1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
38 #include <linux/dca.h>
40 #include <linux/i2c.h>
44 QUEUE_MODE_STRICT_PRIORITY
,
45 QUEUE_MODE_STREAM_RESERVATION
,
53 char igb_driver_name
[] = "igb";
54 static const char igb_driver_string
[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright
[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
59 static const struct e1000_info
*igb_info_tbl
[] = {
60 [board_82575
] = &e1000_82575_info
,
63 static const struct pci_device_id igb_pci_tbl
[] = {
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I354_BACKPLANE_1GBPS
) },
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I354_SGMII
) },
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS
) },
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I211_COPPER
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_COPPER
), board_82575
},
69 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_FIBER
), board_82575
},
70 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_SERDES
), board_82575
},
71 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_SGMII
), board_82575
},
72 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_COPPER_FLASHLESS
), board_82575
},
73 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_SERDES_FLASHLESS
), board_82575
},
74 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_COPPER
), board_82575
},
75 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_FIBER
), board_82575
},
76 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_SERDES
), board_82575
},
77 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_SGMII
), board_82575
},
78 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_COPPER
), board_82575
},
79 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_FIBER
), board_82575
},
80 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_QUAD_FIBER
), board_82575
},
81 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_SERDES
), board_82575
},
82 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_SGMII
), board_82575
},
83 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_COPPER_DUAL
), board_82575
},
84 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SGMII
), board_82575
},
85 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SERDES
), board_82575
},
86 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_BACKPLANE
), board_82575
},
87 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SFP
), board_82575
},
88 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
89 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS
), board_82575
},
90 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS_SERDES
), board_82575
},
91 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
92 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
93 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES_QUAD
), board_82575
},
94 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER_ET2
), board_82575
},
95 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER
), board_82575
},
96 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
97 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
98 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
99 /* required last entry */
103 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
105 static int igb_setup_all_tx_resources(struct igb_adapter
*);
106 static int igb_setup_all_rx_resources(struct igb_adapter
*);
107 static void igb_free_all_tx_resources(struct igb_adapter
*);
108 static void igb_free_all_rx_resources(struct igb_adapter
*);
109 static void igb_setup_mrqc(struct igb_adapter
*);
110 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
111 static void igb_remove(struct pci_dev
*pdev
);
112 static int igb_sw_init(struct igb_adapter
*);
113 int igb_open(struct net_device
*);
114 int igb_close(struct net_device
*);
115 static void igb_configure(struct igb_adapter
*);
116 static void igb_configure_tx(struct igb_adapter
*);
117 static void igb_configure_rx(struct igb_adapter
*);
118 static void igb_clean_all_tx_rings(struct igb_adapter
*);
119 static void igb_clean_all_rx_rings(struct igb_adapter
*);
120 static void igb_clean_tx_ring(struct igb_ring
*);
121 static void igb_clean_rx_ring(struct igb_ring
*);
122 static void igb_set_rx_mode(struct net_device
*);
123 static void igb_update_phy_info(struct timer_list
*);
124 static void igb_watchdog(struct timer_list
*);
125 static void igb_watchdog_task(struct work_struct
*);
126 static netdev_tx_t
igb_xmit_frame(struct sk_buff
*skb
, struct net_device
*);
127 static void igb_get_stats64(struct net_device
*dev
,
128 struct rtnl_link_stats64
*stats
);
129 static int igb_change_mtu(struct net_device
*, int);
130 static int igb_set_mac(struct net_device
*, void *);
131 static void igb_set_uta(struct igb_adapter
*adapter
, bool set
);
132 static irqreturn_t
igb_intr(int irq
, void *);
133 static irqreturn_t
igb_intr_msi(int irq
, void *);
134 static irqreturn_t
igb_msix_other(int irq
, void *);
135 static irqreturn_t
igb_msix_ring(int irq
, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector
*);
138 static void igb_setup_dca(struct igb_adapter
*);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct
*, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector
*, int);
142 static int igb_clean_rx_irq(struct igb_q_vector
*, int);
143 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
144 static void igb_tx_timeout(struct net_device
*, unsigned int txqueue
);
145 static void igb_reset_task(struct work_struct
*);
146 static void igb_vlan_mode(struct net_device
*netdev
,
147 netdev_features_t features
);
148 static int igb_vlan_rx_add_vid(struct net_device
*, __be16
, u16
);
149 static int igb_vlan_rx_kill_vid(struct net_device
*, __be16
, u16
);
150 static void igb_restore_vlan(struct igb_adapter
*);
151 static void igb_rar_set_index(struct igb_adapter
*, u32
);
152 static void igb_ping_all_vfs(struct igb_adapter
*);
153 static void igb_msg_task(struct igb_adapter
*);
154 static void igb_vmm_control(struct igb_adapter
*);
155 static int igb_set_vf_mac(struct igb_adapter
*, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter
*);
157 static int igb_available_rars(struct igb_adapter
*, u8
);
158 static void igb_set_default_mac_filter(struct igb_adapter
*);
159 static int igb_uc_sync(struct net_device
*, const unsigned char *);
160 static int igb_uc_unsync(struct net_device
*, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
);
162 static int igb_ndo_set_vf_mac(struct net_device
*netdev
, int vf
, u8
*mac
);
163 static int igb_ndo_set_vf_vlan(struct net_device
*netdev
,
164 int vf
, u16 vlan
, u8 qos
, __be16 vlan_proto
);
165 static int igb_ndo_set_vf_bw(struct net_device
*, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device
*netdev
, int vf
,
168 static int igb_ndo_set_vf_trust(struct net_device
*netdev
, int vf
,
170 static int igb_ndo_get_vf_config(struct net_device
*netdev
, int vf
,
171 struct ifla_vf_info
*ivi
);
172 static void igb_check_vf_rate_limit(struct igb_adapter
*);
173 static void igb_nfc_filter_exit(struct igb_adapter
*adapter
);
174 static void igb_nfc_filter_restore(struct igb_adapter
*adapter
);
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter
*adapter
, int vf
);
178 static int igb_pci_enable_sriov(struct pci_dev
*dev
, int num_vfs
);
179 static int igb_disable_sriov(struct pci_dev
*dev
);
180 static int igb_pci_disable_sriov(struct pci_dev
*dev
);
183 static int igb_suspend(struct device
*);
184 static int igb_resume(struct device
*);
185 static int igb_runtime_suspend(struct device
*dev
);
186 static int igb_runtime_resume(struct device
*dev
);
187 static int igb_runtime_idle(struct device
*dev
);
188 static const struct dev_pm_ops igb_pm_ops
= {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend
, igb_resume
)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend
, igb_runtime_resume
,
193 static void igb_shutdown(struct pci_dev
*);
194 static int igb_pci_sriov_configure(struct pci_dev
*dev
, int num_vfs
);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
197 static struct notifier_block dca_notifier
= {
198 .notifier_call
= igb_notify_dca
,
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs
;
205 module_param(max_vfs
, uint
, 0);
206 MODULE_PARM_DESC(max_vfs
, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
209 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
210 pci_channel_state_t
);
211 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
212 static void igb_io_resume(struct pci_dev
*);
214 static const struct pci_error_handlers igb_err_handler
= {
215 .error_detected
= igb_io_error_detected
,
216 .slot_reset
= igb_io_slot_reset
,
217 .resume
= igb_io_resume
,
220 static void igb_init_dmac(struct igb_adapter
*adapter
, u32 pba
);
222 static struct pci_driver igb_driver
= {
223 .name
= igb_driver_name
,
224 .id_table
= igb_pci_tbl
,
226 .remove
= igb_remove
,
228 .driver
.pm
= &igb_pm_ops
,
230 .shutdown
= igb_shutdown
,
231 .sriov_configure
= igb_pci_sriov_configure
,
232 .err_handler
= &igb_err_handler
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug
= -1;
241 module_param(debug
, int, 0);
242 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
244 struct igb_reg_info
{
249 static const struct igb_reg_info igb_reg_info_tbl
[] = {
251 /* General Registers */
252 {E1000_CTRL
, "CTRL"},
253 {E1000_STATUS
, "STATUS"},
254 {E1000_CTRL_EXT
, "CTRL_EXT"},
256 /* Interrupt Registers */
260 {E1000_RCTL
, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
269 {E1000_TCTL
, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH
, "TDFH"},
277 {E1000_TDFT
, "TDFT"},
278 {E1000_TDFHS
, "TDFHS"},
279 {E1000_TDFPC
, "TDFPC"},
281 /* List Terminator */
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw
*hw
, struct igb_reg_info
*reginfo
)
292 switch (reginfo
->ofs
) {
294 for (n
= 0; n
< 4; n
++)
295 regs
[n
] = rd32(E1000_RDLEN(n
));
298 for (n
= 0; n
< 4; n
++)
299 regs
[n
] = rd32(E1000_RDH(n
));
302 for (n
= 0; n
< 4; n
++)
303 regs
[n
] = rd32(E1000_RDT(n
));
305 case E1000_RXDCTL(0):
306 for (n
= 0; n
< 4; n
++)
307 regs
[n
] = rd32(E1000_RXDCTL(n
));
310 for (n
= 0; n
< 4; n
++)
311 regs
[n
] = rd32(E1000_RDBAL(n
));
314 for (n
= 0; n
< 4; n
++)
315 regs
[n
] = rd32(E1000_RDBAH(n
));
318 for (n
= 0; n
< 4; n
++)
319 regs
[n
] = rd32(E1000_RDBAL(n
));
322 for (n
= 0; n
< 4; n
++)
323 regs
[n
] = rd32(E1000_TDBAH(n
));
326 for (n
= 0; n
< 4; n
++)
327 regs
[n
] = rd32(E1000_TDLEN(n
));
330 for (n
= 0; n
< 4; n
++)
331 regs
[n
] = rd32(E1000_TDH(n
));
334 for (n
= 0; n
< 4; n
++)
335 regs
[n
] = rd32(E1000_TDT(n
));
337 case E1000_TXDCTL(0):
338 for (n
= 0; n
< 4; n
++)
339 regs
[n
] = rd32(E1000_TXDCTL(n
));
342 pr_info("%-15s %08x\n", reginfo
->name
, rd32(reginfo
->ofs
));
346 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname
, regs
[0], regs
[1],
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter
*adapter
)
354 struct net_device
*netdev
= adapter
->netdev
;
355 struct e1000_hw
*hw
= &adapter
->hw
;
356 struct igb_reg_info
*reginfo
;
357 struct igb_ring
*tx_ring
;
358 union e1000_adv_tx_desc
*tx_desc
;
359 struct my_u0
{ u64 a
; u64 b
; } *u0
;
360 struct igb_ring
*rx_ring
;
361 union e1000_adv_rx_desc
*rx_desc
;
365 if (!netif_msg_hw(adapter
))
368 /* Print netdevice Info */
370 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev
->name
,
373 netdev
->state
, dev_trans_start(netdev
));
376 /* Print Registers */
377 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo
= (struct igb_reg_info
*)igb_reg_info_tbl
;
380 reginfo
->name
; reginfo
++) {
381 igb_regdump(hw
, reginfo
);
384 /* Print TX Ring Summary */
385 if (!netdev
|| !netif_running(netdev
))
388 dev_info(&adapter
->pdev
->dev
, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n
= 0; n
< adapter
->num_tx_queues
; n
++) {
391 struct igb_tx_buffer
*buffer_info
;
392 tx_ring
= adapter
->tx_ring
[n
];
393 buffer_info
= &tx_ring
->tx_buffer_info
[tx_ring
->next_to_clean
];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n
, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
396 (u64
)dma_unmap_addr(buffer_info
, dma
),
397 dma_unmap_len(buffer_info
, len
),
398 buffer_info
->next_to_watch
,
399 (u64
)buffer_info
->time_stamp
);
403 if (!netif_msg_tx_done(adapter
))
404 goto rx_ring_summary
;
406 dev_info(&adapter
->pdev
->dev
, "TX Rings Dump\n");
408 /* Transmit Descriptor Formats
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
419 for (n
= 0; n
< adapter
->num_tx_queues
; n
++) {
420 tx_ring
= adapter
->tx_ring
[n
];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring
->queue_index
);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
426 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
427 const char *next_desc
;
428 struct igb_tx_buffer
*buffer_info
;
429 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
430 buffer_info
= &tx_ring
->tx_buffer_info
[i
];
431 u0
= (struct my_u0
*)tx_desc
;
432 if (i
== tx_ring
->next_to_use
&&
433 i
== tx_ring
->next_to_clean
)
434 next_desc
= " NTC/U";
435 else if (i
== tx_ring
->next_to_use
)
437 else if (i
== tx_ring
->next_to_clean
)
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i
, le64_to_cpu(u0
->a
),
445 (u64
)dma_unmap_addr(buffer_info
, dma
),
446 dma_unmap_len(buffer_info
, len
),
447 buffer_info
->next_to_watch
,
448 (u64
)buffer_info
->time_stamp
,
449 buffer_info
->skb
, next_desc
);
451 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
452 print_hex_dump(KERN_INFO
, "",
454 16, 1, buffer_info
->skb
->data
,
455 dma_unmap_len(buffer_info
, len
),
460 /* Print RX Rings Summary */
462 dev_info(&adapter
->pdev
->dev
, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
465 rx_ring
= adapter
->rx_ring
[n
];
466 pr_info(" %5d %5X %5X\n",
467 n
, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
471 if (!netif_msg_rx_status(adapter
))
474 dev_info(&adapter
->pdev
->dev
, "RX Rings Dump\n");
476 /* Advanced Receive Descriptor (Read) Format
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
485 * Advanced Receive Descriptor (Write-Back) Format
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
497 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
498 rx_ring
= adapter
->rx_ring
[n
];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring
->queue_index
);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
505 for (i
= 0; i
< rx_ring
->count
; i
++) {
506 const char *next_desc
;
507 struct igb_rx_buffer
*buffer_info
;
508 buffer_info
= &rx_ring
->rx_buffer_info
[i
];
509 rx_desc
= IGB_RX_DESC(rx_ring
, i
);
510 u0
= (struct my_u0
*)rx_desc
;
511 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
513 if (i
== rx_ring
->next_to_use
)
515 else if (i
== rx_ring
->next_to_clean
)
520 if (staterr
& E1000_RXD_STAT_DD
) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
532 (u64
)buffer_info
->dma
,
535 if (netif_msg_pktdata(adapter
) &&
536 buffer_info
->dma
&& buffer_info
->page
) {
537 print_hex_dump(KERN_INFO
, "",
540 page_address(buffer_info
->page
) +
541 buffer_info
->page_offset
,
542 igb_rx_bufsz(rx_ring
), true);
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
556 * Returns the I2C data bit value
558 static int igb_get_i2c_data(void *data
)
560 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
561 struct e1000_hw
*hw
= &adapter
->hw
;
562 s32 i2cctl
= rd32(E1000_I2CPARAMS
);
564 return !!(i2cctl
& E1000_I2C_DATA_IN
);
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
572 * Sets the I2C data bit
574 static void igb_set_i2c_data(void *data
, int state
)
576 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
577 struct e1000_hw
*hw
= &adapter
->hw
;
578 s32 i2cctl
= rd32(E1000_I2CPARAMS
);
581 i2cctl
|= E1000_I2C_DATA_OUT
;
583 i2cctl
&= ~E1000_I2C_DATA_OUT
;
585 i2cctl
&= ~E1000_I2C_DATA_OE_N
;
586 i2cctl
|= E1000_I2C_CLK_OE_N
;
587 wr32(E1000_I2CPARAMS
, i2cctl
);
593 * igb_set_i2c_clk - Sets the I2C SCL clock
594 * @data: pointer to hardware structure
595 * @state: state to set clock
597 * Sets the I2C clock line to state
599 static void igb_set_i2c_clk(void *data
, int state
)
601 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
602 struct e1000_hw
*hw
= &adapter
->hw
;
603 s32 i2cctl
= rd32(E1000_I2CPARAMS
);
606 i2cctl
|= E1000_I2C_CLK_OUT
;
607 i2cctl
&= ~E1000_I2C_CLK_OE_N
;
609 i2cctl
&= ~E1000_I2C_CLK_OUT
;
610 i2cctl
&= ~E1000_I2C_CLK_OE_N
;
612 wr32(E1000_I2CPARAMS
, i2cctl
);
617 * igb_get_i2c_clk - Gets the I2C SCL clock state
618 * @data: pointer to hardware structure
620 * Gets the I2C clock state
622 static int igb_get_i2c_clk(void *data
)
624 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
625 struct e1000_hw
*hw
= &adapter
->hw
;
626 s32 i2cctl
= rd32(E1000_I2CPARAMS
);
628 return !!(i2cctl
& E1000_I2C_CLK_IN
);
631 static const struct i2c_algo_bit_data igb_i2c_algo
= {
632 .setsda
= igb_set_i2c_data
,
633 .setscl
= igb_set_i2c_clk
,
634 .getsda
= igb_get_i2c_data
,
635 .getscl
= igb_get_i2c_clk
,
641 * igb_get_hw_dev - return device
642 * @hw: pointer to hardware structure
644 * used by hardware layer to print debugging information
646 struct net_device
*igb_get_hw_dev(struct e1000_hw
*hw
)
648 struct igb_adapter
*adapter
= hw
->back
;
649 return adapter
->netdev
;
653 * igb_init_module - Driver Registration Routine
655 * igb_init_module is the first routine called when the driver is
656 * loaded. All it does is register with the PCI subsystem.
658 static int __init
igb_init_module(void)
662 pr_info("%s\n", igb_driver_string
);
663 pr_info("%s\n", igb_copyright
);
665 #ifdef CONFIG_IGB_DCA
666 dca_register_notify(&dca_notifier
);
668 ret
= pci_register_driver(&igb_driver
);
672 module_init(igb_init_module
);
675 * igb_exit_module - Driver Exit Cleanup Routine
677 * igb_exit_module is called just before the driver is removed
680 static void __exit
igb_exit_module(void)
682 #ifdef CONFIG_IGB_DCA
683 dca_unregister_notify(&dca_notifier
);
685 pci_unregister_driver(&igb_driver
);
688 module_exit(igb_exit_module
);
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
692 * igb_cache_ring_register - Descriptor ring to register mapping
693 * @adapter: board private structure to initialize
695 * Once we know the feature-set enabled for the device, we'll cache
696 * the register offset the descriptor ring is assigned to.
698 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
701 u32 rbase_offset
= adapter
->vfs_allocated_count
;
703 switch (adapter
->hw
.mac
.type
) {
705 /* The queues are allocated for virtualization such that VF 0
706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 * In order to avoid collision we start at the first free queue
708 * and continue consuming queues in the same sequence
710 if (adapter
->vfs_allocated_count
) {
711 for (; i
< adapter
->rss_queues
; i
++)
712 adapter
->rx_ring
[i
]->reg_idx
= rbase_offset
+
723 for (; i
< adapter
->num_rx_queues
; i
++)
724 adapter
->rx_ring
[i
]->reg_idx
= rbase_offset
+ i
;
725 for (; j
< adapter
->num_tx_queues
; j
++)
726 adapter
->tx_ring
[j
]->reg_idx
= rbase_offset
+ j
;
731 u32
igb_rd32(struct e1000_hw
*hw
, u32 reg
)
733 struct igb_adapter
*igb
= container_of(hw
, struct igb_adapter
, hw
);
734 u8 __iomem
*hw_addr
= READ_ONCE(hw
->hw_addr
);
737 if (E1000_REMOVED(hw_addr
))
740 value
= readl(&hw_addr
[reg
]);
742 /* reads should not return all F's */
743 if (!(~value
) && (!reg
|| !(~readl(hw_addr
)))) {
744 struct net_device
*netdev
= igb
->netdev
;
746 netdev_err(netdev
, "PCIe link lost\n");
747 WARN(pci_device_is_present(igb
->pdev
),
748 "igb: Failed to read reg 0x%x!\n", reg
);
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
766 static void igb_write_ivar(struct e1000_hw
*hw
, int msix_vector
,
767 int index
, int offset
)
769 u32 ivar
= array_rd32(E1000_IVAR0
, index
);
771 /* clear any bits that are currently set */
772 ivar
&= ~((u32
)0xFF << offset
);
774 /* write vector and valid bit */
775 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << offset
;
777 array_wr32(E1000_IVAR0
, index
, ivar
);
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector
*q_vector
, int msix_vector
)
783 struct igb_adapter
*adapter
= q_vector
->adapter
;
784 struct e1000_hw
*hw
= &adapter
->hw
;
785 int rx_queue
= IGB_N0_QUEUE
;
786 int tx_queue
= IGB_N0_QUEUE
;
789 if (q_vector
->rx
.ring
)
790 rx_queue
= q_vector
->rx
.ring
->reg_idx
;
791 if (q_vector
->tx
.ring
)
792 tx_queue
= q_vector
->tx
.ring
->reg_idx
;
794 switch (hw
->mac
.type
) {
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
801 if (rx_queue
> IGB_N0_QUEUE
)
802 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
803 if (tx_queue
> IGB_N0_QUEUE
)
804 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
805 if (!(adapter
->flags
& IGB_FLAG_HAS_MSIX
) && msix_vector
== 0)
806 msixbm
|= E1000_EIMS_OTHER
;
807 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
808 q_vector
->eims_value
= msixbm
;
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
816 if (rx_queue
> IGB_N0_QUEUE
)
817 igb_write_ivar(hw
, msix_vector
,
819 (rx_queue
& 0x8) << 1);
820 if (tx_queue
> IGB_N0_QUEUE
)
821 igb_write_ivar(hw
, msix_vector
,
823 ((tx_queue
& 0x8) << 1) + 8);
824 q_vector
->eims_value
= BIT(msix_vector
);
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
837 if (rx_queue
> IGB_N0_QUEUE
)
838 igb_write_ivar(hw
, msix_vector
,
840 (rx_queue
& 0x1) << 4);
841 if (tx_queue
> IGB_N0_QUEUE
)
842 igb_write_ivar(hw
, msix_vector
,
844 ((tx_queue
& 0x1) << 4) + 8);
845 q_vector
->eims_value
= BIT(msix_vector
);
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter
->eims_enable_mask
|= q_vector
->eims_value
;
855 /* configure q_vector to set itr on first interrupt */
856 q_vector
->set_itr
= 1;
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
866 static void igb_configure_msix(struct igb_adapter
*adapter
)
870 struct e1000_hw
*hw
= &adapter
->hw
;
872 adapter
->eims_enable_mask
= 0;
874 /* set vector for other causes, i.e. link changes */
875 switch (hw
->mac
.type
) {
877 tmp
= rd32(E1000_CTRL_EXT
);
878 /* enable MSI-X PBA support*/
879 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp
|= E1000_CTRL_EXT_EIAME
;
883 tmp
|= E1000_CTRL_EXT_IRCA
;
885 wr32(E1000_CTRL_EXT
, tmp
);
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector
++, E1000_EIMS_OTHER
);
889 adapter
->eims_other
= E1000_EIMS_OTHER
;
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
902 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
903 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
906 /* enable msix_other interrupt */
907 adapter
->eims_other
= BIT(vector
);
908 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
910 wr32(E1000_IVAR_MISC
, tmp
);
913 /* do nothing, since nothing else supports MSI-X */
915 } /* switch (hw->mac.type) */
917 adapter
->eims_enable_mask
|= adapter
->eims_other
;
919 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
920 igb_assign_vector(adapter
->q_vector
[i
], vector
++);
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
932 static int igb_request_msix(struct igb_adapter
*adapter
)
934 struct net_device
*netdev
= adapter
->netdev
;
935 int i
, err
= 0, vector
= 0, free_vector
= 0;
937 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
938 igb_msix_other
, 0, netdev
->name
, adapter
);
942 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
943 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
947 q_vector
->itr_register
= adapter
->io_addr
+ E1000_EITR(vector
);
949 if (q_vector
->rx
.ring
&& q_vector
->tx
.ring
)
950 sprintf(q_vector
->name
, "%s-TxRx-%u", netdev
->name
,
951 q_vector
->rx
.ring
->queue_index
);
952 else if (q_vector
->tx
.ring
)
953 sprintf(q_vector
->name
, "%s-tx-%u", netdev
->name
,
954 q_vector
->tx
.ring
->queue_index
);
955 else if (q_vector
->rx
.ring
)
956 sprintf(q_vector
->name
, "%s-rx-%u", netdev
->name
,
957 q_vector
->rx
.ring
->queue_index
);
959 sprintf(q_vector
->name
, "%s-unused", netdev
->name
);
961 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
962 igb_msix_ring
, 0, q_vector
->name
,
968 igb_configure_msix(adapter
);
972 /* free already assigned IRQs */
973 free_irq(adapter
->msix_entries
[free_vector
++].vector
, adapter
);
976 for (i
= 0; i
< vector
; i
++) {
977 free_irq(adapter
->msix_entries
[free_vector
++].vector
,
978 adapter
->q_vector
[i
]);
985 * igb_free_q_vector - Free memory allocated for specific interrupt vector
986 * @adapter: board private structure to initialize
987 * @v_idx: Index of vector to be freed
989 * This function frees the memory allocated to the q_vector.
991 static void igb_free_q_vector(struct igb_adapter
*adapter
, int v_idx
)
993 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
995 adapter
->q_vector
[v_idx
] = NULL
;
997 /* igb_get_stats64() might access the rings on this vector,
998 * we must wait a grace period before freeing it.
1001 kfree_rcu(q_vector
, rcu
);
1005 * igb_reset_q_vector - Reset config for interrupt vector
1006 * @adapter: board private structure to initialize
1007 * @v_idx: Index of vector to be reset
1009 * If NAPI is enabled it will delete any references to the
1010 * NAPI struct. This is preparation for igb_free_q_vector.
1012 static void igb_reset_q_vector(struct igb_adapter
*adapter
, int v_idx
)
1014 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
1016 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1017 * allocated. So, q_vector is NULL so we should stop here.
1022 if (q_vector
->tx
.ring
)
1023 adapter
->tx_ring
[q_vector
->tx
.ring
->queue_index
] = NULL
;
1025 if (q_vector
->rx
.ring
)
1026 adapter
->rx_ring
[q_vector
->rx
.ring
->queue_index
] = NULL
;
1028 netif_napi_del(&q_vector
->napi
);
1032 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
1034 int v_idx
= adapter
->num_q_vectors
;
1036 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
)
1037 pci_disable_msix(adapter
->pdev
);
1038 else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
1039 pci_disable_msi(adapter
->pdev
);
1042 igb_reset_q_vector(adapter
, v_idx
);
1046 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1047 * @adapter: board private structure to initialize
1049 * This function frees the memory allocated to the q_vectors. In addition if
1050 * NAPI is enabled it will delete any references to the NAPI struct prior
1051 * to freeing the q_vector.
1053 static void igb_free_q_vectors(struct igb_adapter
*adapter
)
1055 int v_idx
= adapter
->num_q_vectors
;
1057 adapter
->num_tx_queues
= 0;
1058 adapter
->num_rx_queues
= 0;
1059 adapter
->num_q_vectors
= 0;
1062 igb_reset_q_vector(adapter
, v_idx
);
1063 igb_free_q_vector(adapter
, v_idx
);
1068 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069 * @adapter: board private structure to initialize
1071 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1072 * MSI-X interrupts allocated.
1074 static void igb_clear_interrupt_scheme(struct igb_adapter
*adapter
)
1076 igb_free_q_vectors(adapter
);
1077 igb_reset_interrupt_capability(adapter
);
1081 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1082 * @adapter: board private structure to initialize
1083 * @msix: boolean value of MSIX capability
1085 * Attempt to configure interrupts using the best available
1086 * capabilities of the hardware and kernel.
1088 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
, bool msix
)
1095 adapter
->flags
|= IGB_FLAG_HAS_MSIX
;
1097 /* Number of supported queues. */
1098 adapter
->num_rx_queues
= adapter
->rss_queues
;
1099 if (adapter
->vfs_allocated_count
)
1100 adapter
->num_tx_queues
= 1;
1102 adapter
->num_tx_queues
= adapter
->rss_queues
;
1104 /* start with one vector for every Rx queue */
1105 numvecs
= adapter
->num_rx_queues
;
1107 /* if Tx handler is separate add 1 for every Tx queue */
1108 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
))
1109 numvecs
+= adapter
->num_tx_queues
;
1111 /* store the number of vectors reserved for queues */
1112 adapter
->num_q_vectors
= numvecs
;
1114 /* add 1 vector for link status interrupts */
1116 for (i
= 0; i
< numvecs
; i
++)
1117 adapter
->msix_entries
[i
].entry
= i
;
1119 err
= pci_enable_msix_range(adapter
->pdev
,
1120 adapter
->msix_entries
,
1126 igb_reset_interrupt_capability(adapter
);
1128 /* If we can't do MSI-X, try MSI */
1130 adapter
->flags
&= ~IGB_FLAG_HAS_MSIX
;
1131 #ifdef CONFIG_PCI_IOV
1132 /* disable SR-IOV for non MSI-X configurations */
1133 if (adapter
->vf_data
) {
1134 struct e1000_hw
*hw
= &adapter
->hw
;
1135 /* disable iov and allow time for transactions to clear */
1136 pci_disable_sriov(adapter
->pdev
);
1139 kfree(adapter
->vf_mac_list
);
1140 adapter
->vf_mac_list
= NULL
;
1141 kfree(adapter
->vf_data
);
1142 adapter
->vf_data
= NULL
;
1143 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
1146 dev_info(&adapter
->pdev
->dev
, "IOV Disabled\n");
1149 adapter
->vfs_allocated_count
= 0;
1150 adapter
->rss_queues
= 1;
1151 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
1152 adapter
->num_rx_queues
= 1;
1153 adapter
->num_tx_queues
= 1;
1154 adapter
->num_q_vectors
= 1;
1155 if (!pci_enable_msi(adapter
->pdev
))
1156 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
1159 static void igb_add_ring(struct igb_ring
*ring
,
1160 struct igb_ring_container
*head
)
1167 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168 * @adapter: board private structure to initialize
1169 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1170 * @v_idx: index of vector in adapter struct
1171 * @txr_count: total number of Tx rings to allocate
1172 * @txr_idx: index of first Tx ring to allocate
1173 * @rxr_count: total number of Rx rings to allocate
1174 * @rxr_idx: index of first Rx ring to allocate
1176 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1178 static int igb_alloc_q_vector(struct igb_adapter
*adapter
,
1179 int v_count
, int v_idx
,
1180 int txr_count
, int txr_idx
,
1181 int rxr_count
, int rxr_idx
)
1183 struct igb_q_vector
*q_vector
;
1184 struct igb_ring
*ring
;
1188 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189 if (txr_count
> 1 || rxr_count
> 1)
1192 ring_count
= txr_count
+ rxr_count
;
1193 size
= struct_size(q_vector
, ring
, ring_count
);
1195 /* allocate q_vector and rings */
1196 q_vector
= adapter
->q_vector
[v_idx
];
1198 q_vector
= kzalloc(size
, GFP_KERNEL
);
1199 } else if (size
> ksize(q_vector
)) {
1200 kfree_rcu(q_vector
, rcu
);
1201 q_vector
= kzalloc(size
, GFP_KERNEL
);
1203 memset(q_vector
, 0, size
);
1208 /* initialize NAPI */
1209 netif_napi_add(adapter
->netdev
, &q_vector
->napi
,
1212 /* tie q_vector and adapter together */
1213 adapter
->q_vector
[v_idx
] = q_vector
;
1214 q_vector
->adapter
= adapter
;
1216 /* initialize work limits */
1217 q_vector
->tx
.work_limit
= adapter
->tx_work_limit
;
1219 /* initialize ITR configuration */
1220 q_vector
->itr_register
= adapter
->io_addr
+ E1000_EITR(0);
1221 q_vector
->itr_val
= IGB_START_ITR
;
1223 /* initialize pointer to rings */
1224 ring
= q_vector
->ring
;
1228 /* rx or rx/tx vector */
1229 if (!adapter
->rx_itr_setting
|| adapter
->rx_itr_setting
> 3)
1230 q_vector
->itr_val
= adapter
->rx_itr_setting
;
1232 /* tx only vector */
1233 if (!adapter
->tx_itr_setting
|| adapter
->tx_itr_setting
> 3)
1234 q_vector
->itr_val
= adapter
->tx_itr_setting
;
1238 /* assign generic ring traits */
1239 ring
->dev
= &adapter
->pdev
->dev
;
1240 ring
->netdev
= adapter
->netdev
;
1242 /* configure backlink on ring */
1243 ring
->q_vector
= q_vector
;
1245 /* update q_vector Tx values */
1246 igb_add_ring(ring
, &q_vector
->tx
);
1248 /* For 82575, context index must be unique per ring. */
1249 if (adapter
->hw
.mac
.type
== e1000_82575
)
1250 set_bit(IGB_RING_FLAG_TX_CTX_IDX
, &ring
->flags
);
1252 /* apply Tx specific ring traits */
1253 ring
->count
= adapter
->tx_ring_count
;
1254 ring
->queue_index
= txr_idx
;
1256 ring
->cbs_enable
= false;
1257 ring
->idleslope
= 0;
1258 ring
->sendslope
= 0;
1262 u64_stats_init(&ring
->tx_syncp
);
1263 u64_stats_init(&ring
->tx_syncp2
);
1265 /* assign ring to adapter */
1266 adapter
->tx_ring
[txr_idx
] = ring
;
1268 /* push pointer to next ring */
1273 /* assign generic ring traits */
1274 ring
->dev
= &adapter
->pdev
->dev
;
1275 ring
->netdev
= adapter
->netdev
;
1277 /* configure backlink on ring */
1278 ring
->q_vector
= q_vector
;
1280 /* update q_vector Rx values */
1281 igb_add_ring(ring
, &q_vector
->rx
);
1283 /* set flag indicating ring supports SCTP checksum offload */
1284 if (adapter
->hw
.mac
.type
>= e1000_82576
)
1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM
, &ring
->flags
);
1287 /* On i350, i354, i210, and i211, loopback VLAN packets
1288 * have the tag byte-swapped.
1290 if (adapter
->hw
.mac
.type
>= e1000_i350
)
1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP
, &ring
->flags
);
1293 /* apply Rx specific ring traits */
1294 ring
->count
= adapter
->rx_ring_count
;
1295 ring
->queue_index
= rxr_idx
;
1297 u64_stats_init(&ring
->rx_syncp
);
1299 /* assign ring to adapter */
1300 adapter
->rx_ring
[rxr_idx
] = ring
;
1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 * @adapter: board private structure to initialize
1311 * We allocate one q_vector per queue interrupt. If allocation fails we
1314 static int igb_alloc_q_vectors(struct igb_adapter
*adapter
)
1316 int q_vectors
= adapter
->num_q_vectors
;
1317 int rxr_remaining
= adapter
->num_rx_queues
;
1318 int txr_remaining
= adapter
->num_tx_queues
;
1319 int rxr_idx
= 0, txr_idx
= 0, v_idx
= 0;
1322 if (q_vectors
>= (rxr_remaining
+ txr_remaining
)) {
1323 for (; rxr_remaining
; v_idx
++) {
1324 err
= igb_alloc_q_vector(adapter
, q_vectors
, v_idx
,
1330 /* update counts and index */
1336 for (; v_idx
< q_vectors
; v_idx
++) {
1337 int rqpv
= DIV_ROUND_UP(rxr_remaining
, q_vectors
- v_idx
);
1338 int tqpv
= DIV_ROUND_UP(txr_remaining
, q_vectors
- v_idx
);
1340 err
= igb_alloc_q_vector(adapter
, q_vectors
, v_idx
,
1341 tqpv
, txr_idx
, rqpv
, rxr_idx
);
1346 /* update counts and index */
1347 rxr_remaining
-= rqpv
;
1348 txr_remaining
-= tqpv
;
1356 adapter
->num_tx_queues
= 0;
1357 adapter
->num_rx_queues
= 0;
1358 adapter
->num_q_vectors
= 0;
1361 igb_free_q_vector(adapter
, v_idx
);
1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 * @adapter: board private structure to initialize
1369 * @msix: boolean value of MSIX capability
1371 * This function initializes the interrupts and allocates all of the queues.
1373 static int igb_init_interrupt_scheme(struct igb_adapter
*adapter
, bool msix
)
1375 struct pci_dev
*pdev
= adapter
->pdev
;
1378 igb_set_interrupt_capability(adapter
, msix
);
1380 err
= igb_alloc_q_vectors(adapter
);
1382 dev_err(&pdev
->dev
, "Unable to allocate memory for vectors\n");
1383 goto err_alloc_q_vectors
;
1386 igb_cache_ring_register(adapter
);
1390 err_alloc_q_vectors
:
1391 igb_reset_interrupt_capability(adapter
);
1396 * igb_request_irq - initialize interrupts
1397 * @adapter: board private structure to initialize
1399 * Attempts to configure interrupts using the best available
1400 * capabilities of the hardware and kernel.
