WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
blob674b3a22e91fe13da9670be73b34b64ca5c74493
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
12 #define HCLGEVF_NAME "hclgevf"
14 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 unsigned long delay);
20 static struct hnae3_ae_algo ae_algovf;
22 static struct workqueue_struct *hclgevf_wq;
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 /* required last entry */
29 {0, }
32 static const u8 hclgevf_hash_key[] = {
33 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 HCLGEVF_CMDQ_TX_TAIL_REG,
46 HCLGEVF_CMDQ_TX_HEAD_REG,
47 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 HCLGEVF_CMDQ_RX_TAIL_REG,
51 HCLGEVF_CMDQ_RX_HEAD_REG,
52 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 HCLGEVF_CMDQ_INTR_EN_REG,
55 HCLGEVF_CMDQ_INTR_GEN_REG};
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 HCLGEVF_RST_ING,
59 HCLGEVF_GRO_EN_REG};
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 HCLGEVF_RING_RX_ADDR_H_REG,
63 HCLGEVF_RING_RX_BD_NUM_REG,
64 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 HCLGEVF_RING_RX_MERGE_EN_REG,
66 HCLGEVF_RING_RX_TAIL_REG,
67 HCLGEVF_RING_RX_HEAD_REG,
68 HCLGEVF_RING_RX_FBD_NUM_REG,
69 HCLGEVF_RING_RX_OFFSET_REG,
70 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 HCLGEVF_RING_RX_STASH_REG,
72 HCLGEVF_RING_RX_BD_ERR_REG,
73 HCLGEVF_RING_TX_ADDR_L_REG,
74 HCLGEVF_RING_TX_ADDR_H_REG,
75 HCLGEVF_RING_TX_BD_NUM_REG,
76 HCLGEVF_RING_TX_PRIORITY_REG,
77 HCLGEVF_RING_TX_TC_REG,
78 HCLGEVF_RING_TX_MERGE_EN_REG,
79 HCLGEVF_RING_TX_TAIL_REG,
80 HCLGEVF_RING_TX_HEAD_REG,
81 HCLGEVF_RING_TX_FBD_NUM_REG,
82 HCLGEVF_RING_TX_OFFSET_REG,
83 HCLGEVF_RING_TX_EBD_NUM_REG,
84 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 HCLGEVF_RING_TX_BD_ERR_REG,
86 HCLGEVF_RING_EN_REG};
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 HCLGEVF_TQP_INTR_GL0_REG,
90 HCLGEVF_TQP_INTR_GL1_REG,
91 HCLGEVF_TQP_INTR_GL2_REG,
92 HCLGEVF_TQP_INTR_RL_REG};
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
96 if (!handle->client)
97 return container_of(handle, struct hclgevf_dev, nic);
98 else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 return container_of(handle, struct hclgevf_dev, roce);
100 else
101 return container_of(handle, struct hclgevf_dev, nic);
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
106 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 struct hclgevf_desc desc;
109 struct hclgevf_tqp *tqp;
110 int status;
111 int i;
113 for (i = 0; i < kinfo->num_tqps; i++) {
114 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 hclgevf_cmd_setup_basic_desc(&desc,
116 HCLGEVF_OPC_QUERY_RX_STATUS,
117 true);
119 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 if (status) {
122 dev_err(&hdev->pdev->dev,
123 "Query tqp stat fail, status = %d,queue = %d\n",
124 status, i);
125 return status;
127 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 le32_to_cpu(desc.data[1]);
130 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 true);
133 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 if (status) {
136 dev_err(&hdev->pdev->dev,
137 "Query tqp stat fail, status = %d,queue = %d\n",
138 status, i);
139 return status;
141 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 le32_to_cpu(desc.data[1]);
145 return 0;
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
150 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 struct hclgevf_tqp *tqp;
152 u64 *buff = data;
153 int i;
155 for (i = 0; i < kinfo->num_tqps; i++) {
156 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
159 for (i = 0; i < kinfo->num_tqps; i++) {
160 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
164 return buff;
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
169 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 return kinfo->num_tqps * 2;
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
176 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 u8 *buff = data;
178 int i;
180 for (i = 0; i < kinfo->num_tqps; i++) {
181 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 struct hclgevf_tqp, q);
183 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
184 tqp->index);
185 buff += ETH_GSTRING_LEN;
188 for (i = 0; i < kinfo->num_tqps; i++) {
189 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 struct hclgevf_tqp, q);
191 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
192 tqp->index);
193 buff += ETH_GSTRING_LEN;
196 return buff;
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 struct net_device_stats *net_stats)
202 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 int status;
205 status = hclgevf_tqps_update_stats(handle);
206 if (status)
207 dev_err(&hdev->pdev->dev,
208 "VF update of TQPS stats fail, status = %d.\n",
209 status);
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
214 if (strset == ETH_SS_TEST)
215 return -EOPNOTSUPP;
216 else if (strset == ETH_SS_STATS)
217 return hclgevf_tqps_get_sset_count(handle, strset);
219 return 0;
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 u8 *data)
225 u8 *p = (char *)data;
227 if (strset == ETH_SS_STATS)
228 p = hclgevf_tqps_get_strings(handle, p);
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
233 hclgevf_tqps_get_stats(handle, data);
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 u8 subcode)
239 if (msg) {
240 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 msg->code = code;
242 msg->subcode = subcode;
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
248 struct hclge_vf_to_pf_msg send_msg;
249 u8 resp_msg;
250 int status;
252 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 sizeof(resp_msg));
255 if (status) {
256 dev_err(&hdev->pdev->dev,
257 "VF request to get TC info from PF failed %d",
258 status);
259 return status;
262 hdev->hw_tc_map = resp_msg;
264 return 0;
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
269 struct hnae3_handle *nic = &hdev->nic;
270 struct hclge_vf_to_pf_msg send_msg;
271 u8 resp_msg;
272 int ret;
274 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 sizeof(u8));
278 if (ret) {
279 dev_err(&hdev->pdev->dev,
280 "VF request to get port based vlan state failed %d",
281 ret);
282 return ret;
285 nic->port_base_vlan_state = resp_msg;
287 return 0;
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
292 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET 0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4
297 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 struct hclge_vf_to_pf_msg send_msg;
299 int status;
301 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 HCLGEVF_TQPS_RSS_INFO_LEN);
304 if (status) {
305 dev_err(&hdev->pdev->dev,
306 "VF request to get tqp info from PF failed %d",
307 status);
308 return status;
311 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 sizeof(u16));
313 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 sizeof(u16));
315 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 sizeof(u16));
318 return 0;
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
327 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 struct hclge_vf_to_pf_msg send_msg;
329 int ret;
331 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 if (ret) {
335 dev_err(&hdev->pdev->dev,
336 "VF request to get tqp depth info from PF failed %d",
337 ret);
338 return ret;
341 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 sizeof(u16));
343 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 sizeof(u16));
346 return 0;
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
351 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 struct hclge_vf_to_pf_msg send_msg;
353 u16 qid_in_pf = 0;
354 u8 resp_data[2];
355 int ret;
357 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 sizeof(resp_data));
361 if (!ret)
362 qid_in_pf = *(u16 *)resp_data;
364 return qid_in_pf;
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
369 struct hclge_vf_to_pf_msg send_msg;
370 u8 resp_msg[2];
371 int ret;
373 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 sizeof(resp_msg));
376 if (ret) {
377 dev_err(&hdev->pdev->dev,
378 "VF request to get the pf port media type failed %d",
379 ret);
380 return ret;
383 hdev->hw.mac.media_type = resp_msg[0];
384 hdev->hw.mac.module_type = resp_msg[1];
386 return 0;
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
391 struct hclgevf_tqp *tqp;
392 int i;
394 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 if (!hdev->htqp)
397 return -ENOMEM;
399 tqp = hdev->htqp;
401 for (i = 0; i < hdev->num_tqps; i++) {
402 tqp->dev = &hdev->pdev->dev;
403 tqp->index = i;
405 tqp->q.ae_algo = &ae_algovf;
406 tqp->q.buf_size = hdev->rx_buf_len;
407 tqp->q.tx_desc_num = hdev->num_tx_desc;
408 tqp->q.rx_desc_num = hdev->num_rx_desc;
410 /* need an extended offset to configure queues >=
411 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
413 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 tqp->q.io_base = hdev->hw.io_base +
415 HCLGEVF_TQP_REG_OFFSET +
416 i * HCLGEVF_TQP_REG_SIZE;
417 else
418 tqp->q.io_base = hdev->hw.io_base +
419 HCLGEVF_TQP_REG_OFFSET +
420 HCLGEVF_TQP_EXT_REG_OFFSET +
421 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 HCLGEVF_TQP_REG_SIZE;
424 tqp++;
427 return 0;
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
432 struct hnae3_handle *nic = &hdev->nic;
433 struct hnae3_knic_private_info *kinfo;
434 u16 new_tqps = hdev->num_tqps;
435 unsigned int i;
436 u8 num_tc = 0;
438 kinfo = &nic->kinfo;
439 kinfo->num_tx_desc = hdev->num_tx_desc;
440 kinfo->num_rx_desc = hdev->num_rx_desc;
441 kinfo->rx_buf_len = hdev->rx_buf_len;
442 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 if (hdev->hw_tc_map & BIT(i))
444 num_tc++;
446 num_tc = num_tc ? num_tc : 1;
447 kinfo->tc_info.num_tc = num_tc;
448 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 new_tqps = kinfo->rss_size * num_tc;
450 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
452 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 sizeof(struct hnae3_queue *), GFP_KERNEL);
454 if (!kinfo->tqp)
455 return -ENOMEM;
457 for (i = 0; i < kinfo->num_tqps; i++) {
458 hdev->htqp[i].q.handle = &hdev->nic;
459 hdev->htqp[i].q.tqp_index = i;
460 kinfo->tqp[i] = &hdev->htqp[i].q;
463 /* after init the max rss_size and tqps, adjust the default tqp numbers
464 * and rss size with the actual vector numbers
466 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 kinfo->rss_size);
470 return 0;
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
475 struct hclge_vf_to_pf_msg send_msg;
476 int status;
478 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 if (status)
481 dev_err(&hdev->pdev->dev,
482 "VF failed to fetch link status(%d) from PF", status);
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
487 struct hnae3_handle *rhandle = &hdev->roce;
488 struct hnae3_handle *handle = &hdev->nic;
489 struct hnae3_client *rclient;
490 struct hnae3_client *client;
492 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 return;
495 client = handle->client;
496 rclient = hdev->roce_client;
498 link_state =
499 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
501 if (link_state != hdev->hw.mac.link) {
502 client->ops->link_status_change(handle, !!link_state);
503 if (rclient && rclient->ops->link_status_change)
504 rclient->ops->link_status_change(rhandle, !!link_state);
505 hdev->hw.mac.link = link_state;
508 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
511 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
513 #define HCLGEVF_ADVERTISING 0
514 #define HCLGEVF_SUPPORTED 1
516 struct hclge_vf_to_pf_msg send_msg;
518 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
519 send_msg.data[0] = HCLGEVF_ADVERTISING;
520 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
521 send_msg.data[0] = HCLGEVF_SUPPORTED;
522 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
525 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
527 struct hnae3_handle *nic = &hdev->nic;
528 int ret;
530 nic->ae_algo = &ae_algovf;
531 nic->pdev = hdev->pdev;
532 nic->numa_node_mask = hdev->numa_node_mask;
533 nic->flags |= HNAE3_SUPPORT_VF;
535 ret = hclgevf_knic_setup(hdev);
536 if (ret)
537 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
538 ret);
539 return ret;
542 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
544 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
545 dev_warn(&hdev->pdev->dev,
546 "vector(vector_id %d) has been freed.\n", vector_id);
547 return;
550 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
551 hdev->num_msi_left += 1;
552 hdev->num_msi_used -= 1;
555 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
556 struct hnae3_vector_info *vector_info)
558 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
