1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
7 * e1000e_get_bus_info_pcie - Get PCIe bus information
8 * @hw: pointer to the HW structure
10 * Determines and stores the system bus information for a particular
11 * network interface. The following bus information is determined and stored:
12 * bus speed, bus width, type (PCIe), and PCIe function.
14 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
16 struct e1000_mac_info
*mac
= &hw
->mac
;
17 struct e1000_bus_info
*bus
= &hw
->bus
;
18 struct e1000_adapter
*adapter
= hw
->adapter
;
19 u16 pcie_link_status
, cap_offset
;
21 cap_offset
= adapter
->pdev
->pcie_cap
;
23 bus
->width
= e1000_bus_width_unknown
;
25 pci_read_config_word(adapter
->pdev
,
26 cap_offset
+ PCIE_LINK_STATUS
,
28 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
29 PCIE_LINK_WIDTH_MASK
) >>
30 PCIE_LINK_WIDTH_SHIFT
);
33 mac
->ops
.set_lan_id(hw
);
39 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
41 * @hw: pointer to the HW structure
43 * Determines the LAN function id by reading memory-mapped registers
44 * and swaps the port value if requested.
46 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
)
48 struct e1000_bus_info
*bus
= &hw
->bus
;
51 /* The status register reports the correct function number
52 * for the device regardless of function swap state.
55 bus
->func
= (reg
& E1000_STATUS_FUNC_MASK
) >> E1000_STATUS_FUNC_SHIFT
;
59 * e1000_set_lan_id_single_port - Set LAN id for a single port device
60 * @hw: pointer to the HW structure
62 * Sets the LAN function id to zero for a single port device.
64 void e1000_set_lan_id_single_port(struct e1000_hw
*hw
)
66 struct e1000_bus_info
*bus
= &hw
->bus
;
72 * e1000_clear_vfta_generic - Clear VLAN filter table
73 * @hw: pointer to the HW structure
75 * Clears the register array which contains the VLAN filter table by
76 * setting all the values to 0.
78 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
82 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
83 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
89 * e1000_write_vfta_generic - Write value to VLAN filter table
90 * @hw: pointer to the HW structure
91 * @offset: register offset in VLAN filter table
92 * @value: register value written to VLAN filter table
94 * Writes value at the given offset in the register array which stores
95 * the VLAN filter table.
97 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
99 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
104 * e1000e_init_rx_addrs - Initialize receive address's
105 * @hw: pointer to the HW structure
106 * @rar_count: receive address registers
108 * Setup the receive address registers by setting the base receive address
109 * register to the devices MAC address and clearing all the other receive
110 * address registers to 0.
112 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
115 u8 mac_addr
[ETH_ALEN
] = { 0 };
117 /* Setup the receive address */
118 e_dbg("Programming MAC Address into RAR[0]\n");
120 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 e_dbg("Clearing RAR[1-%u]\n", rar_count
- 1);
124 for (i
= 1; i
< rar_count
; i
++)
125 hw
->mac
.ops
.rar_set(hw
, mac_addr
, i
);
129 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
130 * @hw: pointer to the HW structure
132 * Checks the nvm for an alternate MAC address. An alternate MAC address
133 * can be setup by pre-boot software and must be treated like a permanent
134 * address and must override the actual permanent MAC address. If an
135 * alternate MAC address is found it is programmed into RAR0, replacing
136 * the permanent address that was installed into RAR0 by the Si on reset.
137 * This function will return SUCCESS unless it encounters an error while
138 * reading the EEPROM.
140 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
144 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
145 u8 alt_mac_addr
[ETH_ALEN
];
147 ret_val
= e1000_read_nvm(hw
, NVM_COMPAT
, 1, &nvm_data
);
151 /* not supported on 82573 */
152 if (hw
->mac
.type
== e1000_82573
)
155 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
156 &nvm_alt_mac_addr_offset
);
158 e_dbg("NVM Read Error\n");
162 if ((nvm_alt_mac_addr_offset
== 0xFFFF) ||
163 (nvm_alt_mac_addr_offset
== 0x0000))
164 /* There is no Alternate MAC Address */
167 if (hw
->bus
.func
== E1000_FUNC_1
)
168 nvm_alt_mac_addr_offset
+= E1000_ALT_MAC_ADDRESS_OFFSET_LAN1
;
169 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
170 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
171 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
173 e_dbg("NVM Read Error\n");
177 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
178 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
181 /* if multicast bit is set, the alternate address will not be used */
182 if (is_multicast_ether_addr(alt_mac_addr
)) {
183 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
187 /* We have a valid alternate MAC address, and we want to treat it the
188 * same as the normal permanent MAC address stored by the HW into the
189 * RAR. Do this by mapping this address into RAR0.
191 hw
->mac
.ops
.rar_set(hw
, alt_mac_addr
, 0);
196 u32
e1000e_rar_get_count_generic(struct e1000_hw
*hw
)
198 return hw
->mac
.rar_entry_count
;
202 * e1000e_rar_set_generic - Set receive address register
203 * @hw: pointer to the HW structure
204 * @addr: pointer to the receive address
205 * @index: receive address array register
207 * Sets the receive address array register at index to the address passed
210 int e1000e_rar_set_generic(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
212 u32 rar_low
, rar_high
;
214 /* HW expects these in little endian so we reverse the byte order
215 * from network order (big endian) to little endian
217 rar_low
= ((u32
)addr
[0] | ((u32
)addr
[1] << 8) |
218 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
220 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
222 /* If MAC address zero, no need to set the AV bit */
223 if (rar_low
|| rar_high
)
224 rar_high
|= E1000_RAH_AV
;
226 /* Some bridges will combine consecutive 32-bit writes into
227 * a single burst write, which will malfunction on some parts.
