1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, see <http://www.gnu.org/licenses/>. *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * http://www.chelsio.com *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
26 * Maintainers: maintainers@chelsio.com *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
37 ****************************************************************************/
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/pci.h>
44 #include <linux/ktime.h>
45 #include <linux/netdevice.h>
46 #include <linux/etherdevice.h>
47 #include <linux/if_vlan.h>
48 #include <linux/skbuff.h>
50 #include <linux/tcp.h>
53 #include <linux/if_arp.h>
54 #include <linux/slab.h>
55 #include <linux/prefetch.h>
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_SM_BUF_SIZE 1536
75 #define SGE_TX_DESC_MAX_PLEN 16384
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80 * Period of the TX buffer reclaim timer. This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
83 #define TX_RECLAIM_PERIOD (HZ / 4)
85 #define M_CMD_LEN 0x7fffffff
86 #define V_CMD_LEN(v) (v)
87 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v) ((v) << 31)
89 #define V_CMD_GEN2(v) (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP (1 << 2)
92 #define V_CMD_EOP(v) ((v) << 3)
95 * Command queue, receive buffer list, and response queue descriptors.
97 #if defined(__BIG_ENDIAN_BITFIELD)
114 u32 Cmdq1CreditReturn
: 5;
115 u32 Cmdq1DmaComplete
: 5;
116 u32 Cmdq0CreditReturn
: 5;
117 u32 Cmdq0DmaComplete
: 5;
124 u32 GenerationBit
: 1;
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
144 u32 GenerationBit
: 1;
151 u32 Cmdq0DmaComplete
: 5;
152 u32 Cmdq0CreditReturn
: 5;
153 u32 Cmdq1DmaComplete
: 5;
154 u32 Cmdq1CreditReturn
: 5;
160 * SW Context Command and Freelist Queue Descriptors
164 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
165 DEFINE_DMA_UNMAP_LEN(dma_len
);
170 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
171 DEFINE_DMA_UNMAP_LEN(dma_len
);
175 * SW command, freelist and response rings
178 unsigned long status
; /* HW DMA fetch status */
179 unsigned int in_use
; /* # of in-use command descriptors */
180 unsigned int size
; /* # of descriptors */
181 unsigned int processed
; /* total # of descs HW has processed */
182 unsigned int cleaned
; /* total # of descs SW has reclaimed */
183 unsigned int stop_thres
; /* SW TX queue suspend threshold */
184 u16 pidx
; /* producer index (SW) */
185 u16 cidx
; /* consumer index (HW) */
186 u8 genbit
; /* current generation (=valid) bit */
187 u8 sop
; /* is next entry start of packet? */
188 struct cmdQ_e
*entries
; /* HW command descriptor Q */
189 struct cmdQ_ce
*centries
; /* SW command context descriptor Q */
190 dma_addr_t dma_addr
; /* DMA addr HW command descriptor Q */
191 spinlock_t lock
; /* Lock to protect cmdQ enqueuing */
195 unsigned int credits
; /* # of available RX buffers */
196 unsigned int size
; /* free list capacity */
197 u16 pidx
; /* producer index (SW) */
198 u16 cidx
; /* consumer index (HW) */
199 u16 rx_buffer_size
; /* Buffer size on this free list */
200 u16 dma_offset
; /* DMA offset to align IP headers */
201 u16 recycleq_idx
; /* skb recycle q to use */
202 u8 genbit
; /* current generation (=valid) bit */
203 struct freelQ_e
*entries
; /* HW freelist descriptor Q */
204 struct freelQ_ce
*centries
; /* SW freelist context descriptor Q */
205 dma_addr_t dma_addr
; /* DMA addr HW freelist descriptor Q */
209 unsigned int credits
; /* credits to be returned to SGE */
210 unsigned int size
; /* # of response Q descriptors */
211 u16 cidx
; /* consumer index (SW) */
212 u8 genbit
; /* current generation(=valid) bit */
213 struct respQ_e
*entries
; /* HW response descriptor Q */
214 dma_addr_t dma_addr
; /* DMA addr HW response descriptor Q */
217 /* Bit flags for cmdQ.status */
219 CMDQ_STAT_RUNNING
= 1, /* fetch engine is running */
220 CMDQ_STAT_LAST_PKT_DB
= 2 /* last packet rung the doorbell */
223 /* T204 TX SW scheduler */
225 /* Per T204 TX port */
227 unsigned int avail
; /* available bits - quota */
228 unsigned int drain_bits_per_1024ns
; /* drain rate */
229 unsigned int speed
; /* drain rate, mbps */
230 unsigned int mtu
; /* mtu size */
231 struct sk_buff_head skbq
; /* pending skbs */
234 /* Per T204 device */
236 ktime_t last_updated
; /* last time quotas were computed */
237 unsigned int max_avail
; /* max bits to be sent to any port */
238 unsigned int port
; /* port index (round robin ports) */
239 unsigned int num
; /* num skbs in per port queues */
240 struct sched_port p
[MAX_NPORTS
];
241 struct tasklet_struct sched_tsk
;/* tasklet used to run scheduler */
245 static void restart_sched(struct tasklet_struct
*t
);
249 * Main SGE data structure
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
257 struct adapter
*adapter
; /* adapter backpointer */
258 struct net_device
*netdev
; /* netdevice backpointer */
259 struct freelQ freelQ
[SGE_FREELQ_N
]; /* buffer free lists */
260 struct respQ respQ
; /* response Q */
261 unsigned long stopped_tx_queues
; /* bitmap of suspended Tx queues */
262 unsigned int rx_pkt_pad
; /* RX padding for L2 packets */
263 unsigned int jumbo_fl
; /* jumbo freelist Q index */
264 unsigned int intrtimer_nres
; /* no-resource interrupt timer */
265 unsigned int fixed_intrtimer
;/* non-adaptive interrupt timer */
266 struct timer_list tx_reclaim_timer
; /* reclaims TX buffers */
267 struct timer_list espibug_timer
;
268 unsigned long espibug_timeout
;
269 struct sk_buff
*espibug_skb
[MAX_NPORTS
];
270 u32 sge_control
; /* shadow value of sge control reg */
271 struct sge_intr_counts stats
;
272 struct sge_port_stats __percpu
*port_stats
[MAX_NPORTS
];
273 struct sched
*tx_sched
;
274 struct cmdQ cmdQ
[SGE_CMDQ_N
] ____cacheline_aligned_in_smp
;
277 static const u8 ch_mac_addr
[ETH_ALEN
] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
282 * stop tasklet and free all pending skb's
284 static void tx_sched_stop(struct sge
*sge
)
286 struct sched
*s
= sge
->tx_sched
;
289 tasklet_kill(&s
->sched_tsk
);
291 for (i
= 0; i
< MAX_NPORTS
; i
++)
292 __skb_queue_purge(&s
->p
[s
->port
].skbq
);
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
299 unsigned int t1_sched_update_parms(struct sge
*sge
, unsigned int port
,
300 unsigned int mtu
, unsigned int speed
)
302 struct sched
*s
= sge
->tx_sched
;
303 struct sched_port
*p
= &s
->p
[port
];
304 unsigned int max_avail_segs
;
306 pr_debug("%s mtu=%d speed=%d\n", __func__
, mtu
, speed
);
313 unsigned long long drain
= 1024ULL * p
->speed
* (p
->mtu
- 40);
314 do_div(drain
, (p
->mtu
+ 50) * 1000);
315 p
->drain_bits_per_1024ns
= (unsigned int) drain
;
318 p
->drain_bits_per_1024ns
=
319 90 * p
->drain_bits_per_1024ns
/ 100;
322 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
) {
323 p
->drain_bits_per_1024ns
-= 16;
324 s
->max_avail
= max(4096U, p
->mtu
+ 16 + 14 + 4);
325 max_avail_segs
= max(1U, 4096 / (p
->mtu
- 40));
327 s
->max_avail
= 16384;
328 max_avail_segs
= max(1U, 9000 / (p
->mtu
- 40));
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p
->mtu
,
333 p
->speed
, s
->max_avail
, max_avail_segs
,
334 p
->drain_bits_per_1024ns
);
336 return max_avail_segs
* (p
->mtu
- 40);
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
345 void t1_sched_set_max_avail_bytes(struct sge
*sge
, unsigned int val
)
347 struct sched
*s
= sge
->tx_sched
;
351 for (i
= 0; i
< MAX_NPORTS
; i
++)
352 t1_sched_update_parms(sge
, i
, 0, 0);
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
359 void t1_sched_set_drain_bits_per_us(struct sge
*sge
, unsigned int port
,
362 struct sched
*s
= sge
->tx_sched
;
363 struct sched_port
*p
= &s
->p
[port
];
364 p
->drain_bits_per_1024ns
= val
* 1024 / 1000;
365 t1_sched_update_parms(sge
, port
, 0, 0);
371 * tx_sched_init() allocates resources and does basic initialization.
