1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
46 * Possible values '1' for enable , '0' for disable.
47 * Default is '2' - which means disable in promisc mode
48 * and enable in non-promiscuous mode.
49 * multiq: This parameter used to enable/disable MULTIQUEUE support.
50 * Possible values '1' for enable and '0' for disable. Default is '0'
51 ************************************************************************/
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/mdio.h>
65 #include <linux/skbuff.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/stddef.h>
69 #include <linux/ioctl.h>
70 #include <linux/timex.h>
71 #include <linux/ethtool.h>
72 #include <linux/workqueue.h>
73 #include <linux/if_vlan.h>
75 #include <linux/tcp.h>
76 #include <linux/uaccess.h>
78 #include <linux/io-64-nonatomic-lo-hi.h>
79 #include <linux/slab.h>
80 #include <linux/prefetch.h>
82 #include <net/checksum.h>
84 #include <asm/div64.h>
89 #include "s2io-regs.h"
91 #define DRV_VERSION "2.0.26.28"
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name
[] = "Neterion";
95 static const char s2io_driver_version
[] = DRV_VERSION
;
97 static const int rxd_size
[2] = {32, 48};
98 static const int rxd_count
[2] = {127, 85};
100 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
104 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
105 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
125 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
137 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
139 {"tmac_data_octets"},
143 {"tmac_pause_ctrl_frms"},
147 {"tmac_any_err_frms"},
148 {"tmac_ttl_less_fb_octets"},
149 {"tmac_vld_ip_octets"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
163 {"rmac_out_rng_len_err_frms"},
165 {"rmac_pause_ctrl_frms"},
166 {"rmac_unsup_ctrl_frms"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
170 {"rmac_discarded_frms"},
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
177 {"rmac_jabber_frms"},
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
191 {"rmac_err_drp_udp"},
192 {"rmac_xgmii_err_sym"},
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
212 {"rmac_accepted_ip"},
216 {"new_rd_req_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
221 {"new_wr_req_rtry_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
234 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
253 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
321 {"prc_pcix_err_cnt"},
328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 /* copy mac addr to def_mac_addr array */
342 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
344 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
345 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
346 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
347 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
348 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
349 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
353 * Constants to be programmed into the Xena's registers, to configure
358 static const u64 herc_act_dtx_cfg
[] = {
360 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
362 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
364 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
366 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
368 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
370 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
372 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
374 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
379 static const u64 xena_dtx_cfg
[] = {
381 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
383 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
385 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
387 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
389 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
391 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
396 * Constants for Fixing the MacAddress problem seen mostly on
399 static const u64 fix_mac
[] = {
400 0x0060000000000000ULL
, 0x0060600000000000ULL
,
401 0x0040600000000000ULL
, 0x0000600000000000ULL
,
402 0x0020600000000000ULL
, 0x0060600000000000ULL
,
403 0x0020600000000000ULL
, 0x0060600000000000ULL
,
404 0x0020600000000000ULL
, 0x0060600000000000ULL
,
405 0x0020600000000000ULL
, 0x0060600000000000ULL
,
406 0x0020600000000000ULL
, 0x0060600000000000ULL
,
407 0x0020600000000000ULL
, 0x0060600000000000ULL
,
408 0x0020600000000000ULL
, 0x0060600000000000ULL
,
409 0x0020600000000000ULL
, 0x0060600000000000ULL
,
410 0x0020600000000000ULL
, 0x0060600000000000ULL
,
411 0x0020600000000000ULL
, 0x0060600000000000ULL
,
412 0x0020600000000000ULL
, 0x0000600000000000ULL
,
413 0x0040600000000000ULL
, 0x0060600000000000ULL
,
417 MODULE_LICENSE("GPL");
418 MODULE_VERSION(DRV_VERSION
);
421 /* Module Loadable parameters. */
422 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
423 S2IO_PARM_INT(rx_ring_num
, 1);
424 S2IO_PARM_INT(multiq
, 0);
425 S2IO_PARM_INT(rx_ring_mode
, 1);
426 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
427 S2IO_PARM_INT(rmac_pause_time
, 0x100);
428 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
429 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
430 S2IO_PARM_INT(shared_splits
, 0);
431 S2IO_PARM_INT(tmac_util_period
, 5);
432 S2IO_PARM_INT(rmac_util_period
, 5);
433 S2IO_PARM_INT(l3l4hdr_size
, 128);
434 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
435 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
436 /* Frequency of Rx desc syncs expressed as power of 2 */
437 S2IO_PARM_INT(rxsync_frequency
, 3);
438 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
439 S2IO_PARM_INT(intr_type
, 2);
440 /* Large receive offload feature */
442 /* Max pkts to be aggregated by LRO at one time. If not specified,
443 * aggregation happens until we hit max IP pkt size(64K)
445 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
446 S2IO_PARM_INT(indicate_max_pkts
, 0);
448 S2IO_PARM_INT(napi
, 1);
449 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
451 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
452 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
453 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
454 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
455 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
456 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
458 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
459 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
460 module_param_array(rts_frm_len
, uint
, NULL
, 0);
464 * This table lists all the devices that this driver supports.
