WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / chelsio / cxgb3 / sge.c
blob1cc3c51eff710b3859edea3c706c4dae72cffdea
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
49 #define USE_GTS 0
51 #define SGE_RX_SM_BUF_SIZE 1536
53 #define SGE_RX_COPY_THRES 256
54 #define SGE_RX_PULL_LEN 128
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
60 * directly.
62 #define FL0_PG_CHUNK_SIZE 2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
73 * Max number of Rx buffers we replenish at a time.
75 #define MAX_RX_REFILL 16U
77 * Period of the Tx buffer reclaim timer. This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
88 * Types of Tx queues in each queue set. Order here matters, do not change.
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
92 /* Values for sge_txq.flags */
93 enum {
94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
98 struct tx_desc {
99 __be64 flit[TX_DESC_FLITS];
102 struct rx_desc {
103 __be32 addr_lo;
104 __be32 len_gen;
105 __be32 gen2;
106 __be32 addr_hi;
109 struct tx_sw_desc { /* SW state per Tx descriptor */
110 struct sk_buff *skb;
111 u8 eop; /* set if last descriptor for packet */
112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
113 u8 fragidx; /* first page fragment associated with descriptor */
114 s8 sflit; /* start flit of first SGL entry in descriptor */
117 struct rx_sw_desc { /* SW state per Rx descriptor */
118 union {
119 struct sk_buff *skb;
120 struct fl_pg_chunk pg_chunk;
122 DEFINE_DMA_UNMAP_ADDR(dma_addr);
125 struct rsp_desc { /* response queue descriptor */
126 struct rss_header rss_hdr;
127 __be32 flags;
128 __be32 len_cq;
129 u8 imm_data[47];
130 u8 intr_gen;
134 * Holds unmapping information for Tx packets that need deferred unmapping.
135 * This structure lives at skb->head and must be allocated by callers.
137 struct deferred_unmap_info {
138 struct pci_dev *pdev;
139 dma_addr_t addr[MAX_SKB_FRAGS + 1];
143 * Maps a number of flits to the number of Tx descriptors that can hold them.
144 * The formula is
146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
148 * HW allows up to 4 descriptors to be combined into a WR.
150 static u8 flit_desc_map[] = {
152 #if SGE_NUM_GENBITS == 1
153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
169 return container_of(q, struct sge_qset, fl[qidx]);
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
174 return container_of(q, struct sge_qset, rspq);
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
179 return container_of(q, struct sge_qset, txq[qidx]);
183 * refill_rspq - replenish an SGE response queue
184 * @adapter: the adapter
185 * @q: the response queue to replenish
186 * @credits: how many new responses to make available
188 * Replenishes a response queue by making the supplied number of responses
189 * available to HW.
191 static inline void refill_rspq(struct adapter *adapter,
192 const struct sge_rspq *q, unsigned int credits)
194 rmb();
195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
200 * need_skb_unmap - does the platform need unmapping of sk_buffs?
202 * Returns true if the platform needs sk_buff unmapping. The compiler
203 * optimizes away unnecessary code if this returns true.
205 static inline int need_skb_unmap(void)
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 return 1;
209 #else
210 return 0;
211 #endif
215 * unmap_skb - unmap a packet main body and its page fragments
216 * @skb: the packet
217 * @q: the Tx queue containing Tx descriptors for the packet
218 * @cidx: index of Tx descriptor
219 * @pdev: the PCI device
221 * Unmap the main body of an sk_buff and its page fragments, if any.
222 * Because of the fairly complicated structure of our SGLs and the desire
223 * to conserve space for metadata, the information necessary to unmap an
224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225 * descriptors (the physical addresses of the various data buffers), and
226 * the SW descriptor state (assorted indices). The send functions
227 * initialize the indices for the first packet descriptor so we can unmap
228 * the buffers held in the first Tx descriptor here, and we have enough
229 * information at this point to set the state for the next Tx descriptor.
231 * Note that it is possible to clean up the first descriptor of a packet
232 * before the send routines have written the next descriptors, but this
233 * race does not cause any problem. We just end up writing the unmapping
234 * info for the descriptor first.
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 unsigned int cidx, struct pci_dev *pdev)
239 const struct sg_ent *sgp;
240 struct tx_sw_desc *d = &q->sdesc[cidx];
241 int nfrags, frag_idx, curflit, j = d->addr_idx;
243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 frag_idx = d->fragidx;
246 if (frag_idx == 0 && skb_headlen(skb)) {
247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 skb_headlen(skb), PCI_DMA_TODEVICE);
249 j = 1;
252 curflit = d->sflit + 1 + j;
253 nfrags = skb_shinfo(skb)->nr_frags;
255 while (frag_idx < nfrags && curflit < WR_FLITS) {
256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 PCI_DMA_TODEVICE);
259 j ^= 1;
260 if (j == 0) {
261 sgp++;
262 curflit++;
264 curflit++;
265 frag_idx++;
268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
269 d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 d->fragidx = frag_idx;
271 d->addr_idx = j;
272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
277 * free_tx_desc - reclaims Tx descriptors and their buffers
278 * @adapter: the adapter
279 * @q: the Tx queue to reclaim descriptors from
280 * @n: the number of descriptors to reclaim
282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283 * Tx buffers. Called with the Tx queue lock held.
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 unsigned int n)
288 struct tx_sw_desc *d;
289 struct pci_dev *pdev = adapter->pdev;
290 unsigned int cidx = q->cidx;
292 const int need_unmap = need_skb_unmap() &&
293 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
295 d = &q->sdesc[cidx];
296 while (n--) {
297 if (d->skb) { /* an SGL is present */
298 if (need_unmap)
299 unmap_skb(d->skb, q, cidx, pdev);
300 if (d->eop) {
301 dev_consume_skb_any(d->skb);
302 d->skb = NULL;
305 ++d;
306 if (++cidx == q->size) {
307 cidx = 0;
308 d = q->sdesc;
311 q->cidx = cidx;
315 * reclaim_completed_tx - reclaims completed Tx descriptors
316 * @adapter: the adapter
317 * @q: the Tx queue to reclaim completed descriptors from
318 * @chunk: maximum number of descriptors to reclaim
320 * Reclaims Tx descriptors that the SGE has indicated it has processed,
321 * and frees the associated buffers if possible. Called with the Tx
322 * queue's lock held.
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 struct sge_txq *q,
326 unsigned int chunk)
328 unsigned int reclaim = q->processed - q->cleaned;
330 reclaim = min(chunk, reclaim);
331 if (reclaim) {
332 free_tx_desc(adapter, q, reclaim);
333 q->cleaned += reclaim;
334 q->in_use -= reclaim;
336 return q->processed - q->cleaned;
340 * should_restart_tx - are there enough resources to restart a Tx queue?
341 * @q: the Tx queue
343 * Checks if there are enough descriptors to restart a suspended Tx queue.
345 static inline int should_restart_tx(const struct sge_txq *q)
347 unsigned int r = q->processed - q->cleaned;
349 return q->in_use - r < (q->size >> 1);
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 struct rx_sw_desc *d)
355 if (q->use_pages && d->pg_chunk.page) {
356 (*d->pg_chunk.p_cnt)--;
357 if (!*d->pg_chunk.p_cnt)
358 pci_unmap_page(pdev,
359 d->pg_chunk.mapping,
360 q->alloc_size, PCI_DMA_FROMDEVICE);
362 put_page(d->pg_chunk.page);
363 d->pg_chunk.page = NULL;
364 } else {
365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 q->buf_size, PCI_DMA_FROMDEVICE);
367 kfree_skb(d->skb);
368 d->skb = NULL;
373 * free_rx_bufs - free the Rx buffers on an SGE free list
374 * @pdev: the PCI device associated with the adapter
375 * @q: the SGE free list to clean up
377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
378 * this queue should be stopped before calling this function.
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
382 unsigned int cidx = q->cidx;
384 while (q->credits--) {
385 struct rx_sw_desc *d = &q->sdesc[cidx];
388 clear_rx_desc(pdev, q, d);
389 if (++cidx == q->size)
390 cidx = 0;
393 if (q->pg_chunk.page) {
394 __free_pages(q->pg_chunk.page, q->order);
395 q->pg_chunk.page = NULL;
400 * add_one_rx_buf - add a packet buffer to a free-buffer list
401 * @va: buffer start VA
402 * @len: the buffer length
403 * @d: the HW Rx descriptor to write
404 * @sd: the SW Rx descriptor to write
405 * @gen: the generation bit value
406 * @pdev: the PCI device associated with the adapter
408 * Add a buffer of the given length to the supplied HW and SW Rx
409 * descriptors.
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 struct rx_desc *d, struct rx_sw_desc *sd,
413 unsigned int gen, struct pci_dev *pdev)
415 dma_addr_t mapping;
417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 return -ENOMEM;
421 dma_unmap_addr_set(sd, dma_addr, mapping);
423 d->addr_lo = cpu_to_be32(mapping);
424 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 dma_wmb();
426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 return 0;
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 unsigned int gen)
434 d->addr_lo = cpu_to_be32(mapping);
435 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 dma_wmb();
437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 return 0;
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 struct rx_sw_desc *sd, gfp_t gfp,
444 unsigned int order)
446 if (!q->pg_chunk.page) {
447 dma_addr_t mapping;
449 q->pg_chunk.page = alloc_pages(gfp, order);
450 if (unlikely(!q->pg_chunk.page))
451 return -ENOMEM;
452 q->pg_chunk.va = page_address(q->pg_chunk.page);
453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 SGE_PG_RSVD;
455 q->pg_chunk.offset = 0;
456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 if (unlikely(pci_dma_mapping_error(adapter->pdev, mapping))) {
459 __free_pages(q->pg_chunk.page, order);
460 q->pg_chunk.page = NULL;
461 return -EIO;
463 q->pg_chunk.mapping = mapping;
465 sd->pg_chunk = q->pg_chunk;
467 prefetch(sd->pg_chunk.p_cnt);
469 q->pg_chunk.offset += q->buf_size;
470 if (q->pg_chunk.offset == (PAGE_SIZE << order))
471 q->pg_chunk.page = NULL;
472 else {
473 q->pg_chunk.va += q->buf_size;
474 get_page(q->pg_chunk.page);
477 if (sd->pg_chunk.offset == 0)
478 *sd->pg_chunk.p_cnt = 1;
479 else
480 *sd->pg_chunk.p_cnt += 1;
482 return 0;
485 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
487 if (q->pend_cred >= q->credits / 4) {
488 q->pend_cred = 0;
489 wmb();
490 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
495 * refill_fl - refill an SGE free-buffer list
496 * @adap: the adapter
497 * @q: the free-list to refill
498 * @n: the number of new buffers to allocate
499 * @gfp: the gfp flags for allocating new buffers
501 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
502 * allocated with the supplied gfp flags. The caller must assure that
503 * @n does not exceed the queue's capacity.
