WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / huawei / hinic / hinic_hw_wq.c
blob5dc3743f80915b43209a89ec07d63a7405353762
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Huawei HiNIC PCI Express Linux driver
4 * Copyright(c) 2017 Huawei Technologies Co., Ltd
5 */
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/slab.h>
13 #include <linux/atomic.h>
14 #include <linux/semaphore.h>
15 #include <linux/errno.h>
16 #include <linux/vmalloc.h>
17 #include <linux/err.h>
18 #include <asm/byteorder.h>
20 #include "hinic_hw_if.h"
21 #include "hinic_hw_wqe.h"
22 #include "hinic_hw_wq.h"
23 #include "hinic_hw_cmdq.h"
25 #define WQS_BLOCKS_PER_PAGE 4
27 #define WQ_BLOCK_SIZE 4096
28 #define WQS_PAGE_SIZE (WQS_BLOCKS_PER_PAGE * WQ_BLOCK_SIZE)
30 #define WQS_MAX_NUM_BLOCKS 128
31 #define WQS_FREE_BLOCKS_SIZE(wqs) (WQS_MAX_NUM_BLOCKS * \
32 sizeof((wqs)->free_blocks[0]))
34 #define WQ_SIZE(wq) ((wq)->q_depth * (wq)->wqebb_size)
36 #define WQ_PAGE_ADDR_SIZE sizeof(u64)
37 #define WQ_MAX_PAGES (WQ_BLOCK_SIZE / WQ_PAGE_ADDR_SIZE)
39 #define CMDQ_BLOCK_SIZE 512
40 #define CMDQ_PAGE_SIZE 4096
42 #define CMDQ_WQ_MAX_PAGES (CMDQ_BLOCK_SIZE / WQ_PAGE_ADDR_SIZE)
44 #define WQ_BASE_VADDR(wqs, wq) \
45 ((void *)((wqs)->page_vaddr[(wq)->page_idx]) \
46 + (wq)->block_idx * WQ_BLOCK_SIZE)
48 #define WQ_BASE_PADDR(wqs, wq) \
49 ((wqs)->page_paddr[(wq)->page_idx] \
50 + (wq)->block_idx * WQ_BLOCK_SIZE)
52 #define WQ_BASE_ADDR(wqs, wq) \
53 ((void *)((wqs)->shadow_page_vaddr[(wq)->page_idx]) \
54 + (wq)->block_idx * WQ_BLOCK_SIZE)
56 #define CMDQ_BASE_VADDR(cmdq_pages, wq) \
57 ((void *)((cmdq_pages)->page_vaddr) \
58 + (wq)->block_idx * CMDQ_BLOCK_SIZE)
60 #define CMDQ_BASE_PADDR(cmdq_pages, wq) \
61 ((cmdq_pages)->page_paddr \
62 + (wq)->block_idx * CMDQ_BLOCK_SIZE)
64 #define CMDQ_BASE_ADDR(cmdq_pages, wq) \
65 ((void *)((cmdq_pages)->shadow_page_vaddr) \
66 + (wq)->block_idx * CMDQ_BLOCK_SIZE)
68 #define WQ_PAGE_ADDR(wq, idx) \
69 ((wq)->shadow_block_vaddr[WQE_PAGE_NUM(wq, idx)])
71 #define MASKED_WQE_IDX(wq, idx) ((idx) & (wq)->mask)
73 #define WQE_IN_RANGE(wqe, start, end) \
74 (((unsigned long)(wqe) >= (unsigned long)(start)) && \
75 ((unsigned long)(wqe) < (unsigned long)(end)))
77 #define WQE_SHADOW_PAGE(wq, wqe) \
78 (((unsigned long)(wqe) - (unsigned long)(wq)->shadow_wqe) \
79 / (wq)->max_wqe_size)
81 static inline int WQE_PAGE_OFF(struct hinic_wq *wq, u16 idx)
83 return (((idx) & ((wq)->num_wqebbs_per_page - 1))
84 << (wq)->wqebb_size_shift);
87 static inline int WQE_PAGE_NUM(struct hinic_wq *wq, u16 idx)
89 return (((idx) >> ((wq)->wqebbs_per_page_shift))
90 & ((wq)->num_q_pages - 1));
92 /**
93 * queue_alloc_page - allocate page for Queue
94 * @hwif: HW interface for allocating DMA
95 * @vaddr: virtual address will be returned in this address
96 * @paddr: physical address will be returned in this address
97 * @shadow_vaddr: VM area will be return here for holding WQ page addresses
98 * @page_sz: page size of each WQ page
