1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Davicom DM9000 Fast Ethernet driver for Linux.
4 * Copyright (C) 1997 Sten Wang
6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
8 * Additional updates, Copyright:
9 * Ben Dooks <ben@simtec.co.uk>
10 * Sascha Hauer <s.hauer@pengutronix.de>
13 #include <linux/module.h>
14 #include <linux/ioport.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/interrupt.h>
18 #include <linux/skbuff.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
23 #include <linux/of_net.h>
24 #include <linux/ethtool.h>
25 #include <linux/dm9000.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
34 #include <asm/delay.h>
40 /* Board/System/Debug information/definition ---------------- */
42 #define DM9000_PHY 0x40 /* PHY address 0x01 */
44 #define CARDNAME "dm9000"
47 * Transmit timeout, default 5 seconds.
49 static int watchdog
= 5000;
50 module_param(watchdog
, int, 0400);
51 MODULE_PARM_DESC(watchdog
, "transmit timeout in milliseconds");
54 * Debug messages level
57 module_param(debug
, int, 0644);
58 MODULE_PARM_DESC(debug
, "dm9000 debug level (0-6)");
60 /* DM9000 register address locking.
62 * The DM9000 uses an address register to control where data written
63 * to the data register goes. This means that the address register
64 * must be preserved over interrupts or similar calls.
66 * During interrupt and other critical calls, a spinlock is used to
67 * protect the system, but the calls themselves save the address
68 * in the address register in case they are interrupting another
69 * access to the device.
71 * For general accesses a lock is provided so that calls which are
72 * allowed to sleep are serialised so that the address register does
73 * not need to be saved. This lock also serves to serialise access
74 * to the EEPROM and PHY access registers which are shared between
78 /* The driver supports the original DM9000E, and now the two newer
79 * devices, DM9000A and DM9000B.
83 TYPE_DM9000E
, /* original DM9000 */
88 /* Structure/enum declaration ------------------------------- */
91 void __iomem
*io_addr
; /* Register I/O base address */
92 void __iomem
*io_data
; /* Data I/O address */
100 u8 io_mode
; /* 0:word, 2:byte */
105 unsigned int in_timeout
:1;
106 unsigned int in_suspend
:1;
107 unsigned int wake_supported
:1;
109 enum dm9000_type type
;
111 void (*inblk
)(void __iomem
*port
, void *data
, int length
);
112 void (*outblk
)(void __iomem
*port
, void *data
, int length
);
113 void (*dumpblk
)(void __iomem
*port
, int length
);
115 struct device
*dev
; /* parent device */
117 struct resource
*addr_res
; /* resources found */
118 struct resource
*data_res
;
119 struct resource
*addr_req
; /* resources requested */
120 struct resource
*data_req
;
124 struct mutex addr_lock
; /* phy and eeprom access lock */
126 struct delayed_work phy_poll
;
127 struct net_device
*ndev
;
131 struct mii_if_info mii
;
140 #define dm9000_dbg(db, lev, msg...) do { \
141 if ((lev) < debug) { \
142 dev_dbg(db->dev, msg); \
146 static inline struct board_info
*to_dm9000_board(struct net_device
*dev
)
148 return netdev_priv(dev
);
151 /* DM9000 network board routine ---------------------------- */
154 * Read a byte from I/O port
157 ior(struct board_info
*db
, int reg
)
159 writeb(reg
, db
->io_addr
);
160 return readb(db
->io_data
);
164 * Write a byte to I/O port
168 iow(struct board_info
*db
, int reg
, int value
)
170 writeb(reg
, db
->io_addr
);
171 writeb(value
, db
->io_data
);
175 dm9000_reset(struct board_info
*db
)
177 dev_dbg(db
->dev
, "resetting device\n");
179 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
180 * The essential point is that we have to do a double reset, and the
181 * instruction is to set LBK into MAC internal loopback mode.
183 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
184 udelay(100); /* Application note says at least 20 us */
185 if (ior(db
, DM9000_NCR
) & 1)
186 dev_err(db
->dev
, "dm9000 did not respond to first reset\n");
188 iow(db
, DM9000_NCR
, 0);
189 iow(db
, DM9000_NCR
, NCR_RST
| NCR_MAC_LBK
);
191 if (ior(db
, DM9000_NCR
) & 1)
192 dev_err(db
->dev
, "dm9000 did not respond to second reset\n");
195 /* routines for sending block to chip */
197 static void dm9000_outblk_8bit(void __iomem
*reg
, void *data
, int count
)
199 iowrite8_rep(reg
, data
, count
);
202 static void dm9000_outblk_16bit(void __iomem
*reg
, void *data
, int count
)
204 iowrite16_rep(reg
, data
, (count
+1) >> 1);
207 static void dm9000_outblk_32bit(void __iomem
*reg
, void *data
, int count
)
209 iowrite32_rep(reg
, data
, (count
+3) >> 2);
212 /* input block from chip to memory */
214 static void dm9000_inblk_8bit(void __iomem
*reg
, void *data
, int count
)
216 ioread8_rep(reg
, data
, count
);
220 static void dm9000_inblk_16bit(void __iomem
*reg
, void *data
, int count
)
222 ioread16_rep(reg
, data
, (count
+1) >> 1);
225 static void dm9000_inblk_32bit(void __iomem
*reg
, void *data
, int count
)
227 ioread32_rep(reg
, data
, (count
+3) >> 2);
230 /* dump block from chip to null */
232 static void dm9000_dumpblk_8bit(void __iomem
*reg
, int count
)
236 for (i
= 0; i
< count
; i
++)
240 static void dm9000_dumpblk_16bit(void __iomem
*reg
, int count
)
244 count
= (count
+ 1) >> 1;
246 for (i
= 0; i
< count
; i
++)
250 static void dm9000_dumpblk_32bit(void __iomem
*reg
, int count
)
254 count
= (count
+ 3) >> 2;
256 for (i
= 0; i
< count
; i
++)
261 * Sleep, either by using msleep() or if we are suspending, then
262 * use mdelay() to sleep.