373 static int tx_sched_init(struct sge
*sge
)
378 s
= kzalloc(sizeof (struct sched
), GFP_KERNEL
);
382 pr_debug("tx_sched_init\n");
383 tasklet_setup(&s
->sched_tsk
, restart_sched
);
387 for (i
= 0; i
< MAX_NPORTS
; i
++) {
388 skb_queue_head_init(&s
->p
[i
].skbq
);
389 t1_sched_update_parms(sge
, i
, 1500, 1000);
396 * sched_update_avail() computes the delta since the last time it was called
397 * and updates the per port quota (number of bits that can be sent to the any
400 static inline int sched_update_avail(struct sge
*sge
)
402 struct sched
*s
= sge
->tx_sched
;
403 ktime_t now
= ktime_get();
405 long long delta_time_ns
;
407 delta_time_ns
= ktime_to_ns(ktime_sub(now
, s
->last_updated
));
409 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns
);
410 if (delta_time_ns
< 15000)
413 for (i
= 0; i
< MAX_NPORTS
; i
++) {
414 struct sched_port
*p
= &s
->p
[i
];
415 unsigned int delta_avail
;
417 delta_avail
= (p
->drain_bits_per_1024ns
* delta_time_ns
) >> 13;
418 p
->avail
= min(p
->avail
+ delta_avail
, s
->max_avail
);
421 s
->last_updated
= now
;
427 * sched_skb() is called from two different places. In the tx path, any
428 * packet generating load on an output port will call sched_skb()
429 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
430 * context (skb == NULL).
431 * The scheduler only returns a skb (which will then be sent) if the
432 * length of the skb is <= the current quota of the output port.
434 static struct sk_buff
*sched_skb(struct sge
*sge
, struct sk_buff
*skb
,
435 unsigned int credits
)
437 struct sched
*s
= sge
->tx_sched
;
438 struct sk_buff_head
*skbq
;
439 unsigned int i
, len
, update
= 1;
441 pr_debug("sched_skb %p\n", skb
);
446 skbq
= &s
->p
[skb
->dev
->if_port
].skbq
;
447 __skb_queue_tail(skbq
, skb
);
452 if (credits
< MAX_SKB_FRAGS
+ 1)
456 for (i
= 0; i
< MAX_NPORTS
; i
++) {
457 s
->port
= (s
->port
+ 1) & (MAX_NPORTS
- 1);
458 skbq
= &s
->p
[s
->port
].skbq
;
460 skb
= skb_peek(skbq
);
466 if (len
<= s
->p
[s
->port
].avail
) {
467 s
->p
[s
->port
].avail
-= len
;
469 __skb_unlink(skb
, skbq
);
475 if (update
-- && sched_update_avail(sge
))
479 /* If there are more pending skbs, we use the hardware to schedule us
482 if (s
->num
&& !skb
) {
483 struct cmdQ
*q
= &sge
->cmdQ
[0];
484 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
485 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
486 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
487 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
490 pr_debug("sched_skb ret %p\n", skb
);
496 * PIO to indicate that memory mapped Q contains valid descriptor(s).
498 static inline void doorbell_pio(struct adapter
*adapter
, u32 val
)
501 writel(val
, adapter
->regs
+ A_SG_DOORBELL
);
505 * Frees all RX buffers on the freelist Q. The caller must make sure that
506 * the SGE is turned off before calling this function.
508 static void free_freelQ_buffers(struct pci_dev
*pdev
, struct freelQ
*q
)
510 unsigned int cidx
= q
->cidx
;
512 while (q
->credits
--) {
513 struct freelQ_ce
*ce
= &q
->centries
[cidx
];
515 dma_unmap_single(&pdev
->dev
, dma_unmap_addr(ce
, dma_addr
),
516 dma_unmap_len(ce
, dma_len
), DMA_FROM_DEVICE
);
517 dev_kfree_skb(ce
->skb
);
519 if (++cidx
== q
->size
)
525 * Free RX free list and response queue resources.
527 static void free_rx_resources(struct sge
*sge
)
529 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
530 unsigned int size
, i
;
532 if (sge
->respQ
.entries
) {
533 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
534 dma_free_coherent(&pdev
->dev
, size
, sge
->respQ
.entries
,
535 sge
->respQ
.dma_addr
);
538 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
539 struct freelQ
*q
= &sge
->freelQ
[i
];
542 free_freelQ_buffers(pdev
, q
);
546 size
= sizeof(struct freelQ_e
) * q
->size
;
547 dma_free_coherent(&pdev
->dev
, size
, q
->entries
,
554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
557 static int alloc_rx_resources(struct sge
*sge
, struct sge_params
*p
)
559 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
560 unsigned int size
, i
;
562 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
563 struct freelQ
*q
= &sge
->freelQ
[i
];
566 q
->size
= p
->freelQ_size
[i
];
567 q
->dma_offset
= sge
->rx_pkt_pad
? 0 : NET_IP_ALIGN
;
568 size
= sizeof(struct freelQ_e
) * q
->size
;
569 q
->entries
= dma_alloc_coherent(&pdev
->dev
, size
,
570 &q
->dma_addr
, GFP_KERNEL
);
574 size
= sizeof(struct freelQ_ce
) * q
->size
;
575 q
->centries
= kzalloc(size
, GFP_KERNEL
);
581 * Calculate the buffer sizes for the two free lists. FL0 accommodates
582 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
583 * including all the sk_buff overhead.
585 * Note: For T2 FL0 and FL1 are reversed.
587 sge
->freelQ
[!sge
->jumbo_fl
].rx_buffer_size
= SGE_RX_SM_BUF_SIZE
+
588 sizeof(struct cpl_rx_data
) +
589 sge
->freelQ
[!sge
->jumbo_fl
].dma_offset
;
591 size
= (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
593 sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
= size
;
596 * Setup which skb recycle Q should be used when recycling buffers from
599 sge
->freelQ
[!sge
->jumbo_fl
].recycleq_idx
= 0;
600 sge
->freelQ
[sge
->jumbo_fl
].recycleq_idx
= 1;
602 sge
->respQ
.genbit
= 1;
603 sge
->respQ
.size
= SGE_RESPQ_E_N
;
604 sge
->respQ
.credits
= 0;
605 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
607 dma_alloc_coherent(&pdev
->dev
, size
, &sge
->respQ
.dma_addr
,
609 if (!sge
->respQ
.entries
)
614 free_rx_resources(sge
);
619 * Reclaims n TX descriptors and frees the buffers associated with them.