100 * Return 0 - Success, negative - Failure
102 static int queue_alloc_page(struct hinic_hwif *hwif, u64 **vaddr, u64 *paddr,
103 void ***shadow_vaddr, size_t page_sz)
105 struct pci_dev *pdev = hwif->pdev;
106 dma_addr_t dma_addr;
108 *vaddr = dma_alloc_coherent(&pdev->dev, page_sz, &dma_addr,
109 GFP_KERNEL);
110 if (!*vaddr) {
111 dev_err(&pdev->dev, "Failed to allocate dma for wqs page\n");
112 return -ENOMEM;
115 *paddr = (u64)dma_addr;
117 /* use vzalloc for big mem */
118 *shadow_vaddr = vzalloc(page_sz);
119 if (!*shadow_vaddr)
120 goto err_shadow_vaddr;
122 return 0;
124 err_shadow_vaddr:
125 dma_free_coherent(&pdev->dev, page_sz, *vaddr, dma_addr);
126 return -ENOMEM;
130 * wqs_allocate_page - allocate page for WQ set
131 * @wqs: Work Queue Set
132 * @page_idx: the page index of the page will be allocated
134 * Return 0 - Success, negative - Failure
136 static int wqs_allocate_page(struct hinic_wqs *wqs, int page_idx)
138 return queue_alloc_page(wqs->hwif, &wqs->page_vaddr[page_idx],
139 &wqs->page_paddr[page_idx],
140 &wqs->shadow_page_vaddr[page_idx],
141 WQS_PAGE_SIZE);
145 * wqs_free_page - free page of WQ set
146 * @wqs: Work Queue Set
147 * @page_idx: the page index of the page will be freed
149 static void wqs_free_page(struct hinic_wqs *wqs, int page_idx)
151 struct hinic_hwif *hwif = wqs->hwif;
152 struct pci_dev *pdev = hwif->pdev;
154 dma_free_coherent(&pdev->dev, WQS_PAGE_SIZE,
155 wqs->page_vaddr[page_idx],
156 (dma_addr_t)wqs->page_paddr[page_idx]);
157 vfree(wqs->shadow_page_vaddr[page_idx]);
161 * cmdq_allocate_page - allocate page for cmdq
162 * @cmdq_pages: the pages of the cmdq queue struct to hold the page
164 * Return 0 - Success, negative - Failure
166 static int cmdq_allocate_page(struct hinic_cmdq_pages *cmdq_pages)
168 return queue_alloc_page(cmdq_pages->hwif, &cmdq_pages->page_vaddr,
169 &cmdq_pages->page_paddr,
170 &cmdq_pages->shadow_page_vaddr,
171 CMDQ_PAGE_SIZE);
175 * cmdq_free_page - free page from cmdq
176 * @cmdq_pages: the pages of the cmdq queue struct that hold the page
178 * Return 0 - Success, negative - Failure
180 static void cmdq_free_page(struct hinic_cmdq_pages *cmdq_pages)
182 struct hinic_hwif *hwif = cmdq_pages->hwif;
183 struct pci_dev *pdev = hwif->pdev;
185 dma_free_coherent(&pdev->dev, CMDQ_PAGE_SIZE,
186 cmdq_pages->page_vaddr,
187 (dma_addr_t)cmdq_pages->page_paddr);
188 vfree(cmdq_pages->shadow_page_vaddr);
191 static int alloc_page_arrays(struct hinic_wqs *wqs)
193 struct hinic_hwif *hwif = wqs->hwif;
194 struct pci_dev *pdev = hwif->pdev;
195 size_t size;
197 size = wqs->num_pages * sizeof(*wqs->page_paddr);
198 wqs->page_paddr = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
199 if (!wqs->page_paddr)
200 return -ENOMEM;
202 size = wqs->num_pages * sizeof(*wqs->page_vaddr);
203 wqs->page_vaddr = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
204 if (!wqs->page_vaddr)
205 goto err_page_vaddr;
207 size = wqs->num_pages * sizeof(*wqs->shadow_page_vaddr);