264 static void dm9000_msleep(struct board_info
*db
, unsigned int ms
)
266 if (db
->in_suspend
|| db
->in_timeout
)
272 /* Read a word from phyxcer */
274 dm9000_phy_read(struct net_device
*dev
, int phy_reg_unused
, int reg
)
276 struct board_info
*db
= netdev_priv(dev
);
278 unsigned int reg_save
;
281 mutex_lock(&db
->addr_lock
);
283 spin_lock_irqsave(&db
->lock
, flags
);
285 /* Save previous register address */
286 reg_save
= readb(db
->io_addr
);
288 /* Fill the phyxcer register into REG_0C */
289 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
291 /* Issue phyxcer read command */
292 iow(db
, DM9000_EPCR
, EPCR_ERPRR
| EPCR_EPOS
);
294 writeb(reg_save
, db
->io_addr
);
295 spin_unlock_irqrestore(&db
->lock
, flags
);
297 dm9000_msleep(db
, 1); /* Wait read complete */
299 spin_lock_irqsave(&db
->lock
, flags
);
300 reg_save
= readb(db
->io_addr
);
302 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer read command */
304 /* The read data keeps on REG_0D & REG_0E */
305 ret
= (ior(db
, DM9000_EPDRH
) << 8) | ior(db
, DM9000_EPDRL
);
307 /* restore the previous address */
308 writeb(reg_save
, db
->io_addr
);
309 spin_unlock_irqrestore(&db
->lock
, flags
);
311 mutex_unlock(&db
->addr_lock
);
313 dm9000_dbg(db
, 5, "phy_read[%02x] -> %04x\n", reg
, ret
);
317 /* Write a word to phyxcer */
319 dm9000_phy_write(struct net_device
*dev
,
320 int phyaddr_unused
, int reg
, int value
)
322 struct board_info
*db
= netdev_priv(dev
);
324 unsigned long reg_save
;
326 dm9000_dbg(db
, 5, "phy_write[%02x] = %04x\n", reg
, value
);
328 mutex_lock(&db
->addr_lock
);
330 spin_lock_irqsave(&db
->lock
, flags
);
332 /* Save previous register address */
333 reg_save
= readb(db
->io_addr
);
335 /* Fill the phyxcer register into REG_0C */
336 iow(db
, DM9000_EPAR
, DM9000_PHY
| reg
);
338 /* Fill the written data into REG_0D & REG_0E */
339 iow(db
, DM9000_EPDRL
, value
);
340 iow(db
, DM9000_EPDRH
, value
>> 8);
342 /* Issue phyxcer write command */
343 iow(db
, DM9000_EPCR
, EPCR_EPOS
| EPCR_ERPRW
);
345 writeb(reg_save
, db
->io_addr
);
346 spin_unlock_irqrestore(&db
->lock
, flags
);
348 dm9000_msleep(db
, 1); /* Wait write complete */
350 spin_lock_irqsave(&db
->lock
, flags
);
351 reg_save
= readb(db
->io_addr
);
353 iow(db
, DM9000_EPCR
, 0x0); /* Clear phyxcer write command */
355 /* restore the previous address */
356 writeb(reg_save
, db
->io_addr
);
358 spin_unlock_irqrestore(&db
->lock
, flags
);
360 mutex_unlock(&db
->addr_lock
);
365 * select the specified set of io routines to use with the
369 static void dm9000_set_io(struct board_info
*db
, int byte_width
)
371 /* use the size of the data resource to work out what IO
372 * routines we want to use
375 switch (byte_width
) {
377 db
->dumpblk
= dm9000_dumpblk_8bit
;
378 db
->outblk
= dm9000_outblk_8bit
;
379 db
->inblk
= dm9000_inblk_8bit
;
384 dev_dbg(db
->dev
, ": 3 byte IO, falling back to 16bit\n");
387 db
->dumpblk
= dm9000_dumpblk_16bit
;
388 db
->outblk
= dm9000_outblk_16bit
;
389 db
->inblk
= dm9000_inblk_16bit
;
394 db
->dumpblk
= dm9000_dumpblk_32bit
;
395 db
->outblk
= dm9000_outblk_32bit
;
396 db
->inblk
= dm9000_inblk_32bit
;
401 static void dm9000_schedule_poll(struct board_info
*db
)
403 if (db
->type
== TYPE_DM9000E
)
404 schedule_delayed_work(&db
->phy_poll
, HZ
* 2);
407 static int dm9000_ioctl(struct net_device
*dev
, struct ifreq
*req
, int cmd
)
409 struct board_info
*dm
= to_dm9000_board(dev
);
411 if (!netif_running(dev
))
414 return generic_mii_ioctl(&dm
->mii
, if_mii(req
), cmd
, NULL
);
418 dm9000_read_locked(struct board_info
*db
, int reg
)
423 spin_lock_irqsave(&db
->lock
, flags
);
425 spin_unlock_irqrestore(&db
->lock
, flags
);
430 static int dm9000_wait_eeprom(struct board_info
*db
)
433 int timeout
= 8; /* wait max 8msec */
435 /* The DM9000 data sheets say we should be able to
436 * poll the ERRE bit in EPCR to wait for the EEPROM
437 * operation. From testing several chips, this bit
438 * does not seem to work.
440 * We attempt to use the bit, but fall back to the
441 * timeout (which is why we do not return an error
442 * on expiry) to say that the EEPROM operation has
447 status
= dm9000_read_locked(db
, DM9000_EPCR
);
449 if ((status
& EPCR_ERRE
) == 0)
455 dev_dbg(db
->dev
, "timeout waiting EEPROM\n");
464 * Read a word data from EEPROM
467 dm9000_read_eeprom(struct board_info
*db
, int offset
, u8
*to
)
471 if (db
->flags
& DM9000_PLATF_NO_EEPROM
) {
477 mutex_lock(&db
->addr_lock
);
479 spin_lock_irqsave(&db
->lock
, flags
);
481 iow(db
, DM9000_EPAR
, offset
);
482 iow(db
, DM9000_EPCR
, EPCR_ERPRR
);
484 spin_unlock_irqrestore(&db
->lock
, flags
);
486 dm9000_wait_eeprom(db
);
488 /* delay for at-least 150uS */
491 spin_lock_irqsave(&db
->lock
, flags
);
493 iow(db
, DM9000_EPCR
, 0x0);
495 to
[0] = ior(db
, DM9000_EPDRL
);
496 to
[1] = ior(db
, DM9000_EPDRH
);
498 spin_unlock_irqrestore(&db
->lock
, flags
);
500 mutex_unlock(&db
->addr_lock
);
504 * Write a word data to SROM
507 dm9000_write_eeprom(struct board_info
*db
, int offset
, u8
*data
)
511 if (db
->flags
& DM9000_PLATF_NO_EEPROM
)
514 mutex_lock(&db
->addr_lock
);
516 spin_lock_irqsave(&db
->lock
, flags
);
517 iow(db
, DM9000_EPAR
, offset
);
518 iow(db
, DM9000_EPDRH
, data
[1]);
519 iow(db
, DM9000_EPDRL
, data
[0]);
520 iow(db
, DM9000_EPCR
, EPCR_WEP
| EPCR_ERPRW
);
521 spin_unlock_irqrestore(&db
->lock
, flags
);
523 dm9000_wait_eeprom(db
);
525 mdelay(1); /* wait at least 150uS to clear */
