1 /**********************************************************************
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
7 * Copyright (c) 2003-2016 Cavium, Inc.
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more details.
17 ***********************************************************************/
18 /*! \file octeon_droq.h
19 * \brief Implementation of Octeon Output queues. "Output" is with
20 * respect to the Octeon device on the NIC. From this driver's point of
21 * view they are ingress queues.
24 #ifndef __OCTEON_DROQ_H__
25 #define __OCTEON_DROQ_H__
27 /* Default number of packets that will be processed in one iteration. */
28 #define MAX_PACKET_BUDGET 0xFFFFFFFF
30 /** Octeon descriptor format.
31 * The descriptor ring is made of descriptors which have 2 64-bit values:
32 * -# Physical (bus) address of the data buffer.
33 * -# Physical (bus) address of a octeon_droq_info structure.
34 * The Octeon device DMA's incoming packets and its information at the address
35 * given by these descriptor fields.
37 struct octeon_droq_desc
{
38 /** The buffer pointer */
41 /** The Info pointer */
45 #define OCT_DROQ_DESC_SIZE (sizeof(struct octeon_droq_desc))
47 /** Information about packet DMA'ed by Octeon.
48 * The format of the information available at Info Pointer after Octeon
49 * has posted a packet. Not all descriptors have valid information. Only
50 * the Info field of the first descriptor for a packet has information
53 struct octeon_droq_info
{
54 /** The Length of the packet. */
57 /** The Output Receive Header. */
61 #define OCT_DROQ_INFO_SIZE (sizeof(struct octeon_droq_info))
63 struct octeon_skb_page_info
{
64 /* DMA address for the page */
67 /* Page for the rx dma **/
70 /** which offset into page */
71 unsigned int page_offset
;
74 /** Pointer to data buffer.
75 * Driver keeps a pointer to the data buffer that it made available to
76 * the Octeon device. Since the descriptor ring keeps physical (bus)
77 * addresses, this field is required for the driver to keep track of
78 * the virtual address pointers.
80 struct octeon_recv_buffer
{
81 /** Packet buffer, including metadata. */
84 /** Data in the packet buffer. */
88 struct octeon_skb_page_info pg_info
;
91 #define OCT_DROQ_RECVBUF_SIZE (sizeof(struct octeon_recv_buffer))
93 /** Output Queue statistics. Each output queue has four stats fields. */
94 struct oct_droq_stats
{
95 /** Number of packets received in this queue. */
98 /** Bytes received by this queue. */
101 /** Packets dropped due to no dispatch function. */
102 u64 dropped_nodispatch
;
104 /** Packets dropped due to no memory available. */
107 /** Packets dropped due to large number of pkts to process. */
110 /** Number of packets sent to stack from this queue. */
111 u64 rx_pkts_received
;
113 /** Number of Bytes sent to stack from this queue. */
114 u64 rx_bytes_received
;
116 /** Num of Packets dropped due to receive path failures. */
121 /** Num of failures of recv_buffer_alloc() */
122 u64 rx_alloc_failure
;
126 /* The maximum number of buffers that can be dispatched from the
127 * output/dma queue. Set to 64 assuming 1K buffers in DROQ and the fact that
128 * max packet size from DROQ is 64K.
130 #define MAX_RECV_BUFS 64
132 /** Receive Packet format used when dispatching output queue packets
133 * with non-raw opcodes.
134 * The received packet will be sent to the upper layers using this
135 * structure which is passed as a parameter to the dispatch function
137 struct octeon_recv_pkt
{
138 /** Number of buffers in this received packet */
141 /** Id of the device that is sending the packet up */
144 /** Length of data in the packet buffer */
147 /** The receive header */
150 /** Pointer to the OS-specific packet buffer */
151 void *buffer_ptr
[MAX_RECV_BUFS
];
153 /** Size of the buffers pointed to by ptr's in buffer_ptr */
154 u32 buffer_size
[MAX_RECV_BUFS
];
157 #define OCT_RECV_PKT_SIZE (sizeof(struct octeon_recv_pkt))
159 /** The first parameter of a dispatch function.
