1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 /* ethtool support for igb */
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
22 char stat_string
[ETH_GSTRING_LEN
];
27 #define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
32 static const struct igb_stats igb_gstrings_stats
[] = {
33 IGB_STAT("rx_packets", stats
.gprc
),
34 IGB_STAT("tx_packets", stats
.gptc
),
35 IGB_STAT("rx_bytes", stats
.gorc
),
36 IGB_STAT("tx_bytes", stats
.gotc
),
37 IGB_STAT("rx_broadcast", stats
.bprc
),
38 IGB_STAT("tx_broadcast", stats
.bptc
),
39 IGB_STAT("rx_multicast", stats
.mprc
),
40 IGB_STAT("tx_multicast", stats
.mptc
),
41 IGB_STAT("multicast", stats
.mprc
),
42 IGB_STAT("collisions", stats
.colc
),
43 IGB_STAT("rx_crc_errors", stats
.crcerrs
),
44 IGB_STAT("rx_no_buffer_count", stats
.rnbc
),
45 IGB_STAT("rx_missed_errors", stats
.mpc
),
46 IGB_STAT("tx_aborted_errors", stats
.ecol
),
47 IGB_STAT("tx_carrier_errors", stats
.tncrs
),
48 IGB_STAT("tx_window_errors", stats
.latecol
),
49 IGB_STAT("tx_abort_late_coll", stats
.latecol
),
50 IGB_STAT("tx_deferred_ok", stats
.dc
),
51 IGB_STAT("tx_single_coll_ok", stats
.scc
),
52 IGB_STAT("tx_multi_coll_ok", stats
.mcc
),
53 IGB_STAT("tx_timeout_count", tx_timeout_count
),
54 IGB_STAT("rx_long_length_errors", stats
.roc
),
55 IGB_STAT("rx_short_length_errors", stats
.ruc
),
56 IGB_STAT("rx_align_errors", stats
.algnerrc
),
57 IGB_STAT("tx_tcp_seg_good", stats
.tsctc
),
58 IGB_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
59 IGB_STAT("rx_flow_control_xon", stats
.xonrxc
),
60 IGB_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
61 IGB_STAT("tx_flow_control_xon", stats
.xontxc
),
62 IGB_STAT("tx_flow_control_xoff", stats
.xofftxc
),
63 IGB_STAT("rx_long_byte_count", stats
.gorc
),
64 IGB_STAT("tx_dma_out_of_sync", stats
.doosync
),
65 IGB_STAT("tx_smbus", stats
.mgptc
),
66 IGB_STAT("rx_smbus", stats
.mgprc
),
67 IGB_STAT("dropped_smbus", stats
.mgpdc
),
68 IGB_STAT("os2bmc_rx_by_bmc", stats
.o2bgptc
),
69 IGB_STAT("os2bmc_tx_by_bmc", stats
.b2ospc
),
70 IGB_STAT("os2bmc_tx_by_host", stats
.o2bspc
),
71 IGB_STAT("os2bmc_rx_by_host", stats
.b2ogprc
),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts
),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped
),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared
),
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
82 static const struct igb_stats igb_gstrings_net_stats
[] = {
83 IGB_NETDEV_STAT(rx_errors
),
84 IGB_NETDEV_STAT(tx_errors
),
85 IGB_NETDEV_STAT(tx_dropped
),
86 IGB_NETDEV_STAT(rx_length_errors
),
87 IGB_NETDEV_STAT(rx_over_errors
),
88 IGB_NETDEV_STAT(rx_frame_errors
),
89 IGB_NETDEV_STAT(rx_fifo_errors
),
90 IGB_NETDEV_STAT(tx_fifo_errors
),
91 IGB_NETDEV_STAT(tx_heartbeat_errors
)
94 #define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
111 enum igb_diagnostics_results
{
119 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
120 [TEST_REG
] = "Register test (offline)",
121 [TEST_EEP
] = "Eeprom test (offline)",
122 [TEST_IRQ
] = "Interrupt test (offline)",
123 [TEST_LOOP
] = "Loopback test (offline)",
124 [TEST_LINK
] = "Link test (on/offline)"
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
128 static const char igb_priv_flags_strings
[][ETH_GSTRING_LEN
] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
135 static int igb_get_link_ksettings(struct net_device
*netdev
,
136 struct ethtool_link_ksettings
*cmd
)
138 struct igb_adapter
*adapter
= netdev_priv(netdev
);
139 struct e1000_hw
*hw
= &adapter
->hw
;
140 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
141 struct e1000_sfp_flags
*eth_flags
= &dev_spec
->eth_flags
;
144 u32 supported
, advertising
;
146 status
= pm_runtime_suspended(&adapter
->pdev
->dev
) ?
147 0 : rd32(E1000_STATUS
);
148 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
150 supported
= (SUPPORTED_10baseT_Half
|
151 SUPPORTED_10baseT_Full
|
152 SUPPORTED_100baseT_Half
|
153 SUPPORTED_100baseT_Full
|
154 SUPPORTED_1000baseT_Full
|
158 advertising
= ADVERTISED_TP
;
160 if (hw
->mac
.autoneg
== 1) {
161 advertising
|= ADVERTISED_Autoneg
;
162 /* the e1000 autoneg seems to match ethtool nicely */
163 advertising
|= hw
->phy
.autoneg_advertised
;
166 cmd
->base
.port
= PORT_TP
;
167 cmd
->base
.phy_address
= hw
->phy
.addr
;
169 supported
= (SUPPORTED_FIBRE
|
170 SUPPORTED_1000baseKX_Full
|
173 advertising
= (ADVERTISED_FIBRE
|
174 ADVERTISED_1000baseKX_Full
);
175 if (hw
->mac
.type
== e1000_i354
) {
176 if ((hw
->device_id
==
177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
) &&
178 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
179 supported
|= SUPPORTED_2500baseX_Full
;
180 supported
&= ~SUPPORTED_1000baseKX_Full
;
181 advertising
|= ADVERTISED_2500baseX_Full
;
182 advertising
&= ~ADVERTISED_1000baseKX_Full
;
185 if (eth_flags
->e100_base_fx
|| eth_flags
->e100_base_lx
) {
186 supported
|= SUPPORTED_100baseT_Full
;
187 advertising
|= ADVERTISED_100baseT_Full
;
189 if (hw
->mac
.autoneg
== 1)
190 advertising
|= ADVERTISED_Autoneg
;
192 cmd
->base
.port
= PORT_FIBRE
;
194 if (hw
->mac
.autoneg
!= 1)
195 advertising
&= ~(ADVERTISED_Pause
|
196 ADVERTISED_Asym_Pause
);
198 switch (hw
->fc
.requested_mode
) {
200 advertising
|= ADVERTISED_Pause
;
202 case e1000_fc_rx_pause
:
203 advertising
|= (ADVERTISED_Pause
|
204 ADVERTISED_Asym_Pause
);
206 case e1000_fc_tx_pause
:
207 advertising
|= ADVERTISED_Asym_Pause
;
210 advertising
&= ~(ADVERTISED_Pause
|
211 ADVERTISED_Asym_Pause
);
213 if (status
& E1000_STATUS_LU
) {
214 if ((status
& E1000_STATUS_2P5_SKU
) &&
215 !(status
& E1000_STATUS_2P5_SKU_OVER
)) {
217 } else if (status
& E1000_STATUS_SPEED_1000
) {
219 } else if (status
& E1000_STATUS_SPEED_100
) {
224 if ((status
& E1000_STATUS_FD
) ||
225 hw
->phy
.media_type
!= e1000_media_type_copper
)
226 cmd
->base
.duplex
= DUPLEX_FULL
;
228 cmd
->base
.duplex
= DUPLEX_HALF
;
230 speed
= SPEED_UNKNOWN
;
231 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
233 cmd
->base
.speed
= speed
;
234 if ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
236 cmd
->base
.autoneg
= AUTONEG_ENABLE
;
238 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
240 /* MDI-X => 2; MDI =>1; Invalid =>0 */
241 if (hw
->phy
.media_type
== e1000_media_type_copper
)
242 cmd
->base
.eth_tp_mdix
= hw
->phy
.is_mdix
? ETH_TP_MDI_X
:
245 cmd
->base
.eth_tp_mdix
= ETH_TP_MDI_INVALID
;
247 if (hw
->phy
.mdix
== AUTO_ALL_MODES
)
248 cmd
->base
.eth_tp_mdix_ctrl
= ETH_TP_MDI_AUTO
;
250 cmd
->base
.eth_tp_mdix_ctrl
= hw
->phy
.mdix
;
252 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.supported
,
254 ethtool_convert_legacy_u32_to_link_mode(cmd
->link_modes
.advertising
,
260 static int igb_set_link_ksettings(struct net_device
*netdev
,
261 const struct ethtool_link_ksettings
*cmd
)
263 struct igb_adapter
*adapter
= netdev_priv(netdev
);
264 struct e1000_hw
*hw
= &adapter
->hw
;
267 /* When SoL/IDER sessions are active, autoneg/speed/duplex
270 if (igb_check_reset_block(hw
)) {
271 dev_err(&adapter
->pdev
->dev
,
272 "Cannot change link characteristics when SoL/IDER is active.\n");
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
280 if (cmd
->base
.eth_tp_mdix_ctrl
) {
281 if (hw
->phy
.media_type
!= e1000_media_type_copper
)
284 if ((cmd
->base
.eth_tp_mdix_ctrl
!= ETH_TP_MDI_AUTO
) &&
285 (cmd
->base
.autoneg
!= AUTONEG_ENABLE
)) {
286 dev_err(&adapter
->pdev
->dev
, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
291 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
292 usleep_range(1000, 2000);
294 ethtool_convert_link_mode_to_legacy_u32(&advertising
,
295 cmd
->link_modes
.advertising
);
297 if (cmd
->base
.autoneg
== AUTONEG_ENABLE
) {
299 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
300 hw
->phy
.autoneg_advertised
= advertising
|
303 switch (adapter
->link_speed
) {
305 hw
->phy
.autoneg_advertised
=
306 ADVERTISED_2500baseX_Full
;
309 hw
->phy
.autoneg_advertised
=
310 ADVERTISED_1000baseT_Full
;
313 hw
->phy
.autoneg_advertised
=
314 ADVERTISED_100baseT_Full
;
320 hw
->phy
.autoneg_advertised
= advertising
|
324 advertising
= hw
->phy
.autoneg_advertised
;
325 if (adapter
->fc_autoneg
)
326 hw
->fc
.requested_mode
= e1000_fc_default
;
328 u32 speed
= cmd
->base
.speed
;
329 /* calling this overrides forced MDI setting */
330 if (igb_set_spd_dplx(adapter
, speed
, cmd
->base
.duplex
)) {
331 clear_bit(__IGB_RESETTING
, &adapter
->state
);
336 /* MDI-X => 2; MDI => 1; Auto => 3 */
337 if (cmd
->base
.eth_tp_mdix_ctrl
) {
338 /* fix up the value for auto (3 => 0) as zero is mapped
341 if (cmd
->base
.eth_tp_mdix_ctrl
== ETH_TP_MDI_AUTO
)
342 hw
->phy
.mdix
= AUTO_ALL_MODES
;
344 hw
->phy
.mdix
= cmd
->base
.eth_tp_mdix_ctrl
;
348 if (netif_running(adapter
->netdev
)) {
354 clear_bit(__IGB_RESETTING
, &adapter
->state
);
358 static u32
igb_get_link(struct net_device
*netdev
)
360 struct igb_adapter
*adapter
= netdev_priv(netdev
);
361 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
363 /* If the link is not reported up to netdev, interrupts are disabled,
364 * and so the physical link state may have changed since we last
365 * looked. Set get_link_status to make sure that the true link
366 * state is interrogated, rather than pulling a cached and possibly
367 * stale link state from the driver.
369 if (!netif_carrier_ok(netdev
))
370 mac
->get_link_status
= 1;
372 return igb_has_link(adapter
);
375 static void igb_get_pauseparam(struct net_device
*netdev
,
376 struct ethtool_pauseparam
*pause
)
378 struct igb_adapter
*adapter
= netdev_priv(netdev
);
379 struct e1000_hw
*hw
= &adapter
->hw
;
382 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
384 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
)
386 else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
)
388 else if (hw
->fc
.current_mode
== e1000_fc_full
) {
394 static int igb_set_pauseparam(struct net_device
*netdev
,
395 struct ethtool_pauseparam
*pause
)
397 struct igb_adapter
*adapter
= netdev_priv(netdev
);
398 struct e1000_hw
*hw
= &adapter
->hw
;
402 /* 100basefx does not support setting link flow control */
403 if (hw
->dev_spec
._82575
.eth_flags
.e100_base_fx
)
406 adapter
->fc_autoneg
= pause
->autoneg
;
408 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
409 usleep_range(1000, 2000);
411 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
412 hw
->fc
.requested_mode
= e1000_fc_default
;
413 if (netif_running(adapter
->netdev
)) {
420 if (pause
->rx_pause
&& pause
->tx_pause
)
421 hw
->fc
.requested_mode
= e1000_fc_full
;
422 else if (pause
->rx_pause
&& !pause
->tx_pause
)
423 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
424 else if (!pause
->rx_pause
&& pause
->tx_pause
)
425 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
426 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
427 hw
->fc
.requested_mode
= e1000_fc_none
;
429 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
431 retval
= ((hw
->phy
.media_type
== e1000_media_type_copper
) ?