505 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
507 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
508 struct rx_desc *d = &q->desc[q->pidx];
509 unsigned int count = 0;
511 while (n--) {
512 dma_addr_t mapping;
513 int err;
515 if (q->use_pages) {
516 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
517 q->order))) {
518 nomem: q->alloc_failed++;
519 break;
521 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
522 dma_unmap_addr_set(sd, dma_addr, mapping);
524 add_one_rx_chunk(mapping, d, q->gen);
525 pci_dma_sync_single_for_device(adap->pdev, mapping,
526 q->buf_size - SGE_PG_RSVD,
527 PCI_DMA_FROMDEVICE);
528 } else {
529 void *buf_start;
531 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
532 if (!skb)
533 goto nomem;
535 sd->skb = skb;
536 buf_start = skb->data;
537 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
538 q->gen, adap->pdev);
539 if (unlikely(err)) {
540 clear_rx_desc(adap->pdev, q, sd);
541 break;
545 d++;
546 sd++;
547 if (++q->pidx == q->size) {
548 q->pidx = 0;
549 q->gen ^= 1;
550 sd = q->sdesc;
551 d = q->desc;
553 count++;
556 q->credits += count;
557 q->pend_cred += count;
558 ring_fl_db(adap, q);
560 return count;
563 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
565 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
566 GFP_ATOMIC | __GFP_COMP);
570 * recycle_rx_buf - recycle a receive buffer
571 * @adap: the adapter
572 * @q: the SGE free list
573 * @idx: index of buffer to recycle
575 * Recycles the specified buffer on the given free list by adding it at
576 * the next available slot on the list.
578 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
579 unsigned int idx)
581 struct rx_desc *from = &q->desc[idx];
582 struct rx_desc *to = &q->desc[q->pidx];
584 q->sdesc[q->pidx] = q->sdesc[idx];
585 to->addr_lo = from->addr_lo; /* already big endian */
586 to->addr_hi = from->addr_hi; /* likewise */
587 dma_wmb();
588 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
589 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
591 if (++q->pidx == q->size) {
592 q->pidx = 0;
593 q->gen ^= 1;
596 q->credits++;
597 q->pend_cred++;
598 ring_fl_db(adap, q);
602 * alloc_ring - allocate resources for an SGE descriptor ring
603 * @pdev: the PCI device
604 * @nelem: the number of descriptors
605 * @elem_size: the size of each descriptor
606 * @sw_size: the size of the SW state associated with each ring element
607 * @phys: the physical address of the allocated ring
608 * @metadata: address of the array holding the SW state for the ring
610 * Allocates resources for an SGE descriptor ring, such as Tx queues,
611 * free buffer lists, or response queues. Each SGE ring requires
612 * space for its HW descriptors plus, optionally, space for the SW state
613 * associated with each HW entry (the metadata). The function returns
614 * three values: the virtual address for the HW ring (the return value
615 * of the function), the physical address of the HW ring, and the address
616 * of the SW ring.
618 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
619 size_t sw_size, dma_addr_t * phys, void *metadata)
621 size_t len = nelem * elem_size;
622 void *s = NULL;
623 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
625 if (!p)
626 return NULL;
627 if (sw_size && metadata) {
628 s = kcalloc(nelem, sw_size, GFP_KERNEL);
630 if (!s) {
631 dma_free_coherent(&pdev->dev, len, p, *phys);
632 return NULL;
634 *(void **)metadata = s;
636 return p;
640 * t3_reset_qset - reset a sge qset
641 * @q: the queue set
643 * Reset the qset structure.
644 * the NAPI structure is preserved in the event of
645 * the qset's reincarnation, for example during EEH recovery.
647 static void t3_reset_qset(struct sge_qset *q)
649 if (q->adap &&
650 !(q->adap->flags & NAPI_INIT)) {
651 memset(q, 0, sizeof(*q));
652 return;
655 q->adap = NULL;
656 memset(&q->rspq, 0, sizeof(q->rspq));
657 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
658 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
659 q->txq_stopped = 0;
660 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
661 q->rx_reclaim_timer.function = NULL;
662 q->nomem = 0;
663 napi_free_frags(&q->napi);
668 * free_qset - free the resources of an SGE queue set
669 * @adapter: the adapter owning the queue set
670 * @q: the queue set
672 * Release the HW and SW resources associated with an SGE queue set, such
673 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
674 * queue set must be quiesced prior to calling this.
676 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
678 int i;
679 struct pci_dev *pdev = adapter->pdev;
681 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
682 if (q->fl[i].desc) {
683 spin_lock_irq(&adapter->sge.reg_lock);
684 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
685 spin_unlock_irq(&adapter->sge.reg_lock);
686 free_rx_bufs(pdev, &q->fl[i]);
687 kfree(q->fl[i].sdesc);
688 dma_free_coherent(&pdev->dev,
689 q->fl[i].size *
690 sizeof(struct rx_desc), q->fl[i].desc,
691 q->fl[i].phys_addr);
694 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
695 if (q->txq[i].desc) {
696 spin_lock_irq(&adapter->sge.reg_lock);
697 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
698 spin_unlock_irq(&adapter->sge.reg_lock);
699 if (q->txq[i].sdesc) {
700 free_tx_desc(adapter, &q->txq[i],
701 q->txq[i].in_use);
702 kfree(q->txq[i].sdesc);
704 dma_free_coherent(&pdev->dev,
705 q->txq[i].size *
706 sizeof(struct tx_desc),
707 q->txq[i].desc, q->txq[i].phys_addr);
708 __skb_queue_purge(&q->txq[i].sendq);
711 if (q->rspq.desc) {
712 spin_lock_irq(&adapter->sge.reg_lock);
713 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
714 spin_unlock_irq(&adapter->sge.reg_lock);
715 dma_free_coherent(&pdev->dev,
716 q->rspq.size * sizeof(struct rsp_desc),
717 q->rspq.desc, q->rspq.phys_addr);
720 t3_reset_qset(q);
724 * init_qset_cntxt - initialize an SGE queue set context info
725 * @qs: the queue set
726 * @id: the queue set id
728 * Initializes the TIDs and context ids for the queues of a queue set.
730 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
732 qs->rspq.cntxt_id = id;
733 qs->fl[0].cntxt_id = 2 * id;
734 qs->fl[1].cntxt_id = 2 * id + 1;
735 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
736 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
737 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
738 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
739 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
743 * sgl_len - calculates the size of an SGL of the given capacity
744 * @n: the number of SGL entries
746 * Calculates the number of flits needed for a scatter/gather list that
747 * can hold the given number of entries.
749 static inline unsigned int sgl_len(unsigned int n)
751 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
752 return (3 * n) / 2 + (n & 1);
756 * flits_to_desc - returns the num of Tx descriptors for the given flits
757 * @n: the number of flits
759 * Calculates the number of Tx descriptors needed for the supplied number
760 * of flits.
762 static inline unsigned int flits_to_desc(unsigned int n)
764 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
765 return flit_desc_map[n];
769 * get_packet - return the next ingress packet buffer from a free list
770 * @adap: the adapter that received the packet
771 * @fl: the SGE free list holding the packet
772 * @len: the packet length including any SGE padding
773 * @drop_thres: # of remaining buffers before we start dropping packets
775 * Get the next packet from a free list and complete setup of the
776 * sk_buff. If the packet is small we make a copy and recycle the
777 * original buffer, otherwise we use the original buffer itself. If a
778 * positive drop threshold is supplied packets are dropped and their
779 * buffers recycled if (a) the number of remaining buffers is under the
780 * threshold and the packet is too big to copy, or (b) the packet should
781 * be copied but there is no memory for the copy.
783 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
784 unsigned int len, unsigned int drop_thres)
786 struct sk_buff *skb = NULL;
787 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
789 prefetch(sd->skb->data);
790 fl->credits--;
792 if (len <= SGE_RX_COPY_THRES) {
793 skb = alloc_skb(len, GFP_ATOMIC);
794 if (likely(skb != NULL)) {
795 __skb_put(skb, len);
796 pci_dma_sync_single_for_cpu(adap->pdev,
797 dma_unmap_addr(sd, dma_addr), len,
798 PCI_DMA_FROMDEVICE);
799 memcpy(skb->data, sd->skb->data, len);
800 pci_dma_sync_single_for_device(adap->pdev,
801 dma_unmap_addr(sd, dma_addr), len,
802 PCI_DMA_FROMDEVICE);
803 } else if (!drop_thres)
804 goto use_orig_buf;
805 recycle:
806 recycle_rx_buf(adap, fl, fl->cidx);
807 return skb;
810 if (unlikely(fl->credits < drop_thres) &&
811 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
812 GFP_ATOMIC | __GFP_COMP) == 0)
813 goto recycle;
815 use_orig_buf:
816 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
817 fl->buf_size, PCI_DMA_FROMDEVICE);
818 skb = sd->skb;
819 skb_put(skb, len);
820 __refill_fl(adap, fl);
821 return skb;
825 * get_packet_pg - return the next ingress packet buffer from a free list
826 * @adap: the adapter that received the packet
827 * @fl: the SGE free list holding the packet
828 * @q: the queue
829 * @len: the packet length including any SGE padding
830 * @drop_thres: # of remaining buffers before we start dropping packets
832 * Get the next packet from a free list populated with page chunks.
833 * If the packet is small we make a copy and recycle the original buffer,
834 * otherwise we attach the original buffer as a page fragment to a fresh
835 * sk_buff. If a positive drop threshold is supplied packets are dropped
836 * and their buffers recycled if (a) the number of remaining buffers is
837 * under the threshold and the packet is too big to copy, or (b) there's
838 * no system memory.
840 * Note: this function is similar to @get_packet but deals with Rx buffers
841 * that are page chunks rather than sk_buffs.
843 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
844 struct sge_rspq *q, unsigned int len,
845 unsigned int drop_thres)
847 struct sk_buff *newskb, *skb;
848 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
850 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
852 newskb = skb = q->pg_skb;
853 if (!skb && (len <= SGE_RX_COPY_THRES)) {
854 newskb = alloc_skb(len, GFP_ATOMIC);
855 if (likely(newskb != NULL)) {
856 __skb_put(newskb, len);
857 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
858 PCI_DMA_FROMDEVICE);
859 memcpy(newskb->data, sd->pg_chunk.va, len);
860 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
861 len,
862 PCI_DMA_FROMDEVICE);
863 } else if (!drop_thres)
864 return NULL;
865 recycle:
866 fl->credits--;
867 recycle_rx_buf(adap, fl, fl->cidx);
868 q->rx_recycle_buf++;
869 return newskb;
872 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
873 goto recycle;
875 prefetch(sd->pg_chunk.p_cnt);
877 if (!skb)
878 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
880 if (unlikely(!newskb)) {
881 if (!drop_thres)
882 return NULL;
883 goto recycle;
886 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
887 PCI_DMA_FROMDEVICE);
888 (*sd->pg_chunk.p_cnt)--;
889 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
890 pci_unmap_page(adap->pdev,
891 sd->pg_chunk.mapping,
892 fl->alloc_size,
893 PCI_DMA_FROMDEVICE);
894 if (!skb) {
895 __skb_put(newskb, SGE_RX_PULL_LEN);
896 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
897 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
898 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
899 len - SGE_RX_PULL_LEN);
900 newskb->len = len;
901 newskb->data_len = len - SGE_RX_PULL_LEN;
902 newskb->truesize += newskb->data_len;
903 } else {
904 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
905 sd->pg_chunk.page,
906 sd->pg_chunk.offset, len);
907 newskb->len += len;
908 newskb->data_len += len;
909 newskb->truesize += len;
912 fl->credits--;
914 * We do not refill FLs here, we let the caller do it to overlap a
915 * prefetch.
917 return newskb;
921 * get_imm_packet - return the next ingress packet buffer from a response
922 * @resp: the response descriptor containing the packet data
924 * Return a packet containing the immediate data of the given response.
926 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
928 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
930 if (skb) {
931 __skb_put(skb, IMMED_PKT_SIZE);
932 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
934 return skb;
938 * calc_tx_descs - calculate the number of Tx descriptors for a packet
939 * @skb: the packet
941 * Returns the number of Tx descriptors needed for the given Ethernet
942 * packet. Ethernet packets require addition of WR and CPL headers.
