(priv, index,
2602 ((size << DMA_RING_SIZE_SHIFT) |
2603 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2605 /* Set start and end address, read and write pointers */
2606 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2607 DMA_START_ADDR);
2608 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2609 TDMA_READ_PTR);
2610 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2611 TDMA_WRITE_PTR);
2612 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2613 DMA_END_ADDR);
2615 /* Initialize Tx NAPI */
2616 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2617 NAPI_POLL_WEIGHT);
2620 /* Initialize a RDMA ring */
2621 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2622 unsigned int index, unsigned int size,
2623 unsigned int start_ptr, unsigned int end_ptr)
2625 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2626 u32 words_per_bd = WORDS_PER_BD(priv);
2627 int ret;
2629 ring->priv = priv;
2630 ring->index = index;
2631 if (index == DESC_INDEX) {
2632 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2633 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2634 } else {
2635 ring->int_enable = bcmgenet_rx_ring_int_enable;
2636 ring->int_disable = bcmgenet_rx_ring_int_disable;
2638 ring->cbs = priv->rx_cbs + start_ptr;
2639 ring->size = size;
2640 ring->c_index = 0;
2641 ring->read_ptr = start_ptr;
2642 ring->cb_ptr = start_ptr;
2643 ring->end_ptr = end_ptr - 1;
2645 ret = bcmgenet_alloc_rx_buffers(priv, ring);
2646 if (ret)
2647 return ret;
2649 bcmgenet_init_dim(ring, bcmgenet_dim_work);
2650 bcmgenet_init_rx_coalesce(ring);
2652 /* Initialize Rx NAPI */
2653 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2654 NAPI_POLL_WEIGHT);
2656 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2657 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2658 bcmgenet_rdma_ring_writel(priv, index,
2659 ((size << DMA_RING_SIZE_SHIFT) |
2660 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2661 bcmgenet_rdma_ring_writel(priv, index,
2662 (DMA_FC_THRESH_LO <<
2663 DMA_XOFF_THRESHOLD_SHIFT) |
2664 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2666 /* Set start and end address, read and write pointers */
2667 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2668 DMA_START_ADDR);
2669 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2670 RDMA_READ_PTR);
2671 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2672 RDMA_WRITE_PTR);
2673 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2674 DMA_END_ADDR);
2676 return ret;
2679 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2681 unsigned int i;
2682 struct bcmgenet_tx_ring *ring;
2684 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2685 ring = &priv->tx_rings[i];
2686 napi_enable(&ring->napi);
2687 ring->int_enable(ring);
2690 ring = &priv->tx_rings[DESC_INDEX];
2691 napi_enable(&ring->napi);
2692 ring->int_enable(ring);
2695 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2697 unsigned int i;
2698 struct bcmgenet_tx_ring *ring;
2700 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2701 ring = &priv->tx_rings[i];
2702 napi_disable(&ring->napi);
2705 ring = &priv->tx_rings[DESC_INDEX];
2706 napi_disable(&ring->napi);
2709 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2711 unsigned int i;
2712 struct bcmgenet_tx_ring *ring;
2714 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2715 ring = &priv->tx_rings[i];
2716 netif_napi_del(&ring->napi);
2719 ring = &priv->tx_rings[DESC_INDEX];
2720 netif_napi_del(&ring->napi);
2723 /* Initialize Tx queues
2725 * Queues 0-3 are priority-based, each one has 32 descriptors,
2726 * with queue 0 being the highest priority queue.
2728 * Queue 16 is the default Tx queue with
2729 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2731 * The transmit control block pool is then partitioned as follows:
2732 * - Tx queue 0 uses tx_cbs[0..31]
2733 * - Tx queue 1 uses tx_cbs[32..63]
2734 * - Tx queue 2 uses tx_cbs[64..95]
2735 * - Tx queue 3 uses tx_cbs[96..127]
2736 * - Tx queue 16 uses tx_cbs[128..255]
2738 static void bcmgenet_init_tx_queues(struct net_device *dev)
2740 struct bcmgenet_priv *priv = netdev_priv(dev);
2741 u32 i, dma_enable;
2742 u32 dma_ctrl, ring_cfg;
2743 u32 dma_priority[3] = {0, 0, 0};
2745 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2746 dma_enable = dma_ctrl & DMA_EN;
2747 dma_ctrl &= ~DMA_EN;
2748 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2750 dma_ctrl = 0;
2751 ring_cfg = 0;
2753 /* Enable strict priority arbiter mode */
2754 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2756 /* Initialize Tx priority queues */
2757 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2758 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2759 i * priv->hw_params->tx_bds_per_q,
2760 (i + 1) * priv->hw_params->tx_bds_per_q);
2761 ring_cfg |= (1 << i);
2762 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2763 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2764 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2767 /* Initialize Tx default queue 16 */
2768 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2769 priv->hw_params->tx_queues *
2770 priv->hw_params->tx_bds_per_q,
2771 TOTAL_DESC);
2772 ring_cfg |= (1 << DESC_INDEX);
2773 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2774 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2775 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2776 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2778 /* Set Tx queue priorities */
2779 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2780 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2781 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2783 /* Enable Tx queues */
2784 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2786 /* Enable Tx DMA */
2787 if (dma_enable)
2788 dma_ctrl |= DMA_EN;
2789 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2792 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2794 unsigned int i;
2795 struct bcmgenet_rx_ring *ring;
2797 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2798 ring = &priv->rx_rings[i];
2799 napi_enable(&ring->napi);
2800 ring->int_enable(ring);
2803 ring = &priv->rx_rings[DESC_INDEX];
2804 napi_enable(&ring->napi);
2805 ring->int_enable(ring);
2808 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2810 unsigned int i;
2811 struct bcmgenet_rx_ring *ring;
2813 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2814 ring = &priv->rx_rings[i];
2815 napi_disable(&ring->napi);
2816 cancel_work_sync(&ring->dim.dim.work);
2819 ring = &priv->rx_rings[DESC_INDEX];
2820 napi_disable(&ring->napi);
2821 cancel_work_sync(&ring->dim.dim.work);
2824 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2826 unsigned int i;
2827 struct bcmgenet_rx_ring *ring;
2829 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2830 ring = &priv->rx_rings[i];
2831 netif_napi_del(&ring->napi);
2834 ring = &priv->rx_rings[DESC_INDEX];
2835 netif_napi_del(&ring->napi);
2838 /* Initialize Rx queues
2840 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2841 * used to direct traffic to these queues.
