WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / cavium / octeon / octeon_mgmt.c
blob5e50bb19bf26c1227f5ddee64b87dc2d6d400670
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2009-2012 Cavium, Inc
7 */
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/capability.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/interrupt.h>
15 #include <linux/netdevice.h>
16 #include <linux/spinlock.h>
17 #include <linux/if_vlan.h>
18 #include <linux/of_mdio.h>
19 #include <linux/module.h>
20 #include <linux/of_net.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/phy.h>
24 #include <linux/io.h>
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-mixx-defs.h>
28 #include <asm/octeon/cvmx-agl-defs.h>
30 #define DRV_NAME "octeon_mgmt"
31 #define DRV_DESCRIPTION \
32 "Cavium Networks Octeon MII (management) port Network Driver"
34 #define OCTEON_MGMT_NAPI_WEIGHT 16
36 /* Ring sizes that are powers of two allow for more efficient modulo
37 * opertions.
39 #define OCTEON_MGMT_RX_RING_SIZE 512
40 #define OCTEON_MGMT_TX_RING_SIZE 128
42 /* Allow 8 bytes for vlan and FCS. */
43 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN)
45 union mgmt_port_ring_entry {
46 u64 d64;
47 struct {
48 #define RING_ENTRY_CODE_DONE 0xf
49 #define RING_ENTRY_CODE_MORE 0x10
50 #ifdef __BIG_ENDIAN_BITFIELD
51 u64 reserved_62_63:2;
52 /* Length of the buffer/packet in bytes */
53 u64 len:14;
54 /* For TX, signals that the packet should be timestamped */
55 u64 tstamp:1;
56 /* The RX error code */
57 u64 code:7;
58 /* Physical address of the buffer */
59 u64 addr:40;
60 #else
61 u64 addr:40;
62 u64 code:7;
63 u64 tstamp:1;
64 u64 len:14;
65 u64 reserved_62_63:2;
66 #endif
67 } s;
70 #define MIX_ORING1 0x0
71 #define MIX_ORING2 0x8
72 #define MIX_IRING1 0x10
73 #define MIX_IRING2 0x18
74 #define MIX_CTL 0x20
75 #define MIX_IRHWM 0x28
76 #define MIX_IRCNT 0x30
77 #define MIX_ORHWM 0x38
78 #define MIX_ORCNT 0x40
79 #define MIX_ISR 0x48
80 #define MIX_INTENA 0x50
81 #define MIX_REMCNT 0x58
82 #define MIX_BIST 0x78
84 #define AGL_GMX_PRT_CFG 0x10
85 #define AGL_GMX_RX_FRM_CTL 0x18
86 #define AGL_GMX_RX_FRM_MAX 0x30
87 #define AGL_GMX_RX_JABBER 0x38
88 #define AGL_GMX_RX_STATS_CTL 0x50
90 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0
91 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8
92 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0
94 #define AGL_GMX_RX_ADR_CTL 0x100
95 #define AGL_GMX_RX_ADR_CAM_EN 0x108
96 #define AGL_GMX_RX_ADR_CAM0 0x180
97 #define AGL_GMX_RX_ADR_CAM1 0x188
98 #define AGL_GMX_RX_ADR_CAM2 0x190
99 #define AGL_GMX_RX_ADR_CAM3 0x198
100 #define AGL_GMX_RX_ADR_CAM4 0x1a0
101 #define AGL_GMX_RX_ADR_CAM5 0x1a8
103 #define AGL_GMX_TX_CLK 0x208
104 #define AGL_GMX_TX_STATS_CTL 0x268
105 #define AGL_GMX_TX_CTL 0x270
106 #define AGL_GMX_TX_STAT0 0x280
107 #define AGL_GMX_TX_STAT1 0x288
108 #define AGL_GMX_TX_STAT2 0x290
109 #define AGL_GMX_TX_STAT3 0x298
110 #define AGL_GMX_TX_STAT4 0x2a0
111 #define AGL_GMX_TX_STAT5 0x2a8
112 #define AGL_GMX_TX_STAT6 0x2b0
113 #define AGL_GMX_TX_STAT7 0x2b8
114 #define AGL_GMX_TX_STAT8 0x2c0
115 #define AGL_GMX_TX_STAT9 0x2c8
117 struct octeon_mgmt {
118 struct net_device *netdev;
119 u64 mix;
120 u64 agl;
121 u64 agl_prt_ctl;
122 int port;
123 int irq;
124 bool has_rx_tstamp;
125 u64 *tx_ring;
126 dma_addr_t tx_ring_handle;
127 unsigned int tx_next;
128 unsigned int tx_next_clean;
129 unsigned int tx_current_fill;
130 /* The tx_list lock also protects the ring related variables */
131 struct sk_buff_head tx_list;
133 /* RX variables only touched in napi_poll. No locking necessary. */
134 u64 *rx_ring;
135 dma_addr_t rx_ring_handle;
136 unsigned int rx_next;
137 unsigned int rx_next_fill;
138 unsigned int rx_current_fill;
139 struct sk_buff_head rx_list;
141 spinlock_t lock;
142 unsigned int last_duplex;
143 unsigned int last_link;
144 unsigned int last_speed;
145 struct device *dev;
146 struct napi_struct napi;
147 struct tasklet_struct tx_clean_tasklet;
148 struct device_node *phy_np;
149 resource_size_t mix_phys;
150 resource_size_t mix_size;
151 resource_size_t agl_phys;
152 resource_size_t agl_size;
153 resource_size_t agl_prt_ctl_phys;
154 resource_size_t agl_prt_ctl_size;
157 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable)
159 union cvmx_mixx_intena mix_intena;
160 unsigned long flags;
162 spin_lock_irqsave(&p->lock, flags);
163 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
164 mix_intena.s.ithena = enable ? 1 : 0;
165 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
166 spin_unlock_irqrestore(&p->lock, flags);
169 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable)
171 union cvmx_mixx_intena mix_intena;
172 unsigned long flags;
174 spin_lock_irqsave(&p->lock, flags);
175 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
176 mix_intena.s.othena = enable ? 1 : 0;
177 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
178 spin_unlock_irqrestore(&p->lock, flags);
181 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p)