208 wqs->shadow_page_vaddr = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
209 if (!wqs->shadow_page_vaddr)
210 goto err_page_shadow_vaddr;
212 return 0;
214 err_page_shadow_vaddr:
215 devm_kfree(&pdev->dev, wqs->page_vaddr);
217 err_page_vaddr:
218 devm_kfree(&pdev->dev, wqs->page_paddr);
219 return -ENOMEM;
222 static void free_page_arrays(struct hinic_wqs *wqs)
224 struct hinic_hwif *hwif = wqs->hwif;
225 struct pci_dev *pdev = hwif->pdev;
227 devm_kfree(&pdev->dev, wqs->shadow_page_vaddr);
228 devm_kfree(&pdev->dev, wqs->page_vaddr);
229 devm_kfree(&pdev->dev, wqs->page_paddr);
232 static int wqs_next_block(struct hinic_wqs *wqs, int *page_idx,
233 int *block_idx)
235 int pos;
237 down(&wqs->alloc_blocks_lock);
239 wqs->num_free_blks--;
241 if (wqs->num_free_blks < 0) {
242 wqs->num_free_blks++;
243 up(&wqs->alloc_blocks_lock);
244 return -ENOMEM;
247 pos = wqs->alloc_blk_pos++;
248 pos &= WQS_MAX_NUM_BLOCKS - 1;
250 *page_idx = wqs->free_blocks[pos].page_idx;
251 *block_idx = wqs->free_blocks[pos].block_idx;
253 wqs->free_blocks[pos].page_idx = -1;
254 wqs->free_blocks[pos].block_idx = -1;
256 up(&wqs->alloc_blocks_lock);
257 return 0;
260 static void wqs_return_block(struct hinic_wqs *wqs, int page_idx,
261 int block_idx)
263 int pos;
265 down(&wqs->alloc_blocks_lock);
267 pos = wqs->return_blk_pos++;
268 pos &= WQS_MAX_NUM_BLOCKS - 1;
270 wqs->free_blocks[pos].page_idx = page_idx;
271 wqs->free_blocks[pos].block_idx = block_idx;
273 wqs->num_free_blks++;
275 up(&wqs->alloc_blocks_lock);
278 static void init_wqs_blocks_arr(struct hinic_wqs *wqs)
280 int page_idx, blk_idx, pos = 0;
282 for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
283 for (blk_idx = 0; blk_idx < WQS_BLOCKS_PER_PAGE; blk_idx++) {
284 wqs->free_blocks[pos].page_idx = page_idx;
285 wqs->free_blocks[pos].block_idx = blk_idx;
286 pos++;
290 wqs->alloc_blk_pos = 0;
291 wqs->return_blk_pos = pos;
292 wqs->num_free_blks = pos;
294 sema_init(&wqs->alloc_blocks_lock, 1);
298 * hinic_wqs_alloc - allocate Work Queues set
299 * @wqs: Work Queue Set
300 * @max_wqs: maximum wqs to allocate
301 * @hwif: HW interface for use for the allocation
303 * Return 0 - Success, negative - Failure
305 int hinic_wqs_alloc(struct hinic_wqs *wqs, int max_wqs,
306 struct hinic_hwif *hwif)
308 struct pci_dev *pdev = hwif->pdev;
309 int err, i, page_idx;
311 max_wqs = ALIGN(max_wqs, WQS_BLOCKS_PER_PAGE);
312 if (max_wqs > WQS_MAX_NUM_BLOCKS) {
313 dev_err(&pdev->dev, "Invalid max_wqs = %d\n", max_wqs);
314 return -EINVAL;
317 wqs->hwif = hwif;
318 wqs->num_pages = max_wqs / WQS_BLOCKS_PER_PAGE;
320 if (alloc_page_arrays(wqs)) {
321 dev_err(&pdev->dev,
322 "Failed to allocate mem for page addresses\n");
323 return -ENOMEM;
326 for (page_idx = 0; page_idx < wqs->num_pages; page_idx++) {
327 err = wqs_allocate_page(wqs, page_idx);
328 if (err) {
329 dev_err(&pdev->dev, "Failed wq page allocation\n");
330 goto err_wq_allocate_page;