2843 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2845 static int bcmgenet_init_rx_queues(struct net_device *dev)
2847 struct bcmgenet_priv *priv = netdev_priv(dev);
2848 u32 i;
2849 u32 dma_enable;
2850 u32 dma_ctrl;
2851 u32 ring_cfg;
2852 int ret;
2854 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2855 dma_enable = dma_ctrl & DMA_EN;
2856 dma_ctrl &= ~DMA_EN;
2857 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2859 dma_ctrl = 0;
2860 ring_cfg = 0;
2862 /* Initialize Rx priority queues */
2863 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2864 ret = bcmgenet_init_rx_ring(priv, i,
2865 priv->hw_params->rx_bds_per_q,
2866 i * priv->hw_params->rx_bds_per_q,
2867 (i + 1) *
2868 priv->hw_params->rx_bds_per_q);
2869 if (ret)
2870 return ret;
2872 ring_cfg |= (1 << i);
2873 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2876 /* Initialize Rx default queue 16 */
2877 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2878 priv->hw_params->rx_queues *
2879 priv->hw_params->rx_bds_per_q,
2880 TOTAL_DESC);
2881 if (ret)
2882 return ret;
2884 ring_cfg |= (1 << DESC_INDEX);
2885 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2887 /* Enable rings */
2888 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2890 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2891 if (dma_enable)
2892 dma_ctrl |= DMA_EN;
2893 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2895 return 0;
2898 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2900 int ret = 0;
2901 int timeout = 0;
2902 u32 reg;
2903 u32 dma_ctrl;
2904 int i;
2906 /* Disable TDMA to stop add more frames in TX DMA */
2907 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2908 reg &= ~DMA_EN;
2909 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2911 /* Check TDMA status register to confirm TDMA is disabled */
2912 while (timeout++ < DMA_TIMEOUT_VAL) {
2913 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2914 if (reg & DMA_DISABLED)
2915 break;
2917 udelay(1);
2920 if (timeout == DMA_TIMEOUT_VAL) {
2921 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2922 ret = -ETIMEDOUT;
2925 /* Wait 10ms for packet drain in both tx and rx dma */
2926 usleep_range(10000, 20000);
2928 /* Disable RDMA */
2929 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2930 reg &= ~DMA_EN;
2931 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2933 timeout = 0;
2934 /* Check RDMA status register to confirm RDMA is disabled */
2935 while (timeout++ < DMA_TIMEOUT_VAL) {
2936 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2937 if (reg & DMA_DISABLED)
2938 break;
2940 udelay(1);
2943 if (timeout == DMA_TIMEOUT_VAL) {
2944 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2945 ret = -ETIMEDOUT;
2948 dma_ctrl = 0;
2949 for (i = 0; i < priv->hw_params->rx_queues; i++)
2950 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2951 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2952 reg &= ~dma_ctrl;
2953 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2955 dma_ctrl = 0;
2956 for (i = 0; i < priv->hw_params->tx_queues; i++)
2957 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2958 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2959 reg &= ~dma_ctrl;
2960 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2962 return ret;
2965 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2967 struct netdev_queue *txq;
2968 int i;
2970 bcmgenet_fini_rx_napi(priv);
2971 bcmgenet_fini_tx_napi(priv);
2973 for (i = 0; i < priv->num_tx_bds; i++)
2974 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2975 priv->tx_cbs + i));
2977 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2978 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2979 netdev_tx_reset_queue(txq);
2982 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2983 netdev_tx_reset_queue(txq);
2985 bcmgenet_free_rx_buffers(priv);
2986 kfree(priv->rx_cbs);
2987 kfree(priv->tx_cbs);
2990 /* init_edma: Initialize DMA control register */
2991 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2993 int ret;
2994 unsigned int i;
2995 struct enet_cb *cb;
2997 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2999 /* Initialize common Rx ring structures */
3000 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3001 priv->num_rx_bds = TOTAL_DESC;
3002 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3003 GFP_KERNEL);
3004 if (!priv->rx_cbs)
3005 return -ENOMEM;
3007 for (i = 0; i < priv->num_rx_bds; i++) {
3008 cb = priv->rx_cbs + i;
3009 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3012 /* Initialize common TX ring structures */
3013 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3014 priv->num_tx_bds = TOTAL_DESC;
3015 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3016 GFP_KERNEL);
3017 if (!priv->tx_cbs) {
3018 kfree(priv->rx_cbs);
3019 return -ENOMEM;
3022 for (i = 0; i < priv->num_tx_bds; i++) {
3023 cb = priv->tx_cbs + i;
3024 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3027 /* Init rDma */
3028 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3029 DMA_SCB_BURST_SIZE);
3031 /* Initialize Rx queues */
3032 ret = bcmgenet_init_rx_queues(priv->dev);
3033 if (ret) {
3034 netdev_err(priv->dev, "failed to initialize Rx queues\n");
3035 bcmgenet_free_rx_buffers(priv);
3036 kfree(priv->rx_cbs);
3037 kfree(priv->tx_cbs);
3038 return ret;
3041 /* Init tDma */
3042 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3043 DMA_SCB_BURST_SIZE);
3045 /* Initialize Tx queues */
3046 bcmgenet_init_tx_queues(priv->dev);
3048 return 0;
3051 /* Interrupt bottom half */
3052 static void bcmgenet_irq_task(struct work_struct *work)
3054 unsigned int status;
3055 struct bcmgenet_priv *priv = container_of(
3056 work, struct bcmgenet_priv, bcmgenet_irq_work);
3058 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3060 spin_lock_irq(&priv->lock);
3061 status = priv->irq0_stat;
3062 priv->irq0_stat = 0;
3063 spin_unlock_irq(&priv->lock);
3065 if (status & UMAC_IRQ_PHY_DET_R &&
3066 priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3067 phy_init_hw(priv->dev->phydev);
3068 genphy_config_aneg(priv->dev->phydev);
3071 /* Link UP/DOWN event */
3072 if (status & UMAC_IRQ_LINK_EVENT)
3073 phy_mac_interrupt(priv->dev->phydev);