559 struct hnae3_vector_info *vector = vector_info;
560 int alloc = 0;
561 int i, j;
563 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 vector_num = min(hdev->num_msi_left, vector_num);
566 for (j = 0; j < vector_num; j++) {
567 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
568 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
569 vector->vector = pci_irq_vector(hdev->pdev, i);
570 vector->io_addr = hdev->hw.io_base +
571 HCLGEVF_VECTOR_REG_BASE +
572 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
573 hdev->vector_status[i] = 0;
574 hdev->vector_irq[i] = vector->vector;
576 vector++;
577 alloc++;
579 break;
583 hdev->num_msi_left -= alloc;
584 hdev->num_msi_used += alloc;
586 return alloc;
589 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
591 int i;
593 for (i = 0; i < hdev->num_msi; i++)
594 if (vector == hdev->vector_irq[i])
595 return i;
597 return -EINVAL;
600 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
601 const u8 hfunc, const u8 *key)
603 struct hclgevf_rss_config_cmd *req;
604 unsigned int key_offset = 0;
605 struct hclgevf_desc desc;
606 int key_counts;
607 int key_size;
608 int ret;
610 key_counts = HCLGEVF_RSS_KEY_SIZE;
611 req = (struct hclgevf_rss_config_cmd *)desc.data;
613 while (key_counts) {
614 hclgevf_cmd_setup_basic_desc(&desc,
615 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
616 false);
618 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
619 req->hash_config |=
620 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
622 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 memcpy(req->hash_key,
624 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
626 key_counts -= key_size;
627 key_offset++;
628 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
629 if (ret) {
630 dev_err(&hdev->pdev->dev,
631 "Configure RSS config fail, status = %d\n",
632 ret);
633 return ret;
637 return 0;
640 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
642 return HCLGEVF_RSS_KEY_SIZE;
645 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
647 return HCLGEVF_RSS_IND_TBL_SIZE;
650 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
652 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
653 struct hclgevf_rss_indirection_table_cmd *req;
654 struct hclgevf_desc desc;
655 int status;
656 int i, j;
658 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
660 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
661 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
662 false);
663 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
664 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
665 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
666 req->rss_result[j] =
667 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
669 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
670 if (status) {
671 dev_err(&hdev->pdev->dev,
672 "VF failed(=%d) to set RSS indirection table\n",
673 status);
674 return status;
678 return 0;
681 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
683 struct hclgevf_rss_tc_mode_cmd *req;
684 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
685 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
686 u16 tc_size[HCLGEVF_MAX_TC_NUM];
687 struct hclgevf_desc desc;
688 u16 roundup_size;
689 unsigned int i;
690 int status;
692 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
694 roundup_size = roundup_pow_of_two(rss_size);
695 roundup_size = ilog2(roundup_size);
697 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
698 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
699 tc_size[i] = roundup_size;
700 tc_offset[i] = rss_size * i;
703 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
704 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
705 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
706 (tc_valid[i] & 0x1));
707 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
708 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
710 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
712 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
713 if (status)
714 dev_err(&hdev->pdev->dev,
715 "VF failed(=%d) to set rss tc mode\n", status);
717 return status;
720 /* for revision 0x20, vf shared the same rss config with pf */
721 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
723 #define HCLGEVF_RSS_MBX_RESP_LEN 8
724 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
725 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
726 struct hclge_vf_to_pf_msg send_msg;
727 u16 msg_num, hash_key_index;
728 u8 index;
729 int ret;
731 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
732 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
733 HCLGEVF_RSS_MBX_RESP_LEN;
734 for (index = 0; index < msg_num; index++) {
735 send_msg.data[0] = index;
736 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
737 HCLGEVF_RSS_MBX_RESP_LEN);
738 if (ret) {
739 dev_err(&hdev->pdev->dev,
740 "VF get rss hash key from PF failed, ret=%d",
741 ret);
742 return ret;
745 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
746 if (index == msg_num - 1)
747 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
748 &resp_msg[0],
749 HCLGEVF_RSS_KEY_SIZE - hash_key_index);
750 else
751 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
752 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
755 return 0;
758 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
759 u8 *hfunc)
761 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
762 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
763 int i, ret;
765 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
766 /* Get hash algorithm */
767 if (hfunc) {
768 switch (rss_cfg->hash_algo) {
769 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
770 *hfunc = ETH_RSS_HASH_TOP;
771 break;
772 case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
773 *hfunc = ETH_RSS_HASH_XOR;
774 break;
775 default:
776 *hfunc = ETH_RSS_HASH_UNKNOWN;
777 break;
781 /* Get the RSS Key required by the user */
782 if (key)
783 memcpy(key, rss_cfg->rss_hash_key,
784 HCLGEVF_RSS_KEY_SIZE);
785 } else {
786 if (hfunc)
787 *hfunc = ETH_RSS_HASH_TOP;
788 if (key) {
789 ret = hclgevf_get_rss_hash_key(hdev);
790 if (ret)
791 return ret;
792 memcpy(key, rss_cfg->rss_hash_key,
793 HCLGEVF_RSS_KEY_SIZE);
797 if (indir)
798 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
799 indir[i] = rss_cfg->rss_indirection_tbl[i];
801 return 0;
804 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
805 const u8 *key, const u8 hfunc)
807 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
808 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
809 int ret, i;
811 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
812 /* Set the RSS Hash Key if specififed by the user */
813 if (key) {
814 switch (hfunc) {
815 case ETH_RSS_HASH_TOP:
816 rss_cfg->hash_algo =
817 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
818 break;
819 case ETH_RSS_HASH_XOR:
820 rss_cfg->hash_algo =
821 HCLGEVF_RSS_HASH_ALGO_SIMPLE;
822 break;
823 case ETH_RSS_HASH_NO_CHANGE:
824 break;
825 default:
826 return -EINVAL;
829 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
830 key);
831 if (ret)
832 return ret;
834 /* Update the shadow RSS key with user specified qids */
835 memcpy(rss_cfg->rss_hash_key, key,
836 HCLGEVF_RSS_KEY_SIZE);
840 /* update the shadow RSS table with user specified qids */
841 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
842 rss_cfg->rss_indirection_tbl[i] = indir[i];
844 /* update the hardware */
845 return hclgevf_set_rss_indir_table(hdev);
848 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
850 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
852 if (nfc->data & RXH_L4_B_2_3)
853 hash_sets |= HCLGEVF_D_PORT_BIT;
854 else
855 hash_sets &= ~HCLGEVF_D_PORT_BIT;
857 if (nfc->data & RXH_IP_SRC)
858 hash_sets |= HCLGEVF_S_IP_BIT;
859 else
860 hash_sets &= ~HCLGEVF_S_IP_BIT;
862 if (nfc->data & RXH_IP_DST)
863 hash_sets |= HCLGEVF_D_IP_BIT;
864 else
865 hash_sets &= ~HCLGEVF_D_IP_BIT;
867 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
868 hash_sets |= HCLGEVF_V_TAG_BIT;
870 return hash_sets;
873 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
874 struct ethtool_rxnfc *nfc)
876 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
878 struct hclgevf_rss_input_tuple_cmd *req;
879 struct hclgevf_desc desc;
880 u8 tuple_sets;
881 int ret;
883 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
884 return -EOPNOTSUPP;
886 if (nfc->data &
887 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
888 return -EINVAL;
890 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
891 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
893 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
894 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
895 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
896 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
897 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
898 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
899 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
900 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
902 tuple_sets = hclgevf_get_rss_hash_bits(nfc);
903 switch (nfc->flow_type) {
904 case TCP_V4_FLOW:
905 req->ipv4_tcp_en = tuple_sets;
906 break;
907 case TCP_V6_FLOW:
908 req->ipv6_tcp_en = tuple_sets;
909 break;
910 case UDP_V4_FLOW:
911 req->ipv4_udp_en = tuple_sets;
912 break;
913 case UDP_V6_FLOW:
914 req->ipv6_udp_en = tuple_sets;
915 break;
916 case SCTP_V4_FLOW:
917 req->ipv4_sctp_en = tuple_sets;
918 break;
919 case SCTP_V6_FLOW:
920 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
921 (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
922 return -EINVAL;
924 req->ipv6_sctp_en = tuple_sets;
925 break;
926 case IPV4_FLOW:
927 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
928 break;
929 case IPV6_FLOW:
930 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
931 break;
932 default:
933 return -EINVAL;
936 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
937 if (ret) {
938 dev_err(&hdev->pdev->dev,
939 "Set rss tuple fail, status = %d\n", ret);
940 return ret;
943 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
944 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
945 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
946 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
947 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
948 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
949 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
950 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
951 return 0;
954 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
955 struct ethtool_rxnfc *nfc)
957 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
959 u8 tuple_sets;
961 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
962 return -EOPNOTSUPP;
964 nfc->data = 0;
966 switch (nfc->flow_type) {
967 case TCP_V4_FLOW:
968 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
969 break;
970 case UDP_V4_FLOW:
971 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
972 break;
973 case TCP_V6_FLOW:
974 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
975 break;
976 case UDP_V6_FLOW:
977 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
978 break;
979 case SCTP_V4_FLOW:
980 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
981 break;
982 case SCTP_V6_FLOW:
983 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
984 break;
985 case IPV4_FLOW:
986 case IPV6_FLOW:
987 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
988 break;
989 default:
990 return -EINVAL;
993 if (!tuple_sets)
994 return 0;
996 if (tuple_sets & HCLGEVF_D_PORT_BIT)
997 nfc->data |= RXH_L4_B_2_3;
998 if (tuple_sets & HCLGEVF_S_PORT_BIT)
999 nfc->data |= RXH_L4_B_0_1;
1000 if (tuple_sets & HCLGEVF_D_IP_BIT)
1001 nfc->data |= RXH_IP_DST;
1002 if (tuple_sets & HCLGEVF_S_IP_BIT)
1003 nfc->data |= RXH_IP_SRC;
1005 return 0;
1008 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1009 struct hclgevf_rss_cfg *rss_cfg)
1011 struct hclgevf_rss_input_tuple_cmd *req;
1012 struct hclgevf_desc desc;
1013 int ret;
1015 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1017 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1019 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1020 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1021 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1022 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1023 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1024 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1025 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1026 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1028 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1029 if (ret)