466 static const struct pci_device_id s2io_tbl
[] = {
467 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
468 PCI_ANY_ID
, PCI_ANY_ID
},
469 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
470 PCI_ANY_ID
, PCI_ANY_ID
},
471 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
472 PCI_ANY_ID
, PCI_ANY_ID
},
473 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
474 PCI_ANY_ID
, PCI_ANY_ID
},
478 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
480 static const struct pci_error_handlers s2io_err_handler
= {
481 .error_detected
= s2io_io_error_detected
,
482 .slot_reset
= s2io_io_slot_reset
,
483 .resume
= s2io_io_resume
,
486 static struct pci_driver s2io_driver
= {
488 .id_table
= s2io_tbl
,
489 .probe
= s2io_init_nic
,
490 .remove
= s2io_rem_nic
,
491 .err_handler
= &s2io_err_handler
,
494 /* A simplifier macro used both by init and free shared_mem Fns(). */
495 #define TXD_MEM_PAGE_CNT(len, per_each) DIV_ROUND_UP(len, per_each)
497 /* netqueue manipulation helper functions */
498 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
500 if (!sp
->config
.multiq
) {
503 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
504 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
506 netif_tx_stop_all_queues(sp
->dev
);
509 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
511 if (!sp
->config
.multiq
)
512 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
515 netif_tx_stop_all_queues(sp
->dev
);
518 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
520 if (!sp
->config
.multiq
) {
523 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
524 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
526 netif_tx_start_all_queues(sp
->dev
);
529 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
531 if (!sp
->config
.multiq
) {
534 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
535 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
537 netif_tx_wake_all_queues(sp
->dev
);
540 static inline void s2io_wake_tx_queue(
541 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
545 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
546 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
547 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
548 if (netif_queue_stopped(fifo
->dev
)) {
549 fifo
->queue_state
= FIFO_QUEUE_START
;
550 netif_wake_queue(fifo
->dev
);
556 * init_shared_mem - Allocation and Initialization of Memory
557 * @nic: Device private variable.
558 * Description: The function allocates all the memory areas shared
559 * between the NIC and the driver. This includes Tx descriptors,
560 * Rx descriptors and the statistics block.
563 static int init_shared_mem(struct s2io_nic
*nic
)
566 void *tmp_v_addr
, *tmp_v_addr_next
;
567 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
568 struct RxD_block
*pre_rxd_blk
= NULL
;
570 int lst_size
, lst_per_page
;
571 struct net_device
*dev
= nic
->dev
;
574 struct config_param
*config
= &nic
->config
;
575 struct mac_info
*mac_control
= &nic
->mac_control
;
576 unsigned long long mem_allocated
= 0;
578 /* Allocation and initialization of TXDLs in FIFOs */
580 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
581 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
583 size
+= tx_cfg
->fifo_len
;
585 if (size
> MAX_AVAILABLE_TXDS
) {
587 "Too many TxDs requested: %d, max supported: %d\n",
588 size
, MAX_AVAILABLE_TXDS
);
593 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
594 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
596 size
= tx_cfg
->fifo_len
;
598 * Legal values are from 2 to 8192
601 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
602 "Valid lengths are 2 through 8192\n",
608 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
609 lst_per_page
= PAGE_SIZE
/ lst_size
;
611 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
612 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
613 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
614 int fifo_len
= tx_cfg
->fifo_len
;
615 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
617 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
618 if (!fifo
->list_info
) {
619 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
622 mem_allocated
+= list_holder_size
;
624 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
625 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
627 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
628 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
630 fifo
->tx_curr_put_info
.offset
= 0;
631 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
632 fifo
->tx_curr_get_info
.offset
= 0;
633 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
636 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
639 for (j
= 0; j
< page_num
; j
++) {
643 tmp_v
= dma_alloc_coherent(&nic
->pdev
->dev
, PAGE_SIZE
,
647 "dma_alloc_coherent failed for TxDL\n");
650 /* If we got a zero DMA address(can happen on
651 * certain platforms like PPC), reallocate.