944 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
946 unsigned int flits;
948 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
949 return 1;
951 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
952 if (skb_shinfo(skb)->gso_size)
953 flits++;
954 return flits_to_desc(flits);
957 /* map_skb - map a packet main body and its page fragments
958 * @pdev: the PCI device
959 * @skb: the packet
960 * @addr: placeholder to save the mapped addresses
962 * map the main body of an sk_buff and its page fragments, if any.
964 static int map_skb(struct pci_dev *pdev, const struct sk_buff *skb,
965 dma_addr_t *addr)
967 const skb_frag_t *fp, *end;
968 const struct skb_shared_info *si;
970 if (skb_headlen(skb)) {
971 *addr = pci_map_single(pdev, skb->data, skb_headlen(skb),
972 PCI_DMA_TODEVICE);
973 if (pci_dma_mapping_error(pdev, *addr))
974 goto out_err;
975 addr++;
978 si = skb_shinfo(skb);
979 end = &si->frags[si->nr_frags];
981 for (fp = si->frags; fp < end; fp++) {
982 *addr = skb_frag_dma_map(&pdev->dev, fp, 0, skb_frag_size(fp),
983 DMA_TO_DEVICE);
984 if (pci_dma_mapping_error(pdev, *addr))
985 goto unwind;
986 addr++;
988 return 0;
990 unwind:
991 while (fp-- > si->frags)
992 dma_unmap_page(&pdev->dev, *--addr, skb_frag_size(fp),
993 DMA_TO_DEVICE);
995 pci_unmap_single(pdev, addr[-1], skb_headlen(skb), PCI_DMA_TODEVICE);
996 out_err:
997 return -ENOMEM;
1001 * write_sgl - populate a scatter/gather list for a packet
1002 * @skb: the packet
1003 * @sgp: the SGL to populate
1004 * @start: start address of skb main body data to include in the SGL
1005 * @len: length of skb main body data to include in the SGL
1006 * @addr: the list of the mapped addresses
1008 * Copies the scatter/gather list for the buffers that make up a packet
1009 * and returns the SGL size in 8-byte words. The caller must size the SGL
1010 * appropriately.
1012 static inline unsigned int write_sgl(const struct sk_buff *skb,
1013 struct sg_ent *sgp, unsigned char *start,
1014 unsigned int len, const dma_addr_t *addr)
1016 unsigned int i, j = 0, k = 0, nfrags;
1018 if (len) {
1019 sgp->len[0] = cpu_to_be32(len);
1020 sgp->addr[j++] = cpu_to_be64(addr[k++]);
1023 nfrags = skb_shinfo(skb)->nr_frags;
1024 for (i = 0; i < nfrags; i++) {
1025 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1027 sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
1028 sgp->addr[j] = cpu_to_be64(addr[k++]);
1029 j ^= 1;
1030 if (j == 0)
1031 ++sgp;
1033 if (j)
1034 sgp->len[j] = 0;
1035 return ((nfrags + (len != 0)) * 3) / 2 + j;
1039 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1040 * @adap: the adapter
1041 * @q: the Tx queue
1043 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1044 * where the HW is going to sleep just after we checked, however,
1045 * then the interrupt handler will detect the outstanding TX packet
1046 * and ring the doorbell for us.
1048 * When GTS is disabled we unconditionally ring the doorbell.
1050 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1052 #if USE_GTS
1053 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1054 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1055 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1056 t3_write_reg(adap, A_SG_KDOORBELL,
1057 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1059 #else
1060 wmb(); /* write descriptors before telling HW */
1061 t3_write_reg(adap, A_SG_KDOORBELL,
1062 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1063 #endif
1066 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1068 #if SGE_NUM_GENBITS == 2
1069 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1070 #endif
1074 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1075 * @ndesc: number of Tx descriptors spanned by the SGL
1076 * @skb: the packet corresponding to the WR
1077 * @d: first Tx descriptor to be written
1078 * @pidx: index of above descriptors
1079 * @q: the SGE Tx queue
1080 * @sgl: the SGL
1081 * @flits: number of flits to the start of the SGL in the first descriptor
1082 * @sgl_flits: the SGL size in flits
1083 * @gen: the Tx descriptor generation
1084 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1085 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1087 * Write a work request header and an associated SGL. If the SGL is
1088 * small enough to fit into one Tx descriptor it has already been written
1089 * and we just need to write the WR header. Otherwise we distribute the
1090 * SGL across the number of descriptors it spans.
1092 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1093 struct tx_desc *d, unsigned int pidx,
1094 const struct sge_txq *q,
1095 const struct sg_ent *sgl,
1096 unsigned int flits, unsigned int sgl_flits,
1097 unsigned int gen, __be32 wr_hi,
1098 __be32 wr_lo)
1100 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1101 struct tx_sw_desc *sd = &q->sdesc[pidx];
1103 sd->skb = skb;
1104 if (need_skb_unmap()) {
1105 sd->fragidx = 0;
1106 sd->addr_idx = 0;
1107 sd->sflit = flits;
1110 if (likely(ndesc == 1)) {
1111 sd->eop = 1;
1112 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1113 V_WR_SGLSFLT(flits)) | wr_hi;
1114 dma_wmb();
1115 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1116 V_WR_GEN(gen)) | wr_lo;
1117 wr_gen2(d, gen);
1118 } else {
1119 unsigned int ogen = gen;
1120 const u64 *fp = (const u64 *)sgl;
1121 struct work_request_hdr *wp = wrp;
1123 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1124 V_WR_SGLSFLT(flits)) | wr_hi;
1126 while (sgl_flits) {
1127 unsigned int avail = WR_FLITS - flits;
1129 if (avail > sgl_flits)
1130 avail = sgl_flits;
1131 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1132 sgl_flits -= avail;
1133 ndesc--;
1134 if (!sgl_flits)
1135 break;
1137 fp += avail;
1138 d++;
1139 sd->eop = 0;
1140 sd++;
1141 if (++pidx == q->size) {
1142 pidx = 0;
1143 gen ^= 1;
1144 d = q->desc;
1145 sd = q->sdesc;
1148 sd->skb = skb;
1149 wrp = (struct work_request_hdr *)d;
1150 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1151 V_WR_SGLSFLT(1)) | wr_hi;
1152 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1153 sgl_flits + 1)) |
1154 V_WR_GEN(gen)) | wr_lo;
1155 wr_gen2(d, gen);
1156 flits = 1;
1158 sd->eop = 1;
1159 wrp->wr_hi |= htonl(F_WR_EOP);
1160 dma_wmb();
1161 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1162 wr_gen2((struct tx_desc *)wp, ogen);
1163 WARN_ON(ndesc != 0);
1168 * write_tx_pkt_wr - write a TX_PKT work request
1169 * @adap: the adapter
1170 * @skb: the packet to send
1171 * @pi: the egress interface
1172 * @pidx: index of the first Tx descriptor to write
1173 * @gen: the generation value to use
1174 * @q: the Tx queue
1175 * @ndesc: number of descriptors the packet will occupy
1176 * @compl: the value of the COMPL bit to use
1177 * @addr: address
1179 * Generate a TX_PKT work request to send the supplied packet.
1181 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1182 const struct port_info *pi,
1183 unsigned int pidx, unsigned int gen,
1184 struct sge_txq *q, unsigned int ndesc,
1185 unsigned int compl, const dma_addr_t *addr)
1187 unsigned int flits, sgl_flits, cntrl, tso_info;
1188 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1189 struct tx_desc *d = &q->desc[pidx];
1190 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1192 cpl->len = htonl(skb->len);
1193 cntrl = V_TXPKT_INTF(pi->port_id);
1195 if (skb_vlan_tag_present(skb))
1196 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb));
1198 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1199 if (tso_info) {
1200 int eth_type;
1201 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1203 d->flit[2] = 0;
1204 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1205 hdr->cntrl = htonl(cntrl);
1206 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1207 CPL_ETH_II : CPL_ETH_II_VLAN;
1208 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1209 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1210 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1211 hdr->lso_info = htonl(tso_info);
1212 flits = 3;
1213 } else {
1214 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1215 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1216 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1217 cpl->cntrl = htonl(cntrl);
1219 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1220 q->sdesc[pidx].skb = NULL;
1221 if (!skb->data_len)
1222 skb_copy_from_linear_data(skb, &d->flit[2],
1223 skb->len);
1224 else
1225 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1227 flits = (skb->len + 7) / 8 + 2;
1228 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1229 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1230 | F_WR_SOP | F_WR_EOP | compl);
1231 dma_wmb();
1232 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1233 V_WR_TID(q->token));
1234 wr_gen2(d, gen);
1235 dev_consume_skb_any(skb);
1236 return;
1239 flits = 2;
1242 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1243 sgl_flits = write_sgl(skb, sgp, skb->data, skb_headlen(skb), addr);
1245 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1246 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1247 htonl(V_WR_TID(q->token)));
1250 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1251 struct sge_qset *qs, struct sge_txq *q)
1253 netif_tx_stop_queue(txq);
1254 set_bit(TXQ_ETH, &qs->txq_stopped);
1255 q->stops++;
1259 * eth_xmit - add a packet to the Ethernet Tx queue
1260 * @skb: the packet
1261 * @dev: the egress net device
1263 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1265 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1267 int qidx;
1268 unsigned int ndesc, pidx, credits, gen, compl;
1269 const struct port_info *pi = netdev_priv(dev);
1270 struct adapter *adap = pi->adapter;
1271 struct netdev_queue *txq;
1272 struct sge_qset *qs;
1273 struct sge_txq *q;
1274 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1277 * The chip min packet length is 9 octets but play safe and reject
1278 * anything shorter than an Ethernet header.
1280 if (unlikely(skb->len < ETH_HLEN)) {
1281 dev_kfree_skb_any(skb);
1282 return NETDEV_TX_OK;
1285 qidx = skb_get_queue_mapping(skb);
1286 qs = &pi->qs[qidx];
1287 q = &qs->txq[TXQ_ETH];
1288 txq = netdev_get_tx_queue(dev, qidx);
1290 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1292 credits = q->size - q->in_use;
1293 ndesc = calc_tx_descs(skb);
1295 if (unlikely(credits < ndesc)) {
1296 t3_stop_tx_queue(txq, qs, q);
1297 dev_err(&adap->pdev->dev,
1298 "%s: Tx ring %u full while queue awake!\n",
1299 dev->name, q->cntxt_id & 7);
1300 return NETDEV_TX_BUSY;
1303 /* Check if ethernet packet can't be sent as immediate data */
1304 if (skb->len > (WR_LEN - sizeof(struct cpl_tx_pkt))) {
1305 if (unlikely(map_skb(adap->pdev, skb, addr) < 0)) {
1306 dev_kfree_skb(skb);
1307 return NETDEV_TX_OK;
1311 q->in_use += ndesc;
1312 if (unlikely(credits - ndesc < q->stop_thres)) {
1313 t3_stop_tx_queue(txq, qs, q);
1315 if (should_restart_tx(q) &&
1316 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1317 q->restarts++;
1318 netif_tx_start_queue(txq);
1322 gen = q->gen;
1323 q->unacked += ndesc;
1324 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1325 q->unacked &= 7;
1326 pidx = q->pidx;
1327 q->pidx += ndesc;
1328 if (q->pidx >= q->size) {
1329 q->pidx -= q->size;
1330 q->gen ^= 1;
1333 /* update port statistics */
1334 if (skb->ip_summed == CHECKSUM_PARTIAL)
1335 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1336 if (skb_shinfo(skb)->gso_size)
1337 qs->port_stats[SGE_PSTAT_TSO]++;
1338 if (skb_vlan_tag_present(skb))
1339 qs->port_stats[SGE_PSTAT_VLANINS]++;
1342 * We do not use Tx completion interrupts to free DMAd Tx packets.