1030 dev_err(&hdev->pdev->dev,
1031 "Configure rss input fail, status = %d\n", ret);
1032 return ret;
1035 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1037 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1038 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1040 return rss_cfg->rss_size;
1043 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1044 int vector_id,
1045 struct hnae3_ring_chain_node *ring_chain)
1047 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 struct hclge_vf_to_pf_msg send_msg;
1049 struct hnae3_ring_chain_node *node;
1050 int status;
1051 int i = 0;
1053 memset(&send_msg, 0, sizeof(send_msg));
1054 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1055 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1056 send_msg.vector_id = vector_id;
1058 for (node = ring_chain; node; node = node->next) {
1059 send_msg.param[i].ring_type =
1060 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1062 send_msg.param[i].tqp_index = node->tqp_index;
1063 send_msg.param[i].int_gl_index =
1064 hnae3_get_field(node->int_gl_idx,
1065 HNAE3_RING_GL_IDX_M,
1066 HNAE3_RING_GL_IDX_S);
1068 i++;
1069 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1070 send_msg.ring_num = i;
1072 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1073 NULL, 0);
1074 if (status) {
1075 dev_err(&hdev->pdev->dev,
1076 "Map TQP fail, status is %d.\n",
1077 status);
1078 return status;
1080 i = 0;
1084 return 0;
1087 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1088 struct hnae3_ring_chain_node *ring_chain)
1090 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 int vector_id;
1093 vector_id = hclgevf_get_vector_index(hdev, vector);
1094 if (vector_id < 0) {
1095 dev_err(&handle->pdev->dev,
1096 "Get vector index fail. ret =%d\n", vector_id);
1097 return vector_id;
1100 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1103 static int hclgevf_unmap_ring_from_vector(
1104 struct hnae3_handle *handle,
1105 int vector,
1106 struct hnae3_ring_chain_node *ring_chain)
1108 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1109 int ret, vector_id;
1111 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1112 return 0;
1114 vector_id = hclgevf_get_vector_index(hdev, vector);
1115 if (vector_id < 0) {
1116 dev_err(&handle->pdev->dev,
1117 "Get vector index fail. ret =%d\n", vector_id);
1118 return vector_id;
1121 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1122 if (ret)
1123 dev_err(&handle->pdev->dev,
1124 "Unmap ring from vector fail. vector=%d, ret =%d\n",
1125 vector_id,
1126 ret);
1128 return ret;
1131 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1133 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 int vector_id;
1136 vector_id = hclgevf_get_vector_index(hdev, vector);
1137 if (vector_id < 0) {
1138 dev_err(&handle->pdev->dev,
1139 "hclgevf_put_vector get vector index fail. ret =%d\n",
1140 vector_id);
1141 return vector_id;
1144 hclgevf_free_vector(hdev, vector_id);
1146 return 0;
1149 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1150 bool en_uc_pmc, bool en_mc_pmc,
1151 bool en_bc_pmc)
1153 struct hnae3_handle *handle = &hdev->nic;
1154 struct hclge_vf_to_pf_msg send_msg;
1155 int ret;
1157 memset(&send_msg, 0, sizeof(send_msg));
1158 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1159 send_msg.en_bc = en_bc_pmc ? 1 : 0;
1160 send_msg.en_uc = en_uc_pmc ? 1 : 0;
1161 send_msg.en_mc = en_mc_pmc ? 1 : 0;
1162 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1163 &handle->priv_flags) ? 1 : 0;
1165 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1166 if (ret)
1167 dev_err(&hdev->pdev->dev,
1168 "Set promisc mode fail, status is %d.\n", ret);
1170 return ret;
1173 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1174 bool en_mc_pmc)
1176 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1177 bool en_bc_pmc;
1179 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1181 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1182 en_bc_pmc);
1185 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1187 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1189 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1190 hclgevf_task_schedule(hdev, 0);
1193 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1195 struct hnae3_handle *handle = &hdev->nic;
1196 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1197 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1198 int ret;
1200 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1201 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1202 if (!ret)
1203 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1207 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1208 int stream_id, bool enable)
1210 struct hclgevf_cfg_com_tqp_queue_cmd *req;
1211 struct hclgevf_desc desc;
1212 int status;
1214 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1216 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1217 false);
1218 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1219 req->stream_id = cpu_to_le16(stream_id);
1220 if (enable)
1221 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1223 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1224 if (status)
1225 dev_err(&hdev->pdev->dev,
1226 "TQP enable fail, status =%d.\n", status);
1228 return status;
1231 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1233 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1234 struct hclgevf_tqp *tqp;
1235 int i;
1237 for (i = 0; i < kinfo->num_tqps; i++) {
1238 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1239 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1243 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1245 struct hclge_vf_to_pf_msg send_msg;
1246 u8 host_mac[ETH_ALEN];
1247 int status;
1249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1250 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1251 ETH_ALEN);
1252 if (status) {
1253 dev_err(&hdev->pdev->dev,
1254 "fail to get VF MAC from host %d", status);
1255 return status;
1258 ether_addr_copy(p, host_mac);
1260 return 0;
1263 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1265 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1266 u8 host_mac_addr[ETH_ALEN];
1268 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1269 return;
1271 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1272 if (hdev->has_pf_mac)
1273 ether_addr_copy(p, host_mac_addr);
1274 else
1275 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1278 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1279 bool is_first)
1281 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1282 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1283 struct hclge_vf_to_pf_msg send_msg;
1284 u8 *new_mac_addr = (u8 *)p;
1285 int status;
1287 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1288 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1289 ether_addr_copy(send_msg.data, new_mac_addr);
1290 if (is_first && !hdev->has_pf_mac)
1291 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1292 else
1293 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1294 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1295 if (!status)
1296 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1298 return status;
1301 static struct hclgevf_mac_addr_node *
1302 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1304 struct hclgevf_mac_addr_node *mac_node, *tmp;
1306 list_for_each_entry_safe(mac_node, tmp, list, node)
1307 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1308 return mac_node;
1310 return NULL;
1313 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1314 enum HCLGEVF_MAC_NODE_STATE state)
1316 switch (state) {
1317 /* from set_rx_mode or tmp_add_list */
1318 case HCLGEVF_MAC_TO_ADD:
1319 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1320 mac_node->state = HCLGEVF_MAC_ACTIVE;
1321 break;
1322 /* only from set_rx_mode */
1323 case HCLGEVF_MAC_TO_DEL:
1324 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1325 list_del(&mac_node->node);
1326 kfree(mac_node);
1327 } else {
1328 mac_node->state = HCLGEVF_MAC_TO_DEL;
1330 break;
1331 /* only from tmp_add_list, the mac_node->state won't be
1332 * HCLGEVF_MAC_ACTIVE
1334 case HCLGEVF_MAC_ACTIVE:
1335 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1336 mac_node->state = HCLGEVF_MAC_ACTIVE;
1337 break;
1341 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1342 enum HCLGEVF_MAC_NODE_STATE state,
1343 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1344 const unsigned char *addr)
1346 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1347 struct hclgevf_mac_addr_node *mac_node;
1348 struct list_head *list;
1350 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1351 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1353 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1355 /* if the mac addr is already in the mac list, no need to add a new
1356 * one into it, just check the mac addr state, convert it to a new
1357 * new state, or just remove it, or do nothing.
1359 mac_node = hclgevf_find_mac_node(list, addr);
1360 if (mac_node) {
1361 hclgevf_update_mac_node(mac_node, state);
1362 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1363 return 0;
1365 /* if this address is never added, unnecessary to delete */
1366 if (state == HCLGEVF_MAC_TO_DEL) {
1367 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1368 return -ENOENT;
1371 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1372 if (!mac_node) {
1373 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1374 return -ENOMEM;
1377 mac_node->state = state;
1378 ether_addr_copy(mac_node->mac_addr, addr);
1379 list_add_tail(&mac_node->node, list);
1381 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1382 return 0;
1385 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1386 const unsigned char *addr)
1388 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1389 HCLGEVF_MAC_ADDR_UC, addr);
1392 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1393 const unsigned char *addr)
1395 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1396 HCLGEVF_MAC_ADDR_UC, addr);
1399 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1400 const unsigned char *addr)
1402 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1403 HCLGEVF_MAC_ADDR_MC, addr);
1406 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1407 const unsigned char *addr)
1409 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1410 HCLGEVF_MAC_ADDR_MC, addr);
1413 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1414 struct hclgevf_mac_addr_node *mac_node,
1415 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1417 struct hclge_vf_to_pf_msg send_msg;
1418 u8 code, subcode;
1420 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1421 code = HCLGE_MBX_SET_UNICAST;
1422 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1423 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1424 else
1425 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1426 } else {
1427 code = HCLGE_MBX_SET_MULTICAST;
1428 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1429 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1430 else
1431 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1434 hclgevf_build_send_msg(&send_msg, code, subcode);
1435 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1436 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1439 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1440 struct list_head *list,
1441 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1443 struct hclgevf_mac_addr_node *mac_node, *tmp;
1444 int ret;
1446 list_for_each_entry_safe(mac_node, tmp, list, node) {
1447 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1448 if (ret) {
1449 dev_err(&hdev->pdev->dev,
1450 "failed to configure mac %pM, state = %d, ret = %d\n",
1451 mac_node->mac_addr, mac_node->state, ret);
1452 return;
1454 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1455 mac_node->state = HCLGEVF_MAC_ACTIVE;
1456 } else {
1457 list_del(&mac_node->node);
1458 kfree(mac_node);
1463 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1464 struct list_head *mac_list)
1466 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1468 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1469 /* if the mac address from tmp_add_list is not in the
1470 * uc/mc_mac_list, it means have received a TO_DEL request
1471 * during the time window of sending mac config request to PF
1472 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1473 * then it will be removed at next time. If is TO_ADD, it means
1474 * send TO_ADD request failed, so just remove the mac node.