652 * Store virtual address of page we don't want,
656 mac_control
->zerodma_virt_addr
= tmp_v
;
658 "%s: Zero DMA address for TxDL. "
659 "Virtual address %p\n",
661 tmp_v
= dma_alloc_coherent(&nic
->pdev
->dev
,
666 "dma_alloc_coherent failed for TxDL\n");
669 mem_allocated
+= PAGE_SIZE
;
671 while (k
< lst_per_page
) {
672 int l
= (j
* lst_per_page
) + k
;
673 if (l
== tx_cfg
->fifo_len
)
675 fifo
->list_info
[l
].list_virt_addr
=
676 tmp_v
+ (k
* lst_size
);
677 fifo
->list_info
[l
].list_phy_addr
=
678 tmp_p
+ (k
* lst_size
);
684 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
685 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
686 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
688 size
= tx_cfg
->fifo_len
;
689 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
690 if (!fifo
->ufo_in_band_v
)
692 mem_allocated
+= (size
* sizeof(u64
));
695 /* Allocation and initialization of RXDs in Rings */
697 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
698 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
699 struct ring_info
*ring
= &mac_control
->rings
[i
];
701 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
702 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
703 "multiple of RxDs per Block\n",
707 size
+= rx_cfg
->num_rxd
;
708 ring
->block_count
= rx_cfg
->num_rxd
/
709 (rxd_count
[nic
->rxd_mode
] + 1);
710 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
712 if (nic
->rxd_mode
== RXD_MODE_1
)
713 size
= (size
* (sizeof(struct RxD1
)));
715 size
= (size
* (sizeof(struct RxD3
)));
717 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
718 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
719 struct ring_info
*ring
= &mac_control
->rings
[i
];
721 ring
->rx_curr_get_info
.block_index
= 0;
722 ring
->rx_curr_get_info
.offset
= 0;
723 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
724 ring
->rx_curr_put_info
.block_index
= 0;
725 ring
->rx_curr_put_info
.offset
= 0;
726 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
730 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
731 /* Allocating all the Rx blocks */
732 for (j
= 0; j
< blk_cnt
; j
++) {
733 struct rx_block_info
*rx_blocks
;
736 rx_blocks
= &ring
->rx_blocks
[j
];
737 size
= SIZE_OF_BLOCK
; /* size is always page size */
738 tmp_v_addr
= dma_alloc_coherent(&nic
->pdev
->dev
, size
,
739 &tmp_p_addr
, GFP_KERNEL
);
740 if (tmp_v_addr
== NULL
) {
742 * In case of failure, free_shared_mem()
743 * is called, which should free any
744 * memory that was alloced till the
747 rx_blocks
->block_virt_addr
= tmp_v_addr
;
750 mem_allocated
+= size
;
752 size
= sizeof(struct rxd_info
) *
753 rxd_count
[nic
->rxd_mode
];
754 rx_blocks
->block_virt_addr
= tmp_v_addr
;
755 rx_blocks
->block_dma_addr
= tmp_p_addr
;
756 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
757 if (!rx_blocks
->rxds
)
759 mem_allocated
+= size
;
760 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
761 rx_blocks
->rxds
[l
].virt_addr
=
762 rx_blocks
->block_virt_addr
+
763 (rxd_size
[nic
->rxd_mode
] * l
);
764 rx_blocks
->rxds
[l
].dma_addr
=
765 rx_blocks
->block_dma_addr
+
766 (rxd_size
[nic
->rxd_mode
] * l
);
769 /* Interlinking all Rx Blocks */
770 for (j
= 0; j
< blk_cnt
; j
++) {
771 int next
= (j
+ 1) % blk_cnt
;
772 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
773 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
774 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
775 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
777 pre_rxd_blk
= tmp_v_addr
;
778 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
779 (unsigned long)tmp_v_addr_next
;
780 pre_rxd_blk
->pNext_RxD_Blk_physical
=
781 (u64
)tmp_p_addr_next
;
784 if (nic
->rxd_mode
== RXD_MODE_3B
) {
786 * Allocation of Storages for buffer addresses in 2BUFF mode
787 * and the buffers as well.