432 igb_force_mac_fc(hw
) : igb_setup_link(hw
));
434 /* Make sure SRRCTL considers new fc settings for each ring */
435 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
436 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
438 igb_setup_srrctl(adapter
, ring
);
442 clear_bit(__IGB_RESETTING
, &adapter
->state
);
446 static u32
igb_get_msglevel(struct net_device
*netdev
)
448 struct igb_adapter
*adapter
= netdev_priv(netdev
);
449 return adapter
->msg_enable
;
452 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
454 struct igb_adapter
*adapter
= netdev_priv(netdev
);
455 adapter
->msg_enable
= data
;
458 static int igb_get_regs_len(struct net_device
*netdev
)
460 #define IGB_REGS_LEN 740
461 return IGB_REGS_LEN
* sizeof(u32
);
464 static void igb_get_regs(struct net_device
*netdev
,
465 struct ethtool_regs
*regs
, void *p
)
467 struct igb_adapter
*adapter
= netdev_priv(netdev
);
468 struct e1000_hw
*hw
= &adapter
->hw
;
472 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
474 regs
->version
= (1u << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
476 /* General Registers */
477 regs_buff
[0] = rd32(E1000_CTRL
);
478 regs_buff
[1] = rd32(E1000_STATUS
);
479 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
480 regs_buff
[3] = rd32(E1000_MDIC
);
481 regs_buff
[4] = rd32(E1000_SCTL
);
482 regs_buff
[5] = rd32(E1000_CONNSW
);
483 regs_buff
[6] = rd32(E1000_VET
);
484 regs_buff
[7] = rd32(E1000_LEDCTL
);
485 regs_buff
[8] = rd32(E1000_PBA
);
486 regs_buff
[9] = rd32(E1000_PBS
);
487 regs_buff
[10] = rd32(E1000_FRTIMER
);
488 regs_buff
[11] = rd32(E1000_TCPTIMER
);
491 regs_buff
[12] = rd32(E1000_EECD
);
494 /* Reading EICS for EICR because they read the
495 * same but EICS does not clear on read
497 regs_buff
[13] = rd32(E1000_EICS
);
498 regs_buff
[14] = rd32(E1000_EICS
);
499 regs_buff
[15] = rd32(E1000_EIMS
);
500 regs_buff
[16] = rd32(E1000_EIMC
);
501 regs_buff
[17] = rd32(E1000_EIAC
);
502 regs_buff
[18] = rd32(E1000_EIAM
);
503 /* Reading ICS for ICR because they read the
504 * same but ICS does not clear on read
506 regs_buff
[19] = rd32(E1000_ICS
);
507 regs_buff
[20] = rd32(E1000_ICS
);
508 regs_buff
[21] = rd32(E1000_IMS
);
509 regs_buff
[22] = rd32(E1000_IMC
);
510 regs_buff
[23] = rd32(E1000_IAC
);
511 regs_buff
[24] = rd32(E1000_IAM
);
512 regs_buff
[25] = rd32(E1000_IMIRVP
);
515 regs_buff
[26] = rd32(E1000_FCAL
);
516 regs_buff
[27] = rd32(E1000_FCAH
);
517 regs_buff
[28] = rd32(E1000_FCTTV
);
518 regs_buff
[29] = rd32(E1000_FCRTL
);
519 regs_buff
[30] = rd32(E1000_FCRTH
);
520 regs_buff
[31] = rd32(E1000_FCRTV
);
523 regs_buff
[32] = rd32(E1000_RCTL
);
524 regs_buff
[33] = rd32(E1000_RXCSUM
);
525 regs_buff
[34] = rd32(E1000_RLPML
);
526 regs_buff
[35] = rd32(E1000_RFCTL
);
527 regs_buff
[36] = rd32(E1000_MRQC
);
528 regs_buff
[37] = rd32(E1000_VT_CTL
);
531 regs_buff
[38] = rd32(E1000_TCTL
);
532 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
533 regs_buff
[40] = rd32(E1000_TIPG
);
534 regs_buff
[41] = rd32(E1000_DTXCTL
);
537 regs_buff
[42] = rd32(E1000_WUC
);
538 regs_buff
[43] = rd32(E1000_WUFC
);
539 regs_buff
[44] = rd32(E1000_WUS
);
540 regs_buff
[45] = rd32(E1000_IPAV
);
541 regs_buff
[46] = rd32(E1000_WUPL
);
544 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
545 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
546 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
547 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
548 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
549 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
550 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
553 regs_buff
[54] = adapter
->stats
.crcerrs
;
554 regs_buff
[55] = adapter
->stats
.algnerrc
;
555 regs_buff
[56] = adapter
->stats
.symerrs
;
556 regs_buff
[57] = adapter
->stats
.rxerrc
;
557 regs_buff
[58] = adapter
->stats
.mpc
;
558 regs_buff
[59] = adapter
->stats
.scc
;
559 regs_buff
[60] = adapter
->stats
.ecol
;
560 regs_buff
[61] = adapter
->stats
.mcc
;
561 regs_buff
[62] = adapter
->stats
.latecol
;
562 regs_buff
[63] = adapter
->stats
.colc
;
563 regs_buff
[64] = adapter
->stats
.dc
;
564 regs_buff
[65] = adapter
->stats
.tncrs
;
565 regs_buff
[66] = adapter
->stats
.sec
;
566 regs_buff
[67] = adapter
->stats
.htdpmc
;
567 regs_buff
[68] = adapter
->stats
.rlec
;
568 regs_buff
[69] = adapter
->stats
.xonrxc
;
569 regs_buff
[70] = adapter
->stats
.xontxc
;
570 regs_buff
[71] = adapter
->stats
.xoffrxc
;
571 regs_buff
[72] = adapter
->stats
.xofftxc
;
572 regs_buff
[73] = adapter
->stats
.fcruc
;
573 regs_buff
[74] = adapter
->stats
.prc64
;
574 regs_buff
[75] = adapter
->stats
.prc127
;
575 regs_buff
[76] = adapter
->stats
.prc255
;
576 regs_buff
[77] = adapter
->stats
.prc511
;
577 regs_buff
[78] = adapter
->stats
.prc1023
;
578 regs_buff
[79] = adapter
->stats
.prc1522
;
579 regs_buff
[80] = adapter
->stats
.gprc
;
580 regs_buff
[81] = adapter
->stats
.bprc
;
581 regs_buff
[82] = adapter
->stats
.mprc
;
582 regs_buff
[83] = adapter
->stats
.gptc
;
583 regs_buff
[84] = adapter
->stats
.gorc
;
584 regs_buff
[86] = adapter
->stats
.gotc
;
585 regs_buff
[88] = adapter
->stats
.rnbc
;
586 regs_buff
[89] = adapter
->stats
.ruc
;
587 regs_buff
[90] = adapter
->stats
.rfc
;
588 regs_buff
[91] = adapter
->stats
.roc
;
589 regs_buff
[92] = adapter
->stats
.rjc
;
590 regs_buff
[93] = adapter
->stats
.mgprc
;
591 regs_buff
[94] = adapter
->stats
.mgpdc
;
592 regs_buff
[95] = adapter
->stats
.mgptc
;
593 regs_buff
[96] = adapter
->stats
.tor
;
594 regs_buff
[98] = adapter
->stats
.tot
;
595 regs_buff
[100] = adapter
->stats
.tpr
;
596 regs_buff
[101] = adapter
->stats
.tpt
;
597 regs_buff
[102] = adapter
->stats
.ptc64
;
598 regs_buff
[103] = adapter
->stats
.ptc127
;
599 regs_buff
[104] = adapter
->stats
.ptc255
;
600 regs_buff
[105] = adapter
->stats
.ptc511
;
601 regs_buff
[106] = adapter
->stats
.ptc1023
;
602 regs_buff
[107] = adapter
->stats
.ptc1522
;
603 regs_buff
[108] = adapter
->stats
.mptc
;
604 regs_buff
[109] = adapter
->stats
.bptc
;
605 regs_buff
[110] = adapter
->stats
.tsctc
;
606 regs_buff
[111] = adapter
->stats
.iac
;
607 regs_buff
[112] = adapter
->stats
.rpthc
;
608 regs_buff
[113] = adapter
->stats
.hgptc
;
609 regs_buff
[114] = adapter
->stats
.hgorc
;
610 regs_buff
[116] = adapter
->stats
.hgotc
;
611 regs_buff
[118] = adapter
->stats
.lenerrs
;
612 regs_buff
[119] = adapter
->stats
.scvpc
;
613 regs_buff
[120] = adapter
->stats
.hrmpc
;
615 for (i
= 0; i
< 4; i
++)
616 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
617 for (i
= 0; i
< 4; i
++)
618 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE(i
));
619 for (i
= 0; i
< 4; i
++)
620 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
621 for (i
= 0; i
< 4; i
++)
622 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
623 for (i
= 0; i
< 4; i
++)
624 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
625 for (i
= 0; i
< 4; i
++)
626 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
627 for (i
= 0; i
< 4; i
++)
628 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
629 for (i
= 0; i
< 4; i
++)
630 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
632 for (i
= 0; i
< 10; i
++)
633 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
634 for (i
= 0; i
< 8; i
++)
635 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
636 for (i
= 0; i
< 8; i
++)
637 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
638 for (i
= 0; i
< 16; i
++)
639 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
640 for (i
= 0; i
< 16; i
++)
641 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
643 for (i
= 0; i
< 4; i
++)
644 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
645 for (i
= 0; i
< 4; i
++)
646 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
647 for (i
= 0; i
< 4; i
++)
648 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
649 for (i
= 0; i
< 4; i
++)
650 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
651 for (i
= 0; i
< 4; i
++)
652 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
653 for (i
= 0; i
< 4; i
++)
654 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
655 for (i
= 0; i
< 4; i
++)
656 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
657 for (i
= 0; i
< 4; i
++)
658 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
659 for (i
= 0; i
< 4; i
++)
660 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
662 for (i
= 0; i
< 4; i
++)
663 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
664 for (i
= 0; i
< 4; i
++)
665 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
666 for (i
= 0; i
< 32; i
++)
667 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
668 for (i
= 0; i
< 128; i
++)
669 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
670 for (i
= 0; i
< 128; i
++)
671 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
672 for (i
= 0; i
< 4; i
++)
673 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
675 regs_buff
[547] = rd32(E1000_TDFH
);
676 regs_buff
[548] = rd32(E1000_TDFT
);
677 regs_buff
[549] = rd32(E1000_TDFHS
);
678 regs_buff
[550] = rd32(E1000_TDFPC
);
680 if (hw
->mac
.type
> e1000_82580
) {
681 regs_buff
[551] = adapter
->stats
.o2bgptc
;
682 regs_buff
[552] = adapter
->stats
.b2ospc
;
683 regs_buff
[553] = adapter
->stats
.o2bspc
;
684 regs_buff
[554] = adapter
->stats
.b2ogprc
;
687 if (hw
->mac
.type
== e1000_82576
) {
688 for (i
= 0; i
< 12; i
++)
689 regs_buff
[555 + i
] = rd32(E1000_SRRCTL(i
+ 4));
690 for (i
= 0; i
< 4; i
++)
691 regs_buff
[567 + i
] = rd32(E1000_PSRTYPE(i
+ 4));
692 for (i
= 0; i
< 12; i
++)
693 regs_buff
[571 + i
] = rd32(E1000_RDBAL(i
+ 4));
694 for (i
= 0; i
< 12; i
++)
695 regs_buff
[583 + i
] = rd32(E1000_RDBAH(i
+ 4));
696 for (i
= 0; i
< 12; i
++)
697 regs_buff
[595 + i
] = rd32(E1000_RDLEN(i
+ 4));
698 for (i
= 0; i
< 12; i
++)
699 regs_buff
[607 + i
] = rd32(E1000_RDH(i
+ 4));
700 for (i
= 0; i
< 12; i
++)
701 regs_buff
[619 + i
] = rd32(E1000_RDT(i
+ 4));
702 for (i
= 0; i
< 12; i
++)
703 regs_buff
[631 + i
] = rd32(E1000_RXDCTL(i
+ 4));
705 for (i
= 0; i
< 12; i
++)
706 regs_buff
[643 + i
] = rd32(E1000_TDBAL(i
+ 4));
707 for (i
= 0; i
< 12; i
++)
708 regs_buff
[655 + i
] = rd32(E1000_TDBAH(i
+ 4));
709 for (i
= 0; i
< 12; i
++)
710 regs_buff
[667 + i
] = rd32(E1000_TDLEN(i
+ 4));
711 for (i
= 0; i
< 12; i
++)
712 regs_buff
[679 + i
] = rd32(E1000_TDH(i
+ 4));
713 for (i
= 0; i
< 12; i
++)
714 regs_buff
[691 + i
] = rd32(E1000_TDT(i
+ 4));
715 for (i
= 0; i
< 12; i
++)
716 regs_buff
[703 + i
] = rd32(E1000_TXDCTL(i
+ 4));
717 for (i
= 0; i
< 12; i
++)
718 regs_buff
[715 + i
] = rd32(E1000_TDWBAL(i
+ 4));
719 for (i
= 0; i
< 12; i
++)
720 regs_buff
[727 + i
] = rd32(E1000_TDWBAH(i
+ 4));
723 if (hw
->mac
.type
== e1000_i210
|| hw
->mac
.type
== e1000_i211
)
724 regs_buff
[739] = rd32(E1000_I210_RR2DCDELAY
);
727 static int igb_get_eeprom_len(struct net_device
*netdev
)
729 struct igb_adapter
*adapter
= netdev_priv(netdev
);
730 return adapter
->hw
.nvm
.word_size
* 2;
733 static int igb_get_eeprom(struct net_device
*netdev
,
734 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
736 struct igb_adapter
*adapter
= netdev_priv(netdev
);
737 struct e1000_hw
*hw
= &adapter
->hw
;
739 int first_word
, last_word
;
743 if (eeprom
->len
== 0)
746 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
748 first_word
= eeprom
->offset
>> 1;
749 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
751 eeprom_buff
= kmalloc_array(last_word
- first_word
+ 1, sizeof(u16
),
756 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
757 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
,
758 last_word
- first_word
+ 1,
761 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
762 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
+ i
, 1,
769 /* Device's eeprom is always little-endian, word addressable */
770 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
771 le16_to_cpus(&eeprom_buff
[i
]);
773 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
780 static int igb_set_eeprom(struct net_device
*netdev
,
781 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
783 struct igb_adapter
*adapter
= netdev_priv(netdev
);
784 struct e1000_hw
*hw
= &adapter
->hw
;
787 int max_len
, first_word
, last_word
, ret_val
= 0;
790 if (eeprom
->len
== 0)
793 if ((hw
->mac
.type
>= e1000_i210
) &&
794 !igb_get_flash_presence_i210(hw
)) {
798 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
801 max_len
= hw
->nvm
.word_size
* 2;
803 first_word
= eeprom
->offset
>> 1;
804 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
805 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
809 ptr
= (void *)eeprom_buff
;
811 if (eeprom
->offset
& 1) {
812 /* need read/modify/write of first changed EEPROM word
813 * only the second byte of the word is being modified
815 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
, 1,
819 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
820 /* need read/modify/write of last changed EEPROM word
821 * only the first byte of the word is being modified
823 ret_val
= hw
->nvm
.ops
.read(hw
, last_word
, 1,
824 &eeprom_buff
[last_word
- first_word
]);
827 /* Device's eeprom is always little-endian, word addressable */
828 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
829 le16_to_cpus(&eeprom_buff
[i
]);
831 memcpy(ptr
, bytes
, eeprom
->len
);
833 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
834 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
836 ret_val
= hw
->nvm
.ops
.write(hw
, first_word
,
837 last_word
- first_word
+ 1, eeprom_buff
);
839 /* Update the checksum if nvm write succeeded */
841 hw
->nvm
.ops
.update(hw
);
843 igb_set_fw_version(adapter
);
848 static void igb_get_drvinfo(struct net_device
*netdev
,
849 struct ethtool_drvinfo
*drvinfo
)
851 struct igb_adapter
*adapter
= netdev_priv(netdev
);
853 strlcpy(drvinfo
->driver
, igb_driver_name
, sizeof(drvinfo
->driver
));
855 /* EEPROM image version # is reported as firmware version # for
858 strlcpy(drvinfo
->fw_version
, adapter
->fw_version
,
859 sizeof(drvinfo
->fw_version
));
860 strlcpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
),
861 sizeof(drvinfo
->bus_info
));
863 drvinfo
->n_priv_flags
= IGB_PRIV_FLAGS_STR_LEN
;
866 static void igb_get_ringparam(struct net_device
*netdev
,
867 struct ethtool_ringparam
*ring
)
869 struct igb_adapter
*adapter
= netdev_priv(netdev
);
871 ring
->rx_max_pending
= IGB_MAX_RXD
;
872 ring
->tx_max_pending
= IGB_MAX_TXD
;
873 ring
->rx_pending
= adapter
->rx_ring_count
;
874 ring
->tx_pending
= adapter
->tx_ring_count
;
877 static int igb_set_ringparam(struct net_device
*netdev
,
878 struct ethtool_ringparam