1402 static int igb_request_irq(struct igb_adapter
*adapter
)
1404 struct net_device
*netdev
= adapter
->netdev
;
1405 struct pci_dev
*pdev
= adapter
->pdev
;
1408 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1409 err
= igb_request_msix(adapter
);
1412 /* fall back to MSI */
1413 igb_free_all_tx_resources(adapter
);
1414 igb_free_all_rx_resources(adapter
);
1416 igb_clear_interrupt_scheme(adapter
);
1417 err
= igb_init_interrupt_scheme(adapter
, false);
1421 igb_setup_all_tx_resources(adapter
);
1422 igb_setup_all_rx_resources(adapter
);
1423 igb_configure(adapter
);
1426 igb_assign_vector(adapter
->q_vector
[0], 0);
1428 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1429 err
= request_irq(pdev
->irq
, igb_intr_msi
, 0,
1430 netdev
->name
, adapter
);
1434 /* fall back to legacy interrupts */
1435 igb_reset_interrupt_capability(adapter
);
1436 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
1439 err
= request_irq(pdev
->irq
, igb_intr
, IRQF_SHARED
,
1440 netdev
->name
, adapter
);
1443 dev_err(&pdev
->dev
, "Error %d getting interrupt\n",
1450 static void igb_free_irq(struct igb_adapter
*adapter
)
1452 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1455 free_irq(adapter
->msix_entries
[vector
++].vector
, adapter
);
1457 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1458 free_irq(adapter
->msix_entries
[vector
++].vector
,
1459 adapter
->q_vector
[i
]);
1461 free_irq(adapter
->pdev
->irq
, adapter
);
1466 * igb_irq_disable - Mask off interrupt generation on the NIC
1467 * @adapter: board private structure
1469 static void igb_irq_disable(struct igb_adapter
*adapter
)
1471 struct e1000_hw
*hw
= &adapter
->hw
;
1473 /* we need to be careful when disabling interrupts. The VFs are also
1474 * mapped into these registers and so clearing the bits can cause
1475 * issues on the VF drivers so we only need to clear what we set
1477 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1478 u32 regval
= rd32(E1000_EIAM
);
1480 wr32(E1000_EIAM
, regval
& ~adapter
->eims_enable_mask
);
1481 wr32(E1000_EIMC
, adapter
->eims_enable_mask
);
1482 regval
= rd32(E1000_EIAC
);
1483 wr32(E1000_EIAC
, regval
& ~adapter
->eims_enable_mask
);
1487 wr32(E1000_IMC
, ~0);
1489 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1492 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1493 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1495 synchronize_irq(adapter
->pdev
->irq
);
1500 * igb_irq_enable - Enable default interrupt generation settings
1501 * @adapter: board private structure
1503 static void igb_irq_enable(struct igb_adapter
*adapter
)
1505 struct e1000_hw
*hw
= &adapter
->hw
;
1507 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
1508 u32 ims
= E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
| E1000_IMS_DRSTA
;
1509 u32 regval
= rd32(E1000_EIAC
);
1511 wr32(E1000_EIAC
, regval
| adapter
->eims_enable_mask
);
1512 regval
= rd32(E1000_EIAM
);
1513 wr32(E1000_EIAM
, regval
| adapter
->eims_enable_mask
);
1514 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
1515 if (adapter
->vfs_allocated_count
) {
1516 wr32(E1000_MBVFIMR
, 0xFF);
1517 ims
|= E1000_IMS_VMMB
;
1519 wr32(E1000_IMS
, ims
);
1521 wr32(E1000_IMS
, IMS_ENABLE_MASK
|
1523 wr32(E1000_IAM
, IMS_ENABLE_MASK
|
1528 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
1530 struct e1000_hw
*hw
= &adapter
->hw
;
1531 u16 pf_id
= adapter
->vfs_allocated_count
;
1532 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1533 u16 old_vid
= adapter
->mng_vlan_id
;
1535 if (hw
->mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1536 /* add VID to filter table */
1537 igb_vfta_set(hw
, vid
, pf_id
, true, true);
1538 adapter
->mng_vlan_id
= vid
;
1540 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1543 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
1545 !test_bit(old_vid
, adapter
->active_vlans
)) {
1546 /* remove VID from filter table */
1547 igb_vfta_set(hw
, vid
, pf_id
, false, true);
1552 * igb_release_hw_control - release control of the h/w to f/w
1553 * @adapter: address of board private structure
1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that the
1557 * driver is no longer loaded.
1559 static void igb_release_hw_control(struct igb_adapter
*adapter
)
1561 struct e1000_hw
*hw
= &adapter
->hw
;
1564 /* Let firmware take over control of h/w */
1565 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1566 wr32(E1000_CTRL_EXT
,
1567 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1571 * igb_get_hw_control - get control of the h/w from f/w
1572 * @adapter: address of board private structure
1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 * For ASF and Pass Through versions of f/w this means that
1576 * the driver is loaded.
1578 static void igb_get_hw_control(struct igb_adapter
*adapter
)
1580 struct e1000_hw
*hw
= &adapter
->hw
;
1583 /* Let firmware know the driver has taken over */
1584 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1585 wr32(E1000_CTRL_EXT
,
1586 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1589 static void enable_fqtss(struct igb_adapter
*adapter
, bool enable
)
1591 struct net_device
*netdev
= adapter
->netdev
;
1592 struct e1000_hw
*hw
= &adapter
->hw
;
1594 WARN_ON(hw
->mac
.type
!= e1000_i210
);
1597 adapter
->flags
|= IGB_FLAG_FQTSS
;
1599 adapter
->flags
&= ~IGB_FLAG_FQTSS
;
1601 if (netif_running(netdev
))
1602 schedule_work(&adapter
->reset_task
);
1605 static bool is_fqtss_enabled(struct igb_adapter
*adapter
)
1607 return (adapter
->flags
& IGB_FLAG_FQTSS
) ? true : false;
1610 static void set_tx_desc_fetch_prio(struct e1000_hw
*hw
, int queue
,
1611 enum tx_queue_prio prio
)
1615 WARN_ON(hw
->mac
.type
!= e1000_i210
);
1616 WARN_ON(queue
< 0 || queue
> 4);
1618 val
= rd32(E1000_I210_TXDCTL(queue
));
1620 if (prio
== TX_QUEUE_PRIO_HIGH
)
1621 val
|= E1000_TXDCTL_PRIORITY
;
1623 val
&= ~E1000_TXDCTL_PRIORITY
;
1625 wr32(E1000_I210_TXDCTL(queue
), val
);
1628 static void set_queue_mode(struct e1000_hw
*hw
, int queue
, enum queue_mode mode
)
1632 WARN_ON(hw
->mac
.type
!= e1000_i210
);
1633 WARN_ON(queue
< 0 || queue
> 1);
1635 val
= rd32(E1000_I210_TQAVCC(queue
));
1637 if (mode
== QUEUE_MODE_STREAM_RESERVATION
)
1638 val
|= E1000_TQAVCC_QUEUEMODE
;
1640 val
&= ~E1000_TQAVCC_QUEUEMODE
;
1642 wr32(E1000_I210_TQAVCC(queue
), val
);
1645 static bool is_any_cbs_enabled(struct igb_adapter
*adapter
)
1649 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1650 if (adapter
->tx_ring
[i
]->cbs_enable
)
1657 static bool is_any_txtime_enabled(struct igb_adapter
*adapter
)
1661 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1662 if (adapter
->tx_ring
[i
]->launchtime_enable
)
1670 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671 * @adapter: pointer to adapter struct
1672 * @queue: queue number
1674 * Configure CBS and Launchtime for a given hardware queue.
1675 * Parameters are retrieved from the correct Tx ring, so
1676 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1677 * for setting those correctly prior to this function being called.
1679 static void igb_config_tx_modes(struct igb_adapter
*adapter
, int queue
)
1681 struct igb_ring
*ring
= adapter
->tx_ring
[queue
];
1682 struct net_device
*netdev
= adapter
->netdev
;
1683 struct e1000_hw
*hw
= &adapter
->hw
;
1684 u32 tqavcc
, tqavctrl
;
1687 WARN_ON(hw
->mac
.type
!= e1000_i210
);
1688 WARN_ON(queue
< 0 || queue
> 1);
1690 /* If any of the Qav features is enabled, configure queues as SR and
1691 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1694 if (ring
->cbs_enable
|| ring
->launchtime_enable
) {
1695 set_tx_desc_fetch_prio(hw
, queue
, TX_QUEUE_PRIO_HIGH
);
1696 set_queue_mode(hw
, queue
, QUEUE_MODE_STREAM_RESERVATION
);
1698 set_tx_desc_fetch_prio(hw
, queue
, TX_QUEUE_PRIO_LOW
);
1699 set_queue_mode(hw
, queue
, QUEUE_MODE_STRICT_PRIORITY
);
1702 /* If CBS is enabled, set DataTranARB and config its parameters. */
1703 if (ring
->cbs_enable
|| queue
== 0) {
1704 /* i210 does not allow the queue 0 to be in the Strict
1705 * Priority mode while the Qav mode is enabled, so,
1706 * instead of disabling strict priority mode, we give
1707 * queue 0 the maximum of credits possible.
1709 * See section 8.12.19 of the i210 datasheet, "Note:
1710 * Queue0 QueueMode must be set to 1b when
1711 * TransmitMode is set to Qav."
1713 if (queue
== 0 && !ring
->cbs_enable
) {
1714 /* max "linkspeed" idleslope in kbps */
1715 ring
->idleslope
= 1000000;
1716 ring
->hicredit
= ETH_FRAME_LEN
;
1719 /* Always set data transfer arbitration to credit-based
1720 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1723 tqavctrl
= rd32(E1000_I210_TQAVCTRL
);
1724 tqavctrl
|= E1000_TQAVCTRL_DATATRANARB
;
1725 wr32(E1000_I210_TQAVCTRL
, tqavctrl
);
1727 /* According to i210 datasheet section 7.2.7.7, we should set
1728 * the 'idleSlope' field from TQAVCC register following the
1731 * For 100 Mbps link speed:
1733 * value = BW * 0x7735 * 0.2 (E1)
1735 * For 1000Mbps link speed:
1737 * value = BW * 0x7735 * 2 (E2)
1739 * E1 and E2 can be merged into one equation as shown below.
1740 * Note that 'link-speed' is in Mbps.
1742 * value = BW * 0x7735 * 2 * link-speed
1743 * -------------- (E3)
1746 * 'BW' is the percentage bandwidth out of full link speed
1747 * which can be found with the following equation. Note that
1748 * idleSlope here is the parameter from this function which
1752 * ----------------- (E4)
1755 * That said, we can come up with a generic equation to
1756 * calculate the value we should set it TQAVCC register by
1757 * replacing 'BW' in E3 by E4. The resulting equation is:
1759 * value = idleSlope * 0x7735 * 2 * link-speed
1760 * ----------------- -------------- (E5)
1761 * link-speed * 1000 1000
1763 * 'link-speed' is present in both sides of the fraction so
1764 * it is canceled out. The final equation is the following:
1766 * value = idleSlope * 61034
1767 * ----------------- (E6)
1770 * NOTE: For i210, given the above, we can see that idleslope
1771 * is represented in 16.38431 kbps units by the value at
1772 * the TQAVCC register (1Gbps / 61034), which reduces
1773 * the granularity for idleslope increments.
1774 * For instance, if you want to configure a 2576kbps
1775 * idleslope, the value to be written on the register
1776 * would have to be 157.23. If rounded down, you end
1777 * up with less bandwidth available than originally
1778 * required (~2572 kbps). If rounded up, you end up
1779 * with a higher bandwidth (~2589 kbps). Below the
1780 * approach we take is to always round up the
1781 * calculated value, so the resulting bandwidth might
1782 * be slightly higher for some configurations.
1784 value
= DIV_ROUND_UP_ULL(ring
->idleslope
* 61034ULL, 1000000);
1786 tqavcc
= rd32(E1000_I210_TQAVCC(queue
));
1787 tqavcc
&= ~E1000_TQAVCC_IDLESLOPE_MASK
;
1789 wr32(E1000_I210_TQAVCC(queue
), tqavcc
);
1791 wr32(E1000_I210_TQAVHC(queue
),
1792 0x80000000 + ring
->hicredit
* 0x7735);
1795 /* Set idleSlope to zero. */
1796 tqavcc
= rd32(E1000_I210_TQAVCC(queue
));
1797 tqavcc
&= ~E1000_TQAVCC_IDLESLOPE_MASK
;
1798 wr32(E1000_I210_TQAVCC(queue
), tqavcc
);
1800 /* Set hiCredit to zero. */
1801 wr32(E1000_I210_TQAVHC(queue
), 0);
1803 /* If CBS is not enabled for any queues anymore, then return to
1804 * the default state of Data Transmission Arbitration on
1807 if (!is_any_cbs_enabled(adapter
)) {
1808 tqavctrl
= rd32(E1000_I210_TQAVCTRL
);
1809 tqavctrl
&= ~E1000_TQAVCTRL_DATATRANARB
;
1810 wr32(E1000_I210_TQAVCTRL
, tqavctrl
);
1814 /* If LaunchTime is enabled, set DataTranTIM. */
1815 if (ring
->launchtime_enable
) {
1816 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817 * for any of the SR queues, and configure fetchtime delta.
1819 * - LaunchTime will be enabled for all SR queues.
1820 * - A fixed offset can be added relative to the launch
1821 * time of all packets if configured at reg LAUNCH_OS0.
1822 * We are keeping it as 0 for now (default value).
1824 tqavctrl
= rd32(E1000_I210_TQAVCTRL
);
1825 tqavctrl
|= E1000_TQAVCTRL_DATATRANTIM
|
1826 E1000_TQAVCTRL_FETCHTIME_DELTA
;
1827 wr32(E1000_I210_TQAVCTRL
, tqavctrl
);
1829 /* If Launchtime is not enabled for any SR queues anymore,
1830 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831 * effectively disabling Launchtime.
1833 if (!is_any_txtime_enabled(adapter
)) {
1834 tqavctrl
= rd32(E1000_I210_TQAVCTRL
);
1835 tqavctrl
&= ~E1000_TQAVCTRL_DATATRANTIM
;
1836 tqavctrl
&= ~E1000_TQAVCTRL_FETCHTIME_DELTA
;
1837 wr32(E1000_I210_TQAVCTRL
, tqavctrl
);
1841 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1842 * CBS are not configurable by software so we don't do any 'controller
1843 * configuration' in respect to these parameters.
1846 netdev_dbg(netdev
, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847 ring
->cbs_enable
? "enabled" : "disabled",
1848 ring
->launchtime_enable
? "enabled" : "disabled",
1850 ring
->idleslope
, ring
->sendslope
,
1851 ring
->hicredit
, ring
->locredit
);
1854 static int igb_save_txtime_params(struct igb_adapter
*adapter
, int queue
,
1857 struct igb_ring
*ring
;
1859 if (queue
< 0 || queue
> adapter
->num_tx_queues
)
1862 ring
= adapter
->tx_ring
[queue
];
1863 ring
->launchtime_enable
= enable
;
1868 static int igb_save_cbs_params(struct igb_adapter
*adapter
, int queue
,
1869 bool enable
, int idleslope
, int sendslope
,
1870 int hicredit
, int locredit
)
1872 struct igb_ring
*ring
;
1874 if (queue
< 0 || queue
> adapter
->num_tx_queues
)
1877 ring
= adapter
->tx_ring
[queue
];
1879 ring
->cbs_enable
= enable
;
1880 ring
->idleslope
= idleslope
;
1881 ring
->sendslope
= sendslope
;
1882 ring
->hicredit
= hicredit
;
1883 ring
->locredit
= locredit
;
1889 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890 * @adapter: pointer to adapter struct
1892 * Configure TQAVCTRL register switching the controller's Tx mode
1893 * if FQTSS mode is enabled or disabled. Additionally, will issue
1894 * a call to igb_config_tx_modes() per queue so any previously saved
1895 * Tx parameters are applied.
1897 static void igb_setup_tx_mode(struct igb_adapter
*adapter
)
1899 struct net_device
*netdev
= adapter
->netdev
;
1900 struct e1000_hw
*hw
= &adapter
->hw
;
1903 /* Only i210 controller supports changing the transmission mode. */
1904 if (hw
->mac
.type
!= e1000_i210
)
1907 if (is_fqtss_enabled(adapter
)) {
1910 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912 * so SP queues wait for SR ones.
1914 val
= rd32(E1000_I210_TQAVCTRL
);
1915 val
|= E1000_TQAVCTRL_XMIT_MODE
| E1000_TQAVCTRL_SP_WAIT_SR
;
1916 val
&= ~E1000_TQAVCTRL_DATAFETCHARB
;
1917 wr32(E1000_I210_TQAVCTRL
, val
);
1919 /* Configure Tx and Rx packet buffers sizes as described in
1920 * i210 datasheet section 7.2.7.7.
1922 val
= rd32(E1000_TXPBS
);
1923 val
&= ~I210_TXPBSIZE_MASK
;
1924 val
|= I210_TXPBSIZE_PB0_8KB
| I210_TXPBSIZE_PB1_8KB
|
1925 I210_TXPBSIZE_PB2_4KB
| I210_TXPBSIZE_PB3_4KB
;
1926 wr32(E1000_TXPBS
, val
);
1928 val
= rd32(E1000_RXPBS
);
1929 val
&= ~I210_RXPBSIZE_MASK
;
1930 val
|= I210_RXPBSIZE_PB_30KB
;
1931 wr32(E1000_RXPBS
, val
);
1933 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934 * register should not exceed the buffer size programmed in
1935 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936 * so according to the datasheet we should set MAX_TPKT_SIZE to
1939 * However, when we do so, no frame from queue 2 and 3 are
1940 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1941 * or _equal_ to the buffer size programmed in TXPBS. For this
1942 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1944 val
= (4096 - 1) / 64;
1945 wr32(E1000_I210_DTXMXPKTSZ
, val
);
1947 /* Since FQTSS mode is enabled, apply any CBS configuration
1948 * previously set. If no previous CBS configuration has been
1949 * done, then the initial configuration is applied, which means
1952 max_queue
= (adapter
->num_tx_queues
< I210_SR_QUEUES_NUM
) ?
1953 adapter
->num_tx_queues
: I210_SR_QUEUES_NUM
;
1955 for (i
= 0; i
< max_queue
; i
++) {
1956 igb_config_tx_modes(adapter
, i
);
1959 wr32(E1000_RXPBS
, I210_RXPBSIZE_DEFAULT
);
1960 wr32(E1000_TXPBS
, I210_TXPBSIZE_DEFAULT
);
1961 wr32(E1000_I210_DTXMXPKTSZ
, I210_DTXMXPKTSZ_DEFAULT
);
1963 val
= rd32(E1000_I210_TQAVCTRL
);
1964 /* According to Section 8.12.21, the other flags we've set when
1965 * enabling FQTSS are not relevant when disabling FQTSS so we
1966 * don't set they here.
1968 val
&= ~E1000_TQAVCTRL_XMIT_MODE
;
1969 wr32(E1000_I210_TQAVCTRL
, val
);
1972 netdev_dbg(netdev
, "FQTSS %s\n", (is_fqtss_enabled(adapter
)) ?
1973 "enabled" : "disabled");
1977 * igb_configure - configure the hardware for RX and TX
1978 * @adapter: private board structure
1980 static void igb_configure(struct igb_adapter
*adapter
)
1982 struct net_device
*netdev
= adapter
->netdev
;
1985 igb_get_hw_control(adapter
);
1986 igb_set_rx_mode(netdev
);
1987 igb_setup_tx_mode(adapter
);
1989 igb_restore_vlan(adapter
);
1991 igb_setup_tctl(adapter
);
1992 igb_setup_mrqc(adapter
);
1993 igb_setup_rctl(adapter
);
1995 igb_nfc_filter_restore(adapter
);
1996 igb_configure_tx(adapter
);
1997 igb_configure_rx(adapter
);
1999 igb_rx_fifo_flush_82575(&adapter
->hw
);
2001 /* call igb_desc_unused which always leaves
2002 * at least 1 descriptor unused to make sure
2003 * next_to_use != next_to_clean
2005 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2006 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
2007 igb_alloc_rx_buffers(ring
, igb_desc_unused(ring
));
2012 * igb_power_up_link - Power up the phy/serdes link
2013 * @adapter: address of board private structure
2015 void igb_power_up_link(struct igb_adapter
*adapter
)
2017 igb_reset_phy(&adapter
->hw
);
2019 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)
2020 igb_power_up_phy_copper(&adapter
->hw
);
2022 igb_power_up_serdes_link_82575(&adapter
->hw
);
2024 igb_setup_link(&adapter
->hw
);
2028 * igb_power_down_link - Power down the phy/serdes link
2029 * @adapter: address of board private structure
2031 static void igb_power_down_link(struct igb_adapter
*adapter
)
2033 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)
2034 igb_power_down_phy_copper_82575(&adapter
->hw
);
2036 igb_shutdown_serdes_link_82575(&adapter
->hw
);
2040 * Detect and switch function for Media Auto Sense
2041 * @adapter: address of the board private structure
2043 static void igb_check_swap_media(struct igb_adapter
*adapter
)
2045 struct e1000_hw
*hw
= &adapter
->hw
;
2046 u32 ctrl_ext
, connsw
;
2047 bool swap_now
= false;
2049 ctrl_ext
= rd32(E1000_CTRL_EXT
);
2050 connsw
= rd32(E1000_CONNSW
);
2052 /* need to live swap if current media is copper and we have fiber/serdes
2056 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
2057 (!(connsw
& E1000_CONNSW_AUTOSENSE_EN
))) {
2059 } else if ((hw
->phy
.media_type
!= e1000_media_type_copper
) &&
2060 !(connsw
& E1000_CONNSW_SERDESD
)) {
2061 /* copper signal takes time to appear */
2062 if (adapter
->copper_tries
< 4) {
2063 adapter
->copper_tries
++;
2064 connsw
|= E1000_CONNSW_AUTOSENSE_CONF
;
2065 wr32(E1000_CONNSW
, connsw
);
2068 adapter
->copper_tries
= 0;
2069 if ((connsw
& E1000_CONNSW_PHYSD
) &&
2070 (!(connsw
& E1000_CONNSW_PHY_PDN
))) {
2072 connsw
&= ~E1000_CONNSW_AUTOSENSE_CONF
;
2073 wr32(E1000_CONNSW
, connsw
);
2081 switch (hw
->phy
.media_type
) {
2082 case e1000_media_type_copper
:
2083 netdev_info(adapter
->netdev
,
2084 "MAS: changing media to fiber/serdes\n");
2086 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
2087 adapter
->flags
|= IGB_FLAG_MEDIA_RESET
;
2088 adapter
->copper_tries
= 0;
2090 case e1000_media_type_internal_serdes
:
2091 case e1000_media_type_fiber
:
2092 netdev_info(adapter
->netdev
,
2093 "MAS: changing media to copper\n");
2095 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
2096 adapter
->flags
|= IGB_FLAG_MEDIA_RESET
;
2099 /* shouldn't get here during regular operation */
2100 netdev_err(adapter
->netdev
,
2101 "AMS: Invalid media type found, returning\n");
2104 wr32(E1000_CTRL_EXT
, ctrl_ext
);
2108 * igb_up - Open the interface and prepare it to handle traffic
2109 * @adapter: board private structure
2111 int igb_up(struct igb_adapter
*adapter
)
2113 struct e1000_hw
*hw
= &adapter
->hw
;
2116 /* hardware has been reset, we need to reload some things */
2117 igb_configure(adapter
);
2119 clear_bit(__IGB_DOWN
, &adapter
->state
);
2121 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
2122 napi_enable(&(adapter
->q_vector
[i
]->napi
));
2124 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
)
2125 igb_configure_msix(adapter
);
2127 igb_assign_vector(adapter
->q_vector
[0], 0);
2129 /* Clear any pending interrupts. */
2132 igb_irq_enable(adapter
);
2134 /* notify VFs that reset has been completed */
2135 if (adapter
->vfs_allocated_count
) {
2136 u32 reg_data
= rd32(E1000_CTRL_EXT
);
2138 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
2139 wr32(E1000_CTRL_EXT
, reg_data
);
2142 netif_tx_start_all_queues(adapter
->netdev
);
2144 /* start the watchdog. */
2145 hw
->mac
.get_link_status
= 1;
2146 schedule_work(&adapter
->watchdog_task
);
2148 if ((adapter
->flags
& IGB_FLAG_EEE
) &&
2149 (!hw
->dev_spec
._82575
.eee_disable
))
2150 adapter
->eee_advert
= MDIO_EEE_100TX
| MDIO_EEE_1000T
;
2155 void igb_down(struct igb_adapter
*adapter
)
2157 struct net_device
*netdev
= adapter
->netdev
;
2158 struct e1000_hw
*hw
= &adapter
->hw
;
2162 /* signal that we're down so the interrupt handler does not
2163 * reschedule our watchdog timer
2165 set_bit(__IGB_DOWN
, &adapter
->state
);
2167 /* disable receives in the hardware */
2168 rctl
= rd32(E1000_RCTL
);
2169 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
2170 /* flush and sleep below */
2172 igb_nfc_filter_exit(adapter
);
2174 netif_carrier_off(netdev
);
2175 netif_tx_stop_all_queues(netdev
);
2177 /* disable transmits in the hardware */
2178 tctl
= rd32(E1000_TCTL
);
2179 tctl
&= ~E1000_TCTL_EN
;
2180 wr32(E1000_TCTL
, tctl
);
2181 /* flush both disables and wait for them to finish */
2183 usleep_range(10000, 11000);
2185 igb_irq_disable(adapter
);
2187 adapter
->flags
&= ~IGB_FLAG_NEED_LINK_UPDATE
;
2189 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2190 if (adapter
->q_vector
[i
]) {
2191 napi_synchronize(&adapter
->q_vector
[i
]->napi
);
2192 napi_disable(&adapter
->q_vector
[i
]->napi
);
2196 del_timer_sync(&adapter
->watchdog_timer
);
2197 del_timer_sync(&adapter
->phy_info_timer
);
2199 /* record the stats before reset*/
2200 spin_lock(&adapter
->stats64_lock
);
2201 igb_update_stats(adapter
);
2202 spin_unlock(&adapter
->stats64_lock
);
2204 adapter
->link_speed
= 0;
2205 adapter
->link_duplex
= 0;
2207 if (!pci_channel_offline(adapter
->pdev
))
2210 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2211 adapter
->flags
&= ~IGB_FLAG_VLAN_PROMISC
;
2213 igb_clean_all_tx_rings(adapter
);
2214 igb_clean_all_rx_rings(adapter
);
2215 #ifdef CONFIG_IGB_DCA
2217 /* since we reset the hardware DCA settings were cleared */
2218 igb_setup_dca(adapter
);
2222 void igb_reinit_locked(struct igb_adapter
*adapter
)
2224 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
2225 usleep_range(1000, 2000);
2228 clear_bit(__IGB_RESETTING
, &adapter
->state
);
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2233 * @adapter: adapter struct
2235 static void igb_enable_mas(struct igb_adapter
*adapter
)
2237 struct e1000_hw
*hw
= &adapter
->hw
;
2238 u32 connsw
= rd32(E1000_CONNSW
);
2240 /* configure for SerDes media detect */
2241 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
2242 (!(connsw
& E1000_CONNSW_SERDESD
))) {
2243 connsw
|= E1000_CONNSW_ENRGSRC
;
2244 connsw
|= E1000_CONNSW_AUTOSENSE_EN
;
2245 wr32(E1000_CONNSW
, connsw
);
2250 void igb_reset(struct igb_adapter
*adapter
)
2252 struct pci_dev
*pdev
= adapter
->pdev
;
2253 struct e1000_hw
*hw
= &adapter
->hw
;
2254 struct e1000_mac_info
*mac
= &hw
->mac
;
2255 struct e1000_fc_info
*fc
= &hw
->fc
;
2258 /* Repartition Pba for greater than 9k mtu
2259 * To take effect CTRL.RST is required.
2261 switch (mac
->type
) {
2265 pba
= rd32(E1000_RXPBS
);
2266 pba
= igb_rxpbs_adjust_82580(pba
);
2269 pba
= rd32(E1000_RXPBS
);
2270 pba
&= E1000_RXPBS_SIZE_MASK_82576
;
2276 pba
= E1000_PBA_34K
;
2280 if (mac
->type
== e1000_82575
) {
2281 u32 min_rx_space
, min_tx_space
, needed_tx_space
;
2283 /* write Rx PBA so that hardware can report correct Tx PBA */
2284 wr32(E1000_PBA
, pba
);
2286 /* To maintain wire speed transmits, the Tx FIFO should be
2287 * large enough to accommodate two full transmit packets,
2288 * rounded up to the next 1KB and expressed in KB. Likewise,
2289 * the Rx FIFO should be large enough to accommodate at least
2290 * one full receive packet and is similarly rounded up and
2293 min_rx_space
= DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE
, 1024);
2295 /* The Tx FIFO also stores 16 bytes of information about the Tx
2296 * but don't include Ethernet FCS because hardware appends it.
2297 * We only need to round down to the nearest 512 byte block
2298 * count since the value we care about is 2 frames, not 1.
2300 min_tx_space
= adapter
->max_frame_size
;
2301 min_tx_space
+= sizeof(union e1000_adv_tx_desc
) - ETH_FCS_LEN
;
2302 min_tx_space
= DIV_ROUND_UP(min_tx_space
, 512);
2304 /* upper 16 bits has Tx packet buffer allocation size in KB */
2305 needed_tx_space
= min_tx_space
- (rd32(E1000_PBA
) >> 16);
2307 /* If current Tx allocation is less than the min Tx FIFO size,
2308 * and the min Tx FIFO size is less than the current Rx FIFO
2309 * allocation, take space away from current Rx allocation.
2311 if (needed_tx_space
< pba
) {
2312 pba
-= needed_tx_space
;
2314 /* if short on Rx space, Rx wins and must trump Tx
2317 if (pba
< min_rx_space
)
2321 /* adjust PBA for jumbo frames */
2322 wr32(E1000_PBA
, pba
);
2325 /* flow control settings
2326 * The high water mark must be low enough to fit one full frame
2327 * after transmitting the pause frame. As such we must have enough
2328 * space to allow for us to complete our current transmit and then
2329 * receive the frame that is in progress from the link partner.
2331 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2333 hwm
= (pba
<< 10) - (adapter
->max_frame_size
+ MAX_JUMBO_FRAME_SIZE
);
2335 fc
->high_water
= hwm
& 0xFFFFFFF0; /* 16-byte granularity */
2336 fc
->low_water
= fc
->high_water
- 16;
2337 fc
->pause_time
= 0xFFFF;
2339 fc
->current_mode
= fc
->requested_mode
;
2341 /* disable receive for all VFs and wait one second */
2342 if (adapter
->vfs_allocated_count
) {
2345 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++)
2346 adapter
->vf_data
[i
].flags
&= IGB_VF_FLAG_PF_SET_MAC
;
2348 /* ping all the active vfs to let them know we are going down */
2349 igb_ping_all_vfs(adapter
);
2351 /* disable transmits and receives */
2352 wr32(E1000_VFRE
, 0);
2353 wr32(E1000_VFTE
, 0);
2356 /* Allow time for pending master requests to run */
2357 hw
->mac
.ops
.reset_hw(hw
);
2360 if (adapter
->flags
& IGB_FLAG_MEDIA_RESET
) {
2361 /* need to resetup here after media swap */
2362 adapter
->ei
.get_invariants(hw
);
2363 adapter
->flags
&= ~IGB_FLAG_MEDIA_RESET
;
2365 if ((mac
->type
== e1000_82575
|| mac
->type
== e1000_i350
) &&
2366 (adapter
->flags
& IGB_FLAG_MAS_ENABLE
)) {
2367 igb_enable_mas(adapter
);
2369 if (hw
->mac
.ops
.init_hw(hw
))
2370 dev_err(&pdev
->dev
, "Hardware Error\n");
2372 /* RAR registers were cleared during init_hw, clear mac table */
2373 igb_flush_mac_table(adapter
);
2374 __dev_uc_unsync(adapter
->netdev
, NULL
);
2376 /* Recover default RAR entry */
2377 igb_set_default_mac_filter(adapter
);
2379 /* Flow control settings reset on hardware reset, so guarantee flow
2380 * control is off when forcing speed.
2382 if (!hw
->mac
.autoneg
)
2383 igb_force_mac_fc(hw
);
2385 igb_init_dmac(adapter
, pba
);
2386 #ifdef CONFIG_IGB_HWMON
2387 /* Re-initialize the thermal sensor on i350 devices. */
2388 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
2389 if (mac
->type
== e1000_i350
&& hw
->bus
.func
== 0) {
2390 /* If present, re-initialize the external thermal sensor
2394 mac
->ops
.init_thermal_sensor_thresh(hw
);
2398 /* Re-establish EEE setting */
2399 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
2400 switch (mac
->type
) {
2404 igb_set_eee_i350(hw
, true, true);
2407 igb_set_eee_i354(hw
, true, true);
2413 if (!netif_running(adapter
->netdev
))
2414 igb_power_down_link(adapter
);
2416 igb_update_mng_vlan(adapter
);
2418 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
2421 /* Re-enable PTP, where applicable. */
2422 if (adapter
->ptp_flags
& IGB_PTP_ENABLED
)
2423 igb_ptp_reset(adapter
);
2425 igb_get_phy_info(hw
);
2428 static netdev_features_t
igb_fix_features(struct net_device
*netdev
,
2429 netdev_features_t features
)
2431 /* Since there is no support for separate Rx/Tx vlan accel
2432 * enable/disable make sure Tx flag is always in same state as Rx.
2434 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
2435 features
|= NETIF_F_HW_VLAN_CTAG_TX
;
2437 features
&= ~NETIF_F_HW_VLAN_CTAG_TX
;
2442 static int igb_set_features(struct net_device
*netdev
,
2443 netdev_features_t features
)
2445 netdev_features_t changed
= netdev
->features
^ features
;
2446 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2448 if (changed
& NETIF_F_HW_VLAN_CTAG_RX
)
2449 igb_vlan_mode(netdev
, features
);
2451 if (!(changed
& (NETIF_F_RXALL
| NETIF_F_NTUPLE
)))
2454 if (!(features
& NETIF_F_NTUPLE
)) {
2455 struct hlist_node
*node2
;
2456 struct igb_nfc_filter
*rule
;
2458 spin_lock(&adapter
->nfc_lock
);
2459 hlist_for_each_entry_safe(rule
, node2
,
2460 &adapter
->nfc_filter_list
, nfc_node
) {
2461 igb_erase_filter(adapter
, rule
);
2462 hlist_del(&rule
->nfc_node
);
2465 spin_unlock(&adapter
->nfc_lock
);
2466 adapter
->nfc_filter_count
= 0;
2469 netdev
->features
= features
;
2471 if (netif_running(netdev
))
2472 igb_reinit_locked(adapter
);
2479 static int igb_ndo_fdb_add(struct ndmsg
*ndm
, struct nlattr
*tb
[],
2480 struct net_device
*dev
,
2481 const unsigned char *addr
, u16 vid
,
2483 struct netlink_ext_ack
*extack
)
2485 /* guarantee we can provide a unique filter for the unicast address */
2486 if (is_unicast_ether_addr(addr
) || is_link_local_ether_addr(addr
)) {
2487 struct igb_adapter
*adapter
= netdev_priv(dev
);
2488 int vfn
= adapter
->vfs_allocated_count
;
2490 if (netdev_uc_count(dev
) >= igb_available_rars(adapter
, vfn
))
2494 return ndo_dflt_fdb_add(ndm
, tb
, dev
, addr
, vid
, flags
);
2497 #define IGB_MAX_MAC_HDR_LEN 127
2498 #define IGB_MAX_NETWORK_HDR_LEN 511
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff
*skb
, struct net_device
*dev
,
2502 netdev_features_t features
)
2504 unsigned int network_hdr_len
, mac_hdr_len
;
2506 /* Make certain the headers can be described by a context descriptor */
2507 mac_hdr_len
= skb_network_header(skb
) - skb
->data
;
2508 if (unlikely(mac_hdr_len
> IGB_MAX_MAC_HDR_LEN
))
2509 return features
& ~(NETIF_F_HW_CSUM
|
2511 NETIF_F_GSO_UDP_L4
|
2512 NETIF_F_HW_VLAN_CTAG_TX
|
2516 network_hdr_len
= skb_checksum_start(skb
) - skb_network_header(skb
);
2517 if (unlikely(network_hdr_len
> IGB_MAX_NETWORK_HDR_LEN
))
2518 return features
& ~(NETIF_F_HW_CSUM
|
2520 NETIF_F_GSO_UDP_L4
|
2524 /* We can only support IPV4 TSO in tunnels if we can mangle the
2525 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2527 if (skb
->encapsulation
&& !(features
& NETIF_F_TSO_MANGLEID
))
2528 features
&= ~NETIF_F_TSO
;
2533 static void igb_offload_apply(struct igb_adapter
*adapter
, s32 queue
)
2535 if (!is_fqtss_enabled(adapter
)) {
2536 enable_fqtss(adapter
, true);
2540 igb_config_tx_modes(adapter
, queue
);
2542 if (!is_any_cbs_enabled(adapter
) && !is_any_txtime_enabled(adapter
))
2543 enable_fqtss(adapter
, false);
2546 static int igb_offload_cbs(struct igb_adapter
*adapter
,
2547 struct tc_cbs_qopt_offload
*qopt
)
2549 struct e1000_hw
*hw
= &adapter
->hw
;
2552 /* CBS offloading is only supported by i210 controller. */
2553 if (hw
->mac
.type
!= e1000_i210
)
2556 /* CBS offloading is only supported by queue 0 and queue 1. */
2557 if (qopt
->queue
< 0 || qopt
->queue
> 1)
2560 err
= igb_save_cbs_params(adapter
, qopt
->queue
, qopt
->enable
,
2561 qopt
->idleslope
, qopt
->sendslope
,
2562 qopt
->hicredit
, qopt
->locredit
);
2566 igb_offload_apply(adapter
, qopt
->queue
);
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2574 static int igb_parse_cls_flower(struct igb_adapter
*adapter
,
2575 struct flow_cls_offload
*f
,
2577 struct igb_nfc_filter
*input
)
2579 struct flow_rule
*rule
= flow_cls_offload_flow_rule(f
);
2580 struct flow_dissector
*dissector
= rule
->match
.dissector
;
2581 struct netlink_ext_ack
*extack
= f
->common
.extack
;
2583 if (dissector
->used_keys
&
2584 ~(BIT(FLOW_DISSECTOR_KEY_BASIC
) |
2585 BIT(FLOW_DISSECTOR_KEY_CONTROL
) |
2586 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS
) |
2587 BIT(FLOW_DISSECTOR_KEY_VLAN
))) {
2588 NL_SET_ERR_MSG_MOD(extack
,
2589 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2593 if (flow_rule_match_key(rule
, FLOW_DISSECTOR_KEY_ETH_ADDRS
)) {
2594 struct flow_match_eth_addrs match
;
2596 flow_rule_match_eth_addrs(rule
, &match
);
2597 if (!is_zero_ether_addr(match
.mask
->dst
)) {
2598 if (!is_broadcast_ether_addr(match
.mask
->dst
)) {
2599 NL_SET_ERR_MSG_MOD(extack
, "Only full masks are supported for destination MAC address");
2603 input
->filter
.match_flags
|=
2604 IGB_FILTER_FLAG_DST_MAC_ADDR
;
2605 ether_addr_copy(input
->filter
.dst_addr
, match
.key
->dst
);
2608 if (!is_zero_ether_addr(match
.mask
->src
)) {
2609 if (!is_broadcast_ether_addr(match
.mask
->src
)) {
2610 NL_SET_ERR_MSG_MOD(extack
, "Only full masks are supported for source MAC address");
2614 input
->filter
.match_flags
|=
2615 IGB_FILTER_FLAG_SRC_MAC_ADDR
;
2616 ether_addr_copy(input
->filter
.src_addr
, match
.key
->src
);
2620 if (flow_rule_match_key(rule
, FLOW_DISSECTOR_KEY_BASIC
)) {
2621 struct flow_match_basic match
;
2623 flow_rule_match_basic(rule
, &match
);
2624 if (match
.mask
->n_proto
) {
2625 if (match
.mask
->n_proto
!= ETHER_TYPE_FULL_MASK
) {
2626 NL_SET_ERR_MSG_MOD(extack
, "Only full mask is supported for EtherType filter");
2630 input
->filter
.match_flags
|= IGB_FILTER_FLAG_ETHER_TYPE
;
2631 input
->filter
.etype
= match
.key
->n_proto
;
2635 if (flow_rule_match_key(rule
, FLOW_DISSECTOR_KEY_VLAN
)) {
2636 struct flow_match_vlan match
;
2638 flow_rule_match_vlan(rule
, &match
);
2639 if (match
.mask
->vlan_priority
) {
2640 if (match
.mask
->vlan_priority
!= VLAN_PRIO_FULL_MASK
) {
2641 NL_SET_ERR_MSG_MOD(extack
, "Only full mask is supported for VLAN priority");
2645 input
->filter
.match_flags
|= IGB_FILTER_FLAG_VLAN_TCI
;
2646 input
->filter
.vlan_tci
= match
.key
->vlan_priority
;
2650 input
->action
= traffic_class
;
2651 input
->cookie
= f
->cookie
;
2656 static int igb_configure_clsflower(struct igb_adapter
*adapter
,
2657 struct flow_cls_offload
*cls_flower
)
2659 struct netlink_ext_ack
*extack
= cls_flower
->common
.extack
;
2660 struct igb_nfc_filter
*filter
, *f
;
2663 tc
= tc_classid_to_hwtc(adapter
->netdev
, cls_flower
->classid
);
2665 NL_SET_ERR_MSG_MOD(extack
, "Invalid traffic class");
2669 filter
= kzalloc(sizeof(*filter
), GFP_KERNEL
);
2673 err
= igb_parse_cls_flower(adapter
, cls_flower
, tc
, filter
);
2677 spin_lock(&adapter
->nfc_lock
);
2679 hlist_for_each_entry(f
, &adapter
->nfc_filter_list
, nfc_node
) {
2680 if (!memcmp(&f
->filter
, &filter
->filter
, sizeof(f
->filter
))) {
2682 NL_SET_ERR_MSG_MOD(extack
,
2683 "This filter is already set in ethtool");
2688 hlist_for_each_entry(f
, &adapter
->cls_flower_list
, nfc_node
) {
2689 if (!memcmp(&f
->filter
, &filter
->filter
, sizeof(f
->filter
))) {
2691 NL_SET_ERR_MSG_MOD(extack
,
2692 "This filter is already set in cls_flower");
2697 err
= igb_add_filter(adapter
, filter
);
2699 NL_SET_ERR_MSG_MOD(extack
, "Could not add filter to the adapter");
2703 hlist_add_head(&filter
->nfc_node
, &adapter
->cls_flower_list
);
2705 spin_unlock(&adapter
->nfc_lock
);
2710 spin_unlock(&adapter
->nfc_lock
);
2718 static int igb_delete_clsflower(struct igb_adapter
*adapter
,
2719 struct flow_cls_offload
*cls_flower
)
2721 struct igb_nfc_filter
*filter
;
2724 spin_lock(&adapter
->nfc_lock
);
2726 hlist_for_each_entry(filter
, &adapter
->cls_flower_list
, nfc_node
)
2727 if (filter
->cookie
== cls_flower
->cookie
)
2735 err
= igb_erase_filter(adapter
, filter
);
2739 hlist_del(&filter
->nfc_node
);
2743 spin_unlock(&adapter
->nfc_lock
);
2748 static int igb_setup_tc_cls_flower(struct igb_adapter
*adapter
,
2749 struct flow_cls_offload
*cls_flower
)
2751 switch (cls_flower
->command
) {
2752 case FLOW_CLS_REPLACE
:
2753 return igb_configure_clsflower(adapter
, cls_flower
);
2754 case FLOW_CLS_DESTROY
:
2755 return igb_delete_clsflower(adapter
, cls_flower
);
2756 case FLOW_CLS_STATS
:
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type
, void *type_data
,
2766 struct igb_adapter
*adapter
= cb_priv
;
2768 if (!tc_cls_can_offload_and_chain0(adapter
->netdev
, type_data
))
2772 case TC_SETUP_CLSFLOWER
:
2773 return igb_setup_tc_cls_flower(adapter
, type_data
);
2780 static int igb_offload_txtime(struct igb_adapter
*adapter
,
2781 struct tc_etf_qopt_offload
*qopt
)
2783 struct e1000_hw
*hw
= &adapter
->hw
;
2786 /* Launchtime offloading is only supported by i210 controller. */
2787 if (hw
->mac
.type
!= e1000_i210
)
2790 /* Launchtime offloading is only supported by queues 0 and 1. */
2791 if (qopt
->queue
< 0 || qopt
->queue
> 1)
2794 err
= igb_save_txtime_params(adapter
, qopt
->queue
, qopt
->enable
);
2798 igb_offload_apply(adapter
, qopt
->queue
);
2803 static LIST_HEAD(igb_block_cb_list
);
2805 static int igb_setup_tc(struct net_device
*dev
, enum tc_setup_type type
,
2808 struct igb_adapter
*adapter
= netdev_priv(dev
);
2811 case TC_SETUP_QDISC_CBS
:
2812 return igb_offload_cbs(adapter
, type_data
);
2813 case TC_SETUP_BLOCK
:
2814 return flow_block_cb_setup_simple(type_data
,
2816 igb_setup_tc_block_cb
,
2817 adapter
, adapter
, true);
2819 case TC_SETUP_QDISC_ETF
:
2820 return igb_offload_txtime(adapter
, type_data
);
2827 static int igb_xdp_setup(struct net_device
*dev
, struct netdev_bpf
*bpf
)
2829 int i
, frame_size
= dev
->mtu
+ IGB_ETH_PKT_HDR_PAD
;
2830 struct igb_adapter
*adapter
= netdev_priv(dev
);
2831 struct bpf_prog
*prog
= bpf
->prog
, *old_prog
;
2832 bool running
= netif_running(dev
);
2835 /* verify igb ring attributes are sufficient for XDP */
2836 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2837 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
2839 if (frame_size
> igb_rx_bufsz(ring
)) {
2840 NL_SET_ERR_MSG_MOD(bpf
->extack
,
2841 "The RX buffer size is too small for the frame size");
2842 netdev_warn(dev
, "XDP RX buffer size %d is too small for the frame size %d\n",
2843 igb_rx_bufsz(ring
), frame_size
);
2848 old_prog
= xchg(&adapter
->xdp_prog
, prog
);
2849 need_reset
= (!!prog
!= !!old_prog
);
2851 /* device is up and bpf is added/removed, must setup the RX queues */
2852 if (need_reset
&& running
) {
2855 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2856 (void)xchg(&adapter
->rx_ring
[i
]->xdp_prog
,
2861 bpf_prog_put(old_prog
);
2863 /* bpf is just replaced, RXQ and MTU are already setup */
2873 static int igb_xdp(struct net_device
*dev
, struct netdev_bpf
*xdp
)
2875 switch (xdp
->command
) {
2876 case XDP_SETUP_PROG
:
2877 return igb_xdp_setup(dev
, xdp
);
2883 static void igb_xdp_ring_update_tail(struct igb_ring
*ring
)
2885 /* Force memory writes to complete before letting h/w know there
2886 * are new descriptors to fetch.