789 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
790 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
791 struct ring_info
*ring
= &mac_control
->rings
[i
];
793 blk_cnt
= rx_cfg
->num_rxd
/
794 (rxd_count
[nic
->rxd_mode
] + 1);
795 size
= sizeof(struct buffAdd
*) * blk_cnt
;
796 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
799 mem_allocated
+= size
;
800 for (j
= 0; j
< blk_cnt
; j
++) {
803 size
= sizeof(struct buffAdd
) *
804 (rxd_count
[nic
->rxd_mode
] + 1);
805 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
808 mem_allocated
+= size
;
809 while (k
!= rxd_count
[nic
->rxd_mode
]) {
810 ba
= &ring
->ba
[j
][k
];
811 size
= BUF0_LEN
+ ALIGN_SIZE
;
812 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
815 mem_allocated
+= size
;
816 tmp
= (unsigned long)ba
->ba_0_org
;
818 tmp
&= ~((unsigned long)ALIGN_SIZE
);
819 ba
->ba_0
= (void *)tmp
;
821 size
= BUF1_LEN
+ ALIGN_SIZE
;
822 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
825 mem_allocated
+= size
;
826 tmp
= (unsigned long)ba
->ba_1_org
;
828 tmp
&= ~((unsigned long)ALIGN_SIZE
);
829 ba
->ba_1
= (void *)tmp
;
836 /* Allocation and initialization of Statistics block */
837 size
= sizeof(struct stat_block
);
838 mac_control
->stats_mem
=
839 dma_alloc_coherent(&nic
->pdev
->dev
, size
,
840 &mac_control
->stats_mem_phy
, GFP_KERNEL
);
842 if (!mac_control
->stats_mem
) {
844 * In case of failure, free_shared_mem() is called, which
845 * should free any memory that was alloced till the
850 mem_allocated
+= size
;
851 mac_control
->stats_mem_sz
= size
;
853 tmp_v_addr
= mac_control
->stats_mem
;
854 mac_control
->stats_info
= tmp_v_addr
;
855 memset(tmp_v_addr
, 0, size
);
856 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
857 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
858 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
863 * free_shared_mem - Free the allocated Memory
864 * @nic: Device private variable.
865 * Description: This function is to free all memory locations allocated by
866 * the init_shared_mem() function and return it to the kernel.
869 static void free_shared_mem(struct s2io_nic
*nic
)
871 int i
, j
, blk_cnt
, size
;
873 dma_addr_t tmp_p_addr
;
874 int lst_size
, lst_per_page
;
875 struct net_device
*dev
;
877 struct config_param
*config
;
878 struct mac_info
*mac_control
;
879 struct stat_block
*stats
;
880 struct swStat
*swstats
;
887 config
= &nic
->config
;
888 mac_control
= &nic
->mac_control
;
889 stats
= mac_control
->stats_info
;
890 swstats
= &stats
->sw_stat
;
892 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
893 lst_per_page
= PAGE_SIZE
/ lst_size
;
895 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
896 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
897 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
899 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
900 for (j
= 0; j
< page_num
; j
++) {
901 int mem_blks
= (j
* lst_per_page
);
902 struct list_info_hold
*fli
;
904 if (!fifo
->list_info
)
907 fli
= &fifo
->list_info
[mem_blks
];
908 if (!fli
->list_virt_addr
)
910 dma_free_coherent(&nic
->pdev
->dev
, PAGE_SIZE
,
913 swstats
->mem_freed
+= PAGE_SIZE
;
915 /* If we got a zero DMA address during allocation,
918 if (mac_control
->zerodma_virt_addr
) {
919 dma_free_coherent(&nic
->pdev
->dev
, PAGE_SIZE
,
920 mac_control
->zerodma_virt_addr
,
923 "%s: Freeing TxDL with zero DMA address. "
924 "Virtual address %p\n",
925 dev
->name
, mac_control
->zerodma_virt_addr
);
926 swstats
->mem_freed
+= PAGE_SIZE
;
928 kfree(fifo
->list_info
);
929 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
930 sizeof(struct list_info_hold
);
933 size
= SIZE_OF_BLOCK
;
934 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
935 struct ring_info
*ring
= &mac_control
->rings
[i
];
937 blk_cnt
= ring
->block_count
;
938 for (j
= 0; j
< blk_cnt
; j
++) {
939 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
940 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
941 if (tmp_v_addr
== NULL
)
943 dma_free_coherent(&nic
->pdev
->dev
, size
, tmp_v_addr
,
945 swstats
->mem_freed
+= size
;
946 kfree(ring
->rx_blocks
[j
].rxds
);
947 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
948 rxd_count
[nic
->rxd_mode
];
952 if (nic
->rxd_mode
== RXD_MODE_3B
) {
953 /* Freeing buffer storage addresses in 2BUFF mode. */
954 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
955 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
956 struct ring_info
*ring
= &mac_control
->rings
[i
];
958 blk_cnt
= rx_cfg
->num_rxd
/
959 (rxd_count
[nic
->rxd_mode