3077 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3078 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3080 struct bcmgenet_priv *priv = dev_id;
3081 struct bcmgenet_rx_ring *rx_ring;
3082 struct bcmgenet_tx_ring *tx_ring;
3083 unsigned int index, status;
3085 /* Read irq status */
3086 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3087 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3089 /* clear interrupts */
3090 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3092 netif_dbg(priv, intr, priv->dev,
3093 "%s: IRQ=0x%x\n", __func__, status);
3095 /* Check Rx priority queue interrupts */
3096 for (index = 0; index < priv->hw_params->rx_queues; index++) {
3097 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3098 continue;
3100 rx_ring = &priv->rx_rings[index];
3101 rx_ring->dim.event_ctr++;
3103 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3104 rx_ring->int_disable(rx_ring);
3105 __napi_schedule_irqoff(&rx_ring->napi);
3109 /* Check Tx priority queue interrupts */
3110 for (index = 0; index < priv->hw_params->tx_queues; index++) {
3111 if (!(status & BIT(index)))
3112 continue;
3114 tx_ring = &priv->tx_rings[index];
3116 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3117 tx_ring->int_disable(tx_ring);
3118 __napi_schedule_irqoff(&tx_ring->napi);
3122 return IRQ_HANDLED;
3125 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3126 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3128 struct bcmgenet_priv *priv = dev_id;
3129 struct bcmgenet_rx_ring *rx_ring;
3130 struct bcmgenet_tx_ring *tx_ring;
3131 unsigned int status;
3132 unsigned long flags;
3134 /* Read irq status */
3135 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3136 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3138 /* clear interrupts */
3139 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3141 netif_dbg(priv, intr, priv->dev,
3142 "IRQ=0x%x\n", status);
3144 if (status & UMAC_IRQ_RXDMA_DONE) {
3145 rx_ring = &priv->rx_rings[DESC_INDEX];
3146 rx_ring->dim.event_ctr++;
3148 if (likely(napi_schedule_prep(&rx_ring->napi))) {
3149 rx_ring->int_disable(rx_ring);
3150 __napi_schedule_irqoff(&rx_ring->napi);
3154 if (status & UMAC_IRQ_TXDMA_DONE) {
3155 tx_ring = &priv->tx_rings[DESC_INDEX];
3157 if (likely(napi_schedule_prep(&tx_ring->napi))) {
3158 tx_ring->int_disable(tx_ring);
3159 __napi_schedule_irqoff(&tx_ring->napi);
3163 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3164 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3165 wake_up(&priv->wq);
3168 /* all other interested interrupts handled in bottom half */
3169 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3170 if (status) {
3171 /* Save irq status for bottom-half processing. */
3172 spin_lock_irqsave(&priv->lock, flags);
3173 priv->irq0_stat |= status;
3174 spin_unlock_irqrestore(&priv->lock, flags);
3176 schedule_work(&priv->bcmgenet_irq_work);
3179 return IRQ_HANDLED;
3182 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3184 /* Acknowledge the interrupt */
3185 return IRQ_HANDLED;
3188 #ifdef CONFIG_NET_POLL_CONTROLLER
3189 static void bcmgenet_poll_controller(struct net_device *dev)
3191 struct bcmgenet_priv *priv = netdev_priv(dev);
3193 /* Invoke the main RX/TX interrupt handler */
3194 disable_irq(priv->irq0);
3195 bcmgenet_isr0(priv->irq0, priv);
3196 enable_irq(priv->irq0);
3198 /* And the interrupt handler for RX/TX priority queues */
3199 disable_irq(priv->irq1);
3200 bcmgenet_isr1(priv->irq1, priv);
3201 enable_irq(priv->irq1);
3203 #endif
3205 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3207 u32 reg;
3209 reg = bcmgenet_rbuf_ctrl_get(priv);
3210 reg |= BIT(1);
3211 bcmgenet_rbuf_ctrl_set(priv, reg);
3212 udelay(10);
3214 reg &= ~BIT(1);
3215 bcmgenet_rbuf_ctrl_set(priv, reg);
3216 udelay(10);
3219 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3220 unsigned char *addr)
3222 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3223 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3226 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3227 unsigned char *addr)
3229 u32 addr_tmp;
3231 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3232 put_unaligned_be32(addr_tmp, &addr[0]);
3233 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3234 put_unaligned_be16(addr_tmp, &addr[4]);
3237 /* Returns a reusable dma control register value */
3238 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3240 u32 reg;
3241 u32 dma_ctrl;
3243 /* disable DMA */
3244 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3245 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3246 reg &= ~dma_ctrl;
3247 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3249 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3250 reg &= ~dma_ctrl;
3251 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3253 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3254 udelay(10);
3255 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3257 return dma_ctrl;
3260 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3262 u32 reg;
3264 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3265 reg |= dma_ctrl;
3266 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3268 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3269 reg |= dma_ctrl;
3270 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3273 static void bcmgenet_netif_start(struct net_device *dev)
3275 struct bcmgenet_priv *priv = netdev_priv(dev);
3277 /* Start the network engine */
3278 bcmgenet_set_rx_mode(dev);
3279 bcmgenet_enable_rx_napi(priv);
3281 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3283 bcmgenet_enable_tx_napi(priv);
3285 /* Monitor link interrupts now */
3286 bcmgenet_link_intr_enable(priv);
3288 phy_start(dev->phydev);
3291 static int bcmgenet_open(struct net_device *dev)
3293 struct bcmgenet_priv *priv = netdev_priv(dev);
3294 unsigned long dma_ctrl;
3295 u32 reg;
3296 int ret;
3298 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3300 /* Turn on the clock */
3301 clk_prepare_enable(priv->clk);
3303 /* If this is an internal GPHY, power it back on now, before UniMAC is
3304 * brought out of reset as absolutely no UniMAC activity is allowed
3306 if (priv->internal_phy)
3307 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3309 /* take MAC out of reset */
3310 bcmgenet_umac_reset(priv);
3312 init_umac(priv);
