WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_ethtool.c
blob61ea3ec5c3fcc980ddde91f1639a19908de3372a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2015 Chelsio Communications. All rights reserved.
4 */
6 #include <linux/firmware.h>
7 #include <linux/mdio.h>
9 #include "cxgb4.h"
10 #include "t4_regs.h"
11 #include "t4fw_api.h"
12 #include "cxgb4_cudbg.h"
13 #include "cxgb4_filter.h"
14 #include "cxgb4_tc_flower.h"
16 #define EEPROM_MAGIC 0x38E2F10C
18 static u32 get_msglevel(struct net_device *dev)
20 return netdev2adap(dev)->msg_enable;
23 static void set_msglevel(struct net_device *dev, u32 val)
25 netdev2adap(dev)->msg_enable = val;
28 enum cxgb4_ethtool_tests {
29 CXGB4_ETHTOOL_LB_TEST,
30 CXGB4_ETHTOOL_MAX_TEST,
33 static const char cxgb4_selftest_strings[CXGB4_ETHTOOL_MAX_TEST][ETH_GSTRING_LEN] = {
34 "Loop back test (offline)",
37 static const char * const flash_region_strings[] = {
38 "All",
39 "Firmware",
40 "PHY Firmware",
41 "Boot",
42 "Boot CFG",
45 static const char stats_strings[][ETH_GSTRING_LEN] = {
46 "tx_octets_ok ",
47 "tx_frames_ok ",
48 "tx_broadcast_frames ",
49 "tx_multicast_frames ",
50 "tx_unicast_frames ",
51 "tx_error_frames ",
53 "tx_frames_64 ",
54 "tx_frames_65_to_127 ",
55 "tx_frames_128_to_255 ",
56 "tx_frames_256_to_511 ",
57 "tx_frames_512_to_1023 ",
58 "tx_frames_1024_to_1518 ",
59 "tx_frames_1519_to_max ",
61 "tx_frames_dropped ",
62 "tx_pause_frames ",
63 "tx_ppp0_frames ",
64 "tx_ppp1_frames ",
65 "tx_ppp2_frames ",
66 "tx_ppp3_frames ",
67 "tx_ppp4_frames ",
68 "tx_ppp5_frames ",
69 "tx_ppp6_frames ",
70 "tx_ppp7_frames ",
72 "rx_octets_ok ",
73 "rx_frames_ok ",
74 "rx_broadcast_frames ",
75 "rx_multicast_frames ",
76 "rx_unicast_frames ",
78 "rx_frames_too_long ",
79 "rx_jabber_errors ",
80 "rx_fcs_errors ",
81 "rx_length_errors ",
82 "rx_symbol_errors ",
83 "rx_runt_frames ",
85 "rx_frames_64 ",
86 "rx_frames_65_to_127 ",
87 "rx_frames_128_to_255 ",
88 "rx_frames_256_to_511 ",
89 "rx_frames_512_to_1023 ",
90 "rx_frames_1024_to_1518 ",
91 "rx_frames_1519_to_max ",
93 "rx_pause_frames ",
94 "rx_ppp0_frames ",
95 "rx_ppp1_frames ",
96 "rx_ppp2_frames ",
97 "rx_ppp3_frames ",
98 "rx_ppp4_frames ",
99 "rx_ppp5_frames ",
100 "rx_ppp6_frames ",
101 "rx_ppp7_frames ",
103 "rx_bg0_frames_dropped ",
104 "rx_bg1_frames_dropped ",
105 "rx_bg2_frames_dropped ",
106 "rx_bg3_frames_dropped ",
107 "rx_bg0_frames_trunc ",
108 "rx_bg1_frames_trunc ",
109 "rx_bg2_frames_trunc ",
110 "rx_bg3_frames_trunc ",
112 "tso ",
113 "uso ",
114 "tx_csum_offload ",
115 "rx_csum_good ",
116 "vlan_extractions ",
117 "vlan_insertions ",
118 "gro_packets ",
119 "gro_merged ",
120 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
121 "tx_tls_encrypted_packets",
122 "tx_tls_encrypted_bytes ",
123 "tx_tls_ctx ",
124 "tx_tls_ooo ",
125 "tx_tls_skip_no_sync_data",
126 "tx_tls_drop_no_sync_data",
127 "tx_tls_drop_bypass_req ",
128 #endif
131 static char adapter_stats_strings[][ETH_GSTRING_LEN] = {
132 "db_drop ",
133 "db_full ",
134 "db_empty ",
135 "write_coal_success ",
136 "write_coal_fail ",
139 static char loopback_stats_strings[][ETH_GSTRING_LEN] = {
140 "-------Loopback----------- ",
141 "octets_ok ",
142 "frames_ok ",
143 "bcast_frames ",
144 "mcast_frames ",
145 "ucast_frames ",
146 "error_frames ",
147 "frames_64 ",
148 "frames_65_to_127 ",
149 "frames_128_to_255 ",
150 "frames_256_to_511 ",
151 "frames_512_to_1023 ",
152 "frames_1024_to_1518 ",
153 "frames_1519_to_max ",
154 "frames_dropped ",
155 "bg0_frames_dropped ",
156 "bg1_frames_dropped ",
157 "bg2_frames_dropped ",
158 "bg3_frames_dropped ",
159 "bg0_frames_trunc ",
160 "bg1_frames_trunc ",
161 "bg2_frames_trunc ",
162 "bg3_frames_trunc ",
165 static const char cxgb4_priv_flags_strings[][ETH_GSTRING_LEN] = {
166 [PRIV_FLAG_PORT_TX_VM_BIT] = "port_tx_vm_wr",
169 static int get_sset_count(struct net_device *dev, int sset)
171 switch (sset) {
172 case ETH_SS_STATS:
173 return ARRAY_SIZE(stats_strings) +
174 ARRAY_SIZE(adapter_stats_strings) +
175 ARRAY_SIZE(loopback_stats_strings);
176 case ETH_SS_PRIV_FLAGS:
177 return ARRAY_SIZE(cxgb4_priv_flags_strings);
178 case ETH_SS_TEST:
179 return ARRAY_SIZE(cxgb4_selftest_strings);
180 default:
181 return -EOPNOTSUPP;
185 static int get_regs_len(struct net_device *dev)
187 struct adapter *adap = netdev2adap(dev);
189 return t4_get_regs_len(adap);
192 static int get_eeprom_len(struct net_device *dev)
194 return EEPROMSIZE;
197 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
199 struct adapter *adapter = netdev2adap(dev);
200 u32 exprom_vers;
202 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
203 strlcpy(info->bus_info, pci_name(adapter->pdev),
204 sizeof(info->bus_info));
205 info->regdump_len = get_regs_len(dev);
207 if (adapter->params.fw_vers)
208 snprintf(info->fw_version, sizeof(info->fw_version),
209 "%u.%u.%u.%u, TP %u.%u.%u.%u",
210 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
211 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
212 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
213 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers),
214 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
215 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
216 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
217 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
219 if (!t4_get_exprom_version(adapter, &exprom_vers))
220 snprintf(info->erom_version, sizeof(info->erom_version),
221 "%u.%u.%u.%u",
222 FW_HDR_FW_VER_MAJOR_G(exprom_vers),
223 FW_HDR_FW_VER_MINOR_G(exprom_vers),
224 FW_HDR_FW_VER_MICRO_G(exprom_vers),
225 FW_HDR_FW_VER_BUILD_G(exprom_vers));
226 info->n_priv_flags = ARRAY_SIZE(cxgb4_priv_flags_strings);
229 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
231 if (stringset == ETH_SS_STATS) {
232 memcpy(data, stats_strings, sizeof(stats_strings));
233 data += sizeof(stats_strings);
234 memcpy(data, adapter_stats_strings,
235 sizeof(adapter_stats_strings));
236 data += sizeof(adapter_stats_strings);
237 memcpy(data, loopback_stats_strings,
238 sizeof(loopback_stats_strings));
239 } else if (stringset == ETH_SS_PRIV_FLAGS) {
240 memcpy(data, cxgb4_priv_flags_strings,
241 sizeof(cxgb4_priv_flags_strings));
242 } else if (stringset == ETH_SS_TEST) {
243 memcpy(data, cxgb4_selftest_strings,
244 sizeof(cxgb4_selftest_strings));
248 /* port stats maintained per queue of the port. They should be in the same
249 * order as in stats_strings above.