228 * The flushes avoid this.
230 ew32(RAL(index
), rar_low
);
232 ew32(RAH(index
), rar_high
);
239 * e1000_hash_mc_addr - Generate a multicast hash value
240 * @hw: pointer to the HW structure
241 * @mc_addr: pointer to a multicast address
243 * Generates a multicast address hash value which is used to determine
244 * the multicast filter table array address and new table value.
246 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
248 u32 hash_value
, hash_mask
;
251 /* Register count multiplied by bits per register */
252 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
254 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
255 * where 0xFF would still fall within the hash mask.
257 while (hash_mask
>> bit_shift
!= 0xFF)
260 /* The portion of the address that is used for the hash table
261 * is determined by the mc_filter_type setting.
262 * The algorithm is such that there is a total of 8 bits of shifting.
263 * The bit_shift for a mc_filter_type of 0 represents the number of
264 * left-shifts where the MSB of mc_addr[5] would still fall within
265 * the hash_mask. Case 0 does this exactly. Since there are a total
266 * of 8 bits of shifting, then mc_addr[4] will shift right the
267 * remaining number of bits. Thus 8 - bit_shift. The rest of the
268 * cases are a variation of this algorithm...essentially raising the
269 * number of bits to shift mc_addr[5] left, while still keeping the
270 * 8-bit shifting total.
272 * For example, given the following Destination MAC Address and an
273 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
274 * we can see that the bit_shift for case 0 is 4. These are the hash
275 * values resulting from each mc_filter_type...
276 * [0] [1] [2] [3] [4] [5]
280 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
281 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
282 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
283 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
285 switch (hw
->mac
.mc_filter_type
) {
300 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
301 (((u16
)mc_addr
[5]) << bit_shift
)));
307 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
308 * @hw: pointer to the HW structure
309 * @mc_addr_list: array of multicast addresses to program
310 * @mc_addr_count: number of multicast addresses to program
312 * Updates entire Multicast Table Array.
313 * The caller must have a packed mc_addr_list of multicast addresses.
315 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
316 u8
*mc_addr_list
, u32 mc_addr_count
)
318 u32 hash_value
, hash_bit
, hash_reg
;
321 /* clear mta_shadow */
322 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
324 /* update mta_shadow from mc_addr_list */
325 for (i
= 0; (u32
)i
< mc_addr_count
; i
++) {
326 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
328 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
329 hash_bit
= hash_value
& 0x1F;
331 hw
->mac
.mta_shadow
[hash_reg
] |= BIT(hash_bit
);
332 mc_addr_list
+= (ETH_ALEN
);
335 /* replace the entire MTA table */
336 for (i
= hw
->mac
.mta_reg_count
- 1; i
>= 0; i
--)
337 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, hw
->mac
.mta_shadow
[i
]);
342 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
343 * @hw: pointer to the HW structure
345 * Clears the base hardware counters by reading the counter registers.
347 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
389 * e1000e_check_for_copper_link - Check for link (Copper)
390 * @hw: pointer to the HW structure
392 * Checks to see of the link status of the hardware has changed. If a
393 * change in link status has been detected, then we read the PHY registers
394 * to get the current speed/duplex if link exists.
396 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
398 struct e1000_mac_info
*mac
= &hw
->mac
;
402 /* We only want to go out to the PHY registers to see if Auto-Neg
403 * has completed and/or if our link status has changed. The
404 * get_link_status flag is set upon receiving a Link Status
405 * Change or Rx Sequence Error interrupt.
407 if (!mac
->get_link_status
)
409 mac
->get_link_status
= false;
411 /* First we want to see if the MII Status Register reports
412 * link. If so, then we want to get the current speed/duplex
415 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
416 if (ret_val
|| !link
)
419 /* Check if there was DownShift, must be checked
420 * immediately after link-up
422 e1000e_check_downshift(hw
);
424 /* If we are forcing speed/duplex, then we simply return since
425 * we have already determined whether we have link or not.
428 return -E1000_ERR_CONFIG
;
430 /* Auto-Neg is enabled. Auto Speed Detection takes care
431 * of MAC speed/duplex configuration. So we only need to
432 * configure Collision Distance in the MAC.
434 mac
->ops
.config_collision_dist(hw
);
436 /* Configure Flow Control now that Auto-Neg has completed.
437 * First, we need to restore the desired flow control
438 * settings because we may have had to re-autoneg with a
439 * different link partner.
441 ret_val
= e1000e_config_fc_after_link_up(hw
);
443 e_dbg("Error configuring flow control\n");
448 mac
->get_link_status
= true;
453 * e1000e_check_for_fiber_link - Check for link (Fiber)
454 * @hw: pointer to the HW structure
456 * Checks for link up on the hardware. If link is not up and we have
457 * a signal, then we need to force link up.
459 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
461 struct e1000_mac_info
*mac
= &hw
->mac
;
468 status
= er32(STATUS
);
471 /* If we don't have link (auto-negotiation failed or link partner
472 * cannot auto-negotiate), the cable is plugged in (we have signal),
473 * and our link partner is not trying to auto-negotiate with us (we
474 * are receiving idles or data), we need to force link up. We also
475 * need to give auto-negotiation time to complete, in case the cable
476 * was just plugged in. The autoneg_failed flag does this.