527 spin_lock_irqsave(&db
->lock
, flags
);
528 iow(db
, DM9000_EPCR
, 0);
529 spin_unlock_irqrestore(&db
->lock
, flags
);
531 mutex_unlock(&db
->addr_lock
);
536 static void dm9000_get_drvinfo(struct net_device
*dev
,
537 struct ethtool_drvinfo
*info
)
539 struct board_info
*dm
= to_dm9000_board(dev
);
541 strlcpy(info
->driver
, CARDNAME
, sizeof(info
->driver
));
542 strlcpy(info
->bus_info
, to_platform_device(dm
->dev
)->name
,
543 sizeof(info
->bus_info
));
546 static u32
dm9000_get_msglevel(struct net_device
*dev
)
548 struct board_info
*dm
= to_dm9000_board(dev
);
550 return dm
->msg_enable
;
553 static void dm9000_set_msglevel(struct net_device
*dev
, u32 value
)
555 struct board_info
*dm
= to_dm9000_board(dev
);
557 dm
->msg_enable
= value
;
560 static int dm9000_get_link_ksettings(struct net_device
*dev
,
561 struct ethtool_link_ksettings
*cmd
)
563 struct board_info
*dm
= to_dm9000_board(dev
);
565 mii_ethtool_get_link_ksettings(&dm
->mii
, cmd
);
569 static int dm9000_set_link_ksettings(struct net_device
*dev
,
570 const struct ethtool_link_ksettings
*cmd
)
572 struct board_info
*dm
= to_dm9000_board(dev
);
574 return mii_ethtool_set_link_ksettings(&dm
->mii
, cmd
);
577 static int dm9000_nway_reset(struct net_device
*dev
)
579 struct board_info
*dm
= to_dm9000_board(dev
);
580 return mii_nway_restart(&dm
->mii
);
583 static int dm9000_set_features(struct net_device
*dev
,
584 netdev_features_t features
)
586 struct board_info
*dm
= to_dm9000_board(dev
);
587 netdev_features_t changed
= dev
->features
^ features
;
590 if (!(changed
& NETIF_F_RXCSUM
))
593 spin_lock_irqsave(&dm
->lock
, flags
);
594 iow(dm
, DM9000_RCSR
, (features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
595 spin_unlock_irqrestore(&dm
->lock
, flags
);
600 static u32
dm9000_get_link(struct net_device
*dev
)
602 struct board_info
*dm
= to_dm9000_board(dev
);
605 if (dm
->flags
& DM9000_PLATF_EXT_PHY
)
606 ret
= mii_link_ok(&dm
->mii
);
608 ret
= dm9000_read_locked(dm
, DM9000_NSR
) & NSR_LINKST
? 1 : 0;
613 #define DM_EEPROM_MAGIC (0x444D394B)
615 static int dm9000_get_eeprom_len(struct net_device
*dev
)
620 static int dm9000_get_eeprom(struct net_device
*dev
,
621 struct ethtool_eeprom
*ee
, u8
*data
)
623 struct board_info
*dm
= to_dm9000_board(dev
);
624 int offset
= ee
->offset
;
628 /* EEPROM access is aligned to two bytes */
630 if ((len
& 1) != 0 || (offset
& 1) != 0)
633 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
636 ee
->magic
= DM_EEPROM_MAGIC
;
638 for (i
= 0; i
< len
; i
+= 2)
639 dm9000_read_eeprom(dm
, (offset
+ i
) / 2, data
+ i
);
644 static int dm9000_set_eeprom(struct net_device
*dev
,
645 struct ethtool_eeprom
*ee
, u8
*data
)
647 struct board_info
*dm
= to_dm9000_board(dev
);
648 int offset
= ee
->offset
;
652 /* EEPROM access is aligned to two bytes */
654 if (dm
->flags
& DM9000_PLATF_NO_EEPROM
)
657 if (ee
->magic
!= DM_EEPROM_MAGIC
)
661 if (len
& 1 || offset
& 1) {
662 int which
= offset
& 1;
665 dm9000_read_eeprom(dm
, offset
/ 2, tmp
);
667 dm9000_write_eeprom(dm
, offset
/ 2, tmp
);
671 dm9000_write_eeprom(dm
, offset
/ 2, data
);
683 static void dm9000_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
685 struct board_info
*dm
= to_dm9000_board(dev
);
687 memset(w
, 0, sizeof(struct ethtool_wolinfo
));
689 /* note, we could probably support wake-phy too */
690 w
->supported
= dm
->wake_supported
? WAKE_MAGIC
: 0;
691 w
->wolopts
= dm
->wake_state
;
694 static int dm9000_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*w
)
696 struct board_info
*dm
= to_dm9000_board(dev
);
698 u32 opts
= w
->wolopts
;
701 if (!dm
->wake_supported
)
704 if (opts
& ~WAKE_MAGIC
)
707 if (opts
& WAKE_MAGIC
)
710 mutex_lock(&dm
->addr_lock
);
712 spin_lock_irqsave(&dm
->lock
, flags
);
713 iow(dm
, DM9000_WCR
, wcr
);
714 spin_unlock_irqrestore(&dm
->lock
, flags
);
716 mutex_unlock(&dm
->addr_lock
);
718 if (dm
->wake_state
!= opts
) {
719 /* change in wol state, update IRQ state */
722 irq_set_irq_wake(dm
->irq_wake
, 1);
723 else if (dm
->wake_state
&& !opts
)
724 irq_set_irq_wake(dm
->irq_wake
, 0);
727 dm
->wake_state
= opts
;
731 static const struct ethtool_ops dm9000_ethtool_ops
= {
732 .get_drvinfo
= dm9000_get_drvinfo
,
733 .get_msglevel
= dm9000_get_msglevel
,
734 .set_msglevel
= dm9000_set_msglevel
,
735 .nway_reset
= dm9000_nway_reset
,
736 .get_link
= dm9000_get_link
,
737 .get_wol
= dm9000_get_wol
,
738 .set_wol
= dm9000_set_wol
,
739 .get_eeprom_len
= dm9000_get_eeprom_len
,
740 .get_eeprom
= dm9000_get_eeprom
,
741 .set_eeprom
= dm9000_set_eeprom
,
742 .get_link_ksettings
= dm9000_get_link_ksettings
,
743 .set_link_ksettings
= dm9000_set_link_ksettings
,
746 static void dm9000_show_carrier(struct board_info
*db
,
747 unsigned carrier
, unsigned nsr
)
750 struct net_device
*ndev
= db
->ndev
;
751 struct mii_if_info
*mii
= &db
->mii
;
752 unsigned ncr
= dm9000_read_locked(db
, DM9000_NCR
);
755 lpa
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_LPA
);
757 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
758 ndev
->name
, (nsr
& NSR_SPEED
) ? 10 : 100,
759 (ncr
& NCR_FDX
) ? "full" : "half", lpa
);
761 dev_info(db
->dev
, "%s: link down\n", ndev
->name
);
766 dm9000_poll_work(struct work_struct
*w
)
768 struct delayed_work
*dw
= to_delayed_work(w
);
769 struct board_info
*db
= container_of(dw
, struct board_info
, phy_poll
);
770 struct net_device
*ndev
= db
->ndev
;
772 if (db
->flags
& DM9000_PLATF_SIMPLE_PHY