3314 /* Apply features again in case we changed them while interface was
3315 * down
3317 bcmgenet_set_features(dev, dev->features);
3319 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3321 if (priv->internal_phy) {
3322 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3323 reg |= EXT_ENERGY_DET_MASK;
3324 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3327 /* Disable RX/TX DMA and flush TX queues */
3328 dma_ctrl = bcmgenet_dma_disable(priv);
3330 /* Reinitialize TDMA and RDMA and SW housekeeping */
3331 ret = bcmgenet_init_dma(priv);
3332 if (ret) {
3333 netdev_err(dev, "failed to initialize DMA\n");
3334 goto err_clk_disable;
3337 /* Always enable ring 16 - descriptor ring */
3338 bcmgenet_enable_dma(priv, dma_ctrl);
3340 /* HFB init */
3341 bcmgenet_hfb_init(priv);
3343 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3344 dev->name, priv);
3345 if (ret < 0) {
3346 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3347 goto err_fini_dma;
3350 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3351 dev->name, priv);
3352 if (ret < 0) {
3353 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3354 goto err_irq0;
3357 ret = bcmgenet_mii_probe(dev);
3358 if (ret) {
3359 netdev_err(dev, "failed to connect to PHY\n");
3360 goto err_irq1;
3363 bcmgenet_netif_start(dev);
3365 netif_tx_start_all_queues(dev);
3367 return 0;
3369 err_irq1:
3370 free_irq(priv->irq1, priv);
3371 err_irq0:
3372 free_irq(priv->irq0, priv);
3373 err_fini_dma:
3374 bcmgenet_dma_teardown(priv);
3375 bcmgenet_fini_dma(priv);
3376 err_clk_disable:
3377 if (priv->internal_phy)
3378 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3379 clk_disable_unprepare(priv->clk);
3380 return ret;
3383 static void bcmgenet_netif_stop(struct net_device *dev)
3385 struct bcmgenet_priv *priv = netdev_priv(dev);
3387 bcmgenet_disable_tx_napi(priv);
3388 netif_tx_disable(dev);
3390 /* Disable MAC receive */
3391 umac_enable_set(priv, CMD_RX_EN, false);
3393 bcmgenet_dma_teardown(priv);
3395 /* Disable MAC transmit. TX DMA disabled must be done before this */
3396 umac_enable_set(priv, CMD_TX_EN, false);
3398 phy_stop(dev->phydev);
3399 bcmgenet_disable_rx_napi(priv);
3400 bcmgenet_intr_disable(priv);
3402 /* Wait for pending work items to complete. Since interrupts are
3403 * disabled no new work will be scheduled.
3405 cancel_work_sync(&priv->bcmgenet_irq_work);
3407 priv->old_link = -1;
3408 priv->old_speed = -1;
3409 priv->old_duplex = -1;
3410 priv->old_pause = -1;
3412 /* tx reclaim */
3413 bcmgenet_tx_reclaim_all(dev);
3414 bcmgenet_fini_dma(priv);
3417 static int bcmgenet_close(struct net_device *dev)
3419 struct bcmgenet_priv *priv = netdev_priv(dev);
3420 int ret = 0;
3422 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3424 bcmgenet_netif_stop(dev);
3426 /* Really kill the PHY state machine and disconnect from it */
3427 phy_disconnect(dev->phydev);
3429 free_irq(priv->irq0, priv);
3430 free_irq(priv->irq1, priv);
3432 if (priv->internal_phy)
3433 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3435 clk_disable_unprepare(priv->clk);
3437 return ret;
3440 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3442 struct bcmgenet_priv *priv = ring->priv;
3443 u32 p_index, c_index, intsts, intmsk;
3444 struct netdev_queue *txq;
3445 unsigned int free_bds;
3446 bool txq_stopped;
3448 if (!netif_msg_tx_err(priv))
3449 return;
3451 txq = netdev_get_tx_queue(priv->dev, ring->queue);
3453 spin_lock(&ring->lock);
3454 if (ring->index == DESC_INDEX) {
3455 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3456 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3457 } else {
3458 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3459 intmsk = 1 << ring->index;
3461 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3462 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3463 txq_stopped = netif_tx_queue_stopped(txq);
3464 free_bds = ring->free_bds;
3465 spin_unlock(&ring->lock);
3467 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3468 "TX queue status: %s, interrupts: %s\n"
3469 "(sw)free_bds: %d (sw)size: %d\n"
3470 "(sw)p_index: %d (hw)p_index: %d\n"
3471 "(sw)c_index: %d (hw)c_index: %d\n"
3472 "(sw)clean_p: %d (sw)write_p: %d\n"
3473 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3474 ring->index, ring->queue,
3475 txq_stopped ? "stopped" : "active",
3476 intsts & intmsk ? "enabled" : "disabled",
3477 free_bds, ring->size,
3478 ring->prod_index, p_index & DMA_P_INDEX_MASK,
3479 ring->c_index, c_index & DMA_C_INDEX_MASK,
3480 ring->clean_ptr, ring->write_ptr,
3481 ring->cb_ptr, ring->end_ptr);
3484 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3486 struct bcmgenet_priv *priv = netdev_priv(dev);
3487 u32 int0_enable = 0;
3488 u32 int1_enable = 0;
3489 unsigned int q;
3491 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3493 for (q = 0; q < priv->hw_params->tx_queues; q++)
3494 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3495 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3497 bcmgenet_tx_reclaim_all(dev);
3499 for (q = 0; q < priv->hw_params->tx_queues; q++)
3500 int1_enable |= (1 << q);
3502 int0_enable = UMAC_IRQ_TXDMA_DONE;
3504 /* Re-enable TX interrupts if disabled */
3505 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3506 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3508 netif_trans_update(dev);
3510 dev->stats.tx_errors++;
3512 netif_tx_wake_all_queues(dev);
3515 #define MAX_MDF_FILTER 17
3517 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3518 unsigned char *addr,
3519 int *i)
3521 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3522 UMAC_MDF_ADDR + (*i * 4));
3523 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3524 addr[4] << 8 | addr[5],
3525 UMAC_MDF_ADDR + ((*i + 1) * 4));
3526 *i += 2;
3529 static void bcmgenet_set_rx_mode(struct net_device *dev)
3531 struct bcmgenet_priv *priv = netdev_priv(dev);
3532 struct netdev_hw_addr *ha;
3533 int i, nfilter;
3534 u32 reg;
3536 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3538 /* Number of filters needed */
3539 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3542 * Turn on promicuous mode for three scenarios
3543 * 1. IFF_PROMISC flag is set
3544 * 2. IFF_ALLMULTI flag is set
3545 * 3. The number of filters needed exceeds the number filters
3546 * supported by the hardware.