2889 writel(ring
->next_to_use
, ring
->tail
);
2892 static struct igb_ring
*igb_xdp_tx_queue_mapping(struct igb_adapter
*adapter
)
2894 unsigned int r_idx
= smp_processor_id();
2896 if (r_idx
>= adapter
->num_tx_queues
)
2897 r_idx
= r_idx
% adapter
->num_tx_queues
;
2899 return adapter
->tx_ring
[r_idx
];
2902 static int igb_xdp_xmit_back(struct igb_adapter
*adapter
, struct xdp_buff
*xdp
)
2904 struct xdp_frame
*xdpf
= xdp_convert_buff_to_frame(xdp
);
2905 int cpu
= smp_processor_id();
2906 struct igb_ring
*tx_ring
;
2907 struct netdev_queue
*nq
;
2910 if (unlikely(!xdpf
))
2911 return IGB_XDP_CONSUMED
;
2913 /* During program transitions its possible adapter->xdp_prog is assigned
2914 * but ring has not been configured yet. In this case simply abort xmit.
2916 tx_ring
= adapter
->xdp_prog
? igb_xdp_tx_queue_mapping(adapter
) : NULL
;
2917 if (unlikely(!tx_ring
))
2918 return IGB_XDP_CONSUMED
;
2920 nq
= txring_txq(tx_ring
);
2921 __netif_tx_lock(nq
, cpu
);
2922 /* Avoid transmit queue timeout since we share it with the slow path */
2923 nq
->trans_start
= jiffies
;
2924 ret
= igb_xmit_xdp_ring(adapter
, tx_ring
, xdpf
);
2925 __netif_tx_unlock(nq
);
2930 static int igb_xdp_xmit(struct net_device
*dev
, int n
,
2931 struct xdp_frame
**frames
, u32 flags
)
2933 struct igb_adapter
*adapter
= netdev_priv(dev
);
2934 int cpu
= smp_processor_id();
2935 struct igb_ring
*tx_ring
;
2936 struct netdev_queue
*nq
;
2940 if (unlikely(test_bit(__IGB_DOWN
, &adapter
->state
)))
2943 if (unlikely(flags
& ~XDP_XMIT_FLAGS_MASK
))
2946 /* During program transitions its possible adapter->xdp_prog is assigned
2947 * but ring has not been configured yet. In this case simply abort xmit.
2949 tx_ring
= adapter
->xdp_prog
? igb_xdp_tx_queue_mapping(adapter
) : NULL
;
2950 if (unlikely(!tx_ring
))
2953 nq
= txring_txq(tx_ring
);
2954 __netif_tx_lock(nq
, cpu
);
2956 /* Avoid transmit queue timeout since we share it with the slow path */
2957 nq
->trans_start
= jiffies
;
2959 for (i
= 0; i
< n
; i
++) {
2960 struct xdp_frame
*xdpf
= frames
[i
];
2963 err
= igb_xmit_xdp_ring(adapter
, tx_ring
, xdpf
);
2964 if (err
!= IGB_XDP_TX
) {
2965 xdp_return_frame_rx_napi(xdpf
);
2970 __netif_tx_unlock(nq
);
2972 if (unlikely(flags
& XDP_XMIT_FLUSH
))
2973 igb_xdp_ring_update_tail(tx_ring
);
2978 static const struct net_device_ops igb_netdev_ops
= {
2979 .ndo_open
= igb_open
,
2980 .ndo_stop
= igb_close
,
2981 .ndo_start_xmit
= igb_xmit_frame
,
2982 .ndo_get_stats64
= igb_get_stats64
,
2983 .ndo_set_rx_mode
= igb_set_rx_mode
,
2984 .ndo_set_mac_address
= igb_set_mac
,
2985 .ndo_change_mtu
= igb_change_mtu
,
2986 .ndo_do_ioctl
= igb_ioctl
,
2987 .ndo_tx_timeout
= igb_tx_timeout
,
2988 .ndo_validate_addr
= eth_validate_addr
,
2989 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
2990 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
2991 .ndo_set_vf_mac
= igb_ndo_set_vf_mac
,
2992 .ndo_set_vf_vlan
= igb_ndo_set_vf_vlan
,
2993 .ndo_set_vf_rate
= igb_ndo_set_vf_bw
,
2994 .ndo_set_vf_spoofchk
= igb_ndo_set_vf_spoofchk
,
2995 .ndo_set_vf_trust
= igb_ndo_set_vf_trust
,
2996 .ndo_get_vf_config
= igb_ndo_get_vf_config
,
2997 .ndo_fix_features
= igb_fix_features
,
2998 .ndo_set_features
= igb_set_features
,
2999 .ndo_fdb_add
= igb_ndo_fdb_add
,
3000 .ndo_features_check
= igb_features_check
,
3001 .ndo_setup_tc
= igb_setup_tc
,
3003 .ndo_xdp_xmit
= igb_xdp_xmit
,
3007 * igb_set_fw_version - Configure version string for ethtool
3008 * @adapter: adapter struct
3010 void igb_set_fw_version(struct igb_adapter
*adapter
)
3012 struct e1000_hw
*hw
= &adapter
->hw
;
3013 struct e1000_fw_version fw
;
3015 igb_get_fw_version(hw
, &fw
);
3017 switch (hw
->mac
.type
) {
3020 if (!(igb_get_flash_presence_i210(hw
))) {
3021 snprintf(adapter
->fw_version
,
3022 sizeof(adapter
->fw_version
),
3024 fw
.invm_major
, fw
.invm_minor
,
3030 /* if option is rom valid, display its version too */
3032 snprintf(adapter
->fw_version
,
3033 sizeof(adapter
->fw_version
),
3034 "%d.%d, 0x%08x, %d.%d.%d",
3035 fw
.eep_major
, fw
.eep_minor
, fw
.etrack_id
,
3036 fw
.or_major
, fw
.or_build
, fw
.or_patch
);
3038 } else if (fw
.etrack_id
!= 0X0000) {
3039 snprintf(adapter
->fw_version
,
3040 sizeof(adapter
->fw_version
),
3042 fw
.eep_major
, fw
.eep_minor
, fw
.etrack_id
);
3044 snprintf(adapter
->fw_version
,
3045 sizeof(adapter
->fw_version
),
3047 fw
.eep_major
, fw
.eep_minor
, fw
.eep_build
);
3054 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3056 * @adapter: adapter struct
3058 static void igb_init_mas(struct igb_adapter
*adapter
)
3060 struct e1000_hw
*hw
= &adapter
->hw
;
3063 hw
->nvm
.ops
.read(hw
, NVM_COMPAT
, 1, &eeprom_data
);
3064 switch (hw
->bus
.func
) {
3066 if (eeprom_data
& IGB_MAS_ENABLE_0
) {
3067 adapter
->flags
|= IGB_FLAG_MAS_ENABLE
;
3068 netdev_info(adapter
->netdev
,
3069 "MAS: Enabling Media Autosense for port %d\n",
3074 if (eeprom_data
& IGB_MAS_ENABLE_1
) {
3075 adapter
->flags
|= IGB_FLAG_MAS_ENABLE
;
3076 netdev_info(adapter
->netdev
,
3077 "MAS: Enabling Media Autosense for port %d\n",
3082 if (eeprom_data
& IGB_MAS_ENABLE_2
) {
3083 adapter
->flags
|= IGB_FLAG_MAS_ENABLE
;
3084 netdev_info(adapter
->netdev
,
3085 "MAS: Enabling Media Autosense for port %d\n",
3090 if (eeprom_data
& IGB_MAS_ENABLE_3
) {
3091 adapter
->flags
|= IGB_FLAG_MAS_ENABLE
;
3092 netdev_info(adapter
->netdev
,
3093 "MAS: Enabling Media Autosense for port %d\n",
3098 /* Shouldn't get here */
3099 netdev_err(adapter
->netdev
,
3100 "MAS: Invalid port configuration, returning\n");
3106 * igb_init_i2c - Init I2C interface
3107 * @adapter: pointer to adapter structure
3109 static s32
igb_init_i2c(struct igb_adapter
*adapter
)
3113 /* I2C interface supported on i350 devices */
3114 if (adapter
->hw
.mac
.type
!= e1000_i350
)
3117 /* Initialize the i2c bus which is controlled by the registers.
3118 * This bus will use the i2c_algo_bit structue that implements
3119 * the protocol through toggling of the 4 bits in the register.
3121 adapter
->i2c_adap
.owner
= THIS_MODULE
;
3122 adapter
->i2c_algo
= igb_i2c_algo
;
3123 adapter
->i2c_algo
.data
= adapter
;
3124 adapter
->i2c_adap
.algo_data
= &adapter
->i2c_algo
;
3125 adapter
->i2c_adap
.dev
.parent
= &adapter
->pdev
->dev
;
3126 strlcpy(adapter
->i2c_adap
.name
, "igb BB",
3127 sizeof(adapter
->i2c_adap
.name
));
3128 status
= i2c_bit_add_bus(&adapter
->i2c_adap
);
3133 * igb_probe - Device Initialization Routine
3134 * @pdev: PCI device information struct
3135 * @ent: entry in igb_pci_tbl
3137 * Returns 0 on success, negative on failure
3139 * igb_probe initializes an adapter identified by a pci_dev structure.
3140 * The OS initialization, configuring of the adapter private structure,
3141 * and a hardware reset occur.
3143 static int igb_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
3145 struct net_device
*netdev
;
3146 struct igb_adapter
*adapter
;
3147 struct e1000_hw
*hw
;
3148 u16 eeprom_data
= 0;
3150 static int global_quad_port_a
; /* global quad port a indication */
3151 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
3152 int err
, pci_using_dac
;
3153 u8 part_str
[E1000_PBANUM_LENGTH
];
3155 /* Catch broken hardware that put the wrong VF device ID in
3156 * the PCIe SR-IOV capability.
3158 if (pdev
->is_virtfn
) {
3159 WARN(1, KERN_ERR
"%s (%hx:%hx) should not be a VF!\n",
3160 pci_name(pdev
), pdev
->vendor
, pdev
->device
);
3164 err
= pci_enable_device_mem(pdev
);
3169 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
3173 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
3176 "No usable DMA configuration, aborting\n");
3181 err
= pci_request_mem_regions(pdev
, igb_driver_name
);
3185 pci_enable_pcie_error_reporting(pdev
);
3187 pci_set_master(pdev
);
3188 pci_save_state(pdev
);
3191 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
),
3194 goto err_alloc_etherdev
;
3196 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3198 pci_set_drvdata(pdev
, netdev
);
3199 adapter
= netdev_priv(netdev
);
3200 adapter
->netdev
= netdev
;
3201 adapter
->pdev
= pdev
;
3204 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
3207 adapter
->io_addr
= pci_iomap(pdev
, 0, 0);
3208 if (!adapter
->io_addr
)
3210 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3211 hw
->hw_addr
= adapter
->io_addr
;
3213 netdev
->netdev_ops
= &igb_netdev_ops
;
3214 igb_set_ethtool_ops(netdev
);
3215 netdev
->watchdog_timeo
= 5 * HZ
;
3217 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
3219 netdev
->mem_start
= pci_resource_start(pdev
, 0);
3220 netdev
->mem_end
= pci_resource_end(pdev
, 0);
3222 /* PCI config space info */
3223 hw
->vendor_id
= pdev
->vendor
;
3224 hw
->device_id
= pdev
->device
;
3225 hw
->revision_id
= pdev
->revision
;
3226 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
3227 hw
->subsystem_device_id
= pdev
->subsystem_device
;
3229 /* Copy the default MAC, PHY and NVM function pointers */
3230 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
3231 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
3232 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
3233 /* Initialize skew-specific constants */
3234 err
= ei
->get_invariants(hw
);
3238 /* setup the private structure */
3239 err
= igb_sw_init(adapter
);
3243 igb_get_bus_info_pcie(hw
);
3245 hw
->phy
.autoneg_wait_to_complete
= false;
3247 /* Copper options */
3248 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3249 hw
->phy
.mdix
= AUTO_ALL_MODES
;
3250 hw
->phy
.disable_polarity_correction
= false;
3251 hw
->phy
.ms_type
= e1000_ms_hw_default
;
3254 if (igb_check_reset_block(hw
))
3255 dev_info(&pdev
->dev
,
3256 "PHY reset is blocked due to SOL/IDER session.\n");
3258 /* features is initialized to 0 in allocation, it might have bits
3259 * set by igb_sw_init so we should use an or instead of an
3262 netdev
->features
|= NETIF_F_SG
|
3269 if (hw
->mac
.type
>= e1000_82576
)
3270 netdev
->features
|= NETIF_F_SCTP_CRC
| NETIF_F_GSO_UDP_L4
;
3272 if (hw
->mac
.type
>= e1000_i350
)
3273 netdev
->features
|= NETIF_F_HW_TC
;
3275 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3276 NETIF_F_GSO_GRE_CSUM | \
3277 NETIF_F_GSO_IPXIP4 | \
3278 NETIF_F_GSO_IPXIP6 | \
3279 NETIF_F_GSO_UDP_TUNNEL | \
3280 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3282 netdev
->gso_partial_features
= IGB_GSO_PARTIAL_FEATURES
;
3283 netdev
->features
|= NETIF_F_GSO_PARTIAL
| IGB_GSO_PARTIAL_FEATURES
;
3285 /* copy netdev features into list of user selectable features */
3286 netdev
->hw_features
|= netdev
->features
|
3287 NETIF_F_HW_VLAN_CTAG_RX
|
3288 NETIF_F_HW_VLAN_CTAG_TX
|
3291 if (hw
->mac
.type
>= e1000_i350
)
3292 netdev
->hw_features
|= NETIF_F_NTUPLE
;
3295 netdev
->features
|= NETIF_F_HIGHDMA
;
3297 netdev
->vlan_features
|= netdev
->features
| NETIF_F_TSO_MANGLEID
;
3298 netdev
->mpls_features
|= NETIF_F_HW_CSUM
;
3299 netdev
->hw_enc_features
|= netdev
->vlan_features
;
3301 /* set this bit last since it cannot be part of vlan_features */
3302 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
|
3303 NETIF_F_HW_VLAN_CTAG_RX
|
3304 NETIF_F_HW_VLAN_CTAG_TX
;
3306 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
3308 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
3310 /* MTU range: 68 - 9216 */
3311 netdev
->min_mtu
= ETH_MIN_MTU
;
3312 netdev
->max_mtu
= MAX_STD_JUMBO_FRAME_SIZE
;
3314 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(hw
);
3316 /* before reading the NVM, reset the controller to put the device in a
3317 * known good starting state
3319 hw
->mac
.ops
.reset_hw(hw
);
3321 /* make sure the NVM is good , i211/i210 parts can have special NVM
3322 * that doesn't contain a checksum
3324 switch (hw
->mac
.type
) {
3327 if (igb_get_flash_presence_i210(hw
)) {
3328 if (hw
->nvm
.ops
.validate(hw
) < 0) {
3330 "The NVM Checksum Is Not Valid\n");
3337 if (hw
->nvm
.ops
.validate(hw
) < 0) {
3338 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
3345 if (eth_platform_get_mac_address(&pdev
->dev
, hw
->mac
.addr
)) {
3346 /* copy the MAC address out of the NVM */
3347 if (hw
->mac
.ops
.read_mac_addr(hw
))
3348 dev_err(&pdev
->dev
, "NVM Read Error\n");
3351 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
3353 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
3354 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
3359 igb_set_default_mac_filter(adapter
);
3361 /* get firmware version for ethtool -i */
3362 igb_set_fw_version(adapter
);
3364 /* configure RXPBSIZE and TXPBSIZE */
3365 if (hw
->mac
.type
== e1000_i210
) {
3366 wr32(E1000_RXPBS
, I210_RXPBSIZE_DEFAULT
);
3367 wr32(E1000_TXPBS
, I210_TXPBSIZE_DEFAULT
);
3370 timer_setup(&adapter
->watchdog_timer
, igb_watchdog
, 0);
3371 timer_setup(&adapter
->phy_info_timer
, igb_update_phy_info
, 0);
3373 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
3374 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
3376 /* Initialize link properties that are user-changeable */
3377 adapter
->fc_autoneg
= true;
3378 hw
->mac
.autoneg
= true;
3379 hw
->phy
.autoneg_advertised
= 0x2f;
3381 hw
->fc
.requested_mode
= e1000_fc_default
;
3382 hw
->fc
.current_mode
= e1000_fc_default
;
3384 igb_validate_mdi_setting(hw
);
3386 /* By default, support wake on port A */
3387 if (hw
->bus
.func
== 0)
3388 adapter
->flags
|= IGB_FLAG_WOL_SUPPORTED
;
3390 /* Check the NVM for wake support on non-port A ports */
3391 if (hw
->mac
.type
>= e1000_82580
)
3392 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
3393 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
3395 else if (hw
->bus
.func
== 1)
3396 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
3398 if (eeprom_data
& IGB_EEPROM_APME
)
3399 adapter
->flags
|= IGB_FLAG_WOL_SUPPORTED
;
3401 /* now that we have the eeprom settings, apply the special cases where
3402 * the eeprom may be wrong or the board simply won't support wake on
3403 * lan on a particular port
3405 switch (pdev
->device
) {
3406 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
3407 adapter
->flags
&= ~IGB_FLAG_WOL_SUPPORTED
;
3409 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
3410 case E1000_DEV_ID_82576_FIBER
:
3411 case E1000_DEV_ID_82576_SERDES
:
3412 /* Wake events only supported on port A for dual fiber
3413 * regardless of eeprom setting
3415 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
3416 adapter
->flags
&= ~IGB_FLAG_WOL_SUPPORTED
;
3418 case E1000_DEV_ID_82576_QUAD_COPPER
:
3419 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
3420 /* if quad port adapter, disable WoL on all but port A */
3421 if (global_quad_port_a
!= 0)
3422 adapter
->flags
&= ~IGB_FLAG_WOL_SUPPORTED
;
3424 adapter
->flags
|= IGB_FLAG_QUAD_PORT_A
;
3425 /* Reset for multiple quad port adapters */
3426 if (++global_quad_port_a
== 4)
3427 global_quad_port_a
= 0;
3430 /* If the device can't wake, don't set software support */
3431 if (!device_can_wakeup(&adapter
->pdev
->dev
))
3432 adapter
->flags
&= ~IGB_FLAG_WOL_SUPPORTED
;
3435 /* initialize the wol settings based on the eeprom settings */
3436 if (adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
)
3437 adapter
->wol
|= E1000_WUFC_MAG
;
3439 /* Some vendors want WoL disabled by default, but still supported */
3440 if ((hw
->mac
.type
== e1000_i350
) &&
3441 (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
)) {
3442 adapter
->flags
|= IGB_FLAG_WOL_SUPPORTED
;
3446 /* Some vendors want the ability to Use the EEPROM setting as
3447 * enable/disable only, and not for capability
3449 if (((hw
->mac
.type
== e1000_i350
) ||
3450 (hw
->mac
.type
== e1000_i354
)) &&
3451 (pdev
->subsystem_vendor
== PCI_VENDOR_ID_DELL
)) {
3452 adapter
->flags
|= IGB_FLAG_WOL_SUPPORTED
;
3455 if (hw
->mac
.type
== e1000_i350
) {
3456 if (((pdev
->subsystem_device
== 0x5001) ||
3457 (pdev
->subsystem_device
== 0x5002)) &&
3458 (hw
->bus
.func
== 0)) {
3459 adapter
->flags
|= IGB_FLAG_WOL_SUPPORTED
;
3462 if (pdev
->subsystem_device
== 0x1F52)
3463 adapter
->flags
|= IGB_FLAG_WOL_SUPPORTED
;
3466 device_set_wakeup_enable(&adapter
->pdev
->dev
,
3467 adapter
->flags
& IGB_FLAG_WOL_SUPPORTED
);
3469 /* reset the hardware with the new settings */
3472 /* Init the I2C interface */
3473 err
= igb_init_i2c(adapter
);
3475 dev_err(&pdev
->dev
, "failed to init i2c interface\n");
3479 /* let the f/w know that the h/w is now under the control of the
3482 igb_get_hw_control(adapter
);
3484 strcpy(netdev
->name
, "eth%d");
3485 err
= register_netdev(netdev
);
3489 /* carrier off reporting is important to ethtool even BEFORE open */
3490 netif_carrier_off(netdev
);
3492 #ifdef CONFIG_IGB_DCA
3493 if (dca_add_requester(&pdev
->dev
) == 0) {
3494 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3495 dev_info(&pdev
->dev
, "DCA enabled\n");
3496 igb_setup_dca(adapter
);
3500 #ifdef CONFIG_IGB_HWMON
3501 /* Initialize the thermal sensor on i350 devices. */
3502 if (hw
->mac
.type
== e1000_i350
&& hw
->bus
.func
== 0) {
3505 /* Read the NVM to determine if this i350 device supports an
3506 * external thermal sensor.
3508 hw
->nvm
.ops
.read(hw
, NVM_ETS_CFG
, 1, &ets_word
);
3509 if (ets_word
!= 0x0000 && ets_word
!= 0xFFFF)
3510 adapter
->ets
= true;
3512 adapter
->ets
= false;
3513 if (igb_sysfs_init(adapter
))
3515 "failed to allocate sysfs resources\n");
3517 adapter
->ets
= false;
3520 /* Check if Media Autosense is enabled */
3522 if (hw
->dev_spec
._82575
.mas_capable
)
3523 igb_init_mas(adapter
);
3525 /* do hw tstamp init after resetting */
3526 igb_ptp_init(adapter
);
3528 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
3529 /* print bus type/speed/width info, not applicable to i354 */
3530 if (hw
->mac
.type
!= e1000_i354
) {
3531 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
3533 ((hw
->bus
.speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
3534 (hw
->bus
.speed
== e1000_bus_speed_5000
) ? "5.0Gb/s" :
3536 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ?
3538 (hw
->bus
.width
== e1000_bus_width_pcie_x2
) ?
3540 (hw
->bus
.width
== e1000_bus_width_pcie_x1
) ?
3541 "Width x1" : "unknown"), netdev
->dev_addr
);
3544 if ((hw
->mac
.type
== e1000_82576
&&
3545 rd32(E1000_EECD
) & E1000_EECD_PRES
) ||
3546 (hw
->mac
.type
>= e1000_i210
||
3547 igb_get_flash_presence_i210(hw
))) {
3548 ret_val
= igb_read_part_string(hw
, part_str
,
3549 E1000_PBANUM_LENGTH
);
3551 ret_val
= -E1000_ERR_INVM_VALUE_NOT_FOUND
;
3555 strcpy(part_str
, "Unknown");
3556 dev_info(&pdev
->dev
, "%s: PBA No: %s\n", netdev
->name
, part_str
);
3557 dev_info(&pdev
->dev
,
3558 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3559 (adapter
->flags
& IGB_FLAG_HAS_MSIX
) ? "MSI-X" :
3560 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
3561 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
3562 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3563 switch (hw
->mac
.type
) {
3567 /* Enable EEE for internal copper PHY devices */
3568 err
= igb_set_eee_i350(hw
, true, true);
3570 (!hw
->dev_spec
._82575
.eee_disable
)) {
3571 adapter
->eee_advert
=
3572 MDIO_EEE_100TX
| MDIO_EEE_1000T
;
3573 adapter
->flags
|= IGB_FLAG_EEE
;
3577 if ((rd32(E1000_CTRL_EXT
) &
3578 E1000_CTRL_EXT_LINK_MODE_SGMII
)) {
3579 err
= igb_set_eee_i354(hw
, true, true);
3581 (!hw
->dev_spec
._82575
.eee_disable
)) {
3582 adapter
->eee_advert
=
3583 MDIO_EEE_100TX
| MDIO_EEE_1000T
;
3584 adapter
->flags
|= IGB_FLAG_EEE
;
3593 dev_pm_set_driver_flags(&pdev
->dev
, DPM_FLAG_NO_DIRECT_COMPLETE
);
3595 pm_runtime_put_noidle(&pdev
->dev
);
3599 igb_release_hw_control(adapter
);
3600 memset(&adapter
->i2c_adap
, 0, sizeof(adapter
->i2c_adap
));
3602 if (!igb_check_reset_block(hw
))
3605 if (hw
->flash_address
)
3606 iounmap(hw
->flash_address
);
3608 kfree(adapter
->mac_table
);
3609 kfree(adapter
->shadow_vfta
);
3610 igb_clear_interrupt_scheme(adapter
);
3611 #ifdef CONFIG_PCI_IOV
3612 igb_disable_sriov(pdev
);
3614 pci_iounmap(pdev
, adapter
->io_addr
);
3616 free_netdev(netdev
);
3618 pci_release_mem_regions(pdev
);
3621 pci_disable_device(pdev
);
3625 #ifdef CONFIG_PCI_IOV
3626 static int igb_disable_sriov(struct pci_dev
*pdev
)
3628 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3629 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3630 struct e1000_hw
*hw
= &adapter
->hw
;
3632 /* reclaim resources allocated to VFs */
3633 if (adapter
->vf_data
) {
3634 /* disable iov and allow time for transactions to clear */
3635 if (pci_vfs_assigned(pdev
)) {
3636 dev_warn(&pdev
->dev
,
3637 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3640 pci_disable_sriov(pdev
);
3644 kfree(adapter
->vf_mac_list
);
3645 adapter
->vf_mac_list
= NULL
;
3646 kfree(adapter
->vf_data
);
3647 adapter
->vf_data
= NULL
;
3648 adapter
->vfs_allocated_count
= 0;
3649 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
3652 dev_info(&pdev
->dev
, "IOV Disabled\n");
3654 /* Re-enable DMA Coalescing flag since IOV is turned off */
3655 adapter
->flags
|= IGB_FLAG_DMAC
;
3661 static int igb_enable_sriov(struct pci_dev
*pdev
, int num_vfs
)
3663 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3664 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3665 int old_vfs
= pci_num_vf(pdev
);
3666 struct vf_mac_filter
*mac_list
;
3668 int num_vf_mac_filters
, i
;
3670 if (!(adapter
->flags
& IGB_FLAG_HAS_MSIX
) || num_vfs
> 7) {
3678 dev_info(&pdev
->dev
, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3680 adapter
->vfs_allocated_count
= old_vfs
;
3682 adapter
->vfs_allocated_count
= num_vfs
;
3684 adapter
->vf_data
= kcalloc(adapter
->vfs_allocated_count
,
3685 sizeof(struct vf_data_storage
), GFP_KERNEL
);
3687 /* if allocation failed then we do not support SR-IOV */
3688 if (!adapter
->vf_data
) {
3689 adapter
->vfs_allocated_count
= 0;
3694 /* Due to the limited number of RAR entries calculate potential
3695 * number of MAC filters available for the VFs. Reserve entries
3696 * for PF default MAC, PF MAC filters and at least one RAR entry
3697 * for each VF for VF MAC.
3699 num_vf_mac_filters
= adapter
->hw
.mac
.rar_entry_count
-
3700 (1 + IGB_PF_MAC_FILTERS_RESERVED
+
3701 adapter
->vfs_allocated_count
);
3703 adapter
->vf_mac_list
= kcalloc(num_vf_mac_filters
,
3704 sizeof(struct vf_mac_filter
),
3707 mac_list
= adapter
->vf_mac_list
;
3708 INIT_LIST_HEAD(&adapter
->vf_macs
.l
);
3710 if (adapter
->vf_mac_list
) {
3711 /* Initialize list of VF MAC filters */
3712 for (i
= 0; i
< num_vf_mac_filters
; i
++) {
3714 mac_list
->free
= true;
3715 list_add(&mac_list
->l
, &adapter
->vf_macs
.l
);
3719 /* If we could not allocate memory for the VF MAC filters
3720 * we can continue without this feature but warn user.
3723 "Unable to allocate memory for VF MAC filter list\n");
3726 /* only call pci_enable_sriov() if no VFs are allocated already */
3728 err
= pci_enable_sriov(pdev
, adapter
->vfs_allocated_count
);
3732 dev_info(&pdev
->dev
, "%d VFs allocated\n",
3733 adapter
->vfs_allocated_count
);
3734 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++)
3735 igb_vf_configure(adapter
, i
);
3737 /* DMA Coalescing is not supported in IOV mode. */
3738 adapter
->flags
&= ~IGB_FLAG_DMAC
;
3742 kfree(adapter
->vf_mac_list
);
3743 adapter
->vf_mac_list
= NULL
;
3744 kfree(adapter
->vf_data
);
3745 adapter
->vf_data
= NULL
;
3746 adapter
->vfs_allocated_count
= 0;
3753 * igb_remove_i2c - Cleanup I2C interface
3754 * @adapter: pointer to adapter structure
3756 static void igb_remove_i2c(struct igb_adapter
*adapter
)
3758 /* free the adapter bus structure */
3759 i2c_del_adapter(&adapter
->i2c_adap
);
3763 * igb_remove - Device Removal Routine
3764 * @pdev: PCI device information struct
3766 * igb_remove is called by the PCI subsystem to alert the driver
3767 * that it should release a PCI device. The could be caused by a
3768 * Hot-Plug event, or because the driver is going to be removed from
3771 static void igb_remove(struct pci_dev
*pdev
)
3773 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3774 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3775 struct e1000_hw
*hw
= &adapter
->hw
;
3777 pm_runtime_get_noresume(&pdev
->dev
);
3778 #ifdef CONFIG_IGB_HWMON
3779 igb_sysfs_exit(adapter
);
3781 igb_remove_i2c(adapter
);
3782 igb_ptp_stop(adapter
);
3783 /* The watchdog timer may be rescheduled, so explicitly
3784 * disable watchdog from being rescheduled.
3786 set_bit(__IGB_DOWN
, &adapter
->state
);
3787 del_timer_sync(&adapter
->watchdog_timer
);
3788 del_timer_sync(&adapter
->phy_info_timer
);
3790 cancel_work_sync(&adapter
->reset_task
);
3791 cancel_work_sync(&adapter
->watchdog_task
);
3793 #ifdef CONFIG_IGB_DCA
3794 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3795 dev_info(&pdev
->dev
, "DCA disabled\n");
3796 dca_remove_requester(&pdev
->dev
);
3797 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3798 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
3802 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3803 * would have already happened in close and is redundant.
3805 igb_release_hw_control(adapter
);
3807 #ifdef CONFIG_PCI_IOV
3808 igb_disable_sriov(pdev
);
3811 unregister_netdev(netdev
);
3813 igb_clear_interrupt_scheme(adapter
);
3815 pci_iounmap(pdev
, adapter
->io_addr
);
3816 if (hw
->flash_address
)
3817 iounmap(hw
->flash_address
);
3818 pci_release_mem_regions(pdev
);
3820 kfree(adapter
->mac_table
);
3821 kfree(adapter
->shadow_vfta
);
3822 free_netdev(netdev
);
3824 pci_disable_pcie_error_reporting(pdev
);
3826 pci_disable_device(pdev
);
3830 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3831 * @adapter: board private structure to initialize
3833 * This function initializes the vf specific data storage and then attempts to
3834 * allocate the VFs. The reason for ordering it this way is because it is much
3835 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3836 * the memory for the VFs.
3838 static void igb_probe_vfs(struct igb_adapter
*adapter
)
3840 #ifdef CONFIG_PCI_IOV
3841 struct pci_dev
*pdev
= adapter
->pdev
;
3842 struct e1000_hw
*hw
= &adapter
->hw
;
3844 /* Virtualization features not supported on i210 family. */
3845 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
))
3848 /* Of the below we really only want the effect of getting
3849 * IGB_FLAG_HAS_MSIX set (if available), without which
3850 * igb_enable_sriov() has no effect.