251 struct queue_port_stats {
252 u64 tso;
253 u64 uso;
254 u64 tx_csum;
255 u64 rx_csum;
256 u64 vlan_ex;
257 u64 vlan_ins;
258 u64 gro_pkts;
259 u64 gro_merged;
260 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
261 u64 tx_tls_encrypted_packets;
262 u64 tx_tls_encrypted_bytes;
263 u64 tx_tls_ctx;
264 u64 tx_tls_ooo;
265 u64 tx_tls_skip_no_sync_data;
266 u64 tx_tls_drop_no_sync_data;
267 u64 tx_tls_drop_bypass_req;
268 #endif
271 struct adapter_stats {
272 u64 db_drop;
273 u64 db_full;
274 u64 db_empty;
275 u64 wc_success;
276 u64 wc_fail;
279 static void collect_sge_port_stats(const struct adapter *adap,
280 const struct port_info *p,
281 struct queue_port_stats *s)
283 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
284 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
285 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
286 const struct ch_ktls_port_stats_debug *ktls_stats;
287 #endif
288 struct sge_eohw_txq *eohw_tx;
289 unsigned int i;
291 memset(s, 0, sizeof(*s));
292 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
293 s->tso += tx->tso;
294 s->uso += tx->uso;
295 s->tx_csum += tx->tx_cso;
296 s->rx_csum += rx->stats.rx_cso;
297 s->vlan_ex += rx->stats.vlan_ex;
298 s->vlan_ins += tx->vlan_ins;
299 s->gro_pkts += rx->stats.lro_pkts;
300 s->gro_merged += rx->stats.lro_merged;
303 if (adap->sge.eohw_txq) {
304 eohw_tx = &adap->sge.eohw_txq[p->first_qset];
305 for (i = 0; i < p->nqsets; i++, eohw_tx++) {
306 s->tso += eohw_tx->tso;
307 s->uso += eohw_tx->uso;
308 s->tx_csum += eohw_tx->tx_cso;
309 s->vlan_ins += eohw_tx->vlan_ins;
312 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
313 ktls_stats = &adap->ch_ktls_stats.ktls_port[p->port_id];
314 s->tx_tls_encrypted_packets =
315 atomic64_read(&ktls_stats->ktls_tx_encrypted_packets);
316 s->tx_tls_encrypted_bytes =
317 atomic64_read(&ktls_stats->ktls_tx_encrypted_bytes);
318 s->tx_tls_ctx = atomic64_read(&ktls_stats->ktls_tx_ctx);
319 s->tx_tls_ooo = atomic64_read(&ktls_stats->ktls_tx_ooo);
320 s->tx_tls_skip_no_sync_data =
321 atomic64_read(&ktls_stats->ktls_tx_skip_no_sync_data);
322 s->tx_tls_drop_no_sync_data =
323 atomic64_read(&ktls_stats->ktls_tx_drop_no_sync_data);
324 s->tx_tls_drop_bypass_req =
325 atomic64_read(&ktls_stats->ktls_tx_drop_bypass_req);
326 #endif
329 static void collect_adapter_stats(struct adapter *adap, struct adapter_stats *s)
331 u64 val1, val2;
333 memset(s, 0, sizeof(*s));
335 s->db_drop = adap->db_stats.db_drop;
336 s->db_full = adap->db_stats.db_full;
337 s->db_empty = adap->db_stats.db_empty;
339 if (!is_t4(adap->params.chip)) {
340 int v;
342 v = t4_read_reg(adap, SGE_STAT_CFG_A);
343 if (STATSOURCE_T5_G(v) == 7) {
344 val2 = t4_read_reg(adap, SGE_STAT_MATCH_A);
345 val1 = t4_read_reg(adap, SGE_STAT_TOTAL_A);
346 s->wc_success = val1 - val2;
347 s->wc_fail = val2;
352 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
353 u64 *data)
355 struct port_info *pi = netdev_priv(dev);
356 struct adapter *adapter = pi->adapter;
357 struct lb_port_stats s;
358 int i;
359 u64 *p0;
361 t4_get_port_stats_offset(adapter, pi->tx_chan,
362 (struct port_stats *)data,
363 &pi->stats_base);
365 data += sizeof(struct port_stats) / sizeof(u64);
366 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
367 data += sizeof(struct queue_port_stats) / sizeof(u64);
368 collect_adapter_stats(adapter, (struct adapter_stats *)data);
369 data += sizeof(struct adapter_stats) / sizeof(u64);
371 *data++ = (u64)pi->port_id;
372 memset(&s, 0, sizeof(s));
373 t4_get_lb_stats(adapter, pi->port_id, &s);
375 p0 = &s.octets;
376 for (i = 0; i < ARRAY_SIZE(loopback_stats_strings) - 1; i++)
377 *data++ = (unsigned long long)*p0++;
380 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
381 void *buf)
383 struct adapter *adap = netdev2adap(dev);
384 size_t buf_size;
386 buf_size = t4_get_regs_len(adap);
387 regs->version = mk_adap_vers(adap);
388 t4_get_regs(adap, buf, buf_size);
391 static int restart_autoneg(struct net_device *dev)
393 struct port_info *p = netdev_priv(dev);
395 if (!netif_running(dev))
396 return -EAGAIN;
397 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
398 return -EINVAL;
399 t4_restart_aneg(p->adapter, p->adapter->pf, p->tx_chan);
400 return 0;
403 static int identify_port(struct net_device *dev,
404 enum ethtool_phys_id_state state)
406 unsigned int val;
407 struct adapter *adap = netdev2adap(dev);
409 if (state == ETHTOOL_ID_ACTIVE)
410 val = 0xffff;
411 else if (state == ETHTOOL_ID_INACTIVE)
412 val = 0;
413 else
414 return -EINVAL;
416 return t4_identify_port(adap, adap->pf, netdev2pinfo(dev)->viid, val);
420 * from_fw_port_mod_type - translate Firmware Port/Module type to Ethtool
421 * @port_type: Firmware Port Type
422 * @mod_type: Firmware Module Type
424 * Translate Firmware Port/Module type to Ethtool Port Type.
426 static int from_fw_port_mod_type(enum fw_port_type port_type,
427 enum fw_port_module_type mod_type)
429 if (port_type == FW_PORT_TYPE_BT_SGMII ||
430 port_type == FW_PORT_TYPE_BT_XFI ||
431 port_type == FW_PORT_TYPE_BT_XAUI) {
432 return PORT_TP;
433 } else if (port_type == FW_PORT_TYPE_FIBER_XFI ||
434 port_type == FW_PORT_TYPE_FIBER_XAUI) {
435 return PORT_FIBRE;
436 } else if (port_type == FW_PORT_TYPE_SFP ||
437 port_type == FW_PORT_TYPE_QSFP_10G ||
438 port_type == FW_PORT_TYPE_QSA ||
439 port_type == FW_PORT_TYPE_QSFP ||
440 port_type == FW_PORT_TYPE_CR4_QSFP ||
441 port_type == FW_PORT_TYPE_CR_QSFP ||
442 port_type == FW_PORT_TYPE_CR2_QSFP ||
443 port_type == FW_PORT_TYPE_SFP28) {
444 if (mod_type == FW_PORT_MOD_TYPE_LR ||
445 mod_type == FW_PORT_MOD_TYPE_SR ||
446 mod_type == FW_PORT_MOD_TYPE_ER ||
447 mod_type == FW_PORT_MOD_TYPE_LRM)
448 return PORT_FIBRE;
449 else if (mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
450 mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
451 return PORT_DA;
452 else
453 return PORT_OTHER;
454 } else if (port_type == FW_PORT_TYPE_KR4_100G ||
455 port_type == FW_PORT_TYPE_KR_SFP28 ||
456 port_type == FW_PORT_TYPE_KR_XLAUI) {
457 return PORT_NONE;
460 return PORT_OTHER;
464 * speed_to_fw_caps - translate Port Speed to Firmware Port Capabilities
465 * @speed: speed in Kb/s
467 * Translates a specific Port Speed into a Firmware Port Capabilities
468 * value.
470 static unsigned int speed_to_fw_caps(int speed)
472 if (speed == 100)
473 return FW_PORT_CAP32_SPEED_100M;
474 if (speed == 1000)
475 return FW_PORT_CAP32_SPEED_1G;
476 if (speed == 10000)
477 return FW_PORT_CAP32_SPEED_10G;
478 if (speed == 25000)
479 return FW_PORT_CAP32_SPEED_25G;
480 if (speed == 40000)
481 return FW_PORT_CAP32_SPEED_40G;
482 if (speed == 50000)
483 return FW_PORT_CAP32_SPEED_50G;
484 if (speed == 100000)
485 return FW_PORT_CAP32_SPEED_100G;
486 if (speed == 200000)
487 return FW_PORT_CAP32_SPEED_200G;
488 if (speed == 400000)
489 return FW_PORT_CAP32_SPEED_400G;
490 return 0;
494 * fw_caps_to_lmm - translate Firmware to ethtool Link Mode Mask
495 * @port_type: Firmware Port Type
496 * @fw_caps: Firmware Port Capabilities
497 * @link_mode_mask: ethtool Link Mode Mask
499 * Translate a Firmware Port Capabilities specification to an ethtool
500 * Link Mode Mask.