3548 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3549 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3550 (nfilter > MAX_MDF_FILTER)) {
3551 reg |= CMD_PROMISC;
3552 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3553 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3554 return;
3555 } else {
3556 reg &= ~CMD_PROMISC;
3557 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3560 /* update MDF filter */
3561 i = 0;
3562 /* Broadcast */
3563 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3564 /* my own address.*/
3565 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3567 /* Unicast */
3568 netdev_for_each_uc_addr(ha, dev)
3569 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3571 /* Multicast */
3572 netdev_for_each_mc_addr(ha, dev)
3573 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3575 /* Enable filters */
3576 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3577 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3580 /* Set the hardware MAC address. */
3581 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3583 struct sockaddr *addr = p;
3585 /* Setting the MAC address at the hardware level is not possible
3586 * without disabling the UniMAC RX/TX enable bits.
3588 if (netif_running(dev))
3589 return -EBUSY;
3591 ether_addr_copy(dev->dev_addr, addr->sa_data);
3593 return 0;
3596 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3598 struct bcmgenet_priv *priv = netdev_priv(dev);
3599 unsigned long tx_bytes = 0, tx_packets = 0;
3600 unsigned long rx_bytes = 0, rx_packets = 0;
3601 unsigned long rx_errors = 0, rx_dropped = 0;
3602 struct bcmgenet_tx_ring *tx_ring;
3603 struct bcmgenet_rx_ring *rx_ring;
3604 unsigned int q;
3606 for (q = 0; q < priv->hw_params->tx_queues; q++) {
3607 tx_ring = &priv->tx_rings[q];
3608 tx_bytes += tx_ring->bytes;
3609 tx_packets += tx_ring->packets;
3611 tx_ring = &priv->tx_rings[DESC_INDEX];
3612 tx_bytes += tx_ring->bytes;
3613 tx_packets += tx_ring->packets;
3615 for (q = 0; q < priv->hw_params->rx_queues; q++) {
3616 rx_ring = &priv->rx_rings[q];
3618 rx_bytes += rx_ring->bytes;
3619 rx_packets += rx_ring->packets;
3620 rx_errors += rx_ring->errors;
3621 rx_dropped += rx_ring->dropped;
3623 rx_ring = &priv->rx_rings[DESC_INDEX];
3624 rx_bytes += rx_ring->bytes;
3625 rx_packets += rx_ring->packets;
3626 rx_errors += rx_ring->errors;
3627 rx_dropped += rx_ring->dropped;
3629 dev->stats.tx_bytes = tx_bytes;
3630 dev->stats.tx_packets = tx_packets;
3631 dev->stats.rx_bytes = rx_bytes;
3632 dev->stats.rx_packets = rx_packets;
3633 dev->stats.rx_errors = rx_errors;
3634 dev->stats.rx_missed_errors = rx_errors;
3635 dev->stats.rx_dropped = rx_dropped;
3636 return &dev->stats;
3639 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3641 struct bcmgenet_priv *priv = netdev_priv(dev);
3643 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3644 priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3645 return -EOPNOTSUPP;
3647 if (new_carrier)
3648 netif_carrier_on(dev);
3649 else
3650 netif_carrier_off(dev);
3652 return 0;
3655 static const struct net_device_ops bcmgenet_netdev_ops = {
3656 .ndo_open = bcmgenet_open,
3657 .ndo_stop = bcmgenet_close,
3658 .ndo_start_xmit = bcmgenet_xmit,
3659 .ndo_tx_timeout = bcmgenet_timeout,
3660 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3661 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3662 .ndo_do_ioctl = phy_do_ioctl_running,
3663 .ndo_set_features = bcmgenet_set_features,
3664 #ifdef CONFIG_NET_POLL_CONTROLLER
3665 .ndo_poll_controller = bcmgenet_poll_controller,
3666 #endif
3667 .ndo_get_stats = bcmgenet_get_stats,
3668 .ndo_change_carrier = bcmgenet_change_carrier,
3671 /* Array of GENET hardware parameters/characteristics */
3672 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3673 [GENET_V1] = {
3674 .tx_queues = 0,
3675 .tx_bds_per_q = 0,
3676 .rx_queues = 0,
3677 .rx_bds_per_q = 0,
3678 .bp_in_en_shift = 16,
3679 .bp_in_mask = 0xffff,
3680 .hfb_filter_cnt = 16,
3681 .qtag_mask = 0x1F,
3682 .hfb_offset = 0x1000,
3683 .rdma_offset = 0x2000,
3684 .tdma_offset = 0x3000,
3685 .words_per_bd = 2,
3687 [GENET_V2] = {
3688 .tx_queues = 4,
3689 .tx_bds_per_q = 32,
3690 .rx_queues = 0,