*ring
)
880 struct igb_adapter
*adapter
= netdev_priv(netdev
);
881 struct igb_ring
*temp_ring
;
883 u16 new_rx_count
, new_tx_count
;
885 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
888 new_rx_count
= min_t(u32
, ring
->rx_pending
, IGB_MAX_RXD
);
889 new_rx_count
= max_t(u16
, new_rx_count
, IGB_MIN_RXD
);
890 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
892 new_tx_count
= min_t(u32
, ring
->tx_pending
, IGB_MAX_TXD
);
893 new_tx_count
= max_t(u16
, new_tx_count
, IGB_MIN_TXD
);
894 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
896 if ((new_tx_count
== adapter
->tx_ring_count
) &&
897 (new_rx_count
== adapter
->rx_ring_count
)) {
902 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
903 usleep_range(1000, 2000);
905 if (!netif_running(adapter
->netdev
)) {
906 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
907 adapter
->tx_ring
[i
]->count
= new_tx_count
;
908 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
909 adapter
->rx_ring
[i
]->count
= new_rx_count
;
910 adapter
->tx_ring_count
= new_tx_count
;
911 adapter
->rx_ring_count
= new_rx_count
;
915 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
916 temp_ring
= vmalloc(array_size(sizeof(struct igb_ring
),
917 adapter
->num_tx_queues
));
919 temp_ring
= vmalloc(array_size(sizeof(struct igb_ring
),
920 adapter
->num_rx_queues
));
929 /* We can't just free everything and then setup again,
930 * because the ISRs in MSI-X mode get passed pointers
931 * to the Tx and Rx ring structs.
933 if (new_tx_count
!= adapter
->tx_ring_count
) {
934 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
935 memcpy(&temp_ring
[i
], adapter
->tx_ring
[i
],
936 sizeof(struct igb_ring
));
938 temp_ring
[i
].count
= new_tx_count
;
939 err
= igb_setup_tx_resources(&temp_ring
[i
]);
943 igb_free_tx_resources(&temp_ring
[i
]);
949 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
950 igb_free_tx_resources(adapter
->tx_ring
[i
]);
952 memcpy(adapter
->tx_ring
[i
], &temp_ring
[i
],
953 sizeof(struct igb_ring
));
956 adapter
->tx_ring_count
= new_tx_count
;
959 if (new_rx_count
!= adapter
->rx_ring_count
) {
960 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
961 memcpy(&temp_ring
[i
], adapter
->rx_ring
[i
],
962 sizeof(struct igb_ring
));
964 /* Clear copied XDP RX-queue info */
965 memset(&temp_ring
[i
].xdp_rxq
, 0,
966 sizeof(temp_ring
[i
].xdp_rxq
));
968 temp_ring
[i
].count
= new_rx_count
;
969 err
= igb_setup_rx_resources(&temp_ring
[i
]);
973 igb_free_rx_resources(&temp_ring
[i
]);
980 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
981 igb_free_rx_resources(adapter
->rx_ring
[i
]);
983 memcpy(adapter
->rx_ring
[i
], &temp_ring
[i
],
984 sizeof(struct igb_ring
));
987 adapter
->rx_ring_count
= new_rx_count
;
993 clear_bit(__IGB_RESETTING
, &adapter
->state
);
997 /* ethtool register test data */
998 struct igb_reg_test
{
1007 /* In the hardware, registers are laid out either singly, in arrays
1008 * spaced 0x100 bytes apart, or in contiguous tables. We assume
1009 * most tests take place on arrays or single registers (handled
1010 * as a single-element array) and special-case the tables.
1011 * Table tests are always pattern tests.
1013 * We also make provision for some required setup steps by specifying
1014 * registers to be written without any read-back testing.
1017 #define PATTERN_TEST 1
1018 #define SET_READ_TEST 2
1019 #define WRITE_NO_TEST 3
1020 #define TABLE32_TEST 4
1021 #define TABLE64_TEST_LO 5
1022 #define TABLE64_TEST_HI 6
1025 static struct igb_reg_test reg_test_i210
[] = {
1026 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1027 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1028 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1029 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1030 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1031 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1032 /* RDH is read-only for i210, only test RDT. */
1033 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1034 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1035 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1036 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1037 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1038 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1039 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1040 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1041 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1042 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1043 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1044 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1045 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1046 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1048 0x900FFFFF, 0xFFFFFFFF },
1049 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1050 0xFFFFFFFF, 0xFFFFFFFF },
1055 static struct igb_reg_test reg_test_i350
[] = {
1056 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1057 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1058 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1059 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFF0000, 0xFFFF0000 },
1060 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1061 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1062 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1063 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1064 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1065 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1066 /* RDH is read-only for i350, only test RDT. */
1067 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1068 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1069 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1070 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1071 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1072 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1073 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1074 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1075 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1076 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1078 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1079 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1080 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1081 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1082 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1083 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1084 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1085 0xFFFFFFFF, 0xFFFFFFFF },
1086 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1087 0xC3FFFFFF, 0xFFFFFFFF },
1088 { E1000_RA2
, 0, 16, TABLE64_TEST_LO
,
1089 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RA2
, 0, 16, TABLE64_TEST_HI
,
1091 0xC3FFFFFF, 0xFFFFFFFF },
1092 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1093 0xFFFFFFFF, 0xFFFFFFFF },
1097 /* 82580 reg test */
1098 static struct igb_reg_test reg_test_82580
[] = {
1099 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1100 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1101 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1102 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1104 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1105 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1106 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1107 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1108 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1109 /* RDH is read-only for 82580, only test RDT. */
1110 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1111 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1112 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1113 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1114 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1115 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1116 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1117 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1118 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1119 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1121 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1122 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1123 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1124 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1125 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1126 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1127 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
1128 0xFFFFFFFF, 0xFFFFFFFF },
1129 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
1130 0x83FFFFFF, 0xFFFFFFFF },
1131 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
,
1132 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
,
1134 0x83FFFFFF, 0xFFFFFFFF },
1135 { E1000_MTA
, 0, 128, TABLE32_TEST
,
1136 0xFFFFFFFF, 0xFFFFFFFF },
1140 /* 82576 reg test */
1141 static struct igb_reg_test reg_test_82576
[] = {
1142 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1143 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1144 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1145 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1146 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1147 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1148 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1149 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1150 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1151 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1152 /* Enable all RX queues before testing. */
1153 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0,
1154 E1000_RXDCTL_QUEUE_ENABLE
},
1155 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0,
1156 E1000_RXDCTL_QUEUE_ENABLE
},
1157 /* RDH is read-only for 82576, only test RDT. */
1158 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1159 { E1000_RDT(4), 0x40, 12, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1160 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1161 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, 0 },
1162 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1163 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1164 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1165 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1166 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1167 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1168 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1169 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1170 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1171 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1172 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1173 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1174 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1175 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1176 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1177 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1178 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1179 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1183 /* 82575 register test */
1184 static struct igb_reg_test reg_test_82575
[] = {
1185 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1186 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1187 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1188 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1190 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1191 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1192 /* Enable all four RX queues before testing. */
1193 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0,
1194 E1000_RXDCTL_QUEUE_ENABLE
},
1195 /* RDH is read-only for 82575, only test RDT. */
1196 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1197 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1198 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1199 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1200 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1201 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1202 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1203 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1204 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1205 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
1206 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
1207 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1208 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
1209 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1210 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
1211 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1215 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
1216 int reg
, u32 mask
, u32 write
)
1218 struct e1000_hw
*hw
= &adapter
->hw
;
1220 static const u32 _test
[] = {
1221 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1222 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
1223 wr32(reg
, (_test
[pat
] & write
));
1224 val
= rd32(reg
) & mask
;
1225 if (val
!= (_test
[pat
] & write
& mask
)) {
1226 dev_err(&adapter
->pdev
->dev
,
1227 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1228 reg
, val
, (_test
[pat
] & write
& mask
));
1237 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
1238 int reg
, u32 mask
, u32 write
)
1240 struct e1000_hw
*hw
= &adapter
->hw
;
1243 wr32(reg
, write
& mask
);
1245 if ((write
& mask
) != (val
& mask
)) {
1246 dev_err(&adapter
->pdev
->dev
,
1247 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1248 reg
, (val
& mask
), (write
& mask
));
1256 #define REG_PATTERN_TEST(reg, mask, write) \
1258 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1262 #define REG_SET_AND_CHECK(reg, mask, write) \
1264 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1268 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
1270 struct e1000_hw
*hw
= &adapter
->hw
;
1271 struct igb_reg_test
*test
;
1272 u32 value
, before
, after
;
1275 switch (adapter
->hw
.mac
.type
) {
1278 test
= reg_test_i350
;
1279 toggle
= 0x7FEFF3FF;
1283 test
= reg_test_i210
;
1284 toggle
= 0x7FEFF3FF;
1287 test
= reg_test_82580
;
1288 toggle
= 0x7FEFF3FF;
1291 test
= reg_test_82576
;
1292 toggle
= 0x7FFFF3FF;
1295 test
= reg_test_82575
;
1296 toggle
= 0x7FFFF3FF;
1300 /* Because the status register is such a special case,
1301 * we handle it separately from the rest of the register
1302 * tests. Some bits are read-only, some toggle, and some
1303 * are writable on newer MACs.