621 static void free_cmdQ_buffers(struct sge
*sge
, struct cmdQ
*q
, unsigned int n
)
624 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
625 unsigned int cidx
= q
->cidx
;
628 ce
= &q
->centries
[cidx
];
630 if (likely(dma_unmap_len(ce
, dma_len
))) {
631 dma_unmap_single(&pdev
->dev
,
632 dma_unmap_addr(ce
, dma_addr
),
633 dma_unmap_len(ce
, dma_len
),
639 dev_kfree_skb_any(ce
->skb
);
643 if (++cidx
== q
->size
) {
654 * Assumes that SGE is stopped and all interrupts are disabled.
656 static void free_tx_resources(struct sge
*sge
)
658 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
659 unsigned int size
, i
;
661 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
662 struct cmdQ
*q
= &sge
->cmdQ
[i
];
666 free_cmdQ_buffers(sge
, q
, q
->in_use
);
670 size
= sizeof(struct cmdQ_e
) * q
->size
;
671 dma_free_coherent(&pdev
->dev
, size
, q
->entries
,
678 * Allocates basic TX resources, consisting of memory mapped command Qs.
680 static int alloc_tx_resources(struct sge
*sge
, struct sge_params
*p
)
682 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
683 unsigned int size
, i
;
685 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
686 struct cmdQ
*q
= &sge
->cmdQ
[i
];
690 q
->size
= p
->cmdQ_size
[i
];
693 q
->processed
= q
->cleaned
= 0;
695 spin_lock_init(&q
->lock
);
696 size
= sizeof(struct cmdQ_e
) * q
->size
;
697 q
->entries
= dma_alloc_coherent(&pdev
->dev
, size
,
698 &q
->dma_addr
, GFP_KERNEL
);
702 size
= sizeof(struct cmdQ_ce
) * q
->size
;
703 q
->centries
= kzalloc(size
, GFP_KERNEL
);
709 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
710 * only. For queue 0 set the stop threshold so we can handle one more
711 * packet from each port, plus reserve an additional 24 entries for
712 * Ethernet packets only. Queue 1 never suspends nor do we reserve
713 * space for Ethernet packets.
715 sge
->cmdQ
[0].stop_thres
= sge
->adapter
->params
.nports
*
720 free_tx_resources(sge
);
724 static inline void setup_ring_params(struct adapter
*adapter
, u64 addr
,
725 u32 size
, int base_reg_lo
,
726 int base_reg_hi
, int size_reg
)
728 writel((u32
)addr
, adapter
->regs
+ base_reg_lo
);
729 writel(addr
>> 32, adapter
->regs
+ base_reg_hi
);
730 writel(size
, adapter
->regs
+ size_reg
);
734 * Enable/disable VLAN acceleration.
736 void t1_vlan_mode(struct adapter
*adapter
, netdev_features_t features
)
738 struct sge
*sge
= adapter
->sge
;
740 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
741 sge
->sge_control
|= F_VLAN_XTRACT
;
743 sge
->sge_control
&= ~F_VLAN_XTRACT
;
744 if (adapter
->open_device_map
) {
745 writel(sge
->sge_control
, adapter
->regs
+ A_SG_CONTROL
);
746 readl(adapter
->regs
+ A_SG_CONTROL
); /* flush */
751 * Programs the various SGE registers. However, the engine is not yet enabled,
752 * but sge->sge_control is setup and ready to go.
754 static void configure_sge(struct sge
*sge
, struct sge_params
*p
)
756 struct adapter
*ap
= sge
->adapter
;
758 writel(0, ap
->regs
+ A_SG_CONTROL
);
759 setup_ring_params(ap
, sge
->cmdQ
[0].dma_addr
, sge
->cmdQ
[0].size
,
760 A_SG_CMD0BASELWR
, A_SG_CMD0BASEUPR
, A_SG_CMD0SIZE
);
761 setup_ring_params(ap
, sge
->cmdQ
[1].dma_addr
, sge
->cmdQ
[1].size
,
762 A_SG_CMD1BASELWR
, A_SG_CMD1BASEUPR
, A_SG_CMD1SIZE
);
763 setup_ring_params(ap
, sge
->freelQ
[0].dma_addr
,
764 sge
->freelQ
[0].size
, A_SG_FL0BASELWR
,
765 A_SG_FL0BASEUPR
, A_SG_FL0SIZE
);
766 setup_ring_params(ap
, sge
->freelQ
[1].dma_addr
,
767 sge
->freelQ
[1].size
, A_SG_FL1BASELWR
,
768 A_SG_FL1BASEUPR
, A_SG_FL1SIZE
);
770 /* The threshold comparison uses <. */
771 writel(SGE_RX_SM_BUF_SIZE
+ 1, ap
->regs
+ A_SG_FLTHRESHOLD
);
773 setup_ring_params(ap
, sge
->respQ
.dma_addr
, sge
->respQ
.size
,
774 A_SG_RSPBASELWR
, A_SG_RSPBASEUPR
, A_SG_RSPSIZE
);
775 writel((u32
)sge
->respQ
.size
- 1, ap
->regs
+ A_SG_RSPQUEUECREDIT
);
777 sge
->sge_control
= F_CMDQ0_ENABLE
| F_CMDQ1_ENABLE
| F_FL0_ENABLE
|
778 F_FL1_ENABLE
| F_CPL_ENABLE
| F_RESPONSE_QUEUE_ENABLE
|
779 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS
| F_ISCSI_COALESCE
|
780 V_RX_PKT_OFFSET(sge
->rx_pkt_pad
);
782 #if defined(__BIG_ENDIAN_BITFIELD)
783 sge
->sge_control
|= F_ENABLE_BIG_ENDIAN
;
786 /* Initialize no-resource timer */
787 sge
->intrtimer_nres
= SGE_INTRTIMER_NRES
* core_ticks_per_usec(ap
);
789 t1_sge_set_coalesce_params(sge
, p
);
793 * Return the payload capacity of the jumbo free-list buffers.
795 static inline unsigned int jumbo_payload_capacity(const struct sge
*sge
)
797 return sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
-
798 sge
->freelQ
[sge
->jumbo_fl
].dma_offset
-
799 sizeof(struct cpl_rx_data
);
803 * Frees all SGE related resources and the sge structure itself
805 void t1_sge_destroy(struct sge
*sge
)
809 for_each_port(sge
->adapter
, i
)
810 free_percpu(sge
->port_stats
[i
]);
812 kfree(sge
->tx_sched
);
813 free_tx_resources(sge
);
814 free_rx_resources(sge
);
819 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
820 * context Q) until the Q is full or alloc_skb fails.
822 * It is possible that the generation bits already match, indicating that the
823 * buffer is already valid and nothing needs to be done. This happens when we
824 * copied a received buffer into a new sk_buff during the interrupt processing.
826 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
827 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
830 static void refill_free_list(struct sge
*sge
, struct freelQ
*q
)
832 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
833 struct freelQ_ce
*ce
= &q
->centries
[q
->pidx
];
834 struct freelQ_e
*e
= &q
->entries
[q
->pidx
];
835 unsigned int dma_len
= q
->rx_buffer_size
- q
->dma_offset
;
837 while (q
->credits
< q
->size
) {
841 skb
= dev_alloc_skb(q
->rx_buffer_size
);
845 skb_reserve(skb
, q
->dma_offset
);
846 mapping
= dma_map_single(&pdev
->dev
, skb
->data
, dma_len
,
848 skb_reserve(skb
, sge
->rx_pkt_pad
);
851 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
852 dma_unmap_len_set(ce
, dma_len
, dma_len
);
853 e
->addr_lo
= (u32
)mapping
;
854 e
->addr_hi
= (u64
)mapping
>> 32;
855 e
->len_gen
= V_CMD_LEN(dma_len
) | V_CMD_GEN1(q
->genbit
);
857 e
->gen2
= V_CMD_GEN2(q
->genbit
);
861 if (++q
->pidx
== q
->size
) {
872 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
873 * of both rings, we go into 'few interrupt mode' in order to give the system
874 * time to free up resources.