1476 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1477 if (new_node) {
1478 hclgevf_update_mac_node(new_node, mac_node->state);
1479 list_del(&mac_node->node);
1480 kfree(mac_node);
1481 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1482 mac_node->state = HCLGEVF_MAC_TO_DEL;
1483 list_del(&mac_node->node);
1484 list_add_tail(&mac_node->node, mac_list);
1485 } else {
1486 list_del(&mac_node->node);
1487 kfree(mac_node);
1492 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1493 struct list_head *mac_list)
1495 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1497 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1498 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1499 if (new_node) {
1500 /* If the mac addr is exist in the mac list, it means
1501 * received a new request TO_ADD during the time window
1502 * of sending mac addr configurrequest to PF, so just
1503 * change the mac state to ACTIVE.
1505 new_node->state = HCLGEVF_MAC_ACTIVE;
1506 list_del(&mac_node->node);
1507 kfree(mac_node);
1508 } else {
1509 list_del(&mac_node->node);
1510 list_add_tail(&mac_node->node, mac_list);
1515 static void hclgevf_clear_list(struct list_head *list)
1517 struct hclgevf_mac_addr_node *mac_node, *tmp;
1519 list_for_each_entry_safe(mac_node, tmp, list, node) {
1520 list_del(&mac_node->node);
1521 kfree(mac_node);
1525 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1526 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1528 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1529 struct list_head tmp_add_list, tmp_del_list;
1530 struct list_head *list;
1532 INIT_LIST_HEAD(&tmp_add_list);
1533 INIT_LIST_HEAD(&tmp_del_list);
1535 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1536 * we can add/delete these mac addr outside the spin lock
1538 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1539 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1541 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1543 list_for_each_entry_safe(mac_node, tmp, list, node) {
1544 switch (mac_node->state) {
1545 case HCLGEVF_MAC_TO_DEL:
1546 list_del(&mac_node->node);
1547 list_add_tail(&mac_node->node, &tmp_del_list);
1548 break;
1549 case HCLGEVF_MAC_TO_ADD:
1550 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1551 if (!new_node)
1552 goto stop_traverse;
1554 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1555 new_node->state = mac_node->state;
1556 list_add_tail(&new_node->node, &tmp_add_list);
1557 break;
1558 default:
1559 break;
1563 stop_traverse:
1564 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1566 /* delete first, in order to get max mac table space for adding */
1567 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1568 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1570 /* if some mac addresses were added/deleted fail, move back to the
1571 * mac_list, and retry at next time.
1573 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1575 hclgevf_sync_from_del_list(&tmp_del_list, list);
1576 hclgevf_sync_from_add_list(&tmp_add_list, list);
1578 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1581 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1583 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1584 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1587 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1589 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1591 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1592 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1594 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1597 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1598 __be16 proto, u16 vlan_id,
1599 bool is_kill)
1601 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1602 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1603 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3
1605 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1606 struct hclge_vf_to_pf_msg send_msg;
1607 int ret;
1609 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1610 return -EINVAL;
1612 if (proto != htons(ETH_P_8021Q))
1613 return -EPROTONOSUPPORT;
1615 /* When device is resetting or reset failed, firmware is unable to
1616 * handle mailbox. Just record the vlan id, and remove it after
1617 * reset finished.
1619 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1620 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1621 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1622 return -EBUSY;
1625 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1626 HCLGE_MBX_VLAN_FILTER);
1627 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1628 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1629 sizeof(vlan_id));
1630 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1631 sizeof(proto));
1632 /* when remove hw vlan filter failed, record the vlan id,
1633 * and try to remove it from hw later, to be consistence
1634 * with stack.
1636 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1637 if (is_kill && ret)
1638 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1640 return ret;
1643 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1645 #define HCLGEVF_MAX_SYNC_COUNT 60
1646 struct hnae3_handle *handle = &hdev->nic;
1647 int ret, sync_cnt = 0;
1648 u16 vlan_id;
1650 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1651 while (vlan_id != VLAN_N_VID) {
1652 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1653 vlan_id, true);
1654 if (ret)
1655 return;
1657 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1658 sync_cnt++;
1659 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1660 return;
1662 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1666 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1668 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1669 struct hclge_vf_to_pf_msg send_msg;
1671 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1672 HCLGE_MBX_VLAN_RX_OFF_CFG);
1673 send_msg.data[0] = enable ? 1 : 0;
1674 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1677 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1679 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1680 struct hclge_vf_to_pf_msg send_msg;
1681 int ret;
1683 /* disable vf queue before send queue reset msg to PF */
1684 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1685 if (ret)
1686 return ret;
1688 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1689 memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1690 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1693 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1695 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1696 struct hclge_vf_to_pf_msg send_msg;
1698 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1699 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1700 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1703 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1704 enum hnae3_reset_notify_type type)
1706 struct hnae3_client *client = hdev->nic_client;
1707 struct hnae3_handle *handle = &hdev->nic;
1708 int ret;
1710 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1711 !client)
1712 return 0;
1714 if (!client->ops->reset_notify)
1715 return -EOPNOTSUPP;
1717 ret = client->ops->reset_notify(handle, type);
1718 if (ret)
1719 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1720 type, ret);
1722 return ret;
1725 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1726 enum hnae3_reset_notify_type type)
1728 struct hnae3_client *client = hdev->roce_client;
1729 struct hnae3_handle *handle = &hdev->roce;
1730 int ret;
1732 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1733 return 0;
1735 if (!client->ops->reset_notify)
1736 return -EOPNOTSUPP;
1738 ret = client->ops->reset_notify(handle, type);
1739 if (ret)
1740 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1741 type, ret);
1742 return ret;
1745 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1747 #define HCLGEVF_RESET_WAIT_US 20000
1748 #define HCLGEVF_RESET_WAIT_CNT 2000
1749 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1750 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1752 u32 val;
1753 int ret;
1755 if (hdev->reset_type == HNAE3_VF_RESET)
1756 ret = readl_poll_timeout(hdev->hw.io_base +
1757 HCLGEVF_VF_RST_ING, val,
1758 !(val & HCLGEVF_VF_RST_ING_BIT),
1759 HCLGEVF_RESET_WAIT_US,
1760 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1761 else
1762 ret = readl_poll_timeout(hdev->hw.io_base +
1763 HCLGEVF_RST_ING, val,
1764 !(val & HCLGEVF_RST_ING_BITS),
1765 HCLGEVF_RESET_WAIT_US,
1766 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1768 /* hardware completion status should be available by this time */
1769 if (ret) {
1770 dev_err(&hdev->pdev->dev,
1771 "couldn't get reset done status from h/w, timeout!\n");
1772 return ret;
1775 /* we will wait a bit more to let reset of the stack to complete. This
1776 * might happen in case reset assertion was made by PF. Yes, this also
1777 * means we might end up waiting bit more even for VF reset.
1779 msleep(5000);
1781 return 0;
1784 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1786 u32 reg_val;
1788 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1789 if (enable)
1790 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1791 else
1792 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1794 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1795 reg_val);
1798 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1800 int ret;
1802 /* uninitialize the nic client */
1803 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1804 if (ret)
1805 return ret;
1807 /* re-initialize the hclge device */
1808 ret = hclgevf_reset_hdev(hdev);
1809 if (ret) {
1810 dev_err(&hdev->pdev->dev,
1811 "hclge device re-init failed, VF is disabled!\n");
1812 return ret;
1815 /* bring up the nic client again */
1816 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1817 if (ret)
1818 return ret;
1820 /* clear handshake status with IMP */
1821 hclgevf_reset_handshake(hdev, false);
1823 /* bring up the nic to enable TX/RX again */
1824 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1827 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1829 #define HCLGEVF_RESET_SYNC_TIME 100
1831 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1832 struct hclge_vf_to_pf_msg send_msg;
1833 int ret;
1835 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1836 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1837 if (ret) {
1838 dev_err(&hdev->pdev->dev,
1839 "failed to assert VF reset, ret = %d\n", ret);
1840 return ret;
1842 hdev->rst_stats.vf_func_rst_cnt++;
1845 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1846 /* inform hardware that preparatory work is done */
1847 msleep(HCLGEVF_RESET_SYNC_TIME);
1848 hclgevf_reset_handshake(hdev, true);
1849 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1850 hdev->reset_type);
1852 return 0;
1855 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1857 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1858 hdev->rst_stats.vf_func_rst_cnt);
1859 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1860 hdev->rst_stats.flr_rst_cnt);
1861 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1862 hdev->rst_stats.vf_rst_cnt);
1863 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1864 hdev->rst_stats.rst_done_cnt);
1865 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1866 hdev->rst_stats.hw_rst_done_cnt);
1867 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1868 hdev->rst_stats.rst_cnt);
1869 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1870 hdev->rst_stats.rst_fail_cnt);
1871 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1872 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1873 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1874 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1875 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1876 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1877 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1878 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1879 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1882 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1884 /* recover handshake status with IMP when reset fail */
1885 hclgevf_reset_handshake(hdev, true);
1886 hdev->rst_stats.rst_fail_cnt++;
1887 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1888 hdev->rst_stats.rst_fail_cnt);
1890 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1891 set_bit(hdev->reset_type, &hdev->reset_pending);
1893 if (hclgevf_is_reset_pending(hdev)) {
1894 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1895 hclgevf_reset_task_schedule(hdev);
1896 } else {
1897 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1898 hclgevf_dump_rst_info(hdev);
1902 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1904 int ret;
1906 hdev->rst_stats.rst_cnt++;
1908 /* perform reset of the stack & ae device for a client */
1909 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1910 if (ret)
1911 return ret;
1913 rtnl_lock();
1914 /* bring down the nic to stop any ongoing TX/RX */