183 octeon_mgmt_set_rx_irq(p, 1);
186 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p)
188 octeon_mgmt_set_rx_irq(p, 0);
191 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p)
193 octeon_mgmt_set_tx_irq(p, 1);
196 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p)
198 octeon_mgmt_set_tx_irq(p, 0);
201 static unsigned int ring_max_fill(unsigned int ring_size)
203 return ring_size - 8;
206 static unsigned int ring_size_to_bytes(unsigned int ring_size)
208 return ring_size * sizeof(union mgmt_port_ring_entry);
211 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev)
213 struct octeon_mgmt *p = netdev_priv(netdev);
215 while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) {
216 unsigned int size;
217 union mgmt_port_ring_entry re;
218 struct sk_buff *skb;
220 /* CN56XX pass 1 needs 8 bytes of padding. */
221 size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN;
223 skb = netdev_alloc_skb(netdev, size);
224 if (!skb)
225 break;
226 skb_reserve(skb, NET_IP_ALIGN);
227 __skb_queue_tail(&p->rx_list, skb);
229 re.d64 = 0;
230 re.s.len = size;
231 re.s.addr = dma_map_single(p->dev, skb->data,
232 size,
233 DMA_FROM_DEVICE);
235 /* Put it in the ring. */
236 p->rx_ring[p->rx_next_fill] = re.d64;
237 /* Make sure there is no reorder of filling the ring and ringing
238 * the bell
240 wmb();
242 dma_sync_single_for_device(p->dev, p->rx_ring_handle,
243 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
244 DMA_BIDIRECTIONAL);
245 p->rx_next_fill =
246 (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE;
247 p->rx_current_fill++;
248 /* Ring the bell. */
249 cvmx_write_csr(p->mix + MIX_IRING2, 1);
253 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p)
255 union cvmx_mixx_orcnt mix_orcnt;
256 union mgmt_port_ring_entry re;
257 struct sk_buff *skb;
258 int cleaned = 0;
259 unsigned long flags;
261 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
262 while (mix_orcnt.s.orcnt) {
263 spin_lock_irqsave(&p->tx_list.lock, flags);
265 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
267 if (mix_orcnt.s.orcnt == 0) {
268 spin_unlock_irqrestore(&p->tx_list.lock, flags);
269 break;
272 dma_sync_single_for_cpu(p->dev, p->tx_ring_handle,
273 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
274 DMA_BIDIRECTIONAL);
276 re.d64 = p->tx_ring[p->tx_next_clean];
277 p->tx_next_clean =
278 (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE;
279 skb = __skb_dequeue(&p->tx_list);
281 mix_orcnt.u64 = 0;
282 mix_orcnt.s.orcnt = 1;
284 /* Acknowledge to hardware that we have the buffer. */
285 cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64);
286 p->tx_current_fill--;
288 spin_unlock_irqrestore(&p->tx_list.lock, flags);
290 dma_unmap_single(p->dev, re.s.addr, re.s.len,
291 DMA_TO_DEVICE);
293 /* Read the hardware TX timestamp if one was recorded */
294 if (unlikely(re.s.tstamp)) {
295 struct skb_shared_hwtstamps ts;
296 u64 ns;
298 memset(&ts, 0, sizeof(ts));
299 /* Read the timestamp */
300 ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port));
301 /* Remove the timestamp from the FIFO */
302 cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0);
303 /* Tell the kernel about the timestamp */
304 ts.hwtstamp = ns_to_ktime(ns);
305 skb_tstamp_tx(skb, &ts);
308 dev_kfree_skb_any(skb);
309 cleaned++;
311 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
314 if (cleaned && netif_queue_stopped(p->netdev))
315 netif_wake_queue(p->netdev);
318 static void octeon_mgmt_clean_tx_tasklet(struct tasklet_struct *t)
320 struct octeon_mgmt *p = from_tasklet(p, t, tx_clean_tasklet);
321 octeon_mgmt_clean_tx_buffers(p);
322 octeon_mgmt_enable_tx_irq(p);
325 static void octeon_mgmt_update_rx_stats(struct net_device *netdev)
327 struct octeon_mgmt *p = netdev_priv(netdev);
328 unsigned long flags;
329 u64 drop, bad;
331 /* These reads also clear the count registers. */
332 drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP);
333 bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD);
335 if (drop || bad) {
336 /* Do an atomic update. */
337 spin_lock_irqsave(&p->lock, flags);
338 netdev->stats.rx_errors += bad;
339 netdev->stats.rx_dropped += drop;
340 spin_unlock_irqrestore(&p->lock, flags);
344 static void octeon_mgmt_update_tx_stats(struct net_device *netdev)
346 struct octeon_mgmt *p = netdev_priv(netdev);
347 unsigned long flags;
349 union cvmx_agl_gmx_txx_stat0 s0;
350 union cvmx_agl_gmx_txx_stat1 s1;
352 /* These reads also clear the count registers. */
353 s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0);
354 s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1);
356 if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) {
357 /* Do an atomic update. */
358 spin_lock_irqsave(&p->lock, flags);
359 netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol;
360 netdev->stats.collisions += s1.s.scol + s1.s.mcol;
361 spin_unlock_irqrestore(&p->lock, flags);
366 * Dequeue a receive skb and its corresponding ring entry. The ring
367 * entry is returned, *pskb is updated to point to the skb.