160 * For a raw mode opcode, the driver dispatches with the device
161 * pointer in this structure.
162 * For non-raw mode opcode, the driver dispatches the recv_pkt
163 * created to contain the buffers with data received from Octeon.
164 * ---------------------
165 * | *recv_pkt ----|---
166 * |-------------------| |
167 * | 0 or more bytes | |
168 * | reserved by driver| |
169 * |-------------------|<-/
170 * | octeon_recv_pkt |
172 * |___________________|
174 struct octeon_recv_info
{
176 struct octeon_recv_pkt
*recv_pkt
;
179 #define OCT_RECV_INFO_SIZE (sizeof(struct octeon_recv_info))
181 /** Allocate a recv_info structure. The recv_pkt pointer in the recv_info
182 * structure is filled in before this call returns.
183 * @param extra_bytes - extra bytes to be allocated at the end of the recv info
185 * @return - pointer to a newly allocated recv_info structure.
187 static inline struct octeon_recv_info
*octeon_alloc_recv_info(int extra_bytes
)
189 struct octeon_recv_info
*recv_info
;
192 buf
= kmalloc(OCT_RECV_PKT_SIZE
+ OCT_RECV_INFO_SIZE
+
193 extra_bytes
, GFP_ATOMIC
);
197 recv_info
= (struct octeon_recv_info
*)buf
;
198 recv_info
->recv_pkt
=
199 (struct octeon_recv_pkt
*)(buf
+ OCT_RECV_INFO_SIZE
);
200 recv_info
->rsvd
= NULL
;
202 recv_info
->rsvd
= buf
+ OCT_RECV_INFO_SIZE
+ OCT_RECV_PKT_SIZE
;
207 /** Free a recv_info structure.
208 * @param recv_info - Pointer to receive_info to be freed
210 static inline void octeon_free_recv_info(struct octeon_recv_info
*recv_info
)
215 typedef int (*octeon_dispatch_fn_t
)(struct octeon_recv_info
*, void *);
217 /** Used by NIC module to register packet handler and to get device
218 * information for each octeon device.
220 struct octeon_droq_ops
{
221 /** This registered function will be called by the driver with
222 * the octeon id, pointer to buffer from droq and length of
223 * data in the buffer. The receive header gives the port
224 * number to the caller. Function pointer is set by caller.
226 void (*fptr
)(u32
, void *, u32
, union octeon_rh
*, void *, void *);
229 /* This function will be called by the driver for all NAPI related
230 * events. The first param is the octeon id. The second param is the
231 * output queue number. The third is the NAPI event that occurred.
233 void (*napi_fn
)(void *);
237 /** Flag indicating if the DROQ handler should drop packets that
238 * it cannot handle in one iteration. Set by caller.
243 /** The Descriptor Ring Output Queue structure.
244 * This structure has all the information required to implement a
252 struct octeon_droq_ops ops
;
254 struct octeon_device
*oct_dev
;
256 /** The 8B aligned descriptor ring starts at this address. */
257 struct octeon_droq_desc
*desc_ring
;
259 /** Index in the ring where the driver should read the next packet */
262 /** Index in the ring where Octeon will write the next packet */
265 /** Index in the ring where the driver will refill the descriptor's
270 /** Packets pending to be processed */
271 atomic_t pkts_pending
;
273 /** Number of descriptors in this ring. */
276 /** The number of descriptors pending refill. */
280 u32 refill_threshold
;
282 /** The max number of descriptors in DROQ without a buffer.
283 * This field is used to keep track of empty space threshold. If the
284 * refill_count reaches this value, the DROQ cannot accept a max-sized
289 /** The receive buffer list. This list has the virtual addresses of the
292 struct octeon_recv_buffer
*recv_buf_list
;
294 /** The size of each buffer pointed by the buffer pointer. */
297 /** Pointer to the mapped packet credit register.
298 * Host writes number of info/buffer ptrs available to this register
300 void __iomem
*pkts_credit_reg
;
302 /** Pointer to the mapped packet sent register.