1915 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1916 rtnl_unlock();
1917 if (ret)
1918 return ret;
1920 return hclgevf_reset_prepare_wait(hdev);
1923 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1925 int ret;
1927 hdev->rst_stats.hw_rst_done_cnt++;
1928 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1929 if (ret)
1930 return ret;
1932 rtnl_lock();
1933 /* now, re-initialize the nic client and ae device */
1934 ret = hclgevf_reset_stack(hdev);
1935 rtnl_unlock();
1936 if (ret) {
1937 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1938 return ret;
1941 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1942 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1943 * times
1945 if (ret &&
1946 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1947 return ret;
1949 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1950 if (ret)
1951 return ret;
1953 hdev->last_reset_time = jiffies;
1954 hdev->rst_stats.rst_done_cnt++;
1955 hdev->rst_stats.rst_fail_cnt = 0;
1956 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1958 return 0;
1961 static void hclgevf_reset(struct hclgevf_dev *hdev)
1963 if (hclgevf_reset_prepare(hdev))
1964 goto err_reset;
1966 /* check if VF could successfully fetch the hardware reset completion
1967 * status from the hardware
1969 if (hclgevf_reset_wait(hdev)) {
1970 /* can't do much in this situation, will disable VF */
1971 dev_err(&hdev->pdev->dev,
1972 "failed to fetch H/W reset completion status\n");
1973 goto err_reset;
1976 if (hclgevf_reset_rebuild(hdev))
1977 goto err_reset;
1979 return;
1981 err_reset:
1982 hclgevf_reset_err_handle(hdev);
1985 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1986 unsigned long *addr)
1988 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1990 /* return the highest priority reset level amongst all */
1991 if (test_bit(HNAE3_VF_RESET, addr)) {
1992 rst_level = HNAE3_VF_RESET;
1993 clear_bit(HNAE3_VF_RESET, addr);
1994 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1995 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1996 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1997 rst_level = HNAE3_VF_FULL_RESET;
1998 clear_bit(HNAE3_VF_FULL_RESET, addr);
1999 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2000 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2001 rst_level = HNAE3_VF_PF_FUNC_RESET;
2002 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2003 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2004 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2005 rst_level = HNAE3_VF_FUNC_RESET;
2006 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2007 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2008 rst_level = HNAE3_FLR_RESET;
2009 clear_bit(HNAE3_FLR_RESET, addr);
2012 return rst_level;
2015 static void hclgevf_reset_event(struct pci_dev *pdev,
2016 struct hnae3_handle *handle)
2018 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2019 struct hclgevf_dev *hdev = ae_dev->priv;
2021 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2023 if (hdev->default_reset_request)
2024 hdev->reset_level =
2025 hclgevf_get_reset_level(hdev,
2026 &hdev->default_reset_request);
2027 else
2028 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2030 /* reset of this VF requested */
2031 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2032 hclgevf_reset_task_schedule(hdev);
2034 hdev->last_reset_time = jiffies;
2037 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2038 enum hnae3_reset_type rst_type)
2040 struct hclgevf_dev *hdev = ae_dev->priv;
2042 set_bit(rst_type, &hdev->default_reset_request);
2045 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2047 writel(en ? 1 : 0, vector->addr);
2050 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2052 #define HCLGEVF_FLR_RETRY_WAIT_MS 500
2053 #define HCLGEVF_FLR_RETRY_CNT 5
2055 struct hclgevf_dev *hdev = ae_dev->priv;
2056 int retry_cnt = 0;
2057 int ret;
2059 retry:
2060 down(&hdev->reset_sem);
2061 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2062 hdev->reset_type = HNAE3_FLR_RESET;
2063 ret = hclgevf_reset_prepare(hdev);
2064 if (ret) {
2065 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2066 ret);
2067 if (hdev->reset_pending ||
2068 retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2069 dev_err(&hdev->pdev->dev,
2070 "reset_pending:0x%lx, retry_cnt:%d\n",
2071 hdev->reset_pending, retry_cnt);
2072 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2073 up(&hdev->reset_sem);
2074 msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2075 goto retry;
2079 /* disable misc vector before FLR done */
2080 hclgevf_enable_vector(&hdev->misc_vector, false);
2081 hdev->rst_stats.flr_rst_cnt++;
2084 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2086 struct hclgevf_dev *hdev = ae_dev->priv;
2087 int ret;
2089 hclgevf_enable_vector(&hdev->misc_vector, true);
2091 ret = hclgevf_reset_rebuild(hdev);
2092 if (ret)
2093 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2094 ret);
2096 hdev->reset_type = HNAE3_NONE_RESET;
2097 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2098 up(&hdev->reset_sem);
2101 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2103 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2105 return hdev->fw_version;
2108 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2110 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2112 vector->vector_irq = pci_irq_vector(hdev->pdev,
2113 HCLGEVF_MISC_VECTOR_NUM);
2114 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2115 /* vector status always valid for Vector 0 */
2116 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2117 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2119 hdev->num_msi_left -= 1;
2120 hdev->num_msi_used += 1;
2123 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2125 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2126 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2127 &hdev->state))
2128 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2131 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2133 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2134 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2135 &hdev->state))
2136 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2139 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2140 unsigned long delay)
2142 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2143 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2144 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2147 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2149 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
2151 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2152 return;
2154 down(&hdev->reset_sem);
2155 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2157 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2158 &hdev->reset_state)) {
2159 /* PF has initmated that it is about to reset the hardware.
2160 * We now have to poll & check if hardware has actually
2161 * completed the reset sequence. On hardware reset completion,
2162 * VF needs to reset the client and ae device.
2164 hdev->reset_attempts = 0;
2166 hdev->last_reset_time = jiffies;
2167 while ((hdev->reset_type =
2168 hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2169 != HNAE3_NONE_RESET)
2170 hclgevf_reset(hdev);
2171 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2172 &hdev->reset_state)) {
2173 /* we could be here when either of below happens:
2174 * 1. reset was initiated due to watchdog timeout caused by
2175 * a. IMP was earlier reset and our TX got choked down and
2176 * which resulted in watchdog reacting and inducing VF
2177 * reset. This also means our cmdq would be unreliable.
2178 * b. problem in TX due to other lower layer(example link
2179 * layer not functioning properly etc.)
2180 * 2. VF reset might have been initiated due to some config
2181 * change.
2183 * NOTE: Theres no clear way to detect above cases than to react
2184 * to the response of PF for this reset request. PF will ack the
2185 * 1b and 2. cases but we will not get any intimation about 1a
2186 * from PF as cmdq would be in unreliable state i.e. mailbox
2187 * communication between PF and VF would be broken.
2189 * if we are never geting into pending state it means either:
2190 * 1. PF is not receiving our request which could be due to IMP
2191 * reset
2192 * 2. PF is screwed
2193 * We cannot do much for 2. but to check first we can try reset
2194 * our PCIe + stack and see if it alleviates the problem.
2196 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2197 /* prepare for full reset of stack + pcie interface */
2198 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2200 /* "defer" schedule the reset task again */
2201 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2202 } else {
2203 hdev->reset_attempts++;
2205 set_bit(hdev->reset_level, &hdev->reset_pending);
2206 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2208 hclgevf_reset_task_schedule(hdev);
2211 hdev->reset_type = HNAE3_NONE_RESET;
2212 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2213 up(&hdev->reset_sem);
2216 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2218 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2219 return;
2221 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2222 return;
2224 hclgevf_mbx_async_handler(hdev);
2226 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2229 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2231 struct hclge_vf_to_pf_msg send_msg;
2232 int ret;
2234 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2235 return;
2237 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2238 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2239 if (ret)
2240 dev_err(&hdev->pdev->dev,
2241 "VF sends keep alive cmd failed(=%d)\n", ret);
2244 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2246 unsigned long delta = round_jiffies_relative(HZ);
2247 struct hnae3_handle *handle = &hdev->nic;
2249 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2250 return;
2252 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2253 delta = jiffies - hdev->last_serv_processed;
2255 if (delta < round_jiffies_relative(HZ)) {
2256 delta = round_jiffies_relative(HZ) - delta;
2257 goto out;
2261 hdev->serv_processed_cnt++;
2262 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2263 hclgevf_keep_alive(hdev);
2265 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2266 hdev->last_serv_processed = jiffies;
2267 goto out;
2270 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2271 hclgevf_tqps_update_stats(handle);
2273 /* request the link status from the PF. PF would be able to tell VF
2274 * about such updates in future so we might remove this later
2276 hclgevf_request_link_info(hdev);
2278 hclgevf_update_link_mode(hdev);
2280 hclgevf_sync_vlan_filter(hdev);
2282 hclgevf_sync_mac_table(hdev);
2284 hclgevf_sync_promisc_mode(hdev);
2286 hdev->last_serv_processed = jiffies;
2288 out:
2289 hclgevf_task_schedule(hdev, delta);
2292 static void hclgevf_service_task(struct work_struct *work)
2294 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2295 service_task.work);
2297 hclgevf_reset_service_task(hdev);
2298 hclgevf_mailbox_service_task(hdev);
2299 hclgevf_periodic_service_task(hdev);
2301 /* Handle reset and mbx again in case periodical task delays the
2302 * handling by calling hclgevf_task_schedule() in
2303 * hclgevf_periodic_service_task()
2305 hclgevf_reset_service_task(hdev);
2306 hclgevf_mailbox_service_task(hdev);
2309 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2311 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2314 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2315 u32 *clearval)
2317 u32 val, cmdq_stat_reg, rst_ing_reg;
2319 /* fetch the events from their corresponding regs */
2320 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2321 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2323 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2324 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2325 dev_info(&hdev->pdev->dev,
2326 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2327 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2328 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2329 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2330 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2331 hdev->rst_stats.vf_rst_cnt++;
2332 /* set up VF hardware reset status, its PF will clear
2333 * this status when PF has initialized done.
2335 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2336 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2337 val | HCLGEVF_VF_RST_ING_BIT);
2338 return HCLGEVF_VECTOR0_EVENT_RST;
2341 /* check for vector0 mailbox(=CMDQ RX) event source */
2342 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2343 /* for revision 0x21, clearing interrupt is writing bit 0
2344 * to the clear register, writing bit 1 means to keep the
2345 * old value.
2346 * for revision 0x20, the clear register is a read & write
2347 * register, so we should just write 0 to the bit we are
2348 * handling, and keep other bits as cmdq_stat_reg.