876 static void freelQs_empty(struct sge
*sge
)
878 struct adapter
*adapter
= sge
->adapter
;
879 u32 irq_reg
= readl(adapter
->regs
+ A_SG_INT_ENABLE
);
882 refill_free_list(sge
, &sge
->freelQ
[0]);
883 refill_free_list(sge
, &sge
->freelQ
[1]);
885 if (sge
->freelQ
[0].credits
> (sge
->freelQ
[0].size
>> 2) &&
886 sge
->freelQ
[1].credits
> (sge
->freelQ
[1].size
>> 2)) {
887 irq_reg
|= F_FL_EXHAUSTED
;
888 irqholdoff_reg
= sge
->fixed_intrtimer
;
890 /* Clear the F_FL_EXHAUSTED interrupts for now */
891 irq_reg
&= ~F_FL_EXHAUSTED
;
892 irqholdoff_reg
= sge
->intrtimer_nres
;
894 writel(irqholdoff_reg
, adapter
->regs
+ A_SG_INTRTIMER
);
895 writel(irq_reg
, adapter
->regs
+ A_SG_INT_ENABLE
);
897 /* We reenable the Qs to force a freelist GTS interrupt later */
898 doorbell_pio(adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
901 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
902 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
904 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
907 * Disable SGE Interrupts
909 void t1_sge_intr_disable(struct sge
*sge
)
911 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
913 writel(val
& ~SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
914 writel(0, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
918 * Enable SGE interrupts.
920 void t1_sge_intr_enable(struct sge
*sge
)
922 u32 en
= SGE_INT_ENABLE
;
923 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
925 if (sge
->adapter
->port
[0].dev
->hw_features
& NETIF_F_TSO
)
926 en
&= ~F_PACKET_TOO_BIG
;
927 writel(en
, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
928 writel(val
| SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
932 * Clear SGE interrupts.
934 void t1_sge_intr_clear(struct sge
*sge
)
936 writel(SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_CAUSE
);
937 writel(0xffffffff, sge
->adapter
->regs
+ A_SG_INT_CAUSE
);
941 * SGE 'Error' interrupt handler
943 int t1_sge_intr_error_handler(struct sge
*sge
)
945 struct adapter
*adapter
= sge
->adapter
;
946 u32 cause
= readl(adapter
->regs
+ A_SG_INT_CAUSE
);
948 if (adapter
->port
[0].dev
->hw_features
& NETIF_F_TSO
)
949 cause
&= ~F_PACKET_TOO_BIG
;
950 if (cause
& F_RESPQ_EXHAUSTED
)
951 sge
->stats
.respQ_empty
++;
952 if (cause
& F_RESPQ_OVERFLOW
) {
953 sge
->stats
.respQ_overflow
++;
954 pr_alert("%s: SGE response queue overflow\n",
957 if (cause
& F_FL_EXHAUSTED
) {
958 sge
->stats
.freelistQ_empty
++;
961 if (cause
& F_PACKET_TOO_BIG
) {
962 sge
->stats
.pkt_too_big
++;
963 pr_alert("%s: SGE max packet size exceeded\n",
966 if (cause
& F_PACKET_MISMATCH
) {
967 sge
->stats
.pkt_mismatch
++;
968 pr_alert("%s: SGE packet mismatch\n", adapter
->name
);
970 if (cause
& SGE_INT_FATAL
)
971 t1_fatal_err(adapter
);
973 writel(cause
, adapter
->regs
+ A_SG_INT_CAUSE
);
977 const struct sge_intr_counts
*t1_sge_get_intr_counts(const struct sge
*sge
)
982 void t1_sge_get_port_stats(const struct sge
*sge
, int port
,
983 struct sge_port_stats
*ss
)
987 memset(ss
, 0, sizeof(*ss
));
988 for_each_possible_cpu(cpu
) {
989 struct sge_port_stats
*st
= per_cpu_ptr(sge
->port_stats
[port
], cpu
);
991 ss
->rx_cso_good
+= st
->rx_cso_good
;
992 ss
->tx_cso
+= st
->tx_cso
;
993 ss
->tx_tso
+= st
->tx_tso
;
994 ss
->tx_need_hdrroom
+= st
->tx_need_hdrroom
;
995 ss
->vlan_xtract
+= st
->vlan_xtract
;
996 ss
->vlan_insert
+= st
->vlan_insert
;
1001 * recycle_fl_buf - recycle a free list buffer
1002 * @fl: the free list
1003 * @idx: index of buffer to recycle
1005 * Recycles the specified buffer on the given free list by adding it at
1006 * the next available slot on the list.
1008 static void recycle_fl_buf(struct freelQ
*fl
, int idx
)
1010 struct freelQ_e
*from
= &fl
->entries
[idx
];
1011 struct freelQ_e
*to
= &fl
->entries
[fl
->pidx
];
1013 fl
->centries
[fl
->pidx
] = fl
->centries
[idx
];
1014 to
->addr_lo
= from
->addr_lo
;
1015 to
->addr_hi
= from
->addr_hi
;
1016 to
->len_gen
= G_CMD_LEN(from
->len_gen
) | V_CMD_GEN1(fl
->genbit
);
1018 to
->gen2
= V_CMD_GEN2(fl
->genbit
);
1021 if (++fl
->pidx
== fl
->size
) {
1027 static int copybreak __read_mostly
= 256;
1028 module_param(copybreak
, int, 0);
1029 MODULE_PARM_DESC(copybreak
, "Receive copy threshold");
1032 * get_packet - return the next ingress packet buffer
1033 * @adapter: the adapter that received the packet
1034 * @fl: the SGE free list holding the packet
1035 * @len: the actual packet length, excluding any SGE padding
1037 * Get the next packet from a free list and complete setup of the
1038 * sk_buff. If the packet is small we make a copy and recycle the
1039 * original buffer, otherwise we use the original buffer itself. If a
1040 * positive drop threshold is supplied packets are dropped and their
1041 * buffers recycled if (a) the number of remaining buffers is under the
1042 * threshold and the packet is too big to copy, or (b) the packet should
1043 * be copied but there is no memory for the copy.
1045 static inline struct sk_buff
*get_packet(struct adapter
*adapter
,
1046 struct freelQ
*fl
, unsigned int len
)
1048 const struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1049 struct pci_dev
*pdev
= adapter
->pdev
;
1050 struct sk_buff
*skb
;
1052 if (len
< copybreak
) {
1053 skb
= napi_alloc_skb(&adapter
->napi
, len
);
1058 dma_sync_single_for_cpu(&pdev
->dev
,
1059 dma_unmap_addr(ce
, dma_addr
),
1060 dma_unmap_len(ce
, dma_len
),
1062 skb_copy_from_linear_data(ce
->skb
, skb
->data
, len
);
1063 dma_sync_single_for_device(&pdev
->dev
,
1064 dma_unmap_addr(ce
, dma_addr
),
1065 dma_unmap_len(ce
, dma_len
),
1067 recycle_fl_buf(fl
, fl
->cidx
);
1072 if (fl
->credits
< 2) {
1073 recycle_fl_buf(fl
, fl
->cidx
);
1077 dma_unmap_single(&pdev
->dev
, dma_unmap_addr(ce
, dma_addr
),
1078 dma_unmap_len(ce
, dma_len
), DMA_FROM_DEVICE
);
1080 prefetch(skb
->data
);
1087 * unexpected_offload - handle an unexpected offload packet
1088 * @adapter: the adapter
1089 * @fl: the free list that received the packet
1091 * Called when we receive an unexpected offload packet (e.g., the TOE
1092 * function is disabled or the card is a NIC). Prints a message and
1093 * recycles the buffer.