369 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p,
370 struct sk_buff **pskb)
372 union mgmt_port_ring_entry re;
374 dma_sync_single_for_cpu(p->dev, p->rx_ring_handle,
375 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
376 DMA_BIDIRECTIONAL);
378 re.d64 = p->rx_ring[p->rx_next];
379 p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE;
380 p->rx_current_fill--;
381 *pskb = __skb_dequeue(&p->rx_list);
383 dma_unmap_single(p->dev, re.s.addr,
384 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM,
385 DMA_FROM_DEVICE);
387 return re.d64;
391 static int octeon_mgmt_receive_one(struct octeon_mgmt *p)
393 struct net_device *netdev = p->netdev;
394 union cvmx_mixx_ircnt mix_ircnt;
395 union mgmt_port_ring_entry re;
396 struct sk_buff *skb;
397 struct sk_buff *skb2;
398 struct sk_buff *skb_new;
399 union mgmt_port_ring_entry re2;
400 int rc = 1;
403 re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb);
404 if (likely(re.s.code == RING_ENTRY_CODE_DONE)) {
405 /* A good packet, send it up. */
406 skb_put(skb, re.s.len);
407 good:
408 /* Process the RX timestamp if it was recorded */
409 if (p->has_rx_tstamp) {
410 /* The first 8 bytes are the timestamp */
411 u64 ns = *(u64 *)skb->data;
412 struct skb_shared_hwtstamps *ts;
413 ts = skb_hwtstamps(skb);
414 ts->hwtstamp = ns_to_ktime(ns);
415 __skb_pull(skb, 8);
417 skb->protocol = eth_type_trans(skb, netdev);
418 netdev->stats.rx_packets++;
419 netdev->stats.rx_bytes += skb->len;
420 netif_receive_skb(skb);
421 rc = 0;
422 } else if (re.s.code == RING_ENTRY_CODE_MORE) {
423 /* Packet split across skbs. This can happen if we
424 * increase the MTU. Buffers that are already in the
425 * rx ring can then end up being too small. As the rx
426 * ring is refilled, buffers sized for the new MTU
427 * will be used and we should go back to the normal
428 * non-split case.
430 skb_put(skb, re.s.len);
431 do {
432 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
433 if (re2.s.code != RING_ENTRY_CODE_MORE
434 && re2.s.code != RING_ENTRY_CODE_DONE)
435 goto split_error;
436 skb_put(skb2, re2.s.len);
437 skb_new = skb_copy_expand(skb, 0, skb2->len,
438 GFP_ATOMIC);
439 if (!skb_new)
440 goto split_error;
441 if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new),
442 skb2->len))
443 goto split_error;
444 skb_put(skb_new, skb2->len);
445 dev_kfree_skb_any(skb);
446 dev_kfree_skb_any(skb2);
447 skb = skb_new;
448 } while (re2.s.code == RING_ENTRY_CODE_MORE);
449 goto good;
450 } else {
451 /* Some other error, discard it. */
452 dev_kfree_skb_any(skb);
453 /* Error statistics are accumulated in
454 * octeon_mgmt_update_rx_stats.
457 goto done;
458 split_error:
459 /* Discard the whole mess. */
460 dev_kfree_skb_any(skb);
461 dev_kfree_skb_any(skb2);
462 while (re2.s.code == RING_ENTRY_CODE_MORE) {
463 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
464 dev_kfree_skb_any(skb2);
466 netdev->stats.rx_errors++;
468 done:
469 /* Tell the hardware we processed a packet. */
470 mix_ircnt.u64 = 0;
471 mix_ircnt.s.ircnt = 1;
472 cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64);
473 return rc;
476 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget)
478 unsigned int work_done = 0;
479 union cvmx_mixx_ircnt mix_ircnt;
480 int rc;
482 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
483 while (work_done < budget && mix_ircnt.s.ircnt) {
485 rc = octeon_mgmt_receive_one(p);
486 if (!rc)
487 work_done++;
489 /* Check for more packets. */
490 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
493 octeon_mgmt_rx_fill_ring(p->netdev);
495 return work_done;
498 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget)
500 struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi);
501 struct net_device *netdev = p->netdev;
502 unsigned int work_done = 0;
504 work_done = octeon_mgmt_receive_packets(p, budget);
506 if (work_done < budget) {
507 /* We stopped because no more packets were available. */
508 napi_complete_done(napi, work_done);
509 octeon_mgmt_enable_rx_irq(p);
511 octeon_mgmt_update_rx_stats(netdev);
513 return work_done;
516 /* Reset the hardware to clean state. */
517 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p)
519 union cvmx_mixx_ctl mix_ctl;
520 union cvmx_mixx_bist mix_bist;
521 union cvmx_agl_gmx_bist agl_gmx_bist;
523 mix_ctl.u64 = 0;
524 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
525 do {
526 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
527 } while (mix_ctl.s.busy);
528 mix_ctl.s.reset = 1;
529 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
530 cvmx_read_csr(p->mix + MIX_CTL);
531 octeon_io_clk_delay(64);
533 mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST);
534 if (mix_bist.u64)
535 dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n",
536 (unsigned long long)mix_bist.u64);
538 agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST);
539 if (agl_gmx_bist.u64)
540 dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n",
541 (unsigned long long)agl_gmx_bist.u64);
544 struct octeon_mgmt_cam_state {
545 u64 cam[6];
546 u64 cam_mask;
547 int cam_index;
550 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs,
551 unsigned char *addr)
553 int i;
555 for (i = 0; i < 6; i++)
556 cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index));
557 cs->cam_mask |= (1ULL << cs->cam_index);
558 cs->cam_index++;
561 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev)
563 struct octeon_mgmt *p = netdev_priv(netdev);
564 union cvmx_agl_gmx_rxx_adr_ctl adr_ctl;
565 union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx;
566 unsigned long flags;
567 unsigned int prev_packet_enable;
568 unsigned int cam_mode = 1; /* 1 - Accept on CAM match */
569 unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */
570 struct octeon_mgmt_cam_state cam_state;
571 struct netdev_hw_addr *ha;
572 int available_cam_entries;
574 memset(&cam_state, 0, sizeof(cam_state));
576 if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) {
577 cam_mode = 0;
578 available_cam_entries = 8;
579 } else {
580 /* One CAM entry for the primary address, leaves seven
581 * for the secondary addresses.