3852 igb_set_interrupt_capability(adapter
, true);
3853 igb_reset_interrupt_capability(adapter
);
3855 pci_sriov_set_totalvfs(pdev
, 7);
3856 igb_enable_sriov(pdev
, max_vfs
);
3858 #endif /* CONFIG_PCI_IOV */
3861 unsigned int igb_get_max_rss_queues(struct igb_adapter
*adapter
)
3863 struct e1000_hw
*hw
= &adapter
->hw
;
3864 unsigned int max_rss_queues
;
3866 /* Determine the maximum number of RSS queues supported. */
3867 switch (hw
->mac
.type
) {
3869 max_rss_queues
= IGB_MAX_RX_QUEUES_I211
;
3873 max_rss_queues
= IGB_MAX_RX_QUEUES_82575
;
3876 /* I350 cannot do RSS and SR-IOV at the same time */
3877 if (!!adapter
->vfs_allocated_count
) {
3883 if (!!adapter
->vfs_allocated_count
) {
3891 max_rss_queues
= IGB_MAX_RX_QUEUES
;
3895 return max_rss_queues
;
3898 static void igb_init_queue_configuration(struct igb_adapter
*adapter
)
3902 max_rss_queues
= igb_get_max_rss_queues(adapter
);
3903 adapter
->rss_queues
= min_t(u32
, max_rss_queues
, num_online_cpus());
3905 igb_set_flag_queue_pairs(adapter
, max_rss_queues
);
3908 void igb_set_flag_queue_pairs(struct igb_adapter
*adapter
,
3909 const u32 max_rss_queues
)
3911 struct e1000_hw
*hw
= &adapter
->hw
;
3913 /* Determine if we need to pair queues. */
3914 switch (hw
->mac
.type
) {
3917 /* Device supports enough interrupts without queue pairing. */
3925 /* If rss_queues > half of max_rss_queues, pair the queues in
3926 * order to conserve interrupts due to limited supply.
3928 if (adapter
->rss_queues
> (max_rss_queues
/ 2))
3929 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
3931 adapter
->flags
&= ~IGB_FLAG_QUEUE_PAIRS
;
3937 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3938 * @adapter: board private structure to initialize
3940 * igb_sw_init initializes the Adapter private data structure.
3941 * Fields are initialized based on PCI device information and
3942 * OS network device settings (MTU size).
3944 static int igb_sw_init(struct igb_adapter
*adapter
)
3946 struct e1000_hw
*hw
= &adapter
->hw
;
3947 struct net_device
*netdev
= adapter
->netdev
;
3948 struct pci_dev
*pdev
= adapter
->pdev
;
3950 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
3952 /* set default ring sizes */
3953 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
3954 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
3956 /* set default ITR values */
3957 adapter
->rx_itr_setting
= IGB_DEFAULT_ITR
;
3958 adapter
->tx_itr_setting
= IGB_DEFAULT_ITR
;
3960 /* set default work limits */
3961 adapter
->tx_work_limit
= IGB_DEFAULT_TX_WORK
;
3963 adapter
->max_frame_size
= netdev
->mtu
+ IGB_ETH_PKT_HDR_PAD
;
3964 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3966 spin_lock_init(&adapter
->nfc_lock
);
3967 spin_lock_init(&adapter
->stats64_lock
);
3968 #ifdef CONFIG_PCI_IOV
3969 switch (hw
->mac
.type
) {
3973 dev_warn(&pdev
->dev
,
3974 "Maximum of 7 VFs per PF, using max\n");
3975 max_vfs
= adapter
->vfs_allocated_count
= 7;
3977 adapter
->vfs_allocated_count
= max_vfs
;
3978 if (adapter
->vfs_allocated_count
)
3979 dev_warn(&pdev
->dev
,
3980 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3985 #endif /* CONFIG_PCI_IOV */
3987 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3988 adapter
->flags
|= IGB_FLAG_HAS_MSIX
;
3990 adapter
->mac_table
= kcalloc(hw
->mac
.rar_entry_count
,
3991 sizeof(struct igb_mac_addr
),
3993 if (!adapter
->mac_table
)
3996 igb_probe_vfs(adapter
);
3998 igb_init_queue_configuration(adapter
);
4000 /* Setup and initialize a copy of the hw vlan table array */
4001 adapter
->shadow_vfta
= kcalloc(E1000_VLAN_FILTER_TBL_SIZE
, sizeof(u32
),
4003 if (!adapter
->shadow_vfta
)
4006 /* This call may decrease the number of queues */
4007 if (igb_init_interrupt_scheme(adapter
, true)) {
4008 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
4012 /* Explicitly disable IRQ since the NIC can be in any state. */
4013 igb_irq_disable(adapter
);
4015 if (hw
->mac
.type
>= e1000_i350
)
4016 adapter
->flags
&= ~IGB_FLAG_DMAC
;
4018 set_bit(__IGB_DOWN
, &adapter
->state
);
4023 * igb_open - Called when a network interface is made active
4024 * @netdev: network interface device structure
4025 * @resuming: indicates whether we are in a resume call
4027 * Returns 0 on success, negative value on failure
4029 * The open entry point is called when a network interface is made
4030 * active by the system (IFF_UP). At this point all resources needed
4031 * for transmit and receive operations are allocated, the interrupt
4032 * handler is registered with the OS, the watchdog timer is started,
4033 * and the stack is notified that the interface is ready.
4035 static int __igb_open(struct net_device
*netdev
, bool resuming
)
4037 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4038 struct e1000_hw
*hw
= &adapter
->hw
;
4039 struct pci_dev
*pdev
= adapter
->pdev
;
4043 /* disallow open during test */
4044 if (test_bit(__IGB_TESTING
, &adapter
->state
)) {
4050 pm_runtime_get_sync(&pdev
->dev
);
4052 netif_carrier_off(netdev
);
4054 /* allocate transmit descriptors */
4055 err
= igb_setup_all_tx_resources(adapter
);
4059 /* allocate receive descriptors */
4060 err
= igb_setup_all_rx_resources(adapter
);
4064 igb_power_up_link(adapter
);
4066 /* before we allocate an interrupt, we must be ready to handle it.
4067 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4068 * as soon as we call pci_request_irq, so we have to setup our
4069 * clean_rx handler before we do so.
4071 igb_configure(adapter
);
4073 err
= igb_request_irq(adapter
);
4077 /* Notify the stack of the actual queue counts. */
4078 err
= netif_set_real_num_tx_queues(adapter
->netdev
,
4079 adapter
->num_tx_queues
);
4081 goto err_set_queues
;
4083 err
= netif_set_real_num_rx_queues(adapter
->netdev
,
4084 adapter
->num_rx_queues
);
4086 goto err_set_queues
;
4088 /* From here on the code is the same as igb_up() */
4089 clear_bit(__IGB_DOWN
, &adapter
->state
);
4091 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
4092 napi_enable(&(adapter
->q_vector
[i
]->napi
));
4094 /* Clear any pending interrupts. */
4098 igb_irq_enable(adapter
);
4100 /* notify VFs that reset has been completed */
4101 if (adapter
->vfs_allocated_count
) {
4102 u32 reg_data
= rd32(E1000_CTRL_EXT
);
4104 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
4105 wr32(E1000_CTRL_EXT
, reg_data
);
4108 netif_tx_start_all_queues(netdev
);
4111 pm_runtime_put(&pdev
->dev
);
4113 /* start the watchdog. */
4114 hw
->mac
.get_link_status
= 1;
4115 schedule_work(&adapter
->watchdog_task
);
4120 igb_free_irq(adapter
);
4122 igb_release_hw_control(adapter
);
4123 igb_power_down_link(adapter
);
4124 igb_free_all_rx_resources(adapter
);
4126 igb_free_all_tx_resources(adapter
);
4130 pm_runtime_put(&pdev
->dev
);
4135 int igb_open(struct net_device
*netdev
)
4137 return __igb_open(netdev
, false);
4141 * igb_close - Disables a network interface
4142 * @netdev: network interface device structure
4143 * @suspending: indicates we are in a suspend call
4145 * Returns 0, this is not allowed to fail
4147 * The close entry point is called when an interface is de-activated
4148 * by the OS. The hardware is still under the driver's control, but
4149 * needs to be disabled. A global MAC reset is issued to stop the
4150 * hardware, and all transmit and receive resources are freed.
4152 static int __igb_close(struct net_device
*netdev
, bool suspending
)
4154 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4155 struct pci_dev
*pdev
= adapter
->pdev
;
4157 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
4160 pm_runtime_get_sync(&pdev
->dev
);
4163 igb_free_irq(adapter
);
4165 igb_free_all_tx_resources(adapter
);
4166 igb_free_all_rx_resources(adapter
);
4169 pm_runtime_put_sync(&pdev
->dev
);
4173 int igb_close(struct net_device
*netdev
)
4175 if (netif_device_present(netdev
) || netdev
->dismantle
)
4176 return __igb_close(netdev
, false);
4181 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4182 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4184 * Return 0 on success, negative on failure
4186 int igb_setup_tx_resources(struct igb_ring
*tx_ring
)
4188 struct device
*dev
= tx_ring
->dev
;
4191 size
= sizeof(struct igb_tx_buffer
) * tx_ring
->count
;
4193 tx_ring
->tx_buffer_info
= vmalloc(size
);
4194 if (!tx_ring
->tx_buffer_info
)
4197 /* round up to nearest 4K */
4198 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
4199 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
4201 tx_ring
->desc
= dma_alloc_coherent(dev
, tx_ring
->size
,
4202 &tx_ring
->dma
, GFP_KERNEL
);
4206 tx_ring
->next_to_use
= 0;
4207 tx_ring
->next_to_clean
= 0;
4212 vfree(tx_ring
->tx_buffer_info
);
4213 tx_ring
->tx_buffer_info
= NULL
;
4214 dev_err(dev
, "Unable to allocate memory for the Tx descriptor ring\n");
4219 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4220 * (Descriptors) for all queues
4221 * @adapter: board private structure
4223 * Return 0 on success, negative on failure
4225 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
4227 struct pci_dev
*pdev
= adapter
->pdev
;
4230 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
4231 err
= igb_setup_tx_resources(adapter
->tx_ring
[i
]);
4234 "Allocation for Tx Queue %u failed\n", i
);
4235 for (i
--; i
>= 0; i
--)
4236 igb_free_tx_resources(adapter
->tx_ring
[i
]);
4245 * igb_setup_tctl - configure the transmit control registers
4246 * @adapter: Board private structure
4248 void igb_setup_tctl(struct igb_adapter
*adapter
)
4250 struct e1000_hw
*hw
= &adapter
->hw
;
4253 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4254 wr32(E1000_TXDCTL(0), 0);
4256 /* Program the Transmit Control Register */
4257 tctl
= rd32(E1000_TCTL
);
4258 tctl
&= ~E1000_TCTL_CT
;
4259 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
4260 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
4262 igb_config_collision_dist(hw
);
4264 /* Enable transmits */
4265 tctl
|= E1000_TCTL_EN
;
4267 wr32(E1000_TCTL
, tctl
);
4271 * igb_configure_tx_ring - Configure transmit ring after Reset
4272 * @adapter: board private structure
4273 * @ring: tx ring to configure
4275 * Configure a transmit ring after a reset.
4277 void igb_configure_tx_ring(struct igb_adapter
*adapter
,
4278 struct igb_ring
*ring
)
4280 struct e1000_hw
*hw
= &adapter
->hw
;
4282 u64 tdba
= ring
->dma
;
4283 int reg_idx
= ring
->reg_idx
;
4285 wr32(E1000_TDLEN(reg_idx
),
4286 ring
->count
* sizeof(union e1000_adv_tx_desc
));
4287 wr32(E1000_TDBAL(reg_idx
),
4288 tdba
& 0x00000000ffffffffULL
);
4289 wr32(E1000_TDBAH(reg_idx
), tdba
>> 32);
4291 ring
->tail
= adapter
->io_addr
+ E1000_TDT(reg_idx
);
4292 wr32(E1000_TDH(reg_idx
), 0);
4293 writel(0, ring
->tail
);
4295 txdctl
|= IGB_TX_PTHRESH
;
4296 txdctl
|= IGB_TX_HTHRESH
<< 8;
4297 txdctl
|= IGB_TX_WTHRESH
<< 16;
4299 /* reinitialize tx_buffer_info */
4300 memset(ring
->tx_buffer_info
, 0,
4301 sizeof(struct igb_tx_buffer
) * ring
->count
);
4303 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
4304 wr32(E1000_TXDCTL(reg_idx
), txdctl
);
4308 * igb_configure_tx - Configure transmit Unit after Reset
4309 * @adapter: board private structure
4311 * Configure the Tx unit of the MAC after a reset.
4313 static void igb_configure_tx(struct igb_adapter
*adapter
)
4315 struct e1000_hw
*hw
= &adapter
->hw
;
4318 /* disable the queues */
4319 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4320 wr32(E1000_TXDCTL(adapter
->tx_ring
[i
]->reg_idx
), 0);
4323 usleep_range(10000, 20000);
4325 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4326 igb_configure_tx_ring(adapter
, adapter
->tx_ring
[i
]);
4330 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4331 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4333 * Returns 0 on success, negative on failure
4335 int igb_setup_rx_resources(struct igb_ring
*rx_ring
)
4337 struct igb_adapter
*adapter
= netdev_priv(rx_ring
->netdev
);
4338 struct device
*dev
= rx_ring
->dev
;
4341 size
= sizeof(struct igb_rx_buffer
) * rx_ring
->count
;
4343 rx_ring
->rx_buffer_info
= vmalloc(size
);
4344 if (!rx_ring
->rx_buffer_info
)
4347 /* Round up to nearest 4K */
4348 rx_ring
->size
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
4349 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
4351 rx_ring
->desc
= dma_alloc_coherent(dev
, rx_ring
->size
,
4352 &rx_ring
->dma
, GFP_KERNEL
);
4356 rx_ring
->next_to_alloc
= 0;
4357 rx_ring
->next_to_clean
= 0;
4358 rx_ring
->next_to_use
= 0;
4360 rx_ring
->xdp_prog
= adapter
->xdp_prog
;
4362 /* XDP RX-queue info */
4363 if (xdp_rxq_info_reg(&rx_ring
->xdp_rxq
, rx_ring
->netdev
,
4364 rx_ring
->queue_index
, 0) < 0)
4370 vfree(rx_ring
->rx_buffer_info
);
4371 rx_ring
->rx_buffer_info
= NULL
;
4372 dev_err(dev
, "Unable to allocate memory for the Rx descriptor ring\n");
4377 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4378 * (Descriptors) for all queues
4379 * @adapter: board private structure
4381 * Return 0 on success, negative on failure
4383 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
4385 struct pci_dev
*pdev
= adapter
->pdev
;
4388 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
4389 err
= igb_setup_rx_resources(adapter
->rx_ring
[i
]);
4392 "Allocation for Rx Queue %u failed\n", i
);
4393 for (i
--; i
>= 0; i
--)
4394 igb_free_rx_resources(adapter
->rx_ring
[i
]);
4403 * igb_setup_mrqc - configure the multiple receive queue control registers
4404 * @adapter: Board private structure
4406 static void igb_setup_mrqc(struct igb_adapter
*adapter
)
4408 struct e1000_hw
*hw
= &adapter
->hw
;
4410 u32 j
, num_rx_queues
;
4413 netdev_rss_key_fill(rss_key
, sizeof(rss_key
));
4414 for (j
= 0; j
< 10; j
++)
4415 wr32(E1000_RSSRK(j
), rss_key
[j
]);
4417 num_rx_queues
= adapter
->rss_queues
;
4419 switch (hw
->mac
.type
) {
4421 /* 82576 supports 2 RSS queues for SR-IOV */
4422 if (adapter
->vfs_allocated_count
)
4429 if (adapter
->rss_indir_tbl_init
!= num_rx_queues
) {
4430 for (j
= 0; j
< IGB_RETA_SIZE
; j
++)
4431 adapter
->rss_indir_tbl
[j
] =
4432 (j
* num_rx_queues
) / IGB_RETA_SIZE
;
4433 adapter
->rss_indir_tbl_init
= num_rx_queues
;
4435 igb_write_rss_indir_tbl(adapter
);
4437 /* Disable raw packet checksumming so that RSS hash is placed in
4438 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4439 * offloads as they are enabled by default
4441 rxcsum
= rd32(E1000_RXCSUM
);
4442 rxcsum
|= E1000_RXCSUM_PCSD
;
4444 if (adapter
->hw
.mac
.type
>= e1000_82576
)
4445 /* Enable Receive Checksum Offload for SCTP */
4446 rxcsum
|= E1000_RXCSUM_CRCOFL
;
4448 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4449 wr32(E1000_RXCSUM
, rxcsum
);
4451 /* Generate RSS hash based on packet types, TCP/UDP
4452 * port numbers and/or IPv4/v6 src and dst addresses
4454 mrqc
= E1000_MRQC_RSS_FIELD_IPV4
|
4455 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
4456 E1000_MRQC_RSS_FIELD_IPV6
|
4457 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
4458 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
;
4460 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV4_UDP
)
4461 mrqc
|= E1000_MRQC_RSS_FIELD_IPV4_UDP
;
4462 if (adapter
->flags
& IGB_FLAG_RSS_FIELD_IPV6_UDP
)
4463 mrqc
|= E1000_MRQC_RSS_FIELD_IPV6_UDP
;
4465 /* If VMDq is enabled then we set the appropriate mode for that, else
4466 * we default to RSS so that an RSS hash is calculated per packet even
4467 * if we are only using one queue
4469 if (adapter
->vfs_allocated_count
) {
4470 if (hw
->mac
.type
> e1000_82575
) {
4471 /* Set the default pool for the PF's first queue */
4472 u32 vtctl
= rd32(E1000_VT_CTL
);
4474 vtctl
&= ~(E1000_VT_CTL_DEFAULT_POOL_MASK
|
4475 E1000_VT_CTL_DISABLE_DEF_POOL
);
4476 vtctl
|= adapter
->vfs_allocated_count
<<
4477 E1000_VT_CTL_DEFAULT_POOL_SHIFT
;
4478 wr32(E1000_VT_CTL
, vtctl
);
4480 if (adapter
->rss_queues
> 1)
4481 mrqc
|= E1000_MRQC_ENABLE_VMDQ_RSS_MQ
;
4483 mrqc
|= E1000_MRQC_ENABLE_VMDQ
;
4485 if (hw
->mac
.type
!= e1000_i211
)
4486 mrqc
|= E1000_MRQC_ENABLE_RSS_MQ
;
4488 igb_vmm_control(adapter
);
4490 wr32(E1000_MRQC
, mrqc
);
4494 * igb_setup_rctl - configure the receive control registers
4495 * @adapter: Board private structure
4497 void igb_setup_rctl(struct igb_adapter
*adapter
)
4499 struct e1000_hw
*hw
= &adapter
->hw
;
4502 rctl
= rd32(E1000_RCTL
);
4504 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
4505 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
4507 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
4508 (hw
->mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
4510 /* enable stripping of CRC. It's unlikely this will break BMC
4511 * redirection as it did with e1000. Newer features require
4512 * that the HW strips the CRC.
4514 rctl
|= E1000_RCTL_SECRC
;
4516 /* disable store bad packets and clear size bits. */
4517 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
4519 /* enable LPE to allow for reception of jumbo frames */
4520 rctl
|= E1000_RCTL_LPE
;
4522 /* disable queue 0 to prevent tail write w/o re-config */
4523 wr32(E1000_RXDCTL(0), 0);
4525 /* Attention!!! For SR-IOV PF driver operations you must enable
4526 * queue drop for all VF and PF queues to prevent head of line blocking
4527 * if an un-trusted VF does not provide descriptors to hardware.
4529 if (adapter
->vfs_allocated_count
) {
4530 /* set all queue drop enable bits */
4531 wr32(E1000_QDE
, ALL_QUEUES
);
4534 /* This is useful for sniffing bad packets. */
4535 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
4536 /* UPE and MPE will be handled by normal PROMISC logic
4537 * in e1000e_set_rx_mode
4539 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
4540 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
4541 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
4543 rctl
&= ~(E1000_RCTL_DPF
| /* Allow filtered pause */
4544 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
4545 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4546 * and that breaks VLANs.
4550 wr32(E1000_RCTL
, rctl
);
4553 static inline int igb_set_vf_rlpml(struct igb_adapter
*adapter
, int size
,
4556 struct e1000_hw
*hw
= &adapter
->hw
;
4559 if (size
> MAX_JUMBO_FRAME_SIZE
)
4560 size
= MAX_JUMBO_FRAME_SIZE
;
4562 vmolr
= rd32(E1000_VMOLR(vfn
));
4563 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
4564 vmolr
|= size
| E1000_VMOLR_LPE
;
4565 wr32(E1000_VMOLR(vfn
), vmolr
);
4570 static inline void igb_set_vf_vlan_strip(struct igb_adapter
*adapter
,
4571 int vfn
, bool enable
)
4573 struct e1000_hw
*hw
= &adapter
->hw
;
4576 if (hw
->mac
.type
< e1000_82576
)
4579 if (hw
->mac
.type
== e1000_i350
)
4580 reg
= E1000_DVMOLR(vfn
);
4582 reg
= E1000_VMOLR(vfn
);
4586 val
|= E1000_VMOLR_STRVLAN
;
4588 val
&= ~(E1000_VMOLR_STRVLAN
);
4592 static inline void igb_set_vmolr(struct igb_adapter
*adapter
,
4595 struct e1000_hw
*hw
= &adapter
->hw
;
4598 /* This register exists only on 82576 and newer so if we are older then
4599 * we should exit and do nothing
4601 if (hw
->mac
.type
< e1000_82576
)
4604 vmolr
= rd32(E1000_VMOLR(vfn
));
4606 vmolr
|= E1000_VMOLR_AUPE
; /* Accept untagged packets */
4608 vmolr
&= ~(E1000_VMOLR_AUPE
); /* Tagged packets ONLY */
4610 /* clear all bits that might not be set */
4611 vmolr
&= ~(E1000_VMOLR_BAM
| E1000_VMOLR_RSSE
);
4613 if (adapter
->rss_queues
> 1 && vfn
== adapter
->vfs_allocated_count
)
4614 vmolr
|= E1000_VMOLR_RSSE
; /* enable RSS */
4615 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4618 if (vfn
<= adapter
->vfs_allocated_count
)
4619 vmolr
|= E1000_VMOLR_BAM
; /* Accept broadcast */
4621 wr32(E1000_VMOLR(vfn
), vmolr
);
4625 * igb_setup_srrctl - configure the split and replication receive control
4627 * @adapter: Board private structure
4628 * @ring: receive ring to be configured
4630 void igb_setup_srrctl(struct igb_adapter
*adapter
, struct igb_ring
*ring
)
4632 struct e1000_hw
*hw
= &adapter
->hw
;
4633 int reg_idx
= ring
->reg_idx
;
4636 srrctl
= IGB_RX_HDR_LEN
<< E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
4637 if (ring_uses_large_buffer(ring
))
4638 srrctl
|= IGB_RXBUFFER_3072
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
4640 srrctl
|= IGB_RXBUFFER_2048
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
4641 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
4642 if (hw
->mac
.type
>= e1000_82580
)
4643 srrctl
|= E1000_SRRCTL_TIMESTAMP
;
4644 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4645 * queues and rx flow control is disabled
4647 if (adapter
->vfs_allocated_count
||
4648 (!(hw
->fc
.current_mode
& e1000_fc_rx_pause
) &&
4649 adapter
->num_rx_queues
> 1))
4650 srrctl
|= E1000_SRRCTL_DROP_EN
;
4652 wr32(E1000_SRRCTL(reg_idx
), srrctl
);
4656 * igb_configure_rx_ring - Configure a receive ring after Reset
4657 * @adapter: board private structure
4658 * @ring: receive ring to be configured
4660 * Configure the Rx unit of the MAC after a reset.
4662 void igb_configure_rx_ring(struct igb_adapter
*adapter
,
4663 struct igb_ring
*ring
)
4665 struct e1000_hw
*hw
= &adapter
->hw
;
4666 union e1000_adv_rx_desc
*rx_desc
;
4667 u64 rdba
= ring
->dma
;
4668 int reg_idx
= ring
->reg_idx
;
4671 xdp_rxq_info_unreg_mem_model(&ring
->xdp_rxq
);
4672 WARN_ON(xdp_rxq_info_reg_mem_model(&ring
->xdp_rxq
,
4673 MEM_TYPE_PAGE_SHARED
, NULL
));
4675 /* disable the queue */
4676 wr32(E1000_RXDCTL(reg_idx
), 0);
4678 /* Set DMA base address registers */
4679 wr32(E1000_RDBAL(reg_idx
),
4680 rdba
& 0x00000000ffffffffULL
);
4681 wr32(E1000_RDBAH(reg_idx
), rdba
>> 32);
4682 wr32(E1000_RDLEN(reg_idx
),
4683 ring
->count
* sizeof(union e1000_adv_rx_desc
));
4685 /* initialize head and tail */
4686 ring
->tail
= adapter
->io_addr
+ E1000_RDT(reg_idx
);
4687 wr32(E1000_RDH(reg_idx
), 0);
4688 writel(0, ring
->tail
);
4690 /* set descriptor configuration */
4691 igb_setup_srrctl(adapter
, ring
);
4693 /* set filtering for VMDQ pools */
4694 igb_set_vmolr(adapter
, reg_idx
& 0x7, true);
4696 rxdctl
|= IGB_RX_PTHRESH
;
4697 rxdctl
|= IGB_RX_HTHRESH
<< 8;
4698 rxdctl
|= IGB_RX_WTHRESH
<< 16;
4700 /* initialize rx_buffer_info */
4701 memset(ring
->rx_buffer_info
, 0,
4702 sizeof(struct igb_rx_buffer
) * ring
->count
);
4704 /* initialize Rx descriptor 0 */
4705 rx_desc
= IGB_RX_DESC(ring
, 0);
4706 rx_desc
->wb
.upper
.length
= 0;
4708 /* enable receive descriptor fetching */
4709 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
4710 wr32(E1000_RXDCTL(reg_idx
), rxdctl
);
4713 static void igb_set_rx_buffer_len(struct igb_adapter
*adapter
,
4714 struct igb_ring
*rx_ring
)
4716 /* set build_skb and buffer size flags */
4717 clear_ring_build_skb_enabled(rx_ring
);
4718 clear_ring_uses_large_buffer(rx_ring
);
4720 if (adapter
->flags
& IGB_FLAG_RX_LEGACY
)
4723 set_ring_build_skb_enabled(rx_ring
);
4725 #if (PAGE_SIZE < 8192)
4726 if (adapter
->max_frame_size
<= IGB_MAX_FRAME_BUILD_SKB
)
4729 set_ring_uses_large_buffer(rx_ring
);
4734 * igb_configure_rx - Configure receive Unit after Reset
4735 * @adapter: board private structure
4737 * Configure the Rx unit of the MAC after a reset.
4739 static void igb_configure_rx(struct igb_adapter
*adapter
)
4743 /* set the correct pool for the PF default MAC address in entry 0 */
4744 igb_set_default_mac_filter(adapter
);
4746 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4747 * the Base and Length of the Rx Descriptor Ring
4749 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
4750 struct igb_ring
*rx_ring
= adapter
->rx_ring
[i
];
4752 igb_set_rx_buffer_len(adapter
, rx_ring
);
4753 igb_configure_rx_ring(adapter
, rx_ring
);
4758 * igb_free_tx_resources - Free Tx Resources per Queue
4759 * @tx_ring: Tx descriptor ring for a specific queue
4761 * Free all transmit software resources
4763 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
4765 igb_clean_tx_ring(tx_ring
);
4767 vfree(tx_ring
->tx_buffer_info
);
4768 tx_ring
->tx_buffer_info
= NULL
;
4770 /* if not set, then don't free */
4774 dma_free_coherent(tx_ring
->dev
, tx_ring
->size
,
4775 tx_ring
->desc
, tx_ring
->dma
);
4777 tx_ring
->desc
= NULL
;
4781 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4782 * @adapter: board private structure
4784 * Free all transmit software resources
4786 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
4790 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4791 if (adapter
->tx_ring
[i
])
4792 igb_free_tx_resources(adapter
->tx_ring
[i
]);
4796 * igb_clean_tx_ring - Free Tx Buffers
4797 * @tx_ring: ring to be cleaned
4799 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
4801 u16 i
= tx_ring
->next_to_clean
;
4802 struct igb_tx_buffer
*tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
4804 while (i
!= tx_ring
->next_to_use
) {
4805 union e1000_adv_tx_desc
*eop_desc
, *tx_desc
;
4807 /* Free all the Tx ring sk_buffs */
4808 dev_kfree_skb_any(tx_buffer
->skb
);
4810 /* unmap skb header data */
4811 dma_unmap_single(tx_ring
->dev
,
4812 dma_unmap_addr(tx_buffer
, dma
),
4813 dma_unmap_len(tx_buffer
, len
),
4816 /* check for eop_desc to determine the end of the packet */
4817 eop_desc
= tx_buffer
->next_to_watch
;
4818 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
4820 /* unmap remaining buffers */
4821 while (tx_desc
!= eop_desc
) {
4825 if (unlikely(i
== tx_ring
->count
)) {
4827 tx_buffer
= tx_ring
->tx_buffer_info
;
4828 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
4831 /* unmap any remaining paged data */
4832 if (dma_unmap_len(tx_buffer
, len
))
4833 dma_unmap_page(tx_ring
->dev
,
4834 dma_unmap_addr(tx_buffer
, dma
),
4835 dma_unmap_len(tx_buffer
, len
),
4839 /* move us one more past the eop_desc for start of next pkt */
4842 if (unlikely(i
== tx_ring
->count
)) {
4844 tx_buffer
= tx_ring
->tx_buffer_info
;
4848 /* reset BQL for queue */
4849 netdev_tx_reset_queue(txring_txq(tx_ring
));
4851 /* reset next_to_use and next_to_clean */
4852 tx_ring
->next_to_use
= 0;
4853 tx_ring
->next_to_clean
= 0;
4857 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4858 * @adapter: board private structure
4860 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
4864 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4865 if (adapter
->tx_ring
[i
])
4866 igb_clean_tx_ring(adapter
->tx_ring
[i
]);
4870 * igb_free_rx_resources - Free Rx Resources
4871 * @rx_ring: ring to clean the resources from
4873 * Free all receive software resources
4875 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
4877 igb_clean_rx_ring(rx_ring
);
4879 rx_ring
->xdp_prog
= NULL
;
4880 xdp_rxq_info_unreg(&rx_ring
->xdp_rxq
);
4881 vfree(rx_ring
->rx_buffer_info
);
4882 rx_ring
->rx_buffer_info
= NULL
;
4884 /* if not set, then don't free */
4888 dma_free_coherent(rx_ring
->dev
, rx_ring
->size
,
4889 rx_ring
->desc
, rx_ring
->dma
);
4891 rx_ring
->desc
= NULL
;
4895 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4896 * @adapter: board private structure
4898 * Free all receive software resources
4900 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
4904 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4905 if (adapter
->rx_ring
[i
])
4906 igb_free_rx_resources(adapter
->rx_ring
[i
]);
4910 * igb_clean_rx_ring - Free Rx Buffers per Queue
4911 * @rx_ring: ring to free buffers from
4913 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
4915 u16 i
= rx_ring
->next_to_clean
;
4917 dev_kfree_skb(rx_ring
->skb
);
4918 rx_ring
->skb
= NULL
;
4920 /* Free all the Rx ring sk_buffs */
4921 while (i
!= rx_ring
->next_to_alloc
) {
4922 struct igb_rx_buffer
*buffer_info
= &rx_ring
->rx_buffer_info
[i
];
4924 /* Invalidate cache lines that may have been written to by
4925 * device so that we avoid corrupting memory.
4927 dma_sync_single_range_for_cpu(rx_ring
->dev
,
4929 buffer_info
->page_offset
,
4930 igb_rx_bufsz(rx_ring
),
4933 /* free resources associated with mapping */
4934 dma_unmap_page_attrs(rx_ring
->dev
,
4936 igb_rx_pg_size(rx_ring
),
4939 __page_frag_cache_drain(buffer_info
->page
,
4940 buffer_info
->pagecnt_bias
);
4943 if (i
== rx_ring
->count
)
4947 rx_ring
->next_to_alloc
= 0;
4948 rx_ring
->next_to_clean
= 0;
4949 rx_ring
->next_to_use
= 0;
4953 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4954 * @adapter: board private structure
4956 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
4960 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4961 if (adapter
->rx_ring
[i
])
4962 igb_clean_rx_ring(adapter
->rx_ring
[i
]);
4966 * igb_set_mac - Change the Ethernet Address of the NIC
4967 * @netdev: network interface device structure
4968 * @p: pointer to an address structure
4970 * Returns 0 on success, negative on failure
4972 static int igb_set_mac(struct net_device
*netdev
, void *p
)
4974 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4975 struct e1000_hw
*hw
= &adapter
->hw
;
4976 struct sockaddr
*addr
= p
;
4978 if (!is_valid_ether_addr(addr
->sa_data
))
4979 return -EADDRNOTAVAIL
;
4981 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4982 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4984 /* set the correct pool for the new PF MAC address in entry 0 */
4985 igb_set_default_mac_filter(adapter
);
4991 * igb_write_mc_addr_list - write multicast addresses to MTA
4992 * @netdev: network interface device structure
4994 * Writes multicast address list to the MTA hash table.
4995 * Returns: -ENOMEM on failure
4996 * 0 on no addresses written
4997 * X on writing X addresses to MTA
4999 static int igb_write_mc_addr_list(struct net_device
*netdev
)
5001 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5002 struct e1000_hw
*hw
= &adapter
->hw
;
5003 struct netdev_hw_addr
*ha
;
5007 if (netdev_mc_empty(netdev
)) {
5008 /* nothing to program, so clear mc list */
5009 igb_update_mc_addr_list(hw
, NULL
, 0);
5010 igb_restore_vf_multicasts(adapter
);
5014 mta_list
= kcalloc(netdev_mc_count(netdev
), 6, GFP_ATOMIC
);
5018 /* The shared function expects a packed array of only addresses. */
5020 netdev_for_each_mc_addr(ha
, netdev
)
5021 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
5023 igb_update_mc_addr_list(hw
, mta_list
, i
);
5026 return netdev_mc_count(netdev
);
5029 static int igb_vlan_promisc_enable(struct igb_adapter
*adapter
)
5031 struct e1000_hw
*hw
= &adapter
->hw
;
5034 switch (hw
->mac
.type
) {
5038 /* VLAN filtering needed for VLAN prio filter */
5039 if (adapter
->netdev
->features
& NETIF_F_NTUPLE
)
5045 /* VLAN filtering needed for pool filtering */
5046 if (adapter
->vfs_allocated_count
)
5053 /* We are already in VLAN promisc, nothing to do */
5054 if (adapter
->flags
& IGB_FLAG_VLAN_PROMISC
)
5057 if (!adapter
->vfs_allocated_count
)
5060 /* Add PF to all active pools */
5061 pf_id
= adapter
->vfs_allocated_count
+ E1000_VLVF_POOLSEL_SHIFT
;
5063 for (i
= E1000_VLVF_ARRAY_SIZE
; --i
;) {
5064 u32 vlvf
= rd32(E1000_VLVF(i
));
5067 wr32(E1000_VLVF(i
), vlvf
);
5071 /* Set all bits in the VLAN filter table array */
5072 for (i
= E1000_VLAN_FILTER_TBL_SIZE
; i
--;)
5073 hw
->mac
.ops
.write_vfta(hw
, i
, ~0U);
5075 /* Set flag so we don't redo unnecessary work */
5076 adapter
->flags
|= IGB_FLAG_VLAN_PROMISC
;
5081 #define VFTA_BLOCK_SIZE 8
5082 static void igb_scrub_vfta(struct igb_adapter
*adapter
, u32 vfta_offset
)
5084 struct e1000_hw
*hw
= &adapter
->hw
;
5085 u32 vfta
[VFTA_BLOCK_SIZE
] = { 0 };
5086 u32 vid_start
= vfta_offset
* 32;
5087 u32 vid_end
= vid_start
+ (VFTA_BLOCK_SIZE
* 32);
5088 u32 i
, vid
, word
, bits
, pf_id
;
5090 /* guarantee that we don't scrub out management VLAN */
5091 vid
= adapter
->mng_vlan_id
;
5092 if (vid
>= vid_start
&& vid
< vid_end
)
5093 vfta
[(vid
- vid_start
) / 32] |= BIT(vid
% 32);
5095 if (!adapter
->vfs_allocated_count
)
5098 pf_id
= adapter
->vfs_allocated_count
+ E1000_VLVF_POOLSEL_SHIFT
;
5100 for (i
= E1000_VLVF_ARRAY_SIZE
; --i
;) {
5101 u32 vlvf
= rd32(E1000_VLVF(i
));
5103 /* pull VLAN ID from VLVF */
5104 vid
= vlvf
& VLAN_VID_MASK
;
5106 /* only concern ourselves with a certain range */
5107 if (vid
< vid_start
|| vid
>= vid_end
)
5110 if (vlvf
& E1000_VLVF_VLANID_ENABLE
) {
5111 /* record VLAN ID in VFTA */
5112 vfta
[(vid
- vid_start
) / 32] |= BIT(vid
% 32);
5114 /* if PF is part of this then continue */
5115 if (test_bit(vid
, adapter
->active_vlans
))
5119 /* remove PF from the pool */
5121 bits
&= rd32(E1000_VLVF(i
));
5122 wr32(E1000_VLVF(i
), bits
);
5126 /* extract values from active_vlans and write back to VFTA */
5127 for (i
= VFTA_BLOCK_SIZE
; i
--;) {
5128 vid
= (vfta_offset
+ i
) * 32;
5129 word
= vid
/ BITS_PER_LONG
;
5130 bits
= vid
% BITS_PER_LONG
;
5132 vfta
[i
] |= adapter
->active_vlans
[word
] >> bits
;
5134 hw
->mac
.ops
.write_vfta(hw
, vfta_offset
+ i
, vfta
[i
]);
5138 static void igb_vlan_promisc_disable(struct igb_adapter
*adapter
)
5142 /* We are not in VLAN promisc, nothing to do */
5143 if (!(adapter
->flags
& IGB_FLAG_VLAN_PROMISC
))
5146 /* Set flag so we don't redo unnecessary work */
5147 adapter
->flags
&= ~IGB_FLAG_VLAN_PROMISC
;
5149 for (i
= 0; i
< E1000_VLAN_FILTER_TBL_SIZE
; i
+= VFTA_BLOCK_SIZE
)
5150 igb_scrub_vfta(adapter
, i
);
5154 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5155 * @netdev: network interface device structure
5157 * The set_rx_mode entry point is called whenever the unicast or multicast
5158 * address lists or the network interface flags are updated. This routine is
5159 * responsible for configuring the hardware for proper unicast, multicast,
5160 * promiscuous mode, and all-multi behavior.
