2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
53 #include "t4_values.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
62 * Rx buffer size. We use largish buffers if possible but settle for single
63 * pages under memory shortage.
66 # define FL_PG_ORDER 0
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES 256
73 #define RX_PULL_LEN 128
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
79 #define RX_PKT_SKB_LEN 512
82 * Max number of Tx descriptors we clean up at a time. Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks. We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
86 * also match the CIDX Flush Threshold.
88 #define MAX_TX_RECLAIM 32
91 * Max number of Rx buffers we replenish at a time. Again keep this modest,
92 * allocating buffers isn't cheap either.
94 #define MAX_RX_REFILL 16U
97 * Period of the Rx queue check timer. This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
100 #define RX_QCHECK_PERIOD (HZ / 2)
103 * Period of the Tx queue check timer.
105 #define TX_QCHECK_PERIOD (HZ / 2)
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
110 #define MAX_TIMER_TX_RECLAIM 100
113 * Timer index used when backing off due to memory shortage.
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
118 * Suspension threshold for non-Ethernet Tx queues. We require enough room
119 * for a full sized WR.
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
127 #define MAX_IMM_TX_PKT_LEN 256
130 * Max size of a WR sent through a control Tx queue.
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
134 struct rx_sw_desc
{ /* SW state per Rx descriptor */
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
148 static inline unsigned int fl_mtu_bufsize(struct adapter
*adapter
,
151 struct sge
*s
= &adapter
->sge
;
153 return ALIGN(s
->pktshift
+ ETH_HLEN
+ VLAN_HLEN
+ mtu
, s
->fl_align
);
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array. We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings. All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
170 RX_BUF_FLAGS
= 0x1f, /* bottom five bits are special */
171 RX_BUF_SIZE
= 0x0f, /* bottom three bits are for buf sizes */
172 RX_UNMAPPED_BUF
= 0x10, /* buffer is not mapped */
175 * XXX We shouldn't depend on being able to use these indices.
176 * XXX Especially when some other Master PF has initialized the
177 * XXX adapter or we use the Firmware Configuration File. We
178 * XXX should really search through the Host Buffer Size register
179 * XXX array for the appropriately sized buffer indices.
181 RX_SMALL_PG_BUF
= 0x0, /* small (PAGE_SIZE) page buffer */
182 RX_LARGE_PG_BUF
= 0x1, /* buffer large (FL_PG_ORDER) page buffer */
184 RX_SMALL_MTU_BUF
= 0x2, /* small MTU buffer */
185 RX_LARGE_MTU_BUF
= 0x3, /* large MTU buffer */
188 static int timer_pkt_quota
[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK 1
191 static inline dma_addr_t
get_buf_addr(const struct rx_sw_desc
*d
)
193 return d
->dma_addr
& ~(dma_addr_t
)RX_BUF_FLAGS
;
196 static inline bool is_buf_mapped(const struct rx_sw_desc
*d
)
198 return !(d
->dma_addr
& RX_UNMAPPED_BUF
);
202 * txq_avail - return the number of available slots in a Tx queue
205 * Returns the number of descriptors in a Tx queue available to write new
208 static inline unsigned int txq_avail(const struct sge_txq
*q
)
210 return q
->size
- 1 - q
->in_use
;
214 * fl_cap - return the capacity of a free-buffer list
217 * Returns the capacity of a free-buffer list. The capacity is less than
218 * the size because one descriptor needs to be left unpopulated, otherwise
219 * HW will think the FL is empty.
221 static inline unsigned int fl_cap(const struct sge_fl
*fl
)
223 return fl
->size
- 8; /* 1 descriptor = 8 buffers */
227 * fl_starving - return whether a Free List is starving.
228 * @adapter: pointer to the adapter
231 * Tests specified Free List to see whether the number of buffers
232 * available to the hardware has falled below our "starvation"
235 static inline bool fl_starving(const struct adapter
*adapter
,
236 const struct sge_fl
*fl
)
238 const struct sge
*s
= &adapter
->sge
;
240 return fl
->avail
- fl
->pend_cred
<= s
->fl_starve_thres
;
243 int cxgb4_map_skb(struct device
*dev
, const struct sk_buff
*skb
,
246 const skb_frag_t
*fp
, *end
;
247 const struct skb_shared_info
*si
;
249 *addr
= dma_map_single(dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
250 if (dma_mapping_error(dev
, *addr
))
253 si
= skb_shinfo(skb
);
254 end
= &si
->frags
[si
->nr_frags
];
256 for (fp
= si
->frags
; fp
< end
; fp
++) {
257 *++addr
= skb_frag_dma_map(dev
, fp
, 0, skb_frag_size(fp
),
259 if (dma_mapping_error(dev
, *addr
))
265 while (fp
-- > si
->frags
)
266 dma_unmap_page(dev
, *--addr
, skb_frag_size(fp
), DMA_TO_DEVICE
);
268 dma_unmap_single(dev
, addr
[-1], skb_headlen(skb
), DMA_TO_DEVICE
);
272 EXPORT_SYMBOL(cxgb4_map_skb
);
274 static void unmap_skb(struct device
*dev
, const struct sk_buff
*skb
,
275 const dma_addr_t
*addr
)
277 const skb_frag_t
*fp
, *end
;
278 const struct skb_shared_info
*si
;
280 dma_unmap_single(dev
, *addr
++, skb_headlen(skb
), DMA_TO_DEVICE
);
282 si
= skb_shinfo(skb
);
283 end
= &si
->frags
[si
->nr_frags
];
284 for (fp
= si
->frags
; fp
< end
; fp
++)
285 dma_unmap_page(dev
, *addr
++, skb_frag_size(fp
), DMA_TO_DEVICE
);
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
290 * deferred_unmap_destructor - unmap a packet when it is freed
293 * This is the packet destructor used for Tx packets that need to remain
294 * mapped until they are freed rather than until their Tx descriptors are
297 static void deferred_unmap_destructor(struct sk_buff
*skb
)
299 unmap_skb(skb
->dev
->dev
.parent
, skb
, (dma_addr_t
*)skb
->head
);
304 * free_tx_desc - reclaims Tx descriptors and their buffers
306 * @q: the Tx queue to reclaim descriptors from
307 * @n: the number of descriptors to reclaim
308 * @unmap: whether the buffers should be unmapped for DMA
310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 * Tx buffers. Called with the Tx queue lock held.
313 void free_tx_desc(struct adapter
*adap
, struct sge_txq
*q
,
314 unsigned int n
, bool unmap
)
316 unsigned int cidx
= q
->cidx
;
317 struct tx_sw_desc
*d
;
321 if (d
->skb
) { /* an SGL is present */
322 if (unmap
&& d
->addr
[0]) {
323 unmap_skb(adap
->pdev_dev
, d
->skb
, d
->addr
);
324 memset(d
->addr
, 0, sizeof(d
->addr
));
326 dev_consume_skb_any(d
->skb
);
330 if (++cidx
== q
->size
) {
339 * Return the number of reclaimable descriptors in a Tx queue.
341 static inline int reclaimable(const struct sge_txq
*q
)
343 int hw_cidx
= ntohs(READ_ONCE(q
->stat
->cidx
));
345 return hw_cidx
< 0 ? hw_cidx
+ q
->size
: hw_cidx
;
349 * reclaim_completed_tx - reclaims completed TX Descriptors
351 * @q: the Tx queue to reclaim completed descriptors from
352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 * @unmap: whether the buffers should be unmapped for DMA
355 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 * and frees the associated buffers if possible. If @max == -1, then
357 * we'll use a defaiult maximum. Called with the TX Queue locked.
359 static inline int reclaim_completed_tx(struct adapter
*adap
, struct sge_txq
*q
,
360 int maxreclaim
, bool unmap
)
362 int reclaim
= reclaimable(q
);
366 * Limit the amount of clean up work we do at a time to keep
367 * the Tx lock hold time O(1).
370 maxreclaim
= MAX_TX_RECLAIM
;
371 if (reclaim
> maxreclaim
)
372 reclaim
= maxreclaim
;
374 free_tx_desc(adap
, q
, reclaim
, unmap
);
375 q
->in_use
-= reclaim
;
382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
384 * @q: the Tx queue to reclaim completed descriptors from
385 * @unmap: whether the buffers should be unmapped for DMA
387 * Reclaims Tx descriptors that the SGE has indicated it has processed,
388 * and frees the associated buffers if possible. Called with the Tx
391 void cxgb4_reclaim_completed_tx(struct adapter
*adap
, struct sge_txq
*q
,
394 (void)reclaim_completed_tx(adap
, q
, -1, unmap
);
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx
);
398 static inline int get_buf_size(struct adapter
*adapter
,
399 const struct rx_sw_desc
*d
)
401 struct sge
*s
= &adapter
->sge
;
402 unsigned int rx_buf_size_idx
= d
->dma_addr
& RX_BUF_SIZE
;
405 switch (rx_buf_size_idx
) {
406 case RX_SMALL_PG_BUF
:
407 buf_size
= PAGE_SIZE
;
410 case RX_LARGE_PG_BUF
:
411 buf_size
= PAGE_SIZE
<< s
->fl_pg_order
;
414 case RX_SMALL_MTU_BUF
:
415 buf_size
= FL_MTU_SMALL_BUFSIZE(adapter
);
418 case RX_LARGE_MTU_BUF
:
419 buf_size
= FL_MTU_LARGE_BUFSIZE(adapter
);
430 * free_rx_bufs - free the Rx buffers on an SGE free list
432 * @q: the SGE free list to free buffers from
433 * @n: how many buffers to free
435 * Release the next @n buffers on an SGE free-buffer Rx queue. The
436 * buffers must be made inaccessible to HW before calling this function.
438 static void free_rx_bufs(struct adapter
*adap
, struct sge_fl
*q
, int n
)
441 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
443 if (is_buf_mapped(d
))
444 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
445 get_buf_size(adap
, d
),
449 if (++q
->cidx
== q
->size
)
456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
458 * @q: the SGE free list
460 * Unmap the current buffer on an SGE free-buffer Rx queue. The
461 * buffer must be made inaccessible to HW before calling this function.
463 * This is similar to @free_rx_bufs above but does not free the buffer.
464 * Do note that the FL still loses any further access to the buffer.
466 static void unmap_rx_buf(struct adapter
*adap
, struct sge_fl
*q
)
468 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
470 if (is_buf_mapped(d
))
471 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
472 get_buf_size(adap
, d
), PCI_DMA_FROMDEVICE
);
474 if (++q
->cidx
== q
->size
)
479 static inline void ring_fl_db(struct adapter
*adap
, struct sge_fl
*q
)
481 if (q
->pend_cred
>= 8) {
482 u32 val
= adap
->params
.arch
.sge_fl_db
;
484 if (is_t4(adap
->params
.chip
))
485 val
|= PIDX_V(q
->pend_cred
/ 8);
487 val
|= PIDX_T5_V(q
->pend_cred
/ 8);
489 /* Make sure all memory writes to the Free List queue are
490 * committed before we tell the hardware about them.
494 /* If we don't have access to the new User Doorbell (T5+), use
495 * the old doorbell mechanism; otherwise use the new BAR2
498 if (unlikely(q
->bar2_addr
== NULL
)) {
499 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL_A
),
500 val
| QID_V(q
->cntxt_id
));
502 writel(val
| QID_V(q
->bar2_qid
),
503 q
->bar2_addr
+ SGE_UDB_KDOORBELL
);
505 /* This Write memory Barrier will force the write to
506 * the User Doorbell area to be flushed.
514 static inline void set_rx_sw_desc(struct rx_sw_desc
*sd
, struct page
*pg
,
518 sd
->dma_addr
= mapping
; /* includes size low bits */
522 * refill_fl - refill an SGE Rx buffer ring
524 * @q: the ring to refill
525 * @n: the number of new buffers to allocate
526 * @gfp: the gfp flags for the allocations
528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 * allocated with the supplied gfp flags. The caller must assure that
530 * @n does not exceed the queue's capacity. If afterwards the queue is
531 * found critically low mark it as starving in the bitmap of starving FLs.
533 * Returns the number of buffers allocated.
535 static unsigned int refill_fl(struct adapter
*adap
, struct sge_fl
*q
, int n
,
538 struct sge
*s
= &adap
->sge
;
541 unsigned int cred
= q
->avail
;
542 __be64
*d
= &q
->desc
[q
->pidx
];
543 struct rx_sw_desc
*sd
= &q
->sdesc
[q
->pidx
];
546 #ifdef CONFIG_DEBUG_FS
547 if (test_bit(q
->cntxt_id
- adap
->sge
.egr_start
, adap
->sge
.blocked_fl
))
552 node
= dev_to_node(adap
->pdev_dev
);
554 if (s
->fl_pg_order
== 0)
555 goto alloc_small_pages
;
558 * Prefer large buffers
561 pg
= alloc_pages_node(node
, gfp
| __GFP_COMP
, s
->fl_pg_order
);
563 q
->large_alloc_failed
++;
564 break; /* fall back to single pages */
567 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0,
568 PAGE_SIZE
<< s
->fl_pg_order
,
570 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
571 __free_pages(pg
, s
->fl_pg_order
);
573 goto out
; /* do not try small pages for this error */
575 mapping
|= RX_LARGE_PG_BUF
;
576 *d
++ = cpu_to_be64(mapping
);
578 set_rx_sw_desc(sd
, pg
, mapping
);
582 if (++q
->pidx
== q
->size
) {
592 pg
= alloc_pages_node(node
, gfp
, 0);
598 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0, PAGE_SIZE
,
600 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
605 *d
++ = cpu_to_be64(mapping
);
607 set_rx_sw_desc(sd
, pg
, mapping
);
611 if (++q
->pidx
== q
->size
) {
618 out
: cred
= q
->avail
- cred
;
619 q
->pend_cred
+= cred
;
622 if (unlikely(fl_starving(adap
, q
))) {
625 set_bit(q
->cntxt_id
- adap
->sge
.egr_start
,
626 adap
->sge
.starving_fl
);
632 static inline void __refill_fl(struct adapter
*adap
, struct sge_fl
*fl
)
634 refill_fl(adap
, fl
, min(MAX_RX_REFILL
, fl_cap(fl
) - fl
->avail
),
639 * alloc_ring - allocate resources for an SGE descriptor ring
640 * @dev: the PCI device's core device
641 * @nelem: the number of descriptors
642 * @elem_size: the size of each descriptor
643 * @sw_size: the size of the SW state associated with each ring element
644 * @phys: the physical address of the allocated ring
645 * @metadata: address of the array holding the SW state for the ring
646 * @stat_size: extra space in HW ring for status information
647 * @node: preferred node for memory allocations
649 * Allocates resources for an SGE descriptor ring, such as Tx queues,
650 * free buffer lists, or response queues. Each SGE ring requires
651 * space for its HW descriptors plus, optionally, space for the SW state
652 * associated with each HW entry (the metadata). The function returns
653 * three values: the virtual address for the HW ring (the return value
654 * of the function), the bus address of the HW ring, and the address
657 static void *alloc_ring(struct device
*dev
, size_t nelem
, size_t elem_size
,
658 size_t sw_size
, dma_addr_t
*phys
, void *metadata
,
659 size_t stat_size
, int node
)
661 size_t len
= nelem
* elem_size
+ stat_size
;
663 void *p
= dma_alloc_coherent(dev
, len
, phys
, GFP_KERNEL
);
668 s
= kcalloc_node(sw_size
, nelem
, GFP_KERNEL
, node
);
671 dma_free_coherent(dev
, len
, p
, *phys
);
676 *(void **)metadata
= s
;
681 * sgl_len - calculates the size of an SGL of the given capacity
682 * @n: the number of SGL entries
684 * Calculates the number of flits needed for a scatter/gather list that
685 * can hold the given number of entries.
687 static inline unsigned int sgl_len(unsigned int n
)
689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 * boundaries). If N is even, then Length[N+1] should be set to 0 and
695 * Address[N+1] is omitted.
697 * The following calculation incorporates all of the above. It's
698 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 * first two flits which include the DSGL header, Length0 and
700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 * finally the "+((n-1)&1)" adds the one remaining flit needed if
706 return (3 * n
) / 2 + (n
& 1) + 2;
710 * flits_to_desc - returns the num of Tx descriptors for the given flits
711 * @n: the number of flits
713 * Returns the number of Tx descriptors needed for the supplied number
716 static inline unsigned int flits_to_desc(unsigned int n
)
718 BUG_ON(n
> SGE_MAX_WR_LEN
/ 8);
719 return DIV_ROUND_UP(n
, 8);
723 * is_eth_imm - can an Ethernet packet be sent as immediate data?
725 * @chip_ver: chip version
727 * Returns whether an Ethernet packet is small enough to fit as
728 * immediate data. Return value corresponds to headroom required.
730 static inline int is_eth_imm(const struct sk_buff
*skb
, unsigned int chip_ver
)
734 if (skb
->encapsulation
&& skb_shinfo(skb
)->gso_size
&&
735 chip_ver
> CHELSIO_T5
) {
736 hdrlen
= sizeof(struct cpl_tx_tnl_lso
);
737 hdrlen
+= sizeof(struct cpl_tx_pkt_core
);
738 } else if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
) {
741 hdrlen
= skb_shinfo(skb
)->gso_size
?
742 sizeof(struct cpl_tx_pkt_lso_core
) : 0;
743 hdrlen
+= sizeof(struct cpl_tx_pkt
);
745 if (skb
->len
<= MAX_IMM_TX_PKT_LEN
- hdrlen
)
751 * calc_tx_flits - calculate the number of flits for a packet Tx WR
753 * @chip_ver: chip version
755 * Returns the number of flits needed for a Tx WR for the given Ethernet
756 * packet, including the needed WR and CPL headers.
758 static inline unsigned int calc_tx_flits(const struct sk_buff
*skb
,
759 unsigned int chip_ver
)
762 int hdrlen
= is_eth_imm(skb
, chip_ver
);
764 /* If the skb is small enough, we can pump it out as a work request
765 * with only immediate data. In that case we just have to have the
766 * TX Packet header plus the skb data in the Work Request.
770 return DIV_ROUND_UP(skb
->len
+ hdrlen
, sizeof(__be64
));
772 /* Otherwise, we're going to have to construct a Scatter gather list
773 * of the skb body and fragments. We also include the flits necessary
774 * for the TX Packet Work Request and CPL. We always have a firmware
775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 * with an embedded TX Packet Write CPL message.
780 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1);
781 if (skb_shinfo(skb
)->gso_size
) {
782 if (skb
->encapsulation
&& chip_ver
> CHELSIO_T5
) {
783 hdrlen
= sizeof(struct fw_eth_tx_pkt_wr
) +
784 sizeof(struct cpl_tx_tnl_lso
);
785 } else if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
) {
788 pkt_hdrlen
= eth_get_headlen(skb
->dev
, skb
->data
,
790 hdrlen
= sizeof(struct fw_eth_tx_eo_wr
) +
791 round_up(pkt_hdrlen
, 16);
793 hdrlen
= sizeof(struct fw_eth_tx_pkt_wr
) +
794 sizeof(struct cpl_tx_pkt_lso_core
);
797 hdrlen
+= sizeof(struct cpl_tx_pkt_core
);
798 flits
+= (hdrlen
/ sizeof(__be64
));
800 flits
+= (sizeof(struct fw_eth_tx_pkt_wr
) +
801 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
);
807 * calc_tx_descs - calculate the number of Tx descriptors for a packet
809 * @chip_ver: chip version
811 * Returns the number of Tx descriptors needed for the given Ethernet
812 * packet, including the needed WR and CPL headers.
814 static inline unsigned int calc_tx_descs(const struct sk_buff
*skb
,
815 unsigned int chip_ver
)
817 return flits_to_desc(calc_tx_flits(skb
, chip_ver
));
821 * cxgb4_write_sgl - populate a scatter/gather list for a packet
823 * @q: the Tx queue we are writing into
824 * @sgl: starting location for writing the SGL
825 * @end: points right after the end of the SGL
826 * @start: start offset into skb main-body data to include in the SGL
827 * @addr: the list of bus addresses for the SGL elements
829 * Generates a gather list for the buffers that make up a packet.
830 * The caller must provide adequate space for the SGL that will be written.
831 * The SGL includes all of the packet's page fragments and the data in its
832 * main body except for the first @start bytes. @sgl must be 16-byte
833 * aligned and within a Tx descriptor with available space. @end points
834 * right after the end of the SGL but does not account for any potential
835 * wrap around, i.e., @end > @sgl.
837 void cxgb4_write_sgl(const struct sk_buff
*skb
, struct sge_txq
*q
,
838 struct ulptx_sgl
*sgl
, u64
*end
, unsigned int start
,
839 const dma_addr_t
*addr
)
842 struct ulptx_sge_pair
*to
;
843 const struct skb_shared_info
*si
= skb_shinfo(skb
);
844 unsigned int nfrags
= si
->nr_frags
;
845 struct ulptx_sge_pair buf
[MAX_SKB_FRAGS
/ 2 + 1];
847 len
= skb_headlen(skb
) - start
;
849 sgl
->len0
= htonl(len
);
850 sgl
->addr0
= cpu_to_be64(addr
[0] + start
);
853 sgl
->len0
= htonl(skb_frag_size(&si
->frags
[0]));
854 sgl
->addr0
= cpu_to_be64(addr
[1]);
857 sgl
->cmd_nsge
= htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL
) |
858 ULPTX_NSGE_V(nfrags
));
859 if (likely(--nfrags
== 0))
862 * Most of the complexity below deals with the possibility we hit the
863 * end of the queue in the middle of writing the SGL. For this case
864 * only we create the SGL in a temporary buffer and then copy it.
