1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
44 * These diagrams are only for the 10Gb link period
47 * +--------------+ +--------------+
48 * X540 | 32 | | 1 | 3 | 28 |
49 * *--------------+ +--------------+
50 * \________ 36 bits ______/ fract
52 * +--------------+ +--------------+
53 * 82599 | 32 | | 8 | 3 | 21 |
54 * *--------------+ +--------------+
55 * \________ 43 bits ______/ fract
57 * The 36 bit X540 SYSTIME overflows every
58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
60 * The 43 bit 82599 SYSTIME overflows every
61 * 2^43 * 10^-9 / 3600 = 2.4 hours
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB 0x40000000
65 #define IXGBE_INCVAL_100 0x50000000
67 #define IXGBE_INCVAL_SHIFT_10GB 28
68 #define IXGBE_INCVAL_SHIFT_1GB 24
69 #define IXGBE_INCVAL_SHIFT_100 21
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT (HZ)
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
80 #define NS_PER_SEC 1000000000ULL
81 #define NS_PER_HALF_SEC 500000000ULL
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
96 * SYSTIMEH SYSTIMEL SYSTIMER
97 * +--------------+ +--------------+ +-------------+
98 * X550 | 32 | | 32 | | 32 |
99 * *--------------+ +--------------+ +-------------+
100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
107 * The 32 bits of seconds for the X550 overflows every
108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
116 * The math for converting ppb into TIMINCA values is fairly straightforward.
117 * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
119 * This assumes that ppb is never high enough to create a value bigger than
120 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
121 * value is also simple.
122 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
124 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
125 * 12.5 nanoseconds. This means that the Max ppb is 39999999
126 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
127 * register can only hold slightly under 0.5 nanoseconds.
129 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
130 * into 2^-32 units, which is
132 * 12.5 * 2^32 = C80000000
134 * Some revisions of hardware have a faster base frequency than the registers
135 * were defined for. To fix this, we use a timecounter structure with the
136 * proper mult and shift to convert the cycles into nanoseconds of time.
138 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
139 #define INCVALUE_MASK 0x7FFFFFFF
140 #define ISGN 0x80000000
141 #define MAX_TIMADJ 0x7FFFFFFF
144 * ixgbe_ptp_setup_sdp_X540
145 * @adapter: private adapter structure
147 * this function enables or disables the clock out feature on SDP0 for
148 * the X540 device. It will create a 1 second periodic output that can
149 * be used as the PPS (via an interrupt).
151 * It calculates when the system time will be on an exact second, and then
152 * aligns the start of the PPS signal to that value.
154 * This works by using the cycle counter shift and mult values in reverse, and
155 * assumes that the values we're shifting will not overflow.
157 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter
*adapter
)
159 struct cyclecounter
*cc
= &adapter
->hw_cc
;
160 struct ixgbe_hw
*hw
= &adapter
->hw
;
161 u32 esdp
, tsauxc
, clktiml
, clktimh
, trgttiml
, trgttimh
, rem
;
162 u64 ns
= 0, clock_edge
= 0, clock_period
;
165 /* disable the pin first */
166 IXGBE_WRITE_REG(hw
, IXGBE_TSAUXC
, 0x0);
167 IXGBE_WRITE_FLUSH(hw
);
169 if (!(adapter
->flags2
& IXGBE_FLAG2_PTP_PPS_ENABLED
))
172 esdp
= IXGBE_READ_REG(hw
, IXGBE_ESDP
);
174 /* enable the SDP0 pin as output, and connected to the
175 * native function for Timesync (ClockOut)
177 esdp
|= IXGBE_ESDP_SDP0_DIR
|
178 IXGBE_ESDP_SDP0_NATIVE
;
180 /* enable the Clock Out feature on SDP0, and allow
181 * interrupts to occur when the pin changes
183 tsauxc
= (IXGBE_TSAUXC_EN_CLK
|
184 IXGBE_TSAUXC_SYNCLK
|
185 IXGBE_TSAUXC_SDP0_INT
);
187 /* Determine the clock time period to use. This assumes that the
188 * cycle counter shift is small enough to avoid overflow.
190 clock_period
= div_u64((NS_PER_HALF_SEC
<< cc
->shift
), cc
->mult
);
191 clktiml
= (u32
)(clock_period
);
192 clktimh
= (u32
)(clock_period
>> 32);
194 /* Read the current clock time, and save the cycle counter value */
195 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
196 ns
= timecounter_read(&adapter
->hw_tc
);
197 clock_edge
= adapter
->hw_tc
.cycle_last
;
198 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
200 /* Figure out how many seconds to add in order to round up */
201 div_u64_rem(ns
, NS_PER_SEC
, &rem
);
203 /* Figure out how many nanoseconds to add to round the clock edge up
204 * to the next full second
206 rem
= (NS_PER_SEC
- rem
);
208 /* Adjust the clock edge to align with the next full second. */
209 clock_edge
+= div_u64(((u64
)rem
<< cc
->shift
), cc
->mult
);
210 trgttiml
= (u32
)clock_edge
;
211 trgttimh
= (u32
)(clock_edge
>> 32);
213 IXGBE_WRITE_REG(hw
, IXGBE_CLKTIML
, clktiml
);
214 IXGBE_WRITE_REG(hw
, IXGBE_CLKTIMH
, clktimh
);
215 IXGBE_WRITE_REG(hw
, IXGBE_TRGTTIML0
, trgttiml
);
216 IXGBE_WRITE_REG(hw
, IXGBE_TRGTTIMH0
, trgttimh
);
218 IXGBE_WRITE_REG(hw
, IXGBE_ESDP
, esdp
);
219 IXGBE_WRITE_REG(hw
, IXGBE_TSAUXC
, tsauxc
);
221 IXGBE_WRITE_FLUSH(hw
);
225 * ixgbe_ptp_setup_sdp_X550
226 * @adapter: private adapter structure
228 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
230 * Use the target time feature to align the output signal on the next full
233 * This works by using the cycle counter shift and mult values in reverse, and
234 * assumes that the values we're shifting will not overflow.