478 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
479 if ((ctrl
& E1000_CTRL_SWDPIN1
) && !(status
& E1000_STATUS_LU
) &&
480 !(rxcw
& E1000_RXCW_C
)) {
481 if (!mac
->autoneg_failed
) {
482 mac
->autoneg_failed
= true;
485 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
487 /* Disable auto-negotiation in the TXCW register */
488 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
490 /* Force link-up and also force full-duplex. */
492 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
495 /* Configure Flow Control after forcing link up. */
496 ret_val
= e1000e_config_fc_after_link_up(hw
);
498 e_dbg("Error configuring flow control\n");
501 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
502 /* If we are forcing link and we are receiving /C/ ordered
503 * sets, re-enable auto-negotiation in the TXCW register
504 * and disable forced link in the Device Control register
505 * in an attempt to auto-negotiate with our link partner.
507 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
508 ew32(TXCW
, mac
->txcw
);
509 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
511 mac
->serdes_has_link
= true;
518 * e1000e_check_for_serdes_link - Check for link (Serdes)
519 * @hw: pointer to the HW structure
521 * Checks for link up on the hardware. If link is not up and we have
522 * a signal, then we need to force link up.
524 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
526 struct e1000_mac_info
*mac
= &hw
->mac
;
533 status
= er32(STATUS
);
536 /* If we don't have link (auto-negotiation failed or link partner
537 * cannot auto-negotiate), and our link partner is not trying to
538 * auto-negotiate with us (we are receiving idles or data),
539 * we need to force link up. We also need to give auto-negotiation
542 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
543 if (!(status
& E1000_STATUS_LU
) && !(rxcw
& E1000_RXCW_C
)) {
544 if (!mac
->autoneg_failed
) {
545 mac
->autoneg_failed
= true;
548 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
550 /* Disable auto-negotiation in the TXCW register */
551 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
553 /* Force link-up and also force full-duplex. */
555 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
558 /* Configure Flow Control after forcing link up. */
559 ret_val
= e1000e_config_fc_after_link_up(hw
);
561 e_dbg("Error configuring flow control\n");
564 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
565 /* If we are forcing link and we are receiving /C/ ordered
566 * sets, re-enable auto-negotiation in the TXCW register
567 * and disable forced link in the Device Control register
568 * in an attempt to auto-negotiate with our link partner.
570 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
571 ew32(TXCW
, mac
->txcw
);
572 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
574 mac
->serdes_has_link
= true;
575 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
576 /* If we force link for non-auto-negotiation switch, check
577 * link status based on MAC synchronization for internal
580 /* SYNCH bit and IV bit are sticky. */
581 usleep_range(10, 20);
583 if (rxcw
& E1000_RXCW_SYNCH
) {
584 if (!(rxcw
& E1000_RXCW_IV
)) {
585 mac
->serdes_has_link
= true;
586 e_dbg("SERDES: Link up - forced.\n");
589 mac
->serdes_has_link
= false;
590 e_dbg("SERDES: Link down - force failed.\n");
594 if (E1000_TXCW_ANE
& er32(TXCW
)) {
595 status
= er32(STATUS
);
596 if (status
& E1000_STATUS_LU
) {
597 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
598 usleep_range(10, 20);
600 if (rxcw
& E1000_RXCW_SYNCH
) {
601 if (!(rxcw
& E1000_RXCW_IV
)) {
602 mac
->serdes_has_link
= true;
603 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
605 mac
->serdes_has_link
= false;
606 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
609 mac
->serdes_has_link
= false;
610 e_dbg("SERDES: Link down - no sync.\n");
613 mac
->serdes_has_link
= false;
614 e_dbg("SERDES: Link down - autoneg failed\n");
622 * e1000_set_default_fc_generic - Set flow control default values
623 * @hw: pointer to the HW structure
625 * Read the EEPROM for the default values for flow control and store the
628 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
633 /* Read and store word 0x0F of the EEPROM. This word contains bits
634 * that determine the hardware's default PAUSE (flow control) mode,
635 * a bit that determines whether the HW defaults to enabling or
636 * disabling auto-negotiation, and the direction of the
637 * SW defined pins. If there is no SW over-ride of the flow
638 * control setting, then the variable hw->fc will
639 * be initialized based on a value in the EEPROM.
641 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
644 e_dbg("NVM Read Error\n");
648 if (!(nvm_data
& NVM_WORD0F_PAUSE_MASK
))
649 hw
->fc
.requested_mode
= e1000_fc_none
;
650 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == NVM_WORD0F_ASM_DIR
)
651 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
653 hw
->fc
.requested_mode
= e1000_fc_full
;
659 * e1000e_setup_link_generic - Setup flow control and link settings
660 * @hw: pointer to the HW structure
662 * Determines which flow control settings to use, then configures flow
663 * control. Calls the appropriate media-specific link configuration
664 * function. Assuming the adapter has a valid link partner, a valid link
665 * should be established. Assumes the hardware has previously been reset
666 * and the transmitter and receiver are not enabled.
668 s32
e1000e_setup_link_generic(struct e1000_hw
*hw
)
672 /* In the case of the phy reset being blocked, we already have a link.
673 * We do not need to set it up again.
675 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
678 /* If requested flow control is set to default, set flow control
679 * based on the EEPROM flow control settings.
681 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
682 ret_val
= e1000_set_default_fc_generic(hw
);
687 /* Save off the requested flow control mode for use later. Depending
688 * on the link partner's capabilities, we may or may not use this mode.
690 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
692 e_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.current_mode
);
694 /* Call the necessary media_type subroutine to configure the link. */
695 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
699 /* Initialize the flow control address, type, and PAUSE timer
700 * registers to their default values. This is done even if flow
701 * control is disabled, because it does not hurt anything to
702 * initialize these registers.