] + 1);
960 for (j
= 0; j
< blk_cnt
; j
++) {
964 while (k
!= rxd_count
[nic
->rxd_mode
]) {
965 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
967 swstats
->mem_freed
+=
968 BUF0_LEN
+ ALIGN_SIZE
;
970 swstats
->mem_freed
+=
971 BUF1_LEN
+ ALIGN_SIZE
;
975 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
976 (rxd_count
[nic
->rxd_mode
] + 1);
979 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
984 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
985 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
986 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
988 if (fifo
->ufo_in_band_v
) {
989 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
991 kfree(fifo
->ufo_in_band_v
);
995 if (mac_control
->stats_mem
) {
996 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
997 dma_free_coherent(&nic
->pdev
->dev
, mac_control
->stats_mem_sz
,
998 mac_control
->stats_mem
,
999 mac_control
->stats_mem_phy
);
1004 * s2io_verify_pci_mode -
1007 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1009 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1010 register u64 val64
= 0;
1013 val64
= readq(&bar0
->pci_mode
);
1014 mode
= (u8
)GET_PCI_MODE(val64
);
1016 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1017 return -1; /* Unknown PCI mode */
1021 #define NEC_VENID 0x1033
1022 #define NEC_DEVID 0x0125
1023 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1025 struct pci_dev
*tdev
= NULL
;
1026 for_each_pci_dev(tdev
) {
1027 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1028 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1037 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1039 * s2io_print_pci_mode -
1041 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1043 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1044 register u64 val64
= 0;
1046 struct config_param
*config
= &nic
->config
;
1047 const char *pcimode
;
1049 val64
= readq(&bar0
->pci_mode
);
1050 mode
= (u8
)GET_PCI_MODE(val64
);
1052 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1053 return -1; /* Unknown PCI mode */
1055 config
->bus_speed
= bus_speed
[mode
];
1057 if (s2io_on_nec_bridge(nic
->pdev
)) {
1058 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1064 case PCI_MODE_PCI_33
:
1065 pcimode
= "33MHz PCI bus";
1067 case PCI_MODE_PCI_66
:
1068 pcimode
= "66MHz PCI bus";
1070 case PCI_MODE_PCIX_M1_66
:
1071 pcimode
= "66MHz PCIX(M1) bus";
1073 case PCI_MODE_PCIX_M1_100
:
1074 pcimode
= "100MHz PCIX(M1) bus";
1076 case PCI_MODE_PCIX_M1_133
:
1077 pcimode
= "133MHz PCIX(M1) bus";
1079 case PCI_MODE_PCIX_M2_66
:
1080 pcimode
= "133MHz PCIX(M2) bus";
1082 case PCI_MODE_PCIX_M2_100
:
1083 pcimode
= "200MHz PCIX(M2) bus";
1085 case PCI_MODE_PCIX_M2_133
:
1086 pcimode
= "266MHz PCIX(M2) bus";
1089 pcimode
= "unsupported bus!";
1093 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1094 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1100 * init_tti - Initialization transmit traffic interrupt scheme
1101 * @nic: device private variable
1102 * @link: link status (UP/DOWN) used to enable/disable continuous
1103 * transmit interrupts
1104 * Description: The function configures transmit traffic interrupts
1105 * Return Value: SUCCESS on success and
1109 static int init_tti(struct s2io_nic
*nic
, int link
, bool may_sleep
)
1111 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1112 register u64 val64
= 0;
1114 struct config_param
*config
= &nic
->config
;
1116 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1118 * TTI Initialization. Default Tx timer gets us about
1119 * 250 interrupts per sec. Continuous interrupts are enabled
1122 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1123 int count
= (nic
->config
.bus_speed
* 125)/2;
1124 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1126 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1128 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1129 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1130 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1131 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1133 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1134 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1135 writeq(val64
, &bar0
->tti_data1_mem
);
1137 if (nic
->config
.intr_type
== MSI_X
) {
1138 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1139 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1140 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1141 TTI_DATA2_MEM_TX_UFC_D(0x300);
1143 if ((nic
->config
.tx_steering_type
==
1144 TX_DEFAULT_STEERING
) &&