236 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter
*adapter
)
238 u32 esdp
, tsauxc
, freqout
, trgttiml
, trgttimh
, rem
, tssdp
;
239 struct cyclecounter
*cc
= &adapter
->hw_cc
;
240 struct ixgbe_hw
*hw
= &adapter
->hw
;
241 u64 ns
= 0, clock_edge
= 0;
242 struct timespec64 ts
;
245 /* disable the pin first */
246 IXGBE_WRITE_REG(hw
, IXGBE_TSAUXC
, 0x0);
247 IXGBE_WRITE_FLUSH(hw
);
249 if (!(adapter
->flags2
& IXGBE_FLAG2_PTP_PPS_ENABLED
))
252 esdp
= IXGBE_READ_REG(hw
, IXGBE_ESDP
);
254 /* enable the SDP0 pin as output, and connected to the
255 * native function for Timesync (ClockOut)
257 esdp
|= IXGBE_ESDP_SDP0_DIR
|
258 IXGBE_ESDP_SDP0_NATIVE
;
260 /* enable the Clock Out feature on SDP0, and use Target Time 0 to
261 * enable generation of interrupts on the clock change.
263 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
264 tsauxc
= (IXGBE_TSAUXC_EN_CLK
| IXGBE_TSAUXC_ST0
|
265 IXGBE_TSAUXC_EN_TT0
| IXGBE_TSAUXC_SDP0_INT
|
266 IXGBE_TSAUXC_DIS_TS_CLEAR
);
268 tssdp
= (IXGBE_TSSDP_TS_SDP0_EN
|
269 IXGBE_TSSDP_TS_SDP0_CLK0
);
271 /* Determine the clock time period to use. This assumes that the
272 * cycle counter shift is small enough to avoid overflowing a 32bit
275 freqout
= div_u64(NS_PER_HALF_SEC
<< cc
->shift
, cc
->mult
);
277 /* Read the current clock time, and save the cycle counter value */
278 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
279 ns
= timecounter_read(&adapter
->hw_tc
);
280 clock_edge
= adapter
->hw_tc
.cycle_last
;
281 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
283 /* Figure out how far past the next second we are */
284 div_u64_rem(ns
, NS_PER_SEC
, &rem
);
286 /* Figure out how many nanoseconds to add to round the clock edge up
287 * to the next full second
289 rem
= (NS_PER_SEC
- rem
);
291 /* Adjust the clock edge to align with the next full second. */
292 clock_edge
+= div_u64(((u64
)rem
<< cc
->shift
), cc
->mult
);
294 /* X550 hardware stores the time in 32bits of 'billions of cycles' and
295 * 32bits of 'cycles'. There's no guarantee that cycles represents
296 * nanoseconds. However, we can use the math from a timespec64 to
297 * convert into the hardware representation.
299 * See ixgbe_ptp_read_X550() for more details.
301 ts
= ns_to_timespec64(clock_edge
);
302 trgttiml
= (u32
)ts
.tv_nsec
;
303 trgttimh
= (u32
)ts
.tv_sec
;
305 IXGBE_WRITE_REG(hw
, IXGBE_FREQOUT0
, freqout
);
306 IXGBE_WRITE_REG(hw
, IXGBE_TRGTTIML0
, trgttiml
);
307 IXGBE_WRITE_REG(hw
, IXGBE_TRGTTIMH0
, trgttimh
);
309 IXGBE_WRITE_REG(hw
, IXGBE_ESDP
, esdp
);
310 IXGBE_WRITE_REG(hw
, IXGBE_TSSDP
, tssdp
);
311 IXGBE_WRITE_REG(hw
, IXGBE_TSAUXC
, tsauxc
);
313 IXGBE_WRITE_FLUSH(hw
);
317 * ixgbe_ptp_read_X550 - read cycle counter value
318 * @cc: cyclecounter structure
320 * This function reads SYSTIME registers. It is called by the cyclecounter
321 * structure to convert from internal representation into nanoseconds. We need
322 * this for X550 since some skews do not have expected clock frequency and
323 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
324 * "cycles", rather than seconds and nanoseconds.
326 static u64
ixgbe_ptp_read_X550(const struct cyclecounter
*cc
)
328 struct ixgbe_adapter
*adapter
=
329 container_of(cc
, struct ixgbe_adapter
, hw_cc
);
330 struct ixgbe_hw
*hw
= &adapter
->hw
;
331 struct timespec64 ts
;
333 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
334 * Some revisions of hardware run at a higher frequency and so the
335 * cycles are not guaranteed to be nanoseconds. The timespec64 created
336 * here is used for its math/conversions but does not necessarily
337 * represent nominal time.
339 * It should be noted that this cyclecounter will overflow at a
340 * non-bitmask field since we have to convert our billions of cycles
341 * into an actual cycles count. This results in some possible weird
342 * situations at high cycle counter stamps. However given that 32 bits
343 * of "seconds" is ~138 years this isn't a problem. Even at the
344 * increased frequency of some revisions, this is still ~103 years.
345 * Since the SYSTIME values start at 0 and we never write them, it is
346 * highly unlikely for the cyclecounter to overflow in practice.
348 IXGBE_READ_REG(hw
, IXGBE_SYSTIMR
);
349 ts
.tv_nsec
= IXGBE_READ_REG(hw
, IXGBE_SYSTIML
);
350 ts
.tv_sec
= IXGBE_READ_REG(hw
, IXGBE_SYSTIMH
);
352 return (u64
)timespec64_to_ns(&ts
);
356 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
357 * @cc: the cyclecounter structure
359 * this function reads the cyclecounter registers and is called by the
360 * cyclecounter structure used to construct a ns counter from the
361 * arbitrary fixed point registers
363 static u64
ixgbe_ptp_read_82599(const struct cyclecounter
*cc
)
365 struct ixgbe_adapter
*adapter
=
366 container_of(cc
, struct ixgbe_adapter
, hw_cc
);
367 struct ixgbe_hw
*hw
= &adapter
->hw
;
370 stamp
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_SYSTIML
);
371 stamp
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_SYSTIMH
) << 32;
377 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
378 * @adapter: private adapter structure
379 * @hwtstamp: stack timestamp structure
380 * @timestamp: unsigned 64bit system time value
382 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
383 * which can be used by the stack's ptp functions.
385 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
386 * registers. However, it does not need to protect against the Rx or Tx
387 * timestamp registers, as there can't be a new timestamp until the old one is
388 * unlatched by reading.
390 * In addition to the timestamp in hardware, some controllers need a software
391 * overflow cyclecounter, and this function takes this into account as well.