704 e_dbg("Initializing the Flow Control address, type and timer regs\n");
705 ew32(FCT
, FLOW_CONTROL_TYPE
);
706 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
707 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
709 ew32(FCTTV
, hw
->fc
.pause_time
);
711 return e1000e_set_fc_watermarks(hw
);
715 * e1000_commit_fc_settings_generic - Configure flow control
716 * @hw: pointer to the HW structure
718 * Write the flow control settings to the Transmit Config Word Register (TXCW)
719 * base on the flow control settings in e1000_mac_info.
721 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
723 struct e1000_mac_info
*mac
= &hw
->mac
;
726 /* Check for a software override of the flow control settings, and
727 * setup the device accordingly. If auto-negotiation is enabled, then
728 * software will have to set the "PAUSE" bits to the correct value in
729 * the Transmit Config Word Register (TXCW) and re-start auto-
730 * negotiation. However, if auto-negotiation is disabled, then
731 * software will have to manually configure the two flow control enable
732 * bits in the CTRL register.
734 * The possible values of the "fc" parameter are:
735 * 0: Flow control is completely disabled
736 * 1: Rx flow control is enabled (we can receive pause frames,
737 * but not send pause frames).
738 * 2: Tx flow control is enabled (we can send pause frames but we
739 * do not support receiving pause frames).
740 * 3: Both Rx and Tx flow control (symmetric) are enabled.
742 switch (hw
->fc
.current_mode
) {
744 /* Flow control completely disabled by a software over-ride. */
745 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
747 case e1000_fc_rx_pause
:
748 /* Rx Flow control is enabled and Tx Flow control is disabled
749 * by a software over-ride. Since there really isn't a way to
750 * advertise that we are capable of Rx Pause ONLY, we will
751 * advertise that we support both symmetric and asymmetric Rx
752 * PAUSE. Later, we will disable the adapter's ability to send
755 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
757 case e1000_fc_tx_pause
:
758 /* Tx Flow control is enabled, and Rx Flow control is disabled,
759 * by a software over-ride.
761 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
764 /* Flow control (both Rx and Tx) is enabled by a software
767 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
770 e_dbg("Flow control param set incorrectly\n");
771 return -E1000_ERR_CONFIG
;
781 * e1000_poll_fiber_serdes_link_generic - Poll for link up
782 * @hw: pointer to the HW structure
784 * Polls for link up by reading the status register, if link fails to come
785 * up with auto-negotiation, then the link is forced if a signal is detected.
787 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
789 struct e1000_mac_info
*mac
= &hw
->mac
;
793 /* If we have a signal (the cable is plugged in, or assumed true for
794 * serdes media) then poll for a "Link-Up" indication in the Device
795 * Status Register. Time-out if a link isn't seen in 500 milliseconds
796 * seconds (Auto-negotiation should complete in less than 500
797 * milliseconds even if the other end is doing it in SW).
799 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
800 usleep_range(10000, 11000);
801 status
= er32(STATUS
);
802 if (status
& E1000_STATUS_LU
)
805 if (i
== FIBER_LINK_UP_LIMIT
) {
806 e_dbg("Never got a valid link from auto-neg!!!\n");
807 mac
->autoneg_failed
= true;
808 /* AutoNeg failed to achieve a link, so we'll call
809 * mac->check_for_link. This routine will force the
810 * link up if we detect a signal. This will allow us to
811 * communicate with non-autonegotiating link partners.
813 ret_val
= mac
->ops
.check_for_link(hw
);
815 e_dbg("Error while checking for link\n");
818 mac
->autoneg_failed
= false;
820 mac
->autoneg_failed
= false;
821 e_dbg("Valid Link Found\n");
828 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
829 * @hw: pointer to the HW structure
831 * Configures collision distance and flow control for fiber and serdes
832 * links. Upon successful setup, poll for link.
834 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
841 /* Take the link out of reset */
842 ctrl
&= ~E1000_CTRL_LRST
;
844 hw
->mac
.ops
.config_collision_dist(hw
);
846 ret_val
= e1000_commit_fc_settings_generic(hw
);
850 /* Since auto-negotiation is enabled, take the link out of reset (the
851 * link will be in reset, because we previously reset the chip). This
852 * will restart auto-negotiation. If auto-negotiation is successful
853 * then the link-up status bit will be set and the flow control enable
854 * bits (RFCE and TFCE) will be set according to their negotiated value.
856 e_dbg("Auto-negotiation enabled\n");
860 usleep_range(1000, 2000);
862 /* For these adapters, the SW definable pin 1 is set when the optics
863 * detect a signal. If we have a signal, then poll for a "Link-Up"
866 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
867 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
868 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
870 e_dbg("No signal detected\n");
877 * e1000e_config_collision_dist_generic - Configure collision distance
878 * @hw: pointer to the HW structure
880 * Configures the collision distance to the default value and is used
883 void e1000e_config_collision_dist_generic(struct e1000_hw
*hw
)
889 tctl
&= ~E1000_TCTL_COLD
;
890 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
897 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
898 * @hw: pointer to the HW structure
900 * Sets the flow control high/low threshold (watermark) registers. If
901 * flow control XON frame transmission is enabled, then set XON frame
902 * transmission as well.
904 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
906 u32 fcrtl
= 0, fcrth
= 0;
908 /* Set the flow control receive threshold registers. Normally,
909 * these registers will be set to a default threshold that may be
910 * adjusted later by the driver's runtime code. However, if the
911 * ability to transmit pause frames is not enabled, then these
912 * registers will be set to 0.
914 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
915 /* We need to set up the Receive Threshold high and low water
916 * marks as well as (optionally) enabling the transmission of
919 fcrtl
= hw
->fc
.low_water
;
921 fcrtl
|= E1000_FCRTL_XONE
;
923 fcrth
= hw
->fc
.high_water
;
932 * e1000e_force_mac_fc - Force the MAC's flow control settings
933 * @hw: pointer to the HW structure
935 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
936 * device control register to reflect the adapter settings. TFCE and RFCE
937 * need to be explicitly set by software when a copper PHY is used because
938 * autonegotiation is managed by the PHY rather than the MAC. Software must
939 * also configure these bits when link is forced on a fiber connection.