1095 static void unexpected_offload(struct adapter
*adapter
, struct freelQ
*fl
)
1097 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
1098 struct sk_buff
*skb
= ce
->skb
;
1100 dma_sync_single_for_cpu(&adapter
->pdev
->dev
,
1101 dma_unmap_addr(ce
, dma_addr
),
1102 dma_unmap_len(ce
, dma_len
), DMA_FROM_DEVICE
);
1103 pr_err("%s: unexpected offload packet, cmd %u\n",
1104 adapter
->name
, *skb
->data
);
1105 recycle_fl_buf(fl
, fl
->cidx
);
1109 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1110 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1111 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1112 * Note that the *_large_page_tx_descs stuff will be optimized out when
1113 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1115 * compute_large_page_descs() computes how many additional descriptors are
1116 * required to break down the stack's request.
1118 static inline unsigned int compute_large_page_tx_descs(struct sk_buff
*skb
)
1120 unsigned int count
= 0;
1122 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1123 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
1124 unsigned int i
, len
= skb_headlen(skb
);
1125 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1127 len
-= SGE_TX_DESC_MAX_PLEN
;
1129 for (i
= 0; nfrags
--; i
++) {
1130 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1131 len
= skb_frag_size(frag
);
1132 while (len
> SGE_TX_DESC_MAX_PLEN
) {
1134 len
-= SGE_TX_DESC_MAX_PLEN
;
1142 * Write a cmdQ entry.
1144 * Since this function writes the 'flags' field, it must not be used to
1145 * write the first cmdQ entry.
1147 static inline void write_tx_desc(struct cmdQ_e
*e
, dma_addr_t mapping
,
1148 unsigned int len
, unsigned int gen
,
1151 BUG_ON(len
> SGE_TX_DESC_MAX_PLEN
);
1153 e
->addr_lo
= (u32
)mapping
;
1154 e
->addr_hi
= (u64
)mapping
>> 32;
1155 e
->len_gen
= V_CMD_LEN(len
) | V_CMD_GEN1(gen
);
1156 e
->flags
= F_CMD_DATAVALID
| V_CMD_EOP(eop
) | V_CMD_GEN2(gen
);
1160 * See comment for previous function.
1162 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1163 * *desc_len exceeds HW's capability.
1165 static inline unsigned int write_large_page_tx_descs(unsigned int pidx
,
1167 struct cmdQ_ce
**ce
,
1169 dma_addr_t
*desc_mapping
,
1170 unsigned int *desc_len
,
1171 unsigned int nfrags
,
1174 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
) {
1175 struct cmdQ_e
*e1
= *e
;
1176 struct cmdQ_ce
*ce1
= *ce
;
1178 while (*desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1179 *desc_len
-= SGE_TX_DESC_MAX_PLEN
;
1180 write_tx_desc(e1
, *desc_mapping
, SGE_TX_DESC_MAX_PLEN
,
1181 *gen
, nfrags
== 0 && *desc_len
== 0);
1183 dma_unmap_len_set(ce1
, dma_len
, 0);
1184 *desc_mapping
+= SGE_TX_DESC_MAX_PLEN
;
1188 if (++pidx
== q
->size
) {
1203 * Write the command descriptors to transmit the given skb starting at
1204 * descriptor pidx with the given generation.
1206 static inline void write_tx_descs(struct adapter
*adapter
, struct sk_buff
*skb
,
1207 unsigned int pidx
, unsigned int gen
,
1210 dma_addr_t mapping
, desc_mapping
;
1211 struct cmdQ_e
*e
, *e1
;
1213 unsigned int i
, flags
, first_desc_len
, desc_len
,
1214 nfrags
= skb_shinfo(skb
)->nr_frags
;
1216 e
= e1
= &q
->entries
[pidx
];
1217 ce
= &q
->centries
[pidx
];
1219 mapping
= dma_map_single(&adapter
->pdev
->dev
, skb
->data
,
1220 skb_headlen(skb
), DMA_TO_DEVICE
);
1222 desc_mapping
= mapping
;
1223 desc_len
= skb_headlen(skb
);
1225 flags
= F_CMD_DATAVALID
| F_CMD_SOP
|
1226 V_CMD_EOP(nfrags
== 0 && desc_len
<= SGE_TX_DESC_MAX_PLEN
) |
1228 first_desc_len
= (desc_len
<= SGE_TX_DESC_MAX_PLEN
) ?
1229 desc_len
: SGE_TX_DESC_MAX_PLEN
;
1230 e
->addr_lo
= (u32
)desc_mapping
;
1231 e
->addr_hi
= (u64
)desc_mapping
>> 32;
1232 e
->len_gen
= V_CMD_LEN(first_desc_len
) | V_CMD_GEN1(gen
);
1234 dma_unmap_len_set(ce
, dma_len
, 0);
1236 if (PAGE_SIZE
> SGE_TX_DESC_MAX_PLEN
&&
1237 desc_len
> SGE_TX_DESC_MAX_PLEN
) {
1238 desc_mapping
+= first_desc_len
;
1239 desc_len
-= first_desc_len
;
1242 if (++pidx
== q
->size
) {
1248 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1249 &desc_mapping
, &desc_len
,
1252 if (likely(desc_len
))
1253 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1258 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1259 dma_unmap_len_set(ce
, dma_len
, skb_headlen(skb
));
1261 for (i
= 0; nfrags
--; i
++) {
1262 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1265 if (++pidx
== q
->size
) {
1272 mapping
= skb_frag_dma_map(&adapter
->pdev
->dev
, frag
, 0,
1273 skb_frag_size(frag
), DMA_TO_DEVICE
);
1274 desc_mapping
= mapping
;
1275 desc_len
= skb_frag_size(frag
);
1277 pidx
= write_large_page_tx_descs(pidx
, &e1
, &ce
, &gen
,
1278 &desc_mapping
, &desc_len
,
1280 if (likely(desc_len
))
1281 write_tx_desc(e1
, desc_mapping
, desc_len
, gen
,
1284 dma_unmap_addr_set(ce
, dma_addr
, mapping
);
1285 dma_unmap_len_set(ce
, dma_len
, skb_frag_size(frag
));
1293 * Clean up completed Tx buffers.
1295 static inline void reclaim_completed_tx(struct sge
*sge
, struct cmdQ
*q
)
1297 unsigned int reclaim
= q
->processed
- q
->cleaned
;
1300 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1301 q
->processed
, q
->cleaned
);
1302 free_cmdQ_buffers(sge
, q
, reclaim
);
1303 q
->cleaned
+= reclaim
;
1308 * Called from tasklet. Checks the scheduler for any
1309 * pending skbs that can be sent.
1311 static void restart_sched(struct tasklet_struct
*t
)
1313 struct sched
*s
= from_tasklet(s
, t
, sched_tsk
);
1314 struct sge
*sge
= s
->sge
;
1315 struct adapter
*adapter
= sge
->adapter
;
1316 struct cmdQ
*q
= &sge
->cmdQ
[0];
1317 struct sk_buff
*skb
;
1318 unsigned int credits
, queued_skb
= 0;
1320 spin_lock(&q
->lock
);
1321 reclaim_completed_tx(sge
, q
);
1323 credits
= q
->size
- q
->in_use
;
1324 pr_debug("restart_sched credits=%d\n", credits
);
1325 while ((skb
= sched_skb(sge
, NULL
, credits
)) != NULL
) {
1326 unsigned int genbit
, pidx
, count
;
1327 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1328 count
+= compute_large_page_tx_descs(skb
);
1333 if (q
->pidx
>= q
->size
) {
1337 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1338 credits
= q
->size
- q
->in_use
;
1343 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1344 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1345 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1346 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1349 spin_unlock(&q
->lock
);
1353 * sge_rx - process an ingress ethernet packet
1354 * @sge: the sge structure
1355 * @fl: the free list that contains the packet buffer
1356 * @len: the packet length
1358 * Process an ingress ethernet pakcet and deliver it to the stack.