866 to
= (u8
*)end
> (u8
*)q
->stat
? buf
: sgl
->sge
;
868 for (i
= (nfrags
!= si
->nr_frags
); nfrags
>= 2; nfrags
-= 2, to
++) {
869 to
->len
[0] = cpu_to_be32(skb_frag_size(&si
->frags
[i
]));
870 to
->len
[1] = cpu_to_be32(skb_frag_size(&si
->frags
[++i
]));
871 to
->addr
[0] = cpu_to_be64(addr
[i
]);
872 to
->addr
[1] = cpu_to_be64(addr
[++i
]);
875 to
->len
[0] = cpu_to_be32(skb_frag_size(&si
->frags
[i
]));
876 to
->len
[1] = cpu_to_be32(0);
877 to
->addr
[0] = cpu_to_be64(addr
[i
+ 1]);
879 if (unlikely((u8
*)end
> (u8
*)q
->stat
)) {
880 unsigned int part0
= (u8
*)q
->stat
- (u8
*)sgl
->sge
, part1
;
883 memcpy(sgl
->sge
, buf
, part0
);
884 part1
= (u8
*)end
- (u8
*)q
->stat
;
885 memcpy(q
->desc
, (u8
*)buf
+ part0
, part1
);
886 end
= (void *)q
->desc
+ part1
;
888 if ((uintptr_t)end
& 8) /* 0-pad to multiple of 16 */
891 EXPORT_SYMBOL(cxgb4_write_sgl
);
893 /* cxgb4_write_partial_sgl - populate SGL for partial packet
895 * @q: the Tx queue we are writing into
896 * @sgl: starting location for writing the SGL
897 * @end: points right after the end of the SGL
898 * @addr: the list of bus addresses for the SGL elements
899 * @start: start offset in the SKB where partial data starts
900 * @len: length of data from @start to send out
902 * This API will handle sending out partial data of a skb if required.
903 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
904 * and @len will decide how much data after @start offset to send out.
906 void cxgb4_write_partial_sgl(const struct sk_buff
*skb
, struct sge_txq
*q
,
907 struct ulptx_sgl
*sgl
, u64
*end
,
908 const dma_addr_t
*addr
, u32 start
, u32 len
)
910 struct ulptx_sge_pair buf
[MAX_SKB_FRAGS
/ 2 + 1] = {0}, *to
;
911 u32 frag_size
, skb_linear_data_len
= skb_headlen(skb
);
912 struct skb_shared_info
*si
= skb_shinfo(skb
);
913 u8 i
= 0, frag_idx
= 0, nfrags
= 0;
916 /* Fill the first SGL either from linear data or from partial
917 * frag based on @start.
919 if (unlikely(start
< skb_linear_data_len
)) {
920 frag_size
= min(len
, skb_linear_data_len
- start
);
921 sgl
->len0
= htonl(frag_size
);
922 sgl
->addr0
= cpu_to_be64(addr
[0] + start
);
926 start
-= skb_linear_data_len
;
927 frag
= &si
->frags
[frag_idx
];
928 frag_size
= skb_frag_size(frag
);
929 /* find the first frag */
930 while (start
>= frag_size
) {
933 frag
= &si
->frags
[frag_idx
];
934 frag_size
= skb_frag_size(frag
);
937 frag_size
= min(len
, skb_frag_size(frag
) - start
);
938 sgl
->len0
= cpu_to_be32(frag_size
);
939 sgl
->addr0
= cpu_to_be64(addr
[frag_idx
+ 1] + start
);
945 /* If the entire partial data fit in one SGL, then send it out
951 /* Most of the complexity below deals with the possibility we hit the
952 * end of the queue in the middle of writing the SGL. For this case
953 * only we create the SGL in a temporary buffer and then copy it.
955 to
= (u8
*)end
> (u8
*)q
->stat
? buf
: sgl
->sge
;
957 /* If the skb couldn't fit in first SGL completely, fill the
958 * rest of the frags in subsequent SGLs. Note that each SGL
959 * pair can store 2 frags.
962 frag_size
= min(len
, skb_frag_size(&si
->frags
[frag_idx
]));
963 to
->len
[i
& 1] = cpu_to_be32(frag_size
);
964 to
->addr
[i
& 1] = cpu_to_be64(addr
[frag_idx
+ 1]);
973 /* If we ended in an odd boundary, then set the second SGL's
974 * length in the pair to 0.
977 to
->len
[1] = cpu_to_be32(0);
979 /* Copy from temporary buffer to Tx ring, in case we hit the
980 * end of the queue in the middle of writing the SGL.
982 if (unlikely((u8
*)end
> (u8
*)q
->stat
)) {
983 u32 part0
= (u8
*)q
->stat
- (u8
*)sgl
->sge
, part1
;
986 memcpy(sgl
->sge
, buf
, part0
);
987 part1
= (u8
*)end
- (u8
*)q
->stat
;
988 memcpy(q
->desc
, (u8
*)buf
+ part0
, part1
);
989 end
= (void *)q
->desc
+ part1
;
992 /* 0-pad to multiple of 16 */
993 if ((uintptr_t)end
& 8)
996 sgl
->cmd_nsge
= htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL
) |
997 ULPTX_NSGE_V(nfrags
));
999 EXPORT_SYMBOL(cxgb4_write_partial_sgl
);
1001 /* This function copies 64 byte coalesced work request to
1002 * memory mapped BAR2 space. For coalesced WR SGE fetches
1003 * data from the FIFO instead of from Host.
1005 static void cxgb_pio_copy(u64 __iomem
*dst
, u64
*src
)
1018 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1019 * @adap: the adapter
1021 * @n: number of new descriptors to give to HW
1023 * Ring the doorbel for a Tx queue.
1025 inline void cxgb4_ring_tx_db(struct adapter
*adap
, struct sge_txq
*q
, int n
)
1027 /* Make sure that all writes to the TX Descriptors are committed
1028 * before we tell the hardware about them.
1032 /* If we don't have access to the new User Doorbell (T5+), use the old
1033 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1035 if (unlikely(q
->bar2_addr
== NULL
)) {
1036 u32 val
= PIDX_V(n
);
1037 unsigned long flags
;
1039 /* For T4 we need to participate in the Doorbell Recovery
1042 spin_lock_irqsave(&q
->db_lock
, flags
);
1043 if (!q
->db_disabled
)
1044 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL_A
),
1045 QID_V(q
->cntxt_id
) | val
);
1047 q
->db_pidx_inc
+= n
;
1048 q
->db_pidx
= q
->pidx
;
1049 spin_unlock_irqrestore(&q
->db_lock
, flags
);
1051 u32 val
= PIDX_T5_V(n
);
1053 /* T4 and later chips share the same PIDX field offset within
1054 * the doorbell, but T5 and later shrank the field in order to
1055 * gain a bit for Doorbell Priority. The field was absurdly
1056 * large in the first place (14 bits) so we just use the T5
1057 * and later limits and warn if a Queue ID is too large.
1059 WARN_ON(val
& DBPRIO_F
);
1061 /* If we're only writing a single TX Descriptor and we can use
1062 * Inferred QID registers, we can use the Write Combining
1063 * Gather Buffer; otherwise we use the simple doorbell.
1065 if (n
== 1 && q
->bar2_qid
== 0) {
1066 int index
= (q
->pidx
1069 u64
*wr
= (u64
*)&q
->desc
[index
];
1071 cxgb_pio_copy((u64 __iomem
*)
1072 (q
->bar2_addr
+ SGE_UDB_WCDOORBELL
),
1075 writel(val
| QID_V(q
->bar2_qid
),
1076 q
->bar2_addr
+ SGE_UDB_KDOORBELL
);
1079 /* This Write Memory Barrier will force the write to the User
1080 * Doorbell area to be flushed. This is needed to prevent
1081 * writes on different CPUs for the same queue from hitting
1082 * the adapter out of order. This is required when some Work
1083 * Requests take the Write Combine Gather Buffer path (user
1084 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1085 * take the traditional path where we simply increment the
1086 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1087 * hardware DMA read the actual Work Request.
1092 EXPORT_SYMBOL(cxgb4_ring_tx_db
);
1095 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1097 * @q: the Tx queue where the packet will be inlined
1098 * @pos: starting position in the Tx queue where to inline the packet
1100 * Inline a packet's contents directly into Tx descriptors, starting at
1101 * the given position within the Tx DMA ring.
1102 * Most of the complexity of this operation is dealing with wrap arounds
1103 * in the middle of the packet we want to inline.
1105 void cxgb4_inline_tx_skb(const struct sk_buff
*skb
,
1106 const struct sge_txq
*q
, void *pos
)
1108 int left
= (void *)q
->stat
- pos
;
1111 if (likely(skb
->len
<= left
)) {
1112 if (likely(!skb
->data_len
))
1113 skb_copy_from_linear_data(skb
, pos
, skb
->len
);
1115 skb_copy_bits(skb
, 0, pos
, skb
->len
);
1118 skb_copy_bits(skb
, 0, pos
, left
);
1119 skb_copy_bits(skb
, left
, q
->desc
, skb
->len
- left
);
1120 pos
= (void *)q
->desc
+ (skb
->len
- left
);
1123 /* 0-pad to multiple of 16 */
1124 p
= PTR_ALIGN(pos
, 8);
1125 if ((uintptr_t)p
& 8)
1128 EXPORT_SYMBOL(cxgb4_inline_tx_skb
);
1130 static void *inline_tx_skb_header(const struct sk_buff
*skb
,
1131 const struct sge_txq
*q
, void *pos
,
1135 int left
= (void *)q
->stat
- pos
;
1137 if (likely(length
<= left
)) {
1138 memcpy(pos
, skb
->data
, length
);
1141 memcpy(pos
, skb
->data
, left
);
1142 memcpy(q
->desc
, skb
->data
+ left
, length
- left
);
1143 pos
= (void *)q
->desc
+ (length
- left
);
1145 /* 0-pad to multiple of 16 */
1146 p
= PTR_ALIGN(pos
, 8);
1147 if ((uintptr_t)p
& 8) {
1155 * Figure out what HW csum a packet wants and return the appropriate control
1158 static u64
hwcsum(enum chip_type chip
, const struct sk_buff
*skb
)
1161 bool inner_hdr_csum
= false;
1164 if (skb
->encapsulation
&&
1165 (CHELSIO_CHIP_VERSION(chip
) > CHELSIO_T5
))
1166 inner_hdr_csum
= true;
1168 if (inner_hdr_csum
) {
1169 ver
= inner_ip_hdr(skb
)->version
;
1170 proto
= (ver
== 4) ? inner_ip_hdr(skb
)->protocol
:
1171 inner_ipv6_hdr(skb
)->nexthdr
;
1173 ver
= ip_hdr(skb
)->version
;
1174 proto
= (ver
== 4) ? ip_hdr(skb
)->protocol
:
1175 ipv6_hdr(skb
)->nexthdr
;
1179 if (proto
== IPPROTO_TCP
)
1180 csum_type
= TX_CSUM_TCPIP
;
1181 else if (proto
== IPPROTO_UDP
)
1182 csum_type
= TX_CSUM_UDPIP
;
1185 * unknown protocol, disable HW csum
1186 * and hope a bad packet is detected
1188 return TXPKT_L4CSUM_DIS_F
;
1192 * this doesn't work with extension headers
1194 if (proto
== IPPROTO_TCP
)
1195 csum_type
= TX_CSUM_TCPIP6
;
1196 else if (proto
== IPPROTO_UDP
)
1197 csum_type
= TX_CSUM_UDPIP6
;
1202 if (likely(csum_type
>= TX_CSUM_TCPIP
)) {
1203 int eth_hdr_len
, l4_len
;
1206 if (inner_hdr_csum
) {
1207 /* This allows checksum offload for all encapsulated
1208 * packets like GRE etc..
1210 l4_len
= skb_inner_network_header_len(skb
);
1211 eth_hdr_len
= skb_inner_network_offset(skb
) - ETH_HLEN
;
1213 l4_len
= skb_network_header_len(skb
);
1214 eth_hdr_len
= skb_network_offset(skb
) - ETH_HLEN
;
1216 hdr_len
= TXPKT_IPHDR_LEN_V(l4_len
);
1218 if (CHELSIO_CHIP_VERSION(chip
) <= CHELSIO_T5
)
1219 hdr_len
|= TXPKT_ETHHDR_LEN_V(eth_hdr_len
);
1221 hdr_len
|= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len
);
1222 return TXPKT_CSUM_TYPE_V(csum_type
) | hdr_len
;
1224 int start
= skb_transport_offset(skb
);
1226 return TXPKT_CSUM_TYPE_V(csum_type
) |
1227 TXPKT_CSUM_START_V(start
) |
1228 TXPKT_CSUM_LOC_V(start
+ skb
->csum_offset
);
1232 static void eth_txq_stop(struct sge_eth_txq
*q
)
1234 netif_tx_stop_queue(q
->txq
);
1238 static inline void txq_advance(struct sge_txq
*q
, unsigned int n
)
1242 if (q
->pidx
>= q
->size
)
1246 #ifdef CONFIG_CHELSIO_T4_FCOE
1248 cxgb_fcoe_offload(struct sk_buff
*skb
, struct adapter
*adap
,
1249 const struct port_info
*pi
, u64
*cntrl
)
1251 const struct cxgb_fcoe
*fcoe
= &pi
->fcoe
;
1253 if (!(fcoe
->flags
& CXGB_FCOE_ENABLED
))
1256 if (skb
->protocol
!= htons(ETH_P_FCOE
))
1259 skb_reset_mac_header(skb
);
1260 skb
->mac_len
= sizeof(struct ethhdr
);
1262 skb_set_network_header(skb
, skb
->mac_len
);
1263 skb_set_transport_header(skb
, skb
->mac_len
+ sizeof(struct fcoe_hdr
));
1265 if (!cxgb_fcoe_sof_eof_supported(adap
, skb
))
1268 /* FC CRC offload */
1269 *cntrl
= TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE
) |
1270 TXPKT_L4CSUM_DIS_F
| TXPKT_IPCSUM_DIS_F
|
1271 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START
) |
1272 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END
) |
1273 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END
);
1276 #endif /* CONFIG_CHELSIO_T4_FCOE */
1278 /* Returns tunnel type if hardware supports offloading of the same.
1279 * It is called only for T5 and onwards.
1281 enum cpl_tx_tnl_lso_type
cxgb_encap_offload_supported(struct sk_buff
*skb
)
1284 enum cpl_tx_tnl_lso_type tnl_type
= TX_TNL_TYPE_OPAQUE
;
1285 struct port_info
*pi
= netdev_priv(skb
->dev
);
1286 struct adapter
*adapter
= pi
->adapter
;
1288 if (skb
->inner_protocol_type
!= ENCAP_TYPE_ETHER
||
1289 skb
->inner_protocol
!= htons(ETH_P_TEB
))
1292 switch (vlan_get_protocol(skb
)) {
1293 case htons(ETH_P_IP
):
1294 l4_hdr
= ip_hdr(skb
)->protocol
;
1296 case htons(ETH_P_IPV6
):
1297 l4_hdr
= ipv6_hdr(skb
)->nexthdr
;
1305 if (adapter
->vxlan_port
== udp_hdr(skb
)->dest
)
1306 tnl_type
= TX_TNL_TYPE_VXLAN
;
1307 else if (adapter
->geneve_port
== udp_hdr(skb
)->dest
)
1308 tnl_type
= TX_TNL_TYPE_GENEVE
;
1317 static inline void t6_fill_tnl_lso(struct sk_buff
*skb
,
1318 struct cpl_tx_tnl_lso
*tnl_lso
,
1319 enum cpl_tx_tnl_lso_type tnl_type
)
1322 int in_eth_xtra_len
;
1323 int l3hdr_len
= skb_network_header_len(skb
);
1324 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
1325 const struct skb_shared_info
*ssi
= skb_shinfo(skb
);
1326 bool v6
= (ip_hdr(skb
)->version
== 6);
1328 val
= CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO
) |
1329 CPL_TX_TNL_LSO_FIRST_F
|
1330 CPL_TX_TNL_LSO_LAST_F
|
1331 (v6
? CPL_TX_TNL_LSO_IPV6OUT_F
: 0) |
1332 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len
/ 4) |
1333 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len
/ 4) |
1334 (v6
? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F
) |
1335 CPL_TX_TNL_LSO_IPLENSETOUT_F
|
1336 (v6
? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F
);
1337 tnl_lso
->op_to_IpIdSplitOut
= htonl(val
);
1339 tnl_lso
->IpIdOffsetOut
= 0;
1341 /* Get the tunnel header length */
1342 val
= skb_inner_mac_header(skb
) - skb_mac_header(skb
);
1343 in_eth_xtra_len
= skb_inner_network_header(skb
) -
1344 skb_inner_mac_header(skb
) - ETH_HLEN
;
1347 case TX_TNL_TYPE_VXLAN
:
1348 case TX_TNL_TYPE_GENEVE
:
1349 tnl_lso
->UdpLenSetOut_to_TnlHdrLen
=
1350 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F
|
1351 CPL_TX_TNL_LSO_UDPLENSETOUT_F
);
1354 tnl_lso
->UdpLenSetOut_to_TnlHdrLen
= 0;
1358 tnl_lso
->UdpLenSetOut_to_TnlHdrLen
|=
1359 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val
) |
1360 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type
));
1364 val
= CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len
/ 4) |
1365 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb
)->version
== 6) |
1366 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb
) / 4) |
1367 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb
) / 4);
1368 tnl_lso
->Flow_to_TcpHdrLen
= htonl(val
);
1370 tnl_lso
->IpIdOffset
= htons(0);
1372 tnl_lso
->IpIdSplit_to_Mss
= htons(CPL_TX_TNL_LSO_MSS_V(ssi
->gso_size
));
1373 tnl_lso
->TCPSeqOffset
= htonl(0);
1374 tnl_lso
->EthLenOffset_Size
= htonl(CPL_TX_TNL_LSO_SIZE_V(skb
->len
));
1377 static inline void *write_tso_wr(struct adapter
*adap
, struct sk_buff
*skb
,
1378 struct cpl_tx_pkt_lso_core
*lso
)
1380 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
1381 int l3hdr_len
= skb_network_header_len(skb
);
1382 const struct skb_shared_info
*ssi
;
1385 ssi
= skb_shinfo(skb
);
1386 if (ssi
->gso_type
& SKB_GSO_TCPV6
)
1389 lso
->lso_ctrl
= htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO
) |
1390 LSO_FIRST_SLICE_F
| LSO_LAST_SLICE_F
|
1392 LSO_ETHHDR_LEN_V(eth_xtra_len
/ 4) |
1393 LSO_IPHDR_LEN_V(l3hdr_len
/ 4) |
1394 LSO_TCPHDR_LEN_V(tcp_hdr(skb
)->doff
));
1395 lso
->ipid_ofst
= htons(0);
1396 lso
->mss
= htons(ssi
->gso_size
);
1397 lso
->seqno_offset
= htonl(0);
1398 if (is_t4(adap
->params
.chip
))
1399 lso
->len
= htonl(skb
->len
);
1401 lso
->len
= htonl(LSO_T5_XFER_SIZE_V(skb
->len
));
1403 return (void *)(lso
+ 1);
1407 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1408 * @adap: the adapter
1409 * @eq: the Ethernet TX Queue
1410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1412 * We're typically called here to update the state of an Ethernet TX
1413 * Queue with respect to the hardware's progress in consuming the TX
1414 * Work Requests that we've put on that Egress Queue. This happens
1415 * when we get Egress Queue Update messages and also prophylactically
1416 * in regular timer-based Ethernet TX Queue maintenance.
1418 int t4_sge_eth_txq_egress_update(struct adapter
*adap
, struct sge_eth_txq
*eq
,
1421 unsigned int reclaimed
, hw_cidx
;
1422 struct sge_txq
*q
= &eq
->q
;
1425 if (!q
->in_use
|| !__netif_tx_trylock(eq
->txq
))
1428 /* Reclaim pending completed TX Descriptors. */
1429 reclaimed
= reclaim_completed_tx(adap
, &eq
->q
, maxreclaim
, true);
1431 hw_cidx
= ntohs(READ_ONCE(q
->stat
->cidx
));
1432 hw_in_use
= q
->pidx
- hw_cidx
;
1434 hw_in_use
+= q
->size
;
1436 /* If the TX Queue is currently stopped and there's now more than half
1437 * the queue available, restart it. Otherwise bail out since the rest
1438 * of what we want do here is with the possibility of shipping any
1439 * currently buffered Coalesced TX Work Request.
1441 if (netif_tx_queue_stopped(eq
->txq
) && hw_in_use
< (q
->size
/ 2)) {
1442 netif_tx_wake_queue(eq
->txq
);
1446 __netif_tx_unlock(eq
->txq
);
1450 static inline int cxgb4_validate_skb(struct sk_buff
*skb
,
1451 struct net_device
*dev
,
1456 /* The chip min packet length is 10 octets but some firmware
1457 * commands have a minimum packet length requirement. So, play
1458 * safe and reject anything shorter than @min_pkt_len.