583 available_cam_entries = 7 - netdev->uc.count;
586 if (netdev->flags & IFF_MULTICAST) {
587 if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) ||
588 netdev_mc_count(netdev) > available_cam_entries)
589 multicast_mode = 2; /* 2 - Accept all multicast. */
590 else
591 multicast_mode = 0; /* 0 - Use CAM. */
594 if (cam_mode == 1) {
595 /* Add primary address. */
596 octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr);
597 netdev_for_each_uc_addr(ha, netdev)
598 octeon_mgmt_cam_state_add(&cam_state, ha->addr);
600 if (multicast_mode == 0) {
601 netdev_for_each_mc_addr(ha, netdev)
602 octeon_mgmt_cam_state_add(&cam_state, ha->addr);
605 spin_lock_irqsave(&p->lock, flags);
607 /* Disable packet I/O. */
608 agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
609 prev_packet_enable = agl_gmx_prtx.s.en;
610 agl_gmx_prtx.s.en = 0;
611 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
613 adr_ctl.u64 = 0;
614 adr_ctl.s.cam_mode = cam_mode;
615 adr_ctl.s.mcst = multicast_mode;
616 adr_ctl.s.bcst = 1; /* Allow broadcast */
618 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64);
620 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]);
621 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]);
622 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]);
623 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]);
624 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]);
625 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]);
626 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask);
628 /* Restore packet I/O. */
629 agl_gmx_prtx.s.en = prev_packet_enable;
630 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
632 spin_unlock_irqrestore(&p->lock, flags);
635 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr)
637 int r = eth_mac_addr(netdev, addr);
639 if (r)
640 return r;
642 octeon_mgmt_set_rx_filtering(netdev);
644 return 0;
647 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu)
649 struct octeon_mgmt *p = netdev_priv(netdev);
650 int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN;
652 netdev->mtu = new_mtu;
654 /* HW lifts the limit if the frame is VLAN tagged
655 * (+4 bytes per each tag, up to two tags)
657 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet);
658 /* Set the hardware to truncate packets larger than the MTU. The jabber
659 * register must be set to a multiple of 8 bytes, so round up. JABBER is
660 * an unconditional limit, so we need to account for two possible VLAN
661 * tags.
663 cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER,
664 (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8);
666 return 0;
669 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id)
671 struct net_device *netdev = dev_id;
672 struct octeon_mgmt *p = netdev_priv(netdev);
673 union cvmx_mixx_isr mixx_isr;
675 mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR);
677 /* Clear any pending interrupts */
678 cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64);
679 cvmx_read_csr(p->mix + MIX_ISR);
681 if (mixx_isr.s.irthresh) {
682 octeon_mgmt_disable_rx_irq(p);
683 napi_schedule(&p->napi);
685 if (mixx_isr.s.orthresh) {
686 octeon_mgmt_disable_tx_irq(p);
687 tasklet_schedule(&p->tx_clean_tasklet);
690 return IRQ_HANDLED;
693 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev,
694 struct ifreq *rq, int cmd)
696 struct octeon_mgmt *p = netdev_priv(netdev);
697 struct hwtstamp_config config;
698 union cvmx_mio_ptp_clock_cfg ptp;
699 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
700 bool have_hw_timestamps = false;
702 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
703 return -EFAULT;
705 if (config.flags) /* reserved for future extensions */
706 return -EINVAL;
708 /* Check the status of hardware for tiemstamps */
709 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
710 /* Get the current state of the PTP clock */
711 ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG);
712 if (!ptp.s.ext_clk_en) {
713 /* The clock has not been configured to use an
714 * external source. Program it to use the main clock
715 * reference.
717 u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate();
718 if (!ptp.s.ptp_en)
719 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp);
720 netdev_info(netdev,
721 "PTP Clock using sclk reference @ %lldHz\n",
722 (NSEC_PER_SEC << 32) / clock_comp);
723 } else {
724 /* The clock is already programmed to use a GPIO */
725 u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP);
726 netdev_info(netdev,
727 "PTP Clock using GPIO%d @ %lld Hz\n",
728 ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp);
731 /* Enable the clock if it wasn't done already */
732 if (!ptp.s.ptp_en) {
733 ptp.s.ptp_en = 1;
734 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64);
736 have_hw_timestamps = true;
739 if (!have_hw_timestamps)
740 return -EINVAL;
742 switch (config.tx_type) {
743 case HWTSTAMP_TX_OFF:
744 case HWTSTAMP_TX_ON:
745 break;
746 default:
747 return -ERANGE;
750 switch (config.rx_filter) {
751 case HWTSTAMP_FILTER_NONE:
752 p->has_rx_tstamp = false;
753 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
754 rxx_frm_ctl.s.ptp_mode = 0;
755 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
756 break;
757 case HWTSTAMP_FILTER_ALL:
758 case HWTSTAMP_FILTER_SOME:
759 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
760 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
761 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
762 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
763 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
764 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
765 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
766 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
767 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
768 case HWTSTAMP_FILTER_PTP_V2_EVENT:
769 case HWTSTAMP_FILTER_PTP_V2_SYNC:
770 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
771 case HWTSTAMP_FILTER_NTP_ALL:
772 p->has_rx_tstamp = have_hw_timestamps;
773 config.rx_filter = HWTSTAMP_FILTER_ALL;
774 if (p->has_rx_tstamp) {
775 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
776 rxx_frm_ctl.s.ptp_mode = 1;
777 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
779 break;
780 default:
781 return -ERANGE;
784 if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
785 return -EFAULT;
787 return 0;
790 static int octeon_mgmt_ioctl(struct net_device *netdev,
791 struct ifreq *rq, int cmd)
793 switch (cmd) {
794 case SIOCSHWTSTAMP:
795 return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd);
796 default:
797 return phy_do_ioctl(netdev, rq, cmd);
801 static void octeon_mgmt_disable_link(struct octeon_mgmt *p)
803 union cvmx_agl_gmx_prtx_cfg prtx_cfg;
805 /* Disable GMX before we make any changes. */
806 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
807 prtx_cfg.s.en = 0;
808 prtx_cfg.s.tx_en = 0;
809 prtx_cfg.s.rx_en = 0;