1343 * This is good for performance but means that we rely on new Tx
1344 * packets arriving to run the destructors of completed packets,
1345 * which open up space in their sockets' send queues. Sometimes
1346 * we do not get such new packets causing Tx to stall. A single
1347 * UDP transmitter is a good example of this situation. We have
1348 * a clean up timer that periodically reclaims completed packets
1349 * but it doesn't run often enough (nor do we want it to) to prevent
1350 * lengthy stalls. A solution to this problem is to run the
1351 * destructor early, after the packet is queued but before it's DMAd.
1352 * A cons is that we lie to socket memory accounting, but the amount
1353 * of extra memory is reasonable (limited by the number of Tx
1354 * descriptors), the packets do actually get freed quickly by new
1355 * packets almost always, and for protocols like TCP that wait for
1356 * acks to really free up the data the extra memory is even less.
1357 * On the positive side we run the destructors on the sending CPU
1358 * rather than on a potentially different completing CPU, usually a
1359 * good thing. We also run them without holding our Tx queue lock,
1360 * unlike what reclaim_completed_tx() would otherwise do.
1362 * Run the destructor before telling the DMA engine about the packet
1363 * to make sure it doesn't complete and get freed prematurely.
1365 if (likely(!skb_shared(skb)))
1366 skb_orphan(skb);
1368 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl, addr);
1369 check_ring_tx_db(adap, q);
1370 return NETDEV_TX_OK;
1374 * write_imm - write a packet into a Tx descriptor as immediate data
1375 * @d: the Tx descriptor to write
1376 * @skb: the packet
1377 * @len: the length of packet data to write as immediate data
1378 * @gen: the generation bit value to write
1380 * Writes a packet as immediate data into a Tx descriptor. The packet
1381 * contains a work request at its beginning. We must write the packet
1382 * carefully so the SGE doesn't read it accidentally before it's written
1383 * in its entirety.
1385 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1386 unsigned int len, unsigned int gen)
1388 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1389 struct work_request_hdr *to = (struct work_request_hdr *)d;
1391 if (likely(!skb->data_len))
1392 memcpy(&to[1], &from[1], len - sizeof(*from));
1393 else
1394 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1396 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1397 V_WR_BCNTLFLT(len & 7));
1398 dma_wmb();
1399 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1400 V_WR_LEN((len + 7) / 8));
1401 wr_gen2(d, gen);
1402 kfree_skb(skb);
1406 * check_desc_avail - check descriptor availability on a send queue
1407 * @adap: the adapter
1408 * @q: the send queue
1409 * @skb: the packet needing the descriptors
1410 * @ndesc: the number of Tx descriptors needed
1411 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1413 * Checks if the requested number of Tx descriptors is available on an
1414 * SGE send queue. If the queue is already suspended or not enough
1415 * descriptors are available the packet is queued for later transmission.
1416 * Must be called with the Tx queue locked.
1418 * Returns 0 if enough descriptors are available, 1 if there aren't
1419 * enough descriptors and the packet has been queued, and 2 if the caller
1420 * needs to retry because there weren't enough descriptors at the
1421 * beginning of the call but some freed up in the mean time.
1423 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1424 struct sk_buff *skb, unsigned int ndesc,
1425 unsigned int qid)
1427 if (unlikely(!skb_queue_empty(&q->sendq))) {
1428 addq_exit:__skb_queue_tail(&q->sendq, skb);
1429 return 1;
1431 if (unlikely(q->size - q->in_use < ndesc)) {
1432 struct sge_qset *qs = txq_to_qset(q, qid);
1434 set_bit(qid, &qs->txq_stopped);
1435 smp_mb__after_atomic();
1437 if (should_restart_tx(q) &&
1438 test_and_clear_bit(qid, &qs->txq_stopped))
1439 return 2;
1441 q->stops++;
1442 goto addq_exit;
1444 return 0;
1448 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1449 * @q: the SGE control Tx queue
1451 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1452 * that send only immediate data (presently just the control queues) and
1453 * thus do not have any sk_buffs to release.
1455 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1457 unsigned int reclaim = q->processed - q->cleaned;
1459 q->in_use -= reclaim;
1460 q->cleaned += reclaim;
1463 static inline int immediate(const struct sk_buff *skb)
1465 return skb->len <= WR_LEN;
1469 * ctrl_xmit - send a packet through an SGE control Tx queue
1470 * @adap: the adapter
1471 * @q: the control queue
1472 * @skb: the packet
1474 * Send a packet through an SGE control Tx queue. Packets sent through
1475 * a control queue must fit entirely as immediate data in a single Tx
1476 * descriptor and have no page fragments.
1478 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1479 struct sk_buff *skb)
1481 int ret;
1482 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1484 if (unlikely(!immediate(skb))) {
1485 WARN_ON(1);
1486 dev_kfree_skb(skb);
1487 return NET_XMIT_SUCCESS;
1490 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1491 wrp->wr_lo = htonl(V_WR_TID(q->token));
1493 spin_lock(&q->lock);
1494 again:reclaim_completed_tx_imm(q);
1496 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1497 if (unlikely(ret)) {
1498 if (ret == 1) {
1499 spin_unlock(&q->lock);
1500 return NET_XMIT_CN;
1502 goto again;
1505 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1507 q->in_use++;
1508 if (++q->pidx >= q->size) {
1509 q->pidx = 0;
1510 q->gen ^= 1;
1512 spin_unlock(&q->lock);
1513 wmb();
1514 t3_write_reg(adap, A_SG_KDOORBELL,
1515 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1516 return NET_XMIT_SUCCESS;
1520 * restart_ctrlq - restart a suspended control queue
1521 * @t: pointer to the tasklet associated with this handler
1523 * Resumes transmission on a suspended Tx control queue.
1525 static void restart_ctrlq(struct tasklet_struct *t)
1527 struct sk_buff *skb;
1528 struct sge_qset *qs = from_tasklet(qs, t, txq[TXQ_CTRL].qresume_tsk);
1529 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1531 spin_lock(&q->lock);
1532 again:reclaim_completed_tx_imm(q);
1534 while (q->in_use < q->size &&
1535 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1537 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1539 if (++q->pidx >= q->size) {
1540 q->pidx = 0;
1541 q->gen ^= 1;
1543 q->in_use++;
1546 if (!skb_queue_empty(&q->sendq)) {
1547 set_bit(TXQ_CTRL, &qs->txq_stopped);
1548 smp_mb__after_atomic();
1550 if (should_restart_tx(q) &&
1551 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1552 goto again;
1553 q->stops++;
1556 spin_unlock(&q->lock);
1557 wmb();
1558 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1559 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1563 * Send a management message through control queue 0
1565 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1567 int ret;
1568 local_bh_disable();
1569 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1570 local_bh_enable();
1572 return ret;
1576 * deferred_unmap_destructor - unmap a packet when it is freed
1577 * @skb: the packet
1579 * This is the packet destructor used for Tx packets that need to remain
1580 * mapped until they are freed rather than until their Tx descriptors are
1581 * freed.
1583 static void deferred_unmap_destructor(struct sk_buff *skb)
1585 int i;
1586 const dma_addr_t *p;
1587 const struct skb_shared_info *si;
1588 const struct deferred_unmap_info *dui;
1590 dui = (struct deferred_unmap_info *)skb->head;
1591 p = dui->addr;
1593 if (skb_tail_pointer(skb) - skb_transport_header(skb))
1594 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1595 skb_transport_header(skb), PCI_DMA_TODEVICE);
1597 si = skb_shinfo(skb);
1598 for (i = 0; i < si->nr_frags; i++)
1599 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1600 PCI_DMA_TODEVICE);
1603 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1604 const struct sg_ent *sgl, int sgl_flits)
1606 dma_addr_t *p;
1607 struct deferred_unmap_info *dui;
1609 dui = (struct deferred_unmap_info *)skb->head;
1610 dui->pdev = pdev;
1611 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1612 *p++ = be64_to_cpu(sgl->addr[0]);
1613 *p++ = be64_to_cpu(sgl->addr[1]);
1615 if (sgl_flits)
1616 *p = be64_to_cpu(sgl->addr[0]);
1620 * write_ofld_wr - write an offload work request
1621 * @adap: the adapter
1622 * @skb: the packet to send
1623 * @q: the Tx queue
1624 * @pidx: index of the first Tx descriptor to write
1625 * @gen: the generation value to use
1626 * @ndesc: number of descriptors the packet will occupy
1627 * @addr: the address
1629 * Write an offload work request to send the supplied packet. The packet
1630 * data already carry the work request with most fields populated.
1632 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1633 struct sge_txq *q, unsigned int pidx,
1634 unsigned int gen, unsigned int ndesc,
1635 const dma_addr_t *addr)
1637 unsigned int sgl_flits, flits;
1638 struct work_request_hdr *from;
1639 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1640 struct tx_desc *d = &q->desc[pidx];
1642 if (immediate(skb)) {
1643 q->sdesc[pidx].skb = NULL;
1644 write_imm(d, skb, skb->len, gen);
1645 return;
1648 /* Only TX_DATA builds SGLs */
1650 from = (struct work_request_hdr *)skb->data;
1651 memcpy(&d->flit[1], &from[1],
1652 skb_transport_offset(skb) - sizeof(*from));
1654 flits = skb_transport_offset(skb) / 8;
1655 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1656 sgl_flits = write_sgl(skb, sgp, skb_transport_header(skb),
1657 skb_tail_pointer(skb) - skb_transport_header(skb),
1658 addr);
1659 if (need_skb_unmap()) {
1660 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1661 skb->destructor = deferred_unmap_destructor;
1664 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1665 gen, from->wr_hi, from->wr_lo);
1669 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1670 * @skb: the packet
1672 * Returns the number of Tx descriptors needed for the given offload
1673 * packet. These packets are already fully constructed.
1675 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1677 unsigned int flits, cnt;
1679 if (skb->len <= WR_LEN)
1680 return 1; /* packet fits as immediate data */
1682 flits = skb_transport_offset(skb) / 8; /* headers */
1683 cnt = skb_shinfo(skb)->nr_frags;
1684 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1685 cnt++;
1686 return flits_to_desc(flits + sgl_len(cnt));
1690 * ofld_xmit - send a packet through an offload queue
1691 * @adap: the adapter
1692 * @q: the Tx offload queue
1693 * @skb: the packet
1695 * Send an offload packet through an SGE offload queue.
1697 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1698 struct sk_buff *skb)
1700 int ret;
1701 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1703 spin_lock(&q->lock);
1704 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1706 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1707 if (unlikely(ret)) {
1708 if (ret == 1) {
1709 skb->priority = ndesc; /* save for restart */
1710 spin_unlock(&q->lock);
1711 return NET_XMIT_CN;
1713 goto again;
1716 if (!immediate(skb) &&
1717 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head)) {
1718 spin_unlock(&q->lock);
1719 return NET_XMIT_SUCCESS;
1722 gen = q->gen;
1723 q->in_use += ndesc;
1724 pidx = q->pidx;
1725 q->pidx += ndesc;
1726 if (q->pidx >= q->size) {
1727 q->pidx -= q->size;
1728 q->gen ^= 1;
1730 spin_unlock(&q->lock);
1732 write_ofld_wr(adap, skb, q, pidx, gen, ndesc, (dma_addr_t *)skb->head);
1733 check_ring_tx_db(adap, q);
1734 return NET_XMIT_SUCCESS;
1738 * restart_offloadq - restart a suspended offload queue
1739 * @t: pointer to the tasklet associated with this handler
1741 * Resumes transmission on a suspended Tx offload queue.