1460 if (unlikely(skb
->len
< min_pkt_len
))
1463 /* Discard the packet if the length is greater than mtu */
1464 max_pkt_len
= ETH_HLEN
+ dev
->mtu
;
1466 if (skb_vlan_tagged(skb
))
1467 max_pkt_len
+= VLAN_HLEN
;
1469 if (!skb_shinfo(skb
)->gso_size
&& (unlikely(skb
->len
> max_pkt_len
)))
1475 static void *write_eo_udp_wr(struct sk_buff
*skb
, struct fw_eth_tx_eo_wr
*wr
,
1478 wr
->u
.udpseg
.type
= FW_ETH_TX_EO_TYPE_UDPSEG
;
1479 wr
->u
.udpseg
.ethlen
= skb_network_offset(skb
);
1480 wr
->u
.udpseg
.iplen
= cpu_to_be16(skb_network_header_len(skb
));
1481 wr
->u
.udpseg
.udplen
= sizeof(struct udphdr
);
1482 wr
->u
.udpseg
.rtplen
= 0;
1483 wr
->u
.udpseg
.r4
= 0;
1484 if (skb_shinfo(skb
)->gso_size
)
1485 wr
->u
.udpseg
.mss
= cpu_to_be16(skb_shinfo(skb
)->gso_size
);
1487 wr
->u
.udpseg
.mss
= cpu_to_be16(skb
->len
- hdr_len
);
1488 wr
->u
.udpseg
.schedpktsize
= wr
->u
.udpseg
.mss
;
1489 wr
->u
.udpseg
.plen
= cpu_to_be32(skb
->len
- hdr_len
);
1491 return (void *)(wr
+ 1);
1495 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1497 * @dev: the egress net device
1499 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1501 static netdev_tx_t
cxgb4_eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1503 enum cpl_tx_tnl_lso_type tnl_type
= TX_TNL_TYPE_OPAQUE
;
1504 bool ptp_enabled
= is_ptp_enabled(skb
, dev
);
1505 unsigned int last_desc
, flits
, ndesc
;
1506 u32 wr_mid
, ctrl0
, op
, sgl_off
= 0;
1507 const struct skb_shared_info
*ssi
;
1508 int len
, qidx
, credits
, ret
, left
;
1509 struct tx_sw_desc
*sgl_sdesc
;
1510 struct fw_eth_tx_eo_wr
*eowr
;
1511 struct fw_eth_tx_pkt_wr
*wr
;
1512 struct cpl_tx_pkt_core
*cpl
;
1513 const struct port_info
*pi
;
1514 bool immediate
= false;
1515 u64 cntrl
, *end
, *sgl
;
1516 struct sge_eth_txq
*q
;
1517 unsigned int chip_ver
;
1518 struct adapter
*adap
;
1520 ret
= cxgb4_validate_skb(skb
, dev
, ETH_HLEN
);
1524 pi
= netdev_priv(dev
);
1526 ssi
= skb_shinfo(skb
);
1527 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1528 if (xfrm_offload(skb
) && !ssi
->gso_size
)
1529 return adap
->uld
[CXGB4_ULD_IPSEC
].tx_handler(skb
, dev
);
1530 #endif /* CHELSIO_IPSEC_INLINE */
1532 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1533 if (cxgb4_is_ktls_skb(skb
) &&
1534 (skb
->len
- (skb_transport_offset(skb
) + tcp_hdrlen(skb
))))
1535 return adap
->uld
[CXGB4_ULD_KTLS
].tx_handler(skb
, dev
);
1536 #endif /* CHELSIO_TLS_DEVICE */
1538 qidx
= skb_get_queue_mapping(skb
);
1540 if (!(adap
->ptp_tx_skb
)) {
1541 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
1542 adap
->ptp_tx_skb
= skb_get(skb
);
1546 q
= &adap
->sge
.ptptxq
;
1548 q
= &adap
->sge
.ethtxq
[qidx
+ pi
->first_qset
];
1550 skb_tx_timestamp(skb
);
1552 reclaim_completed_tx(adap
, &q
->q
, -1, true);
1553 cntrl
= TXPKT_L4CSUM_DIS_F
| TXPKT_IPCSUM_DIS_F
;
1555 #ifdef CONFIG_CHELSIO_T4_FCOE
1556 ret
= cxgb_fcoe_offload(skb
, adap
, pi
, &cntrl
);
1557 if (unlikely(ret
== -EOPNOTSUPP
))
1559 #endif /* CONFIG_CHELSIO_T4_FCOE */
1561 chip_ver
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
1562 flits
= calc_tx_flits(skb
, chip_ver
);
1563 ndesc
= flits_to_desc(flits
);
1564 credits
= txq_avail(&q
->q
) - ndesc
;
1566 if (unlikely(credits
< 0)) {
1568 dev_err(adap
->pdev_dev
,
1569 "%s: Tx ring %u full while queue awake!\n",
1571 return NETDEV_TX_BUSY
;
1574 if (is_eth_imm(skb
, chip_ver
))
1577 if (skb
->encapsulation
&& chip_ver
> CHELSIO_T5
)
1578 tnl_type
= cxgb_encap_offload_supported(skb
);
1580 last_desc
= q
->q
.pidx
+ ndesc
- 1;
1581 if (last_desc
>= q
->q
.size
)
1582 last_desc
-= q
->q
.size
;
1583 sgl_sdesc
= &q
->q
.sdesc
[last_desc
];
1586 unlikely(cxgb4_map_skb(adap
->pdev_dev
, skb
, sgl_sdesc
->addr
) < 0)) {
1587 memset(sgl_sdesc
->addr
, 0, sizeof(sgl_sdesc
->addr
));
1592 wr_mid
= FW_WR_LEN16_V(DIV_ROUND_UP(flits
, 2));
1593 if (unlikely(credits
< ETHTXQ_STOP_THRES
)) {
1594 /* After we're done injecting the Work Request for this
1595 * packet, we'll be below our "stop threshold" so stop the TX
1596 * Queue now and schedule a request for an SGE Egress Queue
1597 * Update message. The queue will get started later on when
1598 * the firmware processes this Work Request and sends us an
1599 * Egress Queue Status Update message indicating that space
1603 wr_mid
|= FW_WR_EQUEQ_F
| FW_WR_EQUIQ_F
;
1606 wr
= (void *)&q
->q
.desc
[q
->q
.pidx
];
1607 eowr
= (void *)&q
->q
.desc
[q
->q
.pidx
];
1608 wr
->equiq_to_len16
= htonl(wr_mid
);
1609 wr
->r3
= cpu_to_be64(0);
1610 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
)
1611 end
= (u64
*)eowr
+ flits
;
1613 end
= (u64
*)wr
+ flits
;
1615 len
= immediate
? skb
->len
: 0;
1616 len
+= sizeof(*cpl
);
1617 if (ssi
->gso_size
&& !(ssi
->gso_type
& SKB_GSO_UDP_L4
)) {
1618 struct cpl_tx_pkt_lso_core
*lso
= (void *)(wr
+ 1);
1619 struct cpl_tx_tnl_lso
*tnl_lso
= (void *)(wr
+ 1);
1622 len
+= sizeof(*tnl_lso
);
1624 len
+= sizeof(*lso
);
1626 wr
->op_immdlen
= htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR
) |
1627 FW_WR_IMMDLEN_V(len
));
1629 struct iphdr
*iph
= ip_hdr(skb
);
1631 t6_fill_tnl_lso(skb
, tnl_lso
, tnl_type
);
1632 cpl
= (void *)(tnl_lso
+ 1);
1633 /* Driver is expected to compute partial checksum that
1634 * does not include the IP Total Length.
1636 if (iph
->version
== 4) {
1639 iph
->check
= ~ip_fast_csum((u8
*)iph
, iph
->ihl
);
1641 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1642 cntrl
= hwcsum(adap
->params
.chip
, skb
);
1644 cpl
= write_tso_wr(adap
, skb
, lso
);
1645 cntrl
= hwcsum(adap
->params
.chip
, skb
);
1647 sgl
= (u64
*)(cpl
+ 1); /* sgl start here */
1649 q
->tx_cso
+= ssi
->gso_segs
;
1650 } else if (ssi
->gso_size
) {
1654 hdrlen
= eth_get_headlen(dev
, skb
->data
, skb_headlen(skb
));
1656 wr
->op_immdlen
= cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR
) |
1657 FW_ETH_TX_EO_WR_IMMDLEN_V(len
));
1658 cpl
= write_eo_udp_wr(skb
, eowr
, hdrlen
);
1659 cntrl
= hwcsum(adap
->params
.chip
, skb
);
1661 start
= (u64
*)(cpl
+ 1);
1662 sgl
= (u64
*)inline_tx_skb_header(skb
, &q
->q
, (void *)start
,
1664 if (unlikely(start
> sgl
)) {
1665 left
= (u8
*)end
- (u8
*)q
->q
.stat
;
1666 end
= (void *)q
->q
.desc
+ left
;
1670 q
->tx_cso
+= ssi
->gso_segs
;
1673 op
= FW_PTP_TX_PKT_WR
;
1675 op
= FW_ETH_TX_PKT_WR
;
1676 wr
->op_immdlen
= htonl(FW_WR_OP_V(op
) |
1677 FW_WR_IMMDLEN_V(len
));
1678 cpl
= (void *)(wr
+ 1);
1679 sgl
= (u64
*)(cpl
+ 1);
1680 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1681 cntrl
= hwcsum(adap
->params
.chip
, skb
) |
1687 if (unlikely((u8
*)sgl
>= (u8
*)q
->q
.stat
)) {
1688 /* If current position is already at the end of the
1689 * txq, reset the current to point to start of the queue
1690 * and update the end ptr as well.
1692 left
= (u8
*)end
- (u8
*)q
->q
.stat
;
1693 end
= (void *)q
->q
.desc
+ left
;
1694 sgl
= (void *)q
->q
.desc
;
1697 if (skb_vlan_tag_present(skb
)) {
1699 cntrl
|= TXPKT_VLAN_VLD_F
| TXPKT_VLAN_V(skb_vlan_tag_get(skb
));
1700 #ifdef CONFIG_CHELSIO_T4_FCOE
1701 if (skb
->protocol
== htons(ETH_P_FCOE
))
1702 cntrl
|= TXPKT_VLAN_V(
1703 ((skb
->priority
& 0x7) << VLAN_PRIO_SHIFT
));
1704 #endif /* CONFIG_CHELSIO_T4_FCOE */
1707 ctrl0
= TXPKT_OPCODE_V(CPL_TX_PKT_XT
) | TXPKT_INTF_V(pi
->tx_chan
) |
1708 TXPKT_PF_V(adap
->pf
);
1710 ctrl0
|= TXPKT_TSTAMP_F
;
1711 #ifdef CONFIG_CHELSIO_T4_DCB
1712 if (is_t4(adap
->params
.chip
))
1713 ctrl0
|= TXPKT_OVLAN_IDX_V(q
->dcb_prio
);
1715 ctrl0
|= TXPKT_T5_OVLAN_IDX_V(q
->dcb_prio
);
1717 cpl
->ctrl0
= htonl(ctrl0
);
1718 cpl
->pack
= htons(0);
1719 cpl
->len
= htons(skb
->len
);
1720 cpl
->ctrl1
= cpu_to_be64(cntrl
);
1723 cxgb4_inline_tx_skb(skb
, &q
->q
, sgl
);
1724 dev_consume_skb_any(skb
);
1726 cxgb4_write_sgl(skb
, &q
->q
, (void *)sgl
, end
, sgl_off
,
1729 sgl_sdesc
->skb
= skb
;
1732 txq_advance(&q
->q
, ndesc
);
1734 cxgb4_ring_tx_db(adap
, &q
->q
, ndesc
);
1735 return NETDEV_TX_OK
;
1738 dev_kfree_skb_any(skb
);
1739 return NETDEV_TX_OK
;
1744 /* Egress Queue sizes, producer and consumer indices are all in units
1745 * of Egress Context Units bytes. Note that as far as the hardware is
1746 * concerned, the free list is an Egress Queue (the host produces free
1747 * buffers which the hardware consumes) and free list entries are
1748 * 64-bit PCI DMA addresses.
1750 EQ_UNIT
= SGE_EQ_IDXSIZE
,
1751 FL_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
1752 TXD_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
1754 T4VF_ETHTXQ_MAX_HDR
= (sizeof(struct fw_eth_tx_pkt_vm_wr
) +
1755 sizeof(struct cpl_tx_pkt_lso_core
) +
1756 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
),
1760 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1763 * Returns whether an Ethernet packet is small enough to fit completely as
1766 static inline int t4vf_is_eth_imm(const struct sk_buff
*skb
)
1768 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1769 * which does not accommodate immediate data. We could dike out all
1770 * of the support code for immediate data but that would tie our hands
1771 * too much if we ever want to enhace the firmware. It would also
1772 * create more differences between the PF and VF Drivers.
1778 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1781 * Returns the number of flits needed for a TX Work Request for the
1782 * given Ethernet packet, including the needed WR and CPL headers.
1784 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff
*skb
)
1788 /* If the skb is small enough, we can pump it out as a work request
1789 * with only immediate data. In that case we just have to have the
1790 * TX Packet header plus the skb data in the Work Request.
1792 if (t4vf_is_eth_imm(skb
))
1793 return DIV_ROUND_UP(skb
->len
+ sizeof(struct cpl_tx_pkt
),
1796 /* Otherwise, we're going to have to construct a Scatter gather list
1797 * of the skb body and fragments. We also include the flits necessary
1798 * for the TX Packet Work Request and CPL. We always have a firmware
1799 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1800 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1801 * message or, if we're doing a Large Send Offload, an LSO CPL message
1802 * with an embedded TX Packet Write CPL message.
1804 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1);
1805 if (skb_shinfo(skb
)->gso_size
)
1806 flits
+= (sizeof(struct fw_eth_tx_pkt_vm_wr
) +
1807 sizeof(struct cpl_tx_pkt_lso_core
) +
1808 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
);
1810 flits
+= (sizeof(struct fw_eth_tx_pkt_vm_wr
) +
1811 sizeof(struct cpl_tx_pkt_core
)) / sizeof(__be64
);
1816 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1818 * @dev: the egress net device
1820 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1822 static netdev_tx_t
cxgb4_vf_eth_xmit(struct sk_buff
*skb
,
1823 struct net_device
*dev
)
1825 unsigned int last_desc
, flits
, ndesc
;
1826 const struct skb_shared_info
*ssi
;
1827 struct fw_eth_tx_pkt_vm_wr
*wr
;
1828 struct tx_sw_desc
*sgl_sdesc
;
1829 struct cpl_tx_pkt_core
*cpl
;
1830 const struct port_info
*pi
;
1831 struct sge_eth_txq
*txq
;
1832 struct adapter
*adapter
;
1833 int qidx
, credits
, ret
;
1834 size_t fw_hdr_copy_len
;
1838 /* The chip minimum packet length is 10 octets but the firmware
1839 * command that we are using requires that we copy the Ethernet header
1840 * (including the VLAN tag) into the header so we reject anything
1841 * smaller than that ...
1843 fw_hdr_copy_len
= sizeof(wr
->ethmacdst
) + sizeof(wr
->ethmacsrc
) +
1844 sizeof(wr
->ethtype
) + sizeof(wr
->vlantci
);
1845 ret
= cxgb4_validate_skb(skb
, dev
, fw_hdr_copy_len
);
1849 /* Figure out which TX Queue we're going to use. */
1850 pi
= netdev_priv(dev
);
1851 adapter
= pi
->adapter
;
1852 qidx
= skb_get_queue_mapping(skb
);
1853 WARN_ON(qidx
>= pi
->nqsets
);
1854 txq
= &adapter
->sge
.ethtxq
[pi
->first_qset
+ qidx
];
1856 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1857 * transfers have completed.
1859 reclaim_completed_tx(adapter
, &txq
->q
, -1, true);
1861 /* Calculate the number of flits and TX Descriptors we're going to
1862 * need along with how many TX Descriptors will be left over after
1863 * we inject our Work Request.
1865 flits
= t4vf_calc_tx_flits(skb
);
1866 ndesc
= flits_to_desc(flits
);
1867 credits
= txq_avail(&txq
->q
) - ndesc
;
1869 if (unlikely(credits
< 0)) {
1870 /* Not enough room for this packet's Work Request. Stop the
1871 * TX Queue and return a "busy" condition. The queue will get
1872 * started later on when the firmware informs us that space
1876 dev_err(adapter
->pdev_dev
,
1877 "%s: TX ring %u full while queue awake!\n",
1879 return NETDEV_TX_BUSY
;
1882 last_desc
= txq
->q
.pidx
+ ndesc
- 1;
1883 if (last_desc
>= txq
->q
.size
)
1884 last_desc
-= txq
->q
.size
;
1885 sgl_sdesc
= &txq
->q
.sdesc
[last_desc
];
1887 if (!t4vf_is_eth_imm(skb
) &&
1888 unlikely(cxgb4_map_skb(adapter
->pdev_dev
, skb
,
1889 sgl_sdesc
->addr
) < 0)) {
1890 /* We need to map the skb into PCI DMA space (because it can't
1891 * be in-lined directly into the Work Request) and the mapping
1892 * operation failed. Record the error and drop the packet.
1894 memset(sgl_sdesc
->addr
, 0, sizeof(sgl_sdesc
->addr
));
1899 wr_mid
= FW_WR_LEN16_V(DIV_ROUND_UP(flits
, 2));
1900 if (unlikely(credits
< ETHTXQ_STOP_THRES
)) {
1901 /* After we're done injecting the Work Request for this
1902 * packet, we'll be below our "stop threshold" so stop the TX
1903 * Queue now and schedule a request for an SGE Egress Queue
1904 * Update message. The queue will get started later on when
1905 * the firmware processes this Work Request and sends us an
1906 * Egress Queue Status Update message indicating that space
1910 wr_mid
|= FW_WR_EQUEQ_F
| FW_WR_EQUIQ_F
;
1913 /* Start filling in our Work Request. Note that we do _not_ handle
1914 * the WR Header wrapping around the TX Descriptor Ring. If our
1915 * maximum header size ever exceeds one TX Descriptor, we'll need to
1916 * do something else here.
1918 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR
, TXD_PER_EQ_UNIT
) > 1);
1919 wr
= (void *)&txq
->q
.desc
[txq
->q
.pidx
];
1920 wr
->equiq_to_len16
= cpu_to_be32(wr_mid
);
1921 wr
->r3
[0] = cpu_to_be32(0);
1922 wr
->r3
[1] = cpu_to_be32(0);
1923 skb_copy_from_linear_data(skb
, (void *)wr
->ethmacdst
, fw_hdr_copy_len
);
1924 end
= (u64
*)wr
+ flits
;
1926 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1927 * message with an encapsulated TX Packet CPL message. Otherwise we
1928 * just use a TX Packet CPL message.
1930 ssi
= skb_shinfo(skb
);
1931 if (ssi
->gso_size
) {
1932 struct cpl_tx_pkt_lso_core
*lso
= (void *)(wr
+ 1);
1933 bool v6
= (ssi
->gso_type
& SKB_GSO_TCPV6
) != 0;
1934 int l3hdr_len
= skb_network_header_len(skb
);
1935 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
1938 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR
) |
1939 FW_WR_IMMDLEN_V(sizeof(*lso
) +
1941 /* Fill in the LSO CPL message. */
1943 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO
) |
1947 LSO_ETHHDR_LEN_V(eth_xtra_len
/ 4) |
1948 LSO_IPHDR_LEN_V(l3hdr_len
/ 4) |
1949 LSO_TCPHDR_LEN_V(tcp_hdr(skb
)->doff
));
1950 lso
->ipid_ofst
= cpu_to_be16(0);
1951 lso
->mss
= cpu_to_be16(ssi
->gso_size
);
1952 lso
->seqno_offset
= cpu_to_be32(0);
1953 if (is_t4(adapter
->params
.chip
))
1954 lso
->len
= cpu_to_be32(skb
->len
);
1956 lso
->len
= cpu_to_be32(LSO_T5_XFER_SIZE_V(skb
->len
));
1958 /* Set up TX Packet CPL pointer, control word and perform
1961 cpl
= (void *)(lso
+ 1);
1963 if (CHELSIO_CHIP_VERSION(adapter
->params
.chip
) <= CHELSIO_T5
)
1964 cntrl
= TXPKT_ETHHDR_LEN_V(eth_xtra_len
);
1966 cntrl
= T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len
);
1968 cntrl
|= TXPKT_CSUM_TYPE_V(v6
?
1969 TX_CSUM_TCPIP6
: TX_CSUM_TCPIP
) |
1970 TXPKT_IPHDR_LEN_V(l3hdr_len
);
1972 txq
->tx_cso
+= ssi
->gso_segs
;
1976 len
= (t4vf_is_eth_imm(skb
)
1977 ? skb
->len
+ sizeof(*cpl
)
1980 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR
) |
1981 FW_WR_IMMDLEN_V(len
));
1983 /* Set up TX Packet CPL pointer, control word and perform
1986 cpl
= (void *)(wr
+ 1);
1987 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1988 cntrl
= hwcsum(adapter
->params
.chip
, skb
) |
1992 cntrl
= TXPKT_L4CSUM_DIS_F
| TXPKT_IPCSUM_DIS_F
;
1996 /* If there's a VLAN tag present, add that to the list of things to
1997 * do in this Work Request.
1999 if (skb_vlan_tag_present(skb
)) {
2001 cntrl
|= TXPKT_VLAN_VLD_F
| TXPKT_VLAN_V(skb_vlan_tag_get(skb
));
2004 /* Fill in the TX Packet CPL message header. */
2005 cpl
->ctrl0
= cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT
) |
2006 TXPKT_INTF_V(pi
->port_id
) |
2008 cpl
->pack
= cpu_to_be16(0);
2009 cpl
->len
= cpu_to_be16(skb
->len
);
2010 cpl
->ctrl1
= cpu_to_be64(cntrl
);
2012 /* Fill in the body of the TX Packet CPL message with either in-lined
2013 * data or a Scatter/Gather List.
2015 if (t4vf_is_eth_imm(skb
)) {
2016 /* In-line the packet's data and free the skb since we don't
2017 * need it any longer.
2019 cxgb4_inline_tx_skb(skb
, &txq
->q
, cpl
+ 1);
2020 dev_consume_skb_any(skb
);
2022 /* Write the skb's Scatter/Gather list into the TX Packet CPL
2023 * message and retain a pointer to the skb so we can free it
2024 * later when its DMA completes. (We store the skb pointer
2025 * in the Software Descriptor corresponding to the last TX
2026 * Descriptor used by the Work Request.)
2028 * The retained skb will be freed when the corresponding TX
2029 * Descriptors are reclaimed after their DMAs complete.
2030 * However, this could take quite a while since, in general,
2031 * the hardware is set up to be lazy about sending DMA
2032 * completion notifications to us and we mostly perform TX
2033 * reclaims in the transmit routine.
2035 * This is good for performamce but means that we rely on new
2036 * TX packets arriving to run the destructors of completed
2037 * packets, which open up space in their sockets' send queues.
2038 * Sometimes we do not get such new packets causing TX to
2039 * stall. A single UDP transmitter is a good example of this
2040 * situation. We have a clean up timer that periodically
2041 * reclaims completed packets but it doesn't run often enough
2042 * (nor do we want it to) to prevent lengthy stalls. A
2043 * solution to this problem is to run the destructor early,
2044 * after the packet is queued but before it's DMAd. A con is
2045 * that we lie to socket memory accounting, but the amount of
2046 * extra memory is reasonable (limited by the number of TX
2047 * descriptors), the packets do actually get freed quickly by
2048 * new packets almost always, and for protocols like TCP that
2049 * wait for acks to really free up the data the extra memory
2050 * is even less. On the positive side we run the destructors
2051 * on the sending CPU rather than on a potentially different
2052 * completing CPU, usually a good thing.
2054 * Run the destructor before telling the DMA engine about the
2055 * packet to make sure it doesn't complete and get freed
2058 struct ulptx_sgl
*sgl
= (struct ulptx_sgl
*)(cpl
+ 1);
2059 struct sge_txq
*tq
= &txq
->q
;
2061 /* If the Work Request header was an exact multiple of our TX
2062 * Descriptor length, then it's possible that the starting SGL
2063 * pointer lines up exactly with the end of our TX Descriptor
2064 * ring. If that's the case, wrap around to the beginning
2067 if (unlikely((void *)sgl
== (void *)tq
->stat
)) {
2068 sgl
= (void *)tq
->desc
;
2069 end
= (void *)((void *)tq
->desc
+
2070 ((void *)end
- (void *)tq
->stat
));
2073 cxgb4_write_sgl(skb
, tq
, sgl
, end
, 0, sgl_sdesc
->addr
);
2075 sgl_sdesc
->skb
= skb
;
2078 /* Advance our internal TX Queue state, tell the hardware about
2079 * the new TX descriptors and return success.
