WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / mellanox / mlx4 / icm.c
blobd89a3da89e5aa0ee304481bd165a7179e52f72e9
1 /*
2 * Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/errno.h>
35 #include <linux/mm.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
39 #include <linux/mlx4/cmd.h>
41 #include "mlx4.h"
42 #include "icm.h"
43 #include "fw.h"
46 * We allocate in as big chunks as we can, up to a maximum of 256 KB
47 * per chunk. Note that the chunks are not necessarily in contiguous
48 * physical memory.
50 enum {
51 MLX4_ICM_ALLOC_SIZE = 1 << 18,
52 MLX4_TABLE_CHUNK_SIZE = 1 << 18,
55 static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
57 int i;
59 if (chunk->nsg > 0)
60 dma_unmap_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages,
61 DMA_BIDIRECTIONAL);
63 for (i = 0; i < chunk->npages; ++i)
64 __free_pages(sg_page(&chunk->sg[i]),
65 get_order(chunk->sg[i].length));
68 static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
70 int i;
72 for (i = 0; i < chunk->npages; ++i)
73 dma_free_coherent(&dev->persist->pdev->dev,
74 chunk->buf[i].size,
75 chunk->buf[i].addr,
76 chunk->buf[i].dma_addr);
79 void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent)
81 struct mlx4_icm_chunk *chunk, *tmp;
83 if (!icm)
84 return;
86 list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
87 if (coherent)
88 mlx4_free_icm_coherent(dev, chunk);
89 else
90 mlx4_free_icm_pages(dev, chunk);
92 kfree(chunk);
95 kfree(icm);
98 static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order,
99 gfp_t gfp_mask, int node)
101 struct page *page;
103 page = alloc_pages_node(node, gfp_mask, order);
104 if (!page) {
105 page = alloc_pages(gfp_mask, order);
106 if (!page)
107 return -ENOMEM;
110 sg_set_page(mem, page, PAGE_SIZE << order, 0);
111 return 0;
114 static int mlx4_alloc_icm_coherent(struct device *dev, struct mlx4_icm_buf *buf,
115 int order, gfp_t gfp_mask)
117 buf->addr = dma_alloc_coherent(dev, PAGE_SIZE << order,
118 &buf->dma_addr, gfp_mask);
119 if (!buf->addr)
120 return -ENOMEM;
122 if (offset_in_page(buf->addr)) {
123 dma_free_coherent(dev, PAGE_SIZE << order, buf->addr,
124 buf->dma_addr);
125 return -ENOMEM;
128 buf->size = PAGE_SIZE << order;
129 return 0;
132 struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
133 gfp_t gfp_mask, int coherent)
135 struct mlx4_icm *icm;
136 struct mlx4_icm_chunk *chunk = NULL;
137 int cur_order;
138 gfp_t mask;
139 int ret;
141 /* We use sg_set_buf for coherent allocs, which assumes low memory */
142 BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));
144 icm = kmalloc_node(sizeof(*icm),
145 gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN),
146 dev->numa_node);
147 if (!icm) {
148 icm = kmalloc(sizeof(*icm),
149 gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
150 if (!icm)
151 return NULL;
154 icm->refcount = 0;
155 INIT_LIST_HEAD(&icm->chunk_list);
157 cur_order = get_order(MLX4_ICM_ALLOC_SIZE);
159 while (npages > 0) {
160 if (!chunk) {
161 chunk = kzalloc_node(sizeof(*chunk),
162 gfp_mask & ~(__GFP_HIGHMEM |
163 __GFP_NOWARN),
164 dev->numa_node);
165 if (!chunk) {
166 chunk = kzalloc(sizeof(*chunk),
167 gfp_mask & ~(__GFP_HIGHMEM |
168 __GFP_NOWARN));
169 if (!chunk)
170 goto fail;
172 chunk->coherent = coherent;
174 if (!coherent)
175 sg_init_table(chunk->sg, MLX4_ICM_CHUNK_LEN);
176 list_add_tail(&chunk->list, &icm->chunk_list);
179 while (1 << cur_order > npages)
180 --cur_order;
182 mask = gfp_mask;
183 if (cur_order)
184 mask &= ~__GFP_DIRECT_RECLAIM;
186 if (coherent)
187 ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev,
188 &chunk->buf[chunk->npages],
189 cur_order, mask);
190 else
191 ret = mlx4_alloc_icm_pages(&chunk->sg[chunk->npages],
192 cur_order, mask,
193 dev->numa_node);
195 if (ret) {
196 if (--cur_order < 0)
197 goto fail;
198 else
199 continue;
202 ++chunk->npages;
204 if (coherent)
205 ++chunk->nsg;
206 else if (chunk->npages == MLX4_ICM_CHUNK_LEN) {
207 chunk->nsg = dma_map_sg(&dev->persist->pdev->dev,
208 chunk->sg, chunk->npages,
209 DMA_BIDIRECTIONAL);
211 if (chunk->nsg <= 0)
212 goto fail;
215 if (chunk->npages == MLX4_ICM_CHUNK_LEN)
216 chunk = NULL;
218 npages -= 1 << cur_order;
221 if (!coherent && chunk) {
222 chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, chunk->sg,
223 chunk->npages, DMA_BIDIRECTIONAL);
225 if (chunk->nsg <= 0)
226 goto fail;
229 return icm;
231 fail:
232 mlx4_free_icm(dev, icm, coherent);
233 return NULL;
236 static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt)
238 return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt);
241 static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count)
243 return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM,
244 MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
247 int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm)
249 return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1);
252 int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev)
254 return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX,
255 MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
258 int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
260 u32 i = (obj & (table->num_obj - 1)) /
261 (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
262 int ret = 0;
264 mutex_lock(&table->mutex);
266 if (table->icm[i]) {