1305 before
= rd32(E1000_STATUS
);
1306 value
= (rd32(E1000_STATUS
) & toggle
);
1307 wr32(E1000_STATUS
, toggle
);
1308 after
= rd32(E1000_STATUS
) & toggle
;
1309 if (value
!= after
) {
1310 dev_err(&adapter
->pdev
->dev
,
1311 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1316 /* restore previous status */
1317 wr32(E1000_STATUS
, before
);
1319 /* Perform the remainder of the register test, looping through
1320 * the test table until we either fail or reach the null entry.
1323 for (i
= 0; i
< test
->array_len
; i
++) {
1324 switch (test
->test_type
) {
1326 REG_PATTERN_TEST(test
->reg
+
1327 (i
* test
->reg_offset
),
1332 REG_SET_AND_CHECK(test
->reg
+
1333 (i
* test
->reg_offset
),
1339 (adapter
->hw
.hw_addr
+ test
->reg
)
1340 + (i
* test
->reg_offset
));
1343 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1347 case TABLE64_TEST_LO
:
1348 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1352 case TABLE64_TEST_HI
:
1353 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1366 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1368 struct e1000_hw
*hw
= &adapter
->hw
;
1372 /* Validate eeprom on all parts but flashless */
1373 switch (hw
->mac
.type
) {
1376 if (igb_get_flash_presence_i210(hw
)) {
1377 if (adapter
->hw
.nvm
.ops
.validate(&adapter
->hw
) < 0)
1382 if (adapter
->hw
.nvm
.ops
.validate(&adapter
->hw
) < 0)
1390 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1392 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
1393 struct e1000_hw
*hw
= &adapter
->hw
;
1395 adapter
->test_icr
|= rd32(E1000_ICR
);
1400 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1402 struct e1000_hw
*hw
= &adapter
->hw
;
1403 struct net_device
*netdev
= adapter
->netdev
;
1404 u32 mask
, ics_mask
, i
= 0, shared_int
= true;
1405 u32 irq
= adapter
->pdev
->irq
;
1409 /* Hook up test interrupt handler just for this test */
1410 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1411 if (request_irq(adapter
->msix_entries
[0].vector
,
1412 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1416 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1418 if (request_irq(irq
,
1419 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1423 } else if (!request_irq(irq
, igb_test_intr
, IRQF_PROBE_SHARED
,
1424 netdev
->name
, adapter
)) {
1426 } else if (request_irq(irq
, igb_test_intr
, IRQF_SHARED
,
1427 netdev
->name
, adapter
)) {
1431 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1432 (shared_int
? "shared" : "unshared"));
1434 /* Disable all the interrupts */
1435 wr32(E1000_IMC
, ~0);
1437 usleep_range(10000, 11000);
1439 /* Define all writable bits for ICS */
1440 switch (hw
->mac
.type
) {
1442 ics_mask
= 0x37F47EDD;
1445 ics_mask
= 0x77D4FBFD;
1448 ics_mask
= 0x77DCFED5;
1454 ics_mask
= 0x77DCFED5;
1457 ics_mask
= 0x7FFFFFFF;
1461 /* Test each interrupt */
1462 for (; i
< 31; i
++) {
1463 /* Interrupt to test */
1466 if (!(mask
& ics_mask
))
1470 /* Disable the interrupt to be reported in
1471 * the cause register and then force the same
1472 * interrupt and see if one gets posted. If
1473 * an interrupt was posted to the bus, the
1476 adapter
->test_icr
= 0;
1478 /* Flush any pending interrupts */
1479 wr32(E1000_ICR
, ~0);
1481 wr32(E1000_IMC
, mask
);
1482 wr32(E1000_ICS
, mask
);
1484 usleep_range(10000, 11000);
1486 if (adapter
->test_icr
& mask
) {
1492 /* Enable the interrupt to be reported in
1493 * the cause register and then force the same
1494 * interrupt and see if one gets posted. If
1495 * an interrupt was not posted to the bus, the
1498 adapter
->test_icr
= 0;
1500 /* Flush any pending interrupts */
1501 wr32(E1000_ICR
, ~0);
1503 wr32(E1000_IMS
, mask
);
1504 wr32(E1000_ICS
, mask
);
1506 usleep_range(10000, 11000);
1508 if (!(adapter
->test_icr
& mask
)) {
1514 /* Disable the other interrupts to be reported in
1515 * the cause register and then force the other
1516 * interrupts and see if any get posted. If
1517 * an interrupt was posted to the bus, the
1520 adapter
->test_icr
= 0;
1522 /* Flush any pending interrupts */
1523 wr32(E1000_ICR
, ~0);
1525 wr32(E1000_IMC
, ~mask
);
1526 wr32(E1000_ICS
, ~mask
);
1528 usleep_range(10000, 11000);
1530 if (adapter
->test_icr
& mask
) {
1537 /* Disable all the interrupts */
1538 wr32(E1000_IMC
, ~0);
1540 usleep_range(10000, 11000);
1542 /* Unhook test interrupt handler */
1543 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
)
1544 free_irq(adapter
->msix_entries
[0].vector
, adapter
);
1546 free_irq(irq
, adapter
);
1551 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1553 igb_free_tx_resources(&adapter
->test_tx_ring
);
1554 igb_free_rx_resources(&adapter
->test_rx_ring
);
1557 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1559 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1560 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1561 struct e1000_hw
*hw
= &adapter
->hw
;
1564 /* Setup Tx descriptor ring and Tx buffers */
1565 tx_ring
->count
= IGB_DEFAULT_TXD
;
1566 tx_ring
->dev
= &adapter
->pdev
->dev
;
1567 tx_ring
->netdev
= adapter
->netdev
;
1568 tx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1570 if (igb_setup_tx_resources(tx_ring
)) {
1575 igb_setup_tctl(adapter
);
1576 igb_configure_tx_ring(adapter
, tx_ring
);
1578 /* Setup Rx descriptor ring and Rx buffers */
1579 rx_ring
->count
= IGB_DEFAULT_RXD
;
1580 rx_ring
->dev
= &adapter
->pdev
->dev
;
1581 rx_ring
->netdev
= adapter
->netdev
;
1582 rx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1584 if (igb_setup_rx_resources(rx_ring
)) {
1589 /* set the default queue to queue 0 of PF */
1590 wr32(E1000_MRQC
, adapter
->vfs_allocated_count
<< 3);
1592 /* enable receive ring */
1593 igb_setup_rctl(adapter
);
1594 igb_configure_rx_ring(adapter
, rx_ring
);
1596 igb_alloc_rx_buffers(rx_ring
, igb_desc_unused(rx_ring
));
1601 igb_free_desc_rings(adapter
);
1605 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1607 struct e1000_hw
*hw
= &adapter
->hw
;
1609 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1610 igb_write_phy_reg(hw
, 29, 0x001F);
1611 igb_write_phy_reg(hw
, 30, 0x8FFC);
1612 igb_write_phy_reg(hw
, 29, 0x001A);
1613 igb_write_phy_reg(hw
, 30, 0x8FF0);
1616 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1618 struct e1000_hw
*hw
= &adapter
->hw
;
1621 hw
->mac
.autoneg
= false;
1623 if (hw
->phy
.type
== e1000_phy_m88
) {
1624 if (hw
->phy
.id
!= I210_I_PHY_ID
) {
1625 /* Auto-MDI/MDIX Off */
1626 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1627 /* reset to update Auto-MDI/MDIX */
1628 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1630 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1632 /* force 1000, set loopback */
1633 igb_write_phy_reg(hw
, I347AT4_PAGE_SELECT
, 0);
1634 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1636 } else if (hw
->phy
.type
== e1000_phy_82580
) {
1637 /* enable MII loopback */
1638 igb_write_phy_reg(hw
, I82580_PHY_LBK_CTRL
, 0x8041);
1641 /* add small delay to avoid loopback test failure */
1644 /* force 1000, set loopback */
1645 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1647 /* Now set up the MAC to the same speed/duplex as the PHY. */
1648 ctrl_reg
= rd32(E1000_CTRL
);
1649 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1650 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1651 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1652 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1653 E1000_CTRL_FD
| /* Force Duplex to FULL */
1654 E1000_CTRL_SLU
); /* Set link up enable bit */
1656 if (hw
->phy
.type
== e1000_phy_m88
)
1657 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1659 wr32(E1000_CTRL
, ctrl_reg
);
1661 /* Disable the receiver on the PHY so when a cable is plugged in, the
1662 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1664 if (hw
->phy
.type
== e1000_phy_m88
)
1665 igb_phy_disable_receiver(adapter
);
1671 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1673 return igb_integrated_phy_loopback(adapter
);
1676 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1678 struct e1000_hw
*hw
= &adapter
->hw
;
1681 reg
= rd32(E1000_CTRL_EXT
);
1683 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1684 if (reg
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1685 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1686 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1687 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1688 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
) ||
1689 (hw
->device_id
== E1000_DEV_ID_I354_SGMII
) ||
1690 (hw
->device_id
== E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
)) {
1691 /* Enable DH89xxCC MPHY for near end loopback */
1692 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1693 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1694 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1695 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1697 reg
= rd32(E1000_MPHY_DATA
);
1698 reg
|= E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1699 wr32(E1000_MPHY_DATA
, reg
);
1702 reg
= rd32(E1000_RCTL
);
1703 reg
|= E1000_RCTL_LBM_TCVR
;
1704 wr32(E1000_RCTL
, reg
);
1706 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1708 reg
= rd32(E1000_CTRL
);
1709 reg
&= ~(E1000_CTRL_RFCE
|
1712 reg
|= E1000_CTRL_SLU
|
1714 wr32(E1000_CTRL
, reg
);
1716 /* Unset switch control to serdes energy detect */
1717 reg
= rd32(E1000_CONNSW
);
1718 reg
&= ~E1000_CONNSW_ENRGSRC
;
1719 wr32(E1000_CONNSW
, reg
);
1721 /* Unset sigdetect for SERDES loopback on
1722 * 82580 and newer devices.