2081 txq_advance(&txq
->q
, ndesc
);
2083 cxgb4_ring_tx_db(adapter
, &txq
->q
, ndesc
);
2084 return NETDEV_TX_OK
;
2087 /* An error of some sort happened. Free the TX skb and tell the
2088 * OS that we've "dealt" with the packet ...
2090 dev_kfree_skb_any(skb
);
2091 return NETDEV_TX_OK
;
2095 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2096 * @q: the SGE control Tx queue
2098 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2099 * for Tx queues that send only immediate data (presently just
2100 * the control queues) and thus do not have any sk_buffs to release.
2102 static inline void reclaim_completed_tx_imm(struct sge_txq
*q
)
2104 int hw_cidx
= ntohs(READ_ONCE(q
->stat
->cidx
));
2105 int reclaim
= hw_cidx
- q
->cidx
;
2110 q
->in_use
-= reclaim
;
2114 static inline void eosw_txq_advance_index(u32
*idx
, u32 n
, u32 max
)
2124 void cxgb4_eosw_txq_free_desc(struct adapter
*adap
,
2125 struct sge_eosw_txq
*eosw_txq
, u32 ndesc
)
2127 struct tx_sw_desc
*d
;
2129 d
= &eosw_txq
->desc
[eosw_txq
->last_cidx
];
2133 unmap_skb(adap
->pdev_dev
, d
->skb
, d
->addr
);
2134 memset(d
->addr
, 0, sizeof(d
->addr
));
2136 dev_consume_skb_any(d
->skb
);
2139 eosw_txq_advance_index(&eosw_txq
->last_cidx
, 1,
2141 d
= &eosw_txq
->desc
[eosw_txq
->last_cidx
];
2145 static inline void eosw_txq_advance(struct sge_eosw_txq
*eosw_txq
, u32 n
)
2147 eosw_txq_advance_index(&eosw_txq
->pidx
, n
, eosw_txq
->ndesc
);
2148 eosw_txq
->inuse
+= n
;
2151 static inline int eosw_txq_enqueue(struct sge_eosw_txq
*eosw_txq
,
2152 struct sk_buff
*skb
)
2154 if (eosw_txq
->inuse
== eosw_txq
->ndesc
)
2157 eosw_txq
->desc
[eosw_txq
->pidx
].skb
= skb
;
2161 static inline struct sk_buff
*eosw_txq_peek(struct sge_eosw_txq
*eosw_txq
)
2163 return eosw_txq
->desc
[eosw_txq
->last_pidx
].skb
;
2166 static inline u8
ethofld_calc_tx_flits(struct adapter
*adap
,
2167 struct sk_buff
*skb
, u32 hdr_len
)
2172 wrlen
= sizeof(struct fw_eth_tx_eo_wr
) + sizeof(struct cpl_tx_pkt_core
);
2173 if (skb_shinfo(skb
)->gso_size
&&
2174 !(skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
))
2175 wrlen
+= sizeof(struct cpl_tx_pkt_lso_core
);
2177 wrlen
+= roundup(hdr_len
, 16);
2179 /* Packet headers + WR + CPLs */
2180 flits
= DIV_ROUND_UP(wrlen
, 8);
2182 if (skb_shinfo(skb
)->nr_frags
> 0) {
2183 if (skb_headlen(skb
) - hdr_len
)
2184 nsgl
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1);
2186 nsgl
= sgl_len(skb_shinfo(skb
)->nr_frags
);
2187 } else if (skb
->len
- hdr_len
) {
2191 return flits
+ nsgl
;
2194 static void *write_eo_wr(struct adapter
*adap
, struct sge_eosw_txq
*eosw_txq
,
2195 struct sk_buff
*skb
, struct fw_eth_tx_eo_wr
*wr
,
2196 u32 hdr_len
, u32 wrlen
)
2198 const struct skb_shared_info
*ssi
= skb_shinfo(skb
);
2199 struct cpl_tx_pkt_core
*cpl
;
2200 u32 immd_len
, wrlen16
;
2204 ver
= ip_hdr(skb
)->version
;
2205 proto
= (ver
== 6) ? ipv6_hdr(skb
)->nexthdr
: ip_hdr(skb
)->protocol
;
2207 wrlen16
= DIV_ROUND_UP(wrlen
, 16);
2208 immd_len
= sizeof(struct cpl_tx_pkt_core
);
2209 if (skb_shinfo(skb
)->gso_size
&&
2210 !(skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
))
2211 immd_len
+= sizeof(struct cpl_tx_pkt_lso_core
);
2212 immd_len
+= hdr_len
;
2214 if (!eosw_txq
->ncompl
||
2215 (eosw_txq
->last_compl
+ wrlen16
) >=
2216 (adap
->params
.ofldq_wr_cred
/ 2)) {
2219 eosw_txq
->last_compl
= 0;
2222 wr
->op_immdlen
= cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR
) |
2223 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len
) |
2224 FW_WR_COMPL_V(compl));
2225 wr
->equiq_to_len16
= cpu_to_be32(FW_WR_LEN16_V(wrlen16
) |
2226 FW_WR_FLOWID_V(eosw_txq
->hwtid
));
2228 if (proto
== IPPROTO_UDP
) {
2229 cpl
= write_eo_udp_wr(skb
, wr
, hdr_len
);
2231 wr
->u
.tcpseg
.type
= FW_ETH_TX_EO_TYPE_TCPSEG
;
2232 wr
->u
.tcpseg
.ethlen
= skb_network_offset(skb
);
2233 wr
->u
.tcpseg
.iplen
= cpu_to_be16(skb_network_header_len(skb
));
2234 wr
->u
.tcpseg
.tcplen
= tcp_hdrlen(skb
);
2235 wr
->u
.tcpseg
.tsclk_tsoff
= 0;
2236 wr
->u
.tcpseg
.r4
= 0;
2237 wr
->u
.tcpseg
.r5
= 0;
2238 wr
->u
.tcpseg
.plen
= cpu_to_be32(skb
->len
- hdr_len
);
2240 if (ssi
->gso_size
) {
2241 struct cpl_tx_pkt_lso_core
*lso
= (void *)(wr
+ 1);
2243 wr
->u
.tcpseg
.mss
= cpu_to_be16(ssi
->gso_size
);
2244 cpl
= write_tso_wr(adap
, skb
, lso
);
2246 wr
->u
.tcpseg
.mss
= cpu_to_be16(0xffff);
2247 cpl
= (void *)(wr
+ 1);
2251 eosw_txq
->cred
-= wrlen16
;
2252 eosw_txq
->last_compl
+= wrlen16
;
2256 static int ethofld_hard_xmit(struct net_device
*dev
,
2257 struct sge_eosw_txq
*eosw_txq
)
2259 struct port_info
*pi
= netdev2pinfo(dev
);
2260 struct adapter
*adap
= netdev2adap(dev
);
2261 u32 wrlen
, wrlen16
, hdr_len
, data_len
;
2262 enum sge_eosw_state next_state
;
2263 u64 cntrl
, *start
, *end
, *sgl
;
2264 struct sge_eohw_txq
*eohw_txq
;
2265 struct cpl_tx_pkt_core
*cpl
;
2266 struct fw_eth_tx_eo_wr
*wr
;
2267 bool skip_eotx_wr
= false;
2268 struct tx_sw_desc
*d
;
2269 struct sk_buff
*skb
;
2273 eohw_txq
= &adap
->sge
.eohw_txq
[eosw_txq
->hwqid
];
2274 spin_lock(&eohw_txq
->lock
);
2275 reclaim_completed_tx_imm(&eohw_txq
->q
);
2277 d
= &eosw_txq
->desc
[eosw_txq
->last_pidx
];
2279 skb_tx_timestamp(skb
);
2281 wr
= (struct fw_eth_tx_eo_wr
*)&eohw_txq
->q
.desc
[eohw_txq
->q
.pidx
];
2282 if (unlikely(eosw_txq
->state
!= CXGB4_EO_STATE_ACTIVE
&&
2283 eosw_txq
->last_pidx
== eosw_txq
->flowc_idx
)) {
2286 flits
= DIV_ROUND_UP(hdr_len
, 8);
2287 if (eosw_txq
->state
== CXGB4_EO_STATE_FLOWC_OPEN_SEND
)
2288 next_state
= CXGB4_EO_STATE_FLOWC_OPEN_REPLY
;
2290 next_state
= CXGB4_EO_STATE_FLOWC_CLOSE_REPLY
;
2291 skip_eotx_wr
= true;
2293 hdr_len
= eth_get_headlen(dev
, skb
->data
, skb_headlen(skb
));
2294 data_len
= skb
->len
- hdr_len
;
2295 flits
= ethofld_calc_tx_flits(adap
, skb
, hdr_len
);
2297 ndesc
= flits_to_desc(flits
);
2299 wrlen16
= DIV_ROUND_UP(wrlen
, 16);
2301 left
= txq_avail(&eohw_txq
->q
) - ndesc
;
2303 /* If there are no descriptors left in hardware queues or no
2304 * CPL credits left in software queues, then wait for them
2305 * to come back and retry again. Note that we always request
2306 * for credits update via interrupt for every half credits
2307 * consumed. So, the interrupt will eventually restore the
2308 * credits and invoke the Tx path again.
2310 if (unlikely(left
< 0 || wrlen16
> eosw_txq
->cred
)) {
2315 if (unlikely(skip_eotx_wr
)) {
2317 eosw_txq
->state
= next_state
;
2318 eosw_txq
->cred
-= wrlen16
;
2320 eosw_txq
->last_compl
= 0;
2321 goto write_wr_headers
;
2324 cpl
= write_eo_wr(adap
, eosw_txq
, skb
, wr
, hdr_len
, wrlen
);
2325 cntrl
= hwcsum(adap
->params
.chip
, skb
);
2326 if (skb_vlan_tag_present(skb
))
2327 cntrl
|= TXPKT_VLAN_VLD_F
| TXPKT_VLAN_V(skb_vlan_tag_get(skb
));
2329 cpl
->ctrl0
= cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT
) |
2330 TXPKT_INTF_V(pi
->tx_chan
) |
2331 TXPKT_PF_V(adap
->pf
));
2333 cpl
->len
= cpu_to_be16(skb
->len
);
2334 cpl
->ctrl1
= cpu_to_be64(cntrl
);
2336 start
= (u64
*)(cpl
+ 1);
2339 sgl
= (u64
*)inline_tx_skb_header(skb
, &eohw_txq
->q
, (void *)start
,
2342 ret
= cxgb4_map_skb(adap
->pdev_dev
, skb
, d
->addr
);
2343 if (unlikely(ret
)) {
2344 memset(d
->addr
, 0, sizeof(d
->addr
));
2345 eohw_txq
->mapping_err
++;
2349 end
= (u64
*)wr
+ flits
;
2350 if (unlikely(start
> sgl
)) {
2351 left
= (u8
*)end
- (u8
*)eohw_txq
->q
.stat
;
2352 end
= (void *)eohw_txq
->q
.desc
+ left
;
2355 if (unlikely((u8
*)sgl
>= (u8
*)eohw_txq
->q
.stat
)) {
2356 /* If current position is already at the end of the
2357 * txq, reset the current to point to start of the queue
2358 * and update the end ptr as well.
2360 left
= (u8
*)end
- (u8
*)eohw_txq
->q
.stat
;
2362 end
= (void *)eohw_txq
->q
.desc
+ left
;
2363 sgl
= (void *)eohw_txq
->q
.desc
;
2366 cxgb4_write_sgl(skb
, &eohw_txq
->q
, (void *)sgl
, end
, hdr_len
,
2370 if (skb_shinfo(skb
)->gso_size
) {
2371 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
)
2375 eohw_txq
->tx_cso
+= skb_shinfo(skb
)->gso_segs
;
2376 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2380 if (skb_vlan_tag_present(skb
))
2381 eohw_txq
->vlan_ins
++;
2383 txq_advance(&eohw_txq
->q
, ndesc
);
2384 cxgb4_ring_tx_db(adap
, &eohw_txq
->q
, ndesc
);
2385 eosw_txq_advance_index(&eosw_txq
->last_pidx
, 1, eosw_txq
->ndesc
);
2388 spin_unlock(&eohw_txq
->lock
);
2392 static void ethofld_xmit(struct net_device
*dev
, struct sge_eosw_txq
*eosw_txq
)
2394 struct sk_buff
*skb
;
2397 switch (eosw_txq
->state
) {
2398 case CXGB4_EO_STATE_ACTIVE
:
2399 case CXGB4_EO_STATE_FLOWC_OPEN_SEND
:
2400 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND
:
2401 pktcount
= eosw_txq
->pidx
- eosw_txq
->last_pidx
;
2403 pktcount
+= eosw_txq
->ndesc
;
2405 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY
:
2406 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY
:
2407 case CXGB4_EO_STATE_CLOSED
:
2412 while (pktcount
--) {
2413 skb
= eosw_txq_peek(eosw_txq
);
2415 eosw_txq_advance_index(&eosw_txq
->last_pidx
, 1,
2420 ret
= ethofld_hard_xmit(dev
, eosw_txq
);
2426 static netdev_tx_t
cxgb4_ethofld_xmit(struct sk_buff
*skb
,
2427 struct net_device
*dev
)
2429 struct cxgb4_tc_port_mqprio
*tc_port_mqprio
;
2430 struct port_info
*pi
= netdev2pinfo(dev
);
2431 struct adapter
*adap
= netdev2adap(dev
);
2432 struct sge_eosw_txq
*eosw_txq
;
2436 ret
= cxgb4_validate_skb(skb
, dev
, ETH_HLEN
);
2440 tc_port_mqprio
= &adap
->tc_mqprio
->port_mqprio
[pi
->port_id
];
2441 qid
= skb_get_queue_mapping(skb
) - pi
->nqsets
;
2442 eosw_txq
= &tc_port_mqprio
->eosw_txq
[qid
];
2443 spin_lock_bh(&eosw_txq
->lock
);
2444 if (eosw_txq
->state
!= CXGB4_EO_STATE_ACTIVE
)
2447 ret
= eosw_txq_enqueue(eosw_txq
, skb
);
2451 /* SKB is queued for processing until credits are available.
2452 * So, call the destructor now and we'll free the skb later
2453 * after it has been successfully transmitted.
2457 eosw_txq_advance(eosw_txq
, 1);
2458 ethofld_xmit(dev
, eosw_txq
);
2459 spin_unlock_bh(&eosw_txq
->lock
);
2460 return NETDEV_TX_OK
;
2463 spin_unlock_bh(&eosw_txq
->lock
);
2465 dev_kfree_skb_any(skb
);
2466 return NETDEV_TX_OK
;
2469 netdev_tx_t
t4_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2471 struct port_info
*pi
= netdev_priv(dev
);
2472 u16 qid
= skb_get_queue_mapping(skb
);
2474 if (unlikely(pi
->eth_flags
& PRIV_FLAG_PORT_TX_VM
))
2475 return cxgb4_vf_eth_xmit(skb
, dev
);
2477 if (unlikely(qid
>= pi
->nqsets
))
2478 return cxgb4_ethofld_xmit(skb
, dev
);
2480 if (is_ptp_enabled(skb
, dev
)) {
2481 struct adapter
*adap
= netdev2adap(dev
);
2484 spin_lock(&adap
->ptp_lock
);
2485 ret
= cxgb4_eth_xmit(skb
, dev
);
2486 spin_unlock(&adap
->ptp_lock
);
2490 return cxgb4_eth_xmit(skb
, dev
);
2493 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq
*eosw_txq
)
2495 int pktcount
= eosw_txq
->pidx
- eosw_txq
->last_pidx
;
2496 int pidx
= eosw_txq
->pidx
;
2497 struct sk_buff
*skb
;
2503 pktcount
+= eosw_txq
->ndesc
;
2505 while (pktcount
--) {
2508 pidx
+= eosw_txq
->ndesc
;
2510 skb
= eosw_txq
->desc
[pidx
].skb
;
2512 dev_consume_skb_any(skb
);
2513 eosw_txq
->desc
[pidx
].skb
= NULL
;
2518 eosw_txq
->pidx
= eosw_txq
->last_pidx
+ 1;
2522 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2524 * @eotid: ETHOFLD tid to bind/unbind
2525 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2527 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2528 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2531 int cxgb4_ethofld_send_flowc(struct net_device
*dev
, u32 eotid
, u32 tc
)
2533 struct port_info
*pi
= netdev2pinfo(dev
);
2534 struct adapter
*adap
= netdev2adap(dev
);
2535 enum sge_eosw_state next_state
;
2536 struct sge_eosw_txq
*eosw_txq
;
2537 u32 len
, len16
, nparams
= 6;
2538 struct fw_flowc_wr
*flowc
;
2539 struct eotid_entry
*entry
;
2540 struct sge_ofld_rxq
*rxq
;
2541 struct sk_buff
*skb
;
2544 len
= struct_size(flowc
, mnemval
, nparams
);
2545 len16
= DIV_ROUND_UP(len
, 16);
2547 entry
= cxgb4_lookup_eotid(&adap
->tids
, eotid
);
2551 eosw_txq
= (struct sge_eosw_txq
*)entry
->data
;
2555 skb
= alloc_skb(len
, GFP_KERNEL
);
2559 spin_lock_bh(&eosw_txq
->lock
);
2560 if (tc
!= FW_SCHED_CLS_NONE
) {
2561 if (eosw_txq
->state
!= CXGB4_EO_STATE_CLOSED
)
2564 next_state
= CXGB4_EO_STATE_FLOWC_OPEN_SEND
;
2566 if (eosw_txq
->state
!= CXGB4_EO_STATE_ACTIVE
)
2569 next_state
= CXGB4_EO_STATE_FLOWC_CLOSE_SEND
;
2572 flowc
= __skb_put(skb
, len
);
2573 memset(flowc
, 0, len
);
2575 rxq
= &adap
->sge
.eohw_rxq
[eosw_txq
->hwqid
];
2576 flowc
->flowid_len16
= cpu_to_be32(FW_WR_LEN16_V(len16
) |
2577 FW_WR_FLOWID_V(eosw_txq
->hwtid
));
2578 flowc
->op_to_nparams
= cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR
) |
2579 FW_FLOWC_WR_NPARAMS_V(nparams
) |
2581 flowc
->mnemval
[0].mnemonic
= FW_FLOWC_MNEM_PFNVFN
;
2582 flowc
->mnemval
[0].val
= cpu_to_be32(FW_PFVF_CMD_PFN_V(adap
->pf
));
2583 flowc
->mnemval
[1].mnemonic
= FW_FLOWC_MNEM_CH
;
2584 flowc
->mnemval
[1].val
= cpu_to_be32(pi
->tx_chan
);
2585 flowc
->mnemval
[2].mnemonic
= FW_FLOWC_MNEM_PORT
;
2586 flowc
->mnemval
[2].val
= cpu_to_be32(pi
->tx_chan
);
2587 flowc
->mnemval
[3].mnemonic
= FW_FLOWC_MNEM_IQID
;
2588 flowc
->mnemval
[3].val
= cpu_to_be32(rxq
->rspq
.abs_id
);
2589 flowc
->mnemval
[4].mnemonic
= FW_FLOWC_MNEM_SCHEDCLASS
;
2590 flowc
->mnemval
[4].val
= cpu_to_be32(tc
);
2591 flowc
->mnemval
[5].mnemonic
= FW_FLOWC_MNEM_EOSTATE
;
2592 flowc
->mnemval
[5].val
= cpu_to_be32(tc
== FW_SCHED_CLS_NONE
?
2593 FW_FLOWC_MNEM_EOSTATE_CLOSING
:
2594 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED
);
2596 /* Free up any pending skbs to ensure there's room for
2597 * termination FLOWC.
2599 if (tc
== FW_SCHED_CLS_NONE
)
2600 eosw_txq_flush_pending_skbs(eosw_txq
);
2602 ret
= eosw_txq_enqueue(eosw_txq
, skb
);
2604 dev_consume_skb_any(skb
);
2608 eosw_txq
->state
= next_state
;
2609 eosw_txq
->flowc_idx
= eosw_txq
->pidx
;
2610 eosw_txq_advance(eosw_txq
, 1);
2611 ethofld_xmit(dev
, eosw_txq
);
2614 spin_unlock_bh(&eosw_txq
->lock
);
2619 * is_imm - check whether a packet can be sent as immediate data
2622 * Returns true if a packet can be sent as a WR with immediate data.
2624 static inline int is_imm(const struct sk_buff
*skb
)
2626 return skb
->len
<= MAX_CTRL_WR_LEN
;
2630 * ctrlq_check_stop - check if a control queue is full and should stop
2632 * @wr: most recent WR written to the queue
2634 * Check if a control queue has become full and should be stopped.
2635 * We clean up control queue descriptors very lazily, only when we are out.
2636 * If the queue is still full after reclaiming any completed descriptors
2637 * we suspend it and have the last WR wake it up.