502 static void fw_caps_to_lmm(enum fw_port_type port_type,
503 fw_port_cap32_t fw_caps,
504 unsigned long *link_mode_mask)
506 #define SET_LMM(__lmm_name) \
507 do { \
508 __set_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
509 link_mode_mask); \
510 } while (0)
512 #define FW_CAPS_TO_LMM(__fw_name, __lmm_name) \
513 do { \
514 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
515 SET_LMM(__lmm_name); \
516 } while (0)
518 switch (port_type) {
519 case FW_PORT_TYPE_BT_SGMII:
520 case FW_PORT_TYPE_BT_XFI:
521 case FW_PORT_TYPE_BT_XAUI:
522 SET_LMM(TP);
523 FW_CAPS_TO_LMM(SPEED_100M, 100baseT_Full);
524 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
525 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
526 break;
528 case FW_PORT_TYPE_KX4:
529 case FW_PORT_TYPE_KX:
530 SET_LMM(Backplane);
531 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
532 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
533 break;
535 case FW_PORT_TYPE_KR:
536 SET_LMM(Backplane);
537 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
538 break;
540 case FW_PORT_TYPE_BP_AP:
541 SET_LMM(Backplane);
542 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
543 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
544 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
545 break;
547 case FW_PORT_TYPE_BP4_AP:
548 SET_LMM(Backplane);
549 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
550 FW_CAPS_TO_LMM(SPEED_10G, 10000baseR_FEC);
551 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
552 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKX4_Full);
553 break;
555 case FW_PORT_TYPE_FIBER_XFI:
556 case FW_PORT_TYPE_FIBER_XAUI:
557 case FW_PORT_TYPE_SFP:
558 case FW_PORT_TYPE_QSFP_10G:
559 case FW_PORT_TYPE_QSA:
560 SET_LMM(FIBRE);
561 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
562 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
563 break;
565 case FW_PORT_TYPE_BP40_BA:
566 case FW_PORT_TYPE_QSFP:
567 SET_LMM(FIBRE);
568 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
569 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
570 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
571 break;
573 case FW_PORT_TYPE_CR_QSFP:
574 case FW_PORT_TYPE_SFP28:
575 SET_LMM(FIBRE);
576 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
577 FW_CAPS_TO_LMM(SPEED_10G, 10000baseT_Full);
578 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
579 break;
581 case FW_PORT_TYPE_KR_SFP28:
582 SET_LMM(Backplane);
583 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
584 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
585 FW_CAPS_TO_LMM(SPEED_25G, 25000baseKR_Full);
586 break;
588 case FW_PORT_TYPE_KR_XLAUI:
589 SET_LMM(Backplane);
590 FW_CAPS_TO_LMM(SPEED_1G, 1000baseKX_Full);
591 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
592 FW_CAPS_TO_LMM(SPEED_40G, 40000baseKR4_Full);
593 break;
595 case FW_PORT_TYPE_CR2_QSFP:
596 SET_LMM(FIBRE);
597 FW_CAPS_TO_LMM(SPEED_50G, 50000baseSR2_Full);
598 break;
600 case FW_PORT_TYPE_KR4_100G:
601 case FW_PORT_TYPE_CR4_QSFP:
602 SET_LMM(FIBRE);
603 FW_CAPS_TO_LMM(SPEED_1G, 1000baseT_Full);
604 FW_CAPS_TO_LMM(SPEED_10G, 10000baseKR_Full);
605 FW_CAPS_TO_LMM(SPEED_40G, 40000baseSR4_Full);
606 FW_CAPS_TO_LMM(SPEED_25G, 25000baseCR_Full);
607 FW_CAPS_TO_LMM(SPEED_50G, 50000baseCR2_Full);
608 FW_CAPS_TO_LMM(SPEED_100G, 100000baseCR4_Full);
609 break;
611 default:
612 break;
615 if (fw_caps & FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M)) {
616 FW_CAPS_TO_LMM(FEC_RS, FEC_RS);
617 FW_CAPS_TO_LMM(FEC_BASER_RS, FEC_BASER);
618 } else {
619 SET_LMM(FEC_NONE);
622 FW_CAPS_TO_LMM(ANEG, Autoneg);
623 FW_CAPS_TO_LMM(802_3_PAUSE, Pause);
624 FW_CAPS_TO_LMM(802_3_ASM_DIR, Asym_Pause);
626 #undef FW_CAPS_TO_LMM
627 #undef SET_LMM
631 * lmm_to_fw_caps - translate ethtool Link Mode Mask to Firmware
632 * capabilities
633 * @link_mode_mask: ethtool Link Mode Mask
635 * Translate ethtool Link Mode Mask into a Firmware Port capabilities
636 * value.
638 static unsigned int lmm_to_fw_caps(const unsigned long *link_mode_mask)
640 unsigned int fw_caps = 0;
642 #define LMM_TO_FW_CAPS(__lmm_name, __fw_name) \
643 do { \
644 if (test_bit(ETHTOOL_LINK_MODE_ ## __lmm_name ## _BIT, \
645 link_mode_mask)) \
646 fw_caps |= FW_PORT_CAP32_ ## __fw_name; \
647 } while (0)
649 LMM_TO_FW_CAPS(100baseT_Full, SPEED_100M);
650 LMM_TO_FW_CAPS(1000baseT_Full, SPEED_1G);
651 LMM_TO_FW_CAPS(10000baseT_Full, SPEED_10G);
652 LMM_TO_FW_CAPS(40000baseSR4_Full, SPEED_40G);
653 LMM_TO_FW_CAPS(25000baseCR_Full, SPEED_25G);
654 LMM_TO_FW_CAPS(50000baseCR2_Full, SPEED_50G);
655 LMM_TO_FW_CAPS(100000baseCR4_Full, SPEED_100G);
657 #undef LMM_TO_FW_CAPS
659 return fw_caps;
662 static int get_link_ksettings(struct net_device *dev,
663 struct ethtool_link_ksettings *link_ksettings)
665 struct port_info *pi = netdev_priv(dev);
666 struct ethtool_link_settings *base = &link_ksettings->base;
668 /* For the nonce, the Firmware doesn't send up Port State changes
669 * when the Virtual Interface attached to the Port is down. So
670 * if it's down, let's grab any changes.
672 if (!netif_running(dev))
673 (void)t4_update_port_info(pi);
675 ethtool_link_ksettings_zero_link_mode(link_ksettings, supported);
676 ethtool_link_ksettings_zero_link_mode(link_ksettings, advertising);
677 ethtool_link_ksettings_zero_link_mode(link_ksettings, lp_advertising);
679 base->port = from_fw_port_mod_type(pi->port_type, pi->mod_type);
681 if (pi->mdio_addr >= 0) {
682 base->phy_address = pi->mdio_addr;
683 base->mdio_support = (pi->port_type == FW_PORT_TYPE_BT_SGMII
684 ? ETH_MDIO_SUPPORTS_C22
685 : ETH_MDIO_SUPPORTS_C45);
686 } else {
687 base->phy_address = 255;
688 base->mdio_support = 0;
691 fw_caps_to_lmm(pi->port_type, pi->link_cfg.pcaps,
692 link_ksettings->link_modes.supported);
693 fw_caps_to_lmm(pi->port_type,
694 t4_link_acaps(pi->adapter,
695 pi->lport,
696 &pi->link_cfg),
697 link_ksettings->link_modes.advertising);
698 fw_caps_to_lmm(pi->port_type, pi->link_cfg.lpacaps,
699 link_ksettings->link_modes.lp_advertising);
701 base->speed = (netif_carrier_ok(dev)
702 ? pi->link_cfg.speed
703 : SPEED_UNKNOWN);
704 base->duplex = DUPLEX_FULL;
706 base->autoneg = pi->link_cfg.autoneg;
707 if (pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG)
708 ethtool_link_ksettings_add_link_mode(link_ksettings,
709 supported, Autoneg);
710 if (pi->link_cfg.autoneg)
711 ethtool_link_ksettings_add_link_mode(link_ksettings,
712 advertising, Autoneg);
714 return 0;
717 static int set_link_ksettings(struct net_device *dev,
718 const struct ethtool_link_ksettings *link_ksettings)
720 struct port_info *pi = netdev_priv(dev);
721 struct link_config *lc = &pi->link_cfg;
722 const struct ethtool_link_settings *base = &link_ksettings->base;
723 struct link_config old_lc;
724 unsigned int fw_caps;
725 int ret = 0;
727 /* only full-duplex supported */
728 if (base->duplex != DUPLEX_FULL)
729 return -EINVAL;
731 old_lc = *lc;
732 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) ||
733 base->autoneg == AUTONEG_DISABLE) {
734 fw_caps = speed_to_fw_caps(base->speed);
736 /* Speed must be supported by Physical Port Capabilities. */
737 if (!(lc->pcaps & fw_caps))
738 return -EINVAL;
740 lc->speed_caps = fw_caps;
741 lc->acaps = fw_caps;
742 } else {
743 fw_caps =
744 lmm_to_fw_caps(link_ksettings->link_modes.advertising);
745 if (!(lc->pcaps & fw_caps))
746 return -EINVAL;
747 lc->speed_caps = 0;
748 lc->acaps = fw_caps | FW_PORT_CAP32_ANEG;
750 lc->autoneg = base->autoneg;
752 /* If the firmware rejects the Link Configuration request, back out
753 * the changes and report the error.
755 ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox, pi->tx_chan, lc);
756 if (ret)
757 *lc = old_lc;
759 return ret;
762 /* Translate the Firmware FEC value into the ethtool value. */
763 static inline unsigned int fwcap_to_eth_fec(unsigned int fw_fec)
765 unsigned int eth_fec = 0;
767 if (fw_fec & FW_PORT_CAP32_FEC_RS)
768 eth_fec |= ETHTOOL_FEC_RS;
769 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
770 eth_fec |= ETHTOOL_FEC_BASER;
772 /* if nothing is set, then FEC is off */
773 if (!eth_fec)
774 eth_fec = ETHTOOL_FEC_OFF;
776 return eth_fec;
779 /* Translate Common Code FEC value into ethtool value. */
780 static inline unsigned int cc_to_eth_fec(unsigned int cc_fec)
782 unsigned int eth_fec = 0;
784 if (cc_fec & FEC_AUTO)
785 eth_fec |= ETHTOOL_FEC_AUTO;
786 if (cc_fec & FEC_RS)
787 eth_fec |= ETHTOOL_FEC_RS;
788 if (cc_fec & FEC_BASER_RS)
789 eth_fec |= ETHTOOL_FEC_BASER;
791 /* if nothing is set, then FEC is off */
792 if (!eth_fec)
793 eth_fec = ETHTOOL_FEC_OFF;
795 return eth_fec;
798 /* Translate ethtool FEC value into Common Code value. */
799 static inline unsigned int eth_to_cc_fec(unsigned int eth_fec)
801 unsigned int cc_fec = 0;
803 if (eth_fec & ETHTOOL_FEC_OFF)
804 return cc_fec;
806 if (eth_fec & ETHTOOL_FEC_AUTO)
807 cc_fec |= FEC_AUTO;
808 if (eth_fec & ETHTOOL_FEC_RS)
809 cc_fec |= FEC_RS;
810 if (eth_fec & ETHTOOL_FEC_BASER)
811 cc_fec |= FEC_BASER_RS;
813 return cc_fec;
816 static int get_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
818 const struct port_info *pi = netdev_priv(dev);
819 const struct link_config *lc = &pi->link_cfg;
821 /* Translate the Firmware FEC Support into the ethtool value. We
822 * always support IEEE 802.3 "automatic" selection of Link FEC type if
823 * any FEC is supported.