393 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter
*adapter
,
394 struct skb_shared_hwtstamps
*hwtstamp
,
398 struct timespec64 systime
;
401 memset(hwtstamp
, 0, sizeof(*hwtstamp
));
403 switch (adapter
->hw
.mac
.type
) {
404 /* X550 and later hardware supposedly represent time using a seconds
405 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
406 * to convert the timestamp into cycles before it can be fed to the
407 * cyclecounter. We need an actual cyclecounter because some revisions
408 * of hardware run at a higher frequency and thus the counter does
409 * not represent seconds/nanoseconds. Instead it can be thought of as
410 * cycles and billions of cycles.
413 case ixgbe_mac_X550EM_x
:
414 case ixgbe_mac_x550em_a
:
415 /* Upper 32 bits represent billions of cycles, lower 32 bits
416 * represent cycles. However, we use timespec64_to_ns for the
417 * correct math even though the units haven't been corrected
420 systime
.tv_sec
= timestamp
>> 32;
421 systime
.tv_nsec
= timestamp
& 0xFFFFFFFF;
423 timestamp
= timespec64_to_ns(&systime
);
429 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
430 ns
= timecounter_cyc2time(&adapter
->hw_tc
, timestamp
);
431 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
433 hwtstamp
->hwtstamp
= ns_to_ktime(ns
);
437 * ixgbe_ptp_adjfreq_82599
438 * @ptp: the ptp clock structure
439 * @ppb: parts per billion adjustment from base
441 * adjust the frequency of the ptp cycle counter by the
442 * indicated ppb from the base frequency.
444 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info
*ptp
, s32 ppb
)
446 struct ixgbe_adapter
*adapter
=
447 container_of(ptp
, struct ixgbe_adapter
, ptp_caps
);
448 struct ixgbe_hw
*hw
= &adapter
->hw
;
459 incval
= READ_ONCE(adapter
->base_incval
);
463 diff
= div_u64(freq
, 1000000000ULL);
465 incval
= neg_adj
? (incval
- diff
) : (incval
+ diff
);
467 switch (hw
->mac
.type
) {
469 if (incval
> 0xFFFFFFFFULL
)
470 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
471 IXGBE_WRITE_REG(hw
, IXGBE_TIMINCA
, (u32
)incval
);
473 case ixgbe_mac_82599EB
:
474 if (incval
> 0x00FFFFFFULL
)
475 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
476 IXGBE_WRITE_REG(hw
, IXGBE_TIMINCA
,
477 BIT(IXGBE_INCPER_SHIFT_82599
) |
478 ((u32
)incval
& 0x00FFFFFFUL
));
488 * ixgbe_ptp_adjfreq_X550
489 * @ptp: the ptp clock structure
490 * @ppb: parts per billion adjustment from base
492 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
495 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info
*ptp
, s32 ppb
)
497 struct ixgbe_adapter
*adapter
=
498 container_of(ptp
, struct ixgbe_adapter
, ptp_caps
);
499 struct ixgbe_hw
*hw
= &adapter
->hw
;
501 u64 rate
= IXGBE_X550_BASE_PERIOD
;
509 rate
= div_u64(rate
, 1000000000ULL);
511 /* warn if rate is too large */
512 if (rate
>= INCVALUE_MASK
)
513 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
515 inca
= rate
& INCVALUE_MASK
;
519 IXGBE_WRITE_REG(hw
, IXGBE_TIMINCA
, inca
);
526 * @ptp: the ptp clock structure
527 * @delta: offset to adjust the cycle counter by
529 * adjust the timer by resetting the timecounter structure.
531 static int ixgbe_ptp_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
533 struct ixgbe_adapter
*adapter
=
534 container_of(ptp
, struct ixgbe_adapter
, ptp_caps
);
537 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
538 timecounter_adjtime(&adapter
->hw_tc
, delta
);
539 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
541 if (adapter
->ptp_setup_sdp
)
542 adapter
->ptp_setup_sdp(adapter
);
549 * @ptp: the ptp clock structure
550 * @ts: timespec to hold the PHC timestamp
551 * @sts: structure to hold the system time before and after reading the PHC
553 * read the timecounter and return the correct value on ns,
554 * after converting it into a struct timespec.
556 static int ixgbe_ptp_gettimex(struct ptp_clock_info
*ptp
,
557 struct timespec64
*ts
,
558 struct ptp_system_timestamp
*sts
)
560 struct ixgbe_adapter
*adapter
=
561 container_of(ptp
, struct ixgbe_adapter
, ptp_caps
);
562 struct ixgbe_hw
*hw
= &adapter
->hw
;
566 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
568 switch (adapter
->hw
.mac
.type
) {
570 case ixgbe_mac_X550EM_x
:
571 case ixgbe_mac_x550em_a
:
572 /* Upper 32 bits represent billions of cycles, lower 32 bits
573 * represent cycles. However, we use timespec64_to_ns for the
574 * correct math even though the units haven't been corrected
577 ptp_read_system_prets(sts
);
578 IXGBE_READ_REG(hw
, IXGBE_SYSTIMR
);
579 ptp_read_system_postts(sts
);
580 ts
->tv_nsec
= IXGBE_READ_REG(hw
, IXGBE_SYSTIML
);
581 ts
->tv_sec
= IXGBE_READ_REG(hw
, IXGBE_SYSTIMH
);
582 stamp
= timespec64_to_ns(ts
);
585 ptp_read_system_prets(sts
);
586 stamp
= IXGBE_READ_REG(hw
, IXGBE_SYSTIML
);
587 ptp_read_system_postts(sts
);
588 stamp
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_SYSTIMH
) << 32;
592 ns
= timecounter_cyc2time(&adapter
->hw_tc
, stamp
);
594 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
596 *ts
= ns_to_timespec64(ns
);
603 * @ptp: the ptp clock structure
604 * @ts: the timespec containing the new time for the cycle counter
606 * reset the timecounter to use a new base value instead of the kernel
609 static int ixgbe_ptp_settime(struct ptp_clock_info
*ptp
,
610 const struct timespec64
*ts
)
612 struct ixgbe_adapter
*adapter
=
613 container_of(ptp
, struct ixgbe_adapter
, ptp_caps
);
615 u64 ns
= timespec64_to_ns(ts
);
617 /* reset the timecounter */
618 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
619 timecounter_init(&adapter
->hw_tc
, &adapter
->hw_cc
, ns
);
620 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
622 if (adapter
->ptp_setup_sdp
)
623 adapter
->ptp_setup_sdp(adapter
);
628 * ixgbe_ptp_feature_enable
629 * @ptp: the ptp clock structure
630 * @rq: the requested feature to change
631 * @on: whether to enable or disable the feature
633 * enable (or disable) ancillary features of the phc subsystem.