2639 static void ctrlq_check_stop(struct sge_ctrl_txq
*q
, struct fw_wr_hdr
*wr
)
2641 reclaim_completed_tx_imm(&q
->q
);
2642 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
2643 wr
->lo
|= htonl(FW_WR_EQUEQ_F
| FW_WR_EQUIQ_F
);
2649 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2651 int cxgb4_selftest_lb_pkt(struct net_device
*netdev
)
2653 struct port_info
*pi
= netdev_priv(netdev
);
2654 struct adapter
*adap
= pi
->adapter
;
2655 struct cxgb4_ethtool_lb_test
*lb
;
2656 int ret
, i
= 0, pkt_len
, credits
;
2657 struct fw_eth_tx_pkt_wr
*wr
;
2658 struct cpl_tx_pkt_core
*cpl
;
2659 u32 ctrl0
, ndesc
, flits
;
2660 struct sge_eth_txq
*q
;
2663 pkt_len
= ETH_HLEN
+ sizeof(CXGB4_SELFTEST_LB_STR
);
2665 flits
= DIV_ROUND_UP(pkt_len
+ sizeof(*cpl
) + sizeof(*wr
),
2667 ndesc
= flits_to_desc(flits
);
2669 lb
= &pi
->ethtool_lb
;
2672 q
= &adap
->sge
.ethtxq
[pi
->first_qset
];
2673 __netif_tx_lock(q
->txq
, smp_processor_id());
2675 reclaim_completed_tx(adap
, &q
->q
, -1, true);
2676 credits
= txq_avail(&q
->q
) - ndesc
;
2677 if (unlikely(credits
< 0)) {
2678 __netif_tx_unlock(q
->txq
);
2682 wr
= (void *)&q
->q
.desc
[q
->q
.pidx
];
2683 memset(wr
, 0, sizeof(struct tx_desc
));
2685 wr
->op_immdlen
= htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR
) |
2686 FW_WR_IMMDLEN_V(pkt_len
+
2688 wr
->equiq_to_len16
= htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits
, 2)));
2689 wr
->r3
= cpu_to_be64(0);
2691 cpl
= (void *)(wr
+ 1);
2692 sgl
= (u8
*)(cpl
+ 1);
2694 ctrl0
= TXPKT_OPCODE_V(CPL_TX_PKT_XT
) | TXPKT_PF_V(adap
->pf
) |
2695 TXPKT_INTF_V(pi
->tx_chan
+ 4);
2697 cpl
->ctrl0
= htonl(ctrl0
);
2698 cpl
->pack
= htons(0);
2699 cpl
->len
= htons(pkt_len
);
2700 cpl
->ctrl1
= cpu_to_be64(TXPKT_L4CSUM_DIS_F
| TXPKT_IPCSUM_DIS_F
);
2702 eth_broadcast_addr(sgl
);
2704 ether_addr_copy(&sgl
[i
], netdev
->dev_addr
);
2707 snprintf(&sgl
[i
], sizeof(CXGB4_SELFTEST_LB_STR
), "%s",
2708 CXGB4_SELFTEST_LB_STR
);
2710 init_completion(&lb
->completion
);
2711 txq_advance(&q
->q
, ndesc
);
2712 cxgb4_ring_tx_db(adap
, &q
->q
, ndesc
);
2713 __netif_tx_unlock(q
->txq
);
2715 /* wait for the pkt to return */
2716 ret
= wait_for_completion_timeout(&lb
->completion
, 10 * HZ
);
2728 * ctrl_xmit - send a packet through an SGE control Tx queue
2729 * @q: the control queue
2732 * Send a packet through an SGE control Tx queue. Packets sent through
2733 * a control queue must fit entirely as immediate data.
2735 static int ctrl_xmit(struct sge_ctrl_txq
*q
, struct sk_buff
*skb
)
2738 struct fw_wr_hdr
*wr
;
2740 if (unlikely(!is_imm(skb
))) {
2743 return NET_XMIT_DROP
;
2746 ndesc
= DIV_ROUND_UP(skb
->len
, sizeof(struct tx_desc
));
2747 spin_lock(&q
->sendq
.lock
);
2749 if (unlikely(q
->full
)) {
2750 skb
->priority
= ndesc
; /* save for restart */
2751 __skb_queue_tail(&q
->sendq
, skb
);
2752 spin_unlock(&q
->sendq
.lock
);
2756 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
2757 cxgb4_inline_tx_skb(skb
, &q
->q
, wr
);
2759 txq_advance(&q
->q
, ndesc
);
2760 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
))
2761 ctrlq_check_stop(q
, wr
);
2763 cxgb4_ring_tx_db(q
->adap
, &q
->q
, ndesc
);
2764 spin_unlock(&q
->sendq
.lock
);
2767 return NET_XMIT_SUCCESS
;
2771 * restart_ctrlq - restart a suspended control queue
2772 * @t: pointer to the tasklet associated with this handler
2774 * Resumes transmission on a suspended Tx control queue.
2776 static void restart_ctrlq(struct tasklet_struct
*t
)
2778 struct sk_buff
*skb
;
2779 unsigned int written
= 0;
2780 struct sge_ctrl_txq
*q
= from_tasklet(q
, t
, qresume_tsk
);
2782 spin_lock(&q
->sendq
.lock
);
2783 reclaim_completed_tx_imm(&q
->q
);
2784 BUG_ON(txq_avail(&q
->q
) < TXQ_STOP_THRES
); /* q should be empty */
2786 while ((skb
= __skb_dequeue(&q
->sendq
)) != NULL
) {
2787 struct fw_wr_hdr
*wr
;
2788 unsigned int ndesc
= skb
->priority
; /* previously saved */
2791 /* Write descriptors and free skbs outside the lock to limit
2792 * wait times. q->full is still set so new skbs will be queued.
2794 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
2795 txq_advance(&q
->q
, ndesc
);
2796 spin_unlock(&q
->sendq
.lock
);
2798 cxgb4_inline_tx_skb(skb
, &q
->q
, wr
);
2801 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
2802 unsigned long old
= q
->q
.stops
;
2804 ctrlq_check_stop(q
, wr
);
2805 if (q
->q
.stops
!= old
) { /* suspended anew */
2806 spin_lock(&q
->sendq
.lock
);
2811 cxgb4_ring_tx_db(q
->adap
, &q
->q
, written
);
2814 spin_lock(&q
->sendq
.lock
);
2819 cxgb4_ring_tx_db(q
->adap
, &q
->q
, written
);
2820 spin_unlock(&q
->sendq
.lock
);
2824 * t4_mgmt_tx - send a management message
2825 * @adap: the adapter
2826 * @skb: the packet containing the management message
2828 * Send a management message through control queue 0.
2830 int t4_mgmt_tx(struct adapter
*adap
, struct sk_buff
*skb
)
2835 ret
= ctrl_xmit(&adap
->sge
.ctrlq
[0], skb
);
2841 * is_ofld_imm - check whether a packet can be sent as immediate data
2844 * Returns true if a packet can be sent as an offload WR with immediate
2845 * data. We currently use the same limit as for Ethernet packets.
2847 static inline int is_ofld_imm(const struct sk_buff
*skb
)
2849 struct work_request_hdr
*req
= (struct work_request_hdr
*)skb
->data
;
2850 unsigned long opcode
= FW_WR_OP_G(ntohl(req
->wr_hi
));
2852 if (opcode
== FW_CRYPTO_LOOKASIDE_WR
)
2853 return skb
->len
<= SGE_MAX_WR_LEN
;
2855 return skb
->len
<= MAX_IMM_TX_PKT_LEN
;
2859 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2862 * Returns the number of flits needed for the given offload packet.
2863 * These packets are already fully constructed and no additional headers
2866 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff
*skb
)
2868 unsigned int flits
, cnt
;
2870 if (is_ofld_imm(skb
))
2871 return DIV_ROUND_UP(skb
->len
, 8);
2873 flits
= skb_transport_offset(skb
) / 8U; /* headers */
2874 cnt
= skb_shinfo(skb
)->nr_frags
;
2875 if (skb_tail_pointer(skb
) != skb_transport_header(skb
))
2877 return flits
+ sgl_len(cnt
);
2881 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2882 * @q: the queue to stop
2884 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2885 * inability to map packets. A periodic timer attempts to restart
2888 static void txq_stop_maperr(struct sge_uld_txq
*q
)
2892 set_bit(q
->q
.cntxt_id
- q
->adap
->sge
.egr_start
,
2893 q
->adap
->sge
.txq_maperr
);
2897 * ofldtxq_stop - stop an offload Tx queue that has become full
2898 * @q: the queue to stop
2899 * @wr: the Work Request causing the queue to become full
2901 * Stops an offload Tx queue that has become full and modifies the packet
2902 * being written to request a wakeup.
2904 static void ofldtxq_stop(struct sge_uld_txq
*q
, struct fw_wr_hdr
*wr
)
2906 wr
->lo
|= htonl(FW_WR_EQUEQ_F
| FW_WR_EQUIQ_F
);
2912 * service_ofldq - service/restart a suspended offload queue
2913 * @q: the offload queue
2915 * Services an offload Tx queue by moving packets from its Pending Send
2916 * Queue to the Hardware TX ring. The function starts and ends with the
2917 * Send Queue locked, but drops the lock while putting the skb at the
2918 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2919 * allows more skbs to be added to the Send Queue by other threads.
2920 * The packet being processed at the head of the Pending Send Queue is
2921 * left on the queue in case we experience DMA Mapping errors, etc.
2922 * and need to give up and restart later.
2924 * service_ofldq() can be thought of as a task which opportunistically
2925 * uses other threads execution contexts. We use the Offload Queue
2926 * boolean "service_ofldq_running" to make sure that only one instance
2927 * is ever running at a time ...
2929 static void service_ofldq(struct sge_uld_txq
*q
)
2930 __must_hold(&q
->sendq
.lock
)
2932 u64
*pos
, *before
, *end
;
2934 struct sk_buff
*skb
;
2935 struct sge_txq
*txq
;
2937 unsigned int written
= 0;
2938 unsigned int flits
, ndesc
;
2940 /* If another thread is currently in service_ofldq() processing the
2941 * Pending Send Queue then there's nothing to do. Otherwise, flag
2942 * that we're doing the work and continue. Examining/modifying
2943 * the Offload Queue boolean "service_ofldq_running" must be done
2944 * while holding the Pending Send Queue Lock.
2946 if (q
->service_ofldq_running
)
2948 q
->service_ofldq_running
= true;
2950 while ((skb
= skb_peek(&q
->sendq
)) != NULL
&& !q
->full
) {
2951 /* We drop the lock while we're working with the skb at the
2952 * head of the Pending Send Queue. This allows more skbs to
2953 * be added to the Pending Send Queue while we're working on
2954 * this one. We don't need to lock to guard the TX Ring
2955 * updates because only one thread of execution is ever
2956 * allowed into service_ofldq() at a time.
2958 spin_unlock(&q
->sendq
.lock
);
2960 cxgb4_reclaim_completed_tx(q
->adap
, &q
->q
, false);
2962 flits
= skb
->priority
; /* previously saved */
2963 ndesc
= flits_to_desc(flits
);
2964 credits
= txq_avail(&q
->q
) - ndesc
;
2965 BUG_ON(credits
< 0);
2966 if (unlikely(credits
< TXQ_STOP_THRES
))
2967 ofldtxq_stop(q
, (struct fw_wr_hdr
*)skb
->data
);
2969 pos
= (u64
*)&q
->q
.desc
[q
->q
.pidx
];
2970 if (is_ofld_imm(skb
))
2971 cxgb4_inline_tx_skb(skb
, &q
->q
, pos
);
2972 else if (cxgb4_map_skb(q
->adap
->pdev_dev
, skb
,
2973 (dma_addr_t
*)skb
->head
)) {
2975 spin_lock(&q
->sendq
.lock
);
2978 int last_desc
, hdr_len
= skb_transport_offset(skb
);
2980 /* The WR headers may not fit within one descriptor.
2981 * So we need to deal with wrap-around here.
2983 before
= (u64
*)pos
;
2984 end
= (u64
*)pos
+ flits
;
2986 pos
= (void *)inline_tx_skb_header(skb
, &q
->q
,
2989 if (before
> (u64
*)pos
) {
2990 left
= (u8
*)end
- (u8
*)txq
->stat
;
2991 end
= (void *)txq
->desc
+ left
;
2994 /* If current position is already at the end of the
2995 * ofld queue, reset the current to point to
2996 * start of the queue and update the end ptr as well.
2998 if (pos
== (u64
*)txq
->stat
) {
2999 left
= (u8
*)end
- (u8
*)txq
->stat
;
3000 end
= (void *)txq
->desc
+ left
;
3001 pos
= (void *)txq
->desc
;
3004 cxgb4_write_sgl(skb
, &q
->q
, (void *)pos
,
3006 (dma_addr_t
*)skb
->head
);
3007 #ifdef CONFIG_NEED_DMA_MAP_STATE
3008 skb
->dev
= q
->adap
->port
[0];
3009 skb
->destructor
= deferred_unmap_destructor
;
3011 last_desc
= q
->q
.pidx
+ ndesc
- 1;
3012 if (last_desc
>= q
->q
.size
)
3013 last_desc
-= q
->q
.size
;
3014 q
->q
.sdesc
[last_desc
].skb
= skb
;
3017 txq_advance(&q
->q
, ndesc
);
3019 if (unlikely(written
> 32)) {
3020 cxgb4_ring_tx_db(q
->adap
, &q
->q
, written
);
3024 /* Reacquire the Pending Send Queue Lock so we can unlink the
3025 * skb we've just successfully transferred to the TX Ring and
3026 * loop for the next skb which may be at the head of the
3027 * Pending Send Queue.
3029 spin_lock(&q
->sendq
.lock
);
3030 __skb_unlink(skb
, &q
->sendq
);
3031 if (is_ofld_imm(skb
))
3034 if (likely(written
))
3035 cxgb4_ring_tx_db(q
->adap
, &q
->q
, written
);
3037 /*Indicate that no thread is processing the Pending Send Queue
3040 q
->service_ofldq_running
= false;
3044 * ofld_xmit - send a packet through an offload queue
3045 * @q: the Tx offload queue
3048 * Send an offload packet through an SGE offload queue.
3050 static int ofld_xmit(struct sge_uld_txq
*q
, struct sk_buff
*skb
)
3052 skb
->priority
= calc_tx_flits_ofld(skb
); /* save for restart */
3053 spin_lock(&q
->sendq
.lock
);
3055 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
3056 * that results in this new skb being the only one on the queue, start
3057 * servicing it. If there are other skbs already on the list, then
3058 * either the queue is currently being processed or it's been stopped
3059 * for some reason and it'll be restarted at a later time. Restart
3060 * paths are triggered by events like experiencing a DMA Mapping Error
3061 * or filling the Hardware TX Ring.
3063 __skb_queue_tail(&q
->sendq
, skb
);
3064 if (q
->sendq
.qlen
== 1)
3067 spin_unlock(&q
->sendq
.lock
);
3068 return NET_XMIT_SUCCESS
;
3072 * restart_ofldq - restart a suspended offload queue
3073 * @t: pointer to the tasklet associated with this handler
3075 * Resumes transmission on a suspended Tx offload queue.
3077 static void restart_ofldq(struct tasklet_struct
*t
)
3079 struct sge_uld_txq
*q
= from_tasklet(q
, t
, qresume_tsk
);
3081 spin_lock(&q
->sendq
.lock
);
3082 q
->full
= 0; /* the queue actually is completely empty now */
3084 spin_unlock(&q
->sendq
.lock
);
3088 * skb_txq - return the Tx queue an offload packet should use
3091 * Returns the Tx queue an offload packet should use as indicated by bits
3092 * 1-15 in the packet's queue_mapping.
3094 static inline unsigned int skb_txq(const struct sk_buff
*skb
)
3096 return skb
->queue_mapping
>> 1;
3100 * is_ctrl_pkt - return whether an offload packet is a control packet
3103 * Returns whether an offload packet should use an OFLD or a CTRL
3104 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
3106 static inline unsigned int is_ctrl_pkt(const struct sk_buff
*skb
)
3108 return skb
->queue_mapping
& 1;
3111 static inline int uld_send(struct adapter
*adap
, struct sk_buff
*skb
,
3112 unsigned int tx_uld_type
)
3114 struct sge_uld_txq_info
*txq_info
;
3115 struct sge_uld_txq
*txq
;
3116 unsigned int idx
= skb_txq(skb
);
3118 if (unlikely(is_ctrl_pkt(skb
))) {
3119 /* Single ctrl queue is a requirement for LE workaround path */
3120 if (adap
->tids
.nsftids
)
3122 return ctrl_xmit(&adap
->sge
.ctrlq
[idx
], skb
);
3125 txq_info
= adap
->sge
.uld_txq_info
[tx_uld_type
];
3126 if (unlikely(!txq_info
)) {
3129 return NET_XMIT_DROP
;
3132 txq
= &txq_info
->uldtxq
[idx
];
3133 return ofld_xmit(txq
, skb
);
3137 * t4_ofld_send - send an offload packet
3138 * @adap: the adapter
3141 * Sends an offload packet. We use the packet queue_mapping to select the
3142 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3143 * should be sent as regular or control, bits 1-15 select the queue.
3145 int t4_ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
3150 ret
= uld_send(adap
, skb
, CXGB4_TX_OFLD
);
3156 * cxgb4_ofld_send - send an offload packet
3157 * @dev: the net device
3160 * Sends an offload packet. This is an exported version of @t4_ofld_send,
3161 * intended for ULDs.
3163 int cxgb4_ofld_send(struct net_device
*dev
, struct sk_buff
*skb
)
3165 return t4_ofld_send(netdev2adap(dev
), skb
);
3167 EXPORT_SYMBOL(cxgb4_ofld_send
);
3169 static void *inline_tx_header(const void *src
,
3170 const struct sge_txq
*q
,
3171 void *pos
, int length
)
3173 int left
= (void *)q
->stat
- pos
;
3176 if (likely(length
<= left
)) {
3177 memcpy(pos
, src
, length
);
3180 memcpy(pos
, src
, left
);
3181 memcpy(q
->desc
, src
+ left
, length
- left
);
3182 pos
= (void *)q
->desc
+ (length
- left
);
3184 /* 0-pad to multiple of 16 */
3185 p
= PTR_ALIGN(pos
, 8);
3186 if ((uintptr_t)p
& 8) {
3194 * ofld_xmit_direct - copy a WR into offload queue
3195 * @q: the Tx offload queue
3196 * @src: location of WR
3199 * Copy an immediate WR into an uncontended SGE offload queue.
3201 static int ofld_xmit_direct(struct sge_uld_txq
*q
, const void *src
,
3208 /* Use the lower limit as the cut-off */
3209 if (len
> MAX_IMM_OFLD_TX_DATA_WR_LEN
) {
3211 return NET_XMIT_DROP
;
3214 /* Don't return NET_XMIT_CN here as the current
3215 * implementation doesn't queue the request
3216 * using an skb when the following conditions not met
3218 if (!spin_trylock(&q
->sendq
.lock
))
3219 return NET_XMIT_DROP
;
3221 if (q
->full
|| !skb_queue_empty(&q
->sendq
) ||
3222 q
->service_ofldq_running
) {
3223 spin_unlock(&q
->sendq
.lock
);
3224 return NET_XMIT_DROP
;
3226 ndesc
= flits_to_desc(DIV_ROUND_UP(len
, 8));
3227 credits
= txq_avail(&q
->q
) - ndesc
;
3228 pos
= (u64
*)&q
->q
.desc
[q
->q
.pidx
];
3230 /* ofldtxq_stop modifies WR header in-situ */
3231 inline_tx_header(src
, &q
->q
, pos
, len
);
3232 if (unlikely(credits
< TXQ_STOP_THRES
))
3233 ofldtxq_stop(q
, (struct fw_wr_hdr
*)pos
);
3234 txq_advance(&q
->q
, ndesc
);
3235 cxgb4_ring_tx_db(q
->adap
, &q
->q
, ndesc
);
3237 spin_unlock(&q
->sendq
.lock
);
3238 return NET_XMIT_SUCCESS
;
3241 int cxgb4_immdata_send(struct net_device
*dev
, unsigned int idx
,
3242 const void *src
, unsigned int len
)
3244 struct sge_uld_txq_info
*txq_info
;
3245 struct sge_uld_txq
*txq
;
3246 struct adapter
*adap
;
3249 adap
= netdev2adap(dev
);
3252 txq_info
= adap
->sge
.uld_txq_info
[CXGB4_TX_OFLD
];
3253 if (unlikely(!txq_info
)) {
3256 return NET_XMIT_DROP
;
3258 txq
= &txq_info
->uldtxq
[idx
];
3260 ret
= ofld_xmit_direct(txq
, src
, len
);
3262 return net_xmit_eval(ret
);
3264 EXPORT_SYMBOL(cxgb4_immdata_send
);
3267 * t4_crypto_send - send crypto packet
3268 * @adap: the adapter
3271 * Sends crypto packet. We use the packet queue_mapping to select the
3272 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3273 * should be sent as regular or control, bits 1-15 select the queue.
3275 static int t4_crypto_send(struct adapter
*adap
, struct sk_buff
*skb
)
3280 ret
= uld_send(adap
, skb
, CXGB4_TX_CRYPTO
);
3286 * cxgb4_crypto_send - send crypto packet
3287 * @dev: the net device
3290 * Sends crypto packet. This is an exported version of @t4_crypto_send,
3291 * intended for ULDs.
3293 int cxgb4_crypto_send(struct net_device
*dev
, struct sk_buff
*skb
)
3295 return t4_crypto_send(netdev2adap(dev
), skb
);
3297 EXPORT_SYMBOL(cxgb4_crypto_send
);
3299 static inline void copy_frags(struct sk_buff
*skb
,
3300 const struct pkt_gl
*gl
, unsigned int offset
)
3304 /* usually there's just one frag */
3305 __skb_fill_page_desc(skb
, 0, gl
->frags
[0].page
,
3306 gl
->frags
[0].offset
+ offset
,
3307 gl
->frags
[0].size
- offset
);
3308 skb_shinfo(skb
)->nr_frags
= gl
->nfrags
;
3309 for (i
= 1; i
< gl
->nfrags
; i
++)
3310 __skb_fill_page_desc(skb
, i
, gl
->frags
[i
].page
,
3311 gl
->frags
[i
].offset
,
3314 /* get a reference to the last page, we don't own it */
3315 get_page(gl
->frags
[gl
->nfrags
- 1].page
);
3319 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3320 * @gl: the gather list
3321 * @skb_len: size of sk_buff main body if it carries fragments
3322 * @pull_len: amount of data to move to the sk_buff's main body
3324 * Builds an sk_buff from the given packet gather list. Returns the
3325 * sk_buff or %NULL if sk_buff allocation failed.
3327 struct sk_buff
*cxgb4_pktgl_to_skb(const struct pkt_gl
*gl
,
3328 unsigned int skb_len
, unsigned int pull_len
)
3330 struct sk_buff
*skb
;
3333 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3334 * size, which is expected since buffers are at least PAGE_SIZEd.
3335 * In this case packets up to RX_COPY_THRES have only one fragment.
3337 if (gl
->tot_len
<= RX_COPY_THRES
) {
3338 skb
= dev_alloc_skb(gl
->tot_len
);
3341 __skb_put(skb
, gl
->tot_len
);
3342 skb_copy_to_linear_data(skb
, gl
->va
, gl
->tot_len
);
3344 skb
= dev_alloc_skb(skb_len
);
3347 __skb_put(skb
, pull_len
);
3348 skb_copy_to_linear_data(skb
, gl
->va
, pull_len
);
3350 copy_frags(skb
, gl
, pull_len
);
3351 skb
->len
= gl
->tot_len
;
3352 skb
->data_len
= skb
->len
- pull_len
;
3353 skb
->truesize
+= skb
->data_len
;
3357 EXPORT_SYMBOL(cxgb4_pktgl_to_skb
);
3360 * t4_pktgl_free - free a packet gather list
3361 * @gl: the gather list
3363 * Releases the pages of a packet gather list. We do not own the last
3364 * page on the list and do not free it.