1360 static void sge_rx(struct sge
*sge
, struct freelQ
*fl
, unsigned int len
)
1362 struct sk_buff
*skb
;
1363 const struct cpl_rx_pkt
*p
;
1364 struct adapter
*adapter
= sge
->adapter
;
1365 struct sge_port_stats
*st
;
1366 struct net_device
*dev
;
1368 skb
= get_packet(adapter
, fl
, len
- sge
->rx_pkt_pad
);
1369 if (unlikely(!skb
)) {
1370 sge
->stats
.rx_drops
++;
1374 p
= (const struct cpl_rx_pkt
*) skb
->data
;
1375 if (p
->iff
>= adapter
->params
.nports
) {
1379 __skb_pull(skb
, sizeof(*p
));
1381 st
= this_cpu_ptr(sge
->port_stats
[p
->iff
]);
1382 dev
= adapter
->port
[p
->iff
].dev
;
1384 skb
->protocol
= eth_type_trans(skb
, dev
);
1385 if ((dev
->features
& NETIF_F_RXCSUM
) && p
->csum
== 0xffff &&
1386 skb
->protocol
== htons(ETH_P_IP
) &&
1387 (skb
->data
[9] == IPPROTO_TCP
|| skb
->data
[9] == IPPROTO_UDP
)) {
1389 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1391 skb_checksum_none_assert(skb
);
1393 if (p
->vlan_valid
) {
1395 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(p
->vlan
));
1397 netif_receive_skb(skb
);
1401 * Returns true if a command queue has enough available descriptors that
1402 * we can resume Tx operation after temporarily disabling its packet queue.
1404 static inline int enough_free_Tx_descs(const struct cmdQ
*q
)
1406 unsigned int r
= q
->processed
- q
->cleaned
;
1408 return q
->in_use
- r
< (q
->size
>> 1);
1412 * Called when sufficient space has become available in the SGE command queues
1413 * after the Tx packet schedulers have been suspended to restart the Tx path.
1415 static void restart_tx_queues(struct sge
*sge
)
1417 struct adapter
*adap
= sge
->adapter
;
1420 if (!enough_free_Tx_descs(&sge
->cmdQ
[0]))
1423 for_each_port(adap
, i
) {
1424 struct net_device
*nd
= adap
->port
[i
].dev
;
1426 if (test_and_clear_bit(nd
->if_port
, &sge
->stopped_tx_queues
) &&
1427 netif_running(nd
)) {
1428 sge
->stats
.cmdQ_restarted
[2]++;
1429 netif_wake_queue(nd
);
1435 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1438 static unsigned int update_tx_info(struct adapter
*adapter
,
1442 struct sge
*sge
= adapter
->sge
;
1443 struct cmdQ
*cmdq
= &sge
->cmdQ
[0];
1445 cmdq
->processed
+= pr0
;
1446 if (flags
& (F_FL0_ENABLE
| F_FL1_ENABLE
)) {
1448 flags
&= ~(F_FL0_ENABLE
| F_FL1_ENABLE
);
1450 if (flags
& F_CMDQ0_ENABLE
) {
1451 clear_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1453 if (cmdq
->cleaned
+ cmdq
->in_use
!= cmdq
->processed
&&
1454 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB
, &cmdq
->status
)) {
1455 set_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1456 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1459 tasklet_hi_schedule(&sge
->tx_sched
->sched_tsk
);
1461 flags
&= ~F_CMDQ0_ENABLE
;
1464 if (unlikely(sge
->stopped_tx_queues
!= 0))
1465 restart_tx_queues(sge
);
1471 * Process SGE responses, up to the supplied budget. Returns the number of
1472 * responses processed. A negative budget is effectively unlimited.
1474 static int process_responses(struct adapter
*adapter
, int budget
)
1476 struct sge
*sge
= adapter
->sge
;
1477 struct respQ
*q
= &sge
->respQ
;
1478 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1480 unsigned int flags
= 0;
1481 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1483 while (done
< budget
&& e
->GenerationBit
== q
->genbit
) {
1484 flags
|= e
->Qsleeping
;
1486 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1487 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1489 /* We batch updates to the TX side to avoid cacheline
1490 * ping-pong of TX state information on MP where the sender
1491 * might run on a different CPU than this function...
1493 if (unlikely((flags
& F_CMDQ0_ENABLE
) || cmdq_processed
[0] > 64)) {
1494 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1495 cmdq_processed
[0] = 0;
1498 if (unlikely(cmdq_processed
[1] > 16)) {
1499 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1500 cmdq_processed
[1] = 0;
1503 if (likely(e
->DataValid
)) {
1504 struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1506 BUG_ON(!e
->Sop
|| !e
->Eop
);
1507 if (unlikely(e
->Offload
))
1508 unexpected_offload(adapter
, fl
);
1510 sge_rx(sge
, fl
, e
->BufferLength
);
1515 * Note: this depends on each packet consuming a
1516 * single free-list buffer; cf. the BUG above.
1518 if (++fl
->cidx
== fl
->size
)
1520 prefetch(fl
->centries
[fl
->cidx
].skb
);
1522 if (unlikely(--fl
->credits
<
1523 fl
->size
- SGE_FREEL_REFILL_THRESH
))
1524 refill_free_list(sge
, fl
);
1526 sge
->stats
.pure_rsps
++;
1529 if (unlikely(++q
->cidx
== q
->size
)) {
1536 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1537 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1542 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1543 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1548 static inline int responses_pending(const struct adapter
*adapter
)
1550 const struct respQ
*Q
= &adapter
->sge
->respQ
;
1551 const struct respQ_e
*e
= &Q
->entries
[Q
->cidx
];
1553 return e
->GenerationBit
== Q
->genbit
;
1557 * A simpler version of process_responses() that handles only pure (i.e.,
1558 * non data-carrying) responses. Such respones are too light-weight to justify
1559 * calling a softirq when using NAPI, so we handle them specially in hard
1560 * interrupt context. The function is called with a pointer to a response,
1561 * which the caller must ensure is a valid pure response. Returns 1 if it
1562 * encounters a valid data-carrying response, 0 otherwise.
1564 static int process_pure_responses(struct adapter
*adapter
)
1566 struct sge
*sge
= adapter
->sge
;
1567 struct respQ
*q
= &sge
->respQ
;
1568 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1569 const struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1570 unsigned int flags
= 0;
1571 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1573 prefetch(fl
->centries
[fl
->cidx
].skb
);
1578 flags
|= e
->Qsleeping
;
1580 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1581 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1584 if (unlikely(++q
->cidx
== q
->size
)) {
1591 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1592 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1595 sge
->stats
.pure_rsps
++;
1596 } while (e
->GenerationBit
== q
->genbit
&& !e
->DataValid
);
1598 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1599 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1601 return e
->GenerationBit
== q
->genbit
;
1605 * Handler for new data events when using NAPI. This does not need any locking
1606 * or protection from interrupts as data interrupts are off at this point and
1607 * other adapter interrupts do not interfere.