&&
773 !(db
->flags
& DM9000_PLATF_EXT_PHY
)) {
774 unsigned nsr
= dm9000_read_locked(db
, DM9000_NSR
);
775 unsigned old_carrier
= netif_carrier_ok(ndev
) ? 1 : 0;
776 unsigned new_carrier
;
778 new_carrier
= (nsr
& NSR_LINKST
) ? 1 : 0;
780 if (old_carrier
!= new_carrier
) {
781 if (netif_msg_link(db
))
782 dm9000_show_carrier(db
, new_carrier
, nsr
);
785 netif_carrier_off(ndev
);
787 netif_carrier_on(ndev
);
790 mii_check_media(&db
->mii
, netif_msg_link(db
), 0);
792 if (netif_running(ndev
))
793 dm9000_schedule_poll(db
);
796 /* dm9000_release_board
798 * release a board, and any mapped resources
802 dm9000_release_board(struct platform_device
*pdev
, struct board_info
*db
)
804 /* unmap our resources */
806 iounmap(db
->io_addr
);
807 iounmap(db
->io_data
);
809 /* release the resources */
812 release_resource(db
->data_req
);
816 release_resource(db
->addr_req
);
820 static unsigned char dm9000_type_to_char(enum dm9000_type type
)
823 case TYPE_DM9000E
: return 'e';
824 case TYPE_DM9000A
: return 'a';
825 case TYPE_DM9000B
: return 'b';
832 * Set DM9000 multicast address
835 dm9000_hash_table_unlocked(struct net_device
*dev
)
837 struct board_info
*db
= netdev_priv(dev
);
838 struct netdev_hw_addr
*ha
;
841 u16 hash_table
[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
842 u8 rcr
= RCR_DIS_LONG
| RCR_DIS_CRC
| RCR_RXEN
;
844 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
846 for (i
= 0, oft
= DM9000_PAR
; i
< 6; i
++, oft
++)
847 iow(db
, oft
, dev
->dev_addr
[i
]);
849 if (dev
->flags
& IFF_PROMISC
)
852 if (dev
->flags
& IFF_ALLMULTI
)
855 /* the multicast address in Hash Table : 64 bits */
856 netdev_for_each_mc_addr(ha
, dev
) {
857 hash_val
= ether_crc_le(6, ha
->addr
) & 0x3f;
858 hash_table
[hash_val
/ 16] |= (u16
) 1 << (hash_val
% 16);
861 /* Write the hash table to MAC MD table */
862 for (i
= 0, oft
= DM9000_MAR
; i
< 4; i
++) {
863 iow(db
, oft
++, hash_table
[i
]);
864 iow(db
, oft
++, hash_table
[i
] >> 8);
867 iow(db
, DM9000_RCR
, rcr
);
871 dm9000_hash_table(struct net_device
*dev
)
873 struct board_info
*db
= netdev_priv(dev
);
876 spin_lock_irqsave(&db
->lock
, flags
);
877 dm9000_hash_table_unlocked(dev
);
878 spin_unlock_irqrestore(&db
->lock
, flags
);
882 dm9000_mask_interrupts(struct board_info
*db
)
884 iow(db
, DM9000_IMR
, IMR_PAR
);
888 dm9000_unmask_interrupts(struct board_info
*db
)
890 iow(db
, DM9000_IMR
, db
->imr_all
);
894 * Initialize dm9000 board
897 dm9000_init_dm9000(struct net_device
*dev
)
899 struct board_info
*db
= netdev_priv(dev
);
903 dm9000_dbg(db
, 1, "entering %s\n", __func__
);
906 dm9000_mask_interrupts(db
);
909 db
->io_mode
= ior(db
, DM9000_ISR
) >> 6; /* ISR bit7:6 keeps I/O mode */
912 if (dev
->hw_features
& NETIF_F_RXCSUM
)
914 (dev
->features
& NETIF_F_RXCSUM
) ? RCSR_CSUM
: 0);
916 iow(db
, DM9000_GPCR
, GPCR_GEP_CNTL
); /* Let GPIO0 output */
917 iow(db
, DM9000_GPR
, 0);
919 /* If we are dealing with DM9000B, some extra steps are required: a
920 * manual phy reset, and setting init params.
922 if (db
->type
== TYPE_DM9000B
) {
923 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
);
924 dm9000_phy_write(dev
, 0, MII_DM_DSPCR
, DSPCR_INIT_PARAM
);
927 ncr
= (db
->flags
& DM9000_PLATF_EXT_PHY
) ? NCR_EXT_PHY
: 0;
929 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
930 * up dumping the wake events if we disable this. There is already
931 * a wake-mask in DM9000_WCR */
932 if (db
->wake_supported
)
935 iow(db
, DM9000_NCR
, ncr
);
937 /* Program operating register */
938 iow(db
, DM9000_TCR
, 0); /* TX Polling clear */
939 iow(db
, DM9000_BPTR
, 0x3f); /* Less 3Kb, 200us */
940 iow(db
, DM9000_FCR
, 0xff); /* Flow Control */
941 iow(db
, DM9000_SMCR
, 0); /* Special Mode */
942 /* clear TX status */
943 iow(db
, DM9000_NSR
, NSR_WAKEST
| NSR_TX2END
| NSR_TX1END
);
944 iow(db
, DM9000_ISR
, ISR_CLR_STATUS
); /* Clear interrupt status */
946 /* Set address filter table */
947 dm9000_hash_table_unlocked(dev
);
949 imr
= IMR_PAR
| IMR_PTM
| IMR_PRM
;
950 if (db
->type
!= TYPE_DM9000E
)
955 /* Init Driver variable */
957 db
->queue_pkt_len
= 0;
958 netif_trans_update(dev
);
961 /* Our watchdog timed out. Called by the networking layer */
962 static void dm9000_timeout(struct net_device
*dev
, unsigned int txqueue
)
964 struct board_info
*db
= netdev_priv(dev
);
968 /* Save previous register address */
969 spin_lock_irqsave(&db
->lock
, flags
);
971 reg_save
= readb(db
->io_addr
);
973 netif_stop_queue(dev
);
974 dm9000_init_dm9000(dev
);
975 dm9000_unmask_interrupts(db
);
976 /* We can accept TX packets again */
977 netif_trans_update(dev
); /* prevent tx timeout */
978 netif_wake_queue(dev
);
980 /* Restore previous register address */
981 writeb(reg_save
, db
->io_addr
);
983 spin_unlock_irqrestore(&db
->lock
, flags
);
986 static void dm9000_send_packet(struct net_device
*dev
,
990 struct board_info
*dm
= to_dm9000_board(dev
);
992 /* The DM9000 is not smart enough to leave fragmented packets alone. */
993 if (dm
->ip_summed
!= ip_summed
) {
994 if (ip_summed
== CHECKSUM_NONE
)
995 iow(dm
, DM9000_TCCR
, 0);
997 iow(dm
, DM9000_TCCR
, TCCR_IP
| TCCR_UDP
| TCCR_TCP
);
998 dm
->ip_summed
= ip_summed
;
1001 /* Set TX length to DM9000 */
1002 iow(dm
, DM9000_TXPLL
, pkt_len
);
1003 iow(dm
, DM9000_TXPLH
, pkt_len
>> 8);
1005 /* Issue TX polling command */
1006 iow(dm
, DM9000_TCR
, TCR_TXREQ
); /* Cleared after TX complete */
1010 * Hardware start transmission.