810 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
812 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
813 int i;
814 for (i = 0; i < 10; i++) {
815 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
816 if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1)
817 break;
818 mdelay(1);
819 i++;
824 static void octeon_mgmt_enable_link(struct octeon_mgmt *p)
826 union cvmx_agl_gmx_prtx_cfg prtx_cfg;
828 /* Restore the GMX enable state only if link is set */
829 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
830 prtx_cfg.s.tx_en = 1;
831 prtx_cfg.s.rx_en = 1;
832 prtx_cfg.s.en = 1;
833 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
836 static void octeon_mgmt_update_link(struct octeon_mgmt *p)
838 struct net_device *ndev = p->netdev;
839 struct phy_device *phydev = ndev->phydev;
840 union cvmx_agl_gmx_prtx_cfg prtx_cfg;
842 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
844 if (!phydev->link)
845 prtx_cfg.s.duplex = 1;
846 else
847 prtx_cfg.s.duplex = phydev->duplex;
849 switch (phydev->speed) {
850 case 10:
851 prtx_cfg.s.speed = 0;
852 prtx_cfg.s.slottime = 0;
854 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
855 prtx_cfg.s.burst = 1;
856 prtx_cfg.s.speed_msb = 1;
858 break;
859 case 100:
860 prtx_cfg.s.speed = 0;
861 prtx_cfg.s.slottime = 0;
863 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
864 prtx_cfg.s.burst = 1;
865 prtx_cfg.s.speed_msb = 0;
867 break;
868 case 1000:
869 /* 1000 MBits is only supported on 6XXX chips */
870 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
871 prtx_cfg.s.speed = 1;
872 prtx_cfg.s.speed_msb = 0;
873 /* Only matters for half-duplex */
874 prtx_cfg.s.slottime = 1;
875 prtx_cfg.s.burst = phydev->duplex;
877 break;
878 case 0: /* No link */
879 default:
880 break;
883 /* Write the new GMX setting with the port still disabled. */
884 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
886 /* Read GMX CFG again to make sure the config is completed. */
887 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
889 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
890 union cvmx_agl_gmx_txx_clk agl_clk;
891 union cvmx_agl_prtx_ctl prtx_ctl;
893 prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
894 agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK);
895 /* MII (both speeds) and RGMII 1000 speed. */
896 agl_clk.s.clk_cnt = 1;
897 if (prtx_ctl.s.mode == 0) { /* RGMII mode */
898 if (phydev->speed == 10)
899 agl_clk.s.clk_cnt = 50;
900 else if (phydev->speed == 100)
901 agl_clk.s.clk_cnt = 5;
903 cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64);
907 static void octeon_mgmt_adjust_link(struct net_device *netdev)
909 struct octeon_mgmt *p = netdev_priv(netdev);
910 struct phy_device *phydev = netdev->phydev;
911 unsigned long flags;
912 int link_changed = 0;
914 if (!phydev)
915 return;
917 spin_lock_irqsave(&p->lock, flags);
920 if (!phydev->link && p->last_link)
921 link_changed = -1;
923 if (phydev->link &&
924 (p->last_duplex != phydev->duplex ||
925 p->last_link != phydev->link ||
926 p->last_speed != phydev->speed)) {
927 octeon_mgmt_disable_link(p);
928 link_changed = 1;
929 octeon_mgmt_update_link(p);
930 octeon_mgmt_enable_link(p);
933 p->last_link = phydev->link;
934 p->last_speed = phydev->speed;
935 p->last_duplex = phydev->duplex;
937 spin_unlock_irqrestore(&p->lock, flags);
939 if (link_changed != 0) {
940 if (link_changed > 0)
941 netdev_info(netdev, "Link is up - %d/%s\n",
942 phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half");
943 else
944 netdev_info(netdev, "Link is down\n");
948 static int octeon_mgmt_init_phy(struct net_device *netdev)
950 struct octeon_mgmt *p = netdev_priv(netdev);
951 struct phy_device *phydev = NULL;
953 if (octeon_is_simulation() || p->phy_np == NULL) {
954 /* No PHYs in the simulator. */
955 netif_carrier_on(netdev);
956 return 0;
959 phydev = of_phy_connect(netdev, p->phy_np,
960 octeon_mgmt_adjust_link, 0,
961 PHY_INTERFACE_MODE_MII);
963 if (!phydev)
964 return -EPROBE_DEFER;
966 return 0;
969 static int octeon_mgmt_open(struct net_device *netdev)
971 struct octeon_mgmt *p = netdev_priv(netdev);
972 union cvmx_mixx_ctl mix_ctl;
973 union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode;
974 union cvmx_mixx_oring1 oring1;
975 union cvmx_mixx_iring1 iring1;
976 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
977 union cvmx_mixx_irhwm mix_irhwm;
978 union cvmx_mixx_orhwm mix_orhwm;
979 union cvmx_mixx_intena mix_intena;
980 struct sockaddr sa;
982 /* Allocate ring buffers. */
983 p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
984 GFP_KERNEL);
985 if (!p->tx_ring)
986 return -ENOMEM;
987 p->tx_ring_handle =
988 dma_map_single(p->dev, p->tx_ring,
989 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
990 DMA_BIDIRECTIONAL);
991 p->tx_next = 0;
992 p->tx_next_clean = 0;
993 p->tx_current_fill = 0;
996 p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
997 GFP_KERNEL);
998 if (!p->rx_ring)
999 goto err_nomem;
1000 p->rx_ring_handle =
1001 dma_map_single(p->dev, p->rx_ring,
1002 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1003 DMA_BIDIRECTIONAL);
1005 p->rx_next = 0;
1006 p->rx_next_fill = 0;
1007 p->rx_current_fill = 0;
1009 octeon_mgmt_reset_hw(p);
1011 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1013 /* Bring it out of reset if needed. */
1014 if (mix_ctl.s.reset) {
1015 mix_ctl.s.reset = 0;
1016 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1017 do {
1018 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1019 } while (mix_ctl.s.reset);
1022 if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
1023 agl_gmx_inf_mode.u64 = 0;
1024 agl_gmx_inf_mode.s.en = 1;
1025 cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64);
1027 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
1028 || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
1029 /* Force compensation values, as they are not
1030 * determined properly by HW
1032 union cvmx_agl_gmx_drv_ctl drv_ctl;
1034 drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL);
1035 if (p->port) {
1036 drv_ctl.s.byp_en1 = 1;
1037 drv_ctl.s.nctl1 = 6;
1038 drv_ctl.s.pctl1 = 6;
1039 } else {
1040 drv_ctl.s.byp_en = 1;
1041 drv_ctl.s.nctl = 6;
1042 drv_ctl.s.pctl = 6;
1044 cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64);
1047 oring1.u64 = 0;
1048 oring1.s.obase = p->tx_ring_handle >> 3;
1049 oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE;
1050 cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64);
1052 iring1.u64 = 0;
1053 iring1.s.ibase = p->rx_ring_handle >> 3;
1054 iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE;
1055 cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64);
1057 memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN);
1058 octeon_mgmt_set_mac_address(netdev, &sa);
1060 octeon_mgmt_change_mtu(netdev, netdev->mtu);
1062 /* Enable the port HW. Packets are not allowed until
1063 * cvmx_mgmt_port_enable() is called.