1145 (config
->tx_fifo_num
> 1) &&
1146 (i
>= nic
->udp_fifo_idx
) &&
1147 (i
< (nic
->udp_fifo_idx
+
1148 nic
->total_udp_fifos
)))
1149 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1150 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1151 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1152 TTI_DATA2_MEM_TX_UFC_D(0x120);
1154 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1155 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1156 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1157 TTI_DATA2_MEM_TX_UFC_D(0x80);
1160 writeq(val64
, &bar0
->tti_data2_mem
);
1162 val64
= TTI_CMD_MEM_WE
|
1163 TTI_CMD_MEM_STROBE_NEW_CMD
|
1164 TTI_CMD_MEM_OFFSET(i
);
1165 writeq(val64
, &bar0
->tti_command_mem
);
1167 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1168 TTI_CMD_MEM_STROBE_NEW_CMD
,
1169 S2IO_BIT_RESET
, may_sleep
) != SUCCESS
)
1177 * init_nic - Initialization of hardware
1178 * @nic: device private variable
1179 * Description: The function sequentially configures every block
1180 * of the H/W from their reset values.
1181 * Return Value: SUCCESS on success and
1182 * '-1' on failure (endian settings incorrect).
1185 static int init_nic(struct s2io_nic
*nic
)
1187 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1188 struct net_device
*dev
= nic
->dev
;
1189 register u64 val64
= 0;
1194 unsigned long long mem_share
;
1196 struct config_param
*config
= &nic
->config
;
1197 struct mac_info
*mac_control
= &nic
->mac_control
;
1199 /* to set the swapper controle on the card */
1200 if (s2io_set_swapper(nic
)) {
1201 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1206 * Herc requires EOI to be removed from reset before XGXS, so..
1208 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1209 val64
= 0xA500000000ULL
;
1210 writeq(val64
, &bar0
->sw_reset
);
1212 val64
= readq(&bar0
->sw_reset
);
1215 /* Remove XGXS from reset state */
1217 writeq(val64
, &bar0
->sw_reset
);
1219 val64
= readq(&bar0
->sw_reset
);
1221 /* Ensure that it's safe to access registers by checking
1222 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1224 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1225 for (i
= 0; i
< 50; i
++) {
1226 val64
= readq(&bar0
->adapter_status
);
1227 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1235 /* Enable Receiving broadcasts */
1236 add
= &bar0
->mac_cfg
;
1237 val64
= readq(&bar0
->mac_cfg
);
1238 val64
|= MAC_RMAC_BCAST_ENABLE
;
1239 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1240 writel((u32
)val64
, add
);
1241 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1242 writel((u32
) (val64
>> 32), (add
+ 4));
1244 /* Read registers in all blocks */
1245 val64
= readq(&bar0
->mac_int_mask
);
1246 val64
= readq(&bar0
->mc_int_mask
);
1247 val64
= readq(&bar0
->xgxs_int_mask
);
1251 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1253 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1254 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1255 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1256 &bar0
->dtx_control
, UF
);
1258 msleep(1); /* Necessary!! */
1262 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1263 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1264 &bar0
->dtx_control
, UF
);
1265 val64
= readq(&bar0
->dtx_control
);
1270 /* Tx DMA Initialization */
1272 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1273 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1274 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1275 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1277 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1278 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1280 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1281 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1283 if (i
== (config
->tx_fifo_num
- 1)) {
1290 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1295 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1300 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1305 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1316 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1317 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1319 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1320 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1322 val64
= readq(&bar0
->tx_fifo_partition_0
);
1323 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1324 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1327 * Initialization of Tx_PA_CONFIG register to ignore packet
1328 * integrity checking.
1330 val64
= readq(&bar0
->tx_pa_