267 ++table->icm[i]->refcount;
268 goto out;
271 table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
272 (table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
273 __GFP_NOWARN, table->coherent);
274 if (!table->icm[i]) {
275 ret = -ENOMEM;
276 goto out;
279 if (mlx4_MAP_ICM(dev, table->icm[i], table->virt +
280 (u64) i * MLX4_TABLE_CHUNK_SIZE)) {
281 mlx4_free_icm(dev, table->icm[i], table->coherent);
282 table->icm[i] = NULL;
283 ret = -ENOMEM;
284 goto out;
287 ++table->icm[i]->refcount;
289 out:
290 mutex_unlock(&table->mutex);
291 return ret;
294 void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
296 u32 i;
297 u64 offset;
299 i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
301 mutex_lock(&table->mutex);
303 if (--table->icm[i]->refcount == 0) {
304 offset = (u64) i * MLX4_TABLE_CHUNK_SIZE;
305 mlx4_UNMAP_ICM(dev, table->virt + offset,
306 MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
307 mlx4_free_icm(dev, table->icm[i], table->coherent);
308 table->icm[i] = NULL;
311 mutex_unlock(&table->mutex);
314 void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
315 dma_addr_t *dma_handle)
317 int offset, dma_offset, i;
318 u64 idx;
319 struct mlx4_icm_chunk *chunk;
320 struct mlx4_icm *icm;
321 void *addr = NULL;
323 if (!table->lowmem)
324 return NULL;
326 mutex_lock(&table->mutex);
328 idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size;
329 icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE];
330 dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE;
332 if (!icm)
333 goto out;
335 list_for_each_entry(chunk, &icm->chunk_list, list) {
336 for (i = 0; i < chunk->npages; ++i) {
337 dma_addr_t dma_addr;
338 size_t len;
340 if (table->coherent) {
341 len = chunk->buf[i].size;
342 dma_addr = chunk->buf[i].dma_addr;
343 addr = chunk->buf[i].addr;
344 } else {
345 struct page *page;
347 len = sg_dma_len(&chunk->sg[i]);
348 dma_addr = sg_dma_address(&chunk->sg[i]);
350 /* XXX: we should never do this for highmem
351 * allocation. This function either needs
352 * to be split, or the kernel virtual address
353 * return needs to be made optional.
355 page = sg_page(&chunk->sg[i]);
356 addr = lowmem_page_address(page);
359 if (dma_handle && dma_offset >= 0) {
360 if (len > dma_offset)
361 *dma_handle = dma_addr + dma_offset;
362 dma_offset -= len;
366 * DMA mapping can merge pages but not split them,
367 * so if we found the page, dma_handle has already
368 * been assigned to.
370 if (len > offset)
371 goto out;
372 offset -= len;
376 addr = NULL;
377 out:
378 mutex_unlock(&table->mutex);
379 return addr ? addr + offset : NULL;
382 int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
383 u32 start, u32 end)
385 int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size;
386 int err;
387 u32 i;
389 for (i = start; i <= end; i += inc) {
390 err = mlx4_table_get(dev, table, i);
391 if (err)
392 goto fail;
395 return 0;
397 fail:
398 while (i > start) {
399 i -= inc;
400 mlx4_table_put(dev, table, i);
403 return err;
406 void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
407 u32 start, u32 end)
409 u32 i;
411 for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size)
412 mlx4_table_put(dev, table, i);
415 int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table,
416 u64 virt, int obj_size, u32 nobj, int reserved,
417 int use_lowmem, int use_coherent)
419 int obj_per_chunk;
420 int num_icm;
421 unsigned chunk_size;
422 int i;
423 u64 size;
425 obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size;
426 if (WARN_ON(!obj_per_chunk))
427 return -EINVAL;
428 num_icm = DIV_ROUND_UP(nobj, obj_per_chunk);
430 table->icm = kvcalloc(num_icm, sizeof(*table->icm), GFP_KERNEL);
431 if (!table->icm)
432 return -ENOMEM;
433 table->virt = virt;
434 table->num_icm = num_icm;
435 table->num_obj = nobj;
436 table->obj_size = obj_size;
437 table->lowmem = use_lowmem;
438 table->coherent = use_coherent;
439 mutex_init(&table->mutex);
441 size = (u64) nobj * obj_size;
442 for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
443 chunk_size = MLX4_TABLE_CHUNK_SIZE;
444 if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size)
445 chunk_size = PAGE_ALIGN(size -
446 i * MLX4_TABLE_CHUNK_SIZE);
448 table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
449 (use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
450 __GFP_NOWARN, use_coherent);
451 if (!table->icm[i])
452 goto err;
453 if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) {
454 mlx4_free_icm(dev, table->icm[i], use_coherent);
455 table->icm[i] = NULL;
456 goto err;
460 * Add a reference to this ICM chunk so that it never
461 * gets freed (since it contains reserved firmware objects).
463 ++table->icm[i]->refcount;
466 return 0;
468 err:
469 for (i = 0; i < num_icm; ++i)
470 if (table->icm[i]) {
471 mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE,
472 MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
473 mlx4_free_icm(dev, table->icm[i], use_coherent);
476 kvfree(table->icm);
478 return -ENOMEM;
481 void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table)
483 int i;
485 for (i = 0; i < table->num_icm; ++i)
486 if (table->icm[i]) {
487 mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE,
488 MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
489 mlx4_free_icm(dev, table->icm[i], table->coherent);
492 kvfree(table->icm);