3366 static void t4_pktgl_free(const struct pkt_gl
*gl
)
3369 const struct page_frag
*p
;
3371 for (p
= gl
->frags
, n
= gl
->nfrags
- 1; n
--; p
++)
3376 * Process an MPS trace packet. Give it an unused protocol number so it won't
3377 * be delivered to anyone and send it to the stack for capture.
3379 static noinline
int handle_trace_pkt(struct adapter
*adap
,
3380 const struct pkt_gl
*gl
)
3382 struct sk_buff
*skb
;
3384 skb
= cxgb4_pktgl_to_skb(gl
, RX_PULL_LEN
, RX_PULL_LEN
);
3385 if (unlikely(!skb
)) {
3390 if (is_t4(adap
->params
.chip
))
3391 __skb_pull(skb
, sizeof(struct cpl_trace_pkt
));
3393 __skb_pull(skb
, sizeof(struct cpl_t5_trace_pkt
));
3395 skb_reset_mac_header(skb
);
3396 skb
->protocol
= htons(0xffff);
3397 skb
->dev
= adap
->port
[0];
3398 netif_receive_skb(skb
);
3403 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3404 * @adap: the adapter
3405 * @hwtstamps: time stamp structure to update
3406 * @sgetstamp: 60bit iqe timestamp
3408 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3409 * which is in Core Clock ticks into ktime_t and assign it
3411 static void cxgb4_sgetim_to_hwtstamp(struct adapter
*adap
,
3412 struct skb_shared_hwtstamps
*hwtstamps
,
3416 u64 tmp
= (sgetstamp
* 1000 * 1000 + adap
->params
.vpd
.cclk
/ 2);
3418 ns
= div_u64(tmp
, adap
->params
.vpd
.cclk
);
3420 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
3421 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
3424 static void do_gro(struct sge_eth_rxq
*rxq
, const struct pkt_gl
*gl
,
3425 const struct cpl_rx_pkt
*pkt
, unsigned long tnl_hdr_len
)
3427 struct adapter
*adapter
= rxq
->rspq
.adap
;
3428 struct sge
*s
= &adapter
->sge
;
3429 struct port_info
*pi
;
3431 struct sk_buff
*skb
;
3433 skb
= napi_get_frags(&rxq
->rspq
.napi
);
3434 if (unlikely(!skb
)) {
3436 rxq
->stats
.rx_drops
++;
3440 copy_frags(skb
, gl
, s
->pktshift
);
3442 skb
->csum_level
= 1;
3443 skb
->len
= gl
->tot_len
- s
->pktshift
;
3444 skb
->data_len
= skb
->len
;
3445 skb
->truesize
+= skb
->data_len
;
3446 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3447 skb_record_rx_queue(skb
, rxq
->rspq
.idx
);
3448 pi
= netdev_priv(skb
->dev
);
3450 cxgb4_sgetim_to_hwtstamp(adapter
, skb_hwtstamps(skb
),
3452 if (rxq
->rspq
.netdev
->features
& NETIF_F_RXHASH
)
3453 skb_set_hash(skb
, (__force u32
)pkt
->rsshdr
.hash_val
,
3456 if (unlikely(pkt
->vlan_ex
)) {
3457 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(pkt
->vlan
));
3458 rxq
->stats
.vlan_ex
++;
3460 ret
= napi_gro_frags(&rxq
->rspq
.napi
);
3461 if (ret
== GRO_HELD
)
3462 rxq
->stats
.lro_pkts
++;
3463 else if (ret
== GRO_MERGED
|| ret
== GRO_MERGED_FREE
)
3464 rxq
->stats
.lro_merged
++;
3466 rxq
->stats
.rx_cso
++;
3476 * t4_systim_to_hwstamp - read hardware time stamp
3477 * @adapter: the adapter
3480 * Read Time Stamp from MPS packet and insert in skb which
3481 * is forwarded to PTP application
3483 static noinline
int t4_systim_to_hwstamp(struct adapter
*adapter
,
3484 struct sk_buff
*skb
)
3486 struct skb_shared_hwtstamps
*hwtstamps
;
3487 struct cpl_rx_mps_pkt
*cpl
= NULL
;
3488 unsigned char *data
;
3491 cpl
= (struct cpl_rx_mps_pkt
*)skb
->data
;
3492 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl
->op_to_r1_hi
)) &
3493 X_CPL_RX_MPS_PKT_TYPE_PTP
))
3494 return RX_PTP_PKT_ERR
;
3496 data
= skb
->data
+ sizeof(*cpl
);
3497 skb_pull(skb
, 2 * sizeof(u64
) + sizeof(struct cpl_rx_mps_pkt
));
3498 offset
= ETH_HLEN
+ IPV4_HLEN(skb
->data
) + UDP_HLEN
;
3499 if (skb
->len
< offset
+ OFF_PTP_SEQUENCE_ID
+ sizeof(short))
3500 return RX_PTP_PKT_ERR
;
3502 hwtstamps
= skb_hwtstamps(skb
);
3503 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
3504 hwtstamps
->hwtstamp
= ns_to_ktime(get_unaligned_be64(data
));
3506 return RX_PTP_PKT_SUC
;
3510 * t4_rx_hststamp - Recv PTP Event Message
3511 * @adapter: the adapter
3512 * @rsp: the response queue descriptor holding the RX_PKT message
3513 * @rxq: the response queue holding the RX_PKT message
3516 * PTP enabled and MPS packet, read HW timestamp
3518 static int t4_rx_hststamp(struct adapter
*adapter
, const __be64
*rsp
,
3519 struct sge_eth_rxq
*rxq
, struct sk_buff
*skb
)
3523 if (unlikely((*(u8
*)rsp
== CPL_RX_MPS_PKT
) &&
3524 !is_t4(adapter
->params
.chip
))) {
3525 ret
= t4_systim_to_hwstamp(adapter
, skb
);
3526 if (ret
== RX_PTP_PKT_ERR
) {
3528 rxq
->stats
.rx_drops
++;
3532 return RX_NON_PTP_PKT
;
3536 * t4_tx_hststamp - Loopback PTP Transmit Event Message
3537 * @adapter: the adapter
3539 * @dev: the ingress net device
3541 * Read hardware timestamp for the loopback PTP Tx event message
3543 static int t4_tx_hststamp(struct adapter
*adapter
, struct sk_buff
*skb
,
3544 struct net_device
*dev
)
3546 struct port_info
*pi
= netdev_priv(dev
);
3548 if (!is_t4(adapter
->params
.chip
) && adapter
->ptp_tx_skb
) {
3549 cxgb4_ptp_read_hwstamp(adapter
, pi
);
3557 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3558 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3559 * @rsp: Response Entry pointer into Response Queue
3560 * @gl: Gather List pointer
3562 * For adapters which support the SGE Doorbell Queue Timer facility,
3563 * we configure the Ethernet TX Queues to send CIDX Updates to the
3564 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3565 * messages. This adds a small load to PCIe Link RX bandwidth and,
3566 * potentially, higher CPU Interrupt load, but allows us to respond
3567 * much more quickly to the CIDX Updates. This is important for
3568 * Upper Layer Software which isn't willing to have a large amount
3569 * of TX Data outstanding before receiving DMA Completions.
3571 static void t4_tx_completion_handler(struct sge_rspq
*rspq
,
3573 const struct pkt_gl
*gl
)
3575 u8 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
3576 struct port_info
*pi
= netdev_priv(rspq
->netdev
);
3577 struct adapter
*adapter
= rspq
->adap
;
3578 struct sge
*s
= &adapter
->sge
;
3579 struct sge_eth_txq
*txq
;
3581 /* skip RSS header */
3584 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3586 if (unlikely(opcode
== CPL_FW4_MSG
&&
3587 ((const struct cpl_fw4_msg
*)rsp
)->type
==
3590 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
3594 if (unlikely(opcode
!= CPL_SGE_EGR_UPDATE
)) {
3595 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3600 txq
= &s
->ethtxq
[pi
->first_qset
+ rspq
->idx
];
3601 t4_sge_eth_txq_egress_update(adapter
, txq
, -1);
3604 static int cxgb4_validate_lb_pkt(struct port_info
*pi
, const struct pkt_gl
*si
)
3606 struct adapter
*adap
= pi
->adapter
;
3607 struct cxgb4_ethtool_lb_test
*lb
;
3608 struct sge
*s
= &adap
->sge
;
3609 struct net_device
*netdev
;
3613 netdev
= adap
->port
[pi
->port_id
];
3614 lb
= &pi
->ethtool_lb
;
3615 data
= si
->va
+ s
->pktshift
;
3618 if (!ether_addr_equal(data
+ i
, netdev
->dev_addr
))
3622 if (strcmp(&data
[i
], CXGB4_SELFTEST_LB_STR
))
3625 complete(&lb
->completion
);
3630 * t4_ethrx_handler - process an ingress ethernet packet
3631 * @q: the response queue that received the packet
3632 * @rsp: the response queue descriptor holding the RX_PKT message
3633 * @si: the gather list of packet fragments
3635 * Process an ingress ethernet packet and deliver it to the stack.
3637 int t4_ethrx_handler(struct sge_rspq
*q
, const __be64
*rsp
,
3638 const struct pkt_gl
*si
)
3641 struct sk_buff
*skb
;
3642 const struct cpl_rx_pkt
*pkt
;
3643 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
3644 struct adapter
*adapter
= q
->adap
;
3645 struct sge
*s
= &q
->adap
->sge
;
3646 int cpl_trace_pkt
= is_t4(q
->adap
->params
.chip
) ?
3647 CPL_TRACE_PKT
: CPL_TRACE_PKT_T5
;
3648 u16 err_vec
, tnl_hdr_len
= 0;
3649 struct port_info
*pi
;
3652 pi
= netdev_priv(q
->netdev
);
3653 /* If we're looking at TX Queue CIDX Update, handle that separately
3656 if (unlikely((*(u8
*)rsp
== CPL_FW4_MSG
) ||
3657 (*(u8
*)rsp
== CPL_SGE_EGR_UPDATE
))) {
3658 t4_tx_completion_handler(q
, rsp
, si
);
3662 if (unlikely(*(u8
*)rsp
== cpl_trace_pkt
))
3663 return handle_trace_pkt(q
->adap
, si
);
3665 pkt
= (const struct cpl_rx_pkt
*)rsp
;
3666 /* Compressed error vector is enabled for T6 only */
3667 if (q
->adap
->params
.tp
.rx_pkt_encap
) {
3668 err_vec
= T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt
->err_vec
));
3669 tnl_hdr_len
= T6_RX_TNLHDR_LEN_G(ntohs(pkt
->err_vec
));
3671 err_vec
= be16_to_cpu(pkt
->err_vec
);
3674 csum_ok
= pkt
->csum_calc
&& !err_vec
&&
3675 (q
->netdev
->features
& NETIF_F_RXCSUM
);
3678 rxq
->stats
.bad_rx_pkts
++;
3680 if (unlikely(pi
->ethtool_lb
.loopback
&& pkt
->iff
>= NCHAN
)) {
3681 ret
= cxgb4_validate_lb_pkt(pi
, si
);
3686 if (((pkt
->l2info
& htonl(RXF_TCP_F
)) ||
3688 (q
->netdev
->features
& NETIF_F_GRO
) && csum_ok
&& !pkt
->ip_frag
) {
3689 do_gro(rxq
, si
, pkt
, tnl_hdr_len
);
3693 skb
= cxgb4_pktgl_to_skb(si
, RX_PKT_SKB_LEN
, RX_PULL_LEN
);
3694 if (unlikely(!skb
)) {
3696 rxq
->stats
.rx_drops
++;
3700 /* Handle PTP Event Rx packet */
3701 if (unlikely(pi
->ptp_enable
)) {
3702 ret
= t4_rx_hststamp(adapter
, rsp
, rxq
, skb
);
3703 if (ret
== RX_PTP_PKT_ERR
)
3707 __skb_pull(skb
, s
->pktshift
); /* remove ethernet header pad */
3709 /* Handle the PTP Event Tx Loopback packet */
3710 if (unlikely(pi
->ptp_enable
&& !ret
&&
3711 (pkt
->l2info
& htonl(RXF_UDP_F
)) &&
3712 cxgb4_ptp_is_ptp_rx(skb
))) {
3713 if (!t4_tx_hststamp(adapter
, skb
, q
->netdev
))
3717 skb
->protocol
= eth_type_trans(skb
, q
->netdev
);
3718 skb_record_rx_queue(skb
, q
->idx
);
3719 if (skb
->dev
->features
& NETIF_F_RXHASH
)
3720 skb_set_hash(skb
, (__force u32
)pkt
->rsshdr
.hash_val
,
3726 cxgb4_sgetim_to_hwtstamp(q
->adap
, skb_hwtstamps(skb
),
3728 if (csum_ok
&& (pkt
->l2info
& htonl(RXF_UDP_F
| RXF_TCP_F
))) {
3729 if (!pkt
->ip_frag
) {
3730 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3731 rxq
->stats
.rx_cso
++;
3732 } else if (pkt
->l2info
& htonl(RXF_IP_F
)) {
3733 __sum16 c
= (__force __sum16
)pkt
->csum
;
3734 skb
->csum
= csum_unfold(c
);
3737 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3738 skb
->csum_level
= 1;
3740 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3742 rxq
->stats
.rx_cso
++;
3745 skb_checksum_none_assert(skb
);
3746 #ifdef CONFIG_CHELSIO_T4_FCOE
3747 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3748 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3750 if (!(pkt
->l2info
& cpu_to_be32(CPL_RX_PKT_FLAGS
))) {
3751 if ((pkt
->l2info
& cpu_to_be32(RXF_FCOE_F
)) &&
3752 (pi
->fcoe
.flags
& CXGB_FCOE_ENABLED
)) {
3753 if (q
->adap
->params
.tp
.rx_pkt_encap
)
3755 T6_COMPR_RXERR_SUM_F
;
3757 csum_ok
= err_vec
& RXERR_CSUM_F
;
3759 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3763 #undef CPL_RX_PKT_FLAGS
3764 #endif /* CONFIG_CHELSIO_T4_FCOE */
3767 if (unlikely(pkt
->vlan_ex
)) {
3768 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(pkt
->vlan
));
3769 rxq
->stats
.vlan_ex
++;
3771 skb_mark_napi_id(skb
, &q
->napi
);
3772 netif_receive_skb(skb
);
3777 * restore_rx_bufs - put back a packet's Rx buffers
3778 * @si: the packet gather list
3779 * @q: the SGE free list
3780 * @frags: number of FL buffers to restore
3782 * Puts back on an FL the Rx buffers associated with @si. The buffers
3783 * have already been unmapped and are left unmapped, we mark them so to
3784 * prevent further unmapping attempts.
3786 * This function undoes a series of @unmap_rx_buf calls when we find out
3787 * that the current packet can't be processed right away afterall and we
3788 * need to come back to it later. This is a very rare event and there's
3789 * no effort to make this particularly efficient.
3791 static void restore_rx_bufs(const struct pkt_gl
*si
, struct sge_fl
*q
,
3794 struct rx_sw_desc
*d
;
3798 q
->cidx
= q
->size
- 1;
3801 d
= &q
->sdesc
[q
->cidx
];
3802 d
->page
= si
->frags
[frags
].page
;
3803 d
->dma_addr
|= RX_UNMAPPED_BUF
;
3809 * is_new_response - check if a response is newly written
3810 * @r: the response descriptor
3811 * @q: the response queue
3813 * Returns true if a response descriptor contains a yet unprocessed
3816 static inline bool is_new_response(const struct rsp_ctrl
*r
,
3817 const struct sge_rspq
*q
)
3819 return (r
->type_gen
>> RSPD_GEN_S
) == q
->gen
;
3823 * rspq_next - advance to the next entry in a response queue
3826 * Updates the state of a response queue to advance it to the next entry.
3828 static inline void rspq_next(struct sge_rspq
*q
)
3830 q
->cur_desc
= (void *)q
->cur_desc
+ q
->iqe_len
;
3831 if (unlikely(++q
->cidx
== q
->size
)) {
3834 q
->cur_desc
= q
->desc
;
3839 * process_responses - process responses from an SGE response queue
3840 * @q: the ingress queue to process
3841 * @budget: how many responses can be processed in this round
3843 * Process responses from an SGE response queue up to the supplied budget.
3844 * Responses include received packets as well as control messages from FW
3847 * Additionally choose the interrupt holdoff time for the next interrupt
3848 * on this queue. If the system is under memory shortage use a fairly
3849 * long delay to help recovery.
3851 static int process_responses(struct sge_rspq
*q
, int budget
)
3854 int budget_left
= budget
;
3855 const struct rsp_ctrl
*rc
;
3856 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
3857 struct adapter
*adapter
= q
->adap
;
3858 struct sge
*s
= &adapter
->sge
;
3860 while (likely(budget_left
)) {
3861 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
3862 if (!is_new_response(rc
, q
)) {
3863 if (q
->flush_handler
)
3864 q
->flush_handler(q
);
3869 rsp_type
= RSPD_TYPE_G(rc
->type_gen
);
3870 if (likely(rsp_type
== RSPD_TYPE_FLBUF_X
)) {
3871 struct page_frag
*fp
;
3873 const struct rx_sw_desc
*rsd
;
3874 u32 len
= ntohl(rc
->pldbuflen_qid
), bufsz
, frags
;
3876 if (len
& RSPD_NEWBUF_F
) {
3877 if (likely(q
->offset
> 0)) {
3878 free_rx_bufs(q
->adap
, &rxq
->fl
, 1);
3881 len
= RSPD_LEN_G(len
);
3885 /* gather packet fragments */
3886 for (frags
= 0, fp
= si
.frags
; ; frags
++, fp
++) {
3887 rsd
= &rxq
->fl
.sdesc
[rxq
->fl
.cidx
];
3888 bufsz
= get_buf_size(adapter
, rsd
);
3889 fp
->page
= rsd
->page
;
3890 fp
->offset
= q
->offset
;
3891 fp
->size
= min(bufsz
, len
);
3895 unmap_rx_buf(q
->adap
, &rxq
->fl
);
3898 si
.sgetstamp
= SGE_TIMESTAMP_G(
3899 be64_to_cpu(rc
->last_flit
));
3901 * Last buffer remains mapped so explicitly make it
3902 * coherent for CPU access.
3904 dma_sync_single_for_cpu(q
->adap
->pdev_dev
,
3906 fp
->size
, DMA_FROM_DEVICE
);
3908 si
.va
= page_address(si
.frags
[0].page
) +
3912 si
.nfrags
= frags
+ 1;
3913 ret
= q
->handler(q
, q
->cur_desc
, &si
);
3914 if (likely(ret
== 0))
3915 q
->offset
+= ALIGN(fp
->size
, s
->fl_align
);
3917 restore_rx_bufs(&si
, &rxq
->fl
, frags
);
3918 } else if (likely(rsp_type
== RSPD_TYPE_CPL_X
)) {
3919 ret
= q
->handler(q
, q
->cur_desc
, NULL
);
3921 ret
= q
->handler(q
, (const __be64
*)rc
, CXGB4_MSG_AN
);
3924 if (unlikely(ret
)) {
3925 /* couldn't process descriptor, back off for recovery */
3926 q
->next_intr_params
= QINTR_TIMER_IDX_V(NOMEM_TMR_IDX
);
3934 if (q
->offset
>= 0 && fl_cap(&rxq
->fl
) - rxq
->fl
.avail
>= 16)
3935 __refill_fl(q
->adap
, &rxq
->fl
);
3936 return budget
- budget_left
;
3940 * napi_rx_handler - the NAPI handler for Rx processing
3941 * @napi: the napi instance
3942 * @budget: how many packets we can process in this round
3944 * Handler for new data events when using NAPI. This does not need any
3945 * locking or protection from interrupts as data interrupts are off at
3946 * this point and other adapter interrupts do not interfere (the latter
3947 * in not a concern at all with MSI-X as non-data interrupts then have
3948 * a separate handler).
3950 static int napi_rx_handler(struct napi_struct
*napi
, int budget
)
3952 unsigned int params
;
3953 struct sge_rspq
*q
= container_of(napi
, struct sge_rspq
, napi
);
3957 work_done
= process_responses(q
, budget
);
3958 if (likely(work_done
< budget
)) {
3961 napi_complete_done(napi
, work_done
);
3962 timer_index
= QINTR_TIMER_IDX_G(q
->next_intr_params
);
3964 if (q
->adaptive_rx
) {
3965 if (work_done
> max(timer_pkt_quota
[timer_index
],
3967 timer_index
= (timer_index
+ 1);
3969 timer_index
= timer_index
- 1;
3971 timer_index
= clamp(timer_index
, 0, SGE_TIMERREGS
- 1);
3972 q
->next_intr_params
=
3973 QINTR_TIMER_IDX_V(timer_index
) |
3975 params
= q
->next_intr_params
;
3977 params
= q
->next_intr_params
;
3978 q
->next_intr_params
= q
->intr_params
;
3981 params
= QINTR_TIMER_IDX_V(7);
3983 val
= CIDXINC_V(work_done
) | SEINTARM_V(params
);
3985 /* If we don't have access to the new User GTS (T5+), use the old
3986 * doorbell mechanism; otherwise use the new BAR2 mechanism.
3988 if (unlikely(q
->bar2_addr
== NULL
)) {
3989 t4_write_reg(q
->adap
, MYPF_REG(SGE_PF_GTS_A
),
3990 val
| INGRESSQID_V((u32
)q
->cntxt_id
));
3992 writel(val
| INGRESSQID_V(q
->bar2_qid
),
3993 q
->bar2_addr
+ SGE_UDB_GTS
);
3999 void cxgb4_ethofld_restart(struct tasklet_struct
*t
)
4001 struct sge_eosw_txq
*eosw_txq
= from_tasklet(eosw_txq
, t
,
4005 spin_lock(&eosw_txq
->lock
);
4006 pktcount
= eosw_txq
->cidx
- eosw_txq
->last_cidx
;
4008 pktcount
+= eosw_txq
->ndesc
;
4011 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq
->netdev
),
4012 eosw_txq
, pktcount
);
4013 eosw_txq
->inuse
-= pktcount
;
4016 /* There may be some packets waiting for completions. So,
4017 * attempt to send these packets now.