941 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
947 /* Because we didn't get link via the internal auto-negotiation
948 * mechanism (we either forced link or we got link via PHY
949 * auto-neg), we have to manually enable/disable transmit an
950 * receive flow control.
952 * The "Case" statement below enables/disable flow control
953 * according to the "hw->fc.current_mode" parameter.
955 * The possible values of the "fc" parameter are:
956 * 0: Flow control is completely disabled
957 * 1: Rx flow control is enabled (we can receive pause
958 * frames but not send pause frames).
959 * 2: Tx flow control is enabled (we can send pause frames
960 * frames but we do not receive pause frames).
961 * 3: Both Rx and Tx flow control (symmetric) is enabled.
962 * other: No other values should be possible at this point.
964 e_dbg("hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
966 switch (hw
->fc
.current_mode
) {
968 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
970 case e1000_fc_rx_pause
:
971 ctrl
&= (~E1000_CTRL_TFCE
);
972 ctrl
|= E1000_CTRL_RFCE
;
974 case e1000_fc_tx_pause
:
975 ctrl
&= (~E1000_CTRL_RFCE
);
976 ctrl
|= E1000_CTRL_TFCE
;
979 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
982 e_dbg("Flow control param set incorrectly\n");
983 return -E1000_ERR_CONFIG
;
992 * e1000e_config_fc_after_link_up - Configures flow control after link
993 * @hw: pointer to the HW structure
995 * Checks the status of auto-negotiation after link up to ensure that the
996 * speed and duplex were not forced. If the link needed to be forced, then
997 * flow control needs to be forced also. If auto-negotiation is enabled
998 * and did not fail, then we configure flow control based on our link
1001 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
1003 struct e1000_mac_info
*mac
= &hw
->mac
;
1005 u32 pcs_status_reg
, pcs_adv_reg
, pcs_lp_ability_reg
, pcs_ctrl_reg
;
1006 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1009 /* Check for the case where we have fiber media and auto-neg failed
1010 * so we had to force link. In this case, we need to force the
1011 * configuration of the MAC to match the "fc" parameter.
1013 if (mac
->autoneg_failed
) {
1014 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1015 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1016 ret_val
= e1000e_force_mac_fc(hw
);
1018 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1019 ret_val
= e1000e_force_mac_fc(hw
);
1023 e_dbg("Error forcing flow control settings\n");
1027 /* Check for the case where we have copper media and auto-neg is
1028 * enabled. In this case, we need to check and see if Auto-Neg
1029 * has completed, and if so, how the PHY and link partner has
1030 * flow control configured.
1032 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1033 /* Read the MII Status Register and check to see if AutoNeg
1034 * has completed. We read this twice because this reg has
1035 * some "sticky" (latched) bits.
1037 ret_val
= e1e_rphy(hw
, MII_BMSR
, &mii_status_reg
);
1040 ret_val
= e1e_rphy(hw
, MII_BMSR
, &mii_status_reg
);
1044 if (!(mii_status_reg
& BMSR_ANEGCOMPLETE
)) {
1045 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1049 /* The AutoNeg process has completed, so we now need to
1050 * read both the Auto Negotiation Advertisement
1051 * Register (Address 4) and the Auto_Negotiation Base
1052 * Page Ability Register (Address 5) to determine how
1053 * flow control was negotiated.
1055 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_nway_adv_reg
);
1058 ret_val
= e1e_rphy(hw
, MII_LPA
, &mii_nway_lp_ability_reg
);
1062 /* Two bits in the Auto Negotiation Advertisement Register
1063 * (Address 4) and two bits in the Auto Negotiation Base
1064 * Page Ability Register (Address 5) determine flow control
1065 * for both the PHY and the link partner. The following
1066 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067 * 1999, describes these PAUSE resolution bits and how flow
1068 * control is determined based upon these settings.
1069 * NOTE: DC = Don't Care
1071 * LOCAL DEVICE | LINK PARTNER
1072 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073 *-------|---------|-------|---------|--------------------
1074 * 0 | 0 | DC | DC | e1000_fc_none
1075 * 0 | 1 | 0 | DC | e1000_fc_none
1076 * 0 | 1 | 1 | 0 | e1000_fc_none
1077 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1078 * 1 | 0 | 0 | DC | e1000_fc_none
1079 * 1 | DC | 1 | DC | e1000_fc_full
1080 * 1 | 1 | 0 | 0 | e1000_fc_none
1081 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1083 * Are both PAUSE bits set to 1? If so, this implies
1084 * Symmetric Flow Control is enabled at both ends. The
1085 * ASM_DIR bits are irrelevant per the spec.
1087 * For Symmetric Flow Control:
1089 * LOCAL DEVICE | LINK PARTNER
1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091 *-------|---------|-------|---------|--------------------
1092 * 1 | DC | 1 | DC | E1000_fc_full
1095 if ((mii_nway_adv_reg
& ADVERTISE_PAUSE_CAP
) &&
1096 (mii_nway_lp_ability_reg
& LPA_PAUSE_CAP
)) {
1097 /* Now we need to check if the user selected Rx ONLY
1098 * of pause frames. In this case, we had to advertise
1099 * FULL flow control because we could not advertise Rx
1100 * ONLY. Hence, we must now check to see if we need to
1101 * turn OFF the TRANSMISSION of PAUSE frames.