1011 * Send a packet to media from the upper layer.
1014 dm9000_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1016 unsigned long flags
;
1017 struct board_info
*db
= netdev_priv(dev
);
1019 dm9000_dbg(db
, 3, "%s:\n", __func__
);
1021 if (db
->tx_pkt_cnt
> 1)
1022 return NETDEV_TX_BUSY
;
1024 spin_lock_irqsave(&db
->lock
, flags
);
1026 /* Move data to DM9000 TX RAM */
1027 writeb(DM9000_MWCMD
, db
->io_addr
);
1029 (db
->outblk
)(db
->io_data
, skb
->data
, skb
->len
);
1030 dev
->stats
.tx_bytes
+= skb
->len
;
1033 /* TX control: First packet immediately send, second packet queue */
1034 if (db
->tx_pkt_cnt
== 1) {
1035 dm9000_send_packet(dev
, skb
->ip_summed
, skb
->len
);
1038 db
->queue_pkt_len
= skb
->len
;
1039 db
->queue_ip_summed
= skb
->ip_summed
;
1040 netif_stop_queue(dev
);
1043 spin_unlock_irqrestore(&db
->lock
, flags
);
1046 dev_consume_skb_any(skb
);
1048 return NETDEV_TX_OK
;
1052 * DM9000 interrupt handler
1053 * receive the packet to upper layer, free the transmitted packet
1056 static void dm9000_tx_done(struct net_device
*dev
, struct board_info
*db
)
1058 int tx_status
= ior(db
, DM9000_NSR
); /* Got TX status */
1060 if (tx_status
& (NSR_TX2END
| NSR_TX1END
)) {
1061 /* One packet sent complete */
1063 dev
->stats
.tx_packets
++;
1065 if (netif_msg_tx_done(db
))
1066 dev_dbg(db
->dev
, "tx done, NSR %02x\n", tx_status
);
1068 /* Queue packet check & send */
1069 if (db
->tx_pkt_cnt
> 0)
1070 dm9000_send_packet(dev
, db
->queue_ip_summed
,
1072 netif_wake_queue(dev
);
1076 struct dm9000_rxhdr
{
1083 * Received a packet and pass to upper layer
1086 dm9000_rx(struct net_device
*dev
)
1088 struct board_info
*db
= netdev_priv(dev
);
1089 struct dm9000_rxhdr rxhdr
;
1090 struct sk_buff
*skb
;
1095 /* Check packet ready or not */
1097 ior(db
, DM9000_MRCMDX
); /* Dummy read */
1099 /* Get most updated data */
1100 rxbyte
= readb(db
->io_data
);
1102 /* Status check: this byte must be 0 or 1 */
1103 if (rxbyte
& DM9000_PKT_ERR
) {
1104 dev_warn(db
->dev
, "status check fail: %d\n", rxbyte
);
1105 iow(db
, DM9000_RCR
, 0x00); /* Stop Device */
1109 if (!(rxbyte
& DM9000_PKT_RDY
))
1112 /* A packet ready now & Get status/length */
1114 writeb(DM9000_MRCMD
, db
->io_addr
);
1116 (db
->inblk
)(db
->io_data
, &rxhdr
, sizeof(rxhdr
));
1118 RxLen
= le16_to_cpu(rxhdr
.RxLen
);
1120 if (netif_msg_rx_status(db
))
1121 dev_dbg(db
->dev
, "RX: status %02x, length %04x\n",
1122 rxhdr
.RxStatus
, RxLen
);
1124 /* Packet Status check */
1127 if (netif_msg_rx_err(db
))
1128 dev_dbg(db
->dev
, "RX: Bad Packet (runt)\n");
1131 if (RxLen
> DM9000_PKT_MAX
) {
1132 dev_dbg(db
->dev
, "RST: RX Len:%x\n", RxLen
);
1135 /* rxhdr.RxStatus is identical to RSR register. */
1136 if (rxhdr
.RxStatus
& (RSR_FOE
| RSR_CE
| RSR_AE
|
1137 RSR_PLE
| RSR_RWTO
|
1138 RSR_LCS
| RSR_RF
)) {
1140 if (rxhdr
.RxStatus
& RSR_FOE
) {
1141 if (netif_msg_rx_err(db
))
1142 dev_dbg(db
->dev
, "fifo error\n");
1143 dev
->stats
.rx_fifo_errors
++;
1145 if (rxhdr
.RxStatus
& RSR_CE
) {
1146 if (netif_msg_rx_err(db
))
1147 dev_dbg(db
->dev
, "crc error\n");
1148 dev
->stats
.rx_crc_errors
++;
1150 if (rxhdr
.RxStatus
& RSR_RF
) {
1151 if (netif_msg_rx_err(db
))
1152 dev_dbg(db
->dev
, "length error\n");
1153 dev
->stats
.rx_length_errors
++;
1157 /* Move data from DM9000 */
1159 ((skb
= netdev_alloc_skb(dev
, RxLen
+ 4)) != NULL
)) {
1160 skb_reserve(skb
, 2);
1161 rdptr
= skb_put(skb
, RxLen
- 4);
1163 /* Read received packet from RX SRAM */
1165 (db
->inblk
)(db
->io_data
, rdptr
, RxLen
);
1166 dev
->stats
.rx_bytes
+= RxLen
;
1168 /* Pass to upper layer */
1169 skb
->protocol
= eth_type_trans(skb
, dev
);
1170 if (dev
->features
& NETIF_F_RXCSUM
) {
1171 if ((((rxbyte
& 0x1c) << 3) & rxbyte
) == 0)
1172 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1174 skb_checksum_none_assert(skb
);
1177 dev
->stats
.rx_packets
++;
1180 /* need to dump the packet's data */
1182 (db
->dumpblk
)(db
->io_data
, RxLen
);
1184 } while (rxbyte
& DM9000_PKT_RDY
);