2350 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2351 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2352 else
2353 *clearval = cmdq_stat_reg &
2354 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2356 return HCLGEVF_VECTOR0_EVENT_MBX;
2359 /* print other vector0 event source */
2360 dev_info(&hdev->pdev->dev,
2361 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2362 cmdq_stat_reg);
2364 return HCLGEVF_VECTOR0_EVENT_OTHER;
2367 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2369 enum hclgevf_evt_cause event_cause;
2370 struct hclgevf_dev *hdev = data;
2371 u32 clearval;
2373 hclgevf_enable_vector(&hdev->misc_vector, false);
2374 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2376 switch (event_cause) {
2377 case HCLGEVF_VECTOR0_EVENT_RST:
2378 hclgevf_reset_task_schedule(hdev);
2379 break;
2380 case HCLGEVF_VECTOR0_EVENT_MBX:
2381 hclgevf_mbx_handler(hdev);
2382 break;
2383 default:
2384 break;
2387 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2388 hclgevf_clear_event_cause(hdev, clearval);
2389 hclgevf_enable_vector(&hdev->misc_vector, true);
2392 return IRQ_HANDLED;
2395 static int hclgevf_configure(struct hclgevf_dev *hdev)
2397 int ret;
2399 /* get current port based vlan state from PF */
2400 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2401 if (ret)
2402 return ret;
2404 /* get queue configuration from PF */
2405 ret = hclgevf_get_queue_info(hdev);
2406 if (ret)
2407 return ret;
2409 /* get queue depth info from PF */
2410 ret = hclgevf_get_queue_depth(hdev);
2411 if (ret)
2412 return ret;
2414 ret = hclgevf_get_pf_media_type(hdev);
2415 if (ret)
2416 return ret;
2418 /* get tc configuration from PF */
2419 return hclgevf_get_tc_info(hdev);
2422 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2424 struct pci_dev *pdev = ae_dev->pdev;
2425 struct hclgevf_dev *hdev;
2427 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2428 if (!hdev)
2429 return -ENOMEM;
2431 hdev->pdev = pdev;
2432 hdev->ae_dev = ae_dev;
2433 ae_dev->priv = hdev;
2435 return 0;
2438 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2440 struct hnae3_handle *roce = &hdev->roce;
2441 struct hnae3_handle *nic = &hdev->nic;
2443 roce->rinfo.num_vectors = hdev->num_roce_msix;
2445 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2446 hdev->num_msi_left == 0)
2447 return -EINVAL;
2449 roce->rinfo.base_vector = hdev->roce_base_vector;
2451 roce->rinfo.netdev = nic->kinfo.netdev;
2452 roce->rinfo.roce_io_base = hdev->hw.io_base;
2453 roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2455 roce->pdev = nic->pdev;
2456 roce->ae_algo = nic->ae_algo;
2457 roce->numa_node_mask = nic->numa_node_mask;
2459 return 0;
2462 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2464 struct hclgevf_cfg_gro_status_cmd *req;
2465 struct hclgevf_desc desc;
2466 int ret;
2468 if (!hnae3_dev_gro_supported(hdev))
2469 return 0;
2471 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2472 false);
2473 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2475 req->gro_en = en ? 1 : 0;
2477 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2478 if (ret)
2479 dev_err(&hdev->pdev->dev,
2480 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2482 return ret;
2485 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2487 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2488 struct hclgevf_rss_tuple_cfg *tuple_sets;
2489 u32 i;
2491 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2492 rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2493 tuple_sets = &rss_cfg->rss_tuple_sets;
2494 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2495 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2496 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2497 HCLGEVF_RSS_KEY_SIZE);
2499 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2500 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2501 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2502 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2503 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2504 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2505 tuple_sets->ipv6_sctp_en =
2506 hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2507 HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2508 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2509 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2512 /* Initialize RSS indirect table */
2513 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2514 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2517 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2519 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2520 int ret;
2522 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2523 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2524 rss_cfg->rss_hash_key);
2525 if (ret)
2526 return ret;
2528 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2529 if (ret)
2530 return ret;
2533 ret = hclgevf_set_rss_indir_table(hdev);
2534 if (ret)
2535 return ret;
2537 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2540 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2542 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2543 false);
2546 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2548 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2550 unsigned long last = hdev->serv_processed_cnt;
2551 int i = 0;
2553 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2554 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2555 last == hdev->serv_processed_cnt)
2556 usleep_range(1, 1);
2559 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2561 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2563 if (enable) {
2564 hclgevf_task_schedule(hdev, 0);
2565 } else {
2566 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2568 /* flush memory to make sure DOWN is seen by service task */
2569 smp_mb__before_atomic();
2570 hclgevf_flush_link_update(hdev);
2574 static int hclgevf_ae_start(struct hnae3_handle *handle)
2576 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2578 hclgevf_reset_tqp_stats(handle);
2580 hclgevf_request_link_info(hdev);
2582 hclgevf_update_link_mode(hdev);
2584 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2586 return 0;
2589 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2591 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2592 int i;
2594 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2596 if (hdev->reset_type != HNAE3_VF_RESET)
2597 for (i = 0; i < handle->kinfo.num_tqps; i++)
2598 if (hclgevf_reset_tqp(handle, i))
2599 break;
2601 hclgevf_reset_tqp_stats(handle);
2602 hclgevf_update_link_status(hdev, 0);
2605 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2607 #define HCLGEVF_STATE_ALIVE 1
2608 #define HCLGEVF_STATE_NOT_ALIVE 0
2610 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2611 struct hclge_vf_to_pf_msg send_msg;
2613 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2614 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2615 HCLGEVF_STATE_NOT_ALIVE;
2616 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2619 static int hclgevf_client_start(struct hnae3_handle *handle)
2621 return hclgevf_set_alive(handle, true);
2624 static void hclgevf_client_stop(struct hnae3_handle *handle)
2626 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2627 int ret;
2629 ret = hclgevf_set_alive(handle, false);
2630 if (ret)
2631 dev_warn(&hdev->pdev->dev,
2632 "%s failed %d\n", __func__, ret);
2635 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2637 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2638 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2639 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2641 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2643 mutex_init(&hdev->mbx_resp.mbx_mutex);
2644 sema_init(&hdev->reset_sem, 1);
2646 spin_lock_init(&hdev->mac_table.mac_list_lock);
2647 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2648 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2650 /* bring the device down */
2651 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2654 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2656 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2657 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2659 if (hdev->service_task.work.func)
2660 cancel_delayed_work_sync(&hdev->service_task);
2662 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2665 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2667 struct pci_dev *pdev = hdev->pdev;
2668 int vectors;
2669 int i;
2671 if (hnae3_dev_roce_supported(hdev))
2672 vectors = pci_alloc_irq_vectors(pdev,
2673 hdev->roce_base_msix_offset + 1,
2674 hdev->num_msi,
2675 PCI_IRQ_MSIX);
2676 else
2677 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2678 hdev->num_msi,
2679 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2681 if (vectors < 0) {
2682 dev_err(&pdev->dev,
2683 "failed(%d) to allocate MSI/MSI-X vectors\n",
2684 vectors);
2685 return vectors;
2687 if (vectors < hdev->num_msi)
2688 dev_warn(&hdev->pdev->dev,
2689 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2690 hdev->num_msi, vectors);
2692 hdev->num_msi = vectors;
2693 hdev->num_msi_left = vectors;
2695 hdev->base_msi_vector = pdev->irq;
2696 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2698 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2699 sizeof(u16), GFP_KERNEL);
2700 if (!hdev->vector_status) {
2701 pci_free_irq_vectors(pdev);
2702 return -ENOMEM;
2705 for (i = 0; i < hdev->num_msi; i++)
2706 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2708 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2709 sizeof(int), GFP_KERNEL);
2710 if (!hdev->vector_irq) {
2711 devm_kfree(&pdev->dev, hdev->vector_status);
2712 pci_free_irq_vectors(pdev);
2713 return -ENOMEM;
2716 return 0;
2719 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2721 struct pci_dev *pdev = hdev->pdev;
2723 devm_kfree(&pdev->dev, hdev->vector_status);
2724 devm_kfree(&pdev->dev, hdev->vector_irq);
2725 pci_free_irq_vectors(pdev);
2728 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2730 int ret;
2732 hclgevf_get_misc_vector(hdev);
2734 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2735 HCLGEVF_NAME, pci_name(hdev->pdev));
2736 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2737 0, hdev->misc_vector.name, hdev);
2738 if (ret) {
2739 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2740 hdev->misc_vector.vector_irq);
2741 return ret;
2744 hclgevf_clear_event_cause(hdev, 0);
2746 /* enable misc. vector(vector 0) */
2747 hclgevf_enable_vector(&hdev->misc_vector, true);
2749 return ret;
2752 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2754 /* disable misc vector(vector 0) */
2755 hclgevf_enable_vector(&hdev->misc_vector, false);
2756 synchronize_irq(hdev->misc_vector.vector_irq);
2757 free_irq(hdev->misc_vector.vector_irq, hdev);
2758 hclgevf_free_vector(hdev, 0);
2761 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2763 struct device *dev = &hdev->pdev->dev;
2765 dev_info(dev, "VF info begin:\n");
2767 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2768 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2769 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2770 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2771 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2772 dev_info(dev, "PF media type of this VF: %u\n",
2773 hdev->hw.mac.media_type);
2775 dev_info(dev, "VF info end.\n");
2778 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2779 struct hnae3_client *client)
2781 struct hclgevf_dev *hdev = ae_dev->priv;
2782 int rst_cnt = hdev->rst_stats.rst_cnt;
2783 int ret;
2785 ret = client->ops->init_instance(&hdev->nic);
2786 if (ret)
2787 return ret;
2789 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2790 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2791 rst_cnt != hdev->rst_stats.rst_cnt) {
2792 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2794 client->ops->uninit_instance(&hdev->nic, 0);
2795 return -EBUSY;
2798 hnae3_set_client_init_flag(client, ae_dev, 1);
2800 if (netif_msg_drv(&hdev->nic))
2801 hclgevf_info_show(hdev);
2803 return 0;
2806 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2807 struct hnae3_client *client)
2809 struct hclgevf_dev *hdev = ae_dev->priv;
2810 int ret;
2812 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2813 !hdev->nic_client)
2814 return 0;
2816 ret = hclgevf_init_roce_base_info(hdev);
2817 if (ret)
2818 return ret;
2820 ret = client->ops->init_instance(&hdev->roce);
2821 if (ret)
2822 return ret;
2824 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2825 hnae3_set_client_init_flag(client, ae_dev, 1);
2827 return 0;
2830 static int hclgevf_init_client_instance(struct hnae3_client *client,
2831 struct hnae3_ae_dev *ae_dev)
2833 struct hclgevf_dev *hdev = ae_dev->priv;
2834 int ret;
2836 switch (client->type) {
2837 case HNAE3_CLIENT_KNIC:
2838 hdev->nic_client = client;
2839 hdev->nic.client = client;
2841 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2842 if (ret)
2843 goto clear_nic;
2845 ret = hclgevf_init_roce_client_instance(ae_dev,
2846 hdev->roce_client);
2847 if (ret)
2848 goto clear_roce;
2850 break;
2851 case HNAE3_CLIENT_ROCE:
2852 if (hnae3_dev_roce_supported(hdev)) {
2853 hdev->roce_client = client;
2854 hdev->roce.client = client;
2857 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2858 if (ret)
2859 goto clear_roce;
2861 break;
2862 default:
2863 return -EINVAL;
2866 return 0;
2868 clear_nic:
2869 hdev->nic_client = NULL;
2870 hdev->nic.client = NULL;
2871 return ret;
2872 clear_roce:
2873 hdev->roce_client = NULL;
2874 hdev->roce.client = NULL;
2875 return ret;
2878 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2879 struct hnae3_ae_dev *ae_dev)
2881 struct hclgevf_dev *hdev = ae_dev->priv;
2883 /* un-init roce, if it exists */
2884 if (hdev->roce_client) {
2885 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2886 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2887 hdev->roce_client = NULL;
2888 hdev->roce.client = NULL;
2891 /* un-init nic/unic, if this was not called by roce client */
2892 if (client->ops->uninit_instance && hdev->nic_client &&
2893 client->type != HNAE3_CLIENT_ROCE) {
2894 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2896 client->ops->uninit_instance(&hdev->nic, 0);
2897 hdev->nic_client = NULL;
2898 hdev->nic.client = NULL;
2902 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2904 #define HCLGEVF_MEM_BAR 4
2906 struct pci_dev *pdev = hdev->pdev;
2907 struct hclgevf_hw *hw = &hdev->hw;
2909 /* for device does not have device memory, return directly */
2910 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2911 return 0;
2913 hw->mem_base = devm_ioremap_wc(&pdev->dev,
2914 pci_resource_start(pdev,
2915 HCLGEVF_MEM_BAR),
2916 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2917 if (!hw->mem_base) {
2918 dev_err(&pdev->dev, "failed to map device memory\n");
2919 return -EFAULT;
2922 return 0;
2925 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2927 struct pci_dev *pdev = hdev->pdev;
2928 struct hclgevf_hw *hw;
2929 int ret;
2931 ret = pci_enable_device(pdev);
2932 if (ret) {
2933 dev_err(&pdev->dev, "failed to enable PCI device\n");
2934 return ret;
2937 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2938 if (ret) {
2939 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2940 goto err_disable_device;
2943 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2944 if (ret) {
2945 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2946 goto err_disable_device;
2949 pci_set_master(pdev);
2950 hw = &hdev->hw;
2951 hw->hdev = hdev;
2952 hw->io_base = pci_iomap(pdev, 2, 0);
2953 if (!hw->io_base) {
2954 dev_err(&pdev->dev, "can't map configuration register space\n");
2955 ret = -ENOMEM;
2956 goto err_clr_master;
2959 ret = hclgevf_dev_mem_map(hdev);
2960 if (ret)
2961 goto err_unmap_io_base;
2963 return 0;
2965 err_unmap_io_base:
2966 pci_iounmap(pdev, hdev->hw.io_base);
2967 err_clr_master:
2968 pci_clear_master(pdev);
2969 pci_release_regions(pdev);
2970 err_disable_device:
2971 pci_disable_device(pdev);
2973 return ret;
2976 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2978 struct pci_dev *pdev = hdev->pdev;
2980 if (hdev->hw.mem_base)
2981 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
2983 pci_iounmap(pdev, hdev->hw.io_base);
2984 pci_clear_master(pdev);
2985 pci_release_regions(pdev);
2986 pci_disable_device(pdev);
2989 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2991 struct hclgevf_query_res_cmd *req;
2992 struct hclgevf_desc desc;
2993 int ret;
2995 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2996 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2997 if (ret) {
2998 dev_err(&hdev->pdev->dev,
2999 "query vf resource failed, ret = %d.\n", ret);
3000 return ret;
3003 req = (struct hclgevf_query_res_cmd *)desc.data;
3005 if (hnae3_dev_roce_supported(hdev)) {
3006 hdev->roce_base_msix_offset =
3007 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3008 HCLGEVF_MSIX_OFT_ROCEE_M,
3009 HCLGEVF_MSIX_OFT_ROCEE_S);
3010 hdev->num_roce_msix =
3011 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3012 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3014 /* nic's msix numbers is always equals to the roce's. */
3015 hdev->num_nic_msix = hdev->num_roce_msix;
3017 /* VF should have NIC vectors and Roce vectors, NIC vectors
3018 * are queued before Roce vectors. The offset is fixed to 64.