634 * our driver only supports the PPS feature on the X540
636 static int ixgbe_ptp_feature_enable(struct ptp_clock_info
*ptp
,
637 struct ptp_clock_request
*rq
, int on
)
639 struct ixgbe_adapter
*adapter
=
640 container_of(ptp
, struct ixgbe_adapter
, ptp_caps
);
643 * When PPS is enabled, unmask the interrupt for the ClockOut
644 * feature, so that the interrupt handler can send the PPS
645 * event when the clock SDP triggers. Clear mask when PPS is
648 if (rq
->type
!= PTP_CLK_REQ_PPS
|| !adapter
->ptp_setup_sdp
)
652 adapter
->flags2
|= IXGBE_FLAG2_PTP_PPS_ENABLED
;
654 adapter
->flags2
&= ~IXGBE_FLAG2_PTP_PPS_ENABLED
;
656 adapter
->ptp_setup_sdp(adapter
);
661 * ixgbe_ptp_check_pps_event
662 * @adapter: the private adapter structure
664 * This function is called by the interrupt routine when checking for
665 * interrupts. It will check and handle a pps event.
667 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter
*adapter
)
669 struct ixgbe_hw
*hw
= &adapter
->hw
;
670 struct ptp_clock_event event
;
672 event
.type
= PTP_CLOCK_PPS
;
674 /* this check is necessary in case the interrupt was enabled via some
675 * alternative means (ex. debug_fs). Better to check here than
676 * everywhere that calls this function.
678 if (!adapter
->ptp_clock
)
681 switch (hw
->mac
.type
) {
683 ptp_clock_event(adapter
->ptp_clock
, &event
);
691 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
692 * @adapter: private adapter struct
694 * this watchdog task periodically reads the timecounter
695 * in order to prevent missing when the system time registers wrap
696 * around. This needs to be run approximately twice a minute.
698 void ixgbe_ptp_overflow_check(struct ixgbe_adapter
*adapter
)
700 bool timeout
= time_is_before_jiffies(adapter
->last_overflow_check
+
701 IXGBE_OVERFLOW_PERIOD
);
705 /* Update the timecounter */
706 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
707 timecounter_read(&adapter
->hw_tc
);
708 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
710 adapter
->last_overflow_check
= jiffies
;
715 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
716 * @adapter: private network adapter structure
718 * this watchdog task is scheduled to detect error case where hardware has
719 * dropped an Rx packet that was timestamped when the ring is full. The
720 * particular error is rare but leaves the device in a state unable to timestamp
721 * any future packets.
723 void ixgbe_ptp_rx_hang(struct ixgbe_adapter
*adapter
)
725 struct ixgbe_hw
*hw
= &adapter
->hw
;
726 u32 tsyncrxctl
= IXGBE_READ_REG(hw
, IXGBE_TSYNCRXCTL
);
727 struct ixgbe_ring
*rx_ring
;
728 unsigned long rx_event
;
731 /* if we don't have a valid timestamp in the registers, just update the
732 * timeout counter and exit
734 if (!(tsyncrxctl
& IXGBE_TSYNCRXCTL_VALID
)) {
735 adapter
->last_rx_ptp_check
= jiffies
;
739 /* determine the most recent watchdog or rx_timestamp event */
740 rx_event
= adapter
->last_rx_ptp_check
;
741 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
742 rx_ring
= adapter
->rx_ring
[n
];
743 if (time_after(rx_ring
->last_rx_timestamp
, rx_event
))
744 rx_event
= rx_ring
->last_rx_timestamp
;
747 /* only need to read the high RXSTMP register to clear the lock */
748 if (time_is_before_jiffies(rx_event
+ 5 * HZ
)) {
749 IXGBE_READ_REG(hw
, IXGBE_RXSTMPH
);
750 adapter
->last_rx_ptp_check
= jiffies
;
752 adapter
->rx_hwtstamp_cleared
++;
753 e_warn(drv
, "clearing RX Timestamp hang\n");
758 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
759 * @adapter: the private adapter structure
761 * This function should be called whenever the state related to a Tx timestamp
762 * needs to be cleared. This helps ensure that all related bits are reset for
763 * the next Tx timestamp event.
765 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter
*adapter
)
767 struct ixgbe_hw
*hw
= &adapter
->hw
;
769 IXGBE_READ_REG(hw
, IXGBE_TXSTMPH
);
770 if (adapter
->ptp_tx_skb
) {
771 dev_kfree_skb_any(adapter
->ptp_tx_skb
);
772 adapter
->ptp_tx_skb
= NULL
;
774 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS
, &adapter
->state
);
778 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
779 * @adapter: private network adapter structure
781 void ixgbe_ptp_tx_hang(struct ixgbe_adapter
*adapter
)
783 bool timeout
= time_is_before_jiffies(adapter
->ptp_tx_start
+
784 IXGBE_PTP_TX_TIMEOUT
);
786 if (!adapter
->ptp_tx_skb
)
789 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS
, &adapter
->state
))
792 /* If we haven't received a timestamp within the timeout, it is
793 * reasonable to assume that it will never occur, so we can unlock the
794 * timestamp bit when this occurs.
797 cancel_work_sync(&adapter
->ptp_tx_work
);
798 ixgbe_ptp_clear_tx_timestamp(adapter
);
799 adapter
->tx_hwtstamp_timeouts
++;
800 e_warn(drv
, "clearing Tx timestamp hang\n");
805 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
806 * @adapter: the private adapter struct
808 * if the timestamp is valid, we convert it into the timecounter ns
809 * value, then store that result into the shhwtstamps structure which
810 * is passed up the network stack
812 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter
*adapter
)
814 struct sk_buff
*skb
= adapter
->ptp_tx_skb
;
815 struct ixgbe_hw
*hw
= &adapter
->hw
;
816 struct skb_shared_hwtstamps shhwtstamps
;
819 regval
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_TXSTMPL
);
820 regval
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_TXSTMPH
) << 32;
821 ixgbe_ptp_convert_to_hwtstamp(adapter
, &shhwtstamps
, regval
);
823 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
824 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
825 * well behaved applications from attempting to timestamp again prior
826 * to the lock bit being clear.