1187 static irqreturn_t
dm9000_interrupt(int irq
, void *dev_id
)
1189 struct net_device
*dev
= dev_id
;
1190 struct board_info
*db
= netdev_priv(dev
);
1192 unsigned long flags
;
1195 dm9000_dbg(db
, 3, "entering %s\n", __func__
);
1197 /* A real interrupt coming */
1199 /* holders of db->lock must always block IRQs */
1200 spin_lock_irqsave(&db
->lock
, flags
);
1202 /* Save previous register address */
1203 reg_save
= readb(db
->io_addr
);
1205 dm9000_mask_interrupts(db
);
1206 /* Got DM9000 interrupt status */
1207 int_status
= ior(db
, DM9000_ISR
); /* Got ISR */
1208 iow(db
, DM9000_ISR
, int_status
); /* Clear ISR status */
1210 if (netif_msg_intr(db
))
1211 dev_dbg(db
->dev
, "interrupt status %02x\n", int_status
);
1213 /* Received the coming packet */
1214 if (int_status
& ISR_PRS
)
1217 /* Transmit Interrupt check */
1218 if (int_status
& ISR_PTS
)
1219 dm9000_tx_done(dev
, db
);
1221 if (db
->type
!= TYPE_DM9000E
) {
1222 if (int_status
& ISR_LNKCHNG
) {
1223 /* fire a link-change request */
1224 schedule_delayed_work(&db
->phy_poll
, 1);
1228 dm9000_unmask_interrupts(db
);
1229 /* Restore previous register address */
1230 writeb(reg_save
, db
->io_addr
);
1232 spin_unlock_irqrestore(&db
->lock
, flags
);
1237 static irqreturn_t
dm9000_wol_interrupt(int irq
, void *dev_id
)
1239 struct net_device
*dev
= dev_id
;
1240 struct board_info
*db
= netdev_priv(dev
);
1241 unsigned long flags
;
1244 spin_lock_irqsave(&db
->lock
, flags
);
1246 nsr
= ior(db
, DM9000_NSR
);
1247 wcr
= ior(db
, DM9000_WCR
);
1249 dev_dbg(db
->dev
, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__
, nsr
, wcr
);
1251 if (nsr
& NSR_WAKEST
) {
1252 /* clear, so we can avoid */
1253 iow(db
, DM9000_NSR
, NSR_WAKEST
);
1255 if (wcr
& WCR_LINKST
)
1256 dev_info(db
->dev
, "wake by link status change\n");
1257 if (wcr
& WCR_SAMPLEST
)
1258 dev_info(db
->dev
, "wake by sample packet\n");
1259 if (wcr
& WCR_MAGICST
)
1260 dev_info(db
->dev
, "wake by magic packet\n");
1261 if (!(wcr
& (WCR_LINKST
| WCR_SAMPLEST
| WCR_MAGICST
)))
1262 dev_err(db
->dev
, "wake signalled with no reason? "
1263 "NSR=0x%02x, WSR=0x%02x\n", nsr
, wcr
);
1266 spin_unlock_irqrestore(&db
->lock
, flags
);
1268 return (nsr
& NSR_WAKEST
) ? IRQ_HANDLED
: IRQ_NONE
;
1271 #ifdef CONFIG_NET_POLL_CONTROLLER
1275 static void dm9000_poll_controller(struct net_device
*dev
)
1277 disable_irq(dev
->irq
);
1278 dm9000_interrupt(dev
->irq
, dev
);
1279 enable_irq(dev
->irq
);
1284 * Open the interface.
1285 * The interface is opened whenever "ifconfig" actives it.
1288 dm9000_open(struct net_device
*dev
)
1290 struct board_info
*db
= netdev_priv(dev
);
1291 unsigned int irq_flags
= irq_get_trigger_type(dev
->irq
);
1293 if (netif_msg_ifup(db
))
1294 dev_dbg(db
->dev
, "enabling %s\n", dev
->name
);
1296 /* If there is no IRQ type specified, tell the user that this is a
1299 if (irq_flags
== IRQF_TRIGGER_NONE
)
1300 dev_warn(db
->dev
, "WARNING: no IRQ resource flags set.\n");
1302 irq_flags
|= IRQF_SHARED
;
1304 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1305 iow(db
, DM9000_GPR
, 0); /* REG_1F bit0 activate phyxcer */
1306 mdelay(1); /* delay needs by DM9000B */
1308 /* Initialize DM9000 board */
1309 dm9000_init_dm9000(dev
);
1311 if (request_irq(dev
->irq
, dm9000_interrupt
, irq_flags
, dev
->name
, dev
))
1313 /* Now that we have an interrupt handler hooked up we can unmask
1316 dm9000_unmask_interrupts(db
);
1318 /* Init driver variable */
1321 mii_check_media(&db
->mii
, netif_msg_link(db
), 1);
1322 netif_start_queue(dev
);
1324 /* Poll initial link status */
1325 schedule_delayed_work(&db
->phy_poll
, 1);
1331 dm9000_shutdown(struct net_device
*dev
)
1333 struct board_info
*db
= netdev_priv(dev
);
1336 dm9000_phy_write(dev
, 0, MII_BMCR
, BMCR_RESET
); /* PHY RESET */
1337 iow(db
, DM9000_GPR
, 0x01); /* Power-Down PHY */
1338 dm9000_mask_interrupts(db
);
1339 iow(db
, DM9000_RCR
, 0x00); /* Disable RX */
1343 * Stop the interface.
1344 * The interface is stopped when it is brought.