303 * Octeon writes the number of packets DMA'ed to host memory
306 void __iomem
*pkts_sent_reg
;
308 struct list_head dispatch_list
;
310 /** Statistics for this DROQ. */
311 struct oct_droq_stats stats
;
313 /** DMA mapped address of the DROQ descriptor ring. */
314 size_t desc_ring_dma
;
316 /** application context */
319 struct napi_struct napi
;
323 call_single_data_t csd
;
326 #define OCT_DROQ_SIZE (sizeof(struct octeon_droq))
329 * Allocates space for the descriptor ring for the droq and sets the
330 * base addr, num desc etc in Octeon registers.
332 * @param oct_dev - pointer to the octeon device structure
333 * @param q_no - droq no. ranges from 0 - 3.
334 * @param app_ctx - pointer to application context
335 * @return Success: 0 Failure: 1
337 int octeon_init_droq(struct octeon_device
*oct_dev
,
344 * Frees the space for descriptor ring for the droq.
346 * @param oct_dev - pointer to the octeon device structure
347 * @param q_no - droq no. ranges from 0 - 3.
348 * @return: Success: 0 Failure: 1
350 int octeon_delete_droq(struct octeon_device
*oct_dev
, u32 q_no
);
352 /** Register a change in droq operations. The ops field has a pointer to a
353 * function which will called by the DROQ handler for all packets arriving
354 * on output queues given by q_no irrespective of the type of packet.
355 * The ops field also has a flag which if set tells the DROQ handler to
356 * drop packets if it receives more than what it can process in one
357 * invocation of the handler.
358 * @param oct - octeon device
359 * @param q_no - octeon output queue number (0 <= q_no <= MAX_OCTEON_DROQ-1
360 * @param ops - the droq_ops settings for this queue
361 * @return - 0 on success, -ENODEV or -EINVAL on error.
364 octeon_register_droq_ops(struct octeon_device
*oct
,
366 struct octeon_droq_ops
*ops
);
368 /** Resets the function pointer and flag settings made by
369 * octeon_register_droq_ops(). After this routine is called, the DROQ handler
370 * will lookup dispatch function for each arriving packet on the output queue
372 * @param oct - octeon device
373 * @param q_no - octeon output queue number (0 <= q_no <= MAX_OCTEON_DROQ-1
374 * @return - 0 on success, -ENODEV or -EINVAL on error.
376 int octeon_unregister_droq_ops(struct octeon_device
*oct
, u32 q_no
);
378 /** Register a dispatch function for a opcode/subcode. The driver will call
379 * this dispatch function when it receives a packet with the given
380 * opcode/subcode in its output queues along with the user specified
382 * @param oct - the octeon device to register with.
383 * @param opcode - the opcode for which the dispatch will be registered.
384 * @param subcode - the subcode for which the dispatch will be registered
385 * @param fn - the dispatch function.
386 * @param fn_arg - user specified that will be passed along with the
387 * dispatch function by the driver.
388 * @return Success: 0; Failure: 1
390 int octeon_register_dispatch_fn(struct octeon_device
*oct
,
393 octeon_dispatch_fn_t fn
, void *fn_arg
);
395 void *octeon_get_dispatch_arg(struct octeon_device
*oct
,
396 u16 opcode
, u16 subcode
);
398 void octeon_droq_print_stats(void);
400 u32
octeon_droq_check_hw_for_pkts(struct octeon_droq
*droq
);
402 int octeon_create_droq(struct octeon_device
*oct
, u32 q_no
,
403 u32 num_descs
, u32 desc_size
, void *app_ctx
);
405 int octeon_droq_process_packets(struct octeon_device
*oct
,
406 struct octeon_droq
*droq
,
409 int octeon_droq_process_poll_pkts(struct octeon_device
*oct
,
410 struct octeon_droq
*droq
, u32 budget
);
412 int octeon_enable_irq(struct octeon_device
*oct
, u32 q_no
);
414 int octeon_retry_droq_refill(struct octeon_droq
*droq
);
416 #endif /*__OCTEON_DROQ_H__ */