1065 mix_ctl.u64 = 0;
1066 mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */
1067 mix_ctl.s.en = 1; /* Enable the port */
1068 mix_ctl.s.nbtarb = 0; /* Arbitration mode */
1069 /* MII CB-request FIFO programmable high watermark */
1070 mix_ctl.s.mrq_hwm = 1;
1071 #ifdef __LITTLE_ENDIAN
1072 mix_ctl.s.lendian = 1;
1073 #endif
1074 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1076 /* Read the PHY to find the mode of the interface. */
1077 if (octeon_mgmt_init_phy(netdev)) {
1078 dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port);
1079 goto err_noirq;
1082 /* Set the mode of the interface, RGMII/MII. */
1083 if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) {
1084 union cvmx_agl_prtx_ctl agl_prtx_ctl;
1085 int rgmii_mode =
1086 (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1087 netdev->phydev->supported) |
1088 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1089 netdev->phydev->supported)) != 0;
1091 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1092 agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1;
1093 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1095 /* MII clocks counts are based on the 125Mhz
1096 * reference, which has an 8nS period. So our delays
1097 * need to be multiplied by this factor.
1099 #define NS_PER_PHY_CLK 8
1101 /* Take the DLL and clock tree out of reset */
1102 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1103 agl_prtx_ctl.s.clkrst = 0;
1104 if (rgmii_mode) {
1105 agl_prtx_ctl.s.dllrst = 0;
1106 agl_prtx_ctl.s.clktx_byp = 0;
1108 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1109 cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */
1111 /* Wait for the DLL to lock. External 125 MHz
1112 * reference clock must be stable at this point.
1114 ndelay(256 * NS_PER_PHY_CLK);
1116 /* Enable the interface */
1117 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1118 agl_prtx_ctl.s.enable = 1;
1119 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1121 /* Read the value back to force the previous write */
1122 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1124 /* Enable the compensation controller */
1125 agl_prtx_ctl.s.comp = 1;
1126 agl_prtx_ctl.s.drv_byp = 0;
1127 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1128 /* Force write out before wait. */
1129 cvmx_read_csr(p->agl_prt_ctl);
1131 /* For compensation state to lock. */
1132 ndelay(1040 * NS_PER_PHY_CLK);
1134 /* Default Interframe Gaps are too small. Recommended
1135 * workaround is.
1137 * AGL_GMX_TX_IFG[IFG1]=14
1138 * AGL_GMX_TX_IFG[IFG2]=10
1140 cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae);
1143 octeon_mgmt_rx_fill_ring(netdev);
1145 /* Clear statistics. */
1146 /* Clear on read. */
1147 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1);
1148 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0);
1149 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0);
1151 cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1);
1152 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0);
1153 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0);
1155 /* Clear any pending interrupts */
1156 cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR));
1158 if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name,
1159 netdev)) {
1160 dev_err(p->dev, "request_irq(%d) failed.\n", p->irq);
1161 goto err_noirq;
1164 /* Interrupt every single RX packet */
1165 mix_irhwm.u64 = 0;
1166 mix_irhwm.s.irhwm = 0;
1167 cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64);
1169 /* Interrupt when we have 1 or more packets to clean. */
1170 mix_orhwm.u64 = 0;
1171 mix_orhwm.s.orhwm = 0;
1172 cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64);
1174 /* Enable receive and transmit interrupts */
1175 mix_intena.u64 = 0;
1176 mix_intena.s.ithena = 1;
1177 mix_intena.s.othena = 1;
1178 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
1180 /* Enable packet I/O. */
1182 rxx_frm_ctl.u64 = 0;
1183 rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0;
1184 rxx_frm_ctl.s.pre_align = 1;
1185 /* When set, disables the length check for non-min sized pkts
1186 * with padding in the client data.
1188 rxx_frm_ctl.s.pad_len = 1;
1189 /* When set, disables the length check for VLAN pkts */
1190 rxx_frm_ctl.s.vlan_len = 1;
1191 /* When set, PREAMBLE checking is less strict */
1192 rxx_frm_ctl.s.pre_free = 1;
1193 /* Control Pause Frames can match station SMAC */
1194 rxx_frm_ctl.s.ctl_smac = 0;
1195 /* Control Pause Frames can match globally assign Multicast address */
1196 rxx_frm_ctl.s.ctl_mcst = 1;
1197 /* Forward pause information to TX block */
1198 rxx_frm_ctl.s.ctl_bck = 1;
1199 /* Drop Control Pause Frames */
1200 rxx_frm_ctl.s.ctl_drp = 1;
1201 /* Strip off the preamble */
1202 rxx_frm_ctl.s.pre_strp = 1;
1203 /* This port is configured to send PREAMBLE+SFD to begin every
1204 * frame. GMX checks that the PREAMBLE is sent correctly.