1347 dm9000_stop(struct net_device
*ndev
)
1349 struct board_info
*db
= netdev_priv(ndev
);
1351 if (netif_msg_ifdown(db
))
1352 dev_dbg(db
->dev
, "shutting down %s\n", ndev
->name
);
1354 cancel_delayed_work_sync(&db
->phy_poll
);
1356 netif_stop_queue(ndev
);
1357 netif_carrier_off(ndev
);
1359 /* free interrupt */
1360 free_irq(ndev
->irq
, ndev
);
1362 dm9000_shutdown(ndev
);
1367 static const struct net_device_ops dm9000_netdev_ops
= {
1368 .ndo_open
= dm9000_open
,
1369 .ndo_stop
= dm9000_stop
,
1370 .ndo_start_xmit
= dm9000_start_xmit
,
1371 .ndo_tx_timeout
= dm9000_timeout
,
1372 .ndo_set_rx_mode
= dm9000_hash_table
,
1373 .ndo_do_ioctl
= dm9000_ioctl
,
1374 .ndo_set_features
= dm9000_set_features
,
1375 .ndo_validate_addr
= eth_validate_addr
,
1376 .ndo_set_mac_address
= eth_mac_addr
,
1377 #ifdef CONFIG_NET_POLL_CONTROLLER
1378 .ndo_poll_controller
= dm9000_poll_controller
,
1382 static struct dm9000_plat_data
*dm9000_parse_dt(struct device
*dev
)
1384 struct dm9000_plat_data
*pdata
;
1385 struct device_node
*np
= dev
->of_node
;
1386 const void *mac_addr
;
1388 if (!IS_ENABLED(CONFIG_OF
) || !np
)
1389 return ERR_PTR(-ENXIO
);
1391 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
1393 return ERR_PTR(-ENOMEM
);
1395 if (of_find_property(np
, "davicom,ext-phy", NULL
))
1396 pdata
->flags
|= DM9000_PLATF_EXT_PHY
;
1397 if (of_find_property(np
, "davicom,no-eeprom", NULL
))
1398 pdata
->flags
|= DM9000_PLATF_NO_EEPROM
;
1400 mac_addr
= of_get_mac_address(np
);
1401 if (!IS_ERR(mac_addr
))
1402 ether_addr_copy(pdata
->dev_addr
, mac_addr
);
1403 else if (PTR_ERR(mac_addr
) == -EPROBE_DEFER
)
1404 return ERR_CAST(mac_addr
);
1410 * Search DM9000 board, allocate space and register it
1413 dm9000_probe(struct platform_device
*pdev
)
1415 struct dm9000_plat_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1416 struct board_info
*db
; /* Point a board information structure */
1417 struct net_device
*ndev
;
1418 struct device
*dev
= &pdev
->dev
;
1419 const unsigned char *mac_src
;
1425 enum of_gpio_flags flags
;
1426 struct regulator
*power
;
1427 bool inv_mac_addr
= false;
1429 power
= devm_regulator_get(dev
, "vcc");
1430 if (IS_ERR(power
)) {
1431 if (PTR_ERR(power
) == -EPROBE_DEFER
)
1432 return -EPROBE_DEFER
;
1433 dev_dbg(dev
, "no regulator provided\n");
1435 ret
= regulator_enable(power
);
1438 "Failed to enable power regulator: %d\n", ret
);
1441 dev_dbg(dev
, "regulator enabled\n");
1444 reset_gpios
= of_get_named_gpio_flags(dev
->of_node
, "reset-gpios", 0,
1446 if (gpio_is_valid(reset_gpios
)) {
1447 ret
= devm_gpio_request_one(dev
, reset_gpios
, flags
,
1450 dev_err(dev
, "failed to request reset gpio %d: %d\n",
1455 /* According to manual PWRST# Low Period Min 1ms */
1457 gpio_set_value(reset_gpios
, 1);
1458 /* Needs 3ms to read eeprom when PWRST is deasserted */
1463 pdata
= dm9000_parse_dt(&pdev
->dev
);
1465 return PTR_ERR(pdata
);
1468 /* Init network device */
1469 ndev
= alloc_etherdev(sizeof(struct board_info
));
1473 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1475 dev_dbg(&pdev
->dev
, "dm9000_probe()\n");
1477 /* setup board info structure */
1478 db
= netdev_priv(ndev
);
1480 db
->dev
= &pdev
->dev
;
1483 spin_lock_init(&db
->lock
);
1484 mutex_init(&db
->addr_lock
);
1486 INIT_DELAYED_WORK(&db
->phy_poll
, dm9000_poll_work
);
1488 db
->addr_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1489 db
->data_res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1491 if (!db
->addr_res
|| !db
->data_res
) {
1492 dev_err(db
->dev
, "insufficient resources addr=%p data=%p\n",
1493 db
->addr_res
, db
->data_res
);
1498 ndev
->irq
= platform_get_irq(pdev
, 0);
1499 if (ndev
->irq
< 0) {
1504 db
->irq_wake
= platform_get_irq(pdev
, 1);
1505 if (db
->irq_wake
>= 0) {
1506 dev_dbg(db
->dev
, "wakeup irq %d\n", db
->irq_wake
);
1508 ret
= request_irq(db
->irq_wake
, dm9000_wol_interrupt
,
1509 IRQF_SHARED
, dev_name(db
->dev
), ndev
);
1511 dev_err(db
->dev
, "cannot get wakeup irq (%d)\n", ret
);
1514 /* test to see if irq is really wakeup capable */
1515 ret
= irq_set_irq_wake(db
->irq_wake
, 1);
1517 dev_err(db
->dev
, "irq %d cannot set wakeup (%d)\n",
1521 irq_set_irq_wake(db
->irq_wake
, 0);
1522 db
->wake_supported
= 1;
1527 iosize
= resource_size(db
->addr_res
);
1528 db
->addr_req
= request_mem_region(db
->addr_res
->start
, iosize
,
1531 if (db
->addr_req
== NULL
) {
1532 dev_err(db
->dev
, "cannot claim address reg area\n");
1537 db
->io_addr
= ioremap(db
->addr_res
->start
, iosize
);
1539 if (db
->io_addr
== NULL
) {
1540 dev_err(db
->dev
, "failed to ioremap address reg\n");
1545 iosize
= resource_size(db
->data_res
);
1546 db
->data_req
= request_mem_region(db
->data_res
->start
, iosize
,
1549 if (db
->data_req
== NULL
) {
1550 dev_err(db
->dev
, "cannot claim data reg area\n");
1555 db
->io_data
= ioremap(db
->data_res
->start
, iosize
);
1557 if (db
->io_data
== NULL
) {
1558 dev_err(db
->dev
, "failed to ioremap data reg\n");
1563 /* fill in parameters for net-dev structure */
1564 ndev
->base_addr
= (unsigned long)db
->io_addr
;
1566 /* ensure at least we have a default set of IO routines */
1567 dm9000_set_io(db