4019 ethofld_xmit(eosw_txq
->netdev
, eosw_txq
);
4020 spin_unlock(&eosw_txq
->lock
);
4023 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4024 * @q: the response queue that received the packet
4025 * @rsp: the response queue descriptor holding the CPL message
4026 * @si: the gather list of packet fragments
4028 * Process a ETHOFLD Tx completion. Increment the cidx here, but
4029 * free up the descriptors in a tasklet later.
4031 int cxgb4_ethofld_rx_handler(struct sge_rspq
*q
, const __be64
*rsp
,
4032 const struct pkt_gl
*si
)
4034 u8 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
4036 /* skip RSS header */
4039 if (opcode
== CPL_FW4_ACK
) {
4040 const struct cpl_fw4_ack
*cpl
;
4041 struct sge_eosw_txq
*eosw_txq
;
4042 struct eotid_entry
*entry
;
4043 struct sk_buff
*skb
;
4048 cpl
= (const struct cpl_fw4_ack
*)rsp
;
4049 eotid
= CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl
))) -
4050 q
->adap
->tids
.eotid_base
;
4051 entry
= cxgb4_lookup_eotid(&q
->adap
->tids
, eotid
);
4055 eosw_txq
= (struct sge_eosw_txq
*)entry
->data
;
4059 spin_lock(&eosw_txq
->lock
);
4060 credits
= cpl
->credits
;
4061 while (credits
> 0) {
4062 skb
= eosw_txq
->desc
[eosw_txq
->cidx
].skb
;
4066 if (unlikely((eosw_txq
->state
==
4067 CXGB4_EO_STATE_FLOWC_OPEN_REPLY
||
4069 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY
) &&
4070 eosw_txq
->cidx
== eosw_txq
->flowc_idx
)) {
4071 flits
= DIV_ROUND_UP(skb
->len
, 8);
4072 if (eosw_txq
->state
==
4073 CXGB4_EO_STATE_FLOWC_OPEN_REPLY
)
4074 eosw_txq
->state
= CXGB4_EO_STATE_ACTIVE
;
4076 eosw_txq
->state
= CXGB4_EO_STATE_CLOSED
;
4077 complete(&eosw_txq
->completion
);
4079 hdr_len
= eth_get_headlen(eosw_txq
->netdev
,
4082 flits
= ethofld_calc_tx_flits(q
->adap
, skb
,
4085 eosw_txq_advance_index(&eosw_txq
->cidx
, 1,
4087 wrlen16
= DIV_ROUND_UP(flits
* 8, 16);
4091 eosw_txq
->cred
+= cpl
->credits
;
4094 spin_unlock(&eosw_txq
->lock
);
4096 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4097 * if there were packets waiting for completion.
4099 tasklet_schedule(&eosw_txq
->qresume_tsk
);
4107 * The MSI-X interrupt handler for an SGE response queue.
4109 irqreturn_t
t4_sge_intr_msix(int irq
, void *cookie
)
4111 struct sge_rspq
*q
= cookie
;
4113 napi_schedule(&q
->napi
);
4118 * Process the indirect interrupt entries in the interrupt queue and kick off
4119 * NAPI for each queue that has generated an entry.
4121 static unsigned int process_intrq(struct adapter
*adap
)
4123 unsigned int credits
;
4124 const struct rsp_ctrl
*rc
;
4125 struct sge_rspq
*q
= &adap
->sge
.intrq
;
4128 spin_lock(&adap
->sge
.intrq_lock
);
4129 for (credits
= 0; ; credits
++) {
4130 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
4131 if (!is_new_response(rc
, q
))
4135 if (RSPD_TYPE_G(rc
->type_gen
) == RSPD_TYPE_INTR_X
) {
4136 unsigned int qid
= ntohl(rc
->pldbuflen_qid
);
4138 qid
-= adap
->sge
.ingr_start
;
4139 napi_schedule(&adap
->sge
.ingr_map
[qid
]->napi
);
4145 val
= CIDXINC_V(credits
) | SEINTARM_V(q
->intr_params
);
4147 /* If we don't have access to the new User GTS (T5+), use the old
4148 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4150 if (unlikely(q
->bar2_addr
== NULL
)) {
4151 t4_write_reg(adap
, MYPF_REG(SGE_PF_GTS_A
),
4152 val
| INGRESSQID_V(q
->cntxt_id
));
4154 writel(val
| INGRESSQID_V(q
->bar2_qid
),
4155 q
->bar2_addr
+ SGE_UDB_GTS
);
4158 spin_unlock(&adap
->sge
.intrq_lock
);
4163 * The MSI interrupt handler, which handles data events from SGE response queues
4164 * as well as error and other async events as they all use the same MSI vector.
4166 static irqreturn_t
t4_intr_msi(int irq
, void *cookie
)
4168 struct adapter
*adap
= cookie
;
4170 if (adap
->flags
& CXGB4_MASTER_PF
)
4171 t4_slow_intr_handler(adap
);
4172 process_intrq(adap
);
4177 * Interrupt handler for legacy INTx interrupts.
4178 * Handles data events from SGE response queues as well as error and other
4179 * async events as they all use the same interrupt line.
4181 static irqreturn_t
t4_intr_intx(int irq
, void *cookie
)
4183 struct adapter
*adap
= cookie
;
4185 t4_write_reg(adap
, MYPF_REG(PCIE_PF_CLI_A
), 0);
4186 if (((adap
->flags
& CXGB4_MASTER_PF
) && t4_slow_intr_handler(adap
)) |
4187 process_intrq(adap
))
4189 return IRQ_NONE
; /* probably shared interrupt */
4193 * t4_intr_handler - select the top-level interrupt handler
4194 * @adap: the adapter
4196 * Selects the top-level interrupt handler based on the type of interrupts
4197 * (MSI-X, MSI, or INTx).
4199 irq_handler_t
t4_intr_handler(struct adapter
*adap
)
4201 if (adap
->flags
& CXGB4_USING_MSIX
)
4202 return t4_sge_intr_msix
;
4203 if (adap
->flags
& CXGB4_USING_MSI
)
4205 return t4_intr_intx
;
4208 static void sge_rx_timer_cb(struct timer_list
*t
)
4212 struct adapter
*adap
= from_timer(adap
, t
, sge
.rx_timer
);
4213 struct sge
*s
= &adap
->sge
;
4215 for (i
= 0; i
< BITS_TO_LONGS(s
->egr_sz
); i
++)
4216 for (m
= s
->starving_fl
[i
]; m
; m
&= m
- 1) {
4217 struct sge_eth_rxq
*rxq
;
4218 unsigned int id
= __ffs(m
) + i
* BITS_PER_LONG
;
4219 struct sge_fl
*fl
= s
->egr_map
[id
];
4221 clear_bit(id
, s
->starving_fl
);
4222 smp_mb__after_atomic();
4224 if (fl_starving(adap
, fl
)) {
4225 rxq
= container_of(fl
, struct sge_eth_rxq
, fl
);
4226 if (napi_reschedule(&rxq
->rspq
.napi
))
4229 set_bit(id
, s
->starving_fl
);
4232 /* The remainder of the SGE RX Timer Callback routine is dedicated to
4233 * global Master PF activities like checking for chip ingress stalls,
4236 if (!(adap
->flags
& CXGB4_MASTER_PF
))
4239 t4_idma_monitor(adap
, &s
->idma_monitor
, HZ
, RX_QCHECK_PERIOD
);
4242 mod_timer(&s
->rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
4245 static void sge_tx_timer_cb(struct timer_list
*t
)
4247 struct adapter
*adap
= from_timer(adap
, t
, sge
.tx_timer
);
4248 struct sge
*s
= &adap
->sge
;
4249 unsigned long m
, period
;
4250 unsigned int i
, budget
;
4252 for (i
= 0; i
< BITS_TO_LONGS(s
->egr_sz
); i
++)
4253 for (m
= s
->txq_maperr
[i
]; m
; m
&= m
- 1) {
4254 unsigned long id
= __ffs(m
) + i
* BITS_PER_LONG
;
4255 struct sge_uld_txq
*txq
= s
->egr_map
[id
];
4257 clear_bit(id
, s
->txq_maperr
);
4258 tasklet_schedule(&txq
->qresume_tsk
);
4261 if (!is_t4(adap
->params
.chip
)) {
4262 struct sge_eth_txq
*q
= &s
->ptptxq
;
4265 spin_lock(&adap
->ptp_lock
);
4266 avail
= reclaimable(&q
->q
);
4269 free_tx_desc(adap
, &q
->q
, avail
, false);
4270 q
->q
.in_use
-= avail
;
4272 spin_unlock(&adap
->ptp_lock
);
4275 budget
= MAX_TIMER_TX_RECLAIM
;
4276 i
= s
->ethtxq_rover
;
4278 budget
-= t4_sge_eth_txq_egress_update(adap
, &s
->ethtxq
[i
],
4283 if (++i
>= s
->ethqsets
)
4285 } while (i
!= s
->ethtxq_rover
);
4286 s
->ethtxq_rover
= i
;
4289 /* If we found too many reclaimable packets schedule a timer
4290 * in the near future to continue where we left off.
4294 /* We reclaimed all reclaimable TX Descriptors, so reschedule
4295 * at the normal period.
4297 period
= TX_QCHECK_PERIOD
;
4300 mod_timer(&s
->tx_timer
, jiffies
+ period
);
4304 * bar2_address - return the BAR2 address for an SGE Queue's Registers
4305 * @adapter: the adapter
4306 * @qid: the SGE Queue ID
4307 * @qtype: the SGE Queue Type (Egress or Ingress)
4308 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4310 * Returns the BAR2 address for the SGE Queue Registers associated with
4311 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
4312 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4313 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4314 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
4316 static void __iomem
*bar2_address(struct adapter
*adapter
,
4318 enum t4_bar2_qtype qtype
,
4319 unsigned int *pbar2_qid
)
4324 ret
= t4_bar2_sge_qregs(adapter
, qid
, qtype
, 0,
4325 &bar2_qoffset
, pbar2_qid
);
4329 return adapter
->bar2
+ bar2_qoffset
;
4332 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4333 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4335 int t4_sge_alloc_rxq(struct adapter
*adap
, struct sge_rspq
*iq
, bool fwevtq
,
4336 struct net_device
*dev
, int intr_idx
,
4337 struct sge_fl
*fl
, rspq_handler_t hnd
,
4338 rspq_flush_handler_t flush_hnd
, int cong
)
4342 struct sge
*s
= &adap
->sge
;
4343 struct port_info
*pi
= netdev_priv(dev
);
4344 int relaxed
= !(adap
->flags
& CXGB4_ROOT_NO_RELAXED_ORDERING
);
4346 /* Size needs to be multiple of 16, including status entry. */
4347 iq
->size
= roundup(iq
->size
, 16);
4349 iq
->desc
= alloc_ring(adap
->pdev_dev
, iq
->size
, iq
->iqe_len
, 0,
4350 &iq
->phys_addr
, NULL
, 0,
4351 dev_to_node(adap
->pdev_dev
));
4355 memset(&c
, 0, sizeof(c
));
4356 c
.op_to_vfn
= htonl(FW_CMD_OP_V(FW_IQ_CMD
) | FW_CMD_REQUEST_F
|
4357 FW_CMD_WRITE_F
| FW_CMD_EXEC_F
|
4358 FW_IQ_CMD_PFN_V(adap
->pf
) | FW_IQ_CMD_VFN_V(0));
4359 c
.alloc_to_len16
= htonl(FW_IQ_CMD_ALLOC_F
| FW_IQ_CMD_IQSTART_F
|
4361 c
.type_to_iqandstindex
= htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP
) |
4362 FW_IQ_CMD_IQASYNCH_V(fwevtq
) | FW_IQ_CMD_VIID_V(pi
->viid
) |
4363 FW_IQ_CMD_IQANDST_V(intr_idx
< 0) |
4364 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X
) |
4365 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx
>= 0 ? intr_idx
:
4367 c
.iqdroprss_to_iqesize
= htons(FW_IQ_CMD_IQPCIECH_V(pi
->tx_chan
) |
4368 FW_IQ_CMD_IQGTSMODE_F
|
4369 FW_IQ_CMD_IQINTCNTTHRESH_V(iq
->pktcnt_idx
) |
4370 FW_IQ_CMD_IQESIZE_V(ilog2(iq
->iqe_len
) - 4));
4371 c
.iqsize
= htons(iq
->size
);
4372 c
.iqaddr
= cpu_to_be64(iq
->phys_addr
);
4374 c
.iqns_to_fl0congen
= htonl(FW_IQ_CMD_IQFLINTCONGEN_F
|
4375 FW_IQ_CMD_IQTYPE_V(cong
? FW_IQ_IQTYPE_NIC
4376 : FW_IQ_IQTYPE_OFLD
));
4379 unsigned int chip_ver
=
4380 CHELSIO_CHIP_VERSION(adap
->params
.chip
);
4382 /* Allocate the ring for the hardware free list (with space
4383 * for its status page) along with the associated software
4384 * descriptor ring. The free list size needs to be a multiple
4385 * of the Egress Queue Unit and at least 2 Egress Units larger
4386 * than the SGE's Egress Congrestion Threshold
4387 * (fl_starve_thres - 1).
4389 if (fl
->size
< s
->fl_starve_thres
- 1 + 2 * 8)
4390 fl
->size
= s
->fl_starve_thres
- 1 + 2 * 8;
4391 fl
->size
= roundup(fl
->size
, 8);
4392 fl
->desc
= alloc_ring(adap
->pdev_dev
, fl
->size
, sizeof(__be64
),
4393 sizeof(struct rx_sw_desc
), &fl
->addr
,
4394 &fl
->sdesc
, s
->stat_len
,
4395 dev_to_node(adap
->pdev_dev
));
4399 flsz
= fl
->size
/ 8 + s
->stat_len
/ sizeof(struct tx_desc
);
4400 c
.iqns_to_fl0congen
|= htonl(FW_IQ_CMD_FL0PACKEN_F
|
4401 FW_IQ_CMD_FL0FETCHRO_V(relaxed
) |
4402 FW_IQ_CMD_FL0DATARO_V(relaxed
) |
4403 FW_IQ_CMD_FL0PADEN_F
);
4405 c
.iqns_to_fl0congen
|=
4406 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong
) |
4407 FW_IQ_CMD_FL0CONGCIF_F
|
4408 FW_IQ_CMD_FL0CONGEN_F
);
4409 /* In T6, for egress queue type FL there is internal overhead
4410 * of 16B for header going into FLM module. Hence the maximum
4411 * allowed burst size is 448 bytes. For T4/T5, the hardware
4412 * doesn't coalesce fetch requests if more than 64 bytes of
4413 * Free List pointers are provided, so we use a 128-byte Fetch
4414 * Burst Minimum there (T6 implements coalescing so we can use
4415 * the smaller 64-byte value there).
4417 c
.fl0dcaen_to_fl0cidxfthresh
=
4418 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver
<= CHELSIO_T5
?
4419 FETCHBURSTMIN_128B_X
:
4420 FETCHBURSTMIN_64B_T6_X
) |
4421 FW_IQ_CMD_FL0FBMAX_V((chip_ver
<= CHELSIO_T5
) ?
4422 FETCHBURSTMAX_512B_X
:
4423 FETCHBURSTMAX_256B_X
));
4424 c
.fl0size
= htons(flsz
);
4425 c
.fl0addr
= cpu_to_be64(fl
->addr
);
4428 ret
= t4_wr_mbox(adap
, adap
->mbox
, &c
, sizeof(c
), &c
);
4432 netif_napi_add(dev
, &iq
->napi
, napi_rx_handler
, 64);
4433 iq
->cur_desc
= iq
->desc
;
4436 iq
->next_intr_params
= iq
->intr_params
;
4437 iq
->cntxt_id
= ntohs(c
.iqid
);
4438 iq
->abs_id
= ntohs(c
.physiqid
);
4439 iq
->bar2_addr
= bar2_address(adap
,
4441 T4_BAR2_QTYPE_INGRESS
,
4443 iq
->size
--; /* subtract status entry */
4446 iq
->flush_handler
= flush_hnd
;
4448 memset(&iq
->lro_mgr
, 0, sizeof(struct t4_lro_mgr
));
4449 skb_queue_head_init(&iq
->lro_mgr
.lroq
);
4451 /* set offset to -1 to distinguish ingress queues without FL */
4452 iq
->offset
= fl
? 0 : -1;
4454 adap
->sge
.ingr_map
[iq
->cntxt_id
- adap
->sge
.ingr_start
] = iq
;
4457 fl
->cntxt_id
= ntohs(c
.fl0id
);
4458 fl
->avail
= fl
->pend_cred
= 0;
4459 fl
->pidx
= fl
->cidx
= 0;
4460 fl
->alloc_failed
= fl
->large_alloc_failed
= fl
->starving
= 0;
4461 adap
->sge
.egr_map
[fl
->cntxt_id
- adap
->sge
.egr_start
] = fl
;
4463 /* Note, we must initialize the BAR2 Free List User Doorbell
4464 * information before refilling the Free List!
4466 fl
->bar2_addr
= bar2_address(adap
,
4468 T4_BAR2_QTYPE_EGRESS
,
4470 refill_fl(adap
, fl
, fl_cap(fl
), GFP_KERNEL
);
4473 /* For T5 and later we attempt to set up the Congestion Manager values
4474 * of the new RX Ethernet Queue. This should really be handled by
4475 * firmware because it's more complex than any host driver wants to
4476 * get involved with and it's different per chip and this is almost
4477 * certainly wrong. Firmware would be wrong as well, but it would be
4478 * a lot easier to fix in one place ... For now we do something very
4479 * simple (and hopefully less wrong).