1609 int t1_poll(struct napi_struct
*napi
, int budget
)
1611 struct adapter
*adapter
= container_of(napi
, struct adapter
, napi
);
1612 int work_done
= process_responses(adapter
, budget
);
1614 if (likely(work_done
< budget
)) {
1615 napi_complete_done(napi
, work_done
);
1616 writel(adapter
->sge
->respQ
.cidx
,
1617 adapter
->regs
+ A_SG_SLEEPING
);
1622 irqreturn_t
t1_interrupt(int irq
, void *data
)
1624 struct adapter
*adapter
= data
;
1625 struct sge
*sge
= adapter
->sge
;
1628 if (likely(responses_pending(adapter
))) {
1629 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1631 if (napi_schedule_prep(&adapter
->napi
)) {
1632 if (process_pure_responses(adapter
))
1633 __napi_schedule(&adapter
->napi
);
1635 /* no data, no NAPI needed */
1636 writel(sge
->respQ
.cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1637 /* undo schedule_prep */
1638 napi_enable(&adapter
->napi
);
1644 spin_lock(&adapter
->async_lock
);
1645 handled
= t1_slow_intr_handler(adapter
);
1646 spin_unlock(&adapter
->async_lock
);
1649 sge
->stats
.unhandled_irqs
++;
1651 return IRQ_RETVAL(handled
!= 0);
1655 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1657 * The code figures out how many entries the sk_buff will require in the
1658 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1659 * has complete. Then, it doesn't access the global structure anymore, but
1660 * uses the corresponding fields on the stack. In conjunction with a spinlock
1661 * around that code, we can make the function reentrant without holding the
1662 * lock when we actually enqueue (which might be expensive, especially on
1663 * architectures with IO MMUs).
1665 * This runs with softirqs disabled.
1667 static int t1_sge_tx(struct sk_buff
*skb
, struct adapter
*adapter
,
1668 unsigned int qid
, struct net_device
*dev
)
1670 struct sge
*sge
= adapter
->sge
;
1671 struct cmdQ
*q
= &sge
->cmdQ
[qid
];
1672 unsigned int credits
, pidx
, genbit
, count
, use_sched_skb
= 0;
1674 spin_lock(&q
->lock
);
1676 reclaim_completed_tx(sge
, q
);
1679 credits
= q
->size
- q
->in_use
;
1680 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1681 count
+= compute_large_page_tx_descs(skb
);
1683 /* Ethernet packet */
1684 if (unlikely(credits
< count
)) {
1685 if (!netif_queue_stopped(dev
)) {
1686 netif_stop_queue(dev
);
1687 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1688 sge
->stats
.cmdQ_full
[2]++;
1689 pr_err("%s: Tx ring full while queue awake!\n",
1692 spin_unlock(&q
->lock
);
1693 return NETDEV_TX_BUSY
;
1696 if (unlikely(credits
- count
< q
->stop_thres
)) {
1697 netif_stop_queue(dev
);
1698 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1699 sge
->stats
.cmdQ_full
[2]++;
1702 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1703 * through the scheduler.
1705 if (sge
->tx_sched
&& !qid
&& skb
->dev
) {
1708 /* Note that the scheduler might return a different skb than
1709 * the one passed in.
1711 skb
= sched_skb(sge
, skb
, credits
);
1713 spin_unlock(&q
->lock
);
1714 return NETDEV_TX_OK
;
1717 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1718 count
+= compute_large_page_tx_descs(skb
);
1725 if (q
->pidx
>= q
->size
) {
1729 spin_unlock(&q
->lock
);
1731 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1734 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1735 * the doorbell if the Q is asleep. There is a natural race, where
1736 * the hardware is going to sleep just after we checked, however,
1737 * then the interrupt handler will detect the outstanding TX packet
1738 * and ring the doorbell for us.
1741 doorbell_pio(adapter
, F_CMDQ1_ENABLE
);
1743 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1744 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1745 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1746 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1750 if (use_sched_skb
) {
1751 if (spin_trylock(&q
->lock
)) {
1752 credits
= q
->size
- q
->in_use
;
1757 return NETDEV_TX_OK
;
1760 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1763 * eth_hdr_len - return the length of an Ethernet header
1764 * @data: pointer to the start of the Ethernet header
1766 * Returns the length of an Ethernet header, including optional VLAN tag.
1768 static inline int eth_hdr_len(const void *data
)
1770 const struct ethhdr
*e
= data
;
1772 return e
->h_proto
== htons(ETH_P_8021Q
) ? VLAN_ETH_HLEN
: ETH_HLEN
;
1776 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1778 netdev_tx_t
t1_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1780 struct adapter
*adapter
= dev
->ml_priv
;
1781 struct sge
*sge
= adapter
->sge
;
1782 struct sge_port_stats
*st
= this_cpu_ptr(sge
->port_stats
[dev
->if_port
]);
1783 struct cpl_tx_pkt
*cpl
;
1784 struct sk_buff
*orig_skb
= skb
;
1787 if (skb
->protocol
== htons(ETH_P_CPL5
))
1791 * We are using a non-standard hard_header_len.
1792 * Allocate more header room in the rare cases it is not big enough.
1794 if (unlikely(skb_headroom(skb
) < dev
->hard_header_len
- ETH_HLEN
)) {
1795 skb
= skb_realloc_headroom(skb
, sizeof(struct cpl_tx_pkt_lso
));
1796 ++st
->tx_need_hdrroom
;
1797 dev_kfree_skb_any(orig_skb
);
1799 return NETDEV_TX_OK
;
1802 if (skb_shinfo(skb
)->gso_size
) {
1804 struct cpl_tx_pkt_lso
*hdr
;
1808 eth_type
= skb_network_offset(skb
) == ETH_HLEN
?
1809 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1811 hdr
= skb_push(skb
, sizeof(*hdr
));
1812 hdr
->opcode
= CPL_TX_PKT_LSO
;
1813 hdr
->ip_csum_dis
= hdr
->l4_csum_dis
= 0;
1814 hdr
->ip_hdr_words
= ip_hdr(skb
)->ihl
;
1815 hdr
->tcp_hdr_words
= tcp_hdr(skb
)->doff
;
1816 hdr
->eth_type_mss
= htons(MK_ETH_TYPE_MSS(eth_type
,
1817 skb_shinfo(skb
)->gso_size
));
1818 hdr
->len
= htonl(skb
->len
- sizeof(*hdr
));
1819 cpl
= (struct cpl_tx_pkt
*)hdr
;
1822 * Packets shorter than ETH_HLEN can break the MAC, drop them
1823 * early. Also, we may get oversized packets because some
1824 * parts of the kernel don't handle our unusual hard_header_len
1825 * right, drop those too.
1827 if (unlikely(skb
->len
< ETH_HLEN
||
1828 skb
->len
> dev
->mtu
+ eth_hdr_len(skb
->data
))) {
1829 netdev_dbg(dev
, "packet size %d hdr %d mtu%d\n",
1830 skb
->len
, eth_hdr_len(skb
->data
), dev
->mtu
);
1831 dev_kfree_skb_any(skb
);
1832 return NETDEV_TX_OK
;
1835 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
1836 ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
1837 if (unlikely(skb_checksum_help(skb
))) {
1838 netdev_dbg(dev
, "unable to do udp checksum\n");
1839 dev_kfree_skb_any(skb
);
1840 return NETDEV_TX_OK
;
1844 /* Hmmm, assuming to catch the gratious arp... and we'll use
1845 * it to flush out stuck espi packets...
1847 if ((unlikely(!adapter
->sge
->espibug_skb
[dev
->if_port
]))) {
1848 if (skb
->protocol
== htons(ETH_P_ARP
) &&
1849 arp_hdr(skb
)->ar_op
== htons(ARPOP_REQUEST
)) {
1850 adapter
->sge
->espibug_skb
[dev
->if_port
] = skb
;
1851 /* We want to re-use this skb later. We
1852 * simply bump the reference count and it
1853 * will not be freed...