828 adapter
->ptp_tx_skb
= NULL
;
829 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS
, &adapter
->state
);
831 /* Notify the stack and then free the skb after we've unlocked */
832 skb_tstamp_tx(skb
, &shhwtstamps
);
833 dev_kfree_skb_any(skb
);
837 * ixgbe_ptp_tx_hwtstamp_work
838 * @work: pointer to the work struct
840 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
841 * timestamp has been taken for the current skb. It is necessary, because the
842 * descriptor's "done" bit does not correlate with the timestamp event.
844 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct
*work
)
846 struct ixgbe_adapter
*adapter
= container_of(work
, struct ixgbe_adapter
,
848 struct ixgbe_hw
*hw
= &adapter
->hw
;
849 bool timeout
= time_is_before_jiffies(adapter
->ptp_tx_start
+
850 IXGBE_PTP_TX_TIMEOUT
);
853 /* we have to have a valid skb to poll for a timestamp */
854 if (!adapter
->ptp_tx_skb
) {
855 ixgbe_ptp_clear_tx_timestamp(adapter
);
859 /* stop polling once we have a valid timestamp */
860 tsynctxctl
= IXGBE_READ_REG(hw
, IXGBE_TSYNCTXCTL
);
861 if (tsynctxctl
& IXGBE_TSYNCTXCTL_VALID
) {
862 ixgbe_ptp_tx_hwtstamp(adapter
);
867 ixgbe_ptp_clear_tx_timestamp(adapter
);
868 adapter
->tx_hwtstamp_timeouts
++;
869 e_warn(drv
, "clearing Tx Timestamp hang\n");
871 /* reschedule to keep checking if it's not available yet */
872 schedule_work(&adapter
->ptp_tx_work
);
877 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
878 * @q_vector: structure containing interrupt and ring information
881 * This function will be called by the Rx routine of the timestamp for this
882 * packet is stored in the buffer. The value is stored in little endian format
883 * starting at the end of the packet data.
885 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector
*q_vector
,
890 /* copy the bits out of the skb, and then trim the skb length */
891 skb_copy_bits(skb
, skb
->len
- IXGBE_TS_HDR_LEN
, ®val
,
893 __pskb_trim(skb
, skb
->len
- IXGBE_TS_HDR_LEN
);
895 /* The timestamp is recorded in little endian format, and is stored at
896 * the end of the packet.
898 * DWORD: N N + 1 N + 2
899 * Field: End of Packet SYSTIMH SYSTIML
901 ixgbe_ptp_convert_to_hwtstamp(q_vector
->adapter
, skb_hwtstamps(skb
),
902 le64_to_cpu(regval
));
906 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
907 * @q_vector: structure containing interrupt and ring information
908 * @skb: particular skb to send timestamp with
910 * if the timestamp is valid, we convert it into the timecounter ns
911 * value, then store that result into the shhwtstamps structure which
912 * is passed up the network stack
914 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector
*q_vector
,
917 struct ixgbe_adapter
*adapter
;
922 /* we cannot process timestamps on a ring without a q_vector */
923 if (!q_vector
|| !q_vector
->adapter
)
926 adapter
= q_vector
->adapter
;
929 /* Read the tsyncrxctl register afterwards in order to prevent taking an
930 * I/O hit on every packet.
933 tsyncrxctl
= IXGBE_READ_REG(hw
, IXGBE_TSYNCRXCTL
);
934 if (!(tsyncrxctl
& IXGBE_TSYNCRXCTL_VALID
))
937 regval
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_RXSTMPL
);
938 regval
|= (u64
)IXGBE_READ_REG(hw
, IXGBE_RXSTMPH
) << 32;
940 ixgbe_ptp_convert_to_hwtstamp(adapter
, skb_hwtstamps(skb
), regval
);
944 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
945 * @adapter: pointer to adapter structure
948 * This function returns the current timestamping settings. Rather than
949 * attempt to deconstruct registers to fill in the values, simply keep a copy
950 * of the old settings around, and return a copy when requested.
952 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter
*adapter
, struct ifreq
*ifr
)
954 struct hwtstamp_config
*config
= &adapter
->tstamp_config
;
956 return copy_to_user(ifr
->ifr_data
, config
,
957 sizeof(*config
)) ? -EFAULT
: 0;
961 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
962 * @adapter: the private ixgbe adapter structure
963 * @config: the hwtstamp configuration requested
965 * Outgoing time stamping can be enabled and disabled. Play nice and
966 * disable it when requested, although it shouldn't cause any overhead
967 * when no packet needs it. At most one packet in the queue may be
968 * marked for time stamping, otherwise it would be impossible to tell
969 * for sure to which packet the hardware time stamp belongs.
971 * Incoming time stamping has to be configured via the hardware
972 * filters. Not all combinations are supported, in particular event
973 * type has to be specified. Matching the kind of event packet is
974 * not supported, with the exception of "all V2 events regardless of
977 * Since hardware always timestamps Path delay packets when timestamping V2
978 * packets, regardless of the type specified in the register, only use V2
979 * Event mode. This more accurately tells the user what the hardware is going
982 * Note: this may modify the hwtstamp configuration towards a more general
983 * mode, if required to support the specifically requested mode.
985 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter
*adapter
,
986 struct hwtstamp_config
*config
)
988 struct ixgbe_hw
*hw
= &adapter
->hw
;
989 u32 tsync_tx_ctl
= IXGBE_TSYNCTXCTL_ENABLED
;
990 u32 tsync_rx_ctl
= IXGBE_TSYNCRXCTL_ENABLED
;
991 u32 tsync_rx_mtrl
= PTP_EV_PORT
<< 16;
995 /* reserved for future extensions */
999 switch (config
->tx_type
) {
1000 case HWTSTAMP_TX_OFF
:
1002 case HWTSTAMP_TX_ON
:
1008 switch (config
->rx_filter
) {
1009 case HWTSTAMP_FILTER_NONE
:
1012 adapter
->flags
&= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED
|
1013 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
);
1015 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
1016 tsync_rx_ctl
|= IXGBE_TSYNCRXCTL_TYPE_L4_V1
;
1017 tsync_rx_mtrl
|= IXGBE_RXMTRL_V1_SYNC_MSG
;
1018 adapter
->flags
|= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED
|
1019 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
);
1021 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
1022 tsync_rx_ctl
|= IXGBE_TSYNCRXCTL_TYPE_L4_V1
;
1023 tsync_rx_mtrl
|= IXGBE_RXMTRL_V1_DELAY_REQ_MSG
;
1024 adapter
->flags
|= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED
|
1025 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
);
1027 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
1028 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
1029 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
1030 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
1031 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
1032 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
1033 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
1034 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
1035 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
1036 tsync_rx_ctl
|= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2
;
1038 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
1039 adapter
->flags
|= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED
|
1040 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
);
1042 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
1043 case HWTSTAMP_FILTER_NTP_ALL
:
1044 case HWTSTAMP_FILTER_ALL
:
1045 /* The X550 controller is capable of timestamping all packets,
1046 * which allows it to accept any filter.