4481 if (!is_t4(adap
->params
.chip
) && cong
>= 0) {
4482 u32 param
, val
, ch_map
= 0;
4484 u16 cng_ch_bits_log
= adap
->params
.arch
.cng_ch_bits_log
;
4486 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ
) |
4487 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT
) |
4488 FW_PARAMS_PARAM_YZ_V(iq
->cntxt_id
));
4490 val
= CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X
);
4493 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X
);
4494 for (i
= 0; i
< 4; i
++) {
4495 if (cong
& (1 << i
))
4496 ch_map
|= 1 << (i
<< cng_ch_bits_log
);
4498 val
|= CONMCTXT_CNGCHMAP_V(ch_map
);
4500 ret
= t4_set_params(adap
, adap
->mbox
, adap
->pf
, 0, 1,
4503 dev_warn(adap
->pdev_dev
, "Failed to set Congestion"
4504 " Manager Context for Ingress Queue %d: %d\n",
4505 iq
->cntxt_id
, -ret
);
4514 dma_free_coherent(adap
->pdev_dev
, iq
->size
* iq
->iqe_len
,
4515 iq
->desc
, iq
->phys_addr
);
4518 if (fl
&& fl
->desc
) {
4521 dma_free_coherent(adap
->pdev_dev
, flsz
* sizeof(struct tx_desc
),
4522 fl
->desc
, fl
->addr
);
4528 static void init_txq(struct adapter
*adap
, struct sge_txq
*q
, unsigned int id
)
4531 q
->bar2_addr
= bar2_address(adap
,
4533 T4_BAR2_QTYPE_EGRESS
,
4536 q
->cidx
= q
->pidx
= 0;
4537 q
->stops
= q
->restarts
= 0;
4538 q
->stat
= (void *)&q
->desc
[q
->size
];
4539 spin_lock_init(&q
->db_lock
);
4540 adap
->sge
.egr_map
[id
- adap
->sge
.egr_start
] = q
;
4544 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4545 * @adap: the adapter
4546 * @txq: the SGE Ethernet TX Queue to initialize
4547 * @dev: the Linux Network Device
4548 * @netdevq: the corresponding Linux TX Queue
4549 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
4550 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4552 int t4_sge_alloc_eth_txq(struct adapter
*adap
, struct sge_eth_txq
*txq
,
4553 struct net_device
*dev
, struct netdev_queue
*netdevq
,
4554 unsigned int iqid
, u8 dbqt
)
4556 unsigned int chip_ver
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
4557 struct port_info
*pi
= netdev_priv(dev
);
4558 struct sge
*s
= &adap
->sge
;
4559 struct fw_eq_eth_cmd c
;
4562 /* Add status entries */
4563 nentries
= txq
->q
.size
+ s
->stat_len
/ sizeof(struct tx_desc
);
4565 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
4566 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
4567 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, s
->stat_len
,
4568 netdev_queue_numa_node_read(netdevq
));
4572 memset(&c
, 0, sizeof(c
));
4573 c
.op_to_vfn
= htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD
) | FW_CMD_REQUEST_F
|
4574 FW_CMD_WRITE_F
| FW_CMD_EXEC_F
|
4575 FW_EQ_ETH_CMD_PFN_V(adap
->pf
) |
4576 FW_EQ_ETH_CMD_VFN_V(0));
4577 c
.alloc_to_len16
= htonl(FW_EQ_ETH_CMD_ALLOC_F
|
4578 FW_EQ_ETH_CMD_EQSTART_F
| FW_LEN16(c
));
4580 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4581 * mechanism, we use Ingress Queue messages for Hardware Consumer
4582 * Index Updates on the TX Queue. Otherwise we have the Hardware
4583 * write the CIDX Updates into the Status Page at the end of the
4586 c
.autoequiqe_to_viid
= htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F
|
4587 FW_EQ_ETH_CMD_VIID_V(pi
->viid
));
4589 c
.fetchszm_to_iqid
=
4590 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X
) |
4591 FW_EQ_ETH_CMD_PCIECHN_V(pi
->tx_chan
) |
4592 FW_EQ_ETH_CMD_FETCHRO_F
| FW_EQ_ETH_CMD_IQID_V(iqid
));
4594 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4596 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver
<= CHELSIO_T5
4597 ? FETCHBURSTMIN_64B_X
4598 : FETCHBURSTMIN_64B_T6_X
) |
4599 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X
) |
4600 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X
) |
4601 FW_EQ_ETH_CMD_EQSIZE_V(nentries
));
4603 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
4605 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4606 * currently configured Timer Index. THis can be changed later via an
4607 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
4608 * Doorbell Queue mode is currently automatically enabled in the
4609 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4613 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F
|
4614 FW_EQ_ETH_CMD_TIMERIX_V(txq
->dbqtimerix
));
4616 ret
= t4_wr_mbox(adap
, adap
->mbox
, &c
, sizeof(c
), &c
);
4618 kfree(txq
->q
.sdesc
);
4619 txq
->q
.sdesc
= NULL
;
4620 dma_free_coherent(adap
->pdev_dev
,
4621 nentries
* sizeof(struct tx_desc
),
4622 txq
->q
.desc
, txq
->q
.phys_addr
);
4627 txq
->q
.q_type
= CXGB4_TXQ_ETH
;
4628 init_txq(adap
, &txq
->q
, FW_EQ_ETH_CMD_EQID_G(ntohl(c
.eqid_pkd
)));
4634 txq
->mapping_err
= 0;
4640 int t4_sge_alloc_ctrl_txq(struct adapter
*adap
, struct sge_ctrl_txq
*txq
,
4641 struct net_device
*dev
, unsigned int iqid
,
4642 unsigned int cmplqid
)
4644 unsigned int chip_ver
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
4645 struct port_info
*pi
= netdev_priv(dev
);
4646 struct sge
*s
= &adap
->sge
;
4647 struct fw_eq_ctrl_cmd c
;
4650 /* Add status entries */
4651 nentries
= txq
->q
.size
+ s
->stat_len
/ sizeof(struct tx_desc
);
4653 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, nentries
,
4654 sizeof(struct tx_desc
), 0, &txq
->q
.phys_addr
,
4655 NULL
, 0, dev_to_node(adap
->pdev_dev
));
4659 c
.op_to_vfn
= htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD
) | FW_CMD_REQUEST_F
|
4660 FW_CMD_WRITE_F
| FW_CMD_EXEC_F
|
4661 FW_EQ_CTRL_CMD_PFN_V(adap
->pf
) |
4662 FW_EQ_CTRL_CMD_VFN_V(0));
4663 c
.alloc_to_len16
= htonl(FW_EQ_CTRL_CMD_ALLOC_F
|
4664 FW_EQ_CTRL_CMD_EQSTART_F
| FW_LEN16(c
));
4665 c
.cmpliqid_eqid
= htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid
));
4666 c
.physeqid_pkd
= htonl(0);
4667 c
.fetchszm_to_iqid
=
4668 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X
) |
4669 FW_EQ_CTRL_CMD_PCIECHN_V(pi
->tx_chan
) |
4670 FW_EQ_CTRL_CMD_FETCHRO_F
| FW_EQ_CTRL_CMD_IQID_V(iqid
));
4672 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver
<= CHELSIO_T5
4673 ? FETCHBURSTMIN_64B_X
4674 : FETCHBURSTMIN_64B_T6_X
) |
4675 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X
) |
4676 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X
) |
4677 FW_EQ_CTRL_CMD_EQSIZE_V(nentries
));
4678 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
4680 ret
= t4_wr_mbox(adap
, adap
->mbox
, &c
, sizeof(c
), &c
);
4682 dma_free_coherent(adap
->pdev_dev
,
4683 nentries
* sizeof(struct tx_desc
),
4684 txq
->q
.desc
, txq
->q
.phys_addr
);
4689 txq
->q
.q_type
= CXGB4_TXQ_CTRL
;
4690 init_txq(adap
, &txq
->q
, FW_EQ_CTRL_CMD_EQID_G(ntohl(c
.cmpliqid_eqid
)));
4692 skb_queue_head_init(&txq
->sendq
);
4693 tasklet_setup(&txq
->qresume_tsk
, restart_ctrlq
);
4698 int t4_sge_mod_ctrl_txq(struct adapter
*adap
, unsigned int eqid
,
4699 unsigned int cmplqid
)
4703 param
= (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ
) |
4704 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL
) |
4705 FW_PARAMS_PARAM_YZ_V(eqid
));
4707 return t4_set_params(adap
, adap
->mbox
, adap
->pf
, 0, 1, ¶m
, &val
);
4710 static int t4_sge_alloc_ofld_txq(struct adapter
*adap
, struct sge_txq
*q
,
4711 struct net_device
*dev
, u32 cmd
, u32 iqid
)
4713 unsigned int chip_ver
= CHELSIO_CHIP_VERSION(adap
->params
.chip
);
4714 struct port_info
*pi
= netdev_priv(dev
);
4715 struct sge
*s
= &adap
->sge
;
4716 struct fw_eq_ofld_cmd c
;
4717 u32 fb_min
, nentries
;
4720 /* Add status entries */
4721 nentries
= q
->size
+ s
->stat_len
/ sizeof(struct tx_desc
);
4722 q
->desc
= alloc_ring(adap
->pdev_dev
, q
->size
, sizeof(struct tx_desc
),
4723 sizeof(struct tx_sw_desc
), &q
->phys_addr
,
4724 &q
->sdesc
, s
->stat_len
, NUMA_NO_NODE
);
4728 if (chip_ver
<= CHELSIO_T5
)
4729 fb_min
= FETCHBURSTMIN_64B_X
;
4731 fb_min
= FETCHBURSTMIN_64B_T6_X
;
4733 memset(&c
, 0, sizeof(c
));
4734 c
.op_to_vfn
= htonl(FW_CMD_OP_V(cmd
) | FW_CMD_REQUEST_F
|
4735 FW_CMD_WRITE_F
| FW_CMD_EXEC_F
|
4736 FW_EQ_OFLD_CMD_PFN_V(adap
->pf
) |
4737 FW_EQ_OFLD_CMD_VFN_V(0));
4738 c
.alloc_to_len16
= htonl(FW_EQ_OFLD_CMD_ALLOC_F
|
4739 FW_EQ_OFLD_CMD_EQSTART_F
| FW_LEN16(c
));
4740 c
.fetchszm_to_iqid
=
4741 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X
) |
4742 FW_EQ_OFLD_CMD_PCIECHN_V(pi
->tx_chan
) |
4743 FW_EQ_OFLD_CMD_FETCHRO_F
| FW_EQ_OFLD_CMD_IQID_V(iqid
));
4745 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min
) |
4746 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X
) |
4747 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X
) |
4748 FW_EQ_OFLD_CMD_EQSIZE_V(nentries
));
4749 c
.eqaddr
= cpu_to_be64(q
->phys_addr
);
4751 ret
= t4_wr_mbox(adap
, adap
->mbox
, &c
, sizeof(c
), &c
);
4755 dma_free_coherent(adap
->pdev_dev
,
4756 nentries
* sizeof(struct tx_desc
),
4757 q
->desc
, q
->phys_addr
);
4762 init_txq(adap
, q
, FW_EQ_OFLD_CMD_EQID_G(ntohl(c
.eqid_pkd
)));
4766 int t4_sge_alloc_uld_txq(struct adapter
*adap
, struct sge_uld_txq
*txq
,
4767 struct net_device
*dev
, unsigned int iqid
,
4768 unsigned int uld_type
)
4770 u32 cmd
= FW_EQ_OFLD_CMD
;
4773 if (unlikely(uld_type
== CXGB4_TX_CRYPTO
))
4774 cmd
= FW_EQ_CTRL_CMD
;
4776 ret
= t4_sge_alloc_ofld_txq(adap
, &txq
->q
, dev
, cmd
, iqid
);
4780 txq
->q
.q_type
= CXGB4_TXQ_ULD
;
4782 skb_queue_head_init(&txq
->sendq
);
4783 tasklet_setup(&txq
->qresume_tsk
, restart_ofldq
);
4785 txq
->mapping_err
= 0;
4789 int t4_sge_alloc_ethofld_txq(struct adapter
*adap
, struct sge_eohw_txq
*txq
,
4790 struct net_device
*dev
, u32 iqid
)
4794 ret
= t4_sge_alloc_ofld_txq(adap
, &txq
->q
, dev
, FW_EQ_OFLD_CMD
, iqid
);
4798 txq
->q
.q_type
= CXGB4_TXQ_ULD
;
4799 spin_lock_init(&txq
->lock
);
4805 txq
->mapping_err
= 0;
4809 void free_txq(struct adapter
*adap
, struct sge_txq
*q
)
4811 struct sge
*s
= &adap
->sge
;
4813 dma_free_coherent(adap
->pdev_dev
,
4814 q
->size
* sizeof(struct tx_desc
) + s
->stat_len
,
4815 q
->desc
, q
->phys_addr
);
4821 void free_rspq_fl(struct adapter
*adap
, struct sge_rspq
*rq
,
4824 struct sge
*s
= &adap
->sge
;
4825 unsigned int fl_id
= fl
? fl
->cntxt_id
: 0xffff;
4827 adap
->sge
.ingr_map
[rq
->cntxt_id
- adap
->sge
.ingr_start
] = NULL
;
4828 t4_iq_free(adap
, adap
->mbox
, adap
->pf
, 0, FW_IQ_TYPE_FL_INT_CAP
,
4829 rq
->cntxt_id
, fl_id
, 0xffff);
4830 dma_free_coherent(adap
->pdev_dev
, (rq
->size
+ 1) * rq
->iqe_len
,
4831 rq
->desc
, rq
->phys_addr
);
4832 netif_napi_del(&rq
->napi
);
4834 rq
->cntxt_id
= rq
->abs_id
= 0;
4838 free_rx_bufs(adap
, fl
, fl
->avail
);
4839 dma_free_coherent(adap
->pdev_dev
, fl
->size
* 8 + s
->stat_len
,
4840 fl
->desc
, fl
->addr
);
4849 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4850 * @adap: the adapter
4851 * @n: number of queues
4852 * @q: pointer to first queue
4854 * Release the resources of a consecutive block of offload Rx queues.
4856 void t4_free_ofld_rxqs(struct adapter
*adap
, int n
, struct sge_ofld_rxq
*q
)
4858 for ( ; n
; n
--, q
++)
4860 free_rspq_fl(adap
, &q
->rspq
,
4861 q
->fl
.size
? &q
->fl
: NULL
);
4864 void t4_sge_free_ethofld_txq(struct adapter
*adap
, struct sge_eohw_txq
*txq
)
4867 t4_ofld_eq_free(adap
, adap
->mbox
, adap
->pf
, 0,
4869 free_tx_desc(adap
, &txq
->q
, txq
->q
.in_use
, false);
4870 kfree(txq
->q
.sdesc
);
4871 free_txq(adap
, &txq
->q
);
4876 * t4_free_sge_resources - free SGE resources
4877 * @adap: the adapter
4879 * Frees resources used by the SGE queue sets.
4881 void t4_free_sge_resources(struct adapter
*adap
)
4884 struct sge_eth_rxq
*eq
;
4885 struct sge_eth_txq
*etq
;
4887 /* stop all Rx queues in order to start them draining */
4888 for (i
= 0; i
< adap
->sge
.ethqsets
; i
++) {
4889 eq
= &adap
->sge
.ethrxq
[i
];
4891 t4_iq_stop(adap
, adap
->mbox
, adap
->pf
, 0,
4892 FW_IQ_TYPE_FL_INT_CAP
,
4894 eq
->fl
.size
? eq
->fl
.cntxt_id
: 0xffff,
4898 /* clean up Ethernet Tx/Rx queues */
4899 for (i
= 0; i
< adap
->sge
.ethqsets
; i
++) {
4900 eq
= &adap
->sge
.ethrxq
[i
];
4902 free_rspq_fl(adap
, &eq
->rspq
,
4903 eq
->fl
.size
? &eq
->fl
: NULL
);
4905 cxgb4_free_msix_idx_in_bmap(adap
, eq
->msix
->idx
);
4909 etq
= &adap
->sge
.ethtxq
[i
];
4911 t4_eth_eq_free(adap
, adap
->mbox
, adap
->pf
, 0,
4913 __netif_tx_lock_bh(etq
->txq
);
4914 free_tx_desc(adap
, &etq
->q
, etq
->q
.in_use
, true);
4915 __netif_tx_unlock_bh(etq
->txq
);
4916 kfree(etq
->q
.sdesc
);
4917 free_txq(adap
, &etq
->q
);
4921 /* clean up control Tx queues */
4922 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ctrlq
); i
++) {
4923 struct sge_ctrl_txq
*cq
= &adap
->sge
.ctrlq
[i
];
4926 tasklet_kill(&cq
->qresume_tsk
);
4927 t4_ctrl_eq_free(adap
, adap
->mbox
, adap
->pf
, 0,
4929 __skb_queue_purge(&cq
->sendq
);
4930 free_txq(adap
, &cq
->q
);
4934 if (adap
->sge
.fw_evtq
.desc
) {
4935 free_rspq_fl(adap
, &adap
->sge
.fw_evtq
, NULL
);
4936 if (adap
->sge
.fwevtq_msix_idx
>= 0)
4937 cxgb4_free_msix_idx_in_bmap(adap
,
4938 adap
->sge
.fwevtq_msix_idx
);
4941 if (adap
->sge
.nd_msix_idx
>= 0)
4942 cxgb4_free_msix_idx_in_bmap(adap
, adap
->sge
.nd_msix_idx
);
4944 if (adap
->sge
.intrq
.desc
)
4945 free_rspq_fl(adap
, &adap
->sge
.intrq
, NULL
);
4947 if (!is_t4(adap
->params
.chip
)) {
4948 etq
= &adap
->sge
.ptptxq
;
4950 t4_eth_eq_free(adap
, adap
->mbox
, adap
->pf
, 0,
4952 spin_lock_bh(&adap
->ptp_lock
);
4953 free_tx_desc(adap
, &etq
->q
, etq
->q
.in_use
, true);
4954 spin_unlock_bh(&adap
->ptp_lock
);
4955 kfree(etq
->q
.sdesc
);
4956 free_txq(adap
, &etq
->q
);
4960 /* clear the reverse egress queue map */
4961 memset(adap
->sge
.egr_map
, 0,
4962 adap
->sge
.egr_sz
* sizeof(*adap
->sge
.egr_map
));
4965 void t4_sge_start(struct adapter
*adap
)
4967 adap
->sge
.ethtxq_rover
= 0;
4968 mod_timer(&adap
->sge
.rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
4969 mod_timer(&adap
->sge
.tx_timer
, jiffies
+ TX_QCHECK_PERIOD
);
4973 * t4_sge_stop - disable SGE operation
4974 * @adap: the adapter
4976 * Stop tasklets and timers associated with the DMA engine. Note that
4977 * this is effective only if measures have been taken to disable any HW
4978 * events that may restart them.
4980 void t4_sge_stop(struct adapter
*adap
)
4983 struct sge
*s
= &adap
->sge
;
4985 if (s
->rx_timer
.function
)
4986 del_timer_sync(&s
->rx_timer
);
4987 if (s
->tx_timer
.function
)
4988 del_timer_sync(&s
->tx_timer
);
4990 if (is_offload(adap
)) {
4991 struct sge_uld_txq_info
*txq_info
;
4993 txq_info
= adap
->sge
.uld_txq_info
[CXGB4_TX_OFLD
];
4995 struct sge_uld_txq
*txq
= txq_info
->uldtxq
;
4997 for_each_ofldtxq(&adap
->sge
, i
) {
4999 tasklet_kill(&txq
->qresume_tsk
);
5004 if (is_pci_uld(adap
)) {
5005 struct sge_uld_txq_info
*txq_info
;
5007 txq_info
= adap
->sge
.uld_txq_info
[CXGB4_TX_CRYPTO
];
5009 struct sge_uld_txq
*txq
= txq_info
->uldtxq
;
5011 for_each_ofldtxq(&adap
->sge
, i
) {
5013 tasklet_kill(&txq
->qresume_tsk
);
5018 for (i
= 0; i
< ARRAY_SIZE(s
->ctrlq
); i
++) {
5019 struct sge_ctrl_txq
*cq
= &s
->ctrlq
[i
];
5022 tasklet_kill(&cq
->qresume_tsk
);
5027 * t4_sge_init_soft - grab core SGE values needed by SGE code
5028 * @adap: the adapter
5030 * We need to grab the SGE operating parameters that we need to have
5031 * in order to do our job and make sure we can live with them.
5034 static int t4_sge_init_soft(struct adapter
*adap
)
5036 struct sge
*s
= &adap
->sge
;
5037 u32 fl_small_pg
, fl_large_pg
, fl_small_mtu
, fl_large_mtu
;
5038 u32 timer_value_0_and_1
, timer_value_2_and_3
, timer_value_4_and_5
;
5039 u32 ingress_rx_threshold
;
5042 * Verify that CPL messages are going to the Ingress Queue for
5043 * process_responses() and that only packet data is going to the
5046 if ((t4_read_reg(adap
, SGE_CONTROL_A
) & RXPKTCPLMODE_F
) !=
5047 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X
)) {
5048 dev_err(adap
->pdev_dev
, "bad SGE CPL MODE\n");
5053 * Validate the Host Buffer Register Array indices that we want to
5056 * XXX Note that we should really read through the Host Buffer Size
5057 * XXX register array and find the indices of the Buffer Sizes which
5058 * XXX meet our needs!
5060 #define READ_FL_BUF(x) \
5061 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5063 fl_small_pg
= READ_FL_BUF(RX_SMALL_PG_BUF
);
5064 fl_large_pg
= READ_FL_BUF(RX_LARGE_PG_BUF
);
5065 fl_small_mtu
= READ_FL_BUF(RX_SMALL_MTU_BUF
);
5066 fl_large_mtu
= READ_FL_BUF(RX_LARGE_MTU_BUF
);
5068 /* We only bother using the Large Page logic if the Large Page Buffer
5069 * is larger than our Page Size Buffer.
5071 if (fl_large_pg
<= fl_small_pg
)
5076 /* The Page Size Buffer must be exactly equal to our Page Size and the
5077 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5079 if (fl_small_pg
!= PAGE_SIZE
||
5080 (fl_large_pg
& (fl_large_pg
-1)) != 0) {
5081 dev_err(adap
->pdev_dev
, "bad SGE FL page buffer sizes [%d, %d]\n",
5082 fl_small_pg
, fl_large_pg
);
5086 s
->fl_pg_order
= ilog2(fl_large_pg
) - PAGE_SHIFT
;
5088 if (fl_small_mtu
< FL_MTU_SMALL_BUFSIZE(adap
) ||
5089 fl_large_mtu
< FL_MTU_LARGE_BUFSIZE(adap
)) {
5090 dev_err(adap
->pdev_dev
, "bad SGE FL MTU sizes [%d, %d]\n",
5091 fl_small_mtu
, fl_large_mtu
);
5096 * Retrieve our RX interrupt holdoff timer values and counter
5097 * threshold values from the SGE parameters.
5099 timer_value_0_and_1
= t4_read_reg(adap
, SGE_TIMER_VALUE_0_AND_1_A
);
5100 timer_value_2_and_3
= t4_read_reg(adap
, SGE_TIMER_VALUE_2_AND_3_A
);
5101 timer_value_4_and_5
= t4_read_reg(adap
, SGE_TIMER_VALUE_4_AND_5_A
);
5102 s
->timer_val
[0] = core_ticks_to_us(adap
,
5103 TIMERVALUE0_G(timer_value_0_and_1
));
5104 s
->timer_val
[1] = core_ticks_to_us(adap
,
5105 TIMERVALUE1_G(timer_value_0_and_1
));
5106 s
->timer_val
[2] = core_ticks_to_us(adap
,
5107 TIMERVALUE2_G(timer_value_2_and_3
));
5108 s
->timer_val
[3] = core_ticks_to_us(adap
,
5109 TIMERVALUE3_G(timer_value_2_and_3
));
5110 s
->timer_val
[4] = core_ticks_to_us(adap
,
5111 TIMERVALUE4_G(timer_value_4_and_5
));
5112 s
->timer_val
[5] = core_ticks_to_us(adap
,
5113 TIMERVALUE5_G(timer_value_4_and_5
));
5115 ingress_rx_threshold
= t4_read_reg(adap
, SGE_INGRESS_RX_THRESHOLD_A
);
5116 s
->counter_val
[0] = THRESHOLD_0_G(ingress_rx_threshold
);
5117 s
->counter_val
[1] = THRESHOLD_1_G(ingress_rx_threshold
);
5118 s
->counter_val
[2] = THRESHOLD_2_G(ingress_rx_threshold
);
5119 s
->counter_val
[3] = THRESHOLD_3_G(ingress_rx_threshold
);
5125 * t4_sge_init - initialize SGE
5126 * @adap: the adapter
5128 * Perform low-level SGE code initialization needed every time after a
5131 int t4_sge_init(struct adapter
*adap
)
5133 struct sge
*s
= &adap
->sge
;
5134 u32 sge_control
, sge_conm_ctrl
;
5135 int ret
, egress_threshold
;
5138 * Ingress Padding Boundary and Egress Status Page Size are set up by
5139 * t4_fixup_host_params().
5141 sge_control
= t4_read_reg(adap
, SGE_CONTROL_A
);
5142 s
->pktshift
= PKTSHIFT_G(sge_control
);
5143 s
->stat_len
= (sge_control
& EGRSTATUSPAGESIZE_F
) ? 128 : 64;
5145 s
->fl_align
= t4_fl_pkt_align(adap
);
5146 ret
= t4_sge_init_soft(adap
);
5151 * A FL with <= fl_starve_thres buffers is starving and a periodic
5152 * timer will attempt to refill it. This needs to be larger than the
5153 * SGE's Egress Congestion Threshold. If it isn't, then we can get
5154 * stuck waiting for new packets while the SGE is waiting for us to
5155 * give it more Free List entries. (Note that the SGE's Egress
5156 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5157 * there was only a single field to control this. For T5 there's the
5158 * original field which now only applies to Unpacked Mode Free List
5159 * buffers and a new field which only applies to Packed Mode Free List
5162 sge_conm_ctrl
= t4_read_reg(adap
, SGE_CONM_CTRL_A
);
5163 switch (CHELSIO_CHIP_VERSION(adap
->params
.chip
)) {
5165 egress_threshold
= EGRTHRESHOLD_G(sge_conm_ctrl
);
5168 egress_threshold
= EGRTHRESHOLDPACKING_G(sge_conm_ctrl
);
5171 egress_threshold
= T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl
);
5174 dev_err(adap
->pdev_dev
, "Unsupported Chip version %d\n",
5175 CHELSIO_CHIP_VERSION(adap
->params
.chip
));
5178 s
->fl_starve_thres
= 2*egress_threshold
+ 1;
5180 t4_idma_monitor_init(adap
, &s
->idma_monitor
);
5182 /* Set up timers used for recuring callbacks to process RX and TX
5183 * administrative tasks.
5185 timer_setup(&s
->rx_timer
, sge_rx_timer_cb
, 0);
5186 timer_setup(&s
->tx_timer
, sge_tx_timer_cb
, 0);
5188 spin_lock_init(&s
->intrq_lock
);