1743 static void restart_offloadq(struct tasklet_struct *t)
1745 struct sk_buff *skb;
1746 struct sge_qset *qs = from_tasklet(qs, t, txq[TXQ_OFLD].qresume_tsk);
1747 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1748 const struct port_info *pi = netdev_priv(qs->netdev);
1749 struct adapter *adap = pi->adapter;
1750 unsigned int written = 0;
1752 spin_lock(&q->lock);
1753 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1755 while ((skb = skb_peek(&q->sendq)) != NULL) {
1756 unsigned int gen, pidx;
1757 unsigned int ndesc = skb->priority;
1759 if (unlikely(q->size - q->in_use < ndesc)) {
1760 set_bit(TXQ_OFLD, &qs->txq_stopped);
1761 smp_mb__after_atomic();
1763 if (should_restart_tx(q) &&
1764 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1765 goto again;
1766 q->stops++;
1767 break;
1770 if (!immediate(skb) &&
1771 map_skb(adap->pdev, skb, (dma_addr_t *)skb->head))
1772 break;
1774 gen = q->gen;
1775 q->in_use += ndesc;
1776 pidx = q->pidx;
1777 q->pidx += ndesc;
1778 written += ndesc;
1779 if (q->pidx >= q->size) {
1780 q->pidx -= q->size;
1781 q->gen ^= 1;
1783 __skb_unlink(skb, &q->sendq);
1784 spin_unlock(&q->lock);
1786 write_ofld_wr(adap, skb, q, pidx, gen, ndesc,
1787 (dma_addr_t *)skb->head);
1788 spin_lock(&q->lock);
1790 spin_unlock(&q->lock);
1792 #if USE_GTS
1793 set_bit(TXQ_RUNNING, &q->flags);
1794 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1795 #endif
1796 wmb();
1797 if (likely(written))
1798 t3_write_reg(adap, A_SG_KDOORBELL,
1799 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1803 * queue_set - return the queue set a packet should use
1804 * @skb: the packet
1806 * Maps a packet to the SGE queue set it should use. The desired queue
1807 * set is carried in bits 1-3 in the packet's priority.
1809 static inline int queue_set(const struct sk_buff *skb)
1811 return skb->priority >> 1;
1815 * is_ctrl_pkt - return whether an offload packet is a control packet
1816 * @skb: the packet
1818 * Determines whether an offload packet should use an OFLD or a CTRL
1819 * Tx queue. This is indicated by bit 0 in the packet's priority.
1821 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1823 return skb->priority & 1;
1827 * t3_offload_tx - send an offload packet
1828 * @tdev: the offload device to send to
1829 * @skb: the packet
1831 * Sends an offload packet. We use the packet priority to select the
1832 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1833 * should be sent as regular or control, bits 1-3 select the queue set.
1835 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1837 struct adapter *adap = tdev2adap(tdev);
1838 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1840 if (unlikely(is_ctrl_pkt(skb)))
1841 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1843 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1847 * offload_enqueue - add an offload packet to an SGE offload receive queue
1848 * @q: the SGE response queue
1849 * @skb: the packet
1851 * Add a new offload packet to an SGE response queue's offload packet
1852 * queue. If the packet is the first on the queue it schedules the RX
1853 * softirq to process the queue.
1855 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1857 int was_empty = skb_queue_empty(&q->rx_queue);
1859 __skb_queue_tail(&q->rx_queue, skb);
1861 if (was_empty) {
1862 struct sge_qset *qs = rspq_to_qset(q);
1864 napi_schedule(&qs->napi);
1869 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1870 * @tdev: the offload device that will be receiving the packets
1871 * @q: the SGE response queue that assembled the bundle
1872 * @skbs: the partial bundle
1873 * @n: the number of packets in the bundle
1875 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1877 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1878 struct sge_rspq *q,
1879 struct sk_buff *skbs[], int n)
1881 if (n) {
1882 q->offload_bundles++;
1883 tdev->recv(tdev, skbs, n);
1888 * ofld_poll - NAPI handler for offload packets in interrupt mode
1889 * @napi: the network device doing the polling
1890 * @budget: polling budget
1892 * The NAPI handler for offload packets when a response queue is serviced
1893 * by the hard interrupt handler, i.e., when it's operating in non-polling
1894 * mode. Creates small packet batches and sends them through the offload
1895 * receive handler. Batches need to be of modest size as we do prefetches
1896 * on the packets in each.
1898 static int ofld_poll(struct napi_struct *napi, int budget)
1900 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1901 struct sge_rspq *q = &qs->rspq;
1902 struct adapter *adapter = qs->adap;
1903 int work_done = 0;
1905 while (work_done < budget) {
1906 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1907 struct sk_buff_head queue;
1908 int ngathered;
1910 spin_lock_irq(&q->lock);
1911 __skb_queue_head_init(&queue);
1912 skb_queue_splice_init(&q->rx_queue, &queue);
1913 if (skb_queue_empty(&queue)) {
1914 napi_complete_done(napi, work_done);
1915 spin_unlock_irq(&q->lock);
1916 return work_done;
1918 spin_unlock_irq(&q->lock);
1920 ngathered = 0;
1921 skb_queue_walk_safe(&queue, skb, tmp) {
1922 if (work_done >= budget)
1923 break;
1924 work_done++;
1926 __skb_unlink(skb, &queue);
1927 prefetch(skb->data);
1928 skbs[ngathered] = skb;
1929 if (++ngathered == RX_BUNDLE_SIZE) {
1930 q->offload_bundles++;
1931 adapter->tdev.recv(&adapter->tdev, skbs,
1932 ngathered);
1933 ngathered = 0;
1936 if (!skb_queue_empty(&queue)) {
1937 /* splice remaining packets back onto Rx queue */
1938 spin_lock_irq(&q->lock);
1939 skb_queue_splice(&queue, &q->rx_queue);
1940 spin_unlock_irq(&q->lock);
1942 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1945 return work_done;
1949 * rx_offload - process a received offload packet
1950 * @tdev: the offload device receiving the packet
1951 * @rq: the response queue that received the packet
1952 * @skb: the packet
1953 * @rx_gather: a gather list of packets if we are building a bundle
1954 * @gather_idx: index of the next available slot in the bundle
1956 * Process an ingress offload pakcet and add it to the offload ingress
1957 * queue. Returns the index of the next available slot in the bundle.
1959 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1960 struct sk_buff *skb, struct sk_buff *rx_gather[],
1961 unsigned int gather_idx)
1963 skb_reset_mac_header(skb);
1964 skb_reset_network_header(skb);
1965 skb_reset_transport_header(skb);
1967 if (rq->polling) {
1968 rx_gather[gather_idx++] = skb;
1969 if (gather_idx == RX_BUNDLE_SIZE) {
1970 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1971 gather_idx = 0;
1972 rq->offload_bundles++;
1974 } else
1975 offload_enqueue(rq, skb);
1977 return gather_idx;
1981 * restart_tx - check whether to restart suspended Tx queues
1982 * @qs: the queue set to resume
1984 * Restarts suspended Tx queues of an SGE queue set if they have enough
1985 * free resources to resume operation.
1987 static void restart_tx(struct sge_qset *qs)
1989 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1990 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1991 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1992 qs->txq[TXQ_ETH].restarts++;
1993 if (netif_running(qs->netdev))
1994 netif_tx_wake_queue(qs->tx_q);
1997 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1998 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1999 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
2000 qs->txq[TXQ_OFLD].restarts++;
2001 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
2003 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
2004 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
2005 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
2006 qs->txq[TXQ_CTRL].restarts++;
2007 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
2012 * cxgb3_arp_process - process an ARP request probing a private IP address
2013 * @pi: the port info
2014 * @skb: the skbuff containing the ARP request
2016 * Check if the ARP request is probing the private IP address
2017 * dedicated to iSCSI, generate an ARP reply if so.
2019 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
2021 struct net_device *dev = skb->dev;
2022 struct arphdr *arp;
2023 unsigned char *arp_ptr;
2024 unsigned char *sha;
2025 __be32 sip, tip;
2027 if (!dev)
2028 return;
2030 skb_reset_network_header(skb);
2031 arp = arp_hdr(skb);
2033 if (arp->ar_op != htons(ARPOP_REQUEST))
2034 return;
2036 arp_ptr = (unsigned char *)(arp + 1);
2037 sha = arp_ptr;
2038 arp_ptr += dev->addr_len;
2039 memcpy(&sip, arp_ptr, sizeof(sip));
2040 arp_ptr += sizeof(sip);
2041 arp_ptr += dev->addr_len;
2042 memcpy(&tip, arp_ptr, sizeof(tip));
2044 if (tip != pi->iscsi_ipv4addr)
2045 return;
2047 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
2048 pi->iscsic.mac_addr, sha);
2052 static inline int is_arp(struct sk_buff *skb)
2054 return skb->protocol == htons(ETH_P_ARP);
2057 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
2058 struct sk_buff *skb)
2060 if (is_arp(skb)) {
2061 cxgb3_arp_process(pi, skb);
2062 return;
2065 if (pi->iscsic.recv)
2066 pi->iscsic.recv(pi, skb);
2071 * rx_eth - process an ingress ethernet packet
2072 * @adap: the adapter
2073 * @rq: the response queue that received the packet
2074 * @skb: the packet
2075 * @pad: padding
2076 * @lro: large receive offload
2078 * Process an ingress ethernet pakcet and deliver it to the stack.
2079 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2080 * if it was immediate data in a response.
2082 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2083 struct sk_buff *skb, int pad, int lro)
2085 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2086 struct sge_qset *qs = rspq_to_qset(rq);
2087 struct port_info *pi;
2089 skb_pull(skb, sizeof(*p) + pad);
2090 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2091 pi = netdev_priv(skb->dev);
2092 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2093 p->csum == htons(0xffff) && !p->fragment) {
2094 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2095 skb->ip_summed = CHECKSUM_UNNECESSARY;
2096 } else
2097 skb_checksum_none_assert(skb);
2098 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2100 if (p->vlan_valid) {
2101 qs->port_stats[SGE_PSTAT_VLANEX]++;
2102 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2104 if (rq->polling) {
2105 if (lro)
2106 napi_gro_receive(&qs->napi, skb);
2107 else {
2108 if (unlikely(pi->iscsic.flags))
2109 cxgb3_process_iscsi_prov_pack(pi, skb);
2110 netif_receive_skb(skb);
2112 } else
2113 netif_rx(skb);
2116 static inline int is_eth_tcp(u32 rss)
2118 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2122 * lro_add_page - add a page chunk to an LRO session
2123 * @adap: the adapter
2124 * @qs: the associated queue set
2125 * @fl: the free list containing the page chunk to add
2126 * @len: packet length
2127 * @complete: Indicates the last fragment of a frame
2129 * Add a received packet contained in a page chunk to an existing LRO
2130 * session.