1048 if (hw
->mac
.type
>= ixgbe_mac_X550
) {
1049 tsync_rx_ctl
|= IXGBE_TSYNCRXCTL_TYPE_ALL
;
1050 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
1051 adapter
->flags
|= IXGBE_FLAG_RX_HWTSTAMP_ENABLED
;
1057 * register RXMTRL must be set in order to do V1 packets,
1058 * therefore it is not possible to time stamp both V1 Sync and
1059 * Delay_Req messages and hardware does not support
1060 * timestamping all packets => return error
1062 adapter
->flags
&= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED
|
1063 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
);
1064 config
->rx_filter
= HWTSTAMP_FILTER_NONE
;
1068 if (hw
->mac
.type
== ixgbe_mac_82598EB
) {
1069 adapter
->flags
&= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED
|
1070 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
);
1071 if (tsync_rx_ctl
| tsync_tx_ctl
)
1076 /* Per-packet timestamping only works if the filter is set to all
1077 * packets. Since this is desired, always timestamp all packets as long
1078 * as any Rx filter was configured.
1080 switch (hw
->mac
.type
) {
1081 case ixgbe_mac_X550
:
1082 case ixgbe_mac_X550EM_x
:
1083 case ixgbe_mac_x550em_a
:
1084 /* enable timestamping all packets only if at least some
1085 * packets were requested. Otherwise, play nice and disable
1088 if (config
->rx_filter
== HWTSTAMP_FILTER_NONE
)
1091 tsync_rx_ctl
= IXGBE_TSYNCRXCTL_ENABLED
|
1092 IXGBE_TSYNCRXCTL_TYPE_ALL
|
1093 IXGBE_TSYNCRXCTL_TSIP_UT_EN
;
1094 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
1095 adapter
->flags
|= IXGBE_FLAG_RX_HWTSTAMP_ENABLED
;
1096 adapter
->flags
&= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER
;
1103 /* define ethertype filter for timestamping L2 packets */
1105 IXGBE_WRITE_REG(hw
, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588
),
1106 (IXGBE_ETQF_FILTER_EN
| /* enable filter */
1107 IXGBE_ETQF_1588
| /* enable timestamping */
1108 ETH_P_1588
)); /* 1588 eth protocol type */
1110 IXGBE_WRITE_REG(hw
, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588
), 0);
1112 /* enable/disable TX */
1113 regval
= IXGBE_READ_REG(hw
, IXGBE_TSYNCTXCTL
);
1114 regval
&= ~IXGBE_TSYNCTXCTL_ENABLED
;
1115 regval
|= tsync_tx_ctl
;
1116 IXGBE_WRITE_REG(hw
, IXGBE_TSYNCTXCTL
, regval
);
1118 /* enable/disable RX */
1119 regval
= IXGBE_READ_REG(hw
, IXGBE_TSYNCRXCTL
);
1120 regval
&= ~(IXGBE_TSYNCRXCTL_ENABLED
| IXGBE_TSYNCRXCTL_TYPE_MASK
);
1121 regval
|= tsync_rx_ctl
;
1122 IXGBE_WRITE_REG(hw
, IXGBE_TSYNCRXCTL
, regval
);
1124 /* define which PTP packets are time stamped */
1125 IXGBE_WRITE_REG(hw
, IXGBE_RXMTRL
, tsync_rx_mtrl
);
1127 IXGBE_WRITE_FLUSH(hw
);
1129 /* clear TX/RX time stamp registers, just to be sure */
1130 ixgbe_ptp_clear_tx_timestamp(adapter
);
1131 IXGBE_READ_REG(hw
, IXGBE_RXSTMPH
);
1137 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1138 * @adapter: pointer to adapter struct
1141 * Set hardware to requested mode. If unsupported, return an error with no
1142 * changes. Otherwise, store the mode for future reference.
1144 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter
*adapter
, struct ifreq
*ifr
)
1146 struct hwtstamp_config config
;
1149 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1152 err
= ixgbe_ptp_set_timestamp_mode(adapter
, &config
);
1156 /* save these settings for future reference */
1157 memcpy(&adapter
->tstamp_config
, &config
,
1158 sizeof(adapter
->tstamp_config
));
1160 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
1164 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter
*adapter
,
1165 u32
*shift
, u32
*incval
)
1168 * Scale the NIC cycle counter by a large factor so that
1169 * relatively small corrections to the frequency can be added
1170 * or subtracted. The drawbacks of a large factor include
1171 * (a) the clock register overflows more quickly, (b) the cycle
1172 * counter structure must be able to convert the systime value
1173 * to nanoseconds using only a multiplier and a right-shift,
1174 * and (c) the value must fit within the timinca register space
1175 * => math based on internal DMA clock rate and available bits
1177 * Note that when there is no link, internal DMA clock is same as when
1178 * link speed is 10Gb. Set the registers correctly even when link is
1179 * down to preserve the clock setting
1181 switch (adapter
->link_speed
) {
1182 case IXGBE_LINK_SPEED_100_FULL
:
1183 *shift
= IXGBE_INCVAL_SHIFT_100
;
1184 *incval
= IXGBE_INCVAL_100
;
1186 case IXGBE_LINK_SPEED_1GB_FULL
:
1187 *shift
= IXGBE_INCVAL_SHIFT_1GB
;
1188 *incval
= IXGBE_INCVAL_1GB
;
1190 case IXGBE_LINK_SPEED_10GB_FULL
:
1192 *shift
= IXGBE_INCVAL_SHIFT_10GB
;
1193 *incval
= IXGBE_INCVAL_10GB
;
1199 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1200 * @adapter: pointer to the adapter structure
1202 * This function should be called to set the proper values for the TIMINCA
1203 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1204 * is. It does not directly modify SYSTIME registers or the timecounter
1205 * structure. It should be called whenever a new TIMINCA value is necessary,
1206 * such as during initialization or when the link speed changes.