1206 rxx_frm_ctl.s.pre_chk = 1;
1207 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
1209 /* Configure the port duplex, speed and enables */
1210 octeon_mgmt_disable_link(p);
1211 if (netdev->phydev)
1212 octeon_mgmt_update_link(p);
1213 octeon_mgmt_enable_link(p);
1215 p->last_link = 0;
1216 p->last_speed = 0;
1217 /* PHY is not present in simulator. The carrier is enabled
1218 * while initializing the phy for simulator, leave it enabled.
1220 if (netdev->phydev) {
1221 netif_carrier_off(netdev);
1222 phy_start(netdev->phydev);
1225 netif_wake_queue(netdev);
1226 napi_enable(&p->napi);
1228 return 0;
1229 err_noirq:
1230 octeon_mgmt_reset_hw(p);
1231 dma_unmap_single(p->dev, p->rx_ring_handle,
1232 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1233 DMA_BIDIRECTIONAL);
1234 kfree(p->rx_ring);
1235 err_nomem:
1236 dma_unmap_single(p->dev, p->tx_ring_handle,
1237 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1238 DMA_BIDIRECTIONAL);
1239 kfree(p->tx_ring);
1240 return -ENOMEM;
1243 static int octeon_mgmt_stop(struct net_device *netdev)
1245 struct octeon_mgmt *p = netdev_priv(netdev);
1247 napi_disable(&p->napi);
1248 netif_stop_queue(netdev);
1250 if (netdev->phydev) {
1251 phy_stop(netdev->phydev);
1252 phy_disconnect(netdev->phydev);
1255 netif_carrier_off(netdev);
1257 octeon_mgmt_reset_hw(p);
1259 free_irq(p->irq, netdev);
1261 /* dma_unmap is a nop on Octeon, so just free everything. */
1262 skb_queue_purge(&p->tx_list);
1263 skb_queue_purge(&p->rx_list);
1265 dma_unmap_single(p->dev, p->rx_ring_handle,
1266 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1267 DMA_BIDIRECTIONAL);
1268 kfree(p->rx_ring);
1270 dma_unmap_single(p->dev, p->tx_ring_handle,
1271 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1272 DMA_BIDIRECTIONAL);
1273 kfree(p->tx_ring);
1275 return 0;
1278 static netdev_tx_t
1279 octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev)
1281 struct octeon_mgmt *p = netdev_priv(netdev);
1282 union mgmt_port_ring_entry re;
1283 unsigned long flags;
1284 netdev_tx_t rv = NETDEV_TX_BUSY;
1286 re.d64 = 0;
1287 re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0);
1288 re.s.len = skb->len;
1289 re.s.addr = dma_map_single(p->dev, skb->data,
1290 skb->len,
1291 DMA_TO_DEVICE);
1293 spin_lock_irqsave(&p->tx_list.lock, flags);
1295 if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) {
1296 spin_unlock_irqrestore(&p->tx_list.lock, flags);
1297 netif_stop_queue(netdev);
1298 spin_lock_irqsave(&p->tx_list.lock, flags);
1301 if (unlikely(p->tx_current_fill >=
1302 ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) {
1303 spin_unlock_irqrestore(&p->tx_list.lock, flags);
1304 dma_unmap_single(p->dev, re.s.addr, re.s.len,
1305 DMA_TO_DEVICE);
1306 goto out;
1309 __skb_queue_tail(&p->tx_list, skb);
1311 /* Put it in the ring. */
1312 p->tx_ring[p->tx_next] = re.d64;
1313 p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE;
1314 p->tx_current_fill++;
1316 spin_unlock_irqrestore(&p->tx_list.lock, flags);
1318 dma_sync_single_for_device(p->dev, p->tx_ring_handle,
1319 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1320 DMA_BIDIRECTIONAL);
1322 netdev->stats.tx_packets++;
1323 netdev->stats.tx_bytes += skb->len;
1325 /* Ring the bell. */
1326 cvmx_write_csr(p->mix + MIX_ORING2, 1);
1328 netif_trans_update(netdev);
1329 rv = NETDEV_TX_OK;
1330 out:
1331 octeon_mgmt_update_tx_stats(netdev);
1332 return rv;
1335 #ifdef CONFIG_NET_POLL_CONTROLLER
1336 static void octeon_mgmt_poll_controller(struct net_device *netdev)
1338 struct octeon_mgmt *p = netdev_priv(netdev);
1340 octeon_mgmt_receive_packets(p, 16);
1341 octeon_mgmt_update_rx_stats(netdev);
1343 #endif
1345 static void octeon_mgmt_get_drvinfo(struct net_device *netdev,
1346 struct ethtool_drvinfo *info)
1348 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1351 static int octeon_mgmt_nway_reset(struct net_device *dev)
1353 if (!capable(CAP_NET_ADMIN))
1354 return -EPERM;
1356 if (dev->phydev)
1357 return phy_start_aneg(dev->phydev);
1359 return -EOPNOTSUPP;
1362 static const struct ethtool_ops octeon_mgmt_ethtool_ops = {
1363 .get_drvinfo = octeon_mgmt_get_drvinfo,
1364 .nway_reset = octeon_mgmt_nway_reset,
1365 .get_link = ethtool_op_get_link,
1366 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1367 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1370 static const struct net_device_ops octeon_mgmt_ops = {
1371 .ndo_open = octeon_mgmt_open,
1372 .ndo_stop = octeon_mgmt_stop,
1373 .ndo_start_xmit = octeon_mgmt_xmit,
1374 .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering,
1375 .ndo_set_mac_address = octeon_mgmt_set_mac_address,
1376 .ndo_do_ioctl = octeon_mgmt_ioctl,
1377 .ndo_change_mtu = octeon_mgmt_change_mtu,
1378 #ifdef CONFIG_NET_POLL_CONTROLLER
1379 .ndo_poll_controller = octeon_mgmt_poll_controller,
1380 #endif
1383 static int octeon_mgmt_probe(struct platform_device *pdev)
1385 struct net_device *netdev;