1103 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1104 hw
->fc
.current_mode
= e1000_fc_full
;
1105 e_dbg("Flow Control = FULL.\n");
1107 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1108 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1111 /* For receiving PAUSE frames ONLY.
1113 * LOCAL DEVICE | LINK PARTNER
1114 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115 *-------|---------|-------|---------|--------------------
1116 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1118 else if (!(mii_nway_adv_reg
& ADVERTISE_PAUSE_CAP
) &&
1119 (mii_nway_adv_reg
& ADVERTISE_PAUSE_ASYM
) &&
1120 (mii_nway_lp_ability_reg
& LPA_PAUSE_CAP
) &&
1121 (mii_nway_lp_ability_reg
& LPA_PAUSE_ASYM
)) {
1122 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1123 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1125 /* For transmitting PAUSE frames ONLY.
1127 * LOCAL DEVICE | LINK PARTNER
1128 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1129 *-------|---------|-------|---------|--------------------
1130 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1132 else if ((mii_nway_adv_reg
& ADVERTISE_PAUSE_CAP
) &&
1133 (mii_nway_adv_reg
& ADVERTISE_PAUSE_ASYM
) &&
1134 !(mii_nway_lp_ability_reg
& LPA_PAUSE_CAP
) &&
1135 (mii_nway_lp_ability_reg
& LPA_PAUSE_ASYM
)) {
1136 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1137 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1139 /* Per the IEEE spec, at this point flow control
1140 * should be disabled.
1142 hw
->fc
.current_mode
= e1000_fc_none
;
1143 e_dbg("Flow Control = NONE.\n");
1146 /* Now we need to do one last check... If we auto-
1147 * negotiated to HALF DUPLEX, flow control should not be
1148 * enabled per IEEE 802.3 spec.
1150 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1152 e_dbg("Error getting link speed and duplex\n");
1156 if (duplex
== HALF_DUPLEX
)
1157 hw
->fc
.current_mode
= e1000_fc_none
;
1159 /* Now we call a subroutine to actually force the MAC
1160 * controller to use the correct flow control settings.
1162 ret_val
= e1000e_force_mac_fc(hw
);
1164 e_dbg("Error forcing flow control settings\n");
1169 /* Check for the case where we have SerDes media and auto-neg is
1170 * enabled. In this case, we need to check and see if Auto-Neg
1171 * has completed, and if so, how the PHY and link partner has
1172 * flow control configured.
1174 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
1176 /* Read the PCS_LSTS and check to see if AutoNeg
1179 pcs_status_reg
= er32(PCS_LSTAT
);
1181 if (!(pcs_status_reg
& E1000_PCS_LSTS_AN_COMPLETE
)) {
1182 e_dbg("PCS Auto Neg has not completed.\n");
1186 /* The AutoNeg process has completed, so we now need to
1187 * read both the Auto Negotiation Advertisement
1188 * Register (PCS_ANADV) and the Auto_Negotiation Base
1189 * Page Ability Register (PCS_LPAB) to determine how
1190 * flow control was negotiated.
1192 pcs_adv_reg
= er32(PCS_ANADV
);
1193 pcs_lp_ability_reg
= er32(PCS_LPAB
);
1195 /* Two bits in the Auto Negotiation Advertisement Register
1196 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1197 * Page Ability Register (PCS_LPAB) determine flow control
1198 * for both the PHY and the link partner. The following
1199 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1200 * 1999, describes these PAUSE resolution bits and how flow
1201 * control is determined based upon these settings.
1202 * NOTE: DC = Don't Care
1204 * LOCAL DEVICE | LINK PARTNER
1205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1206 *-------|---------|-------|---------|--------------------
1207 * 0 | 0 | DC | DC | e1000_fc_none
1208 * 0 | 1 | 0 | DC | e1000_fc_none
1209 * 0 | 1 | 1 | 0 | e1000_fc_none
1210 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1211 * 1 | 0 | 0 | DC | e1000_fc_none
1212 * 1 | DC | 1 | DC | e1000_fc_full
1213 * 1 | 1 | 0 | 0 | e1000_fc_none
1214 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1216 * Are both PAUSE bits set to 1? If so, this implies
1217 * Symmetric Flow Control is enabled at both ends. The
1218 * ASM_DIR bits are irrelevant per the spec.
1220 * For Symmetric Flow Control:
1222 * LOCAL DEVICE | LINK PARTNER
1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1224 *-------|---------|-------|---------|--------------------
1225 * 1 | DC | 1 | DC | e1000_fc_full
1228 if ((pcs_adv_reg
& E1000_TXCW_PAUSE
) &&
1229 (pcs_lp_ability_reg
& E1000_TXCW_PAUSE
)) {
1230 /* Now we need to check if the user selected Rx ONLY
1231 * of pause frames. In this case, we had to advertise
1232 * FULL flow control because we could not advertise Rx
1233 * ONLY. Hence, we must now check to see if we need to
1234 * turn OFF the TRANSMISSION of PAUSE frames.
1236 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1237 hw
->fc
.current_mode
= e1000_fc_full
;
1238 e_dbg("Flow Control = FULL.\n");
1240 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1241 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1244 /* For receiving PAUSE frames ONLY.
1246 * LOCAL DEVICE | LINK PARTNER
1247 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1248 *-------|---------|-------|---------|--------------------
1249 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1251 else if (!(pcs_adv_reg
& E1000_TXCW_PAUSE
) &&
1252 (pcs_adv_reg
& E1000_TXCW_ASM_DIR
) &&
1253 (pcs_lp_ability_reg
& E1000_TXCW_PAUSE
) &&
1254 (pcs_lp_ability_reg
& E1000_TXCW_ASM_DIR
)) {
1255 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1256 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1258 /* For transmitting PAUSE frames ONLY.