825 fec->fec = fwcap_to_eth_fec(lc->pcaps);
826 if (fec->fec != ETHTOOL_FEC_OFF)
827 fec->fec |= ETHTOOL_FEC_AUTO;
829 /* Translate the current internal FEC parameters into the
830 * ethtool values.
832 fec->active_fec = cc_to_eth_fec(lc->fec);
834 return 0;
837 static int set_fecparam(struct net_device *dev, struct ethtool_fecparam *fec)
839 struct port_info *pi = netdev_priv(dev);
840 struct link_config *lc = &pi->link_cfg;
841 struct link_config old_lc;
842 int ret;
844 /* Save old Link Configuration in case the L1 Configure below
845 * fails.
847 old_lc = *lc;
849 /* Try to perform the L1 Configure and return the result of that
850 * effort. If it fails, revert the attempted change.
852 lc->requested_fec = eth_to_cc_fec(fec->fec);
853 ret = t4_link_l1cfg(pi->adapter, pi->adapter->mbox,
854 pi->tx_chan, lc);
855 if (ret)
856 *lc = old_lc;
857 return ret;
860 static void get_pauseparam(struct net_device *dev,
861 struct ethtool_pauseparam *epause)
863 struct port_info *p = netdev_priv(dev);
865 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
866 epause->rx_pause = (p->link_cfg.advertised_fc & PAUSE_RX) != 0;
867 epause->tx_pause = (p->link_cfg.advertised_fc & PAUSE_TX) != 0;
870 static int set_pauseparam(struct net_device *dev,
871 struct ethtool_pauseparam *epause)
873 struct port_info *p = netdev_priv(dev);
874 struct link_config *lc = &p->link_cfg;
876 if (epause->autoneg == AUTONEG_DISABLE)
877 lc->requested_fc = 0;
878 else if (lc->pcaps & FW_PORT_CAP32_ANEG)
879 lc->requested_fc = PAUSE_AUTONEG;
880 else
881 return -EINVAL;
883 if (epause->rx_pause)
884 lc->requested_fc |= PAUSE_RX;
885 if (epause->tx_pause)
886 lc->requested_fc |= PAUSE_TX;
887 if (netif_running(dev))
888 return t4_link_l1cfg(p->adapter, p->adapter->mbox, p->tx_chan,
889 lc);
890 return 0;
893 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
895 const struct port_info *pi = netdev_priv(dev);
896 const struct sge *s = &pi->adapter->sge;
898 e->rx_max_pending = MAX_RX_BUFFERS;
899 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
900 e->rx_jumbo_max_pending = 0;
901 e->tx_max_pending = MAX_TXQ_ENTRIES;
903 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
904 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
905 e->rx_jumbo_pending = 0;
906 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
909 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
911 int i;
912 const struct port_info *pi = netdev_priv(dev);
913 struct adapter *adapter = pi->adapter;
914 struct sge *s = &adapter->sge;
916 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
917 e->tx_pending > MAX_TXQ_ENTRIES ||
918 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
919 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
920 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
921 return -EINVAL;
923 if (adapter->flags & CXGB4_FULL_INIT_DONE)
924 return -EBUSY;
926 for (i = 0; i < pi->nqsets; ++i) {
927 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
928 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
929 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
931 return 0;
935 * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
936 * @dev: the network device
937 * @us: the hold-off time in us, or 0 to disable timer
938 * @cnt: the hold-off packet count, or 0 to disable counter
940 * Set the RX interrupt hold-off parameters for a network device.
942 static int set_rx_intr_params(struct net_device *dev,
943 unsigned int us, unsigned int cnt)
945 int i, err;
946 struct port_info *pi = netdev_priv(dev);
947 struct adapter *adap = pi->adapter;
948 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
950 for (i = 0; i < pi->nqsets; i++, q++) {
951 err = cxgb4_set_rspq_intr_params(&q->rspq, us, cnt);
952 if (err)
953 return err;
955 return 0;
958 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
960 int i;
961 struct port_info *pi = netdev_priv(dev);
962 struct adapter *adap = pi->adapter;
963 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
965 for (i = 0; i < pi->nqsets; i++, q++)
966 q->rspq.adaptive_rx = adaptive_rx;
968 return 0;
971 static int get_adaptive_rx_setting(struct net_device *dev)
973 struct port_info *pi = netdev_priv(dev);
974 struct adapter *adap = pi->adapter;
975 struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
977 return q->rspq.adaptive_rx;
980 /* Return the current global Adapter SGE Doorbell Queue Timer Tick for all
981 * Ethernet TX Queues.
983 static int get_dbqtimer_tick(struct net_device *dev)
985 struct port_info *pi = netdev_priv(dev);
986 struct adapter *adap = pi->adapter;
988 if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
989 return 0;
991 return adap->sge.dbqtimer_tick;
994 /* Return the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
995 * associated with a Network Device.
997 static int get_dbqtimer(struct net_device *dev)
999 struct port_info *pi = netdev_priv(dev);
1000 struct adapter *adap = pi->adapter;
1001 struct sge_eth_txq *txq;
1003 txq = &adap->sge.ethtxq[pi->first_qset];
1005 if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1006 return 0;
1008 /* all of the TX Queues use the same Timer Index */
1009 return adap->sge.dbqtimer_val[txq->dbqtimerix];
1012 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
1013 * Queues. This is the fundamental "Tick" that sets the scale of values which
1014 * can be used. Individual Ethernet TX Queues index into a relatively small
1015 * array of Tick Multipliers. Changing the base Tick will thus change all of
1016 * the resulting Timer Values associated with those multipliers for all
1017 * Ethernet TX Queues.
1019 static int set_dbqtimer_tick(struct net_device *dev, int usecs)
1021 struct port_info *pi = netdev_priv(dev);
1022 struct adapter *adap = pi->adapter;
1023 struct sge *s = &adap->sge;
1024 u32 param, val;
1025 int ret;
1027 if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1028 return 0;
1030 /* return early if it's the same Timer Tick we're already using */
1031 if (s->dbqtimer_tick == usecs)
1032 return 0;
1034 /* attempt to set the new Timer Tick value */
1035 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1036 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
1037 val = usecs;
1038 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
1039 if (ret)
1040 return ret;
1041 s->dbqtimer_tick = usecs;
1043 /* if successful, reread resulting dependent Timer values */
1044 ret = t4_read_sge_dbqtimers(adap, ARRAY_SIZE(s->dbqtimer_val),
1045 s->dbqtimer_val);
1046 return ret;
1049 /* Set the SGE Doorbell Queue Timer Value for the Ethernet TX Queues
1050 * associated with a Network Device. There is a relatively small array of
1051 * possible Timer Values so we need to pick the closest value available.
1053 static int set_dbqtimer(struct net_device *dev, int usecs)
1055 int qix, timerix, min_timerix, delta, min_delta;
1056 struct port_info *pi = netdev_priv(dev);
1057 struct adapter *adap = pi->adapter;
1058 struct sge *s = &adap->sge;
1059 struct sge_eth_txq *txq;
1060 u32 param, val;
1061 int ret;
1063 if (!(adap->flags & CXGB4_SGE_DBQ_TIMER))
1064 return 0;
1066 /* Find the SGE Doorbell Timer Value that's closest to the requested
1067 * value.
1069 min_delta = INT_MAX;
1070 min_timerix = 0;
1071 for (timerix = 0; timerix < ARRAY_SIZE(s->dbqtimer_val); timerix++) {
1072 delta = s->dbqtimer_val[timerix] - usecs;
1073 if (delta < 0)
1074 delta = -delta;
1075 if (delta < min_delta) {
1076 min_delta = delta;
1077 min_timerix = timerix;
1081 /* Return early if it's the same Timer Index we're already using.
1082 * We use the same Timer Index for all of the TX Queues for an
1083 * interface so it's only necessary to check the first one.
1085 txq = &s->ethtxq[pi->first_qset];
1086 if (txq->dbqtimerix == min_timerix)
1087 return 0;
1089 for (qix = 0; qix < pi->nqsets; qix++, txq++) {
1090 if (adap->flags & CXGB4_FULL_INIT_DONE) {
1091 param =
1092 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1093 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_TIMERIX) |
1094 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
1095 val = min_timerix;
1096 ret = t4_set_params(adap, adap->mbox, adap->pf, 0,
1097 1, &param, &val);
1098 if (ret)
1099 return ret;
1101 txq->dbqtimerix = min_timerix;
1103 return 0;
1106 /* Set the global Adapter SGE Doorbell Queue Timer Tick for all Ethernet TX
1107 * Queues and the Timer Value for the Ethernet TX Queues associated with a
1108 * Network Device. Since changing the global Tick changes all of the
1109 * available Timer Values, we need to do this first before selecting the
1110 * resulting closest Timer Value. Moreover, since the Tick is global,
1111 * changing it affects the Timer Values for all Network Devices on the
1112 * adapter. So, before changing the Tick, we grab all of the current Timer
1113 * Values for other Network Devices on this Adapter and then attempt to select
1114 * new Timer Values which are close to the old values ...
1116 static int set_dbqtimer_tickval(struct net_device *dev,
1117 int tick_usecs, int timer_usecs)
1119 struct port_info *pi = netdev_priv(dev);
1120 struct adapter *adap = pi->adapter;
1121 int timer[MAX_NPORTS];
1122 unsigned int port;
1123 int ret;
1125 /* Grab the other adapter Network Interface current timers and fill in
1126 * the new one for this Network Interface.