1208 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter
*adapter
)
1210 struct ixgbe_hw
*hw
= &adapter
->hw
;
1211 struct cyclecounter cc
;
1212 unsigned long flags
;
1217 /* For some of the boards below this mask is technically incorrect.
1218 * The timestamp mask overflows at approximately 61bits. However the
1219 * particular hardware does not overflow on an even bitmask value.
1220 * Instead, it overflows due to conversion of upper 32bits billions of
1221 * cycles. Timecounters are not really intended for this purpose so
1222 * they do not properly function if the overflow point isn't 2^N-1.
1223 * However, the actual SYSTIME values in question take ~138 years to
1224 * overflow. In practice this means they won't actually overflow. A
1225 * proper fix to this problem would require modification of the
1226 * timecounter delta calculations.
1228 cc
.mask
= CLOCKSOURCE_MASK(64);
1232 switch (hw
->mac
.type
) {
1233 case ixgbe_mac_X550EM_x
:
1234 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1235 * designed to represent seconds and nanoseconds when this is
1236 * the case. However, some revisions of hardware have a 400Mhz
1237 * clock and we have to compensate for this frequency
1238 * variation using corrected mult and shift values.
1240 fuse0
= IXGBE_READ_REG(hw
, IXGBE_FUSES0_GROUP(0));
1241 if (!(fuse0
& IXGBE_FUSES0_300MHZ
)) {
1246 case ixgbe_mac_x550em_a
:
1247 case ixgbe_mac_X550
:
1248 cc
.read
= ixgbe_ptp_read_X550
;
1250 /* enable SYSTIME counter */
1251 IXGBE_WRITE_REG(hw
, IXGBE_SYSTIMR
, 0);
1252 IXGBE_WRITE_REG(hw
, IXGBE_SYSTIML
, 0);
1253 IXGBE_WRITE_REG(hw
, IXGBE_SYSTIMH
, 0);
1254 tsauxc
= IXGBE_READ_REG(hw
, IXGBE_TSAUXC
);
1255 IXGBE_WRITE_REG(hw
, IXGBE_TSAUXC
,
1256 tsauxc
& ~IXGBE_TSAUXC_DISABLE_SYSTIME
);
1257 IXGBE_WRITE_REG(hw
, IXGBE_TSIM
, IXGBE_TSIM_TXTS
);
1258 IXGBE_WRITE_REG(hw
, IXGBE_EIMS
, IXGBE_EIMS_TIMESYNC
);
1260 IXGBE_WRITE_FLUSH(hw
);
1262 case ixgbe_mac_X540
:
1263 cc
.read
= ixgbe_ptp_read_82599
;
1265 ixgbe_ptp_link_speed_adjust(adapter
, &cc
.shift
, &incval
);
1266 IXGBE_WRITE_REG(hw
, IXGBE_TIMINCA
, incval
);
1268 case ixgbe_mac_82599EB
:
1269 cc
.read
= ixgbe_ptp_read_82599
;
1271 ixgbe_ptp_link_speed_adjust(adapter
, &cc
.shift
, &incval
);
1272 incval
>>= IXGBE_INCVAL_SHIFT_82599
;
1273 cc
.shift
-= IXGBE_INCVAL_SHIFT_82599
;
1274 IXGBE_WRITE_REG(hw
, IXGBE_TIMINCA
,
1275 BIT(IXGBE_INCPER_SHIFT_82599
) | incval
);
1278 /* other devices aren't supported */
1282 /* update the base incval used to calculate frequency adjustment */
1283 WRITE_ONCE(adapter
->base_incval
, incval
);
1286 /* need lock to prevent incorrect read while modifying cyclecounter */
1287 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
1288 memcpy(&adapter
->hw_cc
, &cc
, sizeof(adapter
->hw_cc
));
1289 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
1294 * @adapter: the ixgbe private board structure
1296 * When the MAC resets, all the hardware bits for timesync are reset. This
1297 * function is used to re-enable the device for PTP based on current settings.
1298 * We do lose the current clock time, so just reset the cyclecounter to the
1299 * system real clock time.
1301 * This function will maintain hwtstamp_config settings, and resets the SDP
1302 * output if it was enabled.
1304 void ixgbe_ptp_reset(struct ixgbe_adapter
*adapter
)
1306 struct ixgbe_hw
*hw
= &adapter
->hw
;
1307 unsigned long flags
;
1309 /* reset the hardware timestamping mode */
1310 ixgbe_ptp_set_timestamp_mode(adapter
, &adapter
->tstamp_config
);
1312 /* 82598 does not support PTP */
1313 if (hw
->mac
.type
== ixgbe_mac_82598EB
)
1316 ixgbe_ptp_start_cyclecounter(adapter
);
1318 spin_lock_irqsave(&adapter
->tmreg_lock
, flags
);
1319 timecounter_init(&adapter
->hw_tc
, &adapter
->hw_cc
,
1320 ktime_to_ns(ktime_get_real()));
1321 spin_unlock_irqrestore(&adapter
->tmreg_lock
, flags
);
1323 adapter
->last_overflow_check
= jiffies
;
1325 /* Now that the shift has been calculated and the systime
1326 * registers reset, (re-)enable the Clock out feature
1328 if (adapter
->ptp_setup_sdp
)
1329 adapter
->ptp_setup_sdp(adapter
);
1333 * ixgbe_ptp_create_clock
1334 * @adapter: the ixgbe private adapter structure
1336 * This function performs setup of the user entry point function table and
1337 * initializes the PTP clock device, which is used to access the clock-like
1338 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1339 * reuse a previously initialized clock (such as during a suspend/resume
1342 static long ixgbe_ptp_create_clock(struct ixgbe_adapter
*adapter
)
1344 struct net_device
*netdev
= adapter
->netdev
;
1347 /* do nothing if we already have a clock device */
1348 if (!IS_ERR_OR_NULL(adapter
->ptp_clock
))
1351 switch (adapter
->hw
.mac
.type
) {
1352 case ixgbe_mac_X540
:
1353 snprintf(adapter
->ptp_caps
.name
,
1354 sizeof(adapter
->ptp_caps
.name
),
1355 "%s", netdev
->name
);
1356 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1357 adapter