2132 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2133 struct sge_fl *fl, int len, int complete)
2135 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2136 struct port_info *pi = netdev_priv(qs->netdev);
2137 struct sk_buff *skb = NULL;
2138 struct cpl_rx_pkt *cpl;
2139 skb_frag_t *rx_frag;
2140 int nr_frags;
2141 int offset = 0;
2143 if (!qs->nomem) {
2144 skb = napi_get_frags(&qs->napi);
2145 qs->nomem = !skb;
2148 fl->credits--;
2150 pci_dma_sync_single_for_cpu(adap->pdev,
2151 dma_unmap_addr(sd, dma_addr),
2152 fl->buf_size - SGE_PG_RSVD,
2153 PCI_DMA_FROMDEVICE);
2155 (*sd->pg_chunk.p_cnt)--;
2156 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2157 pci_unmap_page(adap->pdev,
2158 sd->pg_chunk.mapping,
2159 fl->alloc_size,
2160 PCI_DMA_FROMDEVICE);
2162 if (!skb) {
2163 put_page(sd->pg_chunk.page);
2164 if (complete)
2165 qs->nomem = 0;
2166 return;
2169 rx_frag = skb_shinfo(skb)->frags;
2170 nr_frags = skb_shinfo(skb)->nr_frags;
2172 if (!nr_frags) {
2173 offset = 2 + sizeof(struct cpl_rx_pkt);
2174 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2176 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2177 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2178 skb->ip_summed = CHECKSUM_UNNECESSARY;
2179 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2180 } else
2181 skb->ip_summed = CHECKSUM_NONE;
2182 } else
2183 cpl = qs->lro_va;
2185 len -= offset;
2187 rx_frag += nr_frags;
2188 __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2189 skb_frag_off_set(rx_frag, sd->pg_chunk.offset + offset);
2190 skb_frag_size_set(rx_frag, len);
2192 skb->len += len;
2193 skb->data_len += len;
2194 skb->truesize += len;
2195 skb_shinfo(skb)->nr_frags++;
2197 if (!complete)
2198 return;
2200 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2202 if (cpl->vlan_valid) {
2203 qs->port_stats[SGE_PSTAT_VLANEX]++;
2204 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2206 napi_gro_frags(&qs->napi);
2210 * handle_rsp_cntrl_info - handles control information in a response
2211 * @qs: the queue set corresponding to the response
2212 * @flags: the response control flags
2214 * Handles the control information of an SGE response, such as GTS
2215 * indications and completion credits for the queue set's Tx queues.
2216 * HW coalesces credits, we don't do any extra SW coalescing.
2218 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2220 unsigned int credits;
2222 #if USE_GTS
2223 if (flags & F_RSPD_TXQ0_GTS)
2224 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2225 #endif
2227 credits = G_RSPD_TXQ0_CR(flags);
2228 if (credits)
2229 qs->txq[TXQ_ETH].processed += credits;
2231 credits = G_RSPD_TXQ2_CR(flags);
2232 if (credits)
2233 qs->txq[TXQ_CTRL].processed += credits;
2235 # if USE_GTS
2236 if (flags & F_RSPD_TXQ1_GTS)
2237 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2238 # endif
2239 credits = G_RSPD_TXQ1_CR(flags);
2240 if (credits)
2241 qs->txq[TXQ_OFLD].processed += credits;
2245 * check_ring_db - check if we need to ring any doorbells
2246 * @adap: the adapter
2247 * @qs: the queue set whose Tx queues are to be examined
2248 * @sleeping: indicates which Tx queue sent GTS
2250 * Checks if some of a queue set's Tx queues need to ring their doorbells
2251 * to resume transmission after idling while they still have unprocessed
2252 * descriptors.
2254 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2255 unsigned int sleeping)
2257 if (sleeping & F_RSPD_TXQ0_GTS) {
2258 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2260 if (txq->cleaned + txq->in_use != txq->processed &&
2261 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2262 set_bit(TXQ_RUNNING, &txq->flags);
2263 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2264 V_EGRCNTX(txq->cntxt_id));
2268 if (sleeping & F_RSPD_TXQ1_GTS) {
2269 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2271 if (txq->cleaned + txq->in_use != txq->processed &&
2272 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2273 set_bit(TXQ_RUNNING, &txq->flags);
2274 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2275 V_EGRCNTX(txq->cntxt_id));
2281 * is_new_response - check if a response is newly written
2282 * @r: the response descriptor
2283 * @q: the response queue
2285 * Returns true if a response descriptor contains a yet unprocessed
2286 * response.
2288 static inline int is_new_response(const struct rsp_desc *r,
2289 const struct sge_rspq *q)
2291 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2294 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2296 q->pg_skb = NULL;
2297 q->rx_recycle_buf = 0;
2300 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2301 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2302 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2303 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2304 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2306 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2307 #define NOMEM_INTR_DELAY 2500
2310 * process_responses - process responses from an SGE response queue
2311 * @adap: the adapter
2312 * @qs: the queue set to which the response queue belongs
2313 * @budget: how many responses can be processed in this round
2315 * Process responses from an SGE response queue up to the supplied budget.
2316 * Responses include received packets as well as credits and other events
2317 * for the queues that belong to the response queue's queue set.
2318 * A negative budget is effectively unlimited.
2320 * Additionally choose the interrupt holdoff time for the next interrupt
2321 * on this queue. If the system is under memory shortage use a fairly
2322 * long delay to help recovery.
2324 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2325 int budget)
2327 struct sge_rspq *q = &qs->rspq;
2328 struct rsp_desc *r = &q->desc[q->cidx];
2329 int budget_left = budget;
2330 unsigned int sleeping = 0;
2331 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2332 int ngathered = 0;
2334 q->next_holdoff = q->holdoff_tmr;
2336 while (likely(budget_left && is_new_response(r, q))) {
2337 int packet_complete, eth, ethpad = 2;
2338 int lro = !!(qs->netdev->features & NETIF_F_GRO);
2339 struct sk_buff *skb = NULL;
2340 u32 len, flags;
2341 __be32 rss_hi, rss_lo;
2343 dma_rmb();
2344 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2345 rss_hi = *(const __be32 *)r;
2346 rss_lo = r->rss_hdr.rss_hash_val;
2347 flags = ntohl(r->flags);
2349 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2350 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2351 if (!skb)
2352 goto no_mem;
2354 __skb_put_data(skb, r, AN_PKT_SIZE);
2355 skb->data[0] = CPL_ASYNC_NOTIF;
2356 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2357 q->async_notif++;
2358 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2359 skb = get_imm_packet(r);
2360 if (unlikely(!skb)) {
2361 no_mem:
2362 q->next_holdoff = NOMEM_INTR_DELAY;
2363 q->nomem++;
2364 /* consume one credit since we tried */
2365 budget_left--;
2366 break;
2368 q->imm_data++;
2369 ethpad = 0;
2370 } else if ((len = ntohl(r->len_cq)) != 0) {
2371 struct sge_fl *fl;
2373 lro &= eth && is_eth_tcp(rss_hi);
2375 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2376 if (fl->use_pages) {
2377 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2379 net_prefetch(addr);
2380 __refill_fl(adap, fl);
2381 if (lro > 0) {
2382 lro_add_page(adap, qs, fl,
2383 G_RSPD_LEN(len),
2384 flags & F_RSPD_EOP);
2385 goto next_fl;
2388 skb = get_packet_pg(adap, fl, q,
2389 G_RSPD_LEN(len),
2390 eth ?
2391 SGE_RX_DROP_THRES : 0);
2392 q->pg_skb = skb;
2393 } else
2394 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2395 eth ? SGE_RX_DROP_THRES : 0);
2396 if (unlikely(!skb)) {
2397 if (!eth)
2398 goto no_mem;
2399 q->rx_drops++;
2400 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2401 __skb_pull(skb, 2);
2402 next_fl:
2403 if (++fl->cidx == fl->size)
2404 fl->cidx = 0;
2405 } else
2406 q->pure_rsps++;
2408 if (flags & RSPD_CTRL_MASK) {
2409 sleeping |= flags & RSPD_GTS_MASK;
2410 handle_rsp_cntrl_info(qs, flags);
2413 r++;
2414 if (unlikely(++q->cidx == q->size)) {
2415 q->cidx = 0;
2416 q->gen ^= 1;
2417 r = q->desc;
2419 prefetch(r);
2421 if (++q->credits >= (q->size / 4)) {
2422 refill_rspq(adap, q, q->credits);
2423 q->credits = 0;
2426 packet_complete = flags &
2427 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2428 F_RSPD_ASYNC_NOTIF);
2430 if (skb != NULL && packet_complete) {
2431 if (eth)
2432 rx_eth(adap, q, skb, ethpad, lro);
2433 else {
2434 q->offload_pkts++;
2435 /* Preserve the RSS info in csum & priority */
2436 skb->csum = rss_hi;
2437 skb->priority = rss_lo;
2438 ngathered = rx_offload(&adap->tdev, q, skb,
2439 offload_skbs,
2440 ngathered);
2443 if (flags & F_RSPD_EOP)
2444 clear_rspq_bufstate(q);
2446 --budget_left;
2449 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2451 if (sleeping)
2452 check_ring_db(adap, qs, sleeping);
2454 smp_mb(); /* commit Tx queue .processed updates */
2455 if (unlikely(qs->txq_stopped != 0))
2456 restart_tx(qs);
2458 budget -= budget_left;
2459 return budget;
2462 static inline int is_pure_response(const struct rsp_desc *r)
2464 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2466 return (n | r->len_cq) == 0;
2470 * napi_rx_handler - the NAPI handler for Rx processing
2471 * @napi: the napi instance
2472 * @budget: how many packets we can process in this round
2474 * Handler for new data events when using NAPI.
2476 static int napi_rx_handler(struct napi_struct *napi, int budget)
2478 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2479 struct adapter *adap = qs->adap;
2480 int work_done = process_responses(adap, qs, budget);
2482 if (likely(work_done < budget)) {
2483 napi_complete_done(napi, work_done);
2486 * Because we don't atomically flush the following
2487 * write it is possible that in very rare cases it can
2488 * reach the device in a way that races with a new
2489 * response being written plus an error interrupt
2490 * causing the NAPI interrupt handler below to return
2491 * unhandled status to the OS. To protect against
2492 * this would require flushing the write and doing
2493 * both the write and the flush with interrupts off.
2494 * Way too expensive and unjustifiable given the
2495 * rarity of the race.
2497 * The race cannot happen at all with MSI-X.
2499 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2500 V_NEWTIMER(qs->rspq.next_holdoff) |
2501 V_NEWINDEX(qs->rspq.cidx));
2503 return work_done;
2507 * Returns true if the device is already scheduled for polling.
2509 static inline int napi_is_scheduled(struct napi_struct *napi)
2511 return test_bit(NAPI_STATE_SCHED, &napi->state);
2515 * process_pure_responses - process pure responses from a response queue
2516 * @adap: the adapter
2517 * @qs: the queue set owning the response queue
2518 * @r: the first pure response to process
2520 * A simpler version of process_responses() that handles only pure (i.e.,
2521 * non data-carrying) responses. Such respones are too light-weight to
2522 * justify calling a softirq under NAPI, so we handle them specially in
2523 * the interrupt handler. The function is called with a pointer to a
2524 * response, which the caller must ensure is a valid pure response.