1724 if (hw
->mac
.type
>= e1000_82580
) {
1725 reg
= rd32(E1000_PCS_CFG0
);
1726 reg
|= E1000_PCS_CFG_IGN_SD
;
1727 wr32(E1000_PCS_CFG0
, reg
);
1730 /* Set PCS register for forced speed */
1731 reg
= rd32(E1000_PCS_LCTL
);
1732 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1733 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1734 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1735 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1736 E1000_PCS_LCTL_FSD
| /* Force Speed */
1737 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1738 wr32(E1000_PCS_LCTL
, reg
);
1743 return igb_set_phy_loopback(adapter
);
1746 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1748 struct e1000_hw
*hw
= &adapter
->hw
;
1752 if ((hw
->device_id
== E1000_DEV_ID_DH89XXCC_SGMII
) ||
1753 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SERDES
) ||
1754 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_BACKPLANE
) ||
1755 (hw
->device_id
== E1000_DEV_ID_DH89XXCC_SFP
) ||
1756 (hw
->device_id
== E1000_DEV_ID_I354_SGMII
)) {
1759 /* Disable near end loopback on DH89xxCC */
1760 reg
= rd32(E1000_MPHY_ADDR_CTL
);
1761 reg
= (reg
& E1000_MPHY_ADDR_CTL_OFFSET_MASK
) |
1762 E1000_MPHY_PCS_CLK_REG_OFFSET
;
1763 wr32(E1000_MPHY_ADDR_CTL
, reg
);
1765 reg
= rd32(E1000_MPHY_DATA
);
1766 reg
&= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN
;
1767 wr32(E1000_MPHY_DATA
, reg
);
1770 rctl
= rd32(E1000_RCTL
);
1771 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1772 wr32(E1000_RCTL
, rctl
);
1774 hw
->mac
.autoneg
= true;
1775 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1776 if (phy_reg
& MII_CR_LOOPBACK
) {
1777 phy_reg
&= ~MII_CR_LOOPBACK
;
1778 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1779 igb_phy_sw_reset(hw
);
1783 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1784 unsigned int frame_size
)
1786 memset(skb
->data
, 0xFF, frame_size
);
1788 memset(&skb
->data
[frame_size
], 0xAA, frame_size
- 1);
1789 skb
->data
[frame_size
+ 10] = 0xBE;
1790 skb
->data
[frame_size
+ 12] = 0xAF;
1793 static int igb_check_lbtest_frame(struct igb_rx_buffer
*rx_buffer
,
1794 unsigned int frame_size
)
1796 unsigned char *data
;
1801 data
= kmap(rx_buffer
->page
);
1803 if (data
[3] != 0xFF ||
1804 data
[frame_size
+ 10] != 0xBE ||
1805 data
[frame_size
+ 12] != 0xAF)
1808 kunmap(rx_buffer
->page
);
1813 static int igb_clean_test_rings(struct igb_ring
*rx_ring
,
1814 struct igb_ring
*tx_ring
,
1817 union e1000_adv_rx_desc
*rx_desc
;
1818 struct igb_rx_buffer
*rx_buffer_info
;
1819 struct igb_tx_buffer
*tx_buffer_info
;
1820 u16 rx_ntc
, tx_ntc
, count
= 0;
1822 /* initialize next to clean and descriptor values */
1823 rx_ntc
= rx_ring
->next_to_clean
;
1824 tx_ntc
= tx_ring
->next_to_clean
;
1825 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1827 while (rx_desc
->wb
.upper
.length
) {
1828 /* check Rx buffer */
1829 rx_buffer_info
= &rx_ring
->rx_buffer_info
[rx_ntc
];
1831 /* sync Rx buffer for CPU read */
1832 dma_sync_single_for_cpu(rx_ring
->dev
,
1833 rx_buffer_info
->dma
,
1837 /* verify contents of skb */
1838 if (igb_check_lbtest_frame(rx_buffer_info
, size
))
1841 /* sync Rx buffer for device write */
1842 dma_sync_single_for_device(rx_ring
->dev
,
1843 rx_buffer_info
->dma
,
1847 /* unmap buffer on Tx side */
1848 tx_buffer_info
= &tx_ring
->tx_buffer_info
[tx_ntc
];
1850 /* Free all the Tx ring sk_buffs */
1851 dev_kfree_skb_any(tx_buffer_info
->skb
);
1853 /* unmap skb header data */
1854 dma_unmap_single(tx_ring
->dev
,
1855 dma_unmap_addr(tx_buffer_info
, dma
),
1856 dma_unmap_len(tx_buffer_info
, len
),
1858 dma_unmap_len_set(tx_buffer_info
, len
, 0);
1860 /* increment Rx/Tx next to clean counters */
1862 if (rx_ntc
== rx_ring
->count
)
1865 if (tx_ntc
== tx_ring
->count
)
1868 /* fetch next descriptor */
1869 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ntc
);
1872 netdev_tx_reset_queue(txring_txq(tx_ring
));
1874 /* re-map buffers to ring, store next to clean values */
1875 igb_alloc_rx_buffers(rx_ring
, count
);
1876 rx_ring
->next_to_clean
= rx_ntc
;
1877 tx_ring
->next_to_clean
= tx_ntc
;
1882 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1884 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1885 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1886 u16 i
, j
, lc
, good_cnt
;
1888 unsigned int size
= IGB_RX_HDR_LEN
;
1889 netdev_tx_t tx_ret_val
;
1890 struct sk_buff
*skb
;
1892 /* allocate test skb */
1893 skb
= alloc_skb(size
, GFP_KERNEL
);
1897 /* place data into test skb */
1898 igb_create_lbtest_frame(skb
, size
);
1901 /* Calculate the loop count based on the largest descriptor ring
1902 * The idea is to wrap the largest ring a number of times using 64
1903 * send/receive pairs during each loop
1906 if (rx_ring
->count
<= tx_ring
->count
)
1907 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1909 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1911 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1912 /* reset count of good packets */
1915 /* place 64 packets on the transmit queue*/
1916 for (i
= 0; i
< 64; i
++) {
1918 tx_ret_val
= igb_xmit_frame_ring(skb
, tx_ring
);
1919 if (tx_ret_val
== NETDEV_TX_OK
)
1923 if (good_cnt
!= 64) {
1928 /* allow 200 milliseconds for packets to go from Tx to Rx */
1931 good_cnt
= igb_clean_test_rings(rx_ring
, tx_ring
, size
);
1932 if (good_cnt
!= 64) {
1936 } /* end loop count loop */
1938 /* free the original skb */
1944 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1946 /* PHY loopback cannot be performed if SoL/IDER
1947 * sessions are active
1949 if (igb_check_reset_block(&adapter
->hw
)) {
1950 dev_err(&adapter
->pdev
->dev
,
1951 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1956 if (adapter
->hw
.mac
.type
== e1000_i354
) {
1957 dev_info(&adapter
->pdev
->dev
,
1958 "Loopback test not supported on i354.\n");
1962 *data
= igb_setup_desc_rings(adapter
);
1965 *data
= igb_setup_loopback_test(adapter
);
1968 *data
= igb_run_loopback_test(adapter
);
1969 igb_loopback_cleanup(adapter
);
1972 igb_free_desc_rings(adapter
);
1977 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1979 struct e1000_hw
*hw
= &adapter
->hw
;
1981 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1984 hw
->mac
.serdes_has_link
= false;
1986 /* On some blade server designs, link establishment
1987 * could take as long as 2-3 minutes
1990 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1991 if (hw
->mac
.serdes_has_link
)
1994 } while (i
++ < 3750);
1998 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1999 if (hw
->mac
.autoneg
)
2002 if (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2008 static void igb_diag_test(struct net_device
*netdev
,
2009 struct ethtool_test
*eth_test
, u64
*data
)
2011 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2012 u16 autoneg_advertised
;
2013 u8 forced_speed_duplex
, autoneg
;
2014 bool if_running
= netif_running(netdev
);
2016 set_bit(__IGB_TESTING
, &adapter
->state
);
2018 /* can't do offline tests on media switching devices */
2019 if (adapter
->hw
.dev_spec
._82575
.mas_capable
)
2020 eth_test
->flags
&= ~ETH_TEST_FL_OFFLINE
;
2021 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
2024 /* save speed, duplex, autoneg settings */
2025 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
2026 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
2027 autoneg
= adapter
->hw
.mac
.autoneg
;
2029 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
2031 /* power up link for link test */
2032 igb_power_up_link(adapter
);
2034 /* Link test performed before hardware reset so autoneg doesn't
2035 * interfere with test result
2037 if (igb_link_test(adapter
, &data
[TEST_LINK
]))
2038 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2041 /* indicate we're in test mode */
2046 if (igb_reg_test(adapter
, &data
[TEST_REG
]))
2047 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2050 if (igb_eeprom_test(adapter
, &data
[TEST_EEP
]))
2051 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2054 if (igb_intr_test(adapter
, &data
[TEST_IRQ
]))
2055 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2058 /* power up link for loopback test */
2059 igb_power_up_link(adapter
);
2060 if (igb_loopback_test(adapter
, &data
[TEST_LOOP
]))
2061 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2063 /* restore speed, duplex, autoneg settings */
2064 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
2065 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
2066 adapter
->hw
.mac
.autoneg
= autoneg
;
2068 /* force this routine to wait until autoneg complete/timeout */
2069 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
2071 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
2073 clear_bit(__IGB_TESTING
, &adapter
->state
);
2077 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
2079 /* PHY is powered down when interface is down */
2080 if (if_running
&& igb_link_test(adapter
, &data
[TEST_LINK
]))
2081 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
2083 data
[TEST_LINK
] = 0;
2085 /* Online tests aren't run; pass by default */
2089 data
[TEST_LOOP
] = 0;
2091 clear_bit(__IGB_TESTING
, &adapter
->state
);
2093 msleep_interruptible(4 * 1000);
2096 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2098 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2102 if (!(adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
))
2105 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
2106 WAKE_BCAST
| WAKE_MAGIC
|
2109 /* apply any specific unsupported masks here */
2110 switch (adapter
->hw
.device_id
) {
2115 if (adapter
->wol
& E1000_WUFC_EX
)
2116 wol
->wolopts
|= WAKE_UCAST
;
2117 if (adapter
->wol
& E1000_WUFC_MC
)
2118 wol
->wolopts
|= WAKE_MCAST
;
2119 if (adapter
->wol
& E1000_WUFC_BC
)
2120 wol
->wolopts
|= WAKE_BCAST
;
2121 if (adapter
->wol
& E1000_WUFC_MAG
)
2122 wol
->wolopts
|= WAKE_MAGIC
;
2123 if (adapter
->wol
& E1000_WUFC_LNKC
)
2124 wol
->wolopts
|= WAKE_PHY
;
2127 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2129 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2131 if (wol
->wolopts
& (WAKE_ARP
| WAKE_MAGICSECURE
| WAKE_FILTER
))
2134 if (!(adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
))
2135 return wol
->wolopts
? -EOPNOTSUPP
: 0;
2137 /* these settings will always override what we currently have */
2140 if (wol
->wolopts
& WAKE_UCAST
)
2141 adapter
->wol
|= E1000_WUFC_EX
;
2142 if (wol
->wolopts
& WAKE_MCAST
)
2143 adapter
->wol
|= E1000_WUFC_MC
;
2144 if (wol
->wolopts
& WAKE_BCAST
)
2145 adapter
->wol
|= E1000_WUFC_BC
;
2146 if (wol
->wolopts
& WAKE_MAGIC
)
2147 adapter
->wol
|= E1000_WUFC_MAG
;
2148 if (wol
->wolopts
& WAKE_PHY
)
2149 adapter
->wol
|= E1000_WUFC_LNKC
;
2150 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
2155 /* bit defines for adapter->led_status */
2156 #define IGB_LED_ON 0
2158 static int igb_set_phys_id(struct net_device
*netdev
,
2159 enum ethtool_phys_id_state state
)