5162 static void igb_set_rx_mode(struct net_device
*netdev
)
5164 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5165 struct e1000_hw
*hw
= &adapter
->hw
;
5166 unsigned int vfn
= adapter
->vfs_allocated_count
;
5167 u32 rctl
= 0, vmolr
= 0, rlpml
= MAX_JUMBO_FRAME_SIZE
;
5170 /* Check for Promiscuous and All Multicast modes */
5171 if (netdev
->flags
& IFF_PROMISC
) {
5172 rctl
|= E1000_RCTL_UPE
| E1000_RCTL_MPE
;
5173 vmolr
|= E1000_VMOLR_MPME
;
5175 /* enable use of UTA filter to force packets to default pool */
5176 if (hw
->mac
.type
== e1000_82576
)
5177 vmolr
|= E1000_VMOLR_ROPE
;
5179 if (netdev
->flags
& IFF_ALLMULTI
) {
5180 rctl
|= E1000_RCTL_MPE
;
5181 vmolr
|= E1000_VMOLR_MPME
;
5183 /* Write addresses to the MTA, if the attempt fails
5184 * then we should just turn on promiscuous mode so
5185 * that we can at least receive multicast traffic
5187 count
= igb_write_mc_addr_list(netdev
);
5189 rctl
|= E1000_RCTL_MPE
;
5190 vmolr
|= E1000_VMOLR_MPME
;
5192 vmolr
|= E1000_VMOLR_ROMPE
;
5197 /* Write addresses to available RAR registers, if there is not
5198 * sufficient space to store all the addresses then enable
5199 * unicast promiscuous mode
5201 if (__dev_uc_sync(netdev
, igb_uc_sync
, igb_uc_unsync
)) {
5202 rctl
|= E1000_RCTL_UPE
;
5203 vmolr
|= E1000_VMOLR_ROPE
;
5206 /* enable VLAN filtering by default */
5207 rctl
|= E1000_RCTL_VFE
;
5209 /* disable VLAN filtering for modes that require it */
5210 if ((netdev
->flags
& IFF_PROMISC
) ||
5211 (netdev
->features
& NETIF_F_RXALL
)) {
5212 /* if we fail to set all rules then just clear VFE */
5213 if (igb_vlan_promisc_enable(adapter
))
5214 rctl
&= ~E1000_RCTL_VFE
;
5216 igb_vlan_promisc_disable(adapter
);
5219 /* update state of unicast, multicast, and VLAN filtering modes */
5220 rctl
|= rd32(E1000_RCTL
) & ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
|
5222 wr32(E1000_RCTL
, rctl
);
5224 #if (PAGE_SIZE < 8192)
5225 if (!adapter
->vfs_allocated_count
) {
5226 if (adapter
->max_frame_size
<= IGB_MAX_FRAME_BUILD_SKB
)
5227 rlpml
= IGB_MAX_FRAME_BUILD_SKB
;
5230 wr32(E1000_RLPML
, rlpml
);
5232 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5233 * the VMOLR to enable the appropriate modes. Without this workaround
5234 * we will have issues with VLAN tag stripping not being done for frames
5235 * that are only arriving because we are the default pool
5237 if ((hw
->mac
.type
< e1000_82576
) || (hw
->mac
.type
> e1000_i350
))
5240 /* set UTA to appropriate mode */
5241 igb_set_uta(adapter
, !!(vmolr
& E1000_VMOLR_ROPE
));
5243 vmolr
|= rd32(E1000_VMOLR(vfn
)) &
5244 ~(E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
| E1000_VMOLR_ROMPE
);
5246 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5247 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
5248 #if (PAGE_SIZE < 8192)
5249 if (adapter
->max_frame_size
<= IGB_MAX_FRAME_BUILD_SKB
)
5250 vmolr
|= IGB_MAX_FRAME_BUILD_SKB
;
5253 vmolr
|= MAX_JUMBO_FRAME_SIZE
;
5254 vmolr
|= E1000_VMOLR_LPE
;
5256 wr32(E1000_VMOLR(vfn
), vmolr
);
5258 igb_restore_vf_multicasts(adapter
);
5261 static void igb_check_wvbr(struct igb_adapter
*adapter
)
5263 struct e1000_hw
*hw
= &adapter
->hw
;
5266 switch (hw
->mac
.type
) {
5269 wvbr
= rd32(E1000_WVBR
);
5277 adapter
->wvbr
|= wvbr
;
5280 #define IGB_STAGGERED_QUEUE_OFFSET 8
5282 static void igb_spoof_check(struct igb_adapter
*adapter
)
5289 for (j
= 0; j
< adapter
->vfs_allocated_count
; j
++) {
5290 if (adapter
->wvbr
& BIT(j
) ||
5291 adapter
->wvbr
& BIT(j
+ IGB_STAGGERED_QUEUE_OFFSET
)) {
5292 dev_warn(&adapter
->pdev
->dev
,
5293 "Spoof event(s) detected on VF %d\n", j
);
5296 BIT(j
+ IGB_STAGGERED_QUEUE_OFFSET
));
5301 /* Need to wait a few seconds after link up to get diagnostic information from
5304 static void igb_update_phy_info(struct timer_list
*t
)
5306 struct igb_adapter
*adapter
= from_timer(adapter
, t
, phy_info_timer
);
5307 igb_get_phy_info(&adapter
->hw
);
5311 * igb_has_link - check shared code for link and determine up/down
5312 * @adapter: pointer to driver private info
5314 bool igb_has_link(struct igb_adapter
*adapter
)
5316 struct e1000_hw
*hw
= &adapter
->hw
;
5317 bool link_active
= false;
5319 /* get_link_status is set on LSC (link status) interrupt or
5320 * rx sequence error interrupt. get_link_status will stay
5321 * false until the e1000_check_for_link establishes link
5322 * for copper adapters ONLY
5324 switch (hw
->phy
.media_type
) {
5325 case e1000_media_type_copper
:
5326 if (!hw
->mac
.get_link_status
)
5329 case e1000_media_type_internal_serdes
:
5330 hw
->mac
.ops
.check_for_link(hw
);
5331 link_active
= !hw
->mac
.get_link_status
;
5334 case e1000_media_type_unknown
:
5338 if (((hw
->mac
.type
== e1000_i210
) ||
5339 (hw
->mac
.type
== e1000_i211
)) &&
5340 (hw
->phy
.id
== I210_I_PHY_ID
)) {
5341 if (!netif_carrier_ok(adapter
->netdev
)) {
5342 adapter
->flags
&= ~IGB_FLAG_NEED_LINK_UPDATE
;
5343 } else if (!(adapter
->flags
& IGB_FLAG_NEED_LINK_UPDATE
)) {
5344 adapter
->flags
|= IGB_FLAG_NEED_LINK_UPDATE
;
5345 adapter
->link_check_timeout
= jiffies
;
5352 static bool igb_thermal_sensor_event(struct e1000_hw
*hw
, u32 event
)
5355 u32 ctrl_ext
, thstat
;
5357 /* check for thermal sensor event on i350 copper only */
5358 if (hw
->mac
.type
== e1000_i350
) {
5359 thstat
= rd32(E1000_THSTAT
);
5360 ctrl_ext
= rd32(E1000_CTRL_EXT
);
5362 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
5363 !(ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_SGMII
))
5364 ret
= !!(thstat
& event
);
5371 * igb_check_lvmmc - check for malformed packets received
5372 * and indicated in LVMMC register
5373 * @adapter: pointer to adapter
5375 static void igb_check_lvmmc(struct igb_adapter
*adapter
)
5377 struct e1000_hw
*hw
= &adapter
->hw
;
5380 lvmmc
= rd32(E1000_LVMMC
);
5382 if (unlikely(net_ratelimit())) {
5383 netdev_warn(adapter
->netdev
,
5384 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5391 * igb_watchdog - Timer Call-back
5392 * @t: pointer to timer_list containing our private info pointer
5394 static void igb_watchdog(struct timer_list
*t
)
5396 struct igb_adapter
*adapter
= from_timer(adapter
, t
, watchdog_timer
);
5397 /* Do the rest outside of interrupt context */
5398 schedule_work(&adapter
->watchdog_task
);
5401 static void igb_watchdog_task(struct work_struct
*work
)
5403 struct igb_adapter
*adapter
= container_of(work
,
5406 struct e1000_hw
*hw
= &adapter
->hw
;
5407 struct e1000_phy_info
*phy
= &hw
->phy
;
5408 struct net_device
*netdev
= adapter
->netdev
;
5412 u16 phy_data
, retry_count
= 20;
5414 link
= igb_has_link(adapter
);
5416 if (adapter
->flags
& IGB_FLAG_NEED_LINK_UPDATE
) {
5417 if (time_after(jiffies
, (adapter
->link_check_timeout
+ HZ
)))
5418 adapter
->flags
&= ~IGB_FLAG_NEED_LINK_UPDATE
;
5423 /* Force link down if we have fiber to swap to */
5424 if (adapter
->flags
& IGB_FLAG_MAS_ENABLE
) {
5425 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
5426 connsw
= rd32(E1000_CONNSW
);
5427 if (!(connsw
& E1000_CONNSW_AUTOSENSE_EN
))
5432 /* Perform a reset if the media type changed. */
5433 if (hw
->dev_spec
._82575
.media_changed
) {
5434 hw
->dev_spec
._82575
.media_changed
= false;
5435 adapter
->flags
|= IGB_FLAG_MEDIA_RESET
;
5438 /* Cancel scheduled suspend requests. */
5439 pm_runtime_resume(netdev
->dev
.parent
);
5441 if (!netif_carrier_ok(netdev
)) {
5444 hw
->mac
.ops
.get_speed_and_duplex(hw
,
5445 &adapter
->link_speed
,
5446 &adapter
->link_duplex
);
5448 ctrl
= rd32(E1000_CTRL
);
5449 /* Links status message must follow this format */
5451 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5453 adapter
->link_speed
,
5454 adapter
->link_duplex
== FULL_DUPLEX
?
5456 (ctrl
& E1000_CTRL_TFCE
) &&
5457 (ctrl
& E1000_CTRL_RFCE
) ? "RX/TX" :
5458 (ctrl
& E1000_CTRL_RFCE
) ? "RX" :
5459 (ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None");
5461 /* disable EEE if enabled */
5462 if ((adapter
->flags
& IGB_FLAG_EEE
) &&
5463 (adapter
->link_duplex
== HALF_DUPLEX
)) {
5464 dev_info(&adapter
->pdev
->dev
,
5465 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5466 adapter
->hw
.dev_spec
._82575
.eee_disable
= true;
5467 adapter
->flags
&= ~IGB_FLAG_EEE
;
5470 /* check if SmartSpeed worked */
5471 igb_check_downshift(hw
);
5472 if (phy
->speed_downgraded
)
5473 netdev_warn(netdev
, "Link Speed was downgraded by SmartSpeed\n");
5475 /* check for thermal sensor event */
5476 if (igb_thermal_sensor_event(hw
,
5477 E1000_THSTAT_LINK_THROTTLE
))
5478 netdev_info(netdev
, "The network adapter link speed was downshifted because it overheated\n");
5480 /* adjust timeout factor according to speed/duplex */
5481 adapter
->tx_timeout_factor
= 1;
5482 switch (adapter
->link_speed
) {
5484 adapter
->tx_timeout_factor
= 14;
5487 /* maybe add some timeout factor ? */
5491 if (adapter
->link_speed
!= SPEED_1000
)
5494 /* wait for Remote receiver status OK */
5496 if (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
,
5498 if (!(phy_data
& SR_1000T_REMOTE_RX_STATUS
) &&
5502 goto retry_read_status
;
5503 } else if (!retry_count
) {
5504 dev_err(&adapter
->pdev
->dev
, "exceed max 2 second\n");
5507 dev_err(&adapter
->pdev
->dev
, "read 1000Base-T Status Reg\n");
5510 netif_carrier_on(netdev
);
5512 igb_ping_all_vfs(adapter
);
5513 igb_check_vf_rate_limit(adapter
);
5515 /* link state has changed, schedule phy info update */
5516 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5517 mod_timer(&adapter
->phy_info_timer
,
5518 round_jiffies(jiffies
+ 2 * HZ
));
5521 if (netif_carrier_ok(netdev
)) {
5522 adapter
->link_speed
= 0;
5523 adapter
->link_duplex
= 0;
5525 /* check for thermal sensor event */
5526 if (igb_thermal_sensor_event(hw
,
5527 E1000_THSTAT_PWR_DOWN
)) {
5528 netdev_err(netdev
, "The network adapter was stopped because it overheated\n");
5531 /* Links status message must follow this format */
5532 netdev_info(netdev
, "igb: %s NIC Link is Down\n",
5534 netif_carrier_off(netdev
);
5536 igb_ping_all_vfs(adapter
);
5538 /* link state has changed, schedule phy info update */
5539 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5540 mod_timer(&adapter
->phy_info_timer
,
5541 round_jiffies(jiffies
+ 2 * HZ
));
5543 /* link is down, time to check for alternate media */
5544 if (adapter
->flags
& IGB_FLAG_MAS_ENABLE
) {
5545 igb_check_swap_media(adapter
);
5546 if (adapter
->flags
& IGB_FLAG_MEDIA_RESET
) {
5547 schedule_work(&adapter
->reset_task
);
5548 /* return immediately */
5552 pm_schedule_suspend(netdev
->dev
.parent
,
5555 /* also check for alternate media here */
5556 } else if (!netif_carrier_ok(netdev
) &&
5557 (adapter
->flags
& IGB_FLAG_MAS_ENABLE
)) {
5558 igb_check_swap_media(adapter
);
5559 if (adapter
->flags
& IGB_FLAG_MEDIA_RESET
) {
5560 schedule_work(&adapter
->reset_task
);
5561 /* return immediately */
5567 spin_lock(&adapter
->stats64_lock
);
5568 igb_update_stats(adapter
);
5569 spin_unlock(&adapter
->stats64_lock
);
5571 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
5572 struct igb_ring
*tx_ring
= adapter
->tx_ring
[i
];
5573 if (!netif_carrier_ok(netdev
)) {
5574 /* We've lost link, so the controller stops DMA,
5575 * but we've got queued Tx work that's never going
5576 * to get done, so reset controller to flush Tx.
5577 * (Do the reset outside of interrupt context).
5579 if (igb_desc_unused(tx_ring
) + 1 < tx_ring
->count
) {
5580 adapter
->tx_timeout_count
++;
5581 schedule_work(&adapter
->reset_task
);
5582 /* return immediately since reset is imminent */
5587 /* Force detection of hung controller every watchdog period */
5588 set_bit(IGB_RING_FLAG_TX_DETECT_HANG
, &tx_ring
->flags
);
5591 /* Cause software interrupt to ensure Rx ring is cleaned */
5592 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
) {
5595 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
5596 eics
|= adapter
->q_vector
[i
]->eims_value
;
5597 wr32(E1000_EICS
, eics
);
5599 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
5602 igb_spoof_check(adapter
);
5603 igb_ptp_rx_hang(adapter
);
5604 igb_ptp_tx_hang(adapter
);
5606 /* Check LVMMC register on i350/i354 only */
5607 if ((adapter
->hw
.mac
.type
== e1000_i350
) ||
5608 (adapter
->hw
.mac
.type
== e1000_i354
))
5609 igb_check_lvmmc(adapter
);
5611 /* Reset the timer */
5612 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
5613 if (adapter
->flags
& IGB_FLAG_NEED_LINK_UPDATE
)
5614 mod_timer(&adapter
->watchdog_timer
,
5615 round_jiffies(jiffies
+ HZ
));
5617 mod_timer(&adapter
->watchdog_timer
,
5618 round_jiffies(jiffies
+ 2 * HZ
));
5622 enum latency_range
{
5626 latency_invalid
= 255
5630 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5631 * @q_vector: pointer to q_vector
5633 * Stores a new ITR value based on strictly on packet size. This
5634 * algorithm is less sophisticated than that used in igb_update_itr,
5635 * due to the difficulty of synchronizing statistics across multiple
5636 * receive rings. The divisors and thresholds used by this function
5637 * were determined based on theoretical maximum wire speed and testing
5638 * data, in order to minimize response time while increasing bulk
5640 * This functionality is controlled by ethtool's coalescing settings.
5641 * NOTE: This function is called only when operating in a multiqueue
5642 * receive environment.
5644 static void igb_update_ring_itr(struct igb_q_vector
*q_vector
)
5646 int new_val
= q_vector
->itr_val
;
5647 int avg_wire_size
= 0;
5648 struct igb_adapter
*adapter
= q_vector
->adapter
;
5649 unsigned int packets
;
5651 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5652 * ints/sec - ITR timer value of 120 ticks.
5654 if (adapter
->link_speed
!= SPEED_1000
) {
5655 new_val
= IGB_4K_ITR
;
5659 packets
= q_vector
->rx
.total_packets
;
5661 avg_wire_size
= q_vector
->rx
.total_bytes
/ packets
;
5663 packets
= q_vector
->tx
.total_packets
;
5665 avg_wire_size
= max_t(u32
, avg_wire_size
,
5666 q_vector
->tx
.total_bytes
/ packets
);
5668 /* if avg_wire_size isn't set no work was done */
5672 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5673 avg_wire_size
+= 24;
5675 /* Don't starve jumbo frames */
5676 avg_wire_size
= min(avg_wire_size
, 3000);
5678 /* Give a little boost to mid-size frames */
5679 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
5680 new_val
= avg_wire_size
/ 3;
5682 new_val
= avg_wire_size
/ 2;
5684 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5685 if (new_val
< IGB_20K_ITR
&&
5686 ((q_vector
->rx
.ring
&& adapter
->rx_itr_setting
== 3) ||
5687 (!q_vector
->rx
.ring
&& adapter
->tx_itr_setting
== 3)))
5688 new_val
= IGB_20K_ITR
;
5691 if (new_val
!= q_vector
->itr_val
) {
5692 q_vector
->itr_val
= new_val
;
5693 q_vector
->set_itr
= 1;
5696 q_vector
->rx
.total_bytes
= 0;
5697 q_vector
->rx
.total_packets
= 0;
5698 q_vector
->tx
.total_bytes
= 0;
5699 q_vector
->tx
.total_packets
= 0;
5703 * igb_update_itr - update the dynamic ITR value based on statistics
5704 * @q_vector: pointer to q_vector
5705 * @ring_container: ring info to update the itr for
5707 * Stores a new ITR value based on packets and byte
5708 * counts during the last interrupt. The advantage of per interrupt
5709 * computation is faster updates and more accurate ITR for the current
5710 * traffic pattern. Constants in this function were computed
5711 * based on theoretical maximum wire speed and thresholds were set based
5712 * on testing data as well as attempting to minimize response time
5713 * while increasing bulk throughput.
5714 * This functionality is controlled by ethtool's coalescing settings.
5715 * NOTE: These calculations are only valid when operating in a single-
5716 * queue environment.
5718 static void igb_update_itr(struct igb_q_vector
*q_vector
,
5719 struct igb_ring_container
*ring_container
)
5721 unsigned int packets
= ring_container
->total_packets
;
5722 unsigned int bytes
= ring_container
->total_bytes
;
5723 u8 itrval
= ring_container
->itr
;
5725 /* no packets, exit with status unchanged */
5730 case lowest_latency
:
5731 /* handle TSO and jumbo frames */
5732 if (bytes
/packets
> 8000)
5733 itrval
= bulk_latency
;
5734 else if ((packets
< 5) && (bytes
> 512))
5735 itrval
= low_latency
;
5737 case low_latency
: /* 50 usec aka 20000 ints/s */
5738 if (bytes
> 10000) {
5739 /* this if handles the TSO accounting */
5740 if (bytes
/packets
> 8000)
5741 itrval
= bulk_latency
;
5742 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
5743 itrval
= bulk_latency
;
5744 else if ((packets
> 35))
5745 itrval
= lowest_latency
;
5746 } else if (bytes
/packets
> 2000) {
5747 itrval
= bulk_latency
;
5748 } else if (packets
<= 2 && bytes
< 512) {
5749 itrval
= lowest_latency
;
5752 case bulk_latency
: /* 250 usec aka 4000 ints/s */
5753 if (bytes
> 25000) {
5755 itrval
= low_latency
;
5756 } else if (bytes
< 1500) {
5757 itrval
= low_latency
;
5762 /* clear work counters since we have the values we need */
5763 ring_container
->total_bytes
= 0;
5764 ring_container
->total_packets
= 0;
5766 /* write updated itr to ring container */
5767 ring_container
->itr
= itrval
;
5770 static void igb_set_itr(struct igb_q_vector
*q_vector
)
5772 struct igb_adapter
*adapter
= q_vector
->adapter
;
5773 u32 new_itr
= q_vector
->itr_val
;
5776 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5777 if (adapter
->link_speed
!= SPEED_1000
) {
5779 new_itr
= IGB_4K_ITR
;
5783 igb_update_itr(q_vector
, &q_vector
->tx
);
5784 igb_update_itr(q_vector
, &q_vector
->rx
);
5786 current_itr
= max(q_vector
->rx
.itr
, q_vector
->tx
.itr
);
5788 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5789 if (current_itr
== lowest_latency
&&
5790 ((q_vector
->rx
.ring
&& adapter
->rx_itr_setting
== 3) ||
5791 (!q_vector
->rx
.ring
&& adapter
->tx_itr_setting
== 3)))
5792 current_itr
= low_latency
;
5794 switch (current_itr
) {
5795 /* counts and packets in update_itr are dependent on these numbers */
5796 case lowest_latency
:
5797 new_itr
= IGB_70K_ITR
; /* 70,000 ints/sec */
5800 new_itr
= IGB_20K_ITR
; /* 20,000 ints/sec */
5803 new_itr
= IGB_4K_ITR
; /* 4,000 ints/sec */
5810 if (new_itr
!= q_vector
->itr_val
) {
5811 /* this attempts to bias the interrupt rate towards Bulk
5812 * by adding intermediate steps when interrupt rate is
5815 new_itr
= new_itr
> q_vector
->itr_val
?
5816 max((new_itr
* q_vector
->itr_val
) /
5817 (new_itr
+ (q_vector
->itr_val
>> 2)),
5819 /* Don't write the value here; it resets the adapter's
5820 * internal timer, and causes us to delay far longer than
5821 * we should between interrupts. Instead, we write the ITR
5822 * value at the beginning of the next interrupt so the timing
5823 * ends up being correct.
5825 q_vector
->itr_val
= new_itr
;
5826 q_vector
->set_itr
= 1;
5830 static void igb_tx_ctxtdesc(struct igb_ring
*tx_ring
,
5831 struct igb_tx_buffer
*first
,
5832 u32 vlan_macip_lens
, u32 type_tucmd
,
5835 struct e1000_adv_tx_context_desc
*context_desc
;
5836 u16 i
= tx_ring
->next_to_use
;
5837 struct timespec64 ts
;
5839 context_desc
= IGB_TX_CTXTDESC(tx_ring
, i
);
5842 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
5844 /* set bits to identify this as an advanced context descriptor */
5845 type_tucmd
|= E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
;
5847 /* For 82575, context index must be unique per ring. */
5848 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX
, &tx_ring
->flags
))
5849 mss_l4len_idx
|= tx_ring
->reg_idx
<< 4;
5851 context_desc
->vlan_macip_lens
= cpu_to_le32(vlan_macip_lens
);
5852 context_desc
->type_tucmd_mlhl
= cpu_to_le32(type_tucmd
);
5853 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
5855 /* We assume there is always a valid tx time available. Invalid times
5856 * should have been handled by the upper layers.
5858 if (tx_ring
->launchtime_enable
) {
5859 ts
= ktime_to_timespec64(first
->skb
->tstamp
);
5860 first
->skb
->tstamp
= ktime_set(0, 0);
5861 context_desc
->seqnum_seed
= cpu_to_le32(ts
.tv_nsec
/ 32);
5863 context_desc
->seqnum_seed
= 0;
5867 static int igb_tso(struct igb_ring
*tx_ring
,
5868 struct igb_tx_buffer
*first
,
5871 u32 vlan_macip_lens
, type_tucmd
, mss_l4len_idx
;
5872 struct sk_buff
*skb
= first
->skb
;
5883 u32 paylen
, l4_offset
;
5886 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5889 if (!skb_is_gso(skb
))
5892 err
= skb_cow_head(skb
, 0);
5896 ip
.hdr
= skb_network_header(skb
);
5897 l4
.hdr
= skb_checksum_start(skb
);
5899 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5900 type_tucmd
= (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
) ?
5901 E1000_ADVTXD_TUCMD_L4T_UDP
: E1000_ADVTXD_TUCMD_L4T_TCP
;
5903 /* initialize outer IP header fields */
5904 if (ip
.v4
->version
== 4) {
5905 unsigned char *csum_start
= skb_checksum_start(skb
);
5906 unsigned char *trans_start
= ip
.hdr
+ (ip
.v4
->ihl
* 4);
5908 /* IP header will have to cancel out any data that
5909 * is not a part of the outer IP header
5911 ip
.v4
->check
= csum_fold(csum_partial(trans_start
,
5912 csum_start
- trans_start
,
5914 type_tucmd
|= E1000_ADVTXD_TUCMD_IPV4
;
5917 first
->tx_flags
|= IGB_TX_FLAGS_TSO
|
5921 ip
.v6
->payload_len
= 0;
5922 first
->tx_flags
|= IGB_TX_FLAGS_TSO
|
5926 /* determine offset of inner transport header */
5927 l4_offset
= l4
.hdr
- skb
->data
;
5929 /* remove payload length from inner checksum */
5930 paylen
= skb
->len
- l4_offset
;
5931 if (type_tucmd
& E1000_ADVTXD_TUCMD_L4T_TCP
) {
5932 /* compute length of segmentation header */
5933 *hdr_len
= (l4
.tcp
->doff
* 4) + l4_offset
;
5934 csum_replace_by_diff(&l4
.tcp
->check
,
5935 (__force __wsum
)htonl(paylen
));
5937 /* compute length of segmentation header */
5938 *hdr_len
= sizeof(*l4
.udp
) + l4_offset
;
5939 csum_replace_by_diff(&l4
.udp
->check
,
5940 (__force __wsum
)htonl(paylen
));
5943 /* update gso size and bytecount with header size */
5944 first
->gso_segs
= skb_shinfo(skb
)->gso_segs
;
5945 first
->bytecount
+= (first
->gso_segs
- 1) * *hdr_len
;
5948 mss_l4len_idx
= (*hdr_len
- l4_offset
) << E1000_ADVTXD_L4LEN_SHIFT
;
5949 mss_l4len_idx
|= skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
;
5951 /* VLAN MACLEN IPLEN */
5952 vlan_macip_lens
= l4
.hdr
- ip
.hdr
;
5953 vlan_macip_lens
|= (ip
.hdr
- skb
->data
) << E1000_ADVTXD_MACLEN_SHIFT
;
5954 vlan_macip_lens
|= first
->tx_flags
& IGB_TX_FLAGS_VLAN_MASK
;
5956 igb_tx_ctxtdesc(tx_ring
, first
, vlan_macip_lens
,
5957 type_tucmd
, mss_l4len_idx
);
5962 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff
*skb
)
5964 unsigned int offset
= 0;
5966 ipv6_find_hdr(skb
, &offset
, IPPROTO_SCTP
, NULL
, NULL
);
5968 return offset
== skb_checksum_start_offset(skb
);
5971 static void igb_tx_csum(struct igb_ring
*tx_ring
, struct igb_tx_buffer
*first
)
5973 struct sk_buff
*skb
= first
->skb
;
5974 u32 vlan_macip_lens
= 0;
5977 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
5979 if (!(first
->tx_flags
& IGB_TX_FLAGS_VLAN
) &&
5980 !tx_ring
->launchtime_enable
)
5985 switch (skb
->csum_offset
) {
5986 case offsetof(struct tcphdr
, check
):
5987 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_TCP
;
5989 case offsetof(struct udphdr
, check
):
5991 case offsetof(struct sctphdr
, checksum
):
5992 /* validate that this is actually an SCTP request */
5993 if (((first
->protocol
== htons(ETH_P_IP
)) &&
5994 (ip_hdr(skb
)->protocol
== IPPROTO_SCTP
)) ||
5995 ((first
->protocol
== htons(ETH_P_IPV6
)) &&
5996 igb_ipv6_csum_is_sctp(skb
))) {
5997 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_SCTP
;
6002 skb_checksum_help(skb
);
6006 /* update TX checksum flag */
6007 first
->tx_flags
|= IGB_TX_FLAGS_CSUM
;
6008 vlan_macip_lens
= skb_checksum_start_offset(skb
) -
6009 skb_network_offset(skb
);
6011 vlan_macip_lens
|= skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
;
6012 vlan_macip_lens
|= first
->tx_flags
& IGB_TX_FLAGS_VLAN_MASK
;
6014 igb_tx_ctxtdesc(tx_ring
, first
, vlan_macip_lens
, type_tucmd
, 0);
6017 #define IGB_SET_FLAG(_input, _flag, _result) \
6018 ((_flag <= _result) ? \
6019 ((u32)(_input & _flag) * (_result / _flag)) : \
6020 ((u32)(_input & _flag) / (_flag / _result)))
6022 static u32
igb_tx_cmd_type(struct sk_buff
*skb
, u32 tx_flags
)
6024 /* set type for advanced descriptor with frame checksum insertion */
6025 u32 cmd_type
= E1000_ADVTXD_DTYP_DATA
|
6026 E1000_ADVTXD_DCMD_DEXT
|
6027 E1000_ADVTXD_DCMD_IFCS
;
6029 /* set HW vlan bit if vlan is present */
6030 cmd_type
|= IGB_SET_FLAG(tx_flags
, IGB_TX_FLAGS_VLAN
,
6031 (E1000_ADVTXD_DCMD_VLE
));
6033 /* set segmentation bits for TSO */
6034 cmd_type
|= IGB_SET_FLAG(tx_flags
, IGB_TX_FLAGS_TSO
,
6035 (E1000_ADVTXD_DCMD_TSE
));
6037 /* set timestamp bit if present */
6038 cmd_type
|= IGB_SET_FLAG(tx_flags
, IGB_TX_FLAGS_TSTAMP
,
6039 (E1000_ADVTXD_MAC_TSTAMP
));
6041 /* insert frame checksum */
6042 cmd_type
^= IGB_SET_FLAG(skb
->no_fcs
, 1, E1000_ADVTXD_DCMD_IFCS
);
6047 static void igb_tx_olinfo_status(struct igb_ring
*tx_ring
,
6048 union e1000_adv_tx_desc
*tx_desc
,
6049 u32 tx_flags
, unsigned int paylen
)
6051 u32 olinfo_status
= paylen
<< E1000_ADVTXD_PAYLEN_SHIFT
;
6053 /* 82575 requires a unique index per ring */
6054 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX
, &tx_ring
->flags
))
6055 olinfo_status
|= tx_ring
->reg_idx
<< 4;
6057 /* insert L4 checksum */
6058 olinfo_status
|= IGB_SET_FLAG(tx_flags
,
6060 (E1000_TXD_POPTS_TXSM
<< 8));
6062 /* insert IPv4 checksum */
6063 olinfo_status
|= IGB_SET_FLAG(tx_flags
,
6065 (E1000_TXD_POPTS_IXSM
<< 8));
6067 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
6070 static int __igb_maybe_stop_tx(struct igb_ring
*tx_ring
, const u16 size
)
6072 struct net_device
*netdev
= tx_ring
->netdev
;
6074 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
6076 /* Herbert's original patch had:
6077 * smp_mb__after_netif_stop_queue();
6078 * but since that doesn't exist yet, just open code it.
6082 /* We need to check again in a case another CPU has just
6083 * made room available.
6085 if (igb_desc_unused(tx_ring
) < size
)
6089 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
6091 u64_stats_update_begin(&tx_ring
->tx_syncp2
);
6092 tx_ring
->tx_stats
.restart_queue2
++;
6093 u64_stats_update_end(&tx_ring
->tx_syncp2
);
6098 static inline int igb_maybe_stop_tx(struct igb_ring
*tx_ring
, const u16 size
)
6100 if (igb_desc_unused(tx_ring
) >= size
)
6102 return __igb_maybe_stop_tx(tx_ring
, size
);
6105 static int igb_tx_map(struct igb_ring
*tx_ring
,
6106 struct igb_tx_buffer
*first
,
6109 struct sk_buff
*skb
= first
->skb
;
6110 struct igb_tx_buffer
*tx_buffer
;
6111 union e1000_adv_tx_desc
*tx_desc
;
6114 unsigned int data_len
, size
;
6115 u32 tx_flags
= first
->tx_flags
;
6116 u32 cmd_type
= igb_tx_cmd_type(skb
, tx_flags
);
6117 u16 i
= tx_ring
->next_to_use
;
6119 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
6121 igb_tx_olinfo_status(tx_ring
, tx_desc
, tx_flags
, skb
->len
- hdr_len
);
6123 size
= skb_headlen(skb
);
6124 data_len
= skb
->data_len
;
6126 dma
= dma_map_single(tx_ring
->dev
, skb
->data
, size
, DMA_TO_DEVICE
);
6130 for (frag
= &skb_shinfo(skb
)->frags
[0];; frag
++) {
6131 if (dma_mapping_error(tx_ring
->dev
, dma
))
6134 /* record length, and DMA address */
6135 dma_unmap_len_set(tx_buffer
, len
, size
);
6136 dma_unmap_addr_set(tx_buffer
, dma
, dma
);
6138 tx_desc
->read
.buffer_addr
= cpu_to_le64(dma
);
6140 while (unlikely(size
> IGB_MAX_DATA_PER_TXD
)) {
6141 tx_desc
->read
.cmd_type_len
=
6142 cpu_to_le32(cmd_type
^ IGB_MAX_DATA_PER_TXD
);
6146 if (i
== tx_ring
->count
) {
6147 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
6150 tx_desc
->read
.olinfo_status
= 0;
6152 dma
+= IGB_MAX_DATA_PER_TXD
;
6153 size
-= IGB_MAX_DATA_PER_TXD
;
6155 tx_desc
->read
.buffer_addr
= cpu_to_le64(dma
);
6158 if (likely(!data_len
))
6161 tx_desc
->read
.cmd_type_len
= cpu_to_le32(cmd_type
^ size
);
6165 if (i
== tx_ring
->count
) {
6166 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
6169 tx_desc
->read
.olinfo_status
= 0;
6171 size
= skb_frag_size(frag
);
6174 dma
= skb_frag_dma_map(tx_ring
->dev
, frag
, 0,
6175 size
, DMA_TO_DEVICE
);
6177 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
6180 /* write last descriptor with RS and EOP bits */
6181 cmd_type
|= size
| IGB_TXD_DCMD
;
6182 tx_desc
->read
.cmd_type_len
= cpu_to_le32(cmd_type
);
6184 netdev_tx_sent_queue(txring_txq(tx_ring
), first
->bytecount
);
6186 /* set the timestamp */
6187 first
->time_stamp
= jiffies
;
6189 skb_tx_timestamp(skb
);
6191 /* Force memory writes to complete before letting h/w know there
6192 * are new descriptors to fetch. (Only applicable for weak-ordered
6193 * memory model archs, such as IA-64).
6195 * We also need this memory barrier to make certain all of the
6196 * status bits have been updated before next_to_watch is written.
6200 /* set next_to_watch value indicating a packet is present */
6201 first
->next_to_watch
= tx_desc
;
6204 if (i
== tx_ring
->count
)
6207 tx_ring
->next_to_use
= i
;
6209 /* Make sure there is space in the ring for the next send. */
6210 igb_maybe_stop_tx(tx_ring
, DESC_NEEDED
);
6212 if (netif_xmit_stopped(txring_txq(tx_ring
)) || !netdev_xmit_more()) {
6213 writel(i
, tx_ring
->tail
);
6218 dev_err(tx_ring
->dev
, "TX DMA map failed\n");
6219 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
6221 /* clear dma mappings for failed tx_buffer_info map */
6222 while (tx_buffer
!= first
) {
6223 if (dma_unmap_len(tx_buffer
, len
))
6224 dma_unmap_page(tx_ring
->dev
,
6225 dma_unmap_addr(tx_buffer
, dma
),
6226 dma_unmap_len(tx_buffer
, len
),
6228 dma_unmap_len_set(tx_buffer
, len
, 0);
6231 i
+= tx_ring
->count
;
6232 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
6235 if (dma_unmap_len(tx_buffer
, len
))
6236 dma_unmap_single(tx_ring
->dev
,
6237 dma_unmap_addr(tx_buffer
, dma
),
6238 dma_unmap_len(tx_buffer
, len
),
6240 dma_unmap_len_set(tx_buffer
, len
, 0);
6242 dev_kfree_skb_any(tx_buffer
->skb
);
6243 tx_buffer
->skb
= NULL
;
6245 tx_ring
->next_to_use
= i
;
6250 int igb_xmit_xdp_ring(struct igb_adapter
*adapter
,
6251 struct igb_ring
*tx_ring
,
6252 struct xdp_frame
*xdpf
)
6254 union e1000_adv_tx_desc
*tx_desc
;
6255 u32 len
, cmd_type
, olinfo_status
;
6256 struct igb_tx_buffer
*tx_buffer
;
6262 if (unlikely(!igb_desc_unused(tx_ring
)))
6263 return IGB_XDP_CONSUMED
;
6265 dma
= dma_map_single(tx_ring
->dev
, xdpf
->data
, len
, DMA_TO_DEVICE
);
6266 if (dma_mapping_error(tx_ring
->dev
, dma
))
6267 return IGB_XDP_CONSUMED
;
6269 /* record the location of the first descriptor for this packet */
6270 tx_buffer
= &tx_ring
->tx_buffer_info
[tx_ring
->next_to_use
];
6271 tx_buffer
->bytecount
= len
;
6272 tx_buffer
->gso_segs
= 1;
6273 tx_buffer
->protocol
= 0;
6275 i
= tx_ring
->next_to_use
;
6276 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
6278 dma_unmap_len_set(tx_buffer
, len
, len
);
6279 dma_unmap_addr_set(tx_buffer
, dma
, dma
);
6280 tx_buffer
->type
= IGB_TYPE_XDP
;
6281 tx_buffer
->xdpf
= xdpf
;
6283 tx_desc
->read
.buffer_addr
= cpu_to_le64(dma
);
6285 /* put descriptor type bits */
6286 cmd_type
= E1000_ADVTXD_DTYP_DATA
|
6287 E1000_ADVTXD_DCMD_DEXT
|
6288 E1000_ADVTXD_DCMD_IFCS
;
6289 cmd_type
|= len
| IGB_TXD_DCMD
;
6290 tx_desc
->read
.cmd_type_len
= cpu_to_le32(cmd_type
);
6292 olinfo_status
= cpu_to_le32(len
<< E1000_ADVTXD_PAYLEN_SHIFT
);
6293 /* 82575 requires a unique index per ring */
6294 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX
, &tx_ring
->flags
))
6295 olinfo_status
|= tx_ring
->reg_idx
<< 4;
6297 tx_desc
->read
.olinfo_status
= olinfo_status
;
6299 netdev_tx_sent_queue(txring_txq(tx_ring
), tx_buffer
->bytecount
);
6301 /* set the timestamp */
6302 tx_buffer
->time_stamp
= jiffies
;
6304 /* Avoid any potential race with xdp_xmit and cleanup */
6307 /* set next_to_watch value indicating a packet is present */
6309 if (i
== tx_ring
->count
)
6312 tx_buffer
->next_to_watch
= tx_desc
;
6313 tx_ring
->next_to_use
= i
;
6315 /* Make sure there is space in the ring for the next send. */
6316 igb_maybe_stop_tx(tx_ring
, DESC_NEEDED
);
6318 if (netif_xmit_stopped(txring_txq(tx_ring
)) || !netdev_xmit_more())
6319 writel(i
, tx_ring
->tail
);
6324 netdev_tx_t
igb_xmit_frame_ring(struct sk_buff
*skb
,
6325 struct igb_ring
*tx_ring
)
6327 struct igb_tx_buffer
*first
;
6331 u16 count
= TXD_USE_COUNT(skb_headlen(skb
));
6332 __be16 protocol
= vlan_get_protocol(skb
);
6335 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6336 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6337 * + 2 desc gap to keep tail from touching head,
6338 * + 1 desc for context descriptor,
6339 * otherwise try next time
6341 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++)
6342 count
+= TXD_USE_COUNT(skb_frag_size(
6343 &skb_shinfo(skb
)->frags
[f
]));
6345 if (igb_maybe_stop_tx(tx_ring
, count
+ 3)) {
6346 /* this is a hard error */
6347 return NETDEV_TX_BUSY
;
6350 /* record the location of the first descriptor for this packet */
6351 first
= &tx_ring
->tx_buffer_info
[tx_ring
->next_to_use
];
6352 first
->type
= IGB_TYPE_SKB
;
6354 first
->bytecount
= skb
->len
;
6355 first
->gso_segs
= 1;
6357 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)) {
6358 struct igb_adapter
*adapter
= netdev_priv(tx_ring
->netdev
);
6360 if (adapter
->tstamp_config
.tx_type
== HWTSTAMP_TX_ON
&&
6361 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS
,
6363 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
6364 tx_flags
|= IGB_TX_FLAGS_TSTAMP
;
6366 adapter
->ptp_tx_skb
= skb_get(skb
);
6367 adapter
->ptp_tx_start
= jiffies
;
6368 if (adapter
->hw
.mac
.type
== e1000_82576
)
6369 schedule_work(&adapter
->ptp_tx_work
);
6371 adapter
->tx_hwtstamp_skipped
++;
6375 if (skb_vlan_tag_present(skb
)) {
6376 tx_flags
|= IGB_TX_FLAGS_VLAN
;
6377 tx_flags
|= (skb_vlan_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
6380 /* record initial flags and protocol */
6381 first
->tx_flags
= tx_flags
;
6382 first
->protocol
= protocol
;
6384 tso
= igb_tso(tx_ring
, first
, &hdr_len
);
6388 igb_tx_csum(tx_ring
, first
);
6390 if (igb_tx_map(tx_ring
, first
, hdr_len
))
6391 goto cleanup_tx_tstamp
;
6393 return NETDEV_TX_OK
;
6396 dev_kfree_skb_any(first
->skb
);
6399 if (unlikely(tx_flags
& IGB_TX_FLAGS_TSTAMP
)) {
6400 struct igb_adapter
*adapter
= netdev_priv(tx_ring
->netdev
);
6402 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
6403 adapter
->ptp_tx_skb
= NULL
;
6404 if (adapter
->hw
.mac
.type
== e1000_82576
)
6405 cancel_work_sync(&adapter
->ptp_tx_work
);
6406 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS
, &adapter
->state
);
6409 return NETDEV_TX_OK
;
6412 static inline struct igb_ring
*igb_tx_queue_mapping(struct igb_adapter
*adapter
,
6413 struct sk_buff
*skb
)
6415 unsigned int r_idx
= skb
->queue_mapping
;
6417 if (r_idx
>= adapter
->num_tx_queues
)
6418 r_idx
= r_idx
% adapter
->num_tx_queues
;
6420 return adapter
->tx_ring
[r_idx
];
6423 static netdev_tx_t
igb_xmit_frame(struct sk_buff
*skb
,
6424 struct net_device
*netdev
)
6426 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6428 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6429 * in order to meet this minimum size requirement.