2526 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2528 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2529 struct rsp_desc *r)
2531 struct sge_rspq *q = &qs->rspq;
2532 unsigned int sleeping = 0;
2534 do {
2535 u32 flags = ntohl(r->flags);
2537 r++;
2538 if (unlikely(++q->cidx == q->size)) {
2539 q->cidx = 0;
2540 q->gen ^= 1;
2541 r = q->desc;
2543 prefetch(r);
2545 if (flags & RSPD_CTRL_MASK) {
2546 sleeping |= flags & RSPD_GTS_MASK;
2547 handle_rsp_cntrl_info(qs, flags);
2550 q->pure_rsps++;
2551 if (++q->credits >= (q->size / 4)) {
2552 refill_rspq(adap, q, q->credits);
2553 q->credits = 0;
2555 if (!is_new_response(r, q))
2556 break;
2557 dma_rmb();
2558 } while (is_pure_response(r));
2560 if (sleeping)
2561 check_ring_db(adap, qs, sleeping);
2563 smp_mb(); /* commit Tx queue .processed updates */
2564 if (unlikely(qs->txq_stopped != 0))
2565 restart_tx(qs);
2567 return is_new_response(r, q);
2571 * handle_responses - decide what to do with new responses in NAPI mode
2572 * @adap: the adapter
2573 * @q: the response queue
2575 * This is used by the NAPI interrupt handlers to decide what to do with
2576 * new SGE responses. If there are no new responses it returns -1. If
2577 * there are new responses and they are pure (i.e., non-data carrying)
2578 * it handles them straight in hard interrupt context as they are very
2579 * cheap and don't deliver any packets. Finally, if there are any data
2580 * signaling responses it schedules the NAPI handler. Returns 1 if it
2581 * schedules NAPI, 0 if all new responses were pure.
2583 * The caller must ascertain NAPI is not already running.
2585 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2587 struct sge_qset *qs = rspq_to_qset(q);
2588 struct rsp_desc *r = &q->desc[q->cidx];
2590 if (!is_new_response(r, q))
2591 return -1;
2592 dma_rmb();
2593 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2594 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2595 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2596 return 0;
2598 napi_schedule(&qs->napi);
2599 return 1;
2603 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2604 * (i.e., response queue serviced in hard interrupt).
2606 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2608 struct sge_qset *qs = cookie;
2609 struct adapter *adap = qs->adap;
2610 struct sge_rspq *q = &qs->rspq;
2612 spin_lock(&q->lock);
2613 if (process_responses(adap, qs, -1) == 0)
2614 q->unhandled_irqs++;
2615 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2616 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2617 spin_unlock(&q->lock);
2618 return IRQ_HANDLED;
2622 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2623 * (i.e., response queue serviced by NAPI polling).
2625 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2627 struct sge_qset *qs = cookie;
2628 struct sge_rspq *q = &qs->rspq;
2630 spin_lock(&q->lock);
2632 if (handle_responses(qs->adap, q) < 0)
2633 q->unhandled_irqs++;
2634 spin_unlock(&q->lock);
2635 return IRQ_HANDLED;
2639 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2640 * SGE response queues as well as error and other async events as they all use
2641 * the same MSI vector. We use one SGE response queue per port in this mode
2642 * and protect all response queues with queue 0's lock.
2644 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2646 int new_packets = 0;
2647 struct adapter *adap = cookie;
2648 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2650 spin_lock(&q->lock);
2652 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2653 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2654 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2655 new_packets = 1;
2658 if (adap->params.nports == 2 &&
2659 process_responses(adap, &adap->sge.qs[1], -1)) {
2660 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2662 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2663 V_NEWTIMER(q1->next_holdoff) |
2664 V_NEWINDEX(q1->cidx));
2665 new_packets = 1;
2668 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2669 q->unhandled_irqs++;
2671 spin_unlock(&q->lock);
2672 return IRQ_HANDLED;
2675 static int rspq_check_napi(struct sge_qset *qs)
2677 struct sge_rspq *q = &qs->rspq;
2679 if (!napi_is_scheduled(&qs->napi) &&
2680 is_new_response(&q->desc[q->cidx], q)) {
2681 napi_schedule(&qs->napi);
2682 return 1;
2684 return 0;
2688 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2689 * by NAPI polling). Handles data events from SGE response queues as well as
2690 * error and other async events as they all use the same MSI vector. We use
2691 * one SGE response queue per port in this mode and protect all response
2692 * queues with queue 0's lock.
2694 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2696 int new_packets;
2697 struct adapter *adap = cookie;
2698 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2700 spin_lock(&q->lock);
2702 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2703 if (adap->params.nports == 2)
2704 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2705 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2706 q->unhandled_irqs++;
2708 spin_unlock(&q->lock);
2709 return IRQ_HANDLED;
2713 * A helper function that processes responses and issues GTS.
2715 static inline int process_responses_gts(struct adapter *adap,
2716 struct sge_rspq *rq)
2718 int work;
2720 work = process_responses(adap, rspq_to_qset(rq), -1);
2721 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2722 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2723 return work;
2727 * The legacy INTx interrupt handler. This needs to handle data events from
2728 * SGE response queues as well as error and other async events as they all use
2729 * the same interrupt pin. We use one SGE response queue per port in this mode
2730 * and protect all response queues with queue 0's lock.
2732 static irqreturn_t t3_intr(int irq, void *cookie)
2734 int work_done, w0, w1;
2735 struct adapter *adap = cookie;
2736 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2737 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2739 spin_lock(&q0->lock);
2741 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2742 w1 = adap->params.nports == 2 &&
2743 is_new_response(&q1->desc[q1->cidx], q1);
2745 if (likely(w0 | w1)) {
2746 t3_write_reg(adap, A_PL_CLI, 0);
2747 t3_read_reg(adap, A_PL_CLI); /* flush */
2749 if (likely(w0))
2750 process_responses_gts(adap, q0);
2752 if (w1)
2753 process_responses_gts(adap, q1);
2755 work_done = w0 | w1;
2756 } else
2757 work_done = t3_slow_intr_handler(adap);
2759 spin_unlock(&q0->lock);
2760 return IRQ_RETVAL(work_done != 0);
2764 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2765 * Handles data events from SGE response queues as well as error and other
2766 * async events as they all use the same interrupt pin. We use one SGE
2767 * response queue per port in this mode and protect all response queues with
2768 * queue 0's lock.
2770 static irqreturn_t t3b_intr(int irq, void *cookie)
2772 u32 map;
2773 struct adapter *adap = cookie;
2774 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2776 t3_write_reg(adap, A_PL_CLI, 0);
2777 map = t3_read_reg(adap, A_SG_DATA_INTR);
2779 if (unlikely(!map)) /* shared interrupt, most likely */
2780 return IRQ_NONE;
2782 spin_lock(&q0->lock);
2784 if (unlikely(map & F_ERRINTR))
2785 t3_slow_intr_handler(adap);
2787 if (likely(map & 1))
2788 process_responses_gts(adap, q0);
2790 if (map & 2)
2791 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2793 spin_unlock(&q0->lock);
2794 return IRQ_HANDLED;
2798 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2799 * Handles data events from SGE response queues as well as error and other
2800 * async events as they all use the same interrupt pin. We use one SGE
2801 * response queue per port in this mode and protect all response queues with
2802 * queue 0's lock.
2804 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2806 u32 map;
2807 struct adapter *adap = cookie;
2808 struct sge_qset *qs0 = &adap->sge.qs[0];
2809 struct sge_rspq *q0 = &qs0->rspq;
2811 t3_write_reg(adap, A_PL_CLI, 0);
2812 map = t3_read_reg(adap, A_SG_DATA_INTR);
2814 if (unlikely(!map)) /* shared interrupt, most likely */
2815 return IRQ_NONE;
2817 spin_lock(&q0->lock);
2819 if (unlikely(map & F_ERRINTR))
2820 t3_slow_intr_handler(adap);
2822 if (likely(map & 1))
2823 napi_schedule(&qs0->napi);
2825 if (map & 2)
2826 napi_schedule(&adap->sge.qs[1].napi);
2828 spin_unlock(&q0->lock);
2829 return IRQ_HANDLED;
2833 * t3_intr_handler - select the top-level interrupt handler
2834 * @adap: the adapter
2835 * @polling: whether using NAPI to service response queues
2837 * Selects the top-level interrupt handler based on the type of interrupts
2838 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2839 * response queues.
2841 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2843 if (adap->flags & USING_MSIX)
2844 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2845 if (adap->flags & USING_MSI)
2846 return polling ? t3_intr_msi_napi : t3_intr_msi;
2847 if (adap->params.rev > 0)
2848 return polling ? t3b_intr_napi : t3b_intr;
2849 return t3_intr;
2852 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2853 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2854 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2855 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2856 F_HIRCQPARITYERROR)
2857 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2858 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2859 F_RSPQDISABLED)
2862 * t3_sge_err_intr_handler - SGE async event interrupt handler
2863 * @adapter: the adapter
2865 * Interrupt handler for SGE asynchronous (non-data) events.
2867 void t3_sge_err_intr_handler(struct adapter *adapter)
2869 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2870 ~F_FLEMPTY;
2872 if (status & SGE_PARERR)
2873 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2874 status & SGE_PARERR);
2875 if (status & SGE_FRAMINGERR)
2876 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2877 status & SGE_FRAMINGERR);
2879 if (status & F_RSPQCREDITOVERFOW)
2880 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2882 if (status & F_RSPQDISABLED) {
2883 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2885 CH_ALERT(adapter,
2886 "packet delivered to disabled response queue "
2887 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2890 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2891 queue_work(cxgb3_wq, &adapter->db_drop_task);
2893 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2894 queue_work(cxgb3_wq, &adapter->db_full_task);
2896 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2897 queue_work(cxgb3_wq, &adapter->db_empty_task);
2899 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2900 if (status & SGE_FATALERR)
2901 t3_fatal_err(adapter);
2905 * sge_timer_tx - perform periodic maintenance of an SGE qset
2906 * @t: a timer list containing the SGE queue set to maintain
2908 * Runs periodically from a timer to perform maintenance of an SGE queue
2909 * set. It performs two tasks:
2911 * Cleans up any completed Tx descriptors that may still be pending.
2912 * Normal descriptor cleanup happens when new packets are added to a Tx
2913 * queue so this timer is relatively infrequent and does any cleanup only
2914 * if the Tx queue has not seen any new packets in a while. We make a
2915 * best effort attempt to reclaim descriptors, in that we don't wait
2916 * around if we cannot get a queue's lock (which most likely is because
2917 * someone else is queueing new packets and so will also handle the clean
2918 * up). Since control queues use immediate data exclusively we don't
2919 * bother cleaning them up here.
2922 static void sge_timer_tx(struct timer_list *t)
2924 struct sge_qset *qs = from_timer(qs, t, tx_reclaim_timer);
2925 struct port_info *pi = netdev_priv(qs->netdev);
2926 struct adapter *adap = pi->adapter;
2927 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2928 unsigned long next_period;
2930 if (__netif_tx_trylock(qs->tx_q)) {
2931 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2932 TX_RECLAIM_TIMER_CHUNK);
2933 __netif_tx_unlock(qs->tx_q);
2936 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2937 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2938 TX_RECLAIM_TIMER_CHUNK);
2939 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2942 next_period = TX_RECLAIM_PERIOD >>
2943 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2944 TX_RECLAIM_TIMER_CHUNK);
2945 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2949 * sge_timer_rx - perform periodic maintenance of an SGE qset
2950 * @t: the timer list containing the SGE queue set to maintain
2952 * a) Replenishes Rx queues that have run out due to memory shortage.
2953 * Normally new Rx buffers are added when existing ones are consumed but
2954 * when out of memory a queue can become empty. We try to add only a few
2955 * buffers here, the queue will be replenished fully as these new buffers
2956 * are used up if memory shortage has subsided.
2958 * b) Return coalesced response queue credits in case a response queue is
2959 * starved.