3020 hdev->num_msi = hdev->num_roce_msix +
3021 hdev->roce_base_msix_offset;
3022 } else {
3023 hdev->num_msi =
3024 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3025 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3027 hdev->num_nic_msix = hdev->num_msi;
3030 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3031 dev_err(&hdev->pdev->dev,
3032 "Just %u msi resources, not enough for vf(min:2).\n",
3033 hdev->num_nic_msix);
3034 return -EINVAL;
3037 return 0;
3040 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3042 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
3044 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3046 ae_dev->dev_specs.max_non_tso_bd_num =
3047 HCLGEVF_MAX_NON_TSO_BD_NUM;
3048 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3049 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3050 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3053 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3054 struct hclgevf_desc *desc)
3056 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3057 struct hclgevf_dev_specs_0_cmd *req0;
3058 struct hclgevf_dev_specs_1_cmd *req1;
3060 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3061 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3063 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3064 ae_dev->dev_specs.rss_ind_tbl_size =
3065 le16_to_cpu(req0->rss_ind_tbl_size);
3066 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3067 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3068 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3071 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3073 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3075 if (!dev_specs->max_non_tso_bd_num)
3076 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3077 if (!dev_specs->rss_ind_tbl_size)
3078 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3079 if (!dev_specs->rss_key_size)
3080 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3081 if (!dev_specs->max_int_gl)
3082 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3085 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3087 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3088 int ret;
3089 int i;
3091 /* set default specifications as devices lower than version V3 do not
3092 * support querying specifications from firmware.
3094 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3095 hclgevf_set_default_dev_specs(hdev);
3096 return 0;
3099 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3100 hclgevf_cmd_setup_basic_desc(&desc[i],
3101 HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3102 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3104 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3105 true);
3107 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3108 if (ret)
3109 return ret;
3111 hclgevf_parse_dev_specs(hdev, desc);
3112 hclgevf_check_dev_specs(hdev);
3114 return 0;
3117 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3119 struct pci_dev *pdev = hdev->pdev;
3120 int ret = 0;
3122 if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3123 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3124 hclgevf_misc_irq_uninit(hdev);
3125 hclgevf_uninit_msi(hdev);
3126 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3129 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3130 pci_set_master(pdev);
3131 ret = hclgevf_init_msi(hdev);
3132 if (ret) {
3133 dev_err(&pdev->dev,
3134 "failed(%d) to init MSI/MSI-X\n", ret);
3135 return ret;
3138 ret = hclgevf_misc_irq_init(hdev);
3139 if (ret) {
3140 hclgevf_uninit_msi(hdev);
3141 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3142 ret);
3143 return ret;
3146 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3149 return ret;
3152 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3154 struct hclge_vf_to_pf_msg send_msg;
3156 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3157 HCLGE_MBX_VPORT_LIST_CLEAR);
3158 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3161 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3163 struct pci_dev *pdev = hdev->pdev;
3164 int ret;
3166 ret = hclgevf_pci_reset(hdev);
3167 if (ret) {
3168 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3169 return ret;
3172 ret = hclgevf_cmd_init(hdev);
3173 if (ret) {
3174 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3175 return ret;
3178 ret = hclgevf_rss_init_hw(hdev);
3179 if (ret) {
3180 dev_err(&hdev->pdev->dev,
3181 "failed(%d) to initialize RSS\n", ret);
3182 return ret;
3185 ret = hclgevf_config_gro(hdev, true);
3186 if (ret)
3187 return ret;
3189 ret = hclgevf_init_vlan_config(hdev);
3190 if (ret) {
3191 dev_err(&hdev->pdev->dev,
3192 "failed(%d) to initialize VLAN config\n", ret);
3193 return ret;
3196 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3198 dev_info(&hdev->pdev->dev, "Reset done\n");
3200 return 0;
3203 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3205 struct pci_dev *pdev = hdev->pdev;
3206 int ret;
3208 ret = hclgevf_pci_init(hdev);
3209 if (ret)
3210 return ret;
3212 ret = hclgevf_cmd_queue_init(hdev);
3213 if (ret)
3214 goto err_cmd_queue_init;
3216 ret = hclgevf_cmd_init(hdev);
3217 if (ret)
3218 goto err_cmd_init;
3220 /* Get vf resource */
3221 ret = hclgevf_query_vf_resource(hdev);
3222 if (ret)
3223 goto err_cmd_init;
3225 ret = hclgevf_query_dev_specs(hdev);
3226 if (ret) {
3227 dev_err(&pdev->dev,
3228 "failed to query dev specifications, ret = %d\n", ret);
3229 goto err_cmd_init;
3232 ret = hclgevf_init_msi(hdev);
3233 if (ret) {
3234 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3235 goto err_cmd_init;
3238 hclgevf_state_init(hdev);
3239 hdev->reset_level = HNAE3_VF_FUNC_RESET;
3240 hdev->reset_type = HNAE3_NONE_RESET;
3242 ret = hclgevf_misc_irq_init(hdev);
3243 if (ret)
3244 goto err_misc_irq_init;
3246 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3248 ret = hclgevf_configure(hdev);
3249 if (ret) {
3250 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3251 goto err_config;
3254 ret = hclgevf_alloc_tqps(hdev);
3255 if (ret) {
3256 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3257 goto err_config;
3260 ret = hclgevf_set_handle_info(hdev);
3261 if (ret)
3262 goto err_config;
3264 ret = hclgevf_config_gro(hdev, true);
3265 if (ret)
3266 goto err_config;
3268 /* Initialize RSS for this VF */
3269 hclgevf_rss_init_cfg(hdev);
3270 ret = hclgevf_rss_init_hw(hdev);
3271 if (ret) {
3272 dev_err(&hdev->pdev->dev,
3273 "failed(%d) to initialize RSS\n", ret);
3274 goto err_config;
3277 /* ensure vf tbl list as empty before init*/
3278 ret = hclgevf_clear_vport_list(hdev);
3279 if (ret) {
3280 dev_err(&pdev->dev,
3281 "failed to clear tbl list configuration, ret = %d.\n",
3282 ret);
3283 goto err_config;
3286 ret = hclgevf_init_vlan_config(hdev);
3287 if (ret) {
3288 dev_err(&hdev->pdev->dev,
3289 "failed(%d) to initialize VLAN config\n", ret);
3290 goto err_config;
3293 hdev->last_reset_time = jiffies;
3294 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3295 HCLGEVF_DRIVER_NAME);
3297 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3299 return 0;
3301 err_config:
3302 hclgevf_misc_irq_uninit(hdev);
3303 err_misc_irq_init:
3304 hclgevf_state_uninit(hdev);
3305 hclgevf_uninit_msi(hdev);
3306 err_cmd_init:
3307 hclgevf_cmd_uninit(hdev);
3308 err_cmd_queue_init:
3309 hclgevf_pci_uninit(hdev);
3310 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3311 return ret;
3314 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3316 struct hclge_vf_to_pf_msg send_msg;
3318 hclgevf_state_uninit(hdev);
3320 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3321 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3323 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3324 hclgevf_misc_irq_uninit(hdev);
3325 hclgevf_uninit_msi(hdev);
3328 hclgevf_cmd_uninit(hdev);
3329 hclgevf_pci_uninit(hdev);
3330 hclgevf_uninit_mac_list(hdev);
3333 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3335 struct pci_dev *pdev = ae_dev->pdev;
3336 int ret;
3338 ret = hclgevf_alloc_hdev(ae_dev);
3339 if (ret) {
3340 dev_err(&pdev->dev, "hclge device allocation failed\n");
3341 return ret;
3344 ret = hclgevf_init_hdev(ae_dev->priv);
3345 if (ret) {
3346 dev_err(&pdev->dev, "hclge device initialization failed\n");
3347 return ret;
3350 return 0;
3353 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3355 struct hclgevf_dev *hdev = ae_dev->priv;
3357 hclgevf_uninit_hdev(hdev);
3358 ae_dev->priv = NULL;
3361 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3363 struct hnae3_handle *nic = &hdev->nic;
3364 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3366 return min_t(u32, hdev->rss_size_max,
3367 hdev->num_tqps / kinfo->tc_info.num_tc);
3371 * hclgevf_get_channels - Get the current channels enabled and max supported.