1128 for_each_port(adap, port)
1129 if (port == pi->port_id)
1130 timer[port] = timer_usecs;
1131 else
1132 timer[port] = get_dbqtimer(adap->port[port]);
1134 /* Change the global Tick first ... */
1135 ret = set_dbqtimer_tick(dev, tick_usecs);
1136 if (ret)
1137 return ret;
1139 /* ... and then set all of the Network Interface Timer Values ... */
1140 for_each_port(adap, port) {
1141 ret = set_dbqtimer(adap->port[port], timer[port]);
1142 if (ret)
1143 return ret;
1146 return 0;
1149 static int set_coalesce(struct net_device *dev,
1150 struct ethtool_coalesce *coalesce)
1152 int ret;
1154 set_adaptive_rx_setting(dev, coalesce->use_adaptive_rx_coalesce);
1156 ret = set_rx_intr_params(dev, coalesce->rx_coalesce_usecs,
1157 coalesce->rx_max_coalesced_frames);
1158 if (ret)
1159 return ret;
1161 return set_dbqtimer_tickval(dev,
1162 coalesce->tx_coalesce_usecs_irq,
1163 coalesce->tx_coalesce_usecs);
1166 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1168 const struct port_info *pi = netdev_priv(dev);
1169 const struct adapter *adap = pi->adapter;
1170 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1172 c->rx_coalesce_usecs = qtimer_val(adap, rq);
1173 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN_F) ?
1174 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1175 c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
1176 c->tx_coalesce_usecs_irq = get_dbqtimer_tick(dev);
1177 c->tx_coalesce_usecs = get_dbqtimer(dev);
1178 return 0;
1181 /* The next two routines implement eeprom read/write from physical addresses.
1183 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1185 int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1187 if (vaddr >= 0)
1188 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1189 return vaddr < 0 ? vaddr : 0;
1192 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1194 int vaddr = t4_eeprom_ptov(phys_addr, adap->pf, EEPROMPFSIZE);
1196 if (vaddr >= 0)
1197 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1198 return vaddr < 0 ? vaddr : 0;
1201 #define EEPROM_MAGIC 0x38E2F10C
1203 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1204 u8 *data)
1206 int i, err = 0;
1207 struct adapter *adapter = netdev2adap(dev);
1208 u8 *buf = kvzalloc(EEPROMSIZE, GFP_KERNEL);
1210 if (!buf)
1211 return -ENOMEM;
1213 e->magic = EEPROM_MAGIC;
1214 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1215 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1217 if (!err)
1218 memcpy(data, buf + e->offset, e->len);
1219 kvfree(buf);
1220 return err;
1223 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1224 u8 *data)
1226 u8 *buf;
1227 int err = 0;
1228 u32 aligned_offset, aligned_len, *p;
1229 struct adapter *adapter = netdev2adap(dev);
1231 if (eeprom->magic != EEPROM_MAGIC)
1232 return -EINVAL;
1234 aligned_offset = eeprom->offset & ~3;
1235 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1237 if (adapter->pf > 0) {
1238 u32 start = 1024 + adapter->pf * EEPROMPFSIZE;
1240 if (aligned_offset < start ||
1241 aligned_offset + aligned_len > start + EEPROMPFSIZE)
1242 return -EPERM;
1245 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1246 /* RMW possibly needed for first or last words.
1248 buf = kvzalloc(aligned_len, GFP_KERNEL);
1249 if (!buf)
1250 return -ENOMEM;
1251 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1252 if (!err && aligned_len > 4)
1253 err = eeprom_rd_phys(adapter,
1254 aligned_offset + aligned_len - 4,
1255 (u32 *)&buf[aligned_len - 4]);
1256 if (err)
1257 goto out;
1258 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1259 } else {
1260 buf = data;
1263 err = t4_seeprom_wp(adapter, false);
1264 if (err)
1265 goto out;
1267 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1268 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1269 aligned_offset += 4;
1272 if (!err)
1273 err = t4_seeprom_wp(adapter, true);
1274 out:
1275 if (buf != data)
1276 kvfree(buf);
1277 return err;
1280 static int cxgb4_ethtool_flash_bootcfg(struct net_device *netdev,
1281 const u8 *data, u32 size)
1283 struct adapter *adap = netdev2adap(netdev);
1284 int ret;
1286 ret = t4_load_bootcfg(adap, data, size);
1287 if (ret)
1288 dev_err(adap->pdev_dev, "Failed to load boot cfg image\n");
1290 return ret;
1293 static int cxgb4_ethtool_flash_boot(struct net_device *netdev,
1294 const u8 *bdata, u32 size)
1296 struct adapter *adap = netdev2adap(netdev);
1297 unsigned int offset;
1298 u8 *data;
1299 int ret;
1301 data = kmemdup(bdata, size, GFP_KERNEL);
1302 if (!data)
1303 return -ENOMEM;
1305 offset = OFFSET_G(t4_read_reg(adap, PF_REG(0, PCIE_PF_EXPROM_OFST_A)));
1307 ret = t4_load_boot(adap, data, offset, size);
1308 if (ret)
1309 dev_err(adap->pdev_dev, "Failed to load boot image\n");
1311 kfree(data);
1312 return ret;
1315 #define CXGB4_PHY_SIG 0x130000ea
1317 static int cxgb4_validate_phy_image(const u8 *data, u32 *size)
1319 struct cxgb4_fw_data *header;
1321 header = (struct cxgb4_fw_data *)data;
1322 if (be32_to_cpu(header->signature) != CXGB4_PHY_SIG)
1323 return -EINVAL;
1325 return 0;
1328 static int cxgb4_ethtool_flash_phy(struct net_device *netdev,
1329 const u8 *data, u32 size)
1331 struct adapter *adap = netdev2adap(netdev);
1332 int ret;
1334 ret = cxgb4_validate_phy_image(data, NULL);
1335 if (ret) {
1336 dev_err(adap->pdev_dev, "PHY signature mismatch\n");
1337 return ret;
1340 spin_lock_bh(&adap->win0_lock);
1341 ret = t4_load_phy_fw(adap, MEMWIN_NIC, NULL, data, size);
1342 spin_unlock_bh(&adap->win0_lock);
1343 if (ret)
1344 dev_err(adap->pdev_dev, "Failed to load PHY FW\n");
1346 return ret;
1349 static int cxgb4_ethtool_flash_fw(struct net_device *netdev,
1350 const u8 *data, u32 size)
1352 struct adapter *adap = netdev2adap(netdev);
1353 unsigned int mbox = PCIE_FW_MASTER_M + 1;
1354 int ret;
1356 /* If the adapter has been fully initialized then we'll go ahead and
1357 * try to get the firmware's cooperation in upgrading to the new
1358 * firmware image otherwise we'll try to do the entire job from the
1359 * host ... and we always "force" the operation in this path.
1361 if (adap->flags & CXGB4_FULL_INIT_DONE)
1362 mbox = adap->mbox;
1364 ret = t4_fw_upgrade(adap, mbox, data, size, 1);
1365 if (ret)
1366 dev_err(adap->pdev_dev,
1367 "Failed to flash firmware\n");
1369 return ret;
1372 static int cxgb4_ethtool_flash_region(struct net_device *netdev,
1373 const u8 *data, u32 size, u32 region)
1375 struct adapter *adap = netdev2adap(netdev);
1376 int ret;
1378 switch (region) {
1379 case CXGB4_ETHTOOL_FLASH_FW:
1380 ret = cxgb4_ethtool_flash_fw(netdev, data, size);
1381 break;
1382 case CXGB4_ETHTOOL_FLASH_PHY:
1383 ret = cxgb4_ethtool_flash_phy(netdev, data, size);
1384 break;
1385 case CXGB4_ETHTOOL_FLASH_BOOT:
1386 ret = cxgb4_ethtool_flash_boot(netdev, data, size);
1387 break;
1388 case CXGB4_ETHTOOL_FLASH_BOOTCFG:
1389 ret = cxgb4_ethtool_flash_bootcfg(netdev, data, size);
1390 break;
1391 default:
1392 ret = -EOPNOTSUPP;
1393 break;
1396 if (!ret)
1397 dev_info(adap->pdev_dev,
1398 "loading %s successful, reload cxgb4 driver\n",
1399 flash_region_strings[region]);
1400 return ret;
1403 #define CXGB4_FW_SIG 0x4368656c
1404 #define CXGB4_FW_SIG_OFFSET 0x160
1406 static int cxgb4_validate_fw_image(const u8 *data, u32 *size)
1408 struct cxgb4_fw_data *header;
1410 header = (struct cxgb4_fw_data *)&data[CXGB4_FW_SIG_OFFSET];
1411 if (be32_to_cpu(header->signature) != CXGB4_FW_SIG)
1412 return -EINVAL;
1414 if (size)
1415 *size = be16_to_cpu(((struct fw_hdr *)data)->len512) * 512;
1417 return 0;
1420 static int cxgb4_validate_bootcfg_image(const u8 *data, u32 *size)
1422 struct cxgb4_bootcfg_data *header;
1424 header = (struct cxgb4_bootcfg_data *)data;
1425 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG)
1426 return -EINVAL;
1428 return 0;
1431 static int cxgb4_validate_boot_image(const u8 *data, u32 *size)
1433 struct cxgb4_pci_exp_rom_header *exp_header;
1434 struct cxgb4_pcir_data *pcir_header;
1435 struct legacy_pci_rom_hdr *header;
1436 const u8 *cur_header = data;
1437 u16 pcir_offset;
1439 exp_header = (struct cxgb4_pci_exp_rom_header *)data;
1441 if (le16_to_cpu(exp_header->signature) != BOOT_SIGNATURE)