, iosize
);
1569 /* check to see if anything is being over-ridden */
1570 if (pdata
!= NULL
) {
1571 /* check to see if the driver wants to over-ride the
1572 * default IO width */
1574 if (pdata
->flags
& DM9000_PLATF_8BITONLY
)
1575 dm9000_set_io(db
, 1);
1577 if (pdata
->flags
& DM9000_PLATF_16BITONLY
)
1578 dm9000_set_io(db
, 2);
1580 if (pdata
->flags
& DM9000_PLATF_32BITONLY
)
1581 dm9000_set_io(db
, 4);
1583 /* check to see if there are any IO routine
1586 if (pdata
->inblk
!= NULL
)
1587 db
->inblk
= pdata
->inblk
;
1589 if (pdata
->outblk
!= NULL
)
1590 db
->outblk
= pdata
->outblk
;
1592 if (pdata
->dumpblk
!= NULL
)
1593 db
->dumpblk
= pdata
->dumpblk
;
1595 db
->flags
= pdata
->flags
;
1598 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1599 db
->flags
|= DM9000_PLATF_SIMPLE_PHY
;
1604 /* try multiple times, DM9000 sometimes gets the read wrong */
1605 for (i
= 0; i
< 8; i
++) {
1606 id_val
= ior(db
, DM9000_VIDL
);
1607 id_val
|= (u32
)ior(db
, DM9000_VIDH
) << 8;
1608 id_val
|= (u32
)ior(db
, DM9000_PIDL
) << 16;
1609 id_val
|= (u32
)ior(db
, DM9000_PIDH
) << 24;
1611 if (id_val
== DM9000_ID
)
1613 dev_err(db
->dev
, "read wrong id 0x%08x\n", id_val
);
1616 if (id_val
!= DM9000_ID
) {
1617 dev_err(db
->dev
, "wrong id: 0x%08x\n", id_val
);
1622 /* Identify what type of DM9000 we are working on */
1624 id_val
= ior(db
, DM9000_CHIPR
);
1625 dev_dbg(db
->dev
, "dm9000 revision 0x%02x\n", id_val
);
1629 db
->type
= TYPE_DM9000A
;
1632 db
->type
= TYPE_DM9000B
;
1635 dev_dbg(db
->dev
, "ID %02x => defaulting to DM9000E\n", id_val
);
1636 db
->type
= TYPE_DM9000E
;
1639 /* dm9000a/b are capable of hardware checksum offload */
1640 if (db
->type
== TYPE_DM9000A
|| db
->type
== TYPE_DM9000B
) {
1641 ndev
->hw_features
= NETIF_F_RXCSUM
| NETIF_F_IP_CSUM
;
1642 ndev
->features
|= ndev
->hw_features
;
1645 /* from this point we assume that we have found a DM9000 */
1647 ndev
->netdev_ops
= &dm9000_netdev_ops
;
1648 ndev
->watchdog_timeo
= msecs_to_jiffies(watchdog
);
1649 ndev
->ethtool_ops
= &dm9000_ethtool_ops
;
1651 db
->msg_enable
= NETIF_MSG_LINK
;
1652 db
->mii
.phy_id_mask
= 0x1f;
1653 db
->mii
.reg_num_mask
= 0x1f;
1654 db
->mii
.force_media
= 0;
1655 db
->mii
.full_duplex
= 0;
1657 db
->mii
.mdio_read
= dm9000_phy_read
;
1658 db
->mii
.mdio_write
= dm9000_phy_write
;
1662 /* try reading the node address from the attached EEPROM */
1663 for (i
= 0; i
< 6; i
+= 2)
1664 dm9000_read_eeprom(db
, i
/ 2, ndev
->dev_addr
+i
);
1666 if (!is_valid_ether_addr(ndev
->dev_addr
) && pdata
!= NULL
) {
1667 mac_src
= "platform data";
1668 memcpy(ndev
->dev_addr
, pdata
->dev_addr
, ETH_ALEN
);
1671 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1672 /* try reading from mac */
1675 for (i
= 0; i
< 6; i
++)
1676 ndev
->dev_addr
[i
] = ior(db
, i
+DM9000_PAR
);
1679 if (!is_valid_ether_addr(ndev
->dev_addr
)) {
1680 inv_mac_addr
= true;
1681 eth_hw_addr_random(ndev
);
1686 platform_set_drvdata(pdev
, ndev
);
1687 ret
= register_netdev(ndev
);
1691 dev_warn(db
->dev
, "%s: Invalid ethernet MAC address. Please set using ip\n",
1693 printk(KERN_INFO
"%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1694 ndev
->name
, dm9000_type_to_char(db
->type
),
1695 db
->io_addr
, db
->io_data
, ndev
->irq
,
1696 ndev
->dev_addr
, mac_src
);
1701 dev_err(db
->dev
, "not found (%d).\n", ret
);
1703 dm9000_release_board(pdev
, db
);
1710 dm9000_drv_suspend(struct device
*dev
)
1712 struct net_device
*ndev
= dev_get_drvdata(dev
);
1713 struct board_info
*db
;
1716 db
= netdev_priv(ndev
);
1719 if (!netif_running(ndev
))
1722 netif_device_detach(ndev
);
1724 /* only shutdown if not using WoL */
1725 if (!db
->wake_state
)
1726 dm9000_shutdown(ndev
);
1732 dm9000_drv_resume(struct device
*dev
)
1734 struct net_device
*ndev
= dev_get_drvdata(dev
);
1735 struct board_info
*db
= netdev_priv(ndev
);
1738 if (netif_running(ndev
)) {
1739 /* reset if we were not in wake mode to ensure if
1740 * the device was powered off it is in a known state */
1741 if (!db
->wake_state
) {
1742 dm9000_init_dm9000(ndev
);
1743 dm9000_unmask_interrupts(db
);
1746 netif_device_attach(ndev
);
1754 static const struct dev_pm_ops dm9000_drv_pm_ops
= {
1755 .suspend
= dm9000_drv_suspend
,
1756 .resume
= dm9000_drv_resume
,
1760 dm9000_drv_remove(struct platform_device
*pdev
)
1762 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1764 unregister_netdev(ndev
);
1765 dm9000_release_board(pdev
, netdev_priv(ndev
));
1766 free_netdev(ndev
); /* free device structure */
1768 dev_dbg(&pdev
->dev
, "released and freed device\n");
1773 static const struct of_device_id dm9000_of_matches
[] = {
1774 { .compatible
= "davicom,dm9000", },
1777 MODULE_DEVICE_TABLE(of
, dm9000_of_matches
);
1780 static struct platform_driver dm9000_driver
= {
1783 .pm
= &dm9000_drv_pm_ops
,
1784 .of_match_table
= of_match_ptr(dm9000_of_matches
),
1786 .probe
= dm9000_probe
,
1787 .remove
= dm9000_drv_remove
,
1790 module_platform_driver(dm9000_driver
);
1792 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1793 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1794 MODULE_LICENSE("GPL");
1795 MODULE_ALIAS("platform:dm9000");