1260 * LOCAL DEVICE | LINK PARTNER
1261 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1262 *-------|---------|-------|---------|--------------------
1263 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1265 else if ((pcs_adv_reg
& E1000_TXCW_PAUSE
) &&
1266 (pcs_adv_reg
& E1000_TXCW_ASM_DIR
) &&
1267 !(pcs_lp_ability_reg
& E1000_TXCW_PAUSE
) &&
1268 (pcs_lp_ability_reg
& E1000_TXCW_ASM_DIR
)) {
1269 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1270 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1272 /* Per the IEEE spec, at this point flow control
1273 * should be disabled.
1275 hw
->fc
.current_mode
= e1000_fc_none
;
1276 e_dbg("Flow Control = NONE.\n");
1279 /* Now we call a subroutine to actually force the MAC
1280 * controller to use the correct flow control settings.
1282 pcs_ctrl_reg
= er32(PCS_LCTL
);
1283 pcs_ctrl_reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1284 ew32(PCS_LCTL
, pcs_ctrl_reg
);
1286 ret_val
= e1000e_force_mac_fc(hw
);
1288 e_dbg("Error forcing flow control settings\n");
1297 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1298 * @hw: pointer to the HW structure
1299 * @speed: stores the current speed
1300 * @duplex: stores the current duplex
1302 * Read the status register for the current speed/duplex and store the current
1303 * speed and duplex for copper connections.
1305 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
,
1310 status
= er32(STATUS
);
1311 if (status
& E1000_STATUS_SPEED_1000
)
1312 *speed
= SPEED_1000
;
1313 else if (status
& E1000_STATUS_SPEED_100
)
1318 if (status
& E1000_STATUS_FD
)
1319 *duplex
= FULL_DUPLEX
;
1321 *duplex
= HALF_DUPLEX
;
1323 e_dbg("%u Mbps, %s Duplex\n",
1324 *speed
== SPEED_1000
? 1000 : *speed
== SPEED_100
? 100 : 10,
1325 *duplex
== FULL_DUPLEX
? "Full" : "Half");
1331 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1332 * @hw: pointer to the HW structure
1333 * @speed: stores the current speed
1334 * @duplex: stores the current duplex
1336 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1337 * for fiber/serdes links.
1339 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1340 *hw
, u16
*speed
, u16
*duplex
)
1342 *speed
= SPEED_1000
;
1343 *duplex
= FULL_DUPLEX
;
1349 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1350 * @hw: pointer to the HW structure
1352 * Acquire the HW semaphore to access the PHY or NVM
1354 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1357 s32 timeout
= hw
->nvm
.word_size
+ 1;
1360 /* Get the SW semaphore */
1361 while (i
< timeout
) {
1363 if (!(swsm
& E1000_SWSM_SMBI
))
1371 e_dbg("Driver can't access device - SMBI bit is set.\n");
1372 return -E1000_ERR_NVM
;
1375 /* Get the FW semaphore. */
1376 for (i
= 0; i
< timeout
; i
++) {
1378 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1380 /* Semaphore acquired if bit latched */
1381 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1388 /* Release semaphores */
1389 e1000e_put_hw_semaphore(hw
);
1390 e_dbg("Driver can't access the NVM\n");
1391 return -E1000_ERR_NVM
;
1398 * e1000e_put_hw_semaphore - Release hardware semaphore
1399 * @hw: pointer to the HW structure
1401 * Release hardware semaphore used to access the PHY or NVM
1403 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1408 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1413 * e1000e_get_auto_rd_done - Check for auto read completion
1414 * @hw: pointer to the HW structure
1416 * Check EEPROM for Auto Read done bit.
1418 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1422 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1423 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1425 usleep_range(1000, 2000);
1429 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1430 e_dbg("Auto read by HW from NVM has not completed.\n");
1431 return -E1000_ERR_RESET
;
1438 * e1000e_valid_led_default - Verify a valid default LED config
1439 * @hw: pointer to the HW structure
1440 * @data: pointer to the NVM (EEPROM)
1442 * Read the EEPROM for the current default LED configuration. If the
1443 * LED configuration is not valid, set to a valid LED configuration.
1445 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1449 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1451 e_dbg("NVM Read Error\n");
1455 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1456 *data
= ID_LED_DEFAULT
;
1462 * e1000e_id_led_init_generic -
1463 * @hw: pointer to the HW structure
1466 s32
e1000e_id_led_init_generic(struct e1000_hw
*hw
)
1468 struct e1000_mac_info
*mac
= &hw
->mac
;
1470 const u32 ledctl_mask
= 0x000000FF;
1471 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1472 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1474 const u16 led_mask
= 0x0F;
1476 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1480 mac
->ledctl_default
= er32(LEDCTL
);
1481 mac
->ledctl_mode1
= mac
->ledctl_default
;
1482 mac
->ledctl_mode2
= mac
->ledctl_default
;
1484 for (i
= 0; i
< 4; i
++) {
1485 temp
= (data
>> (i
<< 2)) & led_mask
;
1487 case ID_LED_ON1_DEF2
:
1488 case ID_LED_ON1_ON2
:
1489 case ID_LED_ON1_OFF2
:
1490 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1491 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1493 case ID_LED_OFF1_DEF2
:
1494 case ID_LED_OFF1_ON2
:
1495 case ID_LED_OFF1_OFF2
:
1496 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1497 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1504 case ID_LED_DEF1_ON2
:
1505 case ID_LED_ON1_ON2
:
1506 case ID_LED_OFF1_ON2
:
1507 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1508 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1510 case ID_LED_DEF1_OFF2
:
1511 case ID_LED_ON1_OFF2
:
1512 case ID_LED_OFF1_OFF2
:
1513 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1514 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1526 * e1000e_setup_led_generic - Configures SW controllable LED
1527 * @hw: pointer to the HW structure
1529 * This prepares the SW controllable LED for use and saves the current state
1530 * of the LED so it can be later restored.