6431 if (skb_put_padto(skb
, 17))
6432 return NETDEV_TX_OK
;
6434 return igb_xmit_frame_ring(skb
, igb_tx_queue_mapping(adapter
, skb
));
6438 * igb_tx_timeout - Respond to a Tx Hang
6439 * @netdev: network interface device structure
6440 * @txqueue: number of the Tx queue that hung (unused)
6442 static void igb_tx_timeout(struct net_device
*netdev
, unsigned int __always_unused txqueue
)
6444 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6445 struct e1000_hw
*hw
= &adapter
->hw
;
6447 /* Do the reset outside of interrupt context */
6448 adapter
->tx_timeout_count
++;
6450 if (hw
->mac
.type
>= e1000_82580
)
6451 hw
->dev_spec
._82575
.global_device_reset
= true;
6453 schedule_work(&adapter
->reset_task
);
6455 (adapter
->eims_enable_mask
& ~adapter
->eims_other
));
6458 static void igb_reset_task(struct work_struct
*work
)
6460 struct igb_adapter
*adapter
;
6461 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
6464 /* If we're already down or resetting, just bail */
6465 if (test_bit(__IGB_DOWN
, &adapter
->state
) ||
6466 test_bit(__IGB_RESETTING
, &adapter
->state
)) {
6472 netdev_err(adapter
->netdev
, "Reset adapter\n");
6473 igb_reinit_locked(adapter
);
6478 * igb_get_stats64 - Get System Network Statistics
6479 * @netdev: network interface device structure
6480 * @stats: rtnl_link_stats64 pointer
6482 static void igb_get_stats64(struct net_device
*netdev
,
6483 struct rtnl_link_stats64
*stats
)
6485 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6487 spin_lock(&adapter
->stats64_lock
);
6488 igb_update_stats(adapter
);
6489 memcpy(stats
, &adapter
->stats64
, sizeof(*stats
));
6490 spin_unlock(&adapter
->stats64_lock
);
6494 * igb_change_mtu - Change the Maximum Transfer Unit
6495 * @netdev: network interface device structure
6496 * @new_mtu: new value for maximum frame size
6498 * Returns 0 on success, negative on failure
6500 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
6502 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6503 int max_frame
= new_mtu
+ IGB_ETH_PKT_HDR_PAD
;
6505 if (adapter
->xdp_prog
) {
6508 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
6509 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
6511 if (max_frame
> igb_rx_bufsz(ring
)) {
6512 netdev_warn(adapter
->netdev
,
6513 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6520 /* adjust max frame to be at least the size of a standard frame */
6521 if (max_frame
< (ETH_FRAME_LEN
+ ETH_FCS_LEN
))
6522 max_frame
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
6524 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
6525 usleep_range(1000, 2000);
6527 /* igb_down has a dependency on max_frame_size */
6528 adapter
->max_frame_size
= max_frame
;
6530 if (netif_running(netdev
))
6533 netdev_dbg(netdev
, "changing MTU from %d to %d\n",
6534 netdev
->mtu
, new_mtu
);
6535 netdev
->mtu
= new_mtu
;
6537 if (netif_running(netdev
))
6542 clear_bit(__IGB_RESETTING
, &adapter
->state
);
6548 * igb_update_stats - Update the board statistics counters
6549 * @adapter: board private structure
6551 void igb_update_stats(struct igb_adapter
*adapter
)
6553 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
6554 struct e1000_hw
*hw
= &adapter
->hw
;
6555 struct pci_dev
*pdev
= adapter
->pdev
;
6560 u64 _bytes
, _packets
;
6562 /* Prevent stats update while adapter is being reset, or if the pci
6563 * connection is down.
6565 if (adapter
->link_speed
== 0)
6567 if (pci_channel_offline(pdev
))
6574 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
6575 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
6576 u32 rqdpc
= rd32(E1000_RQDPC(i
));
6577 if (hw
->mac
.type
>= e1000_i210
)
6578 wr32(E1000_RQDPC(i
), 0);
6581 ring
->rx_stats
.drops
+= rqdpc
;
6582 net_stats
->rx_fifo_errors
+= rqdpc
;
6586 start
= u64_stats_fetch_begin_irq(&ring
->rx_syncp
);
6587 _bytes
= ring
->rx_stats
.bytes
;
6588 _packets
= ring
->rx_stats
.packets
;
6589 } while (u64_stats_fetch_retry_irq(&ring
->rx_syncp
, start
));
6591 packets
+= _packets
;
6594 net_stats
->rx_bytes
= bytes
;
6595 net_stats
->rx_packets
= packets
;
6599 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
6600 struct igb_ring
*ring
= adapter
->tx_ring
[i
];
6602 start
= u64_stats_fetch_begin_irq(&ring
->tx_syncp
);
6603 _bytes
= ring
->tx_stats
.bytes
;
6604 _packets
= ring
->tx_stats
.packets
;
6605 } while (u64_stats_fetch_retry_irq(&ring
->tx_syncp
, start
));
6607 packets
+= _packets
;
6609 net_stats
->tx_bytes
= bytes
;
6610 net_stats
->tx_packets
= packets
;
6613 /* read stats registers */
6614 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
6615 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
6616 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
6617 rd32(E1000_GORCH
); /* clear GORCL */
6618 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
6619 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
6620 adapter
->stats
.roc
+= rd32(E1000_ROC
);
6622 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
6623 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
6624 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
6625 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
6626 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
6627 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
6628 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
6629 adapter
->stats
.sec
+= rd32(E1000_SEC
);
6631 mpc
= rd32(E1000_MPC
);
6632 adapter
->stats
.mpc
+= mpc
;
6633 net_stats
->rx_fifo_errors
+= mpc
;
6634 adapter
->stats
.scc
+= rd32(E1000_SCC
);
6635 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
6636 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
6637 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
6638 adapter
->stats
.dc
+= rd32(E1000_DC
);
6639 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
6640 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
6641 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
6642 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
6643 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
6644 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
6645 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
6646 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
6647 rd32(E1000_GOTCH
); /* clear GOTCL */
6648 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
6649 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
6650 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
6651 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
6652 adapter
->stats
.tor
+= rd32(E1000_TORH
);
6653 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
6654 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
6656 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
6657 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
6658 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
6659 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
6660 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
6661 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
6663 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
6664 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
6666 adapter
->stats
.tpt
+= rd32(E1000_TPT
);
6667 adapter
->stats
.colc
+= rd32(E1000_COLC
);
6669 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
6670 /* read internal phy specific stats */
6671 reg
= rd32(E1000_CTRL_EXT
);
6672 if (!(reg
& E1000_CTRL_EXT_LINK_MODE_MASK
)) {
6673 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
6675 /* this stat has invalid values on i210/i211 */
6676 if ((hw
->mac
.type
!= e1000_i210
) &&
6677 (hw
->mac
.type
!= e1000_i211
))
6678 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
6681 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
6682 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
6684 adapter
->stats
.iac
+= rd32(E1000_IAC
);
6685 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
6686 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
6687 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
6688 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
6689 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
6690 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
6691 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
6692 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
6694 /* Fill out the OS statistics structure */
6695 net_stats
->multicast
= adapter
->stats
.mprc
;
6696 net_stats
->collisions
= adapter
->stats
.colc
;
6700 /* RLEC on some newer hardware can be incorrect so build
6701 * our own version based on RUC and ROC
6703 net_stats
->rx_errors
= adapter
->stats
.rxerrc
+
6704 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
6705 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
6706 adapter
->stats
.cexterr
;
6707 net_stats
->rx_length_errors
= adapter
->stats
.ruc
+
6709 net_stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
6710 net_stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
6711 net_stats
->rx_missed_errors
= adapter
->stats
.mpc
;
6714 net_stats
->tx_errors
= adapter
->stats
.ecol
+
6715 adapter
->stats
.latecol
;
6716 net_stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
6717 net_stats
->tx_window_errors
= adapter
->stats
.latecol
;
6718 net_stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
6720 /* Tx Dropped needs to be maintained elsewhere */
6722 /* Management Stats */
6723 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
6724 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
6725 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
6728 reg
= rd32(E1000_MANC
);
6729 if (reg
& E1000_MANC_EN_BMC2OS
) {
6730 adapter
->stats
.o2bgptc
+= rd32(E1000_O2BGPTC
);
6731 adapter
->stats
.o2bspc
+= rd32(E1000_O2BSPC
);
6732 adapter
->stats
.b2ospc
+= rd32(E1000_B2OSPC
);
6733 adapter
->stats
.b2ogprc
+= rd32(E1000_B2OGPRC
);
6737 static void igb_tsync_interrupt(struct igb_adapter
*adapter
)
6739 struct e1000_hw
*hw
= &adapter
->hw
;
6740 struct ptp_clock_event event
;
6741 struct timespec64 ts
;
6742 u32 ack
= 0, tsauxc
, sec
, nsec
, tsicr
= rd32(E1000_TSICR
);
6744 if (tsicr
& TSINTR_SYS_WRAP
) {
6745 event
.type
= PTP_CLOCK_PPS
;
6746 if (adapter
->ptp_caps
.pps
)
6747 ptp_clock_event(adapter
->ptp_clock
, &event
);
6748 ack
|= TSINTR_SYS_WRAP
;
6751 if (tsicr
& E1000_TSICR_TXTS
) {
6752 /* retrieve hardware timestamp */
6753 schedule_work(&adapter
->ptp_tx_work
);
6754 ack
|= E1000_TSICR_TXTS
;
6757 if (tsicr
& TSINTR_TT0
) {
6758 spin_lock(&adapter
->tmreg_lock
);
6759 ts
= timespec64_add(adapter
->perout
[0].start
,
6760 adapter
->perout
[0].period
);
6761 /* u32 conversion of tv_sec is safe until y2106 */
6762 wr32(E1000_TRGTTIML0
, ts
.tv_nsec
);
6763 wr32(E1000_TRGTTIMH0
, (u32
)ts
.tv_sec
);
6764 tsauxc
= rd32(E1000_TSAUXC
);
6765 tsauxc
|= TSAUXC_EN_TT0
;
6766 wr32(E1000_TSAUXC
, tsauxc
);
6767 adapter
->perout
[0].start
= ts
;
6768 spin_unlock(&adapter
->tmreg_lock
);
6772 if (tsicr
& TSINTR_TT1
) {
6773 spin_lock(&adapter
->tmreg_lock
);
6774 ts
= timespec64_add(adapter
->perout
[1].start
,
6775 adapter
->perout
[1].period
);
6776 wr32(E1000_TRGTTIML1
, ts
.tv_nsec
);
6777 wr32(E1000_TRGTTIMH1
, (u32
)ts
.tv_sec
);
6778 tsauxc
= rd32(E1000_TSAUXC
);
6779 tsauxc
|= TSAUXC_EN_TT1
;
6780 wr32(E1000_TSAUXC
, tsauxc
);
6781 adapter
->perout
[1].start
= ts
;
6782 spin_unlock(&adapter
->tmreg_lock
);
6786 if (tsicr
& TSINTR_AUTT0
) {
6787 nsec
= rd32(E1000_AUXSTMPL0
);
6788 sec
= rd32(E1000_AUXSTMPH0
);
6789 event
.type
= PTP_CLOCK_EXTTS
;
6791 event
.timestamp
= sec
* 1000000000ULL + nsec
;
6792 ptp_clock_event(adapter
->ptp_clock
, &event
);
6793 ack
|= TSINTR_AUTT0
;
6796 if (tsicr
& TSINTR_AUTT1
) {
6797 nsec
= rd32(E1000_AUXSTMPL1
);
6798 sec
= rd32(E1000_AUXSTMPH1
);
6799 event
.type
= PTP_CLOCK_EXTTS
;
6801 event
.timestamp
= sec
* 1000000000ULL + nsec
;
6802 ptp_clock_event(adapter
->ptp_clock
, &event
);
6803 ack
|= TSINTR_AUTT1
;
6806 /* acknowledge the interrupts */
6807 wr32(E1000_TSICR
, ack
);
6810 static irqreturn_t
igb_msix_other(int irq
, void *data
)
6812 struct igb_adapter
*adapter
= data
;
6813 struct e1000_hw
*hw
= &adapter
->hw
;
6814 u32 icr
= rd32(E1000_ICR
);
6815 /* reading ICR causes bit 31 of EICR to be cleared */
6817 if (icr
& E1000_ICR_DRSTA
)
6818 schedule_work(&adapter
->reset_task
);
6820 if (icr
& E1000_ICR_DOUTSYNC
) {
6821 /* HW is reporting DMA is out of sync */
6822 adapter
->stats
.doosync
++;
6823 /* The DMA Out of Sync is also indication of a spoof event
6824 * in IOV mode. Check the Wrong VM Behavior register to
6825 * see if it is really a spoof event.
6827 igb_check_wvbr(adapter
);
6830 /* Check for a mailbox event */
6831 if (icr
& E1000_ICR_VMMB
)
6832 igb_msg_task(adapter
);
6834 if (icr
& E1000_ICR_LSC
) {
6835 hw
->mac
.get_link_status
= 1;
6836 /* guard against interrupt when we're going down */
6837 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
6838 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
6841 if (icr
& E1000_ICR_TS
)
6842 igb_tsync_interrupt(adapter
);
6844 wr32(E1000_EIMS
, adapter
->eims_other
);
6849 static void igb_write_itr(struct igb_q_vector
*q_vector
)
6851 struct igb_adapter
*adapter
= q_vector
->adapter
;
6852 u32 itr_val
= q_vector
->itr_val
& 0x7FFC;
6854 if (!q_vector
->set_itr
)
6860 if (adapter
->hw
.mac
.type
== e1000_82575
)
6861 itr_val
|= itr_val
<< 16;
6863 itr_val
|= E1000_EITR_CNT_IGNR
;
6865 writel(itr_val
, q_vector
->itr_register
);
6866 q_vector
->set_itr
= 0;
6869 static irqreturn_t
igb_msix_ring(int irq
, void *data
)
6871 struct igb_q_vector
*q_vector
= data
;
6873 /* Write the ITR value calculated from the previous interrupt. */
6874 igb_write_itr(q_vector
);
6876 napi_schedule(&q_vector
->napi
);
6881 #ifdef CONFIG_IGB_DCA
6882 static void igb_update_tx_dca(struct igb_adapter
*adapter
,
6883 struct igb_ring
*tx_ring
,
6886 struct e1000_hw
*hw
= &adapter
->hw
;
6887 u32 txctrl
= dca3_get_tag(tx_ring
->dev
, cpu
);
6889 if (hw
->mac
.type
!= e1000_82575
)
6890 txctrl
<<= E1000_DCA_TXCTRL_CPUID_SHIFT
;
6892 /* We can enable relaxed ordering for reads, but not writes when
6893 * DCA is enabled. This is due to a known issue in some chipsets
6894 * which will cause the DCA tag to be cleared.
6896 txctrl
|= E1000_DCA_TXCTRL_DESC_RRO_EN
|
6897 E1000_DCA_TXCTRL_DATA_RRO_EN
|
6898 E1000_DCA_TXCTRL_DESC_DCA_EN
;
6900 wr32(E1000_DCA_TXCTRL(tx_ring
->reg_idx
), txctrl
);
6903 static void igb_update_rx_dca(struct igb_adapter
*adapter
,
6904 struct igb_ring
*rx_ring
,
6907 struct e1000_hw
*hw
= &adapter
->hw
;
6908 u32 rxctrl
= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
6910 if (hw
->mac
.type
!= e1000_82575
)
6911 rxctrl
<<= E1000_DCA_RXCTRL_CPUID_SHIFT
;
6913 /* We can enable relaxed ordering for reads, but not writes when
6914 * DCA is enabled. This is due to a known issue in some chipsets
6915 * which will cause the DCA tag to be cleared.
6917 rxctrl
|= E1000_DCA_RXCTRL_DESC_RRO_EN
|
6918 E1000_DCA_RXCTRL_DESC_DCA_EN
;
6920 wr32(E1000_DCA_RXCTRL(rx_ring
->reg_idx
), rxctrl
);
6923 static void igb_update_dca(struct igb_q_vector
*q_vector
)
6925 struct igb_adapter
*adapter
= q_vector
->adapter
;
6926 int cpu
= get_cpu();
6928 if (q_vector
->cpu
== cpu
)
6931 if (q_vector
->tx
.ring
)
6932 igb_update_tx_dca(adapter
, q_vector
->tx
.ring
, cpu
);
6934 if (q_vector
->rx
.ring
)
6935 igb_update_rx_dca(adapter
, q_vector
->rx
.ring
, cpu
);
6937 q_vector
->cpu
= cpu
;
6942 static void igb_setup_dca(struct igb_adapter
*adapter
)
6944 struct e1000_hw
*hw
= &adapter
->hw
;
6947 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
6950 /* Always use CB2 mode, difference is masked in the CB driver. */
6951 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
6953 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
6954 adapter
->q_vector
[i
]->cpu
= -1;
6955 igb_update_dca(adapter
->q_vector
[i
]);
6959 static int __igb_notify_dca(struct device
*dev
, void *data
)
6961 struct net_device
*netdev
= dev_get_drvdata(dev
);
6962 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6963 struct pci_dev
*pdev
= adapter
->pdev
;
6964 struct e1000_hw
*hw
= &adapter
->hw
;
6965 unsigned long event
= *(unsigned long *)data
;
6968 case DCA_PROVIDER_ADD
:
6969 /* if already enabled, don't do it again */
6970 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
6972 if (dca_add_requester(dev
) == 0) {
6973 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
6974 dev_info(&pdev
->dev
, "DCA enabled\n");
6975 igb_setup_dca(adapter
);
6978 fallthrough
; /* since DCA is disabled. */
6979 case DCA_PROVIDER_REMOVE
:
6980 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
6981 /* without this a class_device is left
6982 * hanging around in the sysfs model
6984 dca_remove_requester(dev
);
6985 dev_info(&pdev
->dev
, "DCA disabled\n");
6986 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
6987 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
6995 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
7000 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
7003 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
7005 #endif /* CONFIG_IGB_DCA */
7007 #ifdef CONFIG_PCI_IOV
7008 static int igb_vf_configure(struct igb_adapter
*adapter
, int vf
)
7010 unsigned char mac_addr
[ETH_ALEN
];
7012 eth_zero_addr(mac_addr
);
7013 igb_set_vf_mac(adapter
, vf
, mac_addr
);
7015 /* By default spoof check is enabled for all VFs */
7016 adapter
->vf_data
[vf
].spoofchk_enabled
= true;
7018 /* By default VFs are not trusted */
7019 adapter
->vf_data
[vf
].trusted
= false;
7025 static void igb_ping_all_vfs(struct igb_adapter
*adapter
)
7027 struct e1000_hw
*hw
= &adapter
->hw
;
7031 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++) {
7032 ping
= E1000_PF_CONTROL_MSG
;
7033 if (adapter
->vf_data
[i
].flags
& IGB_VF_FLAG_CTS
)
7034 ping
|= E1000_VT_MSGTYPE_CTS
;
7035 igb_write_mbx(hw
, &ping
, 1, i
);
7039 static int igb_set_vf_promisc(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
7041 struct e1000_hw
*hw
= &adapter
->hw
;
7042 u32 vmolr
= rd32(E1000_VMOLR(vf
));
7043 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7045 vf_data
->flags
&= ~(IGB_VF_FLAG_UNI_PROMISC
|
7046 IGB_VF_FLAG_MULTI_PROMISC
);
7047 vmolr
&= ~(E1000_VMOLR_ROPE
| E1000_VMOLR_ROMPE
| E1000_VMOLR_MPME
);
7049 if (*msgbuf
& E1000_VF_SET_PROMISC_MULTICAST
) {
7050 vmolr
|= E1000_VMOLR_MPME
;
7051 vf_data
->flags
|= IGB_VF_FLAG_MULTI_PROMISC
;
7052 *msgbuf
&= ~E1000_VF_SET_PROMISC_MULTICAST
;
7054 /* if we have hashes and we are clearing a multicast promisc
7055 * flag we need to write the hashes to the MTA as this step
7056 * was previously skipped
7058 if (vf_data
->num_vf_mc_hashes
> 30) {
7059 vmolr
|= E1000_VMOLR_MPME
;
7060 } else if (vf_data
->num_vf_mc_hashes
) {
7063 vmolr
|= E1000_VMOLR_ROMPE
;
7064 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
7065 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
7069 wr32(E1000_VMOLR(vf
), vmolr
);
7071 /* there are flags left unprocessed, likely not supported */
7072 if (*msgbuf
& E1000_VT_MSGINFO_MASK
)
7078 static int igb_set_vf_multicasts(struct igb_adapter
*adapter
,
7079 u32
*msgbuf
, u32 vf
)
7081 int n
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
7082 u16
*hash_list
= (u16
*)&msgbuf
[1];
7083 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7086 /* salt away the number of multicast addresses assigned
7087 * to this VF for later use to restore when the PF multi cast
7090 vf_data
->num_vf_mc_hashes
= n
;
7092 /* only up to 30 hash values supported */
7096 /* store the hashes for later use */
7097 for (i
= 0; i
< n
; i
++)
7098 vf_data
->vf_mc_hashes
[i
] = hash_list
[i
];
7100 /* Flush and reset the mta with the new values */
7101 igb_set_rx_mode(adapter
->netdev
);
7106 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
)
7108 struct e1000_hw
*hw
= &adapter
->hw
;
7109 struct vf_data_storage
*vf_data
;
7112 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
7113 u32 vmolr
= rd32(E1000_VMOLR(i
));
7115 vmolr
&= ~(E1000_VMOLR_ROMPE
| E1000_VMOLR_MPME
);
7117 vf_data
= &adapter
->vf_data
[i
];
7119 if ((vf_data
->num_vf_mc_hashes
> 30) ||
7120 (vf_data
->flags
& IGB_VF_FLAG_MULTI_PROMISC
)) {
7121 vmolr
|= E1000_VMOLR_MPME
;
7122 } else if (vf_data
->num_vf_mc_hashes
) {
7123 vmolr
|= E1000_VMOLR_ROMPE
;
7124 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
7125 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
7127 wr32(E1000_VMOLR(i
), vmolr
);
7131 static void igb_clear_vf_vfta(struct igb_adapter
*adapter
, u32 vf
)
7133 struct e1000_hw
*hw
= &adapter
->hw
;
7134 u32 pool_mask
, vlvf_mask
, i
;
7136 /* create mask for VF and other pools */
7137 pool_mask
= E1000_VLVF_POOLSEL_MASK
;
7138 vlvf_mask
= BIT(E1000_VLVF_POOLSEL_SHIFT
+ vf
);
7140 /* drop PF from pool bits */
7141 pool_mask
&= ~BIT(E1000_VLVF_POOLSEL_SHIFT
+
7142 adapter
->vfs_allocated_count
);
7144 /* Find the vlan filter for this id */
7145 for (i
= E1000_VLVF_ARRAY_SIZE
; i
--;) {
7146 u32 vlvf
= rd32(E1000_VLVF(i
));
7147 u32 vfta_mask
, vid
, vfta
;
7149 /* remove the vf from the pool */
7150 if (!(vlvf
& vlvf_mask
))
7153 /* clear out bit from VLVF */
7156 /* if other pools are present, just remove ourselves */
7157 if (vlvf
& pool_mask
)
7160 /* if PF is present, leave VFTA */
7161 if (vlvf
& E1000_VLVF_POOLSEL_MASK
)
7164 vid
= vlvf
& E1000_VLVF_VLANID_MASK
;
7165 vfta_mask
= BIT(vid
% 32);
7167 /* clear bit from VFTA */
7168 vfta
= adapter
->shadow_vfta
[vid
/ 32];
7169 if (vfta
& vfta_mask
)
7170 hw
->mac
.ops
.write_vfta(hw
, vid
/ 32, vfta
^ vfta_mask
);
7172 /* clear pool selection enable */
7173 if (adapter
->flags
& IGB_FLAG_VLAN_PROMISC
)
7174 vlvf
&= E1000_VLVF_POOLSEL_MASK
;
7178 /* clear pool bits */
7179 wr32(E1000_VLVF(i
), vlvf
);
7183 static int igb_find_vlvf_entry(struct e1000_hw
*hw
, u32 vlan
)
7188 /* short cut the special case */
7192 /* Search for the VLAN id in the VLVF entries */
7193 for (idx
= E1000_VLVF_ARRAY_SIZE
; --idx
;) {
7194 vlvf
= rd32(E1000_VLVF(idx
));
7195 if ((vlvf
& VLAN_VID_MASK
) == vlan
)
7202 static void igb_update_pf_vlvf(struct igb_adapter
*adapter
, u32 vid
)
7204 struct e1000_hw
*hw
= &adapter
->hw
;
7208 idx
= igb_find_vlvf_entry(hw
, vid
);
7212 /* See if any other pools are set for this VLAN filter
7213 * entry other than the PF.
7215 pf_id
= adapter
->vfs_allocated_count
+ E1000_VLVF_POOLSEL_SHIFT
;
7216 bits
= ~BIT(pf_id
) & E1000_VLVF_POOLSEL_MASK
;
7217 bits
&= rd32(E1000_VLVF(idx
));
7219 /* Disable the filter so this falls into the default pool. */
7221 if (adapter
->flags
& IGB_FLAG_VLAN_PROMISC
)
7222 wr32(E1000_VLVF(idx
), BIT(pf_id
));
7224 wr32(E1000_VLVF(idx
), 0);
7228 static s32
igb_set_vf_vlan(struct igb_adapter
*adapter
, u32 vid
,
7231 int pf_id
= adapter
->vfs_allocated_count
;
7232 struct e1000_hw
*hw
= &adapter
->hw
;
7235 /* If VLAN overlaps with one the PF is currently monitoring make
7236 * sure that we are able to allocate a VLVF entry. This may be
7237 * redundant but it guarantees PF will maintain visibility to
7240 if (add
&& test_bit(vid
, adapter
->active_vlans
)) {
7241 err
= igb_vfta_set(hw
, vid
, pf_id
, true, false);
7246 err
= igb_vfta_set(hw
, vid
, vf
, add
, false);
7251 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7252 * we may need to drop the PF pool bit in order to allow us to free
7253 * up the VLVF resources.
7255 if (test_bit(vid
, adapter
->active_vlans
) ||
7256 (adapter
->flags
& IGB_FLAG_VLAN_PROMISC
))
7257 igb_update_pf_vlvf(adapter
, vid
);
7262 static void igb_set_vmvir(struct igb_adapter
*adapter
, u32 vid
, u32 vf
)
7264 struct e1000_hw
*hw
= &adapter
->hw
;
7267 wr32(E1000_VMVIR(vf
), (vid
| E1000_VMVIR_VLANA_DEFAULT
));
7269 wr32(E1000_VMVIR(vf
), 0);
7272 static int igb_enable_port_vlan(struct igb_adapter
*adapter
, int vf
,
7277 err
= igb_set_vf_vlan(adapter
, vlan
, true, vf
);
7281 igb_set_vmvir(adapter
, vlan
| (qos
<< VLAN_PRIO_SHIFT
), vf
);
7282 igb_set_vmolr(adapter
, vf
, !vlan
);
7284 /* revoke access to previous VLAN */
7285 if (vlan
!= adapter
->vf_data
[vf
].pf_vlan
)
7286 igb_set_vf_vlan(adapter
, adapter
->vf_data
[vf
].pf_vlan
,
7289 adapter
->vf_data
[vf
].pf_vlan
= vlan
;
7290 adapter
->vf_data
[vf
].pf_qos
= qos
;
7291 igb_set_vf_vlan_strip(adapter
, vf
, true);
7292 dev_info(&adapter
->pdev
->dev
,
7293 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan
, qos
, vf
);
7294 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
7295 dev_warn(&adapter
->pdev
->dev
,
7296 "The VF VLAN has been set, but the PF device is not up.\n");
7297 dev_warn(&adapter
->pdev
->dev
,
7298 "Bring the PF device up before attempting to use the VF device.\n");
7304 static int igb_disable_port_vlan(struct igb_adapter
*adapter
, int vf
)
7306 /* Restore tagless access via VLAN 0 */
7307 igb_set_vf_vlan(adapter
, 0, true, vf
);
7309 igb_set_vmvir(adapter
, 0, vf
);
7310 igb_set_vmolr(adapter
, vf
, true);
7312 /* Remove any PF assigned VLAN */
7313 if (adapter
->vf_data
[vf
].pf_vlan
)
7314 igb_set_vf_vlan(adapter
, adapter
->vf_data
[vf
].pf_vlan
,
7317 adapter
->vf_data
[vf
].pf_vlan
= 0;
7318 adapter
->vf_data
[vf
].pf_qos
= 0;
7319 igb_set_vf_vlan_strip(adapter
, vf
, false);
7324 static int igb_ndo_set_vf_vlan(struct net_device
*netdev
, int vf
,
7325 u16 vlan
, u8 qos
, __be16 vlan_proto
)
7327 struct igb_adapter
*adapter
= netdev_priv(netdev
);
7329 if ((vf
>= adapter
->vfs_allocated_count
) || (vlan
> 4095) || (qos
> 7))
7332 if (vlan_proto
!= htons(ETH_P_8021Q
))
7333 return -EPROTONOSUPPORT
;
7335 return (vlan
|| qos
) ? igb_enable_port_vlan(adapter
, vf
, vlan
, qos
) :
7336 igb_disable_port_vlan(adapter
, vf
);
7339 static int igb_set_vf_vlan_msg(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
7341 int add
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
7342 int vid
= (msgbuf
[1] & E1000_VLVF_VLANID_MASK
);
7345 if (adapter
->vf_data
[vf
].pf_vlan
)
7348 /* VLAN 0 is a special case, don't allow it to be removed */
7352 ret
= igb_set_vf_vlan(adapter
, vid
, !!add
, vf
);
7354 igb_set_vf_vlan_strip(adapter
, vf
, !!vid
);
7358 static inline void igb_vf_reset(struct igb_adapter
*adapter
, u32 vf
)
7360 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7362 /* clear flags - except flag that indicates PF has set the MAC */
7363 vf_data
->flags
&= IGB_VF_FLAG_PF_SET_MAC
;
7364 vf_data
->last_nack
= jiffies
;
7366 /* reset vlans for device */
7367 igb_clear_vf_vfta(adapter
, vf
);
7368 igb_set_vf_vlan(adapter
, vf_data
->pf_vlan
, true, vf
);
7369 igb_set_vmvir(adapter
, vf_data
->pf_vlan
|
7370 (vf_data
->pf_qos
<< VLAN_PRIO_SHIFT
), vf
);
7371 igb_set_vmolr(adapter
, vf
, !vf_data
->pf_vlan
);
7372 igb_set_vf_vlan_strip(adapter
, vf
, !!(vf_data
->pf_vlan
));
7374 /* reset multicast table array for vf */
7375 adapter
->vf_data
[vf
].num_vf_mc_hashes
= 0;
7377 /* Flush and reset the mta with the new values */
7378 igb_set_rx_mode(adapter
->netdev
);
7381 static void igb_vf_reset_event(struct igb_adapter
*adapter
, u32 vf
)
7383 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
7385 /* clear mac address as we were hotplug removed/added */
7386 if (!(adapter
->vf_data
[vf
].flags
& IGB_VF_FLAG_PF_SET_MAC
))
7387 eth_zero_addr(vf_mac
);
7389 /* process remaining reset events */
7390 igb_vf_reset(adapter
, vf
);
7393 static void igb_vf_reset_msg(struct igb_adapter
*adapter
, u32 vf
)
7395 struct e1000_hw
*hw
= &adapter
->hw
;
7396 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
7398 u8
*addr
= (u8
*)(&msgbuf
[1]);
7400 /* process all the same items cleared in a function level reset */
7401 igb_vf_reset(adapter
, vf
);
7403 /* set vf mac address */
7404 igb_set_vf_mac(adapter
, vf
, vf_mac
);
7406 /* enable transmit and receive for vf */
7407 reg
= rd32(E1000_VFTE
);
7408 wr32(E1000_VFTE
, reg
| BIT(vf
));
7409 reg
= rd32(E1000_VFRE
);
7410 wr32(E1000_VFRE
, reg
| BIT(vf
));
7412 adapter
->vf_data
[vf
].flags
|= IGB_VF_FLAG_CTS
;
7414 /* reply to reset with ack and vf mac address */
7415 if (!is_zero_ether_addr(vf_mac
)) {
7416 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_ACK
;
7417 memcpy(addr
, vf_mac
, ETH_ALEN
);
7419 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_NACK
;
7421 igb_write_mbx(hw
, msgbuf
, 3, vf
);
7424 static void igb_flush_mac_table(struct igb_adapter
*adapter
)
7426 struct e1000_hw
*hw
= &adapter
->hw
;
7429 for (i
= 0; i
< hw
->mac
.rar_entry_count
; i
++) {
7430 adapter
->mac_table
[i
].state
&= ~IGB_MAC_STATE_IN_USE
;
7431 eth_zero_addr(adapter
->mac_table
[i
].addr
);
7432 adapter
->mac_table
[i
].queue
= 0;
7433 igb_rar_set_index(adapter
, i
);
7437 static int igb_available_rars(struct igb_adapter
*adapter
, u8 queue
)
7439 struct e1000_hw
*hw
= &adapter
->hw
;
7440 /* do not count rar entries reserved for VFs MAC addresses */
7441 int rar_entries
= hw
->mac
.rar_entry_count
-
7442 adapter
->vfs_allocated_count
;
7445 for (i
= 0; i
< rar_entries
; i
++) {
7446 /* do not count default entries */
7447 if (adapter
->mac_table
[i
].state
& IGB_MAC_STATE_DEFAULT
)
7450 /* do not count "in use" entries for different queues */
7451 if ((adapter
->mac_table
[i
].state
& IGB_MAC_STATE_IN_USE
) &&
7452 (adapter
->mac_table
[i
].queue
!= queue
))
7461 /* Set default MAC address for the PF in the first RAR entry */
7462 static void igb_set_default_mac_filter(struct igb_adapter
*adapter
)
7464 struct igb_mac_addr
*mac_table
= &adapter
->mac_table
[0];
7466 ether_addr_copy(mac_table
->addr
, adapter
->hw
.mac
.addr
);
7467 mac_table
->queue
= adapter
->vfs_allocated_count
;
7468 mac_table
->state
= IGB_MAC_STATE_DEFAULT
| IGB_MAC_STATE_IN_USE
;
7470 igb_rar_set_index(adapter
, 0);
7473 /* If the filter to be added and an already existing filter express
7474 * the same address and address type, it should be possible to only
7475 * override the other configurations, for example the queue to steer
7478 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr
*entry
,
7479 const u8
*addr
, const u8 flags
)
7481 if (!(entry
->state
& IGB_MAC_STATE_IN_USE
))
7484 if ((entry
->state
& IGB_MAC_STATE_SRC_ADDR
) !=
7485 (flags
& IGB_MAC_STATE_SRC_ADDR
))
7488 if (!ether_addr_equal(addr
, entry
->addr
))
7494 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7495 * 'flags' is used to indicate what kind of match is made, match is by
7496 * default for the destination address, if matching by source address
7497 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7499 static int igb_add_mac_filter_flags(struct igb_adapter
*adapter
,
7500 const u8
*addr
, const u8 queue
,
7503 struct e1000_hw
*hw
= &adapter
->hw
;
7504 int rar_entries
= hw
->mac
.rar_entry_count
-
7505 adapter
->vfs_allocated_count
;
7508 if (is_zero_ether_addr(addr
))
7511 /* Search for the first empty entry in the MAC table.