2161 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2162 struct e1000_hw
*hw
= &adapter
->hw
;
2165 case ETHTOOL_ID_ACTIVE
:
2171 case ETHTOOL_ID_OFF
:
2174 case ETHTOOL_ID_INACTIVE
:
2176 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
2177 igb_cleanup_led(hw
);
2184 static int igb_set_coalesce(struct net_device
*netdev
,
2185 struct ethtool_coalesce
*ec
)
2187 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2190 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
2191 ((ec
->rx_coalesce_usecs
> 3) &&
2192 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
2193 (ec
->rx_coalesce_usecs
== 2))
2196 if ((ec
->tx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
2197 ((ec
->tx_coalesce_usecs
> 3) &&
2198 (ec
->tx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
2199 (ec
->tx_coalesce_usecs
== 2))
2202 if ((adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
) && ec
->tx_coalesce_usecs
)
2205 /* If ITR is disabled, disable DMAC */
2206 if (ec
->rx_coalesce_usecs
== 0) {
2207 if (adapter
->flags
& IGB_FLAG_DMAC
)
2208 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2211 /* convert to rate of irq's per second */
2212 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3)
2213 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
;
2215 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
<< 2;
2217 /* convert to rate of irq's per second */
2218 if (adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)
2219 adapter
->tx_itr_setting
= adapter
->rx_itr_setting
;
2220 else if (ec
->tx_coalesce_usecs
&& ec
->tx_coalesce_usecs
<= 3)
2221 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
;
2223 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
<< 2;
2225 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2226 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2227 q_vector
->tx
.work_limit
= adapter
->tx_work_limit
;
2228 if (q_vector
->rx
.ring
)
2229 q_vector
->itr_val
= adapter
->rx_itr_setting
;
2231 q_vector
->itr_val
= adapter
->tx_itr_setting
;
2232 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
2233 q_vector
->itr_val
= IGB_START_ITR
;
2234 q_vector
->set_itr
= 1;
2240 static int igb_get_coalesce(struct net_device
*netdev
,
2241 struct ethtool_coalesce
*ec
)
2243 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2245 if (adapter
->rx_itr_setting
<= 3)
2246 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
;
2248 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
>> 2;
2250 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)) {
2251 if (adapter
->tx_itr_setting
<= 3)
2252 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
;
2254 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
>> 2;
2260 static int igb_nway_reset(struct net_device
*netdev
)
2262 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2263 if (netif_running(netdev
))
2264 igb_reinit_locked(adapter
);
2268 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
2272 return IGB_STATS_LEN
;
2274 return IGB_TEST_LEN
;
2275 case ETH_SS_PRIV_FLAGS
:
2276 return IGB_PRIV_FLAGS_STR_LEN
;
2282 static void igb_get_ethtool_stats(struct net_device
*netdev
,
2283 struct ethtool_stats
*stats
, u64
*data
)
2285 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2286 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
2288 struct igb_ring
*ring
;
2292 spin_lock(&adapter
->stats64_lock
);
2293 igb_update_stats(adapter
);
2295 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2296 p
= (char *)adapter
+ igb_gstrings_stats
[i
].stat_offset
;
2297 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
2298 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2300 for (j
= 0; j
< IGB_NETDEV_STATS_LEN
; j
++, i
++) {
2301 p
= (char *)net_stats
+ igb_gstrings_net_stats
[j
].stat_offset
;
2302 data
[i
] = (igb_gstrings_net_stats
[j
].sizeof_stat
==
2303 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2305 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
2308 ring
= adapter
->tx_ring
[j
];
2310 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp
);
2311 data
[i
] = ring
->tx_stats
.packets
;
2312 data
[i
+1] = ring
->tx_stats
.bytes
;
2313 data
[i
+2] = ring
->tx_stats
.restart_queue
;
2314 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp
, start
));
2316 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp2
);
2317 restart2
= ring
->tx_stats
.restart_queue2
;
2318 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp2
, start
));
2319 data
[i
+2] += restart2
;
2321 i
+= IGB_TX_QUEUE_STATS_LEN
;
2323 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
2324 ring
= adapter
->rx_ring
[j
];
2326 start
= u64_stats_fetch_begin_irq(&ring
->rx_syncp
);
2327 data
[i
] = ring
->rx_stats
.packets
;
2328 data
[i
+1] = ring
->rx_stats
.bytes
;
2329 data
[i
+2] = ring
->rx_stats
.drops
;
2330 data
[i
+3] = ring
->rx_stats
.csum_err
;
2331 data
[i
+4] = ring
->rx_stats
.alloc_failed
;
2332 } while (u64_stats_fetch_retry_irq(&ring
->rx_syncp
, start
));
2333 i
+= IGB_RX_QUEUE_STATS_LEN
;
2335 spin_unlock(&adapter
->stats64_lock
);
2338 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2340 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2344 switch (stringset
) {
2346 memcpy(data
, *igb_gstrings_test
,
2347 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
2350 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2351 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
2353 p
+= ETH_GSTRING_LEN
;
2355 for (i
= 0; i
< IGB_NETDEV_STATS_LEN
; i
++) {
2356 memcpy(p
, igb_gstrings_net_stats
[i
].stat_string
,
2358 p
+= ETH_GSTRING_LEN
;
2360 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2361 sprintf(p
, "tx_queue_%u_packets", i
);
2362 p
+= ETH_GSTRING_LEN
;
2363 sprintf(p
, "tx_queue_%u_bytes", i
);
2364 p
+= ETH_GSTRING_LEN
;
2365 sprintf(p
, "tx_queue_%u_restart", i
);
2366 p
+= ETH_GSTRING_LEN
;
2368 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2369 sprintf(p
, "rx_queue_%u_packets", i
);
2370 p
+= ETH_GSTRING_LEN
;
2371 sprintf(p
, "rx_queue_%u_bytes", i
);
2372 p
+= ETH_GSTRING_LEN
;
2373 sprintf(p
, "rx_queue_%u_drops", i
);
2374 p
+= ETH_GSTRING_LEN
;
2375 sprintf(p
, "rx_queue_%u_csum_err", i
);
2376 p
+= ETH_GSTRING_LEN
;
2377 sprintf(p
, "rx_queue_%u_alloc_failed", i
);
2378 p
+= ETH_GSTRING_LEN
;
2380 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2382 case ETH_SS_PRIV_FLAGS
:
2383 memcpy(data
, igb_priv_flags_strings
,
2384 IGB_PRIV_FLAGS_STR_LEN
* ETH_GSTRING_LEN
);
2389 static int igb_get_ts_info(struct net_device
*dev
,
2390 struct ethtool_ts_info
*info
)
2392 struct igb_adapter
*adapter
= netdev_priv(dev
);
2394 if (adapter
->ptp_clock
)
2395 info
->phc_index
= ptp_clock_index(adapter
->ptp_clock
);
2397 info
->phc_index
= -1;
2399 switch (adapter
->hw
.mac
.type
) {
2401 info
->so_timestamping
=
2402 SOF_TIMESTAMPING_TX_SOFTWARE
|
2403 SOF_TIMESTAMPING_RX_SOFTWARE
|
2404 SOF_TIMESTAMPING_SOFTWARE
;
2412 info
->so_timestamping
=
2413 SOF_TIMESTAMPING_TX_SOFTWARE
|
2414 SOF_TIMESTAMPING_RX_SOFTWARE
|
2415 SOF_TIMESTAMPING_SOFTWARE
|
2416 SOF_TIMESTAMPING_TX_HARDWARE
|
2417 SOF_TIMESTAMPING_RX_HARDWARE
|
2418 SOF_TIMESTAMPING_RAW_HARDWARE
;
2421 BIT(HWTSTAMP_TX_OFF
) |
2422 BIT(HWTSTAMP_TX_ON
);
2424 info
->rx_filters
= BIT(HWTSTAMP_FILTER_NONE
);
2426 /* 82576 does not support timestamping all packets. */
2427 if (adapter
->hw
.mac
.type
>= e1000_82580
)
2428 info
->rx_filters
|= BIT(HWTSTAMP_FILTER_ALL
);
2431 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC
) |
2432 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
) |
2433 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT
);
2441 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2442 static int igb_get_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2443 struct ethtool_rxnfc
*cmd
)
2445 struct ethtool_rx_flow_spec
*fsp
= &cmd
->fs
;
2446 struct igb_nfc_filter
*rule
= NULL
;
2448 /* report total rule count */
2449 cmd
->data
= IGB_MAX_RXNFC_FILTERS
;
2451 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2452 if (fsp
->location
<= rule
->sw_idx
)
2456 if (!rule
|| fsp
->location
!= rule
->sw_idx
)
2459 if (rule
->filter
.match_flags
) {
2460 fsp
->flow_type
= ETHER_FLOW
;
2461 fsp
->ring_cookie
= rule
->action
;
2462 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
) {
2463 fsp
->h_u
.ether_spec
.h_proto
= rule
->filter
.etype
;
2464 fsp
->m_u
.ether_spec
.h_proto
= ETHER_TYPE_FULL_MASK
;
2466 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
) {
2467 fsp
->flow_type
|= FLOW_EXT
;
2468 fsp
->h_ext
.vlan_tci
= rule
->filter
.vlan_tci
;
2469 fsp
->m_ext
.vlan_tci
= htons(VLAN_PRIO_MASK
);
2471 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_DST_MAC_ADDR
) {
2472 ether_addr_copy(fsp
->h_u
.ether_spec
.h_dest
,
2473 rule
->filter
.dst_addr
);
2474 /* As we only support matching by the full
2475 * mask, return the mask to userspace
2477 eth_broadcast_addr(fsp
->m_u
.ether_spec
.h_dest
);
2479 if (rule
->filter
.match_flags
& IGB_FILTER_FLAG_SRC_MAC_ADDR
) {
2480 ether_addr_copy(fsp
->h_u
.ether_spec
.h_source
,
2481 rule
->filter
.src_addr
);
2482 /* As we only support matching by the full
2483 * mask, return the mask to userspace
2485 eth_broadcast_addr(fsp
->m_u
.ether_spec
.h_source
);
2493 static int igb_get_ethtool_nfc_all(struct igb_adapter
*adapter
,
2494 struct ethtool_rxnfc
*cmd
,
2497 struct igb_nfc_filter
*rule
;
2500 /* report total rule count */
2501 cmd
->data
= IGB_MAX_RXNFC_FILTERS
;
2503 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2504 if (cnt
== cmd
->rule_cnt
)
2506 rule_locs
[cnt
] = rule
->sw_idx
;
2510 cmd
->rule_cnt
= cnt
;
2515 static int igb_get_rss_hash_opts(struct igb_adapter
*adapter
,
2516 struct ethtool_rxnfc
*cmd
)
2520 /* Report default options for RSS on igb */
2521 switch (cmd
->flow_type
) {
2523 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2526 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
2527 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2530 case AH_ESP_V4_FLOW
:
2534 cmd
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2537 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2540 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
2541 cmd
->data
|= RXH_L4_B_0_1
| RXH_L4_B_2_3
;
2544 case AH_ESP_V6_FLOW
:
2548 cmd
->data
|= RXH_IP_SRC
| RXH_IP_DST
;
2557 static int igb_get_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
,
2560 struct igb_adapter
*adapter
= netdev_priv(dev
);
2561 int ret
= -EOPNOTSUPP
;
2564 case ETHTOOL_GRXRINGS
:
2565 cmd
->data
= adapter
->num_rx_queues
;
2568 case ETHTOOL_GRXCLSRLCNT
:
2569 cmd
->rule_cnt
= adapter
->nfc_filter_count
;
2572 case ETHTOOL_GRXCLSRULE
:
2573 ret
= igb_get_ethtool_nfc_entry(adapter
, cmd
);
2575 case ETHTOOL_GRXCLSRLALL
:
2576 ret
= igb_get_ethtool_nfc_all(adapter
, cmd
, rule_locs
);
2579 ret
= igb_get_rss_hash_opts(adapter
, cmd
);
2588 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2589 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2590 static int igb_set_rss_hash_opt(struct igb_adapter
*adapter
,