334 wqs->free_blocks = devm_kzalloc(&pdev->dev, WQS_FREE_BLOCKS_SIZE(wqs),
335 GFP_KERNEL);
336 if (!wqs->free_blocks) {
337 err = -ENOMEM;
338 goto err_alloc_blocks;
341 init_wqs_blocks_arr(wqs);
342 return 0;
344 err_alloc_blocks:
345 err_wq_allocate_page:
346 for (i = 0; i < page_idx; i++)
347 wqs_free_page(wqs, i);
349 free_page_arrays(wqs);
350 return err;
354 * hinic_wqs_free - free Work Queues set
355 * @wqs: Work Queue Set
357 void hinic_wqs_free(struct hinic_wqs *wqs)
359 struct hinic_hwif *hwif = wqs->hwif;
360 struct pci_dev *pdev = hwif->pdev;
361 int page_idx;
363 devm_kfree(&pdev->dev, wqs->free_blocks);
365 for (page_idx = 0; page_idx < wqs->num_pages; page_idx++)
366 wqs_free_page(wqs, page_idx);
368 free_page_arrays(wqs);
372 * alloc_wqes_shadow - allocate WQE shadows for WQ
373 * @wq: WQ to allocate shadows for
375 * Return 0 - Success, negative - Failure
377 static int alloc_wqes_shadow(struct hinic_wq *wq)
379 struct hinic_hwif *hwif = wq->hwif;
380 struct pci_dev *pdev = hwif->pdev;
381 size_t size;
383 size = wq->num_q_pages * wq->max_wqe_size;
384 wq->shadow_wqe = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
385 if (!wq->shadow_wqe)
386 return -ENOMEM;
388 size = wq->num_q_pages * sizeof(wq->prod_idx);
389 wq->shadow_idx = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
390 if (!wq->shadow_idx)
391 goto err_shadow_idx;
393 return 0;
395 err_shadow_idx:
396 devm_kfree(&pdev->dev, wq->shadow_wqe);
397 return -ENOMEM;
401 * free_wqes_shadow - free WQE shadows of WQ
402 * @wq: WQ to free shadows from
404 static void free_wqes_shadow(struct hinic_wq *wq)
406 struct hinic_hwif *hwif = wq->hwif;
407 struct pci_dev *pdev = hwif->pdev;
409 devm_kfree(&pdev->dev, wq->shadow_idx);
410 devm_kfree(&pdev->dev, wq->shadow_wqe);
414 * free_wq_pages - free pages of WQ
415 * @hwif: HW interface for releasing dma addresses
416 * @wq: WQ to free pages from
417 * @num_q_pages: number pages to free
419 static void free_wq_pages(struct hinic_wq *wq, struct hinic_hwif *hwif,
420 int num_q_pages)
422 struct pci_dev *pdev = hwif->pdev;
423 int i;
425 for (i = 0; i < num_q_pages; i++) {
426 void **vaddr = &wq->shadow_block_vaddr[i];
427 u64 *paddr = &wq->block_vaddr[i];
428 dma_addr_t dma_addr;
430 dma_addr = (dma_addr_t)be64_to_cpu(*paddr);
431 dma_free_coherent(&pdev->dev, wq->wq_page_size, *vaddr,
432 dma_addr);
435 free_wqes_shadow(wq);
439 * alloc_wq_pages - alloc pages for WQ
440 * @hwif: HW interface for allocating dma addresses
441 * @wq: WQ to allocate pages for
442 * @max_pages: maximum pages allowed
444 * Return 0 - Success, negative - Failure
446 static int alloc_wq_pages(struct hinic_wq *wq, struct hinic_hwif *hwif,
447 int max_pages)
449 struct pci_dev *pdev = hwif->pdev;
450 int i, err, num_q_pages;
452 num_q_pages = ALIGN(WQ_SIZE(wq), wq->wq_page_size) / wq->wq_page_size;
453 if (num_q_pages > max_pages) {
454 dev_err(&pdev->dev, "Number wq pages exceeds the limit\n");
455 return -EINVAL;
458 if (num_q_pages & (num_q_pages - 1)) {