3372 * @handle: hardware information for network interface
3373 * @ch: ethtool channels structure
3375 * We don't support separate tx and rx queues as channels. The other count
3376 * represents how many queues are being used for control. max_combined counts
3377 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3378 * q_vectors since we support a lot more queue pairs than q_vectors.
3380 static void hclgevf_get_channels(struct hnae3_handle *handle,
3381 struct ethtool_channels *ch)
3383 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3385 ch->max_combined = hclgevf_get_max_channels(hdev);
3386 ch->other_count = 0;
3387 ch->max_other = 0;
3388 ch->combined_count = handle->kinfo.rss_size;
3391 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3392 u16 *alloc_tqps, u16 *max_rss_size)
3394 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3396 *alloc_tqps = hdev->num_tqps;
3397 *max_rss_size = hdev->rss_size_max;
3400 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3401 u32 new_tqps_num)
3403 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3404 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3405 u16 max_rss_size;
3407 kinfo->req_rss_size = new_tqps_num;
3409 max_rss_size = min_t(u16, hdev->rss_size_max,
3410 hdev->num_tqps / kinfo->tc_info.num_tc);
3412 /* Use the user's configuration when it is not larger than
3413 * max_rss_size, otherwise, use the maximum specification value.
3415 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3416 kinfo->req_rss_size <= max_rss_size)
3417 kinfo->rss_size = kinfo->req_rss_size;
3418 else if (kinfo->rss_size > max_rss_size ||
3419 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3420 kinfo->rss_size = max_rss_size;
3422 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3425 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3426 bool rxfh_configured)
3428 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3429 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3430 u16 cur_rss_size = kinfo->rss_size;
3431 u16 cur_tqps = kinfo->num_tqps;
3432 u32 *rss_indir;
3433 unsigned int i;
3434 int ret;
3436 hclgevf_update_rss_size(handle, new_tqps_num);
3438 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3439 if (ret)
3440 return ret;
3442 /* RSS indirection table has been configuared by user */
3443 if (rxfh_configured)
3444 goto out;
3446 /* Reinitializes the rss indirect table according to the new RSS size */
3447 rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3448 if (!rss_indir)
3449 return -ENOMEM;
3451 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3452 rss_indir[i] = i % kinfo->rss_size;
3454 hdev->rss_cfg.rss_size = kinfo->rss_size;
3456 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3457 if (ret)
3458 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3459 ret);
3461 kfree(rss_indir);
3463 out:
3464 if (!ret)
3465 dev_info(&hdev->pdev->dev,
3466 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3467 cur_rss_size, kinfo->rss_size,
3468 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3470 return ret;
3473 static int hclgevf_get_status(struct hnae3_handle *handle)
3475 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3477 return hdev->hw.mac.link;
3480 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3481 u8 *auto_neg, u32 *speed,
3482 u8 *duplex)
3484 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3486 if (speed)
3487 *speed = hdev->hw.mac.speed;
3488 if (duplex)
3489 *duplex = hdev->hw.mac.duplex;
3490 if (auto_neg)
3491 *auto_neg = AUTONEG_DISABLE;
3494 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3495 u8 duplex)
3497 hdev->hw.mac.speed = speed;
3498 hdev->hw.mac.duplex = duplex;
3501 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3503 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3505 return hclgevf_config_gro(hdev, enable);
3508 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3509 u8 *module_type)
3511 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3513 if (media_type)
3514 *media_type = hdev->hw.mac.media_type;
3516 if (module_type)
3517 *module_type = hdev->hw.mac.module_type;
3520 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3522 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3524 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3527 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3529 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3531 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3534 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3536 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3538 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3541 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3543 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3545 return hdev->rst_stats.hw_rst_done_cnt;
3548 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3549 unsigned long *supported,
3550 unsigned long *advertising)
3552 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3554 *supported = hdev->hw.mac.supported;
3555 *advertising = hdev->hw.mac.advertising;
3558 #define MAX_SEPARATE_NUM 4
3559 #define SEPARATOR_VALUE 0xFFFFFFFF
3560 #define REG_NUM_PER_LINE 4
3561 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
3563 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3565 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3566 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3568 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3569 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3570 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3571 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3573 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3574 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3577 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3578 void *data)
3580 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3581 int i, j, reg_um, separator_num;
3582 u32 *reg = data;
3584 *version = hdev->fw_version;
3586 /* fetching per-VF registers values from VF PCIe register space */
3587 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3588 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3589 for (i = 0; i < reg_um; i++)
3590 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3591 for (i = 0; i < separator_num; i++)
3592 *reg++ = SEPARATOR_VALUE;
3594 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3595 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3596 for (i = 0; i < reg_um; i++)
3597 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3598 for (i = 0; i < separator_num; i++)
3599 *reg++ = SEPARATOR_VALUE;
3601 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3602 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3603 for (j = 0; j < hdev->num_tqps; j++) {
3604 for (i = 0; i < reg_um; i++)
3605 *reg++ = hclgevf_read_dev(&hdev->hw,
3606 ring_reg_addr_list[i] +
3607 0x200 * j);
3608 for (i = 0; i < separator_num; i++)
3609 *reg++ = SEPARATOR_VALUE;
3612 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3613 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3614 for (j = 0; j < hdev->num_msi_used - 1; j++) {
3615 for (i = 0; i < reg_um; i++)
3616 *reg++ = hclgevf_read_dev(&hdev->hw,
3617 tqp_intr_reg_addr_list[i] +
3618 4 * j);
3619 for (i = 0; i < separator_num; i++)
3620 *reg++ = SEPARATOR_VALUE;
3624 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3625 u8 *port_base_vlan_info, u8 data_size)
3627 struct hnae3_handle *nic = &hdev->nic;
3628 struct hclge_vf_to_pf_msg send_msg;
3629 int ret;
3631 rtnl_lock();
3633 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3634 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3635 dev_warn(&hdev->pdev->dev,
3636 "is resetting when updating port based vlan info\n");
3637 rtnl_unlock();
3638 return;
3641 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3642 if (ret) {
3643 rtnl_unlock();
3644 return;
3647 /* send msg to PF and wait update port based vlan info */
3648 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3649 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3650 memcpy(send_msg.data, port_base_vlan_info, data_size);
3651 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3652 if (!ret) {
3653 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3654 nic->port_base_vlan_state = state;
3655 else
3656 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3659 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3660 rtnl_unlock();
3663 static const struct hnae3_ae_ops hclgevf_ops = {
3664 .init_ae_dev = hclgevf_init_ae_dev,
3665 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3666 .flr_prepare = hclgevf_flr_prepare,
3667 .flr_done = hclgevf_flr_done,
3668 .init_client_instance = hclgevf_init_client_instance,
3669 .uninit_client_instance = hclgevf_uninit_client_instance,
3670 .start = hclgevf_ae_start,
3671 .stop = hclgevf_ae_stop,
3672 .client_start = hclgevf_client_start,
3673 .client_stop = hclgevf_client_stop,
3674 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3675 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3676 .get_vector = hclgevf_get_vector,
3677 .put_vector = hclgevf_put_vector,
3678 .reset_queue = hclgevf_reset_tqp,
3679 .get_mac_addr = hclgevf_get_mac_addr,
3680 .set_mac_addr = hclgevf_set_mac_addr,
3681 .add_uc_addr = hclgevf_add_uc_addr,
3682 .rm_uc_addr = hclgevf_rm_uc_addr,
3683 .add_mc_addr = hclgevf_add_mc_addr,
3684 .rm_mc_addr = hclgevf_rm_mc_addr,
3685 .get_stats = hclgevf_get_stats,
3686 .update_stats = hclgevf_update_stats,
3687 .get_strings = hclgevf_get_strings,
3688 .get_sset_count = hclgevf_get_sset_count,
3689 .get_rss_key_size = hclgevf_get_rss_key_size,
3690 .get_rss_indir_size = hclgevf_get_rss_indir_size,
3691 .get_rss = hclgevf_get_rss,
3692 .set_rss = hclgevf_set_rss,
3693 .get_rss_tuple = hclgevf_get_rss_tuple,
3694 .set_rss_tuple = hclgevf_set_rss_tuple,
3695 .get_tc_size = hclgevf_get_tc_size,
3696 .get_fw_version = hclgevf_get_fw_version,
3697 .set_vlan_filter = hclgevf_set_vlan_filter,
3698 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3699 .reset_event = hclgevf_reset_event,
3700 .set_default_reset_request = hclgevf_set_def_reset_request,
3701 .set_channels = hclgevf_set_channels,
3702 .get_channels = hclgevf_get_channels,
3703 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3704 .get_regs_len = hclgevf_get_regs_len,
3705 .get_regs = hclgevf_get_regs,
3706 .get_status = hclgevf_get_status,
3707 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3708 .get_media_type = hclgevf_get_media_type,
3709 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3710 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3711 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3712 .set_gro_en = hclgevf_gro_en,
3713 .set_mtu = hclgevf_set_mtu,
3714 .get_global_queue_id = hclgevf_get_qid_global,
3715 .set_timer_task = hclgevf_set_timer_task,
3716 .get_link_mode = hclgevf_get_link_mode,
3717 .set_promisc_mode = hclgevf_set_promisc_mode,
3718 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3719 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3722 static struct hnae3_ae_algo ae_algovf = {
3723 .ops = &hclgevf_ops,
3724 .pdev_id_table = ae_algovf_pci_tbl,
3727 static int hclgevf_init(void)
3729 pr_info("%s is initializing\n", HCLGEVF_NAME);
3731 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3732 if (!hclgevf_wq) {
3733 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3734 return -ENOMEM;
3737 hnae3_register_ae_algo(&ae_algovf);
3739 return 0;
3742 static void hclgevf_exit(void)
3744 hnae3_unregister_ae_algo(&ae_algovf);
3745 destroy_workqueue(hclgevf_wq);
3747 module_init(hclgevf_init);
3748 module_exit(hclgevf_exit);
3750 MODULE_LICENSE("GPL");
3751 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3752 MODULE_DESCRIPTION("HCLGEVF Driver");
3753 MODULE_VERSION(HCLGEVF_MOD_VERSION);