3691 .rx_bds_per_q = 0,
3692 .bp_in_en_shift = 16,
3693 .bp_in_mask = 0xffff,
3694 .hfb_filter_cnt = 16,
3695 .qtag_mask = 0x1F,
3696 .tbuf_offset = 0x0600,
3697 .hfb_offset = 0x1000,
3698 .hfb_reg_offset = 0x2000,
3699 .rdma_offset = 0x3000,
3700 .tdma_offset = 0x4000,
3701 .words_per_bd = 2,
3702 .flags = GENET_HAS_EXT,
3704 [GENET_V3] = {
3705 .tx_queues = 4,
3706 .tx_bds_per_q = 32,
3707 .rx_queues = 0,
3708 .rx_bds_per_q = 0,
3709 .bp_in_en_shift = 17,
3710 .bp_in_mask = 0x1ffff,
3711 .hfb_filter_cnt = 48,
3712 .hfb_filter_size = 128,
3713 .qtag_mask = 0x3F,
3714 .tbuf_offset = 0x0600,
3715 .hfb_offset = 0x8000,
3716 .hfb_reg_offset = 0xfc00,
3717 .rdma_offset = 0x10000,
3718 .tdma_offset = 0x11000,
3719 .words_per_bd = 2,
3720 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3721 GENET_HAS_MOCA_LINK_DET,
3723 [GENET_V4] = {
3724 .tx_queues = 4,
3725 .tx_bds_per_q = 32,
3726 .rx_queues = 0,
3727 .rx_bds_per_q = 0,
3728 .bp_in_en_shift = 17,
3729 .bp_in_mask = 0x1ffff,
3730 .hfb_filter_cnt = 48,
3731 .hfb_filter_size = 128,
3732 .qtag_mask = 0x3F,
3733 .tbuf_offset = 0x0600,
3734 .hfb_offset = 0x8000,
3735 .hfb_reg_offset = 0xfc00,
3736 .rdma_offset = 0x2000,
3737 .tdma_offset = 0x4000,
3738 .words_per_bd = 3,
3739 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3740 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3742 [GENET_V5] = {
3743 .tx_queues = 4,
3744 .tx_bds_per_q = 32,
3745 .rx_queues = 0,
3746 .rx_bds_per_q = 0,
3747 .bp_in_en_shift = 17,
3748 .bp_in_mask = 0x1ffff,
3749 .hfb_filter_cnt = 48,
3750 .hfb_filter_size = 128,
3751 .qtag_mask = 0x3F,
3752 .tbuf_offset = 0x0600,
3753 .hfb_offset = 0x8000,
3754 .hfb_reg_offset = 0xfc00,
3755 .rdma_offset = 0x2000,
3756 .tdma_offset = 0x4000,
3757 .words_per_bd = 3,
3758 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3759 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3763 /* Infer hardware parameters from the detected GENET version */
3764 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3766 struct bcmgenet_hw_params *params;
3767 u32 reg;
3768 u8 major;
3769 u16 gphy_rev;
3771 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3772 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3773 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3774 } else if (GENET_IS_V3(priv)) {
3775 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3776 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777 } else if (GENET_IS_V2(priv)) {
3778 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3779 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3780 } else if (GENET_IS_V1(priv)) {
3781 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3782 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3785 /* enum genet_version starts at 1 */
3786 priv->hw_params = &bcmgenet_hw_params[priv->version];
3787 params = priv->hw_params;
3789 /* Read GENET HW version */
3790 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3791 major = (reg >> 24 & 0x0f);
3792 if (major == 6)
3793 major = 5;
3794 else if (major == 5)
3795 major = 4;
3796 else if (major == 0)
3797 major = 1;
3798 if (major != priv->version) {
3799 dev_err(&priv->pdev->dev,
3800 "GENET version mismatch, got: %d, configured for: %d\n",
3801 major, priv->version);
3804 /* Print the GENET core version */
3805 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3806 major, (reg >> 16) & 0x0f, reg & 0xffff);
3808 /* Store the integrated PHY revision for the MDIO probing function
3809 * to pass this information to the PHY driver. The PHY driver expects
3810 * to find the PHY major revision in bits 15:8 while the GENET register
3811 * stores that information in bits 7:0, account for that.
3813 * On newer chips, starting with PHY revision G0, a new scheme is
3814 * deployed similar to the Starfighter 2 switch with GPHY major
3815 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3816 * is reserved as well as special value 0x01ff, we have a small
3817 * heuristic to check for the new GPHY revision and re-arrange things
3818 * so the GPHY driver is happy.
3820 gphy_rev = reg & 0xffff;
3822 if (GENET_IS_V5(priv)) {
3823 /* The EPHY revision should come from the MDIO registers of
3824 * the PHY not from GENET.
3826 if (gphy_rev != 0) {
3827 pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3828 gphy_rev);
3830 /* This is reserved so should require special treatment */
3831 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3832 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3833 return;
3834 /* This is the good old scheme, just GPHY major, no minor nor patch */
3835 } else if ((gphy_rev & 0xf0) != 0) {
3836 priv->gphy_rev = gphy_rev << 8;
3837 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3838 } else if ((gphy_rev & 0xff00) != 0) {
3839 priv->gphy_rev = gphy_rev;
3842 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3843 if (!(params->flags & GENET_HAS_40BITS))
3844 pr_warn("GENET does not support 40-bits PA\n");
3845 #endif
3847 pr_debug("Configuration for version: %d\n"
3848 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3849 "BP << en: %2d, BP msk: 0x%05x\n"
3850 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3851 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3852 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3853 "Words/BD: %d\n",
3854 priv->version,
3855 params->tx_queues, params->tx_bds_per_q,
3856 params->rx_queues, params->rx_bds_per_q,
3857 params->bp_in_en_shift, params->bp_in_mask,
3858 params->hfb_filter_cnt, params->qtag_mask,
3859 params->tbuf_offset, params->hfb_offset,
3860 params->hfb_reg_offset,
3861 params->rdma_offset, params->tdma_offset,
3862 params->words_per_bd);
3865 struct bcmgenet_plat_data {
3866 enum bcmgenet_version version;
3867 u32 dma_max_burst_length;
3870 static const struct bcmgenet_plat_data v1_plat_data = {
3871 .version = GENET_V1,
3872 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3875 static const struct bcmgenet_plat_data v2_plat_data = {
3876 .version = GENET_V2,
3877 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3880 static const struct bcmgenet_plat_data v3_plat_data = {
3881 .version = GENET_V3,
3882 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3885 static const struct bcmgenet_plat_data v4_plat_data = {
3886 .version = GENET_V4,
3887 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3890 static const struct bcmgenet_plat_data v5_plat_data = {
3891 .version = GENET_V5,
3892 .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3895 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3896 .version = GENET_V5,
3897 .dma_max_burst_length = 0x08,
3900 static const struct of_device_id bcmgenet_match[] = {
3901 { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3902 { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3903 { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3904 { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3905 { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3906 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3907 { },
3909 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3911 static int bcmgenet_probe(struct platform_device *pdev)
3913 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3914 const struct bcmgenet_plat_data *pdata;
3915 struct bcmgenet_priv *priv;
3916 struct net_device *dev;
3917 unsigned int i;
3918 int err = -EIO;
3920 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3921 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3922 GENET_MAX_MQ_CNT + 1);
3923 if (!dev) {
3924 dev_err(&pdev->dev, "can't allocate net device\n");
3925 return -ENOMEM;
3928 priv = netdev_priv(dev);
3929 priv->irq0 = platform_get_irq(pdev, 0);
3930 if (priv->irq0 < 0) {
3931 err = priv->irq0;
3932 goto err;
3934 priv->irq1 = platform_get_irq(pdev, 1);
3935 if (priv->irq1 < 0) {
3936 err = priv->irq1;
3937 goto err;
3939 priv->wol_irq = platform_get_irq_optional(pdev, 2);
3941 priv->base = devm_platform_ioremap_resource(pdev, 0);
3942 if (IS_ERR(priv->base)) {
3943 err = PTR_ERR(priv->base);
3944 goto err;
3947 spin_lock_init(&priv->lock);
3949 SET_NETDEV_DEV(dev, &pdev->dev);
3950 dev_set_drvdata(&pdev->dev, dev);
3951 dev->watchdog_timeo = 2 * HZ;
3952 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3953 dev->netdev_ops = &bcmgenet_netdev_ops;
3955 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3957 /* Set default features */
3958 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3959 NETIF_F_RXCSUM;
3960 dev->hw_features |= dev->features;
3961 dev->vlan_features |= dev->features;
3963 /* Request the WOL interrupt and advertise suspend if available */
3964 priv->wol_irq_disabled = true;
3965 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3966 dev->name, priv);
3967 if (!err)
3968 device_set_wakeup_capable(&pdev->dev, 1);
3970 /* Set the needed headroom to account for any possible
3971 * features enabling/disabling at runtime
3973 dev->needed_headroom += 64;
3975 netdev_boot_setup_check(dev);
3977 priv->dev = dev;
3978 priv->pdev = pdev;
3980 pdata = device_get_match_data(&pdev->dev);
3981 if (pdata) {
3982 priv->version = pdata->version;
3983 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3984 } else {
3985 priv->version = pd->genet_version;
3986 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3989 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3990 if (IS_ERR(priv->clk)) {
3991 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3992 err = PTR_ERR(priv->clk);
3993 goto err;
3996 err = clk_prepare_enable(priv->clk);
3997 if (err)
3998 goto err;
4000 bcmgenet_set_hw_params(priv);
4002 err = -EIO;
4003 if (priv->hw_params->flags & GENET_HAS_40BITS)
4004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4005 if (err)
4006 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4007 if (err)
4008 goto err_clk_disable;
4010 /* Mii wait queue */
4011 init_waitqueue_head(&priv->wq);
4012 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4013 priv->rx_buf_len = RX_BUF_LENGTH;
4014 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4016 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4017 if (IS_ERR(priv->clk_wol)) {
4018 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4019 err = PTR_ERR(priv->clk_wol);
4020 goto err_clk_disable;
4023 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4024 if (IS_ERR(priv->clk_eee)) {
4025 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4026 err = PTR_ERR(priv->clk_eee);
4027 goto err_clk_disable;
4030 /* If this is an internal GPHY, power it on now, before UniMAC is
4031 * brought out of reset as absolutely no UniMAC activity is allowed
4033 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4034 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4036 if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4037 ether_addr_copy(dev->dev_addr, pd->mac_address);
4038 else
4039 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4040 if (has_acpi_companion(&pdev->dev))
4041 bcmgenet_get_hw_addr(priv, dev->dev_addr);