2591 struct ethtool_rxnfc
*nfc
)
2593 u32 flags
= adapter
->flags
;
2595 /* RSS does not support anything other than hashing
2596 * to queues on src and dst IPs and ports
2598 if (nfc
->data
& ~(RXH_IP_SRC
| RXH_IP_DST
|
2599 RXH_L4_B_0_1
| RXH_L4_B_2_3
))
2602 switch (nfc
->flow_type
) {
2605 if (!(nfc
->data
& RXH_IP_SRC
) ||
2606 !(nfc
->data
& RXH_IP_DST
) ||
2607 !(nfc
->data
& RXH_L4_B_0_1
) ||
2608 !(nfc
->data
& RXH_L4_B_2_3
))
2612 if (!(nfc
->data
& RXH_IP_SRC
) ||
2613 !(nfc
->data
& RXH_IP_DST
))
2615 switch (nfc
->data
& (RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
2617 flags
&= ~IGB_FLAG_RSS_FIELD_IPV4_UDP
;
2619 case (RXH_L4_B_0_1
| RXH_L4_B_2_3
):
2620 flags
|= IGB_FLAG_RSS_FIELD_IPV4_UDP
;
2627 if (!(nfc
->data
& RXH_IP_SRC
) ||
2628 !(nfc
->data
& RXH_IP_DST
))
2630 switch (nfc
->data
& (RXH_L4_B_0_1
| RXH_L4_B_2_3
)) {
2632 flags
&= ~IGB_FLAG_RSS_FIELD_IPV6_UDP
;
2634 case (RXH_L4_B_0_1
| RXH_L4_B_2_3
):
2635 flags
|= IGB_FLAG_RSS_FIELD_IPV6_UDP
;
2641 case AH_ESP_V4_FLOW
:
2645 case AH_ESP_V6_FLOW
:
2649 if (!(nfc
->data
& RXH_IP_SRC
) ||
2650 !(nfc
->data
& RXH_IP_DST
) ||
2651 (nfc
->data
& RXH_L4_B_0_1
) ||
2652 (nfc
->data
& RXH_L4_B_2_3
))
2659 /* if we changed something we need to update flags */
2660 if (flags
!= adapter
->flags
) {
2661 struct e1000_hw
*hw
= &adapter
->hw
;
2662 u32 mrqc
= rd32(E1000_MRQC
);
2664 if ((flags
& UDP_RSS_FLAGS
) &&
2665 !(adapter
->flags
& UDP_RSS_FLAGS
))
2666 dev_err(&adapter
->pdev
->dev
,
2667 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2669 adapter
->flags
= flags
;
2671 /* Perform hash on these packet types */
2672 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4
|
2673 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
2674 E1000_MRQC_RSS_FIELD_IPV6
|
2675 E1000_MRQC_RSS_FIELD_IPV6_TCP
;
2677 mrqc
&= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP
|
2678 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
2680 if (flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
2681 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4_UDP
;
2683 if (flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
2684 mrqc
|= E1000_MRQC_RSS_FIELD_IPV6_UDP
;
2686 wr32(E1000_MRQC
, mrqc
);
2692 static int igb_rxnfc_write_etype_filter(struct igb_adapter
*adapter
,
2693 struct igb_nfc_filter
*input
)
2695 struct e1000_hw
*hw
= &adapter
->hw
;
2700 /* find an empty etype filter register */
2701 for (i
= 0; i
< MAX_ETYPE_FILTER
; ++i
) {
2702 if (!adapter
->etype_bitmap
[i
])
2705 if (i
== MAX_ETYPE_FILTER
) {
2706 dev_err(&adapter
->pdev
->dev
, "ethtool -N: etype filters are all used.\n");
2710 adapter
->etype_bitmap
[i
] = true;
2712 etqf
= rd32(E1000_ETQF(i
));
2713 etype
= ntohs(input
->filter
.etype
& ETHER_TYPE_FULL_MASK
);
2715 etqf
|= E1000_ETQF_FILTER_ENABLE
;
2716 etqf
&= ~E1000_ETQF_ETYPE_MASK
;
2717 etqf
|= (etype
& E1000_ETQF_ETYPE_MASK
);
2719 etqf
&= ~E1000_ETQF_QUEUE_MASK
;
2720 etqf
|= ((input
->action
<< E1000_ETQF_QUEUE_SHIFT
)
2721 & E1000_ETQF_QUEUE_MASK
);
2722 etqf
|= E1000_ETQF_QUEUE_ENABLE
;
2724 wr32(E1000_ETQF(i
), etqf
);
2726 input
->etype_reg_index
= i
;
2731 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter
*adapter
,
2732 struct igb_nfc_filter
*input
)
2734 struct e1000_hw
*hw
= &adapter
->hw
;
2739 vlapqf
= rd32(E1000_VLAPQF
);
2740 vlan_priority
= (ntohs(input
->filter
.vlan_tci
) & VLAN_PRIO_MASK
)
2742 queue_index
= (vlapqf
>> (vlan_priority
* 4)) & E1000_VLAPQF_QUEUE_MASK
;
2744 /* check whether this vlan prio is already set */
2745 if ((vlapqf
& E1000_VLAPQF_P_VALID(vlan_priority
)) &&
2746 (queue_index
!= input
->action
)) {
2747 dev_err(&adapter
->pdev
->dev
, "ethtool rxnfc set vlan prio filter failed.\n");
2751 vlapqf
|= E1000_VLAPQF_P_VALID(vlan_priority
);
2752 vlapqf
|= E1000_VLAPQF_QUEUE_SEL(vlan_priority
, input
->action
);
2754 wr32(E1000_VLAPQF
, vlapqf
);
2759 int igb_add_filter(struct igb_adapter
*adapter
, struct igb_nfc_filter
*input
)
2761 struct e1000_hw
*hw
= &adapter
->hw
;
2764 if (hw
->mac
.type
== e1000_i210
&&
2765 !(input
->filter
.match_flags
& ~IGB_FILTER_FLAG_SRC_MAC_ADDR
)) {
2766 dev_err(&adapter
->pdev
->dev
,
2767 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2771 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
) {
2772 err
= igb_rxnfc_write_etype_filter(adapter
, input
);
2777 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_DST_MAC_ADDR
) {
2778 err
= igb_add_mac_steering_filter(adapter
,
2779 input
->filter
.dst_addr
,
2781 err
= min_t(int, err
, 0);
2786 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_SRC_MAC_ADDR
) {
2787 err
= igb_add_mac_steering_filter(adapter
,
2788 input
->filter
.src_addr
,
2790 IGB_MAC_STATE_SRC_ADDR
);
2791 err
= min_t(int, err
, 0);
2796 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
)
2797 err
= igb_rxnfc_write_vlan_prio_filter(adapter
, input
);
2802 static void igb_clear_etype_filter_regs(struct igb_adapter
*adapter
,
2805 struct e1000_hw
*hw
= &adapter
->hw
;
2806 u32 etqf
= rd32(E1000_ETQF(reg_index
));
2808 etqf
&= ~E1000_ETQF_QUEUE_ENABLE
;
2809 etqf
&= ~E1000_ETQF_QUEUE_MASK
;
2810 etqf
&= ~E1000_ETQF_FILTER_ENABLE
;
2812 wr32(E1000_ETQF(reg_index
), etqf
);
2814 adapter
->etype_bitmap
[reg_index
] = false;
2817 static void igb_clear_vlan_prio_filter(struct igb_adapter
*adapter
,
2820 struct e1000_hw
*hw
= &adapter
->hw
;
2824 vlan_priority
= (vlan_tci
& VLAN_PRIO_MASK
) >> VLAN_PRIO_SHIFT
;
2826 vlapqf
= rd32(E1000_VLAPQF
);
2827 vlapqf
&= ~E1000_VLAPQF_P_VALID(vlan_priority
);
2828 vlapqf
&= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority
,
2829 E1000_VLAPQF_QUEUE_MASK
);
2831 wr32(E1000_VLAPQF
, vlapqf
);
2834 int igb_erase_filter(struct igb_adapter
*adapter
, struct igb_nfc_filter
*input
)
2836 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_ETHER_TYPE
)
2837 igb_clear_etype_filter_regs(adapter
,
2838 input
->etype_reg_index
);
2840 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_VLAN_TCI
)
2841 igb_clear_vlan_prio_filter(adapter
,
2842 ntohs(input
->filter
.vlan_tci
));
2844 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_SRC_MAC_ADDR
)
2845 igb_del_mac_steering_filter(adapter
, input
->filter
.src_addr
,
2847 IGB_MAC_STATE_SRC_ADDR
);
2849 if (input
->filter
.match_flags
& IGB_FILTER_FLAG_DST_MAC_ADDR
)
2850 igb_del_mac_steering_filter(adapter
, input
->filter
.dst_addr
,
2856 static int igb_update_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2857 struct igb_nfc_filter
*input
,
2860 struct igb_nfc_filter
*rule
, *parent
;
2866 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2867 /* hash found, or no matching entry */
2868 if (rule
->sw_idx
>= sw_idx
)
2873 /* if there is an old rule occupying our place remove it */
2874 if (rule
&& (rule
->sw_idx
== sw_idx
)) {
2876 err
= igb_erase_filter(adapter
, rule
);
2878 hlist_del(&rule
->nfc_node
);
2880 adapter
->nfc_filter_count
--;
2883 /* If no input this was a delete, err should be 0 if a rule was
2884 * successfully found and removed from the list else -EINVAL
2889 /* initialize node */
2890 INIT_HLIST_NODE(&input
->nfc_node
);
2892 /* add filter to the list */
2894 hlist_add_behind(&input
->nfc_node
, &parent
->nfc_node
);
2896 hlist_add_head(&input
->nfc_node
, &adapter
->nfc_filter_list
);
2899 adapter
->nfc_filter_count
++;
2904 static int igb_add_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2905 struct ethtool_rxnfc
*cmd
)
2907 struct net_device
*netdev
= adapter
->netdev
;
2908 struct ethtool_rx_flow_spec
*fsp
=
2909 (struct ethtool_rx_flow_spec
*)&cmd
->fs
;
2910 struct igb_nfc_filter
*input
, *rule
;
2913 if (!(netdev
->hw_features
& NETIF_F_NTUPLE
))
2916 /* Don't allow programming if the action is a queue greater than
2917 * the number of online Rx queues.
2919 if ((fsp
->ring_cookie
== RX_CLS_FLOW_DISC
) ||
2920 (fsp
->ring_cookie
>= adapter
->num_rx_queues
)) {
2921 dev_err(&adapter
->pdev
->dev
, "ethtool -N: The specified action is invalid\n");
2925 /* Don't allow indexes to exist outside of available space */
2926 if (fsp
->location
>= IGB_MAX_RXNFC_FILTERS
) {
2927 dev_err(&adapter
->pdev
->dev
, "Location out of range\n");
2931 if ((fsp
->flow_type
& ~FLOW_EXT
) != ETHER_FLOW
)
2934 input
= kzalloc(sizeof(*input
), GFP_KERNEL
);
2938 if (fsp
->m_u
.ether_spec
.h_proto
== ETHER_TYPE_FULL_MASK
) {
2939 input
->filter
.etype
= fsp
->h_u
.ether_spec
.h_proto
;
2940 input
->filter
.match_flags
= IGB_FILTER_FLAG_ETHER_TYPE
;
2943 /* Only support matching addresses by the full mask */
2944 if (is_broadcast_ether_addr(fsp
->m_u
.ether_spec
.h_source
)) {
2945 input
->filter
.match_flags
|= IGB_FILTER_FLAG_SRC_MAC_ADDR
;
2946 ether_addr_copy(input
->filter
.src_addr
,
2947 fsp
->h_u
.ether_spec
.h_source
);
2950 /* Only support matching addresses by the full mask */
2951 if (is_broadcast_ether_addr(fsp
->m_u
.ether_spec
.h_dest
)) {
2952 input
->filter
.match_flags
|= IGB_FILTER_FLAG_DST_MAC_ADDR
;
2953 ether_addr_copy(input
->filter
.dst_addr
,
2954 fsp
->h_u
.ether_spec
.h_dest
);
2957 if ((fsp
->flow_type
& FLOW_EXT
) && fsp
->m_ext
.vlan_tci
) {
2958 if (fsp
->m_ext
.vlan_tci
!= htons(VLAN_PRIO_MASK
)) {
2962 input
->filter
.vlan_tci
= fsp
->h_ext
.vlan_tci
;
2963 input
->filter
.match_flags
|= IGB_FILTER_FLAG_VLAN_TCI
;
2966 input
->action
= fsp
->ring_cookie
;
2967 input
->sw_idx
= fsp
->location
;
2969 spin_lock(&adapter
->nfc_lock
);
2971 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
) {
2972 if (!memcmp(&input
->filter
, &rule
->filter
,
2973 sizeof(input
->filter
))) {
2975 dev_err(&adapter
->pdev
->dev
,
2976 "ethtool: this filter is already set\n");
2977 goto err_out_w_lock
;
2981 err
= igb_add_filter(adapter
, input
);
2983 goto err_out_w_lock
;
2985 igb_update_ethtool_nfc_entry(adapter
, input
, input
->sw_idx
);
2987 spin_unlock(&adapter
->nfc_lock
);
2991 spin_unlock(&adapter
->nfc_lock
);
2997 static int igb_del_ethtool_nfc_entry(struct igb_adapter
*adapter
,
2998 struct ethtool_rxnfc
*cmd
)
3000 struct ethtool_rx_flow_spec
*fsp
=
3001 (struct ethtool_rx_flow_spec
*)&cmd
->fs
;
3004 spin_lock(&adapter
->nfc_lock
);
3005 err
= igb_update_ethtool_nfc_entry(adapter
, NULL
, fsp
->location
);
3006 spin_unlock(&adapter
->nfc_lock
);
3011 static int igb_set_rxnfc(struct net_device
*dev
, struct ethtool_rxnfc
*cmd
)
3013 struct igb_adapter
*adapter
= netdev_priv(dev
);
3014 int ret
= -EOPNOTSUPP
;
3018 ret
= igb_set_rss_hash_opt(adapter
, cmd
);
3020 case ETHTOOL_SRXCLSRLINS
:
3021 ret
= igb_add_ethtool_nfc_entry(adapter
, cmd
);
3023 case ETHTOOL_SRXCLSRLDEL
:
3024 ret
= igb_del_ethtool_nfc_entry(adapter
, cmd
);
3032 static int igb_get_eee(struct net_device
*netdev
, struct ethtool_eee
*edata
)
3034 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3035 struct e1000_hw
*hw
= &adapter
->hw
;
3039 if ((hw
->mac
.type
< e1000_i350
) ||
3040 (hw
->phy
.media_type
!= e1000_media_type_copper
))
3043 edata
->supported
= (SUPPORTED_1000baseT_Full
|
3044 SUPPORTED_100baseT_Full
);
3045 if (!hw
->dev_spec
._82575
.eee_disable
)