1442 return -EINVAL;
1444 if (size) {
1445 do {
1446 header = (struct legacy_pci_rom_hdr *)cur_header;
1447 pcir_offset = le16_to_cpu(header->pcir_offset);
1448 pcir_header = (struct cxgb4_pcir_data *)(cur_header +
1449 pcir_offset);
1451 *size += header->size512 * 512;
1452 cur_header += header->size512 * 512;
1453 } while (!(pcir_header->indicator & CXGB4_HDR_INDI));
1456 return 0;
1459 static int cxgb4_ethtool_get_flash_region(const u8 *data, u32 *size)
1461 if (!cxgb4_validate_fw_image(data, size))
1462 return CXGB4_ETHTOOL_FLASH_FW;
1463 if (!cxgb4_validate_boot_image(data, size))
1464 return CXGB4_ETHTOOL_FLASH_BOOT;
1465 if (!cxgb4_validate_phy_image(data, size))
1466 return CXGB4_ETHTOOL_FLASH_PHY;
1467 if (!cxgb4_validate_bootcfg_image(data, size))
1468 return CXGB4_ETHTOOL_FLASH_BOOTCFG;
1470 return -EOPNOTSUPP;
1473 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1475 struct adapter *adap = netdev2adap(netdev);
1476 const struct firmware *fw;
1477 unsigned int master;
1478 u8 master_vld = 0;
1479 const u8 *fw_data;
1480 size_t fw_size;
1481 u32 size = 0;
1482 u32 pcie_fw;
1483 int region;
1484 int ret;
1486 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
1487 master = PCIE_FW_MASTER_G(pcie_fw);
1488 if (pcie_fw & PCIE_FW_MASTER_VLD_F)
1489 master_vld = 1;
1490 /* if csiostor is the master return */
1491 if (master_vld && (master != adap->pf)) {
1492 dev_warn(adap->pdev_dev,
1493 "cxgb4 driver needs to be loaded as MASTER to support FW flash\n");
1494 return -EOPNOTSUPP;
1497 ef->data[sizeof(ef->data) - 1] = '\0';
1498 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1499 if (ret < 0)
1500 return ret;
1502 fw_data = fw->data;
1503 fw_size = fw->size;
1504 if (ef->region == ETHTOOL_FLASH_ALL_REGIONS) {
1505 while (fw_size > 0) {
1506 size = 0;
1507 region = cxgb4_ethtool_get_flash_region(fw_data, &size);
1508 if (region < 0 || !size) {
1509 ret = region;
1510 goto out_free_fw;
1513 ret = cxgb4_ethtool_flash_region(netdev, fw_data, size,
1514 region);
1515 if (ret)
1516 goto out_free_fw;
1518 fw_data += size;
1519 fw_size -= size;
1521 } else {
1522 ret = cxgb4_ethtool_flash_region(netdev, fw_data, fw_size,
1523 ef->region);
1526 out_free_fw:
1527 release_firmware(fw);
1528 return ret;
1531 static int get_ts_info(struct net_device *dev, struct ethtool_ts_info *ts_info)
1533 struct port_info *pi = netdev_priv(dev);
1534 struct adapter *adapter = pi->adapter;
1536 ts_info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1537 SOF_TIMESTAMPING_RX_SOFTWARE |
1538 SOF_TIMESTAMPING_SOFTWARE;
1540 ts_info->so_timestamping |= SOF_TIMESTAMPING_RX_HARDWARE |
1541 SOF_TIMESTAMPING_TX_HARDWARE |
1542 SOF_TIMESTAMPING_RAW_HARDWARE;
1544 ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1545 (1 << HWTSTAMP_TX_ON);
1547 ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1548 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1549 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1550 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1551 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1552 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1554 if (adapter->ptp_clock)
1555 ts_info->phc_index = ptp_clock_index(adapter->ptp_clock);
1556 else
1557 ts_info->phc_index = -1;
1559 return 0;
1562 static u32 get_rss_table_size(struct net_device *dev)
1564 const struct port_info *pi = netdev_priv(dev);
1566 return pi->rss_size;
1569 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key, u8 *hfunc)
1571 const struct port_info *pi = netdev_priv(dev);
1572 unsigned int n = pi->rss_size;
1574 if (hfunc)
1575 *hfunc = ETH_RSS_HASH_TOP;
1576 if (!p)
1577 return 0;
1578 while (n--)
1579 p[n] = pi->rss[n];
1580 return 0;
1583 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key,
1584 const u8 hfunc)
1586 unsigned int i;
1587 struct port_info *pi = netdev_priv(dev);
1589 /* We require at least one supported parameter to be changed and no
1590 * change in any of the unsupported parameters
1592 if (key ||
1593 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
1594 return -EOPNOTSUPP;
1595 if (!p)
1596 return 0;
1598 /* Interface must be brought up atleast once */
1599 if (pi->adapter->flags & CXGB4_FULL_INIT_DONE) {
1600 for (i = 0; i < pi->rss_size; i++)
1601 pi->rss[i] = p[i];
1603 return cxgb4_write_rss(pi, pi->rss);
1606 return -EPERM;
1609 static struct filter_entry *cxgb4_get_filter_entry(struct adapter *adap,
1610 u32 ftid)
1612 struct tid_info *t = &adap->tids;
1613 struct filter_entry *f;
1615 if (ftid < t->nhpftids)
1616 f = &adap->tids.hpftid_tab[ftid];
1617 else if (ftid < t->nftids)
1618 f = &adap->tids.ftid_tab[ftid - t->nhpftids];
1619 else
1620 f = lookup_tid(&adap->tids, ftid);
1622 return f;
1625 static void cxgb4_fill_filter_rule(struct ethtool_rx_flow_spec *fs,
1626 struct ch_filter_specification *dfs)
1628 switch (dfs->val.proto) {
1629 case IPPROTO_TCP:
1630 if (dfs->type)
1631 fs->flow_type = TCP_V6_FLOW;
1632 else
1633 fs->flow_type = TCP_V4_FLOW;
1634 break;
1635 case IPPROTO_UDP:
1636 if (dfs->type)
1637 fs->flow_type = UDP_V6_FLOW;
1638 else
1639 fs->flow_type = UDP_V4_FLOW;
1640 break;
1643 if (dfs->type) {
1644 fs->h_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->val.fport);
1645 fs->m_u.tcp_ip6_spec.psrc = cpu_to_be16(dfs->mask.fport);
1646 fs->h_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->val.lport);
1647 fs->m_u.tcp_ip6_spec.pdst = cpu_to_be16(dfs->mask.lport);
1648 memcpy(&fs->h_u.tcp_ip6_spec.ip6src, &dfs->val.fip[0],
1649 sizeof(fs->h_u.tcp_ip6_spec.ip6src));
1650 memcpy(&fs->m_u.tcp_ip6_spec.ip6src, &dfs->mask.fip[0],
1651 sizeof(fs->m_u.tcp_ip6_spec.ip6src));
1652 memcpy(&fs->h_u.tcp_ip6_spec.ip6dst, &dfs->val.lip[0],
1653 sizeof(fs->h_u.tcp_ip6_spec.ip6dst));
1654 memcpy(&fs->m_u.tcp_ip6_spec.ip6dst, &dfs->mask.lip[0],
1655 sizeof(fs->m_u.tcp_ip6_spec.ip6dst));
1656 fs->h_u.tcp_ip6_spec.tclass = dfs->val.tos;
1657 fs->m_u.tcp_ip6_spec.tclass = dfs->mask.tos;
1658 } else {
1659 fs->h_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->val.fport);
1660 fs->m_u.tcp_ip4_spec.psrc = cpu_to_be16(dfs->mask.fport);
1661 fs->h_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->val.lport);
1662 fs->m_u.tcp_ip4_spec.pdst = cpu_to_be16(dfs->mask.lport);
1663 memcpy(&fs->h_u.tcp_ip4_spec.ip4src, &dfs->val.fip[0],
1664 sizeof(fs->h_u.tcp_ip4_spec.ip4src));
1665 memcpy(&fs->m_u.tcp_ip4_spec.ip4src, &dfs->mask.fip[0],
1666 sizeof(fs->m_u.tcp_ip4_spec.ip4src));
1667 memcpy(&fs->h_u.tcp_ip4_spec.ip4dst, &dfs->val.lip[0],
1668 sizeof(fs->h_u.tcp_ip4_spec.ip4dst));
1669 memcpy(&fs->m_u.tcp_ip4_spec.ip4dst, &dfs->mask.lip[0],
1670 sizeof(fs->m_u.tcp_ip4_spec.ip4dst));
1671 fs->h_u.tcp_ip4_spec.tos = dfs->val.tos;
1672 fs->m_u.tcp_ip4_spec.tos = dfs->mask.tos;
1674 fs->h_ext.vlan_tci = cpu_to_be16(dfs->val.ivlan);
1675 fs->m_ext.vlan_tci = cpu_to_be16(dfs->mask.ivlan);
1676 fs->flow_type |= FLOW_EXT;
1678 if (dfs->action == FILTER_DROP)
1679 fs->ring_cookie = RX_CLS_FLOW_DISC;
1680 else
1681 fs->ring_cookie = dfs->iq;
1684 static int cxgb4_ntuple_get_filter(struct net_device *dev,
1685 struct ethtool_rxnfc *cmd,
1686 unsigned int loc)
1688 const struct port_info *pi = netdev_priv(dev);
1689 struct adapter *adap = netdev2adap(dev);
1690 struct filter_entry *f;
1691 int ftid;
1693 if (!(adap->flags & CXGB4_FULL_INIT_DONE))
1694 return -EAGAIN;
1696 /* Check for maximum filter range */
1697 if (!adap->ethtool_filters)
1698 return -EOPNOTSUPP;
1700 if (loc >= adap->ethtool_filters->nentries)
1701 return -ERANGE;
1703 if (!test_bit(loc, adap->ethtool_filters->port[pi->port_id].bmap))
1704 return -ENOENT;
1706 ftid = adap->ethtool_filters->port[pi->port_id].loc_array[loc];
1708 /* Fetch filter_entry */
1709 f = cxgb4_get_filter_entry(adap, ftid);
1711 cxgb4_fill_filter_rule(&cmd->fs, &f->fs);
1713 return 0;
1716 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1717 u32 *rules)
1719 const struct port_info *pi = netdev_priv(dev);
1720 struct adapter *adap = netdev2adap(dev);
1721 unsigned int count = 0, index = 0;
1722 int ret = 0;
1724 switch (info->cmd) {
1725 case ETHTOOL_GRXFH: {
1726 unsigned int v = pi->rss_mode;