7512 * Do not touch entries at the end of the table reserved for the VF MAC
7515 for (i
= 0; i
< rar_entries
; i
++) {
7516 if (!igb_mac_entry_can_be_used(&adapter
->mac_table
[i
],
7520 ether_addr_copy(adapter
->mac_table
[i
].addr
, addr
);
7521 adapter
->mac_table
[i
].queue
= queue
;
7522 adapter
->mac_table
[i
].state
|= IGB_MAC_STATE_IN_USE
| flags
;
7524 igb_rar_set_index(adapter
, i
);
7531 static int igb_add_mac_filter(struct igb_adapter
*adapter
, const u8
*addr
,
7534 return igb_add_mac_filter_flags(adapter
, addr
, queue
, 0);
7537 /* Remove a MAC filter for 'addr' directing matching traffic to
7538 * 'queue', 'flags' is used to indicate what kind of match need to be
7539 * removed, match is by default for the destination address, if
7540 * matching by source address is to be removed the flag
7541 * IGB_MAC_STATE_SRC_ADDR can be used.
7543 static int igb_del_mac_filter_flags(struct igb_adapter
*adapter
,
7544 const u8
*addr
, const u8 queue
,
7547 struct e1000_hw
*hw
= &adapter
->hw
;
7548 int rar_entries
= hw
->mac
.rar_entry_count
-
7549 adapter
->vfs_allocated_count
;
7552 if (is_zero_ether_addr(addr
))
7555 /* Search for matching entry in the MAC table based on given address
7556 * and queue. Do not touch entries at the end of the table reserved
7557 * for the VF MAC addresses.
7559 for (i
= 0; i
< rar_entries
; i
++) {
7560 if (!(adapter
->mac_table
[i
].state
& IGB_MAC_STATE_IN_USE
))
7562 if ((adapter
->mac_table
[i
].state
& flags
) != flags
)
7564 if (adapter
->mac_table
[i
].queue
!= queue
)
7566 if (!ether_addr_equal(adapter
->mac_table
[i
].addr
, addr
))
7569 /* When a filter for the default address is "deleted",
7570 * we return it to its initial configuration
7572 if (adapter
->mac_table
[i
].state
& IGB_MAC_STATE_DEFAULT
) {
7573 adapter
->mac_table
[i
].state
=
7574 IGB_MAC_STATE_DEFAULT
| IGB_MAC_STATE_IN_USE
;
7575 adapter
->mac_table
[i
].queue
=
7576 adapter
->vfs_allocated_count
;
7578 adapter
->mac_table
[i
].state
= 0;
7579 adapter
->mac_table
[i
].queue
= 0;
7580 eth_zero_addr(adapter
->mac_table
[i
].addr
);
7583 igb_rar_set_index(adapter
, i
);
7590 static int igb_del_mac_filter(struct igb_adapter
*adapter
, const u8
*addr
,
7593 return igb_del_mac_filter_flags(adapter
, addr
, queue
, 0);
7596 int igb_add_mac_steering_filter(struct igb_adapter
*adapter
,
7597 const u8
*addr
, u8 queue
, u8 flags
)
7599 struct e1000_hw
*hw
= &adapter
->hw
;
7601 /* In theory, this should be supported on 82575 as well, but
7602 * that part wasn't easily accessible during development.
7604 if (hw
->mac
.type
!= e1000_i210
)
7607 return igb_add_mac_filter_flags(adapter
, addr
, queue
,
7608 IGB_MAC_STATE_QUEUE_STEERING
| flags
);
7611 int igb_del_mac_steering_filter(struct igb_adapter
*adapter
,
7612 const u8
*addr
, u8 queue
, u8 flags
)
7614 return igb_del_mac_filter_flags(adapter
, addr
, queue
,
7615 IGB_MAC_STATE_QUEUE_STEERING
| flags
);
7618 static int igb_uc_sync(struct net_device
*netdev
, const unsigned char *addr
)
7620 struct igb_adapter
*adapter
= netdev_priv(netdev
);
7623 ret
= igb_add_mac_filter(adapter
, addr
, adapter
->vfs_allocated_count
);
7625 return min_t(int, ret
, 0);
7628 static int igb_uc_unsync(struct net_device
*netdev
, const unsigned char *addr
)
7630 struct igb_adapter
*adapter
= netdev_priv(netdev
);
7632 igb_del_mac_filter(adapter
, addr
, adapter
->vfs_allocated_count
);
7637 static int igb_set_vf_mac_filter(struct igb_adapter
*adapter
, const int vf
,
7638 const u32 info
, const u8
*addr
)
7640 struct pci_dev
*pdev
= adapter
->pdev
;
7641 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7642 struct list_head
*pos
;
7643 struct vf_mac_filter
*entry
= NULL
;
7647 case E1000_VF_MAC_FILTER_CLR
:
7648 /* remove all unicast MAC filters related to the current VF */
7649 list_for_each(pos
, &adapter
->vf_macs
.l
) {
7650 entry
= list_entry(pos
, struct vf_mac_filter
, l
);
7651 if (entry
->vf
== vf
) {
7654 igb_del_mac_filter(adapter
, entry
->vf_mac
, vf
);
7658 case E1000_VF_MAC_FILTER_ADD
:
7659 if ((vf_data
->flags
& IGB_VF_FLAG_PF_SET_MAC
) &&
7660 !vf_data
->trusted
) {
7661 dev_warn(&pdev
->dev
,
7662 "VF %d requested MAC filter but is administratively denied\n",
7666 if (!is_valid_ether_addr(addr
)) {
7667 dev_warn(&pdev
->dev
,
7668 "VF %d attempted to set invalid MAC filter\n",
7673 /* try to find empty slot in the list */
7674 list_for_each(pos
, &adapter
->vf_macs
.l
) {
7675 entry
= list_entry(pos
, struct vf_mac_filter
, l
);
7680 if (entry
&& entry
->free
) {
7681 entry
->free
= false;
7683 ether_addr_copy(entry
->vf_mac
, addr
);
7685 ret
= igb_add_mac_filter(adapter
, addr
, vf
);
7686 ret
= min_t(int, ret
, 0);
7692 dev_warn(&pdev
->dev
,
7693 "VF %d has requested MAC filter but there is no space for it\n",
7704 static int igb_set_vf_mac_addr(struct igb_adapter
*adapter
, u32
*msg
, int vf
)
7706 struct pci_dev
*pdev
= adapter
->pdev
;
7707 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7708 u32 info
= msg
[0] & E1000_VT_MSGINFO_MASK
;
7710 /* The VF MAC Address is stored in a packed array of bytes
7711 * starting at the second 32 bit word of the msg array
7713 unsigned char *addr
= (unsigned char *)&msg
[1];
7717 if ((vf_data
->flags
& IGB_VF_FLAG_PF_SET_MAC
) &&
7718 !vf_data
->trusted
) {
7719 dev_warn(&pdev
->dev
,
7720 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7725 if (!is_valid_ether_addr(addr
)) {
7726 dev_warn(&pdev
->dev
,
7727 "VF %d attempted to set invalid MAC\n",
7732 ret
= igb_set_vf_mac(adapter
, vf
, addr
);
7734 ret
= igb_set_vf_mac_filter(adapter
, vf
, info
, addr
);
7740 static void igb_rcv_ack_from_vf(struct igb_adapter
*adapter
, u32 vf
)
7742 struct e1000_hw
*hw
= &adapter
->hw
;
7743 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7744 u32 msg
= E1000_VT_MSGTYPE_NACK
;
7746 /* if device isn't clear to send it shouldn't be reading either */
7747 if (!(vf_data
->flags
& IGB_VF_FLAG_CTS
) &&
7748 time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
))) {
7749 igb_write_mbx(hw
, &msg
, 1, vf
);
7750 vf_data
->last_nack
= jiffies
;
7754 static void igb_rcv_msg_from_vf(struct igb_adapter
*adapter
, u32 vf
)
7756 struct pci_dev
*pdev
= adapter
->pdev
;
7757 u32 msgbuf
[E1000_VFMAILBOX_SIZE
];
7758 struct e1000_hw
*hw
= &adapter
->hw
;
7759 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
7762 retval
= igb_read_mbx(hw
, msgbuf
, E1000_VFMAILBOX_SIZE
, vf
, false);
7765 /* if receive failed revoke VF CTS stats and restart init */
7766 dev_err(&pdev
->dev
, "Error receiving message from VF\n");
7767 vf_data
->flags
&= ~IGB_VF_FLAG_CTS
;
7768 if (!time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
)))
7773 /* this is a message we already processed, do nothing */
7774 if (msgbuf
[0] & (E1000_VT_MSGTYPE_ACK
| E1000_VT_MSGTYPE_NACK
))
7777 /* until the vf completes a reset it should not be
7778 * allowed to start any configuration.
7780 if (msgbuf
[0] == E1000_VF_RESET
) {
7781 /* unlocks mailbox */
7782 igb_vf_reset_msg(adapter
, vf
);
7786 if (!(vf_data
->flags
& IGB_VF_FLAG_CTS
)) {
7787 if (!time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
)))
7793 switch ((msgbuf
[0] & 0xFFFF)) {
7794 case E1000_VF_SET_MAC_ADDR
:
7795 retval
= igb_set_vf_mac_addr(adapter
, msgbuf
, vf
);
7797 case E1000_VF_SET_PROMISC
:
7798 retval
= igb_set_vf_promisc(adapter
, msgbuf
, vf
);
7800 case E1000_VF_SET_MULTICAST
:
7801 retval
= igb_set_vf_multicasts(adapter
, msgbuf
, vf
);
7803 case E1000_VF_SET_LPE
:
7804 retval
= igb_set_vf_rlpml(adapter
, msgbuf
[1], vf
);
7806 case E1000_VF_SET_VLAN
:
7808 if (vf_data
->pf_vlan
)
7809 dev_warn(&pdev
->dev
,
7810 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7813 retval
= igb_set_vf_vlan_msg(adapter
, msgbuf
, vf
);
7816 dev_err(&pdev
->dev
, "Unhandled Msg %08x\n", msgbuf
[0]);
7821 msgbuf
[0] |= E1000_VT_MSGTYPE_CTS
;
7823 /* notify the VF of the results of what it sent us */
7825 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
7827 msgbuf
[0] |= E1000_VT_MSGTYPE_ACK
;
7829 /* unlocks mailbox */
7830 igb_write_mbx(hw
, msgbuf
, 1, vf
);
7834 igb_unlock_mbx(hw
, vf
);
7837 static void igb_msg_task(struct igb_adapter
*adapter
)
7839 struct e1000_hw
*hw
= &adapter
->hw
;
7842 for (vf
= 0; vf
< adapter
->vfs_allocated_count
; vf
++) {
7843 /* process any reset requests */
7844 if (!igb_check_for_rst(hw
, vf
))
7845 igb_vf_reset_event(adapter
, vf
);
7847 /* process any messages pending */
7848 if (!igb_check_for_msg(hw
, vf
))
7849 igb_rcv_msg_from_vf(adapter
, vf
);
7851 /* process any acks */
7852 if (!igb_check_for_ack(hw
, vf
))
7853 igb_rcv_ack_from_vf(adapter
, vf
);
7858 * igb_set_uta - Set unicast filter table address
7859 * @adapter: board private structure
7860 * @set: boolean indicating if we are setting or clearing bits
7862 * The unicast table address is a register array of 32-bit registers.
7863 * The table is meant to be used in a way similar to how the MTA is used
7864 * however due to certain limitations in the hardware it is necessary to
7865 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7866 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7868 static void igb_set_uta(struct igb_adapter
*adapter
, bool set
)
7870 struct e1000_hw
*hw
= &adapter
->hw
;
7871 u32 uta
= set
? ~0 : 0;
7874 /* we only need to do this if VMDq is enabled */
7875 if (!adapter
->vfs_allocated_count
)
7878 for (i
= hw
->mac
.uta_reg_count
; i
--;)
7879 array_wr32(E1000_UTA
, i
, uta
);
7883 * igb_intr_msi - Interrupt Handler
7884 * @irq: interrupt number
7885 * @data: pointer to a network interface device structure
7887 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
7889 struct igb_adapter
*adapter
= data
;
7890 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
7891 struct e1000_hw
*hw
= &adapter
->hw
;
7892 /* read ICR disables interrupts using IAM */
7893 u32 icr
= rd32(E1000_ICR
);
7895 igb_write_itr(q_vector
);
7897 if (icr
& E1000_ICR_DRSTA
)
7898 schedule_work(&adapter
->reset_task
);
7900 if (icr
& E1000_ICR_DOUTSYNC
) {
7901 /* HW is reporting DMA is out of sync */
7902 adapter
->stats
.doosync
++;
7905 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
7906 hw
->mac
.get_link_status
= 1;
7907 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
7908 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
7911 if (icr
& E1000_ICR_TS
)
7912 igb_tsync_interrupt(adapter
);
7914 napi_schedule(&q_vector
->napi
);
7920 * igb_intr - Legacy Interrupt Handler
7921 * @irq: interrupt number
7922 * @data: pointer to a network interface device structure
7924 static irqreturn_t
igb_intr(int irq
, void *data
)
7926 struct igb_adapter
*adapter
= data
;
7927 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
7928 struct e1000_hw
*hw
= &adapter
->hw
;
7929 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7930 * need for the IMC write
7932 u32 icr
= rd32(E1000_ICR
);
7934 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7935 * not set, then the adapter didn't send an interrupt
7937 if (!(icr
& E1000_ICR_INT_ASSERTED
))
7940 igb_write_itr(q_vector
);
7942 if (icr
& E1000_ICR_DRSTA
)
7943 schedule_work(&adapter
->reset_task
);
7945 if (icr
& E1000_ICR_DOUTSYNC
) {
7946 /* HW is reporting DMA is out of sync */
7947 adapter
->stats
.doosync
++;
7950 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
7951 hw
->mac
.get_link_status
= 1;
7952 /* guard against interrupt when we're going down */
7953 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
7954 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
7957 if (icr
& E1000_ICR_TS
)
7958 igb_tsync_interrupt(adapter
);
7960 napi_schedule(&q_vector
->napi
);
7965 static void igb_ring_irq_enable(struct igb_q_vector
*q_vector
)
7967 struct igb_adapter
*adapter
= q_vector
->adapter
;
7968 struct e1000_hw
*hw
= &adapter
->hw
;
7970 if ((q_vector
->rx
.ring
&& (adapter
->rx_itr_setting
& 3)) ||
7971 (!q_vector
->rx
.ring
&& (adapter
->tx_itr_setting
& 3))) {
7972 if ((adapter
->num_q_vectors
== 1) && !adapter
->vf_data
)
7973 igb_set_itr(q_vector
);
7975 igb_update_ring_itr(q_vector
);
7978 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
7979 if (adapter
->flags
& IGB_FLAG_HAS_MSIX
)
7980 wr32(E1000_EIMS
, q_vector
->eims_value
);
7982 igb_irq_enable(adapter
);
7987 * igb_poll - NAPI Rx polling callback
7988 * @napi: napi polling structure
7989 * @budget: count of how many packets we should handle
7991 static int igb_poll(struct napi_struct
*napi
, int budget
)
7993 struct igb_q_vector
*q_vector
= container_of(napi
,
7994 struct igb_q_vector
,
7996 bool clean_complete
= true;
7999 #ifdef CONFIG_IGB_DCA
8000 if (q_vector
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
8001 igb_update_dca(q_vector
);
8003 if (q_vector
->tx
.ring
)
8004 clean_complete
= igb_clean_tx_irq(q_vector
, budget
);
8006 if (q_vector
->rx
.ring
) {
8007 int cleaned
= igb_clean_rx_irq(q_vector
, budget
);
8009 work_done
+= cleaned
;
8010 if (cleaned
>= budget
)
8011 clean_complete
= false;
8014 /* If all work not completed, return budget and keep polling */
8015 if (!clean_complete
)
8018 /* Exit the polling mode, but don't re-enable interrupts if stack might
8019 * poll us due to busy-polling
8021 if (likely(napi_complete_done(napi
, work_done
)))
8022 igb_ring_irq_enable(q_vector
);
8024 return min(work_done
, budget
- 1);
8028 * igb_clean_tx_irq - Reclaim resources after transmit completes
8029 * @q_vector: pointer to q_vector containing needed info
8030 * @napi_budget: Used to determine if we are in netpoll
8032 * returns true if ring is completely cleaned
8034 static bool igb_clean_tx_irq(struct igb_q_vector
*q_vector
, int napi_budget
)
8036 struct igb_adapter
*adapter
= q_vector
->adapter
;
8037 struct igb_ring
*tx_ring
= q_vector
->tx
.ring
;
8038 struct igb_tx_buffer
*tx_buffer
;
8039 union e1000_adv_tx_desc
*tx_desc
;
8040 unsigned int total_bytes
= 0, total_packets
= 0;
8041 unsigned int budget
= q_vector
->tx
.work_limit
;
8042 unsigned int i
= tx_ring
->next_to_clean
;
8044 if (test_bit(__IGB_DOWN
, &adapter
->state
))
8047 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
8048 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
8049 i
-= tx_ring
->count
;
8052 union e1000_adv_tx_desc
*eop_desc
= tx_buffer
->next_to_watch
;
8054 /* if next_to_watch is not set then there is no work pending */
8058 /* prevent any other reads prior to eop_desc */
8061 /* if DD is not set pending work has not been completed */
8062 if (!(eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)))
8065 /* clear next_to_watch to prevent false hangs */
8066 tx_buffer
->next_to_watch
= NULL
;
8068 /* update the statistics for this packet */
8069 total_bytes
+= tx_buffer
->bytecount
;
8070 total_packets
+= tx_buffer
->gso_segs
;
8073 if (tx_buffer
->type
== IGB_TYPE_SKB
)
8074 napi_consume_skb(tx_buffer
->skb
, napi_budget
);
8076 xdp_return_frame(tx_buffer
->xdpf
);
8078 /* unmap skb header data */
8079 dma_unmap_single(tx_ring
->dev
,
8080 dma_unmap_addr(tx_buffer
, dma
),
8081 dma_unmap_len(tx_buffer
, len
),
8084 /* clear tx_buffer data */
8085 dma_unmap_len_set(tx_buffer
, len
, 0);
8087 /* clear last DMA location and unmap remaining buffers */
8088 while (tx_desc
!= eop_desc
) {
8093 i
-= tx_ring
->count
;
8094 tx_buffer
= tx_ring
->tx_buffer_info
;
8095 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
8098 /* unmap any remaining paged data */
8099 if (dma_unmap_len(tx_buffer
, len
)) {
8100 dma_unmap_page(tx_ring
->dev
,
8101 dma_unmap_addr(tx_buffer
, dma
),
8102 dma_unmap_len(tx_buffer
, len
),
8104 dma_unmap_len_set(tx_buffer
, len
, 0);
8108 /* move us one more past the eop_desc for start of next pkt */
8113 i
-= tx_ring
->count
;
8114 tx_buffer
= tx_ring
->tx_buffer_info
;
8115 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
8118 /* issue prefetch for next Tx descriptor */
8121 /* update budget accounting */
8123 } while (likely(budget
));
8125 netdev_tx_completed_queue(txring_txq(tx_ring
),
8126 total_packets
, total_bytes
);
8127 i
+= tx_ring
->count
;
8128 tx_ring
->next_to_clean
= i
;
8129 u64_stats_update_begin(&tx_ring
->tx_syncp
);
8130 tx_ring
->tx_stats
.bytes
+= total_bytes
;
8131 tx_ring
->tx_stats
.packets
+= total_packets
;
8132 u64_stats_update_end(&tx_ring
->tx_syncp
);
8133 q_vector
->tx
.total_bytes
+= total_bytes
;
8134 q_vector
->tx
.total_packets
+= total_packets
;
8136 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG
, &tx_ring
->flags
)) {
8137 struct e1000_hw
*hw
= &adapter
->hw
;
8139 /* Detect a transmit hang in hardware, this serializes the
8140 * check with the clearing of time_stamp and movement of i
8142 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG
, &tx_ring
->flags
);
8143 if (tx_buffer
->next_to_watch
&&
8144 time_after(jiffies
, tx_buffer
->time_stamp
+
8145 (adapter
->tx_timeout_factor
* HZ
)) &&
8146 !(rd32(E1000_STATUS
) & E1000_STATUS_TXOFF
)) {
8148 /* detected Tx unit hang */
8149 dev_err(tx_ring
->dev
,
8150 "Detected Tx Unit Hang\n"
8154 " next_to_use <%x>\n"
8155 " next_to_clean <%x>\n"
8156 "buffer_info[next_to_clean]\n"
8157 " time_stamp <%lx>\n"
8158 " next_to_watch <%p>\n"
8160 " desc.status <%x>\n",
8161 tx_ring
->queue_index
,
8162 rd32(E1000_TDH(tx_ring
->reg_idx
)),
8163 readl(tx_ring
->tail
),
8164 tx_ring
->next_to_use
,
8165 tx_ring
->next_to_clean
,
8166 tx_buffer
->time_stamp
,
8167 tx_buffer
->next_to_watch
,
8169 tx_buffer
->next_to_watch
->wb
.status
);
8170 netif_stop_subqueue(tx_ring
->netdev
,
8171 tx_ring
->queue_index
);
8173 /* we are about to reset, no point in enabling stuff */
8178 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8179 if (unlikely(total_packets
&&
8180 netif_carrier_ok(tx_ring
->netdev
) &&
8181 igb_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
8182 /* Make sure that anybody stopping the queue after this
8183 * sees the new next_to_clean.
8186 if (__netif_subqueue_stopped(tx_ring
->netdev
,
8187 tx_ring
->queue_index
) &&
8188 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
8189 netif_wake_subqueue(tx_ring
->netdev
,
8190 tx_ring
->queue_index
);
8192 u64_stats_update_begin(&tx_ring
->tx_syncp
);
8193 tx_ring
->tx_stats
.restart_queue
++;
8194 u64_stats_update_end(&tx_ring
->tx_syncp
);
8202 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8203 * @rx_ring: rx descriptor ring to store buffers on
8204 * @old_buff: donor buffer to have page reused
8206 * Synchronizes page for reuse by the adapter
8208 static void igb_reuse_rx_page(struct igb_ring
*rx_ring
,
8209 struct igb_rx_buffer
*old_buff
)
8211 struct igb_rx_buffer
*new_buff
;
8212 u16 nta
= rx_ring
->next_to_alloc
;
8214 new_buff
= &rx_ring
->rx_buffer_info
[nta
];
8216 /* update, and store next to alloc */
8218 rx_ring
->next_to_alloc
= (nta
< rx_ring
->count
) ? nta
: 0;
8220 /* Transfer page from old buffer to new buffer.
8221 * Move each member individually to avoid possible store
8222 * forwarding stalls.
8224 new_buff
->dma
= old_buff
->dma
;
8225 new_buff
->page
= old_buff
->page
;
8226 new_buff
->page_offset
= old_buff
->page_offset
;
8227 new_buff
->pagecnt_bias
= old_buff
->pagecnt_bias
;
8230 static inline bool igb_page_is_reserved(struct page
*page
)
8232 return (page_to_nid(page
) != numa_mem_id()) || page_is_pfmemalloc(page
);
8235 static bool igb_can_reuse_rx_page(struct igb_rx_buffer
*rx_buffer
)
8237 unsigned int pagecnt_bias
= rx_buffer
->pagecnt_bias
;
8238 struct page
*page
= rx_buffer
->page
;
8240 /* avoid re-using remote pages */
8241 if (unlikely(igb_page_is_reserved(page
)))
8244 #if (PAGE_SIZE < 8192)
8245 /* if we are only owner of page we can reuse it */
8246 if (unlikely((page_ref_count(page
) - pagecnt_bias
) > 1))
8249 #define IGB_LAST_OFFSET \
8250 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8252 if (rx_buffer
->page_offset
> IGB_LAST_OFFSET
)
8256 /* If we have drained the page fragment pool we need to update
8257 * the pagecnt_bias and page count so that we fully restock the
8258 * number of references the driver holds.
8260 if (unlikely(pagecnt_bias
== 1)) {
8261 page_ref_add(page
, USHRT_MAX
- 1);
8262 rx_buffer
->pagecnt_bias
= USHRT_MAX
;
8269 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8270 * @rx_ring: rx descriptor ring to transact packets on
8271 * @rx_buffer: buffer containing page to add
8272 * @skb: sk_buff to place the data into
8273 * @size: size of buffer to be added
8275 * This function will add the data contained in rx_buffer->page to the skb.
8277 static void igb_add_rx_frag(struct igb_ring
*rx_ring
,
8278 struct igb_rx_buffer
*rx_buffer
,
8279 struct sk_buff
*skb
,
8282 #if (PAGE_SIZE < 8192)
8283 unsigned int truesize
= igb_rx_pg_size(rx_ring
) / 2;
8285 unsigned int truesize
= ring_uses_build_skb(rx_ring
) ?
8286 SKB_DATA_ALIGN(IGB_SKB_PAD
+ size
) :
8287 SKB_DATA_ALIGN(size
);
8289 skb_add_rx_frag(skb
, skb_shinfo(skb
)->nr_frags
, rx_buffer
->page
,
8290 rx_buffer
->page_offset
, size
, truesize
);
8291 #if (PAGE_SIZE < 8192)
8292 rx_buffer
->page_offset
^= truesize
;
8294 rx_buffer
->page_offset
+= truesize
;
8298 static struct sk_buff
*igb_construct_skb(struct igb_ring
*rx_ring
,
8299 struct igb_rx_buffer
*rx_buffer
,
8300 struct xdp_buff
*xdp
,
8301 union e1000_adv_rx_desc
*rx_desc
)
8303 #if (PAGE_SIZE < 8192)
8304 unsigned int truesize
= igb_rx_pg_size(rx_ring
) / 2;
8306 unsigned int truesize
= SKB_DATA_ALIGN(xdp
->data_end
-
8307 xdp
->data_hard_start
);
8309 unsigned int size
= xdp
->data_end
- xdp
->data
;
8310 unsigned int headlen
;
8311 struct sk_buff
*skb
;
8313 /* prefetch first cache line of first page */
8314 net_prefetch(xdp
->data
);
8316 /* allocate a skb to store the frags */
8317 skb
= napi_alloc_skb(&rx_ring
->q_vector
->napi
, IGB_RX_HDR_LEN
);
8321 if (unlikely(igb_test_staterr(rx_desc
, E1000_RXDADV_STAT_TSIP
))) {
8322 igb_ptp_rx_pktstamp(rx_ring
->q_vector
, xdp
->data
, skb
);
8323 xdp
->data
+= IGB_TS_HDR_LEN
;
8324 size
-= IGB_TS_HDR_LEN
;
8327 /* Determine available headroom for copy */
8329 if (headlen
> IGB_RX_HDR_LEN
)
8330 headlen
= eth_get_headlen(skb
->dev
, xdp
->data
, IGB_RX_HDR_LEN
);
8332 /* align pull length to size of long to optimize memcpy performance */
8333 memcpy(__skb_put(skb
, headlen
), xdp
->data
, ALIGN(headlen
, sizeof(long)));
8335 /* update all of the pointers */
8338 skb_add_rx_frag(skb
, 0, rx_buffer
->page
,
8339 (xdp
->data
+ headlen
) - page_address(rx_buffer
->page
),
8341 #if (PAGE_SIZE < 8192)
8342 rx_buffer
->page_offset
^= truesize
;
8344 rx_buffer
->page_offset
+= truesize
;
8347 rx_buffer
->pagecnt_bias
++;
8353 static struct sk_buff
*igb_build_skb(struct igb_ring
*rx_ring
,
8354 struct igb_rx_buffer
*rx_buffer
,
8355 struct xdp_buff
*xdp
,
8356 union e1000_adv_rx_desc
*rx_desc
)
8358 #if (PAGE_SIZE < 8192)
8359 unsigned int truesize
= igb_rx_pg_size(rx_ring
) / 2;
8361 unsigned int truesize
= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) +
8362 SKB_DATA_ALIGN(xdp
->data_end
-
8363 xdp
->data_hard_start
);
8365 unsigned int metasize
= xdp
->data
- xdp
->data_meta
;
8366 struct sk_buff
*skb
;
8368 /* prefetch first cache line of first page */
8369 net_prefetch(xdp
->data_meta
);
8371 /* build an skb around the page buffer */
8372 skb
= build_skb(xdp
->data_hard_start
, truesize
);
8376 /* update pointers within the skb to store the data */
8377 skb_reserve(skb
, xdp
->data
- xdp
->data_hard_start
);
8378 __skb_put(skb
, xdp
->data_end
- xdp
->data
);
8381 skb_metadata_set(skb
, metasize
);
8383 /* pull timestamp out of packet data */
8384 if (igb_test_staterr(rx_desc
, E1000_RXDADV_STAT_TSIP
)) {
8385 igb_ptp_rx_pktstamp(rx_ring
->q_vector
, skb
->data
, skb
);
8386 __skb_pull(skb
, IGB_TS_HDR_LEN
);
8389 /* update buffer offset */
8390 #if (PAGE_SIZE < 8192)
8391 rx_buffer
->page_offset
^= truesize
;
8393 rx_buffer
->page_offset
+= truesize
;
8399 static struct sk_buff
*igb_run_xdp(struct igb_adapter
*adapter
,
8400 struct igb_ring
*rx_ring
,
8401 struct xdp_buff
*xdp
)
8403 int err
, result
= IGB_XDP_PASS
;
8404 struct bpf_prog
*xdp_prog
;
8408 xdp_prog
= READ_ONCE(rx_ring
->xdp_prog
);
8413 prefetchw(xdp
->data_hard_start
); /* xdp_frame write */
8415 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
8420 result
= igb_xdp_xmit_back(adapter
, xdp
);
8423 err
= xdp_do_redirect(adapter
->netdev
, xdp
, xdp_prog
);
8425 result
= IGB_XDP_REDIR
;
8427 result
= IGB_XDP_CONSUMED
;
8430 bpf_warn_invalid_xdp_action(act
);
8433 trace_xdp_exception(rx_ring
->netdev
, xdp_prog
, act
);
8436 result
= IGB_XDP_CONSUMED
;
8441 return ERR_PTR(-result
);
8444 static unsigned int igb_rx_frame_truesize(struct igb_ring
*rx_ring
,
8447 unsigned int truesize
;
8449 #if (PAGE_SIZE < 8192)
8450 truesize
= igb_rx_pg_size(rx_ring
) / 2; /* Must be power-of-2 */
8452 truesize
= ring_uses_build_skb(rx_ring
) ?
8453 SKB_DATA_ALIGN(IGB_SKB_PAD
+ size
) +
8454 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) :
8455 SKB_DATA_ALIGN(size
);
8460 static void igb_rx_buffer_flip(struct igb_ring
*rx_ring
,
8461 struct igb_rx_buffer
*rx_buffer
,
8464 unsigned int truesize
= igb_rx_frame_truesize(rx_ring
, size
);
8465 #if (PAGE_SIZE < 8192)
8466 rx_buffer
->page_offset
^= truesize
;
8468 rx_buffer
->page_offset
+= truesize
;
8472 static inline void igb_rx_checksum(struct igb_ring
*ring
,
8473 union e1000_adv_rx_desc
*rx_desc
,
8474 struct sk_buff
*skb
)
8476 skb_checksum_none_assert(skb
);
8478 /* Ignore Checksum bit is set */
8479 if (igb_test_staterr(rx_desc
, E1000_RXD_STAT_IXSM
))
8482 /* Rx checksum disabled via ethtool */
8483 if (!(ring
->netdev
->features
& NETIF_F_RXCSUM
))
8486 /* TCP/UDP checksum error bit is set */
8487 if (igb_test_staterr(rx_desc
,
8488 E1000_RXDEXT_STATERR_TCPE
|
8489 E1000_RXDEXT_STATERR_IPE
)) {
8490 /* work around errata with sctp packets where the TCPE aka
8491 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8492 * packets, (aka let the stack check the crc32c)
8494 if (!((skb
->len
== 60) &&
8495 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM
, &ring
->flags
))) {
8496 u64_stats_update_begin(&ring
->rx_syncp
);
8497 ring
->rx_stats
.csum_err
++;
8498 u64_stats_update_end(&ring
->rx_syncp
);
8500 /* let the stack verify checksum errors */
8503 /* It must be a TCP or UDP packet with a valid checksum */
8504 if (igb_test_staterr(rx_desc
, E1000_RXD_STAT_TCPCS
|
8505 E1000_RXD_STAT_UDPCS
))
8506 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
8508 dev_dbg(ring
->dev
, "cksum success: bits %08X\n",
8509 le32_to_cpu(rx_desc
->wb
.upper
.status_error
));
8512 static inline void igb_rx_hash(struct igb_ring
*ring
,
8513 union e1000_adv_rx_desc
*rx_desc
,
8514 struct sk_buff
*skb
)
8516 if (ring
->netdev
->features
& NETIF_F_RXHASH
)
8518 le32_to_cpu(rx_desc
->wb
.lower
.hi_dword
.rss
),
8523 * igb_is_non_eop - process handling of non-EOP buffers
8524 * @rx_ring: Rx ring being processed
8525 * @rx_desc: Rx descriptor for current buffer
8527 * This function updates next to clean. If the buffer is an EOP buffer
8528 * this function exits returning false, otherwise it will place the
8529 * sk_buff in the next buffer to be chained and return true indicating
8530 * that this is in fact a non-EOP buffer.
8532 static bool igb_is_non_eop(struct igb_ring
*rx_ring
,
8533 union e1000_adv_rx_desc
*rx_desc
)
8535 u32 ntc
= rx_ring
->next_to_clean
+ 1;
8537 /* fetch, update, and store next to clean */
8538 ntc
= (ntc
< rx_ring
->count
) ? ntc
: 0;
8539 rx_ring
->next_to_clean
= ntc
;
8541 prefetch(IGB_RX_DESC(rx_ring
, ntc
));
8543 if (likely(igb_test_staterr(rx_desc
, E1000_RXD_STAT_EOP
)))
8550 * igb_cleanup_headers - Correct corrupted or empty headers
8551 * @rx_ring: rx descriptor ring packet is being transacted on
8552 * @rx_desc: pointer to the EOP Rx descriptor
8553 * @skb: pointer to current skb being fixed
8555 * Address the case where we are pulling data in on pages only
8556 * and as such no data is present in the skb header.
8558 * In addition if skb is not at least 60 bytes we need to pad it so that
8559 * it is large enough to qualify as a valid Ethernet frame.
8561 * Returns true if an error was encountered and skb was freed.
8563 static bool igb_cleanup_headers(struct igb_ring
*rx_ring
,
8564 union e1000_adv_rx_desc
*rx_desc
,
8565 struct sk_buff
*skb
)
8567 /* XDP packets use error pointer so abort at this point */
8571 if (unlikely((igb_test_staterr(rx_desc
,
8572 E1000_RXDEXT_ERR_FRAME_ERR_MASK
)))) {
8573 struct net_device
*netdev
= rx_ring
->netdev
;
8574 if (!(netdev
->features
& NETIF_F_RXALL
)) {
8575 dev_kfree_skb_any(skb
);
8580 /* if eth_skb_pad returns an error the skb was freed */
8581 if (eth_skb_pad(skb
))
8588 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8589 * @rx_ring: rx descriptor ring packet is being transacted on
8590 * @rx_desc: pointer to the EOP Rx descriptor
8591 * @skb: pointer to current skb being populated
8593 * This function checks the ring, descriptor, and packet information in
8594 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8595 * other fields within the skb.