459 dev_err(&pdev->dev, "Number wq pages must be power of 2\n");
460 return -EINVAL;
463 wq->num_q_pages = num_q_pages;
465 err = alloc_wqes_shadow(wq);
466 if (err) {
467 dev_err(&pdev->dev, "Failed to allocate wqe shadow\n");
468 return err;
471 for (i = 0; i < num_q_pages; i++) {
472 void **vaddr = &wq->shadow_block_vaddr[i];
473 u64 *paddr = &wq->block_vaddr[i];
474 dma_addr_t dma_addr;
476 *vaddr = dma_alloc_coherent(&pdev->dev, wq->wq_page_size,
477 &dma_addr, GFP_KERNEL);
478 if (!*vaddr) {
479 dev_err(&pdev->dev, "Failed to allocate wq page\n");
480 goto err_alloc_wq_pages;
483 /* HW uses Big Endian Format */
484 *paddr = cpu_to_be64(dma_addr);
487 return 0;
489 err_alloc_wq_pages:
490 free_wq_pages(wq, hwif, i);
491 return -ENOMEM;
495 * hinic_wq_allocate - Allocate the WQ resources from the WQS
496 * @wqs: WQ set from which to allocate the WQ resources
497 * @wq: WQ to allocate resources for it from the WQ set
498 * @wqebb_size: Work Queue Block Byte Size
499 * @wq_page_size: the page size in the Work Queue
500 * @q_depth: number of wqebbs in WQ
501 * @max_wqe_size: maximum WQE size that will be used in the WQ
503 * Return 0 - Success, negative - Failure
505 int hinic_wq_allocate(struct hinic_wqs *wqs, struct hinic_wq *wq,
506 u16 wqebb_size, u32 wq_page_size, u16 q_depth,
507 u16 max_wqe_size)
509 struct hinic_hwif *hwif = wqs->hwif;
510 struct pci_dev *pdev = hwif->pdev;
511 u16 num_wqebbs_per_page;
512 u16 wqebb_size_shift;
513 int err;
515 if (!is_power_of_2(wqebb_size)) {
516 dev_err(&pdev->dev, "wqebb_size must be power of 2\n");
517 return -EINVAL;
520 if (wq_page_size == 0) {
521 dev_err(&pdev->dev, "wq_page_size must be > 0\n");
522 return -EINVAL;
525 if (q_depth & (q_depth - 1)) {
526 dev_err(&pdev->dev, "WQ q_depth must be power of 2\n");
527 return -EINVAL;
530 wqebb_size_shift = ilog2(wqebb_size);
531 num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size)
532 >> wqebb_size_shift;
534 if (!is_power_of_2(num_wqebbs_per_page)) {
535 dev_err(&pdev->dev, "num wqebbs per page must be power of 2\n");
536 return -EINVAL;
539 wq->hwif = hwif;
541 err = wqs_next_block(wqs, &wq->page_idx, &wq->block_idx);
542 if (err) {
543 dev_err(&pdev->dev, "Failed to get free wqs next block\n");
544 return err;
547 wq->wqebb_size = wqebb_size;
548 wq->wq_page_size = wq_page_size;
549 wq->q_depth = q_depth;
550 wq->max_wqe_size = max_wqe_size;
551 wq->num_wqebbs_per_page = num_wqebbs_per_page;
552 wq->wqebbs_per_page_shift = ilog2(num_wqebbs_per_page);
553 wq->wqebb_size_shift = wqebb_size_shift;
554 wq->block_vaddr = WQ_BASE_VADDR(wqs, wq);
555 wq->shadow_block_vaddr = WQ_BASE_ADDR(wqs, wq);
556 wq->block_paddr = WQ_BASE_PADDR(wqs, wq);
558 err = alloc_wq_pages(wq, wqs->hwif, WQ_MAX_PAGES);
559 if (err) {
560 dev_err(&pdev->dev, "Failed to allocate wq pages\n");
561 goto err_alloc_wq_pages;
564 atomic_set(&wq->cons_idx, 0);
565 atomic_set(&wq->prod_idx, 0);
566 atomic_set(&wq->delta, q_depth);
567 wq->mask = q_depth - 1;