1532 s32
e1000e_setup_led_generic(struct e1000_hw
*hw
)
1536 if (hw
->mac
.ops
.setup_led
!= e1000e_setup_led_generic
)
1537 return -E1000_ERR_CONFIG
;
1539 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1540 ledctl
= er32(LEDCTL
);
1541 hw
->mac
.ledctl_default
= ledctl
;
1543 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
| E1000_LEDCTL_LED0_BLINK
|
1544 E1000_LEDCTL_LED0_MODE_MASK
);
1545 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1546 E1000_LEDCTL_LED0_MODE_SHIFT
);
1547 ew32(LEDCTL
, ledctl
);
1548 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1549 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1556 * e1000e_cleanup_led_generic - Set LED config to default operation
1557 * @hw: pointer to the HW structure
1559 * Remove the current LED configuration and set the LED configuration
1560 * to the default value, saved from the EEPROM.
1562 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1564 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1569 * e1000e_blink_led_generic - Blink LED
1570 * @hw: pointer to the HW structure
1572 * Blink the LEDs which are set to be on.
1574 s32
e1000e_blink_led_generic(struct e1000_hw
*hw
)
1576 u32 ledctl_blink
= 0;
1579 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1580 /* always blink LED0 for PCI-E fiber */
1581 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1582 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1584 /* Set the blink bit for each LED that's "on" (0x0E)
1585 * (or "off" if inverted) in ledctl_mode2. The blink
1586 * logic in hardware only works when mode is set to "on"
1587 * so it must be changed accordingly when the mode is
1588 * "off" and inverted.
1590 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1591 for (i
= 0; i
< 32; i
+= 8) {
1592 u32 mode
= (hw
->mac
.ledctl_mode2
>> i
) &
1593 E1000_LEDCTL_LED0_MODE_MASK
;
1594 u32 led_default
= hw
->mac
.ledctl_default
>> i
;
1596 if ((!(led_default
& E1000_LEDCTL_LED0_IVRT
) &&
1597 (mode
== E1000_LEDCTL_MODE_LED_ON
)) ||
1598 ((led_default
& E1000_LEDCTL_LED0_IVRT
) &&
1599 (mode
== E1000_LEDCTL_MODE_LED_OFF
))) {
1601 ~(E1000_LEDCTL_LED0_MODE_MASK
<< i
);
1602 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
|
1603 E1000_LEDCTL_MODE_LED_ON
) << i
;
1608 ew32(LEDCTL
, ledctl_blink
);
1614 * e1000e_led_on_generic - Turn LED on
1615 * @hw: pointer to the HW structure
1619 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1623 switch (hw
->phy
.media_type
) {
1624 case e1000_media_type_fiber
:
1626 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1627 ctrl
|= E1000_CTRL_SWDPIO0
;
1630 case e1000_media_type_copper
:
1631 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1641 * e1000e_led_off_generic - Turn LED off
1642 * @hw: pointer to the HW structure
1646 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1650 switch (hw
->phy
.media_type
) {
1651 case e1000_media_type_fiber
:
1653 ctrl
|= E1000_CTRL_SWDPIN0
;
1654 ctrl
|= E1000_CTRL_SWDPIO0
;
1657 case e1000_media_type_copper
:
1658 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1668 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1669 * @hw: pointer to the HW structure
1670 * @no_snoop: bitmap of snoop events
1672 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1674 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1680 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1687 * e1000e_disable_pcie_master - Disables PCI-express master access
1688 * @hw: pointer to the HW structure
1690 * Returns 0 if successful, else returns -10
1691 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1692 * the master requests to be disabled.
1694 * Disables PCI-Express master access and verifies there are no pending
1697 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1700 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1703 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1707 if (!(er32(STATUS
) & E1000_STATUS_GIO_MASTER_ENABLE
))
1709 usleep_range(100, 200);
1714 e_dbg("Master requests are pending.\n");
1715 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1722 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1723 * @hw: pointer to the HW structure
1725 * Reset the Adaptive Interframe Spacing throttle to default values.
1727 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1729 struct e1000_mac_info
*mac
= &hw
->mac
;
1731 if (!mac
->adaptive_ifs
) {
1732 e_dbg("Not in Adaptive IFS mode!\n");
1736 mac
->current_ifs_val
= 0;
1737 mac
->ifs_min_val
= IFS_MIN
;
1738 mac
->ifs_max_val
= IFS_MAX
;
1739 mac
->ifs_step_size
= IFS_STEP
;
1740 mac
->ifs_ratio
= IFS_RATIO
;
1742 mac
->in_ifs_mode
= false;
1747 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1748 * @hw: pointer to the HW structure
1750 * Update the Adaptive Interframe Spacing Throttle value based on the
1751 * time between transmitted packets and time between collisions.
1753 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1755 struct e1000_mac_info
*mac
= &hw
->mac
;
1757 if (!mac
->adaptive_ifs
) {
1758 e_dbg("Not in Adaptive IFS mode!\n");
1762 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1763 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1764 mac
->in_ifs_mode
= true;
1765 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1766 if (!mac
->current_ifs_val
)
1767 mac
->current_ifs_val
= mac
->ifs_min_val
;
1769 mac
->current_ifs_val
+=
1771 ew32(AIT
, mac
->current_ifs_val
);
1775 if (mac
->in_ifs_mode
&&
1776 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1777 mac
->current_ifs_val
= 0;
1778 mac
->in_ifs_mode
= false;