8597 static void igb_process_skb_fields(struct igb_ring
*rx_ring
,
8598 union e1000_adv_rx_desc
*rx_desc
,
8599 struct sk_buff
*skb
)
8601 struct net_device
*dev
= rx_ring
->netdev
;
8603 igb_rx_hash(rx_ring
, rx_desc
, skb
);
8605 igb_rx_checksum(rx_ring
, rx_desc
, skb
);
8607 if (igb_test_staterr(rx_desc
, E1000_RXDADV_STAT_TS
) &&
8608 !igb_test_staterr(rx_desc
, E1000_RXDADV_STAT_TSIP
))
8609 igb_ptp_rx_rgtstamp(rx_ring
->q_vector
, skb
);
8611 if ((dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
8612 igb_test_staterr(rx_desc
, E1000_RXD_STAT_VP
)) {
8615 if (igb_test_staterr(rx_desc
, E1000_RXDEXT_STATERR_LB
) &&
8616 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP
, &rx_ring
->flags
))
8617 vid
= be16_to_cpu(rx_desc
->wb
.upper
.vlan
);
8619 vid
= le16_to_cpu(rx_desc
->wb
.upper
.vlan
);
8621 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
8624 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
8626 skb
->protocol
= eth_type_trans(skb
, rx_ring
->netdev
);
8629 static unsigned int igb_rx_offset(struct igb_ring
*rx_ring
)
8631 return ring_uses_build_skb(rx_ring
) ? IGB_SKB_PAD
: 0;
8634 static struct igb_rx_buffer
*igb_get_rx_buffer(struct igb_ring
*rx_ring
,
8635 const unsigned int size
)
8637 struct igb_rx_buffer
*rx_buffer
;
8639 rx_buffer
= &rx_ring
->rx_buffer_info
[rx_ring
->next_to_clean
];
8640 prefetchw(rx_buffer
->page
);
8642 /* we are reusing so sync this buffer for CPU use */
8643 dma_sync_single_range_for_cpu(rx_ring
->dev
,
8645 rx_buffer
->page_offset
,
8649 rx_buffer
->pagecnt_bias
--;
8654 static void igb_put_rx_buffer(struct igb_ring
*rx_ring
,
8655 struct igb_rx_buffer
*rx_buffer
)
8657 if (igb_can_reuse_rx_page(rx_buffer
)) {
8658 /* hand second half of page back to the ring */
8659 igb_reuse_rx_page(rx_ring
, rx_buffer
);
8661 /* We are not reusing the buffer so unmap it and free
8662 * any references we are holding to it
8664 dma_unmap_page_attrs(rx_ring
->dev
, rx_buffer
->dma
,
8665 igb_rx_pg_size(rx_ring
), DMA_FROM_DEVICE
,
8667 __page_frag_cache_drain(rx_buffer
->page
,
8668 rx_buffer
->pagecnt_bias
);
8671 /* clear contents of rx_buffer */
8672 rx_buffer
->page
= NULL
;
8675 static int igb_clean_rx_irq(struct igb_q_vector
*q_vector
, const int budget
)
8677 struct igb_adapter
*adapter
= q_vector
->adapter
;
8678 struct igb_ring
*rx_ring
= q_vector
->rx
.ring
;
8679 struct sk_buff
*skb
= rx_ring
->skb
;
8680 unsigned int total_bytes
= 0, total_packets
= 0;
8681 u16 cleaned_count
= igb_desc_unused(rx_ring
);
8682 unsigned int xdp_xmit
= 0;
8683 struct xdp_buff xdp
;
8685 xdp
.rxq
= &rx_ring
->xdp_rxq
;
8687 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8688 #if (PAGE_SIZE < 8192)
8689 xdp
.frame_sz
= igb_rx_frame_truesize(rx_ring
, 0);
8692 while (likely(total_packets
< budget
)) {
8693 union e1000_adv_rx_desc
*rx_desc
;
8694 struct igb_rx_buffer
*rx_buffer
;
8697 /* return some buffers to hardware, one at a time is too slow */
8698 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
8699 igb_alloc_rx_buffers(rx_ring
, cleaned_count
);
8703 rx_desc
= IGB_RX_DESC(rx_ring
, rx_ring
->next_to_clean
);
8704 size
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
8708 /* This memory barrier is needed to keep us from reading
8709 * any other fields out of the rx_desc until we know the
8710 * descriptor has been written back
8714 rx_buffer
= igb_get_rx_buffer(rx_ring
, size
);
8716 /* retrieve a buffer from the ring */
8718 xdp
.data
= page_address(rx_buffer
->page
) +
8719 rx_buffer
->page_offset
;
8720 xdp
.data_meta
= xdp
.data
;
8721 xdp
.data_hard_start
= xdp
.data
-
8722 igb_rx_offset(rx_ring
);
8723 xdp
.data_end
= xdp
.data
+ size
;
8724 #if (PAGE_SIZE > 4096)
8725 /* At larger PAGE_SIZE, frame_sz depend on len size */
8726 xdp
.frame_sz
= igb_rx_frame_truesize(rx_ring
, size
);
8728 skb
= igb_run_xdp(adapter
, rx_ring
, &xdp
);
8732 unsigned int xdp_res
= -PTR_ERR(skb
);
8734 if (xdp_res
& (IGB_XDP_TX
| IGB_XDP_REDIR
)) {
8735 xdp_xmit
|= xdp_res
;
8736 igb_rx_buffer_flip(rx_ring
, rx_buffer
, size
);
8738 rx_buffer
->pagecnt_bias
++;
8741 total_bytes
+= size
;
8743 igb_add_rx_frag(rx_ring
, rx_buffer
, skb
, size
);
8744 else if (ring_uses_build_skb(rx_ring
))
8745 skb
= igb_build_skb(rx_ring
, rx_buffer
, &xdp
, rx_desc
);
8747 skb
= igb_construct_skb(rx_ring
, rx_buffer
,
8750 /* exit if we failed to retrieve a buffer */
8752 rx_ring
->rx_stats
.alloc_failed
++;
8753 rx_buffer
->pagecnt_bias
++;
8757 igb_put_rx_buffer(rx_ring
, rx_buffer
);
8760 /* fetch next buffer in frame if non-eop */
8761 if (igb_is_non_eop(rx_ring
, rx_desc
))
8764 /* verify the packet layout is correct */
8765 if (igb_cleanup_headers(rx_ring
, rx_desc
, skb
)) {
8770 /* probably a little skewed due to removing CRC */
8771 total_bytes
+= skb
->len
;
8773 /* populate checksum, timestamp, VLAN, and protocol */
8774 igb_process_skb_fields(rx_ring
, rx_desc
, skb
);
8776 napi_gro_receive(&q_vector
->napi
, skb
);
8778 /* reset skb pointer */
8781 /* update budget accounting */
8785 /* place incomplete frames back on ring for completion */
8788 if (xdp_xmit
& IGB_XDP_REDIR
)
8791 if (xdp_xmit
& IGB_XDP_TX
) {
8792 struct igb_ring
*tx_ring
= igb_xdp_tx_queue_mapping(adapter
);
8794 igb_xdp_ring_update_tail(tx_ring
);
8797 u64_stats_update_begin(&rx_ring
->rx_syncp
);
8798 rx_ring
->rx_stats
.packets
+= total_packets
;
8799 rx_ring
->rx_stats
.bytes
+= total_bytes
;
8800 u64_stats_update_end(&rx_ring
->rx_syncp
);
8801 q_vector
->rx
.total_packets
+= total_packets
;
8802 q_vector
->rx
.total_bytes
+= total_bytes
;
8805 igb_alloc_rx_buffers(rx_ring
, cleaned_count
);
8807 return total_packets
;
8810 static bool igb_alloc_mapped_page(struct igb_ring
*rx_ring
,
8811 struct igb_rx_buffer
*bi
)
8813 struct page
*page
= bi
->page
;
8816 /* since we are recycling buffers we should seldom need to alloc */
8820 /* alloc new page for storage */
8821 page
= dev_alloc_pages(igb_rx_pg_order(rx_ring
));
8822 if (unlikely(!page
)) {
8823 rx_ring
->rx_stats
.alloc_failed
++;
8827 /* map page for use */
8828 dma
= dma_map_page_attrs(rx_ring
->dev
, page
, 0,
8829 igb_rx_pg_size(rx_ring
),
8833 /* if mapping failed free memory back to system since
8834 * there isn't much point in holding memory we can't use
8836 if (dma_mapping_error(rx_ring
->dev
, dma
)) {
8837 __free_pages(page
, igb_rx_pg_order(rx_ring
));
8839 rx_ring
->rx_stats
.alloc_failed
++;
8845 bi
->page_offset
= igb_rx_offset(rx_ring
);
8846 page_ref_add(page
, USHRT_MAX
- 1);
8847 bi
->pagecnt_bias
= USHRT_MAX
;
8853 * igb_alloc_rx_buffers - Replace used receive buffers
8854 * @rx_ring: rx descriptor ring to allocate new receive buffers
8855 * @cleaned_count: count of buffers to allocate
8857 void igb_alloc_rx_buffers(struct igb_ring
*rx_ring
, u16 cleaned_count
)
8859 union e1000_adv_rx_desc
*rx_desc
;
8860 struct igb_rx_buffer
*bi
;
8861 u16 i
= rx_ring
->next_to_use
;
8868 rx_desc
= IGB_RX_DESC(rx_ring
, i
);
8869 bi
= &rx_ring
->rx_buffer_info
[i
];
8870 i
-= rx_ring
->count
;
8872 bufsz
= igb_rx_bufsz(rx_ring
);
8875 if (!igb_alloc_mapped_page(rx_ring
, bi
))
8878 /* sync the buffer for use by the device */
8879 dma_sync_single_range_for_device(rx_ring
->dev
, bi
->dma
,
8880 bi
->page_offset
, bufsz
,
8883 /* Refresh the desc even if buffer_addrs didn't change
8884 * because each write-back erases this info.
8886 rx_desc
->read
.pkt_addr
= cpu_to_le64(bi
->dma
+ bi
->page_offset
);
8892 rx_desc
= IGB_RX_DESC(rx_ring
, 0);
8893 bi
= rx_ring
->rx_buffer_info
;
8894 i
-= rx_ring
->count
;
8897 /* clear the length for the next_to_use descriptor */
8898 rx_desc
->wb
.upper
.length
= 0;
8901 } while (cleaned_count
);
8903 i
+= rx_ring
->count
;
8905 if (rx_ring
->next_to_use
!= i
) {
8906 /* record the next descriptor to use */
8907 rx_ring
->next_to_use
= i
;
8909 /* update next to alloc since we have filled the ring */
8910 rx_ring
->next_to_alloc
= i
;
8912 /* Force memory writes to complete before letting h/w
8913 * know there are new descriptors to fetch. (Only
8914 * applicable for weak-ordered memory model archs,
8918 writel(i
, rx_ring
->tail
);
8924 * @netdev: pointer to netdev struct
8925 * @ifr: interface structure
8926 * @cmd: ioctl command to execute
8928 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
8930 struct igb_adapter
*adapter
= netdev_priv(netdev
);
8931 struct mii_ioctl_data
*data
= if_mii(ifr
);
8933 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
8938 data
->phy_id
= adapter
->hw
.phy
.addr
;
8941 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
8954 * @netdev: pointer to netdev struct
8955 * @ifr: interface structure
8956 * @cmd: ioctl command to execute
8958 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
8964 return igb_mii_ioctl(netdev
, ifr
, cmd
);
8966 return igb_ptp_get_ts_config(netdev
, ifr
);
8968 return igb_ptp_set_ts_config(netdev
, ifr
);
8974 void igb_read_pci_cfg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
8976 struct igb_adapter
*adapter
= hw
->back
;
8978 pci_read_config_word(adapter
->pdev
, reg
, value
);
8981 void igb_write_pci_cfg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
8983 struct igb_adapter
*adapter
= hw
->back
;
8985 pci_write_config_word(adapter
->pdev
, reg
, *value
);
8988 s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
8990 struct igb_adapter
*adapter
= hw
->back
;
8992 if (pcie_capability_read_word(adapter
->pdev
, reg
, value
))
8993 return -E1000_ERR_CONFIG
;
8998 s32
igb_write_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
9000 struct igb_adapter
*adapter
= hw
->back
;
9002 if (pcie_capability_write_word(adapter
->pdev
, reg
, *value
))
9003 return -E1000_ERR_CONFIG
;
9008 static void igb_vlan_mode(struct net_device
*netdev
, netdev_features_t features
)
9010 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9011 struct e1000_hw
*hw
= &adapter
->hw
;
9013 bool enable
= !!(features
& NETIF_F_HW_VLAN_CTAG_RX
);
9016 /* enable VLAN tag insert/strip */
9017 ctrl
= rd32(E1000_CTRL
);
9018 ctrl
|= E1000_CTRL_VME
;
9019 wr32(E1000_CTRL
, ctrl
);
9021 /* Disable CFI check */
9022 rctl
= rd32(E1000_RCTL
);
9023 rctl
&= ~E1000_RCTL_CFIEN
;
9024 wr32(E1000_RCTL
, rctl
);
9026 /* disable VLAN tag insert/strip */
9027 ctrl
= rd32(E1000_CTRL
);
9028 ctrl
&= ~E1000_CTRL_VME
;
9029 wr32(E1000_CTRL
, ctrl
);
9032 igb_set_vf_vlan_strip(adapter
, adapter
->vfs_allocated_count
, enable
);
9035 static int igb_vlan_rx_add_vid(struct net_device
*netdev
,
9036 __be16 proto
, u16 vid
)
9038 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9039 struct e1000_hw
*hw
= &adapter
->hw
;
9040 int pf_id
= adapter
->vfs_allocated_count
;
9042 /* add the filter since PF can receive vlans w/o entry in vlvf */
9043 if (!vid
|| !(adapter
->flags
& IGB_FLAG_VLAN_PROMISC
))
9044 igb_vfta_set(hw
, vid
, pf_id
, true, !!vid
);
9046 set_bit(vid
, adapter
->active_vlans
);
9051 static int igb_vlan_rx_kill_vid(struct net_device
*netdev
,
9052 __be16 proto
, u16 vid
)
9054 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9055 int pf_id
= adapter
->vfs_allocated_count
;
9056 struct e1000_hw
*hw
= &adapter
->hw
;
9058 /* remove VID from filter table */
9059 if (vid
&& !(adapter
->flags
& IGB_FLAG_VLAN_PROMISC
))
9060 igb_vfta_set(hw
, vid
, pf_id
, false, true);
9062 clear_bit(vid
, adapter
->active_vlans
);
9067 static void igb_restore_vlan(struct igb_adapter
*adapter
)
9071 igb_vlan_mode(adapter
->netdev
, adapter
->netdev
->features
);
9072 igb_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), 0);
9074 for_each_set_bit_from(vid
, adapter
->active_vlans
, VLAN_N_VID
)
9075 igb_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
9078 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u32 spd
, u8 dplx
)
9080 struct pci_dev
*pdev
= adapter
->pdev
;
9081 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
9085 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9086 * for the switch() below to work
9088 if ((spd
& 1) || (dplx
& ~1))
9091 /* Fiber NIC's only allow 1000 gbps Full duplex
9092 * and 100Mbps Full duplex for 100baseFx sfp
9094 if (adapter
->hw
.phy
.media_type
== e1000_media_type_internal_serdes
) {
9095 switch (spd
+ dplx
) {
9096 case SPEED_10
+ DUPLEX_HALF
:
9097 case SPEED_10
+ DUPLEX_FULL
:
9098 case SPEED_100
+ DUPLEX_HALF
:
9105 switch (spd
+ dplx
) {
9106 case SPEED_10
+ DUPLEX_HALF
:
9107 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
9109 case SPEED_10
+ DUPLEX_FULL
:
9110 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
9112 case SPEED_100
+ DUPLEX_HALF
:
9113 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
9115 case SPEED_100
+ DUPLEX_FULL
:
9116 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
9118 case SPEED_1000
+ DUPLEX_FULL
:
9120 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
9122 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
9127 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9128 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
9133 dev_err(&pdev
->dev
, "Unsupported Speed/Duplex configuration\n");
9137 static int __igb_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
9140 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9141 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9142 struct e1000_hw
*hw
= &adapter
->hw
;
9143 u32 ctrl
, rctl
, status
;
9144 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
9148 netif_device_detach(netdev
);
9150 if (netif_running(netdev
))
9151 __igb_close(netdev
, true);
9153 igb_ptp_suspend(adapter
);
9155 igb_clear_interrupt_scheme(adapter
);
9158 status
= rd32(E1000_STATUS
);
9159 if (status
& E1000_STATUS_LU
)
9160 wufc
&= ~E1000_WUFC_LNKC
;
9163 igb_setup_rctl(adapter
);
9164 igb_set_rx_mode(netdev
);
9166 /* turn on all-multi mode if wake on multicast is enabled */
9167 if (wufc
& E1000_WUFC_MC
) {
9168 rctl
= rd32(E1000_RCTL
);
9169 rctl
|= E1000_RCTL_MPE
;
9170 wr32(E1000_RCTL
, rctl
);
9173 ctrl
= rd32(E1000_CTRL
);
9174 ctrl
|= E1000_CTRL_ADVD3WUC
;
9175 wr32(E1000_CTRL
, ctrl
);
9177 /* Allow time for pending master requests to run */
9178 igb_disable_pcie_master(hw
);
9180 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
9181 wr32(E1000_WUFC
, wufc
);
9184 wr32(E1000_WUFC
, 0);
9187 wake
= wufc
|| adapter
->en_mng_pt
;
9189 igb_power_down_link(adapter
);
9191 igb_power_up_link(adapter
);
9194 *enable_wake
= wake
;
9196 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9197 * would have already happened in close and is redundant.
9199 igb_release_hw_control(adapter
);
9201 pci_disable_device(pdev
);
9206 static void igb_deliver_wake_packet(struct net_device
*netdev
)
9208 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9209 struct e1000_hw
*hw
= &adapter
->hw
;
9210 struct sk_buff
*skb
;
9213 wupl
= rd32(E1000_WUPL
) & E1000_WUPL_MASK
;
9215 /* WUPM stores only the first 128 bytes of the wake packet.
9216 * Read the packet only if we have the whole thing.
9218 if ((wupl
== 0) || (wupl
> E1000_WUPM_BYTES
))
9221 skb
= netdev_alloc_skb_ip_align(netdev
, E1000_WUPM_BYTES
);
9227 /* Ensure reads are 32-bit aligned */
9228 wupl
= roundup(wupl
, 4);
9230 memcpy_fromio(skb
->data
, hw
->hw_addr
+ E1000_WUPM_REG(0), wupl
);
9232 skb
->protocol
= eth_type_trans(skb
, netdev
);
9236 static int __maybe_unused
igb_suspend(struct device
*dev
)
9238 return __igb_shutdown(to_pci_dev(dev
), NULL
, 0);
9241 static int __maybe_unused
igb_resume(struct device
*dev
)
9243 struct pci_dev
*pdev
= to_pci_dev(dev
);
9244 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9245 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9246 struct e1000_hw
*hw
= &adapter
->hw
;
9249 pci_set_power_state(pdev
, PCI_D0
);
9250 pci_restore_state(pdev
);
9251 pci_save_state(pdev
);
9253 if (!pci_device_is_present(pdev
))
9255 err
= pci_enable_device_mem(pdev
);
9258 "igb: Cannot enable PCI device from suspend\n");
9261 pci_set_master(pdev
);
9263 pci_enable_wake(pdev
, PCI_D3hot
, 0);
9264 pci_enable_wake(pdev
, PCI_D3cold
, 0);
9266 if (igb_init_interrupt_scheme(adapter
, true)) {
9267 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
9273 /* let the f/w know that the h/w is now under the control of the
9276 igb_get_hw_control(adapter
);
9278 val
= rd32(E1000_WUS
);
9279 if (val
& WAKE_PKT_WUS
)
9280 igb_deliver_wake_packet(netdev
);
9282 wr32(E1000_WUS
, ~0);
9285 if (!err
&& netif_running(netdev
))
9286 err
= __igb_open(netdev
, true);
9289 netif_device_attach(netdev
);
9295 static int __maybe_unused
igb_runtime_idle(struct device
*dev
)
9297 struct net_device
*netdev
= dev_get_drvdata(dev
);
9298 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9300 if (!igb_has_link(adapter
))
9301 pm_schedule_suspend(dev
, MSEC_PER_SEC
* 5);
9306 static int __maybe_unused
igb_runtime_suspend(struct device
*dev
)
9308 return __igb_shutdown(to_pci_dev(dev
), NULL
, 1);
9311 static int __maybe_unused
igb_runtime_resume(struct device
*dev
)
9313 return igb_resume(dev
);
9316 static void igb_shutdown(struct pci_dev
*pdev
)
9320 __igb_shutdown(pdev
, &wake
, 0);
9322 if (system_state
== SYSTEM_POWER_OFF
) {
9323 pci_wake_from_d3(pdev
, wake
);
9324 pci_set_power_state(pdev
, PCI_D3hot
);
9328 #ifdef CONFIG_PCI_IOV
9329 static int igb_sriov_reinit(struct pci_dev
*dev
)
9331 struct net_device
*netdev
= pci_get_drvdata(dev
);
9332 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9333 struct pci_dev
*pdev
= adapter
->pdev
;
9337 if (netif_running(netdev
))
9342 igb_clear_interrupt_scheme(adapter
);
9344 igb_init_queue_configuration(adapter
);
9346 if (igb_init_interrupt_scheme(adapter
, true)) {
9348 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
9352 if (netif_running(netdev
))
9360 static int igb_pci_disable_sriov(struct pci_dev
*dev
)
9362 int err
= igb_disable_sriov(dev
);
9365 err
= igb_sriov_reinit(dev
);
9370 static int igb_pci_enable_sriov(struct pci_dev
*dev
, int num_vfs
)
9372 int err
= igb_enable_sriov(dev
, num_vfs
);
9377 err
= igb_sriov_reinit(dev
);
9386 static int igb_pci_sriov_configure(struct pci_dev
*dev
, int num_vfs
)
9388 #ifdef CONFIG_PCI_IOV
9390 return igb_pci_disable_sriov(dev
);
9392 return igb_pci_enable_sriov(dev
, num_vfs
);
9398 * igb_io_error_detected - called when PCI error is detected
9399 * @pdev: Pointer to PCI device
9400 * @state: The current pci connection state
9402 * This function is called after a PCI bus error affecting
9403 * this device has been detected.
9405 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
9406 pci_channel_state_t state
)
9408 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9409 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9411 netif_device_detach(netdev
);
9413 if (state
== pci_channel_io_perm_failure
)
9414 return PCI_ERS_RESULT_DISCONNECT
;
9416 if (netif_running(netdev
))
9418 pci_disable_device(pdev
);
9420 /* Request a slot slot reset. */
9421 return PCI_ERS_RESULT_NEED_RESET
;
9425 * igb_io_slot_reset - called after the pci bus has been reset.
9426 * @pdev: Pointer to PCI device
9428 * Restart the card from scratch, as if from a cold-boot. Implementation
9429 * resembles the first-half of the igb_resume routine.
9431 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
9433 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9434 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9435 struct e1000_hw
*hw
= &adapter
->hw
;
9436 pci_ers_result_t result
;
9438 if (pci_enable_device_mem(pdev
)) {
9440 "Cannot re-enable PCI device after reset.\n");
9441 result
= PCI_ERS_RESULT_DISCONNECT
;
9443 pci_set_master(pdev
);
9444 pci_restore_state(pdev
);
9445 pci_save_state(pdev
);
9447 pci_enable_wake(pdev
, PCI_D3hot
, 0);
9448 pci_enable_wake(pdev
, PCI_D3cold
, 0);
9450 /* In case of PCI error, adapter lose its HW address
9451 * so we should re-assign it here.
9453 hw
->hw_addr
= adapter
->io_addr
;
9456 wr32(E1000_WUS
, ~0);
9457 result
= PCI_ERS_RESULT_RECOVERED
;
9464 * igb_io_resume - called when traffic can start flowing again.
9465 * @pdev: Pointer to PCI device
9467 * This callback is called when the error recovery driver tells us that
9468 * its OK to resume normal operation. Implementation resembles the
9469 * second-half of the igb_resume routine.
9471 static void igb_io_resume(struct pci_dev
*pdev
)
9473 struct net_device
*netdev
= pci_get_drvdata(pdev
);
9474 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9476 if (netif_running(netdev
)) {
9477 if (igb_up(adapter
)) {
9478 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
9483 netif_device_attach(netdev
);
9485 /* let the f/w know that the h/w is now under the control of the
9488 igb_get_hw_control(adapter
);
9492 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9493 * @adapter: Pointer to adapter structure
9494 * @index: Index of the RAR entry which need to be synced with MAC table
9496 static void igb_rar_set_index(struct igb_adapter
*adapter
, u32 index
)
9498 struct e1000_hw
*hw
= &adapter
->hw
;
9499 u32 rar_low
, rar_high
;
9500 u8
*addr
= adapter
->mac_table
[index
].addr
;
9502 /* HW expects these to be in network order when they are plugged
9503 * into the registers which are little endian. In order to guarantee
9504 * that ordering we need to do an leXX_to_cpup here in order to be
9505 * ready for the byteswap that occurs with writel
9507 rar_low
= le32_to_cpup((__le32
*)(addr
));
9508 rar_high
= le16_to_cpup((__le16
*)(addr
+ 4));
9510 /* Indicate to hardware the Address is Valid. */
9511 if (adapter
->mac_table
[index
].state
& IGB_MAC_STATE_IN_USE
) {
9512 if (is_valid_ether_addr(addr
))
9513 rar_high
|= E1000_RAH_AV
;
9515 if (adapter
->mac_table
[index
].state
& IGB_MAC_STATE_SRC_ADDR
)
9516 rar_high
|= E1000_RAH_ASEL_SRC_ADDR
;
9518 switch (hw
->mac
.type
) {
9521 if (adapter
->mac_table
[index
].state
&
9522 IGB_MAC_STATE_QUEUE_STEERING
)
9523 rar_high
|= E1000_RAH_QSEL_ENABLE
;
9525 rar_high
|= E1000_RAH_POOL_1
*
9526 adapter
->mac_table
[index
].queue
;
9529 rar_high
|= E1000_RAH_POOL_1
<<
9530 adapter
->mac_table
[index
].queue
;
9535 wr32(E1000_RAL(index
), rar_low
);
9537 wr32(E1000_RAH(index
), rar_high
);
9541 static int igb_set_vf_mac(struct igb_adapter
*adapter
,
9542 int vf
, unsigned char *mac_addr
)
9544 struct e1000_hw
*hw
= &adapter
->hw
;
9545 /* VF MAC addresses start at end of receive addresses and moves
9546 * towards the first, as a result a collision should not be possible
9548 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
9549 unsigned char *vf_mac_addr
= adapter
->vf_data
[vf
].vf_mac_addresses
;
9551 ether_addr_copy(vf_mac_addr
, mac_addr
);
9552 ether_addr_copy(adapter
->mac_table
[rar_entry
].addr
, mac_addr
);
9553 adapter
->mac_table
[rar_entry
].queue
= vf
;
9554 adapter
->mac_table
[rar_entry
].state
|= IGB_MAC_STATE_IN_USE
;
9555 igb_rar_set_index(adapter
, rar_entry
);
9560 static int igb_ndo_set_vf_mac(struct net_device
*netdev
, int vf
, u8
*mac
)
9562 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9564 if (vf
>= adapter
->vfs_allocated_count
)
9567 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9568 * flag and allows to overwrite the MAC via VF netdev. This
9569 * is necessary to allow libvirt a way to restore the original
9570 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9573 if (is_zero_ether_addr(mac
)) {
9574 adapter
->vf_data
[vf
].flags
&= ~IGB_VF_FLAG_PF_SET_MAC
;
9575 dev_info(&adapter
->pdev
->dev
,
9576 "remove administratively set MAC on VF %d\n",
9578 } else if (is_valid_ether_addr(mac
)) {
9579 adapter
->vf_data
[vf
].flags
|= IGB_VF_FLAG_PF_SET_MAC
;
9580 dev_info(&adapter
->pdev
->dev
, "setting MAC %pM on VF %d\n",
9582 dev_info(&adapter
->pdev
->dev
,
9583 "Reload the VF driver to make this change effective.");
9584 /* Generate additional warning if PF is down */
9585 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
9586 dev_warn(&adapter
->pdev
->dev
,
9587 "The VF MAC address has been set, but the PF device is not up.\n");
9588 dev_warn(&adapter
->pdev
->dev
,
9589 "Bring the PF device up before attempting to use the VF device.\n");
9594 return igb_set_vf_mac(adapter
, vf
, mac
);
9597 static int igb_link_mbps(int internal_link_speed
)
9599 switch (internal_link_speed
) {
9609 static void igb_set_vf_rate_limit(struct e1000_hw
*hw
, int vf
, int tx_rate
,
9616 /* Calculate the rate factor values to set */
9617 rf_int
= link_speed
/ tx_rate
;
9618 rf_dec
= (link_speed
- (rf_int
* tx_rate
));
9619 rf_dec
= (rf_dec
* BIT(E1000_RTTBCNRC_RF_INT_SHIFT
)) /
9622 bcnrc_val
= E1000_RTTBCNRC_RS_ENA
;
9623 bcnrc_val
|= ((rf_int
<< E1000_RTTBCNRC_RF_INT_SHIFT
) &
9624 E1000_RTTBCNRC_RF_INT_MASK
);
9625 bcnrc_val
|= (rf_dec
& E1000_RTTBCNRC_RF_DEC_MASK
);
9630 wr32(E1000_RTTDQSEL
, vf
); /* vf X uses queue X */
9631 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9632 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9634 wr32(E1000_RTTBCNRM
, 0x14);
9635 wr32(E1000_RTTBCNRC
, bcnrc_val
);
9638 static void igb_check_vf_rate_limit(struct igb_adapter
*adapter
)
9640 int actual_link_speed
, i
;
9641 bool reset_rate
= false;
9643 /* VF TX rate limit was not set or not supported */
9644 if ((adapter
->vf_rate_link_speed
== 0) ||
9645 (adapter
->hw
.mac
.type
!= e1000_82576
))
9648 actual_link_speed
= igb_link_mbps(adapter
->link_speed
);
9649 if (actual_link_speed
!= adapter
->vf_rate_link_speed
) {
9651 adapter
->vf_rate_link_speed
= 0;
9652 dev_info(&adapter
->pdev
->dev
,
9653 "Link speed has been changed. VF Transmit rate is disabled\n");
9656 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
9658 adapter
->vf_data
[i
].tx_rate
= 0;
9660 igb_set_vf_rate_limit(&adapter
->hw
, i
,
9661 adapter
->vf_data
[i
].tx_rate
,
9666 static int igb_ndo_set_vf_bw(struct net_device
*netdev
, int vf
,
9667 int min_tx_rate
, int max_tx_rate
)
9669 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9670 struct e1000_hw
*hw
= &adapter
->hw
;
9671 int actual_link_speed
;
9673 if (hw
->mac
.type
!= e1000_82576
)
9679 actual_link_speed
= igb_link_mbps(adapter
->link_speed
);
9680 if ((vf
>= adapter
->vfs_allocated_count
) ||
9681 (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
)) ||
9682 (max_tx_rate
< 0) ||
9683 (max_tx_rate
> actual_link_speed
))
9686 adapter
->vf_rate_link_speed
= actual_link_speed
;
9687 adapter
->vf_data
[vf
].tx_rate
= (u16
)max_tx_rate
;
9688 igb_set_vf_rate_limit(hw
, vf
, max_tx_rate
, actual_link_speed
);
9693 static int igb_ndo_set_vf_spoofchk(struct net_device
*netdev
, int vf
,
9696 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9697 struct e1000_hw
*hw
= &adapter
->hw
;
9698 u32 reg_val
, reg_offset
;
9700 if (!adapter
->vfs_allocated_count
)
9703 if (vf
>= adapter
->vfs_allocated_count
)
9706 reg_offset
= (hw
->mac
.type
== e1000_82576
) ? E1000_DTXSWC
: E1000_TXSWC
;
9707 reg_val
= rd32(reg_offset
);
9709 reg_val
|= (BIT(vf
) |
9710 BIT(vf
+ E1000_DTXSWC_VLAN_SPOOF_SHIFT
));
9712 reg_val
&= ~(BIT(vf
) |
9713 BIT(vf
+ E1000_DTXSWC_VLAN_SPOOF_SHIFT
));
9714 wr32(reg_offset
, reg_val
);
9716 adapter
->vf_data
[vf
].spoofchk_enabled
= setting
;
9720 static int igb_ndo_set_vf_trust(struct net_device
*netdev
, int vf
, bool setting
)
9722 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9724 if (vf
>= adapter
->vfs_allocated_count
)
9726 if (adapter
->vf_data
[vf
].trusted
== setting
)
9729 adapter
->vf_data
[vf
].trusted
= setting
;
9731 dev_info(&adapter
->pdev
->dev
, "VF %u is %strusted\n",
9732 vf
, setting
? "" : "not ");
9736 static int igb_ndo_get_vf_config(struct net_device
*netdev
,
9737 int vf
, struct ifla_vf_info
*ivi
)
9739 struct igb_adapter
*adapter
= netdev_priv(netdev
);
9740 if (vf
>= adapter
->vfs_allocated_count
)
9743 memcpy(&ivi
->mac
, adapter
->vf_data
[vf
].vf_mac_addresses
, ETH_ALEN
);
9744 ivi
->max_tx_rate
= adapter
->vf_data
[vf
].tx_rate
;
9745 ivi
->min_tx_rate
= 0;
9746 ivi
->vlan
= adapter
->vf_data
[vf
].pf_vlan
;
9747 ivi
->qos
= adapter
->vf_data
[vf
].pf_qos
;
9748 ivi
->spoofchk
= adapter
->vf_data
[vf
].spoofchk_enabled
;
9749 ivi
->trusted
= adapter
->vf_data
[vf
].trusted
;
9753 static void igb_vmm_control(struct igb_adapter
*adapter
)
9755 struct e1000_hw
*hw
= &adapter
->hw
;
9758 switch (hw
->mac
.type
) {
9764 /* replication is not supported for 82575 */
9767 /* notify HW that the MAC is adding vlan tags */
9768 reg
= rd32(E1000_DTXCTL
);
9769 reg
|= E1000_DTXCTL_VLAN_ADDED
;
9770 wr32(E1000_DTXCTL
, reg
);
9773 /* enable replication vlan tag stripping */
9774 reg
= rd32(E1000_RPLOLR
);
9775 reg
|= E1000_RPLOLR_STRVLAN
;
9776 wr32(E1000_RPLOLR
, reg
);
9779 /* none of the above registers are supported by i350 */
9783 if (adapter
->vfs_allocated_count
) {
9784 igb_vmdq_set_loopback_pf(hw
, true);
9785 igb_vmdq_set_replication_pf(hw
, true);
9786 igb_vmdq_set_anti_spoofing_pf(hw
, true,
9787 adapter
->vfs_allocated_count
);
9789 igb_vmdq_set_loopback_pf(hw
, false);
9790 igb_vmdq_set_replication_pf(hw
, false);
9794 static void igb_init_dmac(struct igb_adapter
*adapter
, u32 pba
)
9796 struct e1000_hw
*hw
= &adapter
->hw
;
9800 if (hw
->mac
.type
> e1000_82580
) {
9801 if (adapter
->flags
& IGB_FLAG_DMAC
) {
9804 /* force threshold to 0. */
9805 wr32(E1000_DMCTXTH
, 0);
9807 /* DMA Coalescing high water mark needs to be greater
9808 * than the Rx threshold. Set hwm to PBA - max frame
9809 * size in 16B units, capping it at PBA - 6KB.
9811 hwm
= 64 * (pba
- 6);
9812 reg
= rd32(E1000_FCRTC
);
9813 reg
&= ~E1000_FCRTC_RTH_COAL_MASK
;
9814 reg
|= ((hwm
<< E1000_FCRTC_RTH_COAL_SHIFT
)
9815 & E1000_FCRTC_RTH_COAL_MASK
);
9816 wr32(E1000_FCRTC
, reg
);
9818 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9819 * frame size, capping it at PBA - 10KB.
9821 dmac_thr
= pba
- 10;
9822 reg
= rd32(E1000_DMACR
);
9823 reg
&= ~E1000_DMACR_DMACTHR_MASK
;
9824 reg
|= ((dmac_thr
<< E1000_DMACR_DMACTHR_SHIFT
)
9825 & E1000_DMACR_DMACTHR_MASK
);
9827 /* transition to L0x or L1 if available..*/
9828 reg
|= (E1000_DMACR_DMAC_EN
| E1000_DMACR_DMAC_LX_MASK
);
9830 /* watchdog timer= +-1000 usec in 32usec intervals */
9833 /* Disable BMC-to-OS Watchdog Enable */
9834 if (hw
->mac
.type
!= e1000_i354
)
9835 reg
&= ~E1000_DMACR_DC_BMC2OSW_EN
;
9837 wr32(E1000_DMACR
, reg
);
9839 /* no lower threshold to disable
9840 * coalescing(smart fifb)-UTRESH=0
9842 wr32(E1000_DMCRTRH
, 0);
9844 reg
= (IGB_DMCTLX_DCFLUSH_DIS
| 0x4);
9846 wr32(E1000_DMCTLX
, reg
);
9848 /* free space in tx packet buffer to wake from
9851 wr32(E1000_DMCTXTH
, (IGB_MIN_TXPBSIZE
-
9852 (IGB_TX_BUF_4096
+ adapter
->max_frame_size
)) >> 6);
9854 /* make low power state decision controlled
9857 reg
= rd32(E1000_PCIEMISC
);
9858 reg
&= ~E1000_PCIEMISC_LX_DECISION
;
9859 wr32(E1000_PCIEMISC
, reg
);
9860 } /* endif adapter->dmac is not disabled */
9861 } else if (hw
->mac
.type
== e1000_82580
) {
9862 u32 reg
= rd32(E1000_PCIEMISC
);
9864 wr32(E1000_PCIEMISC
, reg
& ~E1000_PCIEMISC_LX_DECISION
);
9865 wr32(E1000_DMACR
, 0);
9870 * igb_read_i2c_byte - Reads 8 bit word over I2C
9871 * @hw: pointer to hardware structure
9872 * @byte_offset: byte offset to read
9873 * @dev_addr: device address
9876 * Performs byte read operation over I2C interface at
9877 * a specified device address.
9879 s32
igb_read_i2c_byte(struct e1000_hw
*hw
, u8 byte_offset
,
9880 u8 dev_addr
, u8
*data
)
9882 struct igb_adapter
*adapter
= container_of(hw
, struct igb_adapter
, hw
);
9883 struct i2c_client
*this_client
= adapter
->i2c_client
;
9888 return E1000_ERR_I2C
;
9890 swfw_mask
= E1000_SWFW_PHY0_SM
;
9892 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, swfw_mask
))
9893 return E1000_ERR_SWFW_SYNC
;
9895 status
= i2c_smbus_read_byte_data(this_client
, byte_offset
);
9896 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
9899 return E1000_ERR_I2C
;
9907 * igb_write_i2c_byte - Writes 8 bit word over I2C
9908 * @hw: pointer to hardware structure
9909 * @byte_offset: byte offset to write
9910 * @dev_addr: device address
9911 * @data: value to write
9913 * Performs byte write operation over I2C interface at
9914 * a specified device address.
9916 s32
igb_write_i2c_byte(struct e1000_hw
*hw
, u8 byte_offset
,
9917 u8 dev_addr
, u8 data
)
9919 struct igb_adapter
*adapter
= container_of(hw
, struct igb_adapter
, hw
);
9920 struct i2c_client
*this_client
= adapter
->i2c_client
;
9922 u16 swfw_mask
= E1000_SWFW_PHY0_SM
;
9925 return E1000_ERR_I2C
;
9927 if (hw
->mac
.ops
.acquire_swfw_sync(hw
, swfw_mask
))
9928 return E1000_ERR_SWFW_SYNC
;
9929 status
= i2c_smbus_write_byte_data(this_client
, byte_offset
, data
);
9930 hw
->mac
.ops
.release_swfw_sync(hw
, swfw_mask
);
9933 return E1000_ERR_I2C
;
9939 int igb_reinit_queues(struct igb_adapter
*adapter
)
9941 struct net_device
*netdev
= adapter
->netdev
;
9942 struct pci_dev
*pdev
= adapter
->pdev
;
9945 if (netif_running(netdev
))
9948 igb_reset_interrupt_capability(adapter
);
9950 if (igb_init_interrupt_scheme(adapter
, true)) {
9951 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
9955 if (netif_running(netdev
))
9956 err
= igb_open(netdev
);
9961 static void igb_nfc_filter_exit(struct igb_adapter
*adapter
)
9963 struct igb_nfc_filter
*rule
;
9965 spin_lock(&adapter
->nfc_lock
);
9967 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
)
9968 igb_erase_filter(adapter
, rule
);
9970 hlist_for_each_entry(rule
, &adapter
->cls_flower_list
, nfc_node
)
9971 igb_erase_filter(adapter
, rule
);
9973 spin_unlock(&adapter
->nfc_lock
);
9976 static void igb_nfc_filter_restore(struct igb_adapter
*adapter
)
9978 struct igb_nfc_filter
*rule
;
9980 spin_lock(&adapter
->nfc_lock
);
9982 hlist_for_each_entry(rule
, &adapter
->nfc_filter_list
, nfc_node
)
9983 igb_add_filter(adapter
, rule
);
9985 spin_unlock(&adapter
->nfc_lock
);