569 return 0;
571 err_alloc_wq_pages:
572 wqs_return_block(wqs, wq->page_idx, wq->block_idx);
573 return err;
577 * hinic_wq_free - Free the WQ resources to the WQS
578 * @wqs: WQ set to free the WQ resources to it
579 * @wq: WQ to free its resources to the WQ set resources
581 void hinic_wq_free(struct hinic_wqs *wqs, struct hinic_wq *wq)
583 free_wq_pages(wq, wqs->hwif, wq->num_q_pages);
585 wqs_return_block(wqs, wq->page_idx, wq->block_idx);
589 * hinic_wqs_cmdq_alloc - Allocate wqs for cmdqs
590 * @cmdq_pages: will hold the pages of the cmdq
591 * @wq: returned wqs
592 * @hwif: HW interface
593 * @cmdq_blocks: number of cmdq blocks/wq to allocate
594 * @wqebb_size: Work Queue Block Byte Size
595 * @wq_page_size: the page size in the Work Queue
596 * @q_depth: number of wqebbs in WQ
597 * @max_wqe_size: maximum WQE size that will be used in the WQ
599 * Return 0 - Success, negative - Failure
601 int hinic_wqs_cmdq_alloc(struct hinic_cmdq_pages *cmdq_pages,
602 struct hinic_wq *wq, struct hinic_hwif *hwif,
603 int cmdq_blocks, u16 wqebb_size, u32 wq_page_size,
604 u16 q_depth, u16 max_wqe_size)
606 struct pci_dev *pdev = hwif->pdev;
607 u16 num_wqebbs_per_page_shift;
608 u16 num_wqebbs_per_page;
609 u16 wqebb_size_shift;
610 int i, j, err = -ENOMEM;
612 if (!is_power_of_2(wqebb_size)) {
613 dev_err(&pdev->dev, "wqebb_size must be power of 2\n");
614 return -EINVAL;
617 if (wq_page_size == 0) {
618 dev_err(&pdev->dev, "wq_page_size must be > 0\n");
619 return -EINVAL;
622 if (q_depth & (q_depth - 1)) {
623 dev_err(&pdev->dev, "WQ q_depth must be power of 2\n");
624 return -EINVAL;
627 wqebb_size_shift = ilog2(wqebb_size);
628 num_wqebbs_per_page = ALIGN(wq_page_size, wqebb_size)
629 >> wqebb_size_shift;
631 if (!is_power_of_2(num_wqebbs_per_page)) {
632 dev_err(&pdev->dev, "num wqebbs per page must be power of 2\n");
633 return -EINVAL;
636 cmdq_pages->hwif = hwif;
638 err = cmdq_allocate_page(cmdq_pages);
639 if (err) {
640 dev_err(&pdev->dev, "Failed to allocate CMDQ page\n");
641 return err;
643 num_wqebbs_per_page_shift = ilog2(num_wqebbs_per_page);
645 for (i = 0; i < cmdq_blocks; i++) {
646 wq[i].hwif = hwif;
647 wq[i].page_idx = 0;
648 wq[i].block_idx = i;
650 wq[i].wqebb_size = wqebb_size;
651 wq[i].wq_page_size = wq_page_size;
652 wq[i].q_depth = q_depth;
653 wq[i].max_wqe_size = max_wqe_size;
654 wq[i].num_wqebbs_per_page = num_wqebbs_per_page;
655 wq[i].wqebbs_per_page_shift = num_wqebbs_per_page_shift;
656 wq[i].wqebb_size_shift = wqebb_size_shift;
657 wq[i].block_vaddr = CMDQ_BASE_VADDR(cmdq_pages, &wq[i]);
658 wq[i].shadow_block_vaddr = CMDQ_BASE_ADDR(cmdq_pages, &wq[i]);
659 wq[i].block_paddr = CMDQ_BASE_PADDR(cmdq_pages, &wq[i]);
661 err = alloc_wq_pages(&wq[i], cmdq_pages->hwif,
662 CMDQ_WQ_MAX_PAGES);
663 if (err) {
664 dev_err(&pdev->dev, "Failed to alloc CMDQ blocks\n");
665 goto err_cmdq_block;
668 atomic_set(&wq[i].cons_idx, 0);
669 atomic_set(&wq[i].prod_idx, 0);
670 atomic_set(&wq[i].delta, q_depth);