4043 if (!is_valid_ether_addr(dev->dev_addr)) {
4044 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4045 eth_hw_addr_random(dev);
4048 reset_umac(priv);
4050 err = bcmgenet_mii_init(dev);
4051 if (err)
4052 goto err_clk_disable;
4054 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
4055 * just the ring 16 descriptor based TX
4057 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4058 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4060 /* Set default coalescing parameters */
4061 for (i = 0; i < priv->hw_params->rx_queues; i++)
4062 priv->rx_rings[i].rx_max_coalesced_frames = 1;
4063 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4065 /* libphy will determine the link state */
4066 netif_carrier_off(dev);
4068 /* Turn off the main clock, WOL clock is handled separately */
4069 clk_disable_unprepare(priv->clk);
4071 err = register_netdev(dev);
4072 if (err) {
4073 bcmgenet_mii_exit(dev);
4074 goto err;
4077 return err;
4079 err_clk_disable:
4080 clk_disable_unprepare(priv->clk);
4081 err:
4082 free_netdev(dev);
4083 return err;
4086 static int bcmgenet_remove(struct platform_device *pdev)
4088 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4090 dev_set_drvdata(&pdev->dev, NULL);
4091 unregister_netdev(priv->dev);
4092 bcmgenet_mii_exit(priv->dev);
4093 free_netdev(priv->dev);
4095 return 0;
4098 static void bcmgenet_shutdown(struct platform_device *pdev)
4100 bcmgenet_remove(pdev);
4103 #ifdef CONFIG_PM_SLEEP
4104 static int bcmgenet_resume_noirq(struct device *d)
4106 struct net_device *dev = dev_get_drvdata(d);
4107 struct bcmgenet_priv *priv = netdev_priv(dev);
4108 int ret;
4109 u32 reg;
4111 if (!netif_running(dev))
4112 return 0;
4114 /* Turn on the clock */
4115 ret = clk_prepare_enable(priv->clk);
4116 if (ret)
4117 return ret;
4119 if (device_may_wakeup(d) && priv->wolopts) {
4120 /* Account for Wake-on-LAN events and clear those events
4121 * (Some devices need more time between enabling the clocks
4122 * and the interrupt register reflecting the wake event so
4123 * read the register twice)
4125 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4126 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4127 if (reg & UMAC_IRQ_WAKE_EVENT)
4128 pm_wakeup_event(&priv->pdev->dev, 0);
4131 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4133 return 0;
4136 static int bcmgenet_resume(struct device *d)
4138 struct net_device *dev = dev_get_drvdata(d);
4139 struct bcmgenet_priv *priv = netdev_priv(dev);
4140 struct bcmgenet_rxnfc_rule *rule;
4141 unsigned long dma_ctrl;
4142 u32 reg;
4143 int ret;
4145 if (!netif_running(dev))
4146 return 0;
4148 /* From WOL-enabled suspend, switch to regular clock */
4149 if (device_may_wakeup(d) && priv->wolopts)
4150 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4152 /* If this is an internal GPHY, power it back on now, before UniMAC is
4153 * brought out of reset as absolutely no UniMAC activity is allowed
4155 if (priv->internal_phy)
4156 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4158 bcmgenet_umac_reset(priv);
4160 init_umac(priv);
4162 phy_init_hw(dev->phydev);
4164 /* Speed settings must be restored */
4165 genphy_config_aneg(dev->phydev);
4166 bcmgenet_mii_config(priv->dev, false);
4168 /* Restore enabled features */
4169 bcmgenet_set_features(dev, dev->features);
4171 bcmgenet_set_hw_addr(priv, dev->dev_addr);
4173 /* Restore hardware filters */
4174 bcmgenet_hfb_clear(priv);
4175 list_for_each_entry(rule, &priv->rxnfc_list, list)
4176 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4177 bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4179 if (priv->internal_phy) {
4180 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
4181 reg |= EXT_ENERGY_DET_MASK;
4182 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
4185 /* Disable RX/TX DMA and flush TX queues */
4186 dma_ctrl = bcmgenet_dma_disable(priv);
4188 /* Reinitialize TDMA and RDMA and SW housekeeping */
4189 ret = bcmgenet_init_dma(priv);
4190 if (ret) {
4191 netdev_err(dev, "failed to initialize DMA\n");
4192 goto out_clk_disable;
4195 /* Always enable ring 16 - descriptor ring */
4196 bcmgenet_enable_dma(priv, dma_ctrl);
4198 if (!device_may_wakeup(d))
4199 phy_resume(dev->phydev);
4201 if (priv->eee.eee_enabled)
4202 bcmgenet_eee_enable_set(dev, true);
4204 bcmgenet_netif_start(dev);
4206 netif_device_attach(dev);
4208 return 0;
4210 out_clk_disable:
4211 if (priv->internal_phy)
4212 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4213 clk_disable_unprepare(priv->clk);
4214 return ret;
4217 static int bcmgenet_suspend(struct device *d)
4219 struct net_device *dev = dev_get_drvdata(d);
4220 struct bcmgenet_priv *priv = netdev_priv(dev);
4222 if (!netif_running(dev))
4223 return 0;
4225 netif_device_detach(dev);
4227 bcmgenet_netif_stop(dev);
4229 if (!device_may_wakeup(d))
4230 phy_suspend(dev->phydev);
4232 /* Disable filtering */
4233 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4235 return 0;
4238 static int bcmgenet_suspend_noirq(struct device *d)
4240 struct net_device *dev = dev_get_drvdata(d);
4241 struct bcmgenet_priv *priv = netdev_priv(dev);
4242 int ret = 0;
4244 if (!netif_running(dev))
4245 return 0;
4247 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
4248 if (device_may_wakeup(d) && priv->wolopts)
4249 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4250 else if (priv->internal_phy)
4251 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4253 /* Let the framework handle resumption and leave the clocks on */
4254 if (ret)
4255 return ret;
4257 /* Turn off the clocks */
4258 clk_disable_unprepare(priv->clk);
4260 return 0;
4262 #else
4263 #define bcmgenet_suspend NULL
4264 #define bcmgenet_suspend_noirq NULL
4265 #define bcmgenet_resume NULL
4266 #define bcmgenet_resume_noirq NULL
4267 #endif /* CONFIG_PM_SLEEP */
4269 static const struct dev_pm_ops bcmgenet_pm_ops = {
4270 .suspend = bcmgenet_suspend,
4271 .suspend_noirq = bcmgenet_suspend_noirq,
4272 .resume = bcmgenet_resume,
4273 .resume_noirq = bcmgenet_resume_noirq,
4276 static const struct acpi_device_id genet_acpi_match[] = {
4277 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4278 { },
4280 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4282 static struct platform_driver bcmgenet_driver = {
4283 .probe = bcmgenet_probe,
4284 .remove = bcmgenet_remove,
4285 .shutdown = bcmgenet_shutdown,
4286 .driver = {
4287 .name = "bcmgenet",
4288 .of_match_table = bcmgenet_match,
4289 .pm = &bcmgenet_pm_ops,
4290 .acpi_match_table = genet_acpi_match,
4293 module_platform_driver(bcmgenet_driver);
4295 MODULE_AUTHOR("Broadcom Corporation");
4296 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4297 MODULE_ALIAS("platform:bcmgenet");
4298 MODULE_LICENSE("GPL");