1728 info->data = 0;
1729 switch (info->flow_type) {
1730 case TCP_V4_FLOW:
1731 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F)
1732 info->data = RXH_IP_SRC | RXH_IP_DST |
1733 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1734 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1735 info->data = RXH_IP_SRC | RXH_IP_DST;
1736 break;
1737 case UDP_V4_FLOW:
1738 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) &&
1739 (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1740 info->data = RXH_IP_SRC | RXH_IP_DST |
1741 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1742 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1743 info->data = RXH_IP_SRC | RXH_IP_DST;
1744 break;
1745 case SCTP_V4_FLOW:
1746 case AH_ESP_V4_FLOW:
1747 case IPV4_FLOW:
1748 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F)
1749 info->data = RXH_IP_SRC | RXH_IP_DST;
1750 break;
1751 case TCP_V6_FLOW:
1752 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F)
1753 info->data = RXH_IP_SRC | RXH_IP_DST |
1754 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1755 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1756 info->data = RXH_IP_SRC | RXH_IP_DST;
1757 break;
1758 case UDP_V6_FLOW:
1759 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) &&
1760 (v & FW_RSS_VI_CONFIG_CMD_UDPEN_F))
1761 info->data = RXH_IP_SRC | RXH_IP_DST |
1762 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1763 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1764 info->data = RXH_IP_SRC | RXH_IP_DST;
1765 break;
1766 case SCTP_V6_FLOW:
1767 case AH_ESP_V6_FLOW:
1768 case IPV6_FLOW:
1769 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F)
1770 info->data = RXH_IP_SRC | RXH_IP_DST;
1771 break;
1773 return 0;
1775 case ETHTOOL_GRXRINGS:
1776 info->data = pi->nqsets;
1777 return 0;
1778 case ETHTOOL_GRXCLSRLCNT:
1779 info->rule_cnt =
1780 adap->ethtool_filters->port[pi->port_id].in_use;
1781 return 0;
1782 case ETHTOOL_GRXCLSRULE:
1783 return cxgb4_ntuple_get_filter(dev, info, info->fs.location);
1784 case ETHTOOL_GRXCLSRLALL:
1785 info->data = adap->ethtool_filters->nentries;
1786 while (count < info->rule_cnt) {
1787 ret = cxgb4_ntuple_get_filter(dev, info, index);
1788 if (!ret)
1789 rules[count++] = index;
1790 index++;
1792 return 0;
1795 return -EOPNOTSUPP;
1798 static int cxgb4_ntuple_del_filter(struct net_device *dev,
1799 struct ethtool_rxnfc *cmd)
1801 struct cxgb4_ethtool_filter_info *filter_info;
1802 struct adapter *adapter = netdev2adap(dev);
1803 struct port_info *pi = netdev_priv(dev);
1804 struct filter_entry *f;
1805 u32 filter_id;
1806 int ret;
1808 if (!(adapter->flags & CXGB4_FULL_INIT_DONE))
1809 return -EAGAIN; /* can still change nfilters */
1811 if (!adapter->ethtool_filters)
1812 return -EOPNOTSUPP;
1814 if (cmd->fs.location >= adapter->ethtool_filters->nentries) {
1815 dev_err(adapter->pdev_dev,
1816 "Location must be < %u",
1817 adapter->ethtool_filters->nentries);
1818 return -ERANGE;
1821 filter_info = &adapter->ethtool_filters->port[pi->port_id];
1823 if (!test_bit(cmd->fs.location, filter_info->bmap))
1824 return -ENOENT;
1826 filter_id = filter_info->loc_array[cmd->fs.location];
1827 f = cxgb4_get_filter_entry(adapter, filter_id);
1829 ret = cxgb4_flow_rule_destroy(dev, f->fs.tc_prio, &f->fs, filter_id);
1830 if (ret)
1831 goto err;
1833 clear_bit(cmd->fs.location, filter_info->bmap);
1834 filter_info->in_use--;
1836 err:
1837 return ret;
1840 /* Add Ethtool n-tuple filters. */
1841 static int cxgb4_ntuple_set_filter(struct net_device *netdev,
1842 struct ethtool_rxnfc *cmd)
1844 struct ethtool_rx_flow_spec_input input = {};
1845 struct cxgb4_ethtool_filter_info *filter_info;
1846 struct adapter *adapter = netdev2adap(netdev);
1847 struct port_info *pi = netdev_priv(netdev);
1848 struct ch_filter_specification fs;
1849 struct ethtool_rx_flow_rule *flow;
1850 u32 tid;
1851 int ret;
1853 if (!(adapter->flags & CXGB4_FULL_INIT_DONE))
1854 return -EAGAIN; /* can still change nfilters */
1856 if (!adapter->ethtool_filters)
1857 return -EOPNOTSUPP;
1859 if (cmd->fs.location >= adapter->ethtool_filters->nentries) {
1860 dev_err(adapter->pdev_dev,
1861 "Location must be < %u",
1862 adapter->ethtool_filters->nentries);
1863 return -ERANGE;
1866 if (test_bit(cmd->fs.location,
1867 adapter->ethtool_filters->port[pi->port_id].bmap))
1868 return -EEXIST;
1870 memset(&fs, 0, sizeof(fs));
1872 input.fs = &cmd->fs;
1873 flow = ethtool_rx_flow_rule_create(&input);
1874 if (IS_ERR(flow)) {
1875 ret = PTR_ERR(flow);
1876 goto exit;
1879 fs.hitcnts = 1;
1881 ret = cxgb4_flow_rule_replace(netdev, flow->rule, cmd->fs.location,
1882 NULL, &fs, &tid);
1883 if (ret)
1884 goto free;
1886 filter_info = &adapter->ethtool_filters->port[pi->port_id];
1888 filter_info->loc_array[cmd->fs.location] = tid;
1889 set_bit(cmd->fs.location, filter_info->bmap);
1890 filter_info->in_use++;
1892 free:
1893 ethtool_rx_flow_rule_destroy(flow);
1894 exit:
1895 return ret;
1898 static int set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1900 int ret = -EOPNOTSUPP;
1902 switch (cmd->cmd) {
1903 case ETHTOOL_SRXCLSRLINS:
1904 ret = cxgb4_ntuple_set_filter(dev, cmd);
1905 break;
1906 case ETHTOOL_SRXCLSRLDEL:
1907 ret = cxgb4_ntuple_del_filter(dev, cmd);
1908 break;
1909 default:
1910 break;
1913 return ret;
1916 static int set_dump(struct net_device *dev, struct ethtool_dump *eth_dump)
1918 struct adapter *adapter = netdev2adap(dev);
1919 u32 len = 0;
1921 len = sizeof(struct cudbg_hdr) +
1922 sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1923 len += cxgb4_get_dump_length(adapter, eth_dump->flag);
1925 adapter->eth_dump.flag = eth_dump->flag;
1926 adapter->eth_dump.len = len;
1927 return 0;
1930 static int get_dump_flag(struct net_device *dev, struct ethtool_dump *eth_dump)
1932 struct adapter *adapter = netdev2adap(dev);
1934 eth_dump->flag = adapter->eth_dump.flag;
1935 eth_dump->len = adapter->eth_dump.len;
1936 eth_dump->version = adapter->eth_dump.version;
1937 return 0;
1940 static int get_dump_data(struct net_device *dev, struct ethtool_dump *eth_dump,
1941 void *buf)
1943 struct adapter *adapter = netdev2adap(dev);
1944 u32 len = 0;
1945 int ret = 0;
1947 if (adapter->eth_dump.flag == CXGB4_ETH_DUMP_NONE)
1948 return -ENOENT;
1950 len = sizeof(struct cudbg_hdr) +
1951 sizeof(struct cudbg_entity_hdr) * CUDBG_MAX_ENTITY;
1952 len += cxgb4_get_dump_length(adapter, adapter->eth_dump.flag);
1953 if (eth_dump->len < len)
1954 return -ENOMEM;
1956 ret = cxgb4_cudbg_collect(adapter, buf, &len, adapter->eth_dump.flag);
1957 if (ret)
1958 return ret;
1960 eth_dump->flag = adapter->eth_dump.flag;
1961 eth_dump->len = len;
1962 eth_dump->version = adapter->eth_dump.version;
1963 return 0;
1966 static int cxgb4_get_module_info(struct net_device *dev,
1967 struct ethtool_modinfo *modinfo)
1969 struct port_info *pi = netdev_priv(dev);
1970 u8 sff8472_comp, sff_diag_type, sff_rev;
1971 struct adapter *adapter = pi->adapter;
1972 int ret;
1974 if (!t4_is_inserted_mod_type(pi->mod_type))
1975 return -EINVAL;
1977 switch (pi->port_type) {
1978 case FW_PORT_TYPE_SFP:
1979 case FW_PORT_TYPE_QSA:
1980 case FW_PORT_TYPE_SFP28:
1981 ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1982 I2C_DEV_ADDR_A0, SFF_8472_COMP_ADDR,
1983 SFF_8472_COMP_LEN, &sff8472_comp);
1984 if (ret)
1985 return ret;
1986 ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
1987 I2C_DEV_ADDR_A0, SFP_DIAG_TYPE_ADDR,
1988 SFP_DIAG_TYPE_LEN, &sff_diag_type);
1989 if (ret)
1990 return ret;
1992 if (!sff8472_comp || (sff_diag_type & 4)) {
1993 modinfo->type = ETH_MODULE_SFF_8079;
1994 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1995 } else {
1996 modinfo->type = ETH_MODULE_SFF_8472;
1997 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1999 break;
2001 case FW_PORT_TYPE_QSFP:
2002 case FW_PORT_TYPE_QSFP_10G:
2003 case FW_PORT_TYPE_CR_QSFP:
2004 case FW_PORT_TYPE_CR2_QSFP:
2005 case FW_PORT_TYPE_CR4_QSFP:
2006 ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2007 I2C_DEV_ADDR_A0, SFF_REV_ADDR,
2008 SFF_REV_LEN, &sff_rev);
2009 /* For QSFP type ports, revision value >= 3
2010 * means the SFP is 8636 compliant.