671 wq[i].mask = q_depth - 1;
674 return 0;
676 err_cmdq_block:
677 for (j = 0; j < i; j++)
678 free_wq_pages(&wq[j], cmdq_pages->hwif, wq[j].num_q_pages);
680 cmdq_free_page(cmdq_pages);
681 return err;
685 * hinic_wqs_cmdq_free - Free wqs from cmdqs
686 * @cmdq_pages: hold the pages of the cmdq
687 * @wq: wqs to free
688 * @cmdq_blocks: number of wqs to free
690 void hinic_wqs_cmdq_free(struct hinic_cmdq_pages *cmdq_pages,
691 struct hinic_wq *wq, int cmdq_blocks)
693 int i;
695 for (i = 0; i < cmdq_blocks; i++)
696 free_wq_pages(&wq[i], cmdq_pages->hwif, wq[i].num_q_pages);
698 cmdq_free_page(cmdq_pages);
701 static void copy_wqe_to_shadow(struct hinic_wq *wq, void *shadow_addr,
702 int num_wqebbs, u16 idx)
704 void *wqebb_addr;
705 int i;
707 for (i = 0; i < num_wqebbs; i++, idx++) {
708 idx = MASKED_WQE_IDX(wq, idx);
709 wqebb_addr = WQ_PAGE_ADDR(wq, idx) +
710 WQE_PAGE_OFF(wq, idx);
712 memcpy(shadow_addr, wqebb_addr, wq->wqebb_size);
714 shadow_addr += wq->wqebb_size;
718 static void copy_wqe_from_shadow(struct hinic_wq *wq, void *shadow_addr,
719 int num_wqebbs, u16 idx)
721 void *wqebb_addr;
722 int i;
724 for (i = 0; i < num_wqebbs; i++, idx++) {
725 idx = MASKED_WQE_IDX(wq, idx);
726 wqebb_addr = WQ_PAGE_ADDR(wq, idx) +
727 WQE_PAGE_OFF(wq, idx);
729 memcpy(wqebb_addr, shadow_addr, wq->wqebb_size);
730 shadow_addr += wq->wqebb_size;
735 * hinic_get_wqe - get wqe ptr in the current pi and update the pi
736 * @wq: wq to get wqe from
737 * @wqe_size: wqe size
738 * @prod_idx: returned pi
740 * Return wqe pointer
742 struct hinic_hw_wqe *hinic_get_wqe(struct hinic_wq *wq, unsigned int wqe_size,
743 u16 *prod_idx)
745 int curr_pg, end_pg, num_wqebbs;
746 u16 curr_prod_idx, end_prod_idx;
748 *prod_idx = MASKED_WQE_IDX(wq, atomic_read(&wq->prod_idx));
750 num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) >> wq->wqebb_size_shift;
752 if (atomic_sub_return(num_wqebbs, &wq->delta) <= 0) {
753 atomic_add(num_wqebbs, &wq->delta);
754 return ERR_PTR(-EBUSY);
757 end_prod_idx = atomic_add_return(num_wqebbs, &wq->prod_idx);
759 end_prod_idx = MASKED_WQE_IDX(wq, end_prod_idx);
760 curr_prod_idx = end_prod_idx - num_wqebbs;
761 curr_prod_idx = MASKED_WQE_IDX(wq, curr_prod_idx);
763 /* end prod index points to the next wqebb, therefore minus 1 */
764 end_prod_idx = MASKED_WQE_IDX(wq, end_prod_idx - 1);
766 curr_pg = WQE_PAGE_NUM(wq, curr_prod_idx);
767 end_pg = WQE_PAGE_NUM(wq, end_prod_idx);
769 *prod_idx = curr_prod_idx;
771 /* If we only have one page, still need to get shadown wqe when
772 * wqe rolling-over page
774 if (curr_pg != end_pg || MASKED_WQE_IDX(wq, end_prod_idx) < *prod_idx) {
775 void *shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
777 copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *prod_idx);
779 wq->shadow_idx[curr_pg] = *prod_idx;
780 return shadow_addr;
783 return WQ_PAGE_ADDR(wq, *prod_idx) + WQE_PAGE_OFF(wq, *prod_idx);
787 * hinic_return_wqe - return the wqe when transmit failed