1386 struct octeon_mgmt *p;
1387 const __be32 *data;
1388 const u8 *mac;
1389 struct resource *res_mix;
1390 struct resource *res_agl;
1391 struct resource *res_agl_prt_ctl;
1392 int len;
1393 int result;
1395 netdev = alloc_etherdev(sizeof(struct octeon_mgmt));
1396 if (netdev == NULL)
1397 return -ENOMEM;
1399 SET_NETDEV_DEV(netdev, &pdev->dev);
1401 platform_set_drvdata(pdev, netdev);
1402 p = netdev_priv(netdev);
1403 netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll,
1404 OCTEON_MGMT_NAPI_WEIGHT);
1406 p->netdev = netdev;
1407 p->dev = &pdev->dev;
1408 p->has_rx_tstamp = false;
1410 data = of_get_property(pdev->dev.of_node, "cell-index", &len);
1411 if (data && len == sizeof(*data)) {
1412 p->port = be32_to_cpup(data);
1413 } else {
1414 dev_err(&pdev->dev, "no 'cell-index' property\n");
1415 result = -ENXIO;
1416 goto err;
1419 snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port);
1421 result = platform_get_irq(pdev, 0);
1422 if (result < 0)
1423 goto err;
1425 p->irq = result;
1427 res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1428 if (res_mix == NULL) {
1429 dev_err(&pdev->dev, "no 'reg' resource\n");
1430 result = -ENXIO;
1431 goto err;
1434 res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1435 if (res_agl == NULL) {
1436 dev_err(&pdev->dev, "no 'reg' resource\n");
1437 result = -ENXIO;
1438 goto err;
1441 res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1442 if (res_agl_prt_ctl == NULL) {
1443 dev_err(&pdev->dev, "no 'reg' resource\n");
1444 result = -ENXIO;
1445 goto err;
1448 p->mix_phys = res_mix->start;
1449 p->mix_size = resource_size(res_mix);
1450 p->agl_phys = res_agl->start;
1451 p->agl_size = resource_size(res_agl);
1452 p->agl_prt_ctl_phys = res_agl_prt_ctl->start;
1453 p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl);
1456 if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size,
1457 res_mix->name)) {
1458 dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1459 res_mix->name);
1460 result = -ENXIO;
1461 goto err;
1464 if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size,
1465 res_agl->name)) {
1466 result = -ENXIO;
1467 dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1468 res_agl->name);
1469 goto err;
1472 if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys,
1473 p->agl_prt_ctl_size, res_agl_prt_ctl->name)) {
1474 result = -ENXIO;
1475 dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1476 res_agl_prt_ctl->name);
1477 goto err;
1480 p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size);
1481 p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size);
1482 p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys,
1483 p->agl_prt_ctl_size);
1484 if (!p->mix || !p->agl || !p->agl_prt_ctl) {
1485 dev_err(&pdev->dev, "failed to map I/O memory\n");
1486 result = -ENOMEM;
1487 goto err;
1490 spin_lock_init(&p->lock);
1492 skb_queue_head_init(&p->tx_list);
1493 skb_queue_head_init(&p->rx_list);
1494 tasklet_setup(&p->tx_clean_tasklet,
1495 octeon_mgmt_clean_tx_tasklet);
1497 netdev->priv_flags |= IFF_UNICAST_FLT;
1499 netdev->netdev_ops = &octeon_mgmt_ops;
1500 netdev->ethtool_ops = &octeon_mgmt_ethtool_ops;
1502 netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM;
1503 netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM - VLAN_HLEN;
1505 mac = of_get_mac_address(pdev->dev.of_node);
1507 if (!IS_ERR(mac))
1508 ether_addr_copy(netdev->dev_addr, mac);
1509 else
1510 eth_hw_addr_random(netdev);
1512 p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1514 result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1515 if (result)
1516 goto err;
1518 netif_carrier_off(netdev);
1519 result = register_netdev(netdev);
1520 if (result)
1521 goto err;
1523 return 0;
1525 err:
1526 of_node_put(p->phy_np);
1527 free_netdev(netdev);
1528 return result;
1531 static int octeon_mgmt_remove(struct platform_device *pdev)
1533 struct net_device *netdev = platform_get_drvdata(pdev);
1534 struct octeon_mgmt *p = netdev_priv(netdev);
1536 unregister_netdev(netdev);
1537 of_node_put(p->phy_np);
1538 free_netdev(netdev);
1539 return 0;
1542 static const struct of_device_id octeon_mgmt_match[] = {
1544 .compatible = "cavium,octeon-5750-mix",
1548 MODULE_DEVICE_TABLE(of, octeon_mgmt_match);
1550 static struct platform_driver octeon_mgmt_driver = {
1551 .driver = {
1552 .name = "octeon_mgmt",
1553 .of_match_table = octeon_mgmt_match,
1555 .probe = octeon_mgmt_probe,
1556 .remove = octeon_mgmt_remove,
1559 static int __init octeon_mgmt_mod_init(void)
1561 return platform_driver_register(&octeon_mgmt_driver);
1564 static void __exit octeon_mgmt_mod_exit(void)
1566 platform_driver_unregister(&octeon_mgmt_driver);
1569 module_init(octeon_mgmt_mod_init);
1570 module_exit(octeon_mgmt_mod_exit);
1572 MODULE_SOFTDEP("pre: mdio-cavium");
1573 MODULE_DESCRIPTION(DRV_DESCRIPTION);
1574 MODULE_AUTHOR("David Daney");
1575 MODULE_LICENSE("GPL");