2012 if (ret)
2013 return ret;
2014 if (sff_rev >= 0x3) {
2015 modinfo->type = ETH_MODULE_SFF_8636;
2016 modinfo->eeprom_len = ETH_MODULE_SFF_8636_LEN;
2017 } else {
2018 modinfo->type = ETH_MODULE_SFF_8436;
2019 modinfo->eeprom_len = ETH_MODULE_SFF_8436_LEN;
2021 break;
2023 default:
2024 return -EINVAL;
2027 return 0;
2030 static int cxgb4_get_module_eeprom(struct net_device *dev,
2031 struct ethtool_eeprom *eprom, u8 *data)
2033 int ret = 0, offset = eprom->offset, len = eprom->len;
2034 struct port_info *pi = netdev_priv(dev);
2035 struct adapter *adapter = pi->adapter;
2037 memset(data, 0, eprom->len);
2038 if (offset + len <= I2C_PAGE_SIZE)
2039 return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2040 I2C_DEV_ADDR_A0, offset, len, data);
2042 /* offset + len spans 0xa0 and 0xa1 pages */
2043 if (offset <= I2C_PAGE_SIZE) {
2044 /* read 0xa0 page */
2045 len = I2C_PAGE_SIZE - offset;
2046 ret = t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan,
2047 I2C_DEV_ADDR_A0, offset, len, data);
2048 if (ret)
2049 return ret;
2050 offset = I2C_PAGE_SIZE;
2051 /* Remaining bytes to be read from second page =
2052 * Total length - bytes read from first page
2054 len = eprom->len - len;
2056 /* Read additional optical diagnostics from page 0xa2 if supported */
2057 return t4_i2c_rd(adapter, adapter->mbox, pi->tx_chan, I2C_DEV_ADDR_A2,
2058 offset, len, &data[eprom->len - len]);
2061 static u32 cxgb4_get_priv_flags(struct net_device *netdev)
2063 struct port_info *pi = netdev_priv(netdev);
2064 struct adapter *adapter = pi->adapter;
2066 return (adapter->eth_flags | pi->eth_flags);
2070 * set_flags - set/unset specified flags if passed in new_flags
2071 * @cur_flags: pointer to current flags
2072 * @new_flags: new incoming flags
2073 * @flags: set of flags to set/unset
2075 static inline void set_flags(u32 *cur_flags, u32 new_flags, u32 flags)
2077 *cur_flags = (*cur_flags & ~flags) | (new_flags & flags);
2080 static int cxgb4_set_priv_flags(struct net_device *netdev, u32 flags)
2082 struct port_info *pi = netdev_priv(netdev);
2083 struct adapter *adapter = pi->adapter;
2085 set_flags(&adapter->eth_flags, flags, PRIV_FLAGS_ADAP);
2086 set_flags(&pi->eth_flags, flags, PRIV_FLAGS_PORT);
2088 return 0;
2091 static void cxgb4_lb_test(struct net_device *netdev, u64 *lb_status)
2093 int dev_state = netif_running(netdev);
2095 if (dev_state) {
2096 netif_tx_stop_all_queues(netdev);
2097 netif_carrier_off(netdev);
2100 *lb_status = cxgb4_selftest_lb_pkt(netdev);
2102 if (dev_state) {
2103 netif_tx_start_all_queues(netdev);
2104 netif_carrier_on(netdev);
2108 static void cxgb4_self_test(struct net_device *netdev,
2109 struct ethtool_test *eth_test, u64 *data)
2111 struct port_info *pi = netdev_priv(netdev);
2112 struct adapter *adap = pi->adapter;
2114 memset(data, 0, sizeof(u64) * CXGB4_ETHTOOL_MAX_TEST);
2116 if (!(adap->flags & CXGB4_FULL_INIT_DONE) ||
2117 !(adap->flags & CXGB4_FW_OK)) {
2118 eth_test->flags |= ETH_TEST_FL_FAILED;
2119 return;
2122 if (eth_test->flags & ETH_TEST_FL_OFFLINE)
2123 cxgb4_lb_test(netdev, &data[CXGB4_ETHTOOL_LB_TEST]);
2125 if (data[CXGB4_ETHTOOL_LB_TEST])
2126 eth_test->flags |= ETH_TEST_FL_FAILED;
2129 static const struct ethtool_ops cxgb_ethtool_ops = {
2130 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2131 ETHTOOL_COALESCE_RX_MAX_FRAMES |
2132 ETHTOOL_COALESCE_TX_USECS_IRQ |
2133 ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
2134 .get_link_ksettings = get_link_ksettings,
2135 .set_link_ksettings = set_link_ksettings,
2136 .get_fecparam = get_fecparam,
2137 .set_fecparam = set_fecparam,
2138 .get_drvinfo = get_drvinfo,
2139 .get_msglevel = get_msglevel,
2140 .set_msglevel = set_msglevel,
2141 .get_ringparam = get_sge_param,
2142 .set_ringparam = set_sge_param,
2143 .get_coalesce = get_coalesce,
2144 .set_coalesce = set_coalesce,
2145 .get_eeprom_len = get_eeprom_len,
2146 .get_eeprom = get_eeprom,
2147 .set_eeprom = set_eeprom,
2148 .get_pauseparam = get_pauseparam,
2149 .set_pauseparam = set_pauseparam,
2150 .get_link = ethtool_op_get_link,
2151 .get_strings = get_strings,
2152 .set_phys_id = identify_port,
2153 .nway_reset = restart_autoneg,
2154 .get_sset_count = get_sset_count,
2155 .get_ethtool_stats = get_stats,
2156 .get_regs_len = get_regs_len,
2157 .get_regs = get_regs,
2158 .get_rxnfc = get_rxnfc,
2159 .set_rxnfc = set_rxnfc,
2160 .get_rxfh_indir_size = get_rss_table_size,
2161 .get_rxfh = get_rss_table,
2162 .set_rxfh = set_rss_table,
2163 .self_test = cxgb4_self_test,
2164 .flash_device = set_flash,
2165 .get_ts_info = get_ts_info,
2166 .set_dump = set_dump,
2167 .get_dump_flag = get_dump_flag,
2168 .get_dump_data = get_dump_data,
2169 .get_module_info = cxgb4_get_module_info,
2170 .get_module_eeprom = cxgb4_get_module_eeprom,
2171 .get_priv_flags = cxgb4_get_priv_flags,
2172 .set_priv_flags = cxgb4_set_priv_flags,
2175 void cxgb4_cleanup_ethtool_filters(struct adapter *adap)
2177 struct cxgb4_ethtool_filter_info *eth_filter_info;
2178 u8 i;
2180 if (!adap->ethtool_filters)
2181 return;
2183 eth_filter_info = adap->ethtool_filters->port;
2185 if (eth_filter_info) {
2186 for (i = 0; i < adap->params.nports; i++) {
2187 kvfree(eth_filter_info[i].loc_array);
2188 kfree(eth_filter_info[i].bmap);
2190 kfree(eth_filter_info);
2193 kfree(adap->ethtool_filters);
2196 int cxgb4_init_ethtool_filters(struct adapter *adap)
2198 struct cxgb4_ethtool_filter_info *eth_filter_info;
2199 struct cxgb4_ethtool_filter *eth_filter;
2200 struct tid_info *tids = &adap->tids;
2201 u32 nentries, i;
2202 int ret;
2204 eth_filter = kzalloc(sizeof(*eth_filter), GFP_KERNEL);
2205 if (!eth_filter)
2206 return -ENOMEM;
2208 eth_filter_info = kcalloc(adap->params.nports,
2209 sizeof(*eth_filter_info),
2210 GFP_KERNEL);
2211 if (!eth_filter_info) {
2212 ret = -ENOMEM;
2213 goto free_eth_filter;
2216 eth_filter->port = eth_filter_info;
2218 nentries = tids->nhpftids + tids->nftids;
2219 if (is_hashfilter(adap))
2220 nentries += tids->nhash +
2221 (adap->tids.stid_base - adap->tids.tid_base);
2222 eth_filter->nentries = nentries;
2224 for (i = 0; i < adap->params.nports; i++) {
2225 eth_filter->port[i].loc_array = kvzalloc(nentries, GFP_KERNEL);
2226 if (!eth_filter->port[i].loc_array) {
2227 ret = -ENOMEM;
2228 goto free_eth_finfo;
2231 eth_filter->port[i].bmap = kcalloc(BITS_TO_LONGS(nentries),
2232 sizeof(unsigned long),
2233 GFP_KERNEL);
2234 if (!eth_filter->port[i].bmap) {
2235 ret = -ENOMEM;
2236 goto free_eth_finfo;
2240 adap->ethtool_filters = eth_filter;
2241 return 0;
2243 free_eth_finfo:
2244 while (i-- > 0) {
2245 kfree(eth_filter->port[i].bmap);
2246 kvfree(eth_filter->port[i].loc_array);
2248 kfree(eth_filter_info);
2250 free_eth_filter:
2251 kfree(eth_filter);
2253 return ret;
2256 void cxgb4_set_ethtool_ops(struct net_device *netdev)
2258 netdev->ethtool_ops = &cxgb_ethtool_ops;