788 * @wq: wq to return wqe
789 * @wqe_size: wqe size
791 void hinic_return_wqe(struct hinic_wq *wq, unsigned int wqe_size)
793 int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) / wq->wqebb_size;
795 atomic_sub(num_wqebbs, &wq->prod_idx);
797 atomic_add(num_wqebbs, &wq->delta);
801 * hinic_put_wqe - return the wqe place to use for a new wqe
802 * @wq: wq to return wqe
803 * @wqe_size: wqe size
805 void hinic_put_wqe(struct hinic_wq *wq, unsigned int wqe_size)
807 int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size)
808 >> wq->wqebb_size_shift;
810 atomic_add(num_wqebbs, &wq->cons_idx);
812 atomic_add(num_wqebbs, &wq->delta);
816 * hinic_read_wqe - read wqe ptr in the current ci
817 * @wq: wq to get read from
818 * @wqe_size: wqe size
819 * @cons_idx: returned ci
821 * Return wqe pointer
823 struct hinic_hw_wqe *hinic_read_wqe(struct hinic_wq *wq, unsigned int wqe_size,
824 u16 *cons_idx)
826 int num_wqebbs = ALIGN(wqe_size, wq->wqebb_size)
827 >> wq->wqebb_size_shift;
828 u16 curr_cons_idx, end_cons_idx;
829 int curr_pg, end_pg;
831 if ((atomic_read(&wq->delta) + num_wqebbs) > wq->q_depth)
832 return ERR_PTR(-EBUSY);
834 curr_cons_idx = atomic_read(&wq->cons_idx);
836 curr_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx);
837 end_cons_idx = MASKED_WQE_IDX(wq, curr_cons_idx + num_wqebbs - 1);
839 curr_pg = WQE_PAGE_NUM(wq, curr_cons_idx);
840 end_pg = WQE_PAGE_NUM(wq, end_cons_idx);
842 *cons_idx = curr_cons_idx;
844 if (curr_pg != end_pg) {
845 void *shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
847 copy_wqe_to_shadow(wq, shadow_addr, num_wqebbs, *cons_idx);
848 return shadow_addr;
851 return WQ_PAGE_ADDR(wq, *cons_idx) + WQE_PAGE_OFF(wq, *cons_idx);
855 * hinic_read_wqe_direct - read wqe directly from ci position
856 * @wq: wq
857 * @cons_idx: ci position
859 * Return wqe
861 struct hinic_hw_wqe *hinic_read_wqe_direct(struct hinic_wq *wq, u16 cons_idx)
863 return WQ_PAGE_ADDR(wq, cons_idx) + WQE_PAGE_OFF(wq, cons_idx);
867 * wqe_shadow - check if a wqe is shadow
868 * @wq: wq of the wqe
869 * @wqe: the wqe for shadow checking
871 * Return true - shadow, false - Not shadow
873 static inline bool wqe_shadow(struct hinic_wq *wq, struct hinic_hw_wqe *wqe)
875 size_t wqe_shadow_size = wq->num_q_pages * wq->max_wqe_size;
877 return WQE_IN_RANGE(wqe, wq->shadow_wqe,
878 &wq->shadow_wqe[wqe_shadow_size]);
882 * hinic_write_wqe - write the wqe to the wq
883 * @wq: wq to write wqe to
884 * @wqe: wqe to write
885 * @wqe_size: wqe size
887 void hinic_write_wqe(struct hinic_wq *wq, struct hinic_hw_wqe *wqe,
888 unsigned int wqe_size)
890 int curr_pg, num_wqebbs;
891 void *shadow_addr;
892 u16 prod_idx;
894 if (wqe_shadow(wq, wqe)) {
895 curr_pg = WQE_SHADOW_PAGE(wq, wqe);
897 prod_idx = wq->shadow_idx[curr_pg];
898 num_wqebbs = ALIGN(wqe_size, wq->wqebb_size) / wq->wqebb_size;
899 shadow_addr = &wq->shadow_wqe[curr_pg * wq->max_wqe_size];
901 copy_wqe_from_shadow(wq, shadow_addr, num_wqebbs, prod_idx);