1859 cpl
= __skb_push(skb
, sizeof(*cpl
));
1860 cpl
->opcode
= CPL_TX_PKT
;
1861 cpl
->ip_csum_dis
= 1; /* SW calculates IP csum */
1862 cpl
->l4_csum_dis
= skb
->ip_summed
== CHECKSUM_PARTIAL
? 0 : 1;
1863 /* the length field isn't used so don't bother setting it */
1865 st
->tx_cso
+= (skb
->ip_summed
== CHECKSUM_PARTIAL
);
1867 cpl
->iff
= dev
->if_port
;
1869 if (skb_vlan_tag_present(skb
)) {
1870 cpl
->vlan_valid
= 1;
1871 cpl
->vlan
= htons(skb_vlan_tag_get(skb
));
1874 cpl
->vlan_valid
= 0;
1877 ret
= t1_sge_tx(skb
, adapter
, 0, dev
);
1879 /* If transmit busy, and we reallocated skb's due to headroom limit,
1880 * then silently discard to avoid leak.
1882 if (unlikely(ret
!= NETDEV_TX_OK
&& skb
!= orig_skb
)) {
1883 dev_kfree_skb_any(skb
);
1890 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1892 static void sge_tx_reclaim_cb(struct timer_list
*t
)
1895 struct sge
*sge
= from_timer(sge
, t
, tx_reclaim_timer
);
1897 for (i
= 0; i
< SGE_CMDQ_N
; ++i
) {
1898 struct cmdQ
*q
= &sge
->cmdQ
[i
];
1900 if (!spin_trylock(&q
->lock
))
1903 reclaim_completed_tx(sge
, q
);
1904 if (i
== 0 && q
->in_use
) { /* flush pending credits */
1905 writel(F_CMDQ0_ENABLE
, sge
->adapter
->regs
+ A_SG_DOORBELL
);
1907 spin_unlock(&q
->lock
);
1909 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1913 * Propagate changes of the SGE coalescing parameters to the HW.
1915 int t1_sge_set_coalesce_params(struct sge
*sge
, struct sge_params
*p
)
1917 sge
->fixed_intrtimer
= p
->rx_coalesce_usecs
*
1918 core_ticks_per_usec(sge
->adapter
);
1919 writel(sge
->fixed_intrtimer
, sge
->adapter
->regs
+ A_SG_INTRTIMER
);
1924 * Allocates both RX and TX resources and configures the SGE. However,
1925 * the hardware is not enabled yet.
1927 int t1_sge_configure(struct sge
*sge
, struct sge_params
*p
)
1929 if (alloc_rx_resources(sge
, p
))
1931 if (alloc_tx_resources(sge
, p
)) {
1932 free_rx_resources(sge
);
1935 configure_sge(sge
, p
);
1938 * Now that we have sized the free lists calculate the payload
1939 * capacity of the large buffers. Other parts of the driver use
1940 * this to set the max offload coalescing size so that RX packets
1941 * do not overflow our large buffers.
1943 p
->large_buf_capacity
= jumbo_payload_capacity(sge
);
1948 * Disables the DMA engine.
1950 void t1_sge_stop(struct sge
*sge
)
1953 writel(0, sge
->adapter
->regs
+ A_SG_CONTROL
);
1954 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1956 if (is_T2(sge
->adapter
))
1957 del_timer_sync(&sge
->espibug_timer
);
1959 del_timer_sync(&sge
->tx_reclaim_timer
);
1963 for (i
= 0; i
< MAX_NPORTS
; i
++)
1964 kfree_skb(sge
->espibug_skb
[i
]);
1968 * Enables the DMA engine.
1970 void t1_sge_start(struct sge
*sge
)
1972 refill_free_list(sge
, &sge
->freelQ
[0]);
1973 refill_free_list(sge
, &sge
->freelQ
[1]);
1975 writel(sge
->sge_control
, sge
->adapter
->regs
+ A_SG_CONTROL
);
1976 doorbell_pio(sge
->adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
1977 readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1979 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1981 if (is_T2(sge
->adapter
))
1982 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
1986 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1988 static void espibug_workaround_t204(struct timer_list
*t
)
1990 struct sge
*sge
= from_timer(sge
, t
, espibug_timer
);
1991 struct adapter
*adapter
= sge
->adapter
;
1992 unsigned int nports
= adapter
->params
.nports
;
1993 u32 seop
[MAX_NPORTS
];
1995 if (adapter
->open_device_map
& PORT_MASK
) {
1998 if (t1_espi_get_mon_t204(adapter
, &(seop
[0]), 0) < 0)
2001 for (i
= 0; i
< nports
; i
++) {
2002 struct sk_buff
*skb
= sge
->espibug_skb
[i
];
2004 if (!netif_running(adapter
->port
[i
].dev
) ||
2005 netif_queue_stopped(adapter
->port
[i
].dev
) ||
2006 !seop
[i
] || ((seop
[i
] & 0xfff) != 0) || !skb
)
2010 skb_copy_to_linear_data_offset(skb
,
2011 sizeof(struct cpl_tx_pkt
),
2014 skb_copy_to_linear_data_offset(skb
,
2021 /* bump the reference count to avoid freeing of
2022 * the skb once the DMA has completed.
2025 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[i
].dev
);
2028 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2031 static void espibug_workaround(struct timer_list
*t
)
2033 struct sge
*sge
= from_timer(sge
, t
, espibug_timer
);
2034 struct adapter
*adapter
= sge
->adapter
;
2036 if (netif_running(adapter
->port
[0].dev
)) {
2037 struct sk_buff
*skb
= sge
->espibug_skb
[0];
2038 u32 seop
= t1_espi_get_mon(adapter
, 0x930, 0);
2040 if ((seop
& 0xfff0fff) == 0xfff && skb
) {
2042 skb_copy_to_linear_data_offset(skb
,
2043 sizeof(struct cpl_tx_pkt
),
2046 skb_copy_to_linear_data_offset(skb
,
2053 /* bump the reference count to avoid freeing of the
2054 * skb once the DMA has completed.
2057 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[0].dev
);
2060 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
2064 * Creates a t1_sge structure and returns suggested resource parameters.
2066 struct sge
*t1_sge_create(struct adapter
*adapter
, struct sge_params
*p
)
2068 struct sge
*sge
= kzalloc(sizeof(*sge
), GFP_KERNEL
);
2074 sge
->adapter
= adapter
;
2075 sge
->netdev
= adapter
->port
[0].dev
;
2076 sge
->rx_pkt_pad
= t1_is_T1B(adapter
) ? 0 : 2;
2077 sge
->jumbo_fl
= t1_is_T1B(adapter
) ? 1 : 0;
2079 for_each_port(adapter
, i
) {
2080 sge
->port_stats
[i
] = alloc_percpu(struct sge_port_stats
);
2081 if (!sge
->port_stats
[i
])
2085 timer_setup(&sge
->tx_reclaim_timer
, sge_tx_reclaim_cb
, 0);
2087 if (is_T2(sge
->adapter
)) {
2088 timer_setup(&sge
->espibug_timer
,
2089 adapter
->params
.nports
> 1 ? espibug_workaround_t204
: espibug_workaround
,
2092 if (adapter
->params
.nports
> 1)
2095 sge
->espibug_timeout
= 1;
2096 /* for T204, every 10ms */
2097 if (adapter
->params
.nports
> 1)
2098 sge
->espibug_timeout
= HZ
/100;
2102 p
->cmdQ_size
[0] = SGE_CMDQ0_E_N
;
2103 p
->cmdQ_size
[1] = SGE_CMDQ1_E_N
;
2104 p
->freelQ_size
[!sge
->jumbo_fl
] = SGE_FREEL_SIZE
;
2105 p
->freelQ_size
[sge
->jumbo_fl
] = SGE_JUMBO_FREEL_SIZE
;
2106 if (sge
->tx_sched
) {
2107 if (board_info(sge
->adapter
)->board
== CHBT_BOARD_CHT204
)
2108 p
->rx_coalesce_usecs
= 15;
2110 p
->rx_coalesce_usecs
= 50;
2112 p
->rx_coalesce_usecs
= 50;
2114 p
->coalesce_enable
= 0;
2115 p
->sample_interval_usecs
= 0;
2120 free_percpu(sge
->port_stats
[i
]);