2962 static void sge_timer_rx(struct timer_list *t)
2964 spinlock_t *lock;
2965 struct sge_qset *qs = from_timer(qs, t, rx_reclaim_timer);
2966 struct port_info *pi = netdev_priv(qs->netdev);
2967 struct adapter *adap = pi->adapter;
2968 u32 status;
2970 lock = adap->params.rev > 0 ?
2971 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2973 if (!spin_trylock_irq(lock))
2974 goto out;
2976 if (napi_is_scheduled(&qs->napi))
2977 goto unlock;
2979 if (adap->params.rev < 4) {
2980 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2982 if (status & (1 << qs->rspq.cntxt_id)) {
2983 qs->rspq.starved++;
2984 if (qs->rspq.credits) {
2985 qs->rspq.credits--;
2986 refill_rspq(adap, &qs->rspq, 1);
2987 qs->rspq.restarted++;
2988 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2989 1 << qs->rspq.cntxt_id);
2994 if (qs->fl[0].credits < qs->fl[0].size)
2995 __refill_fl(adap, &qs->fl[0]);
2996 if (qs->fl[1].credits < qs->fl[1].size)
2997 __refill_fl(adap, &qs->fl[1]);
2999 unlock:
3000 spin_unlock_irq(lock);
3001 out:
3002 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3006 * t3_update_qset_coalesce - update coalescing settings for a queue set
3007 * @qs: the SGE queue set
3008 * @p: new queue set parameters
3010 * Update the coalescing settings for an SGE queue set. Nothing is done
3011 * if the queue set is not initialized yet.
3013 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
3015 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
3016 qs->rspq.polling = p->polling;
3017 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
3021 * t3_sge_alloc_qset - initialize an SGE queue set
3022 * @adapter: the adapter
3023 * @id: the queue set id
3024 * @nports: how many Ethernet ports will be using this queue set
3025 * @irq_vec_idx: the IRQ vector index for response queue interrupts
3026 * @p: configuration parameters for this queue set
3027 * @ntxq: number of Tx queues for the queue set
3028 * @dev: net device associated with this queue set
3029 * @netdevq: net device TX queue associated with this queue set
3031 * Allocate resources and initialize an SGE queue set. A queue set
3032 * comprises a response queue, two Rx free-buffer queues, and up to 3
3033 * Tx queues. The Tx queues are assigned roles in the order Ethernet
3034 * queue, offload queue, and control queue.
3036 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
3037 int irq_vec_idx, const struct qset_params *p,
3038 int ntxq, struct net_device *dev,
3039 struct netdev_queue *netdevq)
3041 int i, avail, ret = -ENOMEM;
3042 struct sge_qset *q = &adapter->sge.qs[id];
3044 init_qset_cntxt(q, id);
3045 timer_setup(&q->tx_reclaim_timer, sge_timer_tx, 0);
3046 timer_setup(&q->rx_reclaim_timer, sge_timer_rx, 0);
3048 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3049 sizeof(struct rx_desc),
3050 sizeof(struct rx_sw_desc),
3051 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3052 if (!q->fl[0].desc)
3053 goto err;
3055 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3056 sizeof(struct rx_desc),
3057 sizeof(struct rx_sw_desc),
3058 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3059 if (!q->fl[1].desc)
3060 goto err;
3062 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3063 sizeof(struct rsp_desc), 0,
3064 &q->rspq.phys_addr, NULL);
3065 if (!q->rspq.desc)
3066 goto err;
3068 for (i = 0; i < ntxq; ++i) {
3070 * The control queue always uses immediate data so does not
3071 * need to keep track of any sk_buffs.
3073 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3075 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3076 sizeof(struct tx_desc), sz,
3077 &q->txq[i].phys_addr,
3078 &q->txq[i].sdesc);
3079 if (!q->txq[i].desc)
3080 goto err;
3082 q->txq[i].gen = 1;
3083 q->txq[i].size = p->txq_size[i];
3084 spin_lock_init(&q->txq[i].lock);
3085 skb_queue_head_init(&q->txq[i].sendq);
3088 tasklet_setup(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq);
3089 tasklet_setup(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq);
3091 q->fl[0].gen = q->fl[1].gen = 1;
3092 q->fl[0].size = p->fl_size;
3093 q->fl[1].size = p->jumbo_size;
3095 q->rspq.gen = 1;
3096 q->rspq.size = p->rspq_size;
3097 spin_lock_init(&q->rspq.lock);
3098 skb_queue_head_init(&q->rspq.rx_queue);
3100 q->txq[TXQ_ETH].stop_thres = nports *
3101 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3103 #if FL0_PG_CHUNK_SIZE > 0
3104 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3105 #else
3106 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3107 #endif
3108 #if FL1_PG_CHUNK_SIZE > 0
3109 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3110 #else
3111 q->fl[1].buf_size = is_offload(adapter) ?
3112 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3113 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3114 #endif
3116 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3117 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3118 q->fl[0].order = FL0_PG_ORDER;
3119 q->fl[1].order = FL1_PG_ORDER;
3120 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3121 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3123 spin_lock_irq(&adapter->sge.reg_lock);
3125 /* FL threshold comparison uses < */
3126 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3127 q->rspq.phys_addr, q->rspq.size,
3128 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3129 if (ret)
3130 goto err_unlock;
3132 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3133 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3134 q->fl[i].phys_addr, q->fl[i].size,
3135 q->fl[i].buf_size - SGE_PG_RSVD,
3136 p->cong_thres, 1, 0);
3137 if (ret)
3138 goto err_unlock;
3141 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3142 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3143 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3144 1, 0);
3145 if (ret)
3146 goto err_unlock;
3148 if (ntxq > 1) {
3149 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3150 USE_GTS, SGE_CNTXT_OFLD, id,
3151 q->txq[TXQ_OFLD].phys_addr,
3152 q->txq[TXQ_OFLD].size, 0, 1, 0);
3153 if (ret)
3154 goto err_unlock;
3157 if (ntxq > 2) {
3158 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3159 SGE_CNTXT_CTRL, id,
3160 q->txq[TXQ_CTRL].phys_addr,
3161 q->txq[TXQ_CTRL].size,
3162 q->txq[TXQ_CTRL].token, 1, 0);
3163 if (ret)
3164 goto err_unlock;
3167 spin_unlock_irq(&adapter->sge.reg_lock);
3169 q->adap = adapter;
3170 q->netdev = dev;
3171 q->tx_q = netdevq;
3172 t3_update_qset_coalesce(q, p);
3174 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3175 GFP_KERNEL | __GFP_COMP);
3176 if (!avail) {
3177 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3178 ret = -ENOMEM;
3179 goto err;
3181 if (avail < q->fl[0].size)
3182 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3183 avail);
3185 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3186 GFP_KERNEL | __GFP_COMP);
3187 if (avail < q->fl[1].size)
3188 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3189 avail);
3190 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3192 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3193 V_NEWTIMER(q->rspq.holdoff_tmr));
3195 return 0;
3197 err_unlock:
3198 spin_unlock_irq(&adapter->sge.reg_lock);
3199 err:
3200 t3_free_qset(adapter, q);
3201 return ret;
3205 * t3_start_sge_timers - start SGE timer call backs
3206 * @adap: the adapter
3208 * Starts each SGE queue set's timer call back
3210 void t3_start_sge_timers(struct adapter *adap)
3212 int i;
3214 for (i = 0; i < SGE_QSETS; ++i) {
3215 struct sge_qset *q = &adap->sge.qs[i];
3217 if (q->tx_reclaim_timer.function)
3218 mod_timer(&q->tx_reclaim_timer,
3219 jiffies + TX_RECLAIM_PERIOD);
3221 if (q->rx_reclaim_timer.function)
3222 mod_timer(&q->rx_reclaim_timer,
3223 jiffies + RX_RECLAIM_PERIOD);
3228 * t3_stop_sge_timers - stop SGE timer call backs
3229 * @adap: the adapter
3231 * Stops each SGE queue set's timer call back
3233 void t3_stop_sge_timers(struct adapter *adap)
3235 int i;
3237 for (i = 0; i < SGE_QSETS; ++i) {
3238 struct sge_qset *q = &adap->sge.qs[i];
3240 if (q->tx_reclaim_timer.function)
3241 del_timer_sync(&q->tx_reclaim_timer);
3242 if (q->rx_reclaim_timer.function)
3243 del_timer_sync(&q->rx_reclaim_timer);
3248 * t3_free_sge_resources - free SGE resources
3249 * @adap: the adapter
3251 * Frees resources used by the SGE queue sets.
3253 void t3_free_sge_resources(struct adapter *adap)
3255 int i;
3257 for (i = 0; i < SGE_QSETS; ++i)
3258 t3_free_qset(adap, &adap->sge.qs[i]);
3262 * t3_sge_start - enable SGE
3263 * @adap: the adapter
3265 * Enables the SGE for DMAs. This is the last step in starting packet
3266 * transfers.
3268 void t3_sge_start(struct adapter *adap)
3270 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3274 * t3_sge_stop_dma - Disable SGE DMA engine operation
3275 * @adap: the adapter
3277 * Can be invoked from interrupt context e.g. error handler.
3279 * Note that this function cannot disable the restart of tasklets as
3280 * it cannot wait if called from interrupt context, however the
3281 * tasklets will have no effect since the doorbells are disabled. The
3282 * driver will call tg3_sge_stop() later from process context, at
3283 * which time the tasklets will be stopped if they are still running.
3285 void t3_sge_stop_dma(struct adapter *adap)
3287 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3291 * t3_sge_stop - disable SGE operation completly
3292 * @adap: the adapter
3294 * Called from process context. Disables the DMA engine and any
3295 * pending queue restart tasklets.
3297 void t3_sge_stop(struct adapter *adap)
3299 int i;
3301 t3_sge_stop_dma(adap);
3303 for (i = 0; i < SGE_QSETS; ++i) {
3304 struct sge_qset *qs = &adap->sge.qs[i];
3306 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3307 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3312 * t3_sge_init - initialize SGE
3313 * @adap: the adapter
3314 * @p: the SGE parameters
3316 * Performs SGE initialization needed every time after a chip reset.
3317 * We do not initialize any of the queue sets here, instead the driver
3318 * top-level must request those individually. We also do not enable DMA
3319 * here, that should be done after the queues have been set up.
3321 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3323 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3325 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3326 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3327 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3328 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3329 #if SGE_NUM_GENBITS == 1
3330 ctrl |= F_EGRGENCTRL;
3331 #endif
3332 if (adap->params.rev > 0) {
3333 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3334 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3336 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3337 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3338 V_LORCQDRBTHRSH(512));
3339 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3340 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3341 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3342 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3343 adap->params.rev < T3_REV_C ? 1000 : 500);
3344 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3345 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3346 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3347 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3348 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3352 * t3_sge_prep - one-time SGE initialization
3353 * @adap: the associated adapter
3354 * @p: SGE parameters
3356 * Performs one-time initialization of SGE SW state. Includes determining
3357 * defaults for the assorted SGE parameters, which admins can change until
3358 * they are used to initialize the SGE.
3360 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3362 int i;
3364 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3365 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3367 for (i = 0; i < SGE_QSETS; ++i) {
3368 struct qset_params *q = p->qset + i;
3370 q->polling = adap->params.rev > 0;
3371 q->coalesce_usecs = 5;
3372 q->rspq_size = 1024;
3373 q->fl_size = 1024;
3374 q->jumbo_size = 512;
3375 q->txq_size[TXQ_ETH] = 1024;
3376 q->txq_size[TXQ_OFLD] = 1024;
3377 q->txq_size[TXQ_CTRL] = 256;
3378 q->cong_thres = 0;
3381 spin_lock_init(&adap->sge.reg_lock);