3047 mmd_eee_adv_to_ethtool_adv_t(adapter
->eee_advert
);
3049 /* The IPCNFG and EEER registers are not supported on I354. */
3050 if (hw
->mac
.type
== e1000_i354
) {
3051 igb_get_eee_status_i354(hw
, (bool *)&edata
->eee_active
);
3055 eeer
= rd32(E1000_EEER
);
3057 /* EEE status on negotiated link */
3058 if (eeer
& E1000_EEER_EEE_NEG
)
3059 edata
->eee_active
= true;
3061 if (eeer
& E1000_EEER_TX_LPI_EN
)
3062 edata
->tx_lpi_enabled
= true;
3065 /* EEE Link Partner Advertised */
3066 switch (hw
->mac
.type
) {
3068 ret_val
= igb_read_emi_reg(hw
, E1000_EEE_LP_ADV_ADDR_I350
,
3073 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
3078 ret_val
= igb_read_xmdio_reg(hw
, E1000_EEE_LP_ADV_ADDR_I210
,
3079 E1000_EEE_LP_ADV_DEV_I210
,
3084 edata
->lp_advertised
= mmd_eee_adv_to_ethtool_adv_t(phy_data
);
3091 edata
->eee_enabled
= !hw
->dev_spec
._82575
.eee_disable
;
3093 if ((hw
->mac
.type
== e1000_i354
) &&
3094 (edata
->eee_enabled
))
3095 edata
->tx_lpi_enabled
= true;
3097 /* Report correct negotiated EEE status for devices that
3098 * wrongly report EEE at half-duplex
3100 if (adapter
->link_duplex
== HALF_DUPLEX
) {
3101 edata
->eee_enabled
= false;
3102 edata
->eee_active
= false;
3103 edata
->tx_lpi_enabled
= false;
3104 edata
->advertised
&= ~edata
->advertised
;
3110 static int igb_set_eee(struct net_device
*netdev
,
3111 struct ethtool_eee
*edata
)
3113 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3114 struct e1000_hw
*hw
= &adapter
->hw
;
3115 struct ethtool_eee eee_curr
;
3116 bool adv1g_eee
= true, adv100m_eee
= true;
3119 if ((hw
->mac
.type
< e1000_i350
) ||
3120 (hw
->phy
.media_type
!= e1000_media_type_copper
))
3123 memset(&eee_curr
, 0, sizeof(struct ethtool_eee
));
3125 ret_val
= igb_get_eee(netdev
, &eee_curr
);
3129 if (eee_curr
.eee_enabled
) {
3130 if (eee_curr
.tx_lpi_enabled
!= edata
->tx_lpi_enabled
) {
3131 dev_err(&adapter
->pdev
->dev
,
3132 "Setting EEE tx-lpi is not supported\n");
3136 /* Tx LPI timer is not implemented currently */
3137 if (edata
->tx_lpi_timer
) {
3138 dev_err(&adapter
->pdev
->dev
,
3139 "Setting EEE Tx LPI timer is not supported\n");
3143 if (!edata
->advertised
|| (edata
->advertised
&
3144 ~(ADVERTISE_100_FULL
| ADVERTISE_1000_FULL
))) {
3145 dev_err(&adapter
->pdev
->dev
,
3146 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3149 adv100m_eee
= !!(edata
->advertised
& ADVERTISE_100_FULL
);
3150 adv1g_eee
= !!(edata
->advertised
& ADVERTISE_1000_FULL
);
3152 } else if (!edata
->eee_enabled
) {
3153 dev_err(&adapter
->pdev
->dev
,
3154 "Setting EEE options are not supported with EEE disabled\n");
3158 adapter
->eee_advert
= ethtool_adv_to_mmd_eee_adv_t(edata
->advertised
);
3159 if (hw
->dev_spec
._82575
.eee_disable
!= !edata
->eee_enabled
) {
3160 hw
->dev_spec
._82575
.eee_disable
= !edata
->eee_enabled
;
3161 adapter
->flags
|= IGB_FLAG_EEE
;
3164 if (netif_running(netdev
))
3165 igb_reinit_locked(adapter
);
3170 if (hw
->mac
.type
== e1000_i354
)
3171 ret_val
= igb_set_eee_i354(hw
, adv1g_eee
, adv100m_eee
);
3173 ret_val
= igb_set_eee_i350(hw
, adv1g_eee
, adv100m_eee
);
3176 dev_err(&adapter
->pdev
->dev
,
3177 "Problem setting EEE advertisement options\n");
3184 static int igb_get_module_info(struct net_device
*netdev
,
3185 struct ethtool_modinfo
*modinfo
)
3187 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3188 struct e1000_hw
*hw
= &adapter
->hw
;
3190 u16 sff8472_rev
, addr_mode
;
3191 bool page_swap
= false;
3193 if ((hw
->phy
.media_type
== e1000_media_type_copper
) ||
3194 (hw
->phy
.media_type
== e1000_media_type_unknown
))
3197 /* Check whether we support SFF-8472 or not */
3198 status
= igb_read_phy_reg_i2c(hw
, IGB_SFF_8472_COMP
, &sff8472_rev
);
3202 /* addressing mode is not supported */
3203 status
= igb_read_phy_reg_i2c(hw
, IGB_SFF_8472_SWAP
, &addr_mode
);
3207 /* addressing mode is not supported */
3208 if ((addr_mode
& 0xFF) & IGB_SFF_ADDRESSING_MODE
) {
3209 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3213 if ((sff8472_rev
& 0xFF) == IGB_SFF_8472_UNSUP
|| page_swap
) {
3214 /* We have an SFP, but it does not support SFF-8472 */
3215 modinfo
->type
= ETH_MODULE_SFF_8079
;
3216 modinfo
->eeprom_len
= ETH_MODULE_SFF_8079_LEN
;
3218 /* We have an SFP which supports a revision of SFF-8472 */
3219 modinfo
->type
= ETH_MODULE_SFF_8472
;
3220 modinfo
->eeprom_len
= ETH_MODULE_SFF_8472_LEN
;
3226 static int igb_get_module_eeprom(struct net_device
*netdev
,
3227 struct ethtool_eeprom
*ee
, u8
*data
)
3229 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3230 struct e1000_hw
*hw
= &adapter
->hw
;
3233 u16 first_word
, last_word
;
3239 first_word
= ee
->offset
>> 1;
3240 last_word
= (ee
->offset
+ ee
->len
- 1) >> 1;
3242 dataword
= kmalloc_array(last_word
- first_word
+ 1, sizeof(u16
),
3247 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3248 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
3249 status
= igb_read_phy_reg_i2c(hw
, (first_word
+ i
) * 2,
3252 /* Error occurred while reading module */
3257 be16_to_cpus(&dataword
[i
]);
3260 memcpy(data
, (u8
*)dataword
+ (ee
->offset
& 1), ee
->len
);
3266 static int igb_ethtool_begin(struct net_device
*netdev
)
3268 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3269 pm_runtime_get_sync(&adapter
->pdev
->dev
);
3273 static void igb_ethtool_complete(struct net_device
*netdev
)
3275 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3276 pm_runtime_put(&adapter
->pdev
->dev
);
3279 static u32
igb_get_rxfh_indir_size(struct net_device
*netdev
)
3281 return IGB_RETA_SIZE
;
3284 static int igb_get_rxfh(struct net_device
*netdev
, u32
*indir
, u8
*key
,
3287 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3291 *hfunc
= ETH_RSS_HASH_TOP
;
3294 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3295 indir
[i
] = adapter
->rss_indir_tbl
[i
];
3300 void igb_write_rss_indir_tbl(struct igb_adapter
*adapter
)
3302 struct e1000_hw
*hw
= &adapter
->hw
;
3303 u32 reg
= E1000_RETA(0);
3307 switch (hw
->mac
.type
) {
3312 /* 82576 supports 2 RSS queues for SR-IOV */
3313 if (adapter
->vfs_allocated_count
)
3320 while (i
< IGB_RETA_SIZE
) {
3324 for (j
= 3; j
>= 0; j
--) {
3326 val
|= adapter
->rss_indir_tbl
[i
+ j
];
3329 wr32(reg
, val
<< shift
);
3335 static int igb_set_rxfh(struct net_device
*netdev
, const u32
*indir
,
3336 const u8
*key
, const u8 hfunc
)
3338 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3339 struct e1000_hw
*hw
= &adapter
->hw
;
3343 /* We do not allow change in unsupported parameters */
3345 (hfunc
!= ETH_RSS_HASH_NO_CHANGE
&& hfunc
!= ETH_RSS_HASH_TOP
))
3350 num_queues
= adapter
->rss_queues
;
3352 switch (hw
->mac
.type
) {
3354 /* 82576 supports 2 RSS queues for SR-IOV */
3355 if (adapter
->vfs_allocated_count
)
3362 /* Verify user input. */
3363 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3364 if (indir
[i
] >= num_queues
)
3368 for (i
= 0; i
< IGB_RETA_SIZE
; i
++)
3369 adapter
->rss_indir_tbl
[i
] = indir
[i
];
3371 igb_write_rss_indir_tbl(adapter
);
3376 static unsigned int igb_max_channels(struct igb_adapter
*adapter
)
3378 return igb_get_max_rss_queues(adapter
);
3381 static void igb_get_channels(struct net_device
*netdev
,
3382 struct ethtool_channels
*ch
)
3384 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3386 /* Report maximum channels */
3387 ch
->max_combined
= igb_max_channels(adapter
);
3389 /* Report info for other vector */
3390 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
3391 ch
->max_other
= NON_Q_VECTORS
;
3392 ch
->other_count
= NON_Q_VECTORS
;
3395 ch
->combined_count
= adapter
->rss_queues
;
3398 static int igb_set_channels(struct net_device
*netdev
,
3399 struct ethtool_channels
*ch
)
3401 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3402 unsigned int count
= ch
->combined_count
;
3403 unsigned int max_combined
= 0;
3405 /* Verify they are not requesting separate vectors */
3406 if (!count
|| ch
->rx_count
|| ch
->tx_count
)
3409 /* Verify other_count is valid and has not been changed */
3410 if (ch
->other_count
!= NON_Q_VECTORS
)
3413 /* Verify the number of channels doesn't exceed hw limits */
3414 max_combined
= igb_max_channels(adapter
);
3415 if (count
> max_combined
)
3418 if (count
!= adapter
->rss_queues
) {
3419 adapter
->rss_queues
= count
;
3420 igb_set_flag_queue_pairs(adapter
, max_combined
);
3422 /* Hardware has to reinitialize queues and interrupts to
3423 * match the new configuration.
3425 return igb_reinit_queues(adapter
);
3431 static u32
igb_get_priv_flags(struct net_device
*netdev
)
3433 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3436 if (adapter
->flags
& IGB_FLAG_RX_LEGACY
)
3437 priv_flags
|= IGB_PRIV_FLAGS_LEGACY_RX
;
3442 static int igb_set_priv_flags(struct net_device
*netdev
, u32 priv_flags
)
3444 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3445 unsigned int flags
= adapter
->flags
;
3447 flags
&= ~IGB_FLAG_RX_LEGACY
;
3448 if (priv_flags
& IGB_PRIV_FLAGS_LEGACY_RX
)
3449 flags
|= IGB_FLAG_RX_LEGACY
;
3451 if (flags
!= adapter
->flags
) {
3452 adapter
->flags
= flags
;
3454 /* reset interface to repopulate queues */
3455 if (netif_running(netdev
))
3456 igb_reinit_locked(adapter
);
3462 static const struct ethtool_ops igb_ethtool_ops
= {
3463 .supported_coalesce_params
= ETHTOOL_COALESCE_USECS
,
3464 .get_drvinfo
= igb_get_drvinfo
,
3465 .get_regs_len
= igb_get_regs_len
,
3466 .get_regs
= igb_get_regs
,
3467 .get_wol
= igb_get_wol
,
3468 .set_wol
= igb_set_wol
,
3469 .get_msglevel
= igb_get_msglevel
,
3470 .set_msglevel
= igb_set_msglevel
,
3471 .nway_reset
= igb_nway_reset
,
3472 .get_link
= igb_get_link
,
3473 .get_eeprom_len
= igb_get_eeprom_len
,
3474 .get_eeprom
= igb_get_eeprom
,
3475 .set_eeprom
= igb_set_eeprom
,
3476 .get_ringparam
= igb_get_ringparam
,
3477 .set_ringparam
= igb_set_ringparam
,
3478 .get_pauseparam
= igb_get_pauseparam
,
3479 .set_pauseparam
= igb_set_pauseparam
,
3480 .self_test
= igb_diag_test
,
3481 .get_strings
= igb_get_strings
,
3482 .set_phys_id
= igb_set_phys_id
,
3483 .get_sset_count
= igb_get_sset_count
,
3484 .get_ethtool_stats
= igb_get_ethtool_stats
,
3485 .get_coalesce
= igb_get_coalesce
,
3486 .set_coalesce
= igb_set_coalesce
,
3487 .get_ts_info
= igb_get_ts_info
,
3488 .get_rxnfc
= igb_get_rxnfc
,
3489 .set_rxnfc
= igb_set_rxnfc
,
3490 .get_eee
= igb_get_eee
,
3491 .set_eee
= igb_set_eee
,
3492 .get_module_info
= igb_get_module_info
,
3493 .get_module_eeprom
= igb_get_module_eeprom
,
3494 .get_rxfh_indir_size
= igb_get_rxfh_indir_size
,
3495 .get_rxfh
= igb_get_rxfh
,
3496 .set_rxfh
= igb_set_rxfh
,
3497 .get_channels
= igb_get_channels
,
3498 .set_channels
= igb_set_channels
,
3499 .get_priv_flags
= igb_get_priv_flags
,
3500 .set_priv_flags
= igb_set_priv_flags
,
3501 .begin
= igb_ethtool_begin
,
3502 .complete
= igb_ethtool_complete
,
3503 .get_link_ksettings
= igb_get_link_ksettings
,
3504 .set_link_ksettings
= igb_set_link_ksettings
,
3507 void igb_set_ethtool_ops(struct net_device
*netdev
)
3509 netdev
->ethtool_ops
= &igb_ethtool_ops
;