->ptp_caps
.max_adj
= 250000000;
1358 adapter
->ptp_caps
.n_alarm
= 0;
1359 adapter
->ptp_caps
.n_ext_ts
= 0;
1360 adapter
->ptp_caps
.n_per_out
= 0;
1361 adapter
->ptp_caps
.pps
= 1;
1362 adapter
->ptp_caps
.adjfreq
= ixgbe_ptp_adjfreq_82599
;
1363 adapter
->ptp_caps
.adjtime
= ixgbe_ptp_adjtime
;
1364 adapter
->ptp_caps
.gettimex64
= ixgbe_ptp_gettimex
;
1365 adapter
->ptp_caps
.settime64
= ixgbe_ptp_settime
;
1366 adapter
->ptp_caps
.enable
= ixgbe_ptp_feature_enable
;
1367 adapter
->ptp_setup_sdp
= ixgbe_ptp_setup_sdp_X540
;
1369 case ixgbe_mac_82599EB
:
1370 snprintf(adapter
->ptp_caps
.name
,
1371 sizeof(adapter
->ptp_caps
.name
),
1372 "%s", netdev
->name
);
1373 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1374 adapter
->ptp_caps
.max_adj
= 250000000;
1375 adapter
->ptp_caps
.n_alarm
= 0;
1376 adapter
->ptp_caps
.n_ext_ts
= 0;
1377 adapter
->ptp_caps
.n_per_out
= 0;
1378 adapter
->ptp_caps
.pps
= 0;
1379 adapter
->ptp_caps
.adjfreq
= ixgbe_ptp_adjfreq_82599
;
1380 adapter
->ptp_caps
.adjtime
= ixgbe_ptp_adjtime
;
1381 adapter
->ptp_caps
.gettimex64
= ixgbe_ptp_gettimex
;
1382 adapter
->ptp_caps
.settime64
= ixgbe_ptp_settime
;
1383 adapter
->ptp_caps
.enable
= ixgbe_ptp_feature_enable
;
1385 case ixgbe_mac_X550
:
1386 case ixgbe_mac_X550EM_x
:
1387 case ixgbe_mac_x550em_a
:
1388 snprintf(adapter
->ptp_caps
.name
, 16, "%s", netdev
->name
);
1389 adapter
->ptp_caps
.owner
= THIS_MODULE
;
1390 adapter
->ptp_caps
.max_adj
= 30000000;
1391 adapter
->ptp_caps
.n_alarm
= 0;
1392 adapter
->ptp_caps
.n_ext_ts
= 0;
1393 adapter
->ptp_caps
.n_per_out
= 0;
1394 adapter
->ptp_caps
.pps
= 1;
1395 adapter
->ptp_caps
.adjfreq
= ixgbe_ptp_adjfreq_X550
;
1396 adapter
->ptp_caps
.adjtime
= ixgbe_ptp_adjtime
;
1397 adapter
->ptp_caps
.gettimex64
= ixgbe_ptp_gettimex
;
1398 adapter
->ptp_caps
.settime64
= ixgbe_ptp_settime
;
1399 adapter
->ptp_caps
.enable
= ixgbe_ptp_feature_enable
;
1400 adapter
->ptp_setup_sdp
= ixgbe_ptp_setup_sdp_X550
;
1403 adapter
->ptp_clock
= NULL
;
1404 adapter
->ptp_setup_sdp
= NULL
;
1408 adapter
->ptp_clock
= ptp_clock_register(&adapter
->ptp_caps
,
1409 &adapter
->pdev
->dev
);
1410 if (IS_ERR(adapter
->ptp_clock
)) {
1411 err
= PTR_ERR(adapter
->ptp_clock
);
1412 adapter
->ptp_clock
= NULL
;
1413 e_dev_err("ptp_clock_register failed\n");
1415 } else if (adapter
->ptp_clock
)
1416 e_dev_info("registered PHC device on %s\n", netdev
->name
);
1418 /* set default timestamp mode to disabled here. We do this in
1419 * create_clock instead of init, because we don't want to override the
1420 * previous settings during a resume cycle.
1422 adapter
->tstamp_config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1423 adapter
->tstamp_config
.tx_type
= HWTSTAMP_TX_OFF
;
1430 * @adapter: the ixgbe private adapter structure
1432 * This function performs the required steps for enabling PTP
1433 * support. If PTP support has already been loaded it simply calls the
1434 * cyclecounter init routine and exits.
1436 void ixgbe_ptp_init(struct ixgbe_adapter
*adapter
)
1438 /* initialize the spin lock first since we can't control when a user
1439 * will call the entry functions once we have initialized the clock
1442 spin_lock_init(&adapter
->tmreg_lock
);
1444 /* obtain a PTP device, or re-use an existing device */
1445 if (ixgbe_ptp_create_clock(adapter
))
1448 /* we have a clock so we can initialize work now */
1449 INIT_WORK(&adapter
->ptp_tx_work
, ixgbe_ptp_tx_hwtstamp_work
);
1451 /* reset the PTP related hardware bits */
1452 ixgbe_ptp_reset(adapter
);
1454 /* enter the IXGBE_PTP_RUNNING state */
1455 set_bit(__IXGBE_PTP_RUNNING
, &adapter
->state
);
1461 * ixgbe_ptp_suspend - stop PTP work items
1462 * @adapter: pointer to adapter struct
1464 * this function suspends PTP activity, and prevents more PTP work from being
1465 * generated, but does not destroy the PTP clock device.
1467 void ixgbe_ptp_suspend(struct ixgbe_adapter
*adapter
)
1469 /* Leave the IXGBE_PTP_RUNNING state. */
1470 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING
, &adapter
->state
))
1473 adapter
->flags2
&= ~IXGBE_FLAG2_PTP_PPS_ENABLED
;
1474 if (adapter
->ptp_setup_sdp
)
1475 adapter
->ptp_setup_sdp(adapter
);
1477 /* ensure that we cancel any pending PTP Tx work item in progress */
1478 cancel_work_sync(&adapter
->ptp_tx_work
);
1479 ixgbe_ptp_clear_tx_timestamp(adapter
);
1483 * ixgbe_ptp_stop - close the PTP device
1484 * @adapter: pointer to adapter struct
1486 * completely destroy the PTP device, should only be called when the device is
1487 * being fully closed.
1489 void ixgbe_ptp_stop(struct ixgbe_adapter
*adapter
)
1491 /* first, suspend PTP activity */
1492 ixgbe_ptp_suspend(adapter
);
1494 /* disable the PTP clock device */
1495 if (adapter
->ptp_clock
) {
1496 ptp_clock_unregister(adapter
->ptp_clock
);
1497 adapter
->ptp_clock
= NULL
;
1498 e_dev_info("removed PHC on %s\n",
1499 adapter
->netdev
->name
);