1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
4 Copyright (c) 2001, 2002 by D-Link Corporation
5 Written by Edward Peng.<edward_peng@dlink.com.tw>
6 Created 03-May-2001, base on Linux' sundance.c.
11 #include <linux/dma-mapping.h>
13 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
14 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
15 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
16 #define dr32(reg) ioread32(ioaddr + (reg))
17 #define dr16(reg) ioread16(ioaddr + (reg))
18 #define dr8(reg) ioread8(ioaddr + (reg))
21 static int mtu
[MAX_UNITS
];
22 static int vlan
[MAX_UNITS
];
23 static int jumbo
[MAX_UNITS
];
24 static char *media
[MAX_UNITS
];
25 static int tx_flow
=-1;
26 static int rx_flow
=-1;
27 static int copy_thresh
;
28 static int rx_coalesce
=10; /* Rx frame count each interrupt */
29 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
30 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
33 MODULE_AUTHOR ("Edward Peng");
34 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
35 MODULE_LICENSE("GPL");
36 module_param_array(mtu
, int, NULL
, 0);
37 module_param_array(media
, charp
, NULL
, 0);
38 module_param_array(vlan
, int, NULL
, 0);
39 module_param_array(jumbo
, int, NULL
, 0);
40 module_param(tx_flow
, int, 0);
41 module_param(rx_flow
, int, 0);
42 module_param(copy_thresh
, int, 0);
43 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
44 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
45 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
48 /* Enable the default interrupts */
49 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
50 UpdateStats | LinkEvent)
52 static void dl2k_enable_int(struct netdev_private
*np
)
54 void __iomem
*ioaddr
= np
->ioaddr
;
56 dw16(IntEnable
, DEFAULT_INTR
);
59 static const int max_intrloop
= 50;
60 static const int multicast_filter_limit
= 0x40;
62 static int rio_open (struct net_device
*dev
);
63 static void rio_timer (struct timer_list
*t
);
64 static void rio_tx_timeout (struct net_device
*dev
, unsigned int txqueue
);
65 static netdev_tx_t
start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
66 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
67 static void rio_free_tx (struct net_device
*dev
, int irq
);
68 static void tx_error (struct net_device
*dev
, int tx_status
);
69 static int receive_packet (struct net_device
*dev
);
70 static void rio_error (struct net_device
*dev
, int int_status
);
71 static void set_multicast (struct net_device
*dev
);
72 static struct net_device_stats
*get_stats (struct net_device
*dev
);
73 static int clear_stats (struct net_device
*dev
);
74 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
75 static int rio_close (struct net_device
*dev
);
76 static int find_miiphy (struct net_device
*dev
);
77 static int parse_eeprom (struct net_device
*dev
);
78 static int read_eeprom (struct netdev_private
*, int eep_addr
);
79 static int mii_wait_link (struct net_device
*dev
, int wait
);
80 static int mii_set_media (struct net_device
*dev
);
81 static int mii_get_media (struct net_device
*dev
);
82 static int mii_set_media_pcs (struct net_device
*dev
);
83 static int mii_get_media_pcs (struct net_device
*dev
);
84 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
85 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
88 static const struct ethtool_ops ethtool_ops
;
90 static const struct net_device_ops netdev_ops
= {
92 .ndo_start_xmit
= start_xmit
,
93 .ndo_stop
= rio_close
,
94 .ndo_get_stats
= get_stats
,
95 .ndo_validate_addr
= eth_validate_addr
,
96 .ndo_set_mac_address
= eth_mac_addr
,
97 .ndo_set_rx_mode
= set_multicast
,
98 .ndo_do_ioctl
= rio_ioctl
,
99 .ndo_tx_timeout
= rio_tx_timeout
,
103 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
105 struct net_device
*dev
;
106 struct netdev_private
*np
;
108 int chip_idx
= ent
->driver_data
;
110 void __iomem
*ioaddr
;
114 err
= pci_enable_device (pdev
);
119 err
= pci_request_regions (pdev
, "dl2k");
121 goto err_out_disable
;
123 pci_set_master (pdev
);
127 dev
= alloc_etherdev (sizeof (*np
));
130 SET_NETDEV_DEV(dev
, &pdev
->dev
);
132 np
= netdev_priv(dev
);
134 /* IO registers range. */
135 ioaddr
= pci_iomap(pdev
, 0, 0);
138 np
->eeprom_addr
= ioaddr
;
141 /* MM registers range. */
142 ioaddr
= pci_iomap(pdev
, 1, 0);
144 goto err_out_iounmap
;
147 np
->chip_id
= chip_idx
;
149 spin_lock_init (&np
->tx_lock
);
150 spin_lock_init (&np
->rx_lock
);
152 /* Parse manual configuration */
155 if (card_idx
< MAX_UNITS
) {
156 if (media
[card_idx
] != NULL
) {
158 if (strcmp (media
[card_idx
], "auto") == 0 ||
159 strcmp (media
[card_idx
], "autosense") == 0 ||
160 strcmp (media
[card_idx
], "0") == 0 ) {
162 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
163 strcmp (media
[card_idx
], "4") == 0) {
166 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0 ||
167 strcmp (media
[card_idx
], "3") == 0) {
170 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
171 strcmp (media
[card_idx
], "2") == 0) {
174 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
175 strcmp (media
[card_idx
], "1") == 0) {
178 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
179 strcmp (media
[card_idx
], "6") == 0) {
182 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
183 strcmp (media
[card_idx
], "5") == 0) {
190 if (jumbo
[card_idx
] != 0) {
192 dev
->mtu
= MAX_JUMBO
;
195 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
196 dev
->mtu
= mtu
[card_idx
];
198 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
200 if (rx_coalesce
> 0 && rx_timeout
> 0) {
201 np
->rx_coalesce
= rx_coalesce
;
202 np
->rx_timeout
= rx_timeout
;
205 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
206 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
210 else if (tx_coalesce
> TX_RING_SIZE
-1)
211 tx_coalesce
= TX_RING_SIZE
- 1;
213 dev
->netdev_ops
= &netdev_ops
;
214 dev
->watchdog_timeo
= TX_TIMEOUT
;
215 dev
->ethtool_ops
= ðtool_ops
;
217 dev
->features
= NETIF_F_IP_CSUM
;
219 /* MTU range: 68 - 1536 or 8000 */
220 dev
->min_mtu
= ETH_MIN_MTU
;
221 dev
->max_mtu
= np
->jumbo
? MAX_JUMBO
: PACKET_SIZE
;
223 pci_set_drvdata (pdev
, dev
);
225 ring_space
= dma_alloc_coherent(&pdev
->dev
, TX_TOTAL_SIZE
, &ring_dma
,
228 goto err_out_iounmap
;
229 np
->tx_ring
= ring_space
;
230 np
->tx_ring_dma
= ring_dma
;
232 ring_space
= dma_alloc_coherent(&pdev
->dev
, RX_TOTAL_SIZE
, &ring_dma
,
235 goto err_out_unmap_tx
;
236 np
->rx_ring
= ring_space
;
237 np
->rx_ring_dma
= ring_dma
;
239 /* Parse eeprom data */
242 /* Find PHY address */
243 err
= find_miiphy (dev
);
245 goto err_out_unmap_rx
;
248 np
->phy_media
= (dr16(ASICCtrl
) & PhyMedia
) ? 1 : 0;
250 /* Set media and reset PHY */
252 /* default Auto-Negotiation for fiber deivices */
253 if (np
->an_enable
== 2) {
257 /* Auto-Negotiation is mandatory for 1000BASE-T,
258 IEEE 802.3ab Annex 28D page 14 */
259 if (np
->speed
== 1000)
263 err
= register_netdev (dev
);
265 goto err_out_unmap_rx
;
269 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
270 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
272 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
276 "rx_coalesce:\t%d packets\n"
277 "rx_timeout: \t%d ns\n",
278 np
->rx_coalesce
, np
->rx_timeout
*640);
280 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
284 dma_free_coherent(&pdev
->dev
, RX_TOTAL_SIZE
, np
->rx_ring
,
287 dma_free_coherent(&pdev
->dev
, TX_TOTAL_SIZE
, np
->tx_ring
,
291 pci_iounmap(pdev
, np
->ioaddr
);
293 pci_iounmap(pdev
, np
->eeprom_addr
);
297 pci_release_regions (pdev
);
299 pci_disable_device (pdev
);
304 find_miiphy (struct net_device
*dev
)
306 struct netdev_private
*np
= netdev_priv(dev
);
307 int i
, phy_found
= 0;
311 for (i
= 31; i
>= 0; i
--) {
312 int mii_status
= mii_read (dev
, i
, 1);
313 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
319 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
326 parse_eeprom (struct net_device
*dev
)
328 struct netdev_private
*np
= netdev_priv(dev
);
329 void __iomem
*ioaddr
= np
->ioaddr
;
334 PSROM_t psrom
= (PSROM_t
) sromdata
;
338 for (i
= 0; i
< 128; i
++)
339 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom(np
, i
));
341 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
343 crc
= ~ether_crc_le (256 - 4, sromdata
);
344 if (psrom
->crc
!= cpu_to_le32(crc
)) {
345 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
351 /* Set MAC address */
352 for (i
= 0; i
< 6; i
++)
353 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
355 if (np
->chip_id
== CHIP_IP1000A
) {
356 np
->led_mode
= psrom
->led_mode
;
360 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
364 /* Parse Software Information Block */
366 psib
= (u8
*) sromdata
;
370 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
371 printk (KERN_ERR
"Cell data error\n");
375 case 0: /* Format version */
377 case 1: /* End of cell */
379 case 2: /* Duplex Polarity */
380 np
->duplex_polarity
= psib
[i
];
381 dw8(PhyCtrl
, dr8(PhyCtrl
) | psib
[i
]);
383 case 3: /* Wake Polarity */
384 np
->wake_polarity
= psib
[i
];
386 case 9: /* Adapter description */
387 j
= (next
- i
> 255) ? 255 : next
- i
;
388 memcpy (np
->name
, &(psib
[i
]), j
);
394 case 8: /* Reversed */
396 default: /* Unknown cell */
405 static void rio_set_led_mode(struct net_device
*dev
)
407 struct netdev_private
*np
= netdev_priv(dev
);
408 void __iomem
*ioaddr
= np
->ioaddr
;
411 if (np
->chip_id
!= CHIP_IP1000A
)
414 mode
= dr32(ASICCtrl
);
415 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
417 if (np
->led_mode
& 0x01)
418 mode
|= IPG_AC_LED_MODE
;
419 if (np
->led_mode
& 0x02)
420 mode
|= IPG_AC_LED_MODE_BIT_1
;
421 if (np
->led_mode
& 0x08)
422 mode
|= IPG_AC_LED_SPEED
;
424 dw32(ASICCtrl
, mode
);
427 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
429 return le64_to_cpu(desc
->fraginfo
) & DMA_BIT_MASK(48);
432 static void free_list(struct net_device
*dev
)
434 struct netdev_private
*np
= netdev_priv(dev
);
438 /* Free all the skbuffs in the queue. */
439 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
440 skb
= np
->rx_skbuff
[i
];
442 dma_unmap_single(&np
->pdev
->dev
,
443 desc_to_dma(&np
->rx_ring
[i
]),
444 skb
->len
, DMA_FROM_DEVICE
);
446 np
->rx_skbuff
[i
] = NULL
;
448 np
->rx_ring
[i
].status
= 0;
449 np
->rx_ring
[i
].fraginfo
= 0;
451 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
452 skb
= np
->tx_skbuff
[i
];
454 dma_unmap_single(&np
->pdev
->dev
,
455 desc_to_dma(&np
->tx_ring
[i
]),
456 skb
->len
, DMA_TO_DEVICE
);
458 np
->tx_skbuff
[i
] = NULL
;
463 static void rio_reset_ring(struct netdev_private
*np
)
472 for (i
= 0; i
< TX_RING_SIZE
; i
++)
473 np
->tx_ring
[i
].status
= cpu_to_le64(TFDDone
);
475 for (i
= 0; i
< RX_RING_SIZE
; i
++)
476 np
->rx_ring
[i
].status
= 0;
479 /* allocate and initialize Tx and Rx descriptors */
480 static int alloc_list(struct net_device
*dev
)
482 struct netdev_private
*np
= netdev_priv(dev
);
486 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
488 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
489 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
490 np
->tx_skbuff
[i
] = NULL
;
491 np
->tx_ring
[i
].next_desc
= cpu_to_le64(np
->tx_ring_dma
+
492 ((i
+ 1) % TX_RING_SIZE
) *
493 sizeof(struct netdev_desc
));
496 /* Initialize Rx descriptors & allocate buffers */
497 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
498 /* Allocated fixed size of skbuff */
501 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
502 np
->rx_skbuff
[i
] = skb
;
508 np
->rx_ring
[i
].next_desc
= cpu_to_le64(np
->rx_ring_dma
+
509 ((i
+ 1) % RX_RING_SIZE
) *
510 sizeof(struct netdev_desc
));
511 /* Rubicon now supports 40 bits of addressing space. */
512 np
->rx_ring
[i
].fraginfo
=
513 cpu_to_le64(dma_map_single(&np
->pdev
->dev
, skb
->data
,
514 np
->rx_buf_sz
, DMA_FROM_DEVICE
));
515 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
521 static void rio_hw_init(struct net_device
*dev
)
523 struct netdev_private
*np
= netdev_priv(dev
);
524 void __iomem
*ioaddr
= np
->ioaddr
;
528 /* Reset all logic functions */
530 GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
);
533 rio_set_led_mode(dev
);
535 /* DebugCtrl bit 4, 5, 9 must set */
536 dw32(DebugCtrl
, dr32(DebugCtrl
) | 0x0230);
538 if (np
->chip_id
== CHIP_IP1000A
&&
539 (np
->pdev
->revision
== 0x40 || np
->pdev
->revision
== 0x41)) {
540 /* PHY magic taken from ipg driver, undocumented registers */
541 mii_write(dev
, np
->phy_addr
, 31, 0x0001);
542 mii_write(dev
, np
->phy_addr
, 27, 0x01e0);
543 mii_write(dev
, np
->phy_addr
, 31, 0x0002);
544 mii_write(dev
, np
->phy_addr
, 27, 0xeb8e);
545 mii_write(dev
, np
->phy_addr
, 31, 0x0000);
546 mii_write(dev
, np
->phy_addr
, 30, 0x005e);
547 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
548 mii_write(dev
, np
->phy_addr
, MII_CTRL1000
, 0x0700);
552 mii_set_media_pcs(dev
);
558 dw16(MaxFrameSize
, MAX_JUMBO
+14);
561 dw32(RFDListPtr0
, np
->rx_ring_dma
);
562 dw32(RFDListPtr1
, 0);
564 /* Set station address */
565 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
566 * too. However, it doesn't work on IP1000A so we use 16-bit access.
568 for (i
= 0; i
< 3; i
++)
569 dw16(StationAddr0
+ 2 * i
,
570 cpu_to_le16(((u16
*)dev
->dev_addr
)[i
]));
574 dw32(RxDMAIntCtrl
, np
->rx_coalesce
| np
->rx_timeout
<< 16);
576 /* Set RIO to poll every N*320nsec. */
577 dw8(RxDMAPollPeriod
, 0x20);
578 dw8(TxDMAPollPeriod
, 0xff);
579 dw8(RxDMABurstThresh
, 0x30);
580 dw8(RxDMAUrgentThresh
, 0x30);
581 dw32(RmonStatMask
, 0x0007ffff);
582 /* clear statistics */
587 /* priority field in RxDMAIntCtrl */
588 dw32(RxDMAIntCtrl
, dr32(RxDMAIntCtrl
) | 0x7 << 10);
590 dw16(VLANId
, np
->vlan
);
591 /* Length/Type should be 0x8100 */
592 dw32(VLANTag
, 0x8100 << 16 | np
->vlan
);
593 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
594 VLAN information tagged by TFC' VID, CFI fields. */
595 dw32(MACCtrl
, dr32(MACCtrl
) | AutoVLANuntagging
);
599 dw32(MACCtrl
, dr32(MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
);
602 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
603 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
604 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
605 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
606 dw16(MACCtrl
, macctrl
);
609 static void rio_hw_stop(struct net_device
*dev
)
611 struct netdev_private
*np
= netdev_priv(dev
);
612 void __iomem
*ioaddr
= np
->ioaddr
;
614 /* Disable interrupts */
617 /* Stop Tx and Rx logics */
618 dw32(MACCtrl
, TxDisable
| RxDisable
| StatsDisable
);
621 static int rio_open(struct net_device
*dev
)
623 struct netdev_private
*np
= netdev_priv(dev
);
624 const int irq
= np
->pdev
->irq
;
633 i
= request_irq(irq
, rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
640 timer_setup(&np
->timer
, rio_timer
, 0);
641 np
->timer
.expires
= jiffies
+ 1 * HZ
;
642 add_timer(&np
->timer
);
644 netif_start_queue (dev
);
651 rio_timer (struct timer_list
*t
)
653 struct netdev_private
*np
= from_timer(np
, t
, timer
);
654 struct net_device
*dev
= pci_get_drvdata(np
->pdev
);
656 int next_tick
= 1*HZ
;
659 spin_lock_irqsave(&np
->rx_lock
, flags
);
660 /* Recover rx ring exhausted error */
661 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
662 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
663 /* Re-allocate skbuffs to fill the descriptor ring */
664 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
666 entry
= np
->old_rx
% RX_RING_SIZE
;
667 /* Dropped packets don't need to re-allocate */
668 if (np
->rx_skbuff
[entry
] == NULL
) {
669 skb
= netdev_alloc_skb_ip_align(dev
,
672 np
->rx_ring
[entry
].fraginfo
= 0;
674 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
678 np
->rx_skbuff
[entry
] = skb
;
679 np
->rx_ring
[entry
].fraginfo
=
680 cpu_to_le64 (dma_map_single(&np
->pdev
->dev
, skb
->data
,
681 np
->rx_buf_sz
, DMA_FROM_DEVICE
));
683 np
->rx_ring
[entry
].fraginfo
|=
684 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
685 np
->rx_ring
[entry
].status
= 0;
688 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
689 np
->timer
.expires
= jiffies
+ next_tick
;
690 add_timer(&np
->timer
);
694 rio_tx_timeout (struct net_device
*dev
, unsigned int txqueue
)
696 struct netdev_private
*np
= netdev_priv(dev
);
697 void __iomem
*ioaddr
= np
->ioaddr
;
699 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
700 dev
->name
, dr32(TxStatus
));
703 netif_trans_update(dev
); /* prevent tx timeout */
707 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
709 struct netdev_private
*np
= netdev_priv(dev
);
710 void __iomem
*ioaddr
= np
->ioaddr
;
711 struct netdev_desc
*txdesc
;
713 u64 tfc_vlan_tag
= 0;
715 if (np
->link_status
== 0) { /* Link Down */
719 entry
= np
->cur_tx
% TX_RING_SIZE
;
720 np
->tx_skbuff
[entry
] = skb
;
721 txdesc
= &np
->tx_ring
[entry
];
724 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
726 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
731 tfc_vlan_tag
= VLANTagInsert
|
732 ((u64
)np
->vlan
<< 32) |
733 ((u64
)skb
->priority
<< 45);
735 txdesc
->fraginfo
= cpu_to_le64 (dma_map_single(&np
->pdev
->dev
, skb
->data
,
736 skb
->len
, DMA_TO_DEVICE
));
737 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
739 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
740 * Work around: Always use 1 descriptor in 10Mbps mode */
741 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
742 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
745 (1 << FragCountShift
));
747 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
749 (1 << FragCountShift
));
752 dw32(DMACtrl
, dr32(DMACtrl
) | 0x00001000);
754 dw32(CountDown
, 10000);
755 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
756 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
757 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
759 } else if (!netif_queue_stopped(dev
)) {
760 netif_stop_queue (dev
);
763 /* The first TFDListPtr */
764 if (!dr32(TFDListPtr0
)) {
765 dw32(TFDListPtr0
, np
->tx_ring_dma
+
766 entry
* sizeof (struct netdev_desc
));
767 dw32(TFDListPtr1
, 0);
774 rio_interrupt (int irq
, void *dev_instance
)
776 struct net_device
*dev
= dev_instance
;
777 struct netdev_private
*np
= netdev_priv(dev
);
778 void __iomem
*ioaddr
= np
->ioaddr
;
780 int cnt
= max_intrloop
;
784 int_status
= dr16(IntStatus
);
785 dw16(IntStatus
, int_status
);
786 int_status
&= DEFAULT_INTR
;
787 if (int_status
== 0 || --cnt
< 0)
790 /* Processing received packets */
791 if (int_status
& RxDMAComplete
)
792 receive_packet (dev
);
793 /* TxDMAComplete interrupt */
794 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
796 tx_status
= dr32(TxStatus
);
797 if (tx_status
& 0x01)
798 tx_error (dev
, tx_status
);
799 /* Free used tx skbuffs */
800 rio_free_tx (dev
, 1);
803 /* Handle uncommon events */
805 (HostError
| LinkEvent
| UpdateStats
))
806 rio_error (dev
, int_status
);
808 if (np
->cur_tx
!= np
->old_tx
)
809 dw32(CountDown
, 100);
810 return IRQ_RETVAL(handled
);
814 rio_free_tx (struct net_device
*dev
, int irq
)
816 struct netdev_private
*np
= netdev_priv(dev
);
817 int entry
= np
->old_tx
% TX_RING_SIZE
;
819 unsigned long flag
= 0;
822 spin_lock(&np
->tx_lock
);
824 spin_lock_irqsave(&np
->tx_lock
, flag
);
826 /* Free used tx skbuffs */
827 while (entry
!= np
->cur_tx
) {
830 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
832 skb
= np
->tx_skbuff
[entry
];
833 dma_unmap_single(&np
->pdev
->dev
,
834 desc_to_dma(&np
->tx_ring
[entry
]), skb
->len
,
837 dev_consume_skb_irq(skb
);
841 np
->tx_skbuff
[entry
] = NULL
;
842 entry
= (entry
+ 1) % TX_RING_SIZE
;
846 spin_unlock(&np
->tx_lock
);
848 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
851 /* If the ring is no longer full, clear tx_full and
852 call netif_wake_queue() */
854 if (netif_queue_stopped(dev
) &&
855 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
856 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
857 netif_wake_queue (dev
);
862 tx_error (struct net_device
*dev
, int tx_status
)
864 struct netdev_private
*np
= netdev_priv(dev
);
865 void __iomem
*ioaddr
= np
->ioaddr
;
869 frame_id
= (tx_status
& 0xffff0000);
870 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
871 dev
->name
, tx_status
, frame_id
);
872 dev
->stats
.tx_errors
++;
873 /* Ttransmit Underrun */
874 if (tx_status
& 0x10) {
875 dev
->stats
.tx_fifo_errors
++;
876 dw16(TxStartThresh
, dr16(TxStartThresh
) + 0x10);
877 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
879 TxReset
| DMAReset
| FIFOReset
| NetworkReset
);
880 /* Wait for ResetBusy bit clear */
881 for (i
= 50; i
> 0; i
--) {
882 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
886 rio_set_led_mode(dev
);
887 rio_free_tx (dev
, 1);
888 /* Reset TFDListPtr */
889 dw32(TFDListPtr0
, np
->tx_ring_dma
+
890 np
->old_tx
* sizeof (struct netdev_desc
));
891 dw32(TFDListPtr1
, 0);
893 /* Let TxStartThresh stay default value */
896 if (tx_status
& 0x04) {
897 dev
->stats
.tx_fifo_errors
++;
898 /* TxReset and clear FIFO */
899 dw16(ASICCtrl
+ 2, TxReset
| FIFOReset
);
900 /* Wait reset done */
901 for (i
= 50; i
> 0; i
--) {
902 if (!(dr16(ASICCtrl
+ 2) & ResetBusy
))
906 rio_set_led_mode(dev
);
907 /* Let TxStartThresh stay default value */
909 /* Maximum Collisions */
910 if (tx_status
& 0x08)
911 dev
->stats
.collisions
++;
913 dw32(MACCtrl
, dr16(MACCtrl
) | TxEnable
);
917 receive_packet (struct net_device
*dev
)
919 struct netdev_private
*np
= netdev_priv(dev
);
920 int entry
= np
->cur_rx
% RX_RING_SIZE
;
923 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
925 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
929 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
930 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
931 !(desc
->status
& cpu_to_le64(FrameEnd
)))
934 /* Chip omits the CRC. */
935 frame_status
= le64_to_cpu(desc
->status
);
936 pkt_len
= frame_status
& 0xffff;
939 /* Update rx error statistics, drop packet. */
940 if (frame_status
& RFS_Errors
) {
941 dev
->stats
.rx_errors
++;
942 if (frame_status
& (RxRuntFrame
| RxLengthError
))
943 dev
->stats
.rx_length_errors
++;
944 if (frame_status
& RxFCSError
)
945 dev
->stats
.rx_crc_errors
++;
946 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
947 dev
->stats
.rx_frame_errors
++;
948 if (frame_status
& RxFIFOOverrun
)
949 dev
->stats
.rx_fifo_errors
++;
953 /* Small skbuffs for short packets */
954 if (pkt_len
> copy_thresh
) {
955 dma_unmap_single(&np
->pdev
->dev
,
959 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
960 np
->rx_skbuff
[entry
] = NULL
;
961 } else if ((skb
= netdev_alloc_skb_ip_align(dev
, pkt_len
))) {
962 dma_sync_single_for_cpu(&np
->pdev
->dev
,
966 skb_copy_to_linear_data (skb
,
967 np
->rx_skbuff
[entry
]->data
,
969 skb_put (skb
, pkt_len
);
970 dma_sync_single_for_device(&np
->pdev
->dev
,
975 skb
->protocol
= eth_type_trans (skb
, dev
);
977 /* Checksum done by hw, but csum value unavailable. */
978 if (np
->pdev
->pci_rev_id
>= 0x0c &&
979 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
980 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
985 entry
= (entry
+ 1) % RX_RING_SIZE
;
987 spin_lock(&np
->rx_lock
);
989 /* Re-allocate skbuffs to fill the descriptor ring */
991 while (entry
!= np
->cur_rx
) {
993 /* Dropped packets don't need to re-allocate */
994 if (np
->rx_skbuff
[entry
] == NULL
) {
995 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
997 np
->rx_ring
[entry
].fraginfo
= 0;
999 "%s: receive_packet: "
1000 "Unable to re-allocate Rx skbuff.#%d\n",
1004 np
->rx_skbuff
[entry
] = skb
;
1005 np
->rx_ring
[entry
].fraginfo
=
1006 cpu_to_le64(dma_map_single(&np
->pdev
->dev
, skb
->data
,
1007 np
->rx_buf_sz
, DMA_FROM_DEVICE
));
1009 np
->rx_ring
[entry
].fraginfo
|=
1010 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
1011 np
->rx_ring
[entry
].status
= 0;
1012 entry
= (entry
+ 1) % RX_RING_SIZE
;
1015 spin_unlock(&np
->rx_lock
);
1020 rio_error (struct net_device
*dev
, int int_status
)
1022 struct netdev_private
*np
= netdev_priv(dev
);
1023 void __iomem
*ioaddr
= np
->ioaddr
;
1026 /* Link change event */
1027 if (int_status
& LinkEvent
) {
1028 if (mii_wait_link (dev
, 10) == 0) {
1029 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
1031 mii_get_media_pcs (dev
);
1033 mii_get_media (dev
);
1034 if (np
->speed
== 1000)
1035 np
->tx_coalesce
= tx_coalesce
;
1037 np
->tx_coalesce
= 1;
1039 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
1040 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
1041 macctrl
|= (np
->tx_flow
) ?
1042 TxFlowControlEnable
: 0;
1043 macctrl
|= (np
->rx_flow
) ?
1044 RxFlowControlEnable
: 0;
1045 dw16(MACCtrl
, macctrl
);
1046 np
->link_status
= 1;
1047 netif_carrier_on(dev
);
1049 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
1050 np
->link_status
= 0;
1051 netif_carrier_off(dev
);
1055 /* UpdateStats statistics registers */
1056 if (int_status
& UpdateStats
) {
1060 /* PCI Error, a catastronphic error related to the bus interface
1061 occurs, set GlobalReset and HostReset to reset. */
1062 if (int_status
& HostError
) {
1063 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
1064 dev
->name
, int_status
);
1065 dw16(ASICCtrl
+ 2, GlobalReset
| HostReset
);
1067 rio_set_led_mode(dev
);
1071 static struct net_device_stats
*
1072 get_stats (struct net_device
*dev
)
1074 struct netdev_private
*np
= netdev_priv(dev
);
1075 void __iomem
*ioaddr
= np
->ioaddr
;
1079 unsigned int stat_reg
;
1081 /* All statistics registers need to be acknowledged,
1082 else statistic overflow could cause problems */
1084 dev
->stats
.rx_packets
+= dr32(FramesRcvOk
);
1085 dev
->stats
.tx_packets
+= dr32(FramesXmtOk
);
1086 dev
->stats
.rx_bytes
+= dr32(OctetRcvOk
);
1087 dev
->stats
.tx_bytes
+= dr32(OctetXmtOk
);
1089 dev
->stats
.multicast
= dr32(McstFramesRcvdOk
);
1090 dev
->stats
.collisions
+= dr32(SingleColFrames
)
1091 + dr32(MultiColFrames
);
1093 /* detailed tx errors */
1094 stat_reg
= dr16(FramesAbortXSColls
);
1095 dev
->stats
.tx_aborted_errors
+= stat_reg
;
1096 dev
->stats
.tx_errors
+= stat_reg
;
1098 stat_reg
= dr16(CarrierSenseErrors
);
1099 dev
->stats
.tx_carrier_errors
+= stat_reg
;
1100 dev
->stats
.tx_errors
+= stat_reg
;
1102 /* Clear all other statistic register. */
1103 dr32(McstOctetXmtOk
);
1104 dr16(BcstFramesXmtdOk
);
1105 dr32(McstFramesXmtdOk
);
1106 dr16(BcstFramesRcvdOk
);
1107 dr16(MacControlFramesRcvd
);
1108 dr16(FrameTooLongErrors
);
1109 dr16(InRangeLengthErrors
);
1110 dr16(FramesCheckSeqErrors
);
1111 dr16(FramesLostRxErrors
);
1112 dr32(McstOctetXmtOk
);
1113 dr32(BcstOctetXmtOk
);
1114 dr32(McstFramesXmtdOk
);
1115 dr32(FramesWDeferredXmt
);
1116 dr32(LateCollisions
);
1117 dr16(BcstFramesXmtdOk
);
1118 dr16(MacControlFramesXmtd
);
1119 dr16(FramesWEXDeferal
);
1122 for (i
= 0x100; i
<= 0x150; i
+= 4)
1125 dr16(TxJumboFrames
);
1126 dr16(RxJumboFrames
);
1127 dr16(TCPCheckSumErrors
);
1128 dr16(UDPCheckSumErrors
);
1129 dr16(IPCheckSumErrors
);
1134 clear_stats (struct net_device
*dev
)
1136 struct netdev_private
*np
= netdev_priv(dev
);
1137 void __iomem
*ioaddr
= np
->ioaddr
;
1142 /* All statistics registers need to be acknowledged,
1143 else statistic overflow could cause problems */
1149 dr32(McstFramesRcvdOk
);
1150 dr32(SingleColFrames
);
1151 dr32(MultiColFrames
);
1152 dr32(LateCollisions
);
1153 /* detailed rx errors */
1154 dr16(FrameTooLongErrors
);
1155 dr16(InRangeLengthErrors
);
1156 dr16(FramesCheckSeqErrors
);
1157 dr16(FramesLostRxErrors
);
1159 /* detailed tx errors */
1160 dr16(FramesAbortXSColls
);
1161 dr16(CarrierSenseErrors
);
1163 /* Clear all other statistic register. */
1164 dr32(McstOctetXmtOk
);
1165 dr16(BcstFramesXmtdOk
);
1166 dr32(McstFramesXmtdOk
);
1167 dr16(BcstFramesRcvdOk
);
1168 dr16(MacControlFramesRcvd
);
1169 dr32(McstOctetXmtOk
);
1170 dr32(BcstOctetXmtOk
);
1171 dr32(McstFramesXmtdOk
);
1172 dr32(FramesWDeferredXmt
);
1173 dr16(BcstFramesXmtdOk
);
1174 dr16(MacControlFramesXmtd
);
1175 dr16(FramesWEXDeferal
);
1177 for (i
= 0x100; i
<= 0x150; i
+= 4)
1180 dr16(TxJumboFrames
);
1181 dr16(RxJumboFrames
);
1182 dr16(TCPCheckSumErrors
);
1183 dr16(UDPCheckSumErrors
);
1184 dr16(IPCheckSumErrors
);
1189 set_multicast (struct net_device
*dev
)
1191 struct netdev_private
*np
= netdev_priv(dev
);
1192 void __iomem
*ioaddr
= np
->ioaddr
;
1196 hash_table
[0] = hash_table
[1] = 0;
1197 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1198 hash_table
[1] |= 0x02000000;
1199 if (dev
->flags
& IFF_PROMISC
) {
1200 /* Receive all frames promiscuously. */
1201 rx_mode
= ReceiveAllFrames
;
1202 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1203 (netdev_mc_count(dev
) > multicast_filter_limit
)) {
1204 /* Receive broadcast and multicast frames */
1205 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1206 } else if (!netdev_mc_empty(dev
)) {
1207 struct netdev_hw_addr
*ha
;
1208 /* Receive broadcast frames and multicast frames filtering
1211 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1212 netdev_for_each_mc_addr(ha
, dev
) {
1214 int crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1215 /* The inverted high significant 6 bits of CRC are
1216 used as an index to hashtable */
1217 for (bit
= 0; bit
< 6; bit
++)
1218 if (crc
& (1 << (31 - bit
)))
1219 index
|= (1 << bit
);
1220 hash_table
[index
/ 32] |= (1 << (index
% 32));
1223 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1226 /* ReceiveVLANMatch field in ReceiveMode */
1227 rx_mode
|= ReceiveVLANMatch
;
1230 dw32(HashTable0
, hash_table
[0]);
1231 dw32(HashTable1
, hash_table
[1]);
1232 dw16(ReceiveMode
, rx_mode
);
1235 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1237 struct netdev_private
*np
= netdev_priv(dev
);
1239 strlcpy(info
->driver
, "dl2k", sizeof(info
->driver
));
1240 strlcpy(info
->bus_info
, pci_name(np
->pdev
), sizeof(info
->bus_info
));
1243 static int rio_get_link_ksettings(struct net_device
*dev
,
1244 struct ethtool_link_ksettings
*cmd
)
1246 struct netdev_private
*np
= netdev_priv(dev
);
1247 u32 supported
, advertising
;
1249 if (np
->phy_media
) {
1251 supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1252 advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1253 cmd
->base
.port
= PORT_FIBRE
;
1256 supported
= SUPPORTED_10baseT_Half
|
1257 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1258 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1259 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1260 advertising
= ADVERTISED_10baseT_Half
|
1261 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1262 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1263 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1264 cmd
->base
.port
= PORT_MII
;
1266 if (np
->link_status
) {
1267 cmd
->base
.speed
= np
->speed
;
1268 cmd
->base
.duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1270 cmd
->base
.speed
= SPEED_UNKNOWN
;
1271 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
1274 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
1276 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
1278 cmd
->base
.phy_address
= np
->phy_addr
;
1280 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
1282 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
1288 static int rio_set_link_ksettings(struct net_device
*dev
,
1289 const struct ethtool_link_ksettings
*cmd
)
1291 struct netdev_private
*np
= netdev_priv(dev
);
1292 u32 speed
= cmd
->base
.speed
;
1293 u8 duplex
= cmd
->base
.duplex
;
1295 netif_carrier_off(dev
);
1296 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
1297 if (np
->an_enable
) {
1306 if (np
->speed
== 1000) {
1308 duplex
= DUPLEX_FULL
;
1309 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1314 np
->full_duplex
= (duplex
== DUPLEX_FULL
);
1318 np
->full_duplex
= (duplex
== DUPLEX_FULL
);
1320 case SPEED_1000
: /* not supported */
1329 static u32
rio_get_link(struct net_device
*dev
)
1331 struct netdev_private
*np
= netdev_priv(dev
);
1332 return np
->link_status
;
1335 static const struct ethtool_ops ethtool_ops
= {
1336 .get_drvinfo
= rio_get_drvinfo
,
1337 .get_link
= rio_get_link
,
1338 .get_link_ksettings
= rio_get_link_ksettings
,
1339 .set_link_ksettings
= rio_set_link_ksettings
,
1343 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1346 struct netdev_private
*np
= netdev_priv(dev
);
1347 struct mii_ioctl_data
*miidata
= if_mii(rq
);
1349 phy_addr
= np
->phy_addr
;
1352 miidata
->phy_id
= phy_addr
;
1355 miidata
->val_out
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1358 if (!capable(CAP_NET_ADMIN
))
1360 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->val_in
);
1368 #define EEP_READ 0x0200
1369 #define EEP_BUSY 0x8000
1370 /* Read the EEPROM word */
1371 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1372 static int read_eeprom(struct netdev_private
*np
, int eep_addr
)
1374 void __iomem
*ioaddr
= np
->eeprom_addr
;
1377 dw16(EepromCtrl
, EEP_READ
| (eep_addr
& 0xff));
1379 if (!(dr16(EepromCtrl
) & EEP_BUSY
))
1380 return dr16(EepromData
);
1385 enum phy_ctrl_bits
{
1386 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1390 #define mii_delay() dr8(PhyCtrl)
1392 mii_sendbit (struct net_device
*dev
, u32 data
)
1394 struct netdev_private
*np
= netdev_priv(dev
);
1395 void __iomem
*ioaddr
= np
->ioaddr
;
1397 data
= ((data
) ? MII_DATA1
: 0) | (dr8(PhyCtrl
) & 0xf8) | MII_WRITE
;
1400 dw8(PhyCtrl
, data
| MII_CLK
);
1405 mii_getbit (struct net_device
*dev
)
1407 struct netdev_private
*np
= netdev_priv(dev
);
1408 void __iomem
*ioaddr
= np
->ioaddr
;
1411 data
= (dr8(PhyCtrl
) & 0xf8) | MII_READ
;
1414 dw8(PhyCtrl
, data
| MII_CLK
);
1416 return (dr8(PhyCtrl
) >> 1) & 1;
1420 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1424 for (i
= len
- 1; i
>= 0; i
--) {
1425 mii_sendbit (dev
, data
& (1 << i
));
1430 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1437 mii_send_bits (dev
, 0xffffffff, 32);
1438 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1439 /* ST,OP = 0110'b for read operation */
1440 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1441 mii_send_bits (dev
, cmd
, 14);
1443 if (mii_getbit (dev
))
1446 for (i
= 0; i
< 16; i
++) {
1447 retval
|= mii_getbit (dev
);
1452 return (retval
>> 1) & 0xffff;
1458 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1463 mii_send_bits (dev
, 0xffffffff, 32);
1464 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1465 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1466 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1467 mii_send_bits (dev
, cmd
, 32);
1473 mii_wait_link (struct net_device
*dev
, int wait
)
1477 struct netdev_private
*np
;
1479 np
= netdev_priv(dev
);
1480 phy_addr
= np
->phy_addr
;
1483 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1484 if (bmsr
& BMSR_LSTATUS
)
1487 } while (--wait
> 0);
1491 mii_get_media (struct net_device
*dev
)
1498 struct netdev_private
*np
;
1500 np
= netdev_priv(dev
);
1501 phy_addr
= np
->phy_addr
;
1503 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1504 if (np
->an_enable
) {
1505 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1506 /* Auto-Negotiation not completed */
1509 negotiate
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1510 mii_read (dev
, phy_addr
, MII_LPA
);
1511 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1512 mssr
= mii_read (dev
, phy_addr
, MII_STAT1000
);
1513 if (mscr
& ADVERTISE_1000FULL
&& mssr
& LPA_1000FULL
) {
1515 np
->full_duplex
= 1;
1516 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1517 } else if (mscr
& ADVERTISE_1000HALF
&& mssr
& LPA_1000HALF
) {
1519 np
->full_duplex
= 0;
1520 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1521 } else if (negotiate
& ADVERTISE_100FULL
) {
1523 np
->full_duplex
= 1;
1524 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1525 } else if (negotiate
& ADVERTISE_100HALF
) {
1527 np
->full_duplex
= 0;
1528 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1529 } else if (negotiate
& ADVERTISE_10FULL
) {
1531 np
->full_duplex
= 1;
1532 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1533 } else if (negotiate
& ADVERTISE_10HALF
) {
1535 np
->full_duplex
= 0;
1536 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1538 if (negotiate
& ADVERTISE_PAUSE_CAP
) {
1541 } else if (negotiate
& ADVERTISE_PAUSE_ASYM
) {
1545 /* else tx_flow, rx_flow = user select */
1547 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1548 switch (bmcr
& (BMCR_SPEED100
| BMCR_SPEED1000
)) {
1549 case BMCR_SPEED1000
:
1550 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1553 printk (KERN_INFO
"Operating at 100 Mbps, ");
1556 printk (KERN_INFO
"Operating at 10 Mbps, ");
1558 if (bmcr
& BMCR_FULLDPLX
) {
1559 printk (KERN_CONT
"Full duplex\n");
1561 printk (KERN_CONT
"Half duplex\n");
1565 printk(KERN_INFO
"Enable Tx Flow Control\n");
1567 printk(KERN_INFO
"Disable Tx Flow Control\n");
1569 printk(KERN_INFO
"Enable Rx Flow Control\n");
1571 printk(KERN_INFO
"Disable Rx Flow Control\n");
1577 mii_set_media (struct net_device
*dev
)
1584 struct netdev_private
*np
;
1585 np
= netdev_priv(dev
);
1586 phy_addr
= np
->phy_addr
;
1588 /* Does user set speed? */
1589 if (np
->an_enable
) {
1590 /* Advertise capabilities */
1591 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1592 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1593 ~(ADVERTISE_100FULL
| ADVERTISE_10FULL
|
1594 ADVERTISE_100HALF
| ADVERTISE_10HALF
|
1595 ADVERTISE_100BASE4
);
1596 if (bmsr
& BMSR_100FULL
)
1597 anar
|= ADVERTISE_100FULL
;
1598 if (bmsr
& BMSR_100HALF
)
1599 anar
|= ADVERTISE_100HALF
;
1600 if (bmsr
& BMSR_100BASE4
)
1601 anar
|= ADVERTISE_100BASE4
;
1602 if (bmsr
& BMSR_10FULL
)
1603 anar
|= ADVERTISE_10FULL
;
1604 if (bmsr
& BMSR_10HALF
)
1605 anar
|= ADVERTISE_10HALF
;
1606 anar
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1607 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1609 /* Enable Auto crossover */
1610 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1611 pscr
|= 3 << 5; /* 11'b */
1612 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1614 /* Soft reset PHY */
1615 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1616 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1617 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1620 /* Force speed setting */
1621 /* 1) Disable Auto crossover */
1622 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1624 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1627 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1629 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1632 bmcr
= 0x1940; /* must be 0x1940 */
1633 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1634 mdelay (100); /* wait a certain time */
1636 /* 4) Advertise nothing */
1637 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1639 /* 5) Set media and Power Up */
1641 if (np
->speed
== 100) {
1642 bmcr
|= BMCR_SPEED100
;
1643 printk (KERN_INFO
"Manual 100 Mbps, ");
1644 } else if (np
->speed
== 10) {
1645 printk (KERN_INFO
"Manual 10 Mbps, ");
1647 if (np
->full_duplex
) {
1648 bmcr
|= BMCR_FULLDPLX
;
1649 printk (KERN_CONT
"Full duplex\n");
1651 printk (KERN_CONT
"Half duplex\n");
1654 /* Set 1000BaseT Master/Slave setting */
1655 mscr
= mii_read (dev
, phy_addr
, MII_CTRL1000
);
1656 mscr
|= MII_MSCR_CFG_ENABLE
;
1657 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1659 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1666 mii_get_media_pcs (struct net_device
*dev
)
1671 struct netdev_private
*np
;
1673 np
= netdev_priv(dev
);
1674 phy_addr
= np
->phy_addr
;
1676 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1677 if (np
->an_enable
) {
1678 if (!(bmsr
& BMSR_ANEGCOMPLETE
)) {
1679 /* Auto-Negotiation not completed */
1682 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1683 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1685 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1686 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1687 np
->full_duplex
= 1;
1689 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1690 np
->full_duplex
= 0;
1692 if (negotiate
& PCS_ANAR_PAUSE
) {
1695 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1699 /* else tx_flow, rx_flow = user select */
1701 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1702 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1703 if (bmcr
& BMCR_FULLDPLX
) {
1704 printk (KERN_CONT
"Full duplex\n");
1706 printk (KERN_CONT
"Half duplex\n");
1710 printk(KERN_INFO
"Enable Tx Flow Control\n");
1712 printk(KERN_INFO
"Disable Tx Flow Control\n");
1714 printk(KERN_INFO
"Enable Rx Flow Control\n");
1716 printk(KERN_INFO
"Disable Rx Flow Control\n");
1722 mii_set_media_pcs (struct net_device
*dev
)
1728 struct netdev_private
*np
;
1729 np
= netdev_priv(dev
);
1730 phy_addr
= np
->phy_addr
;
1732 /* Auto-Negotiation? */
1733 if (np
->an_enable
) {
1734 /* Advertise capabilities */
1735 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1736 anar
= mii_read (dev
, phy_addr
, MII_ADVERTISE
) &
1737 ~PCS_ANAR_HALF_DUPLEX
&
1738 ~PCS_ANAR_FULL_DUPLEX
;
1739 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1740 anar
|= PCS_ANAR_HALF_DUPLEX
;
1741 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1742 anar
|= PCS_ANAR_FULL_DUPLEX
;
1743 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1744 mii_write (dev
, phy_addr
, MII_ADVERTISE
, anar
);
1746 /* Soft reset PHY */
1747 mii_write (dev
, phy_addr
, MII_BMCR
, BMCR_RESET
);
1748 bmcr
= BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_RESET
;
1749 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1752 /* Force speed setting */
1755 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1757 if (np
->full_duplex
) {
1758 bmcr
= BMCR_FULLDPLX
;
1759 printk (KERN_INFO
"Manual full duplex\n");
1762 printk (KERN_INFO
"Manual half duplex\n");
1764 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1767 /* Advertise nothing */
1768 mii_write (dev
, phy_addr
, MII_ADVERTISE
, 0);
1775 rio_close (struct net_device
*dev
)
1777 struct netdev_private
*np
= netdev_priv(dev
);
1778 struct pci_dev
*pdev
= np
->pdev
;
1780 netif_stop_queue (dev
);
1784 free_irq(pdev
->irq
, dev
);
1785 del_timer_sync (&np
->timer
);
1793 rio_remove1 (struct pci_dev
*pdev
)
1795 struct net_device
*dev
= pci_get_drvdata (pdev
);
1798 struct netdev_private
*np
= netdev_priv(dev
);
1800 unregister_netdev (dev
);
1801 dma_free_coherent(&pdev
->dev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1803 dma_free_coherent(&pdev
->dev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1806 pci_iounmap(pdev
, np
->ioaddr
);
1808 pci_iounmap(pdev
, np
->eeprom_addr
);
1810 pci_release_regions (pdev
);
1811 pci_disable_device (pdev
);
1815 #ifdef CONFIG_PM_SLEEP
1816 static int rio_suspend(struct device
*device
)
1818 struct net_device
*dev
= dev_get_drvdata(device
);
1819 struct netdev_private
*np
= netdev_priv(dev
);
1821 if (!netif_running(dev
))
1824 netif_device_detach(dev
);
1825 del_timer_sync(&np
->timer
);
1831 static int rio_resume(struct device
*device
)
1833 struct net_device
*dev
= dev_get_drvdata(device
);
1834 struct netdev_private
*np
= netdev_priv(dev
);
1836 if (!netif_running(dev
))
1841 np
->timer
.expires
= jiffies
+ 1 * HZ
;
1842 add_timer(&np
->timer
);
1843 netif_device_attach(dev
);
1844 dl2k_enable_int(np
);
1849 static SIMPLE_DEV_PM_OPS(rio_pm_ops
, rio_suspend
, rio_resume
);
1850 #define RIO_PM_OPS (&rio_pm_ops)
1854 #define RIO_PM_OPS NULL
1856 #endif /* CONFIG_PM_SLEEP */
1858 static struct pci_driver rio_driver
= {
1860 .id_table
= rio_pci_tbl
,
1861 .probe
= rio_probe1
,
1862 .remove
= rio_remove1
,
1863 .driver
.pm
= RIO_PM_OPS
,
1866 module_pci_driver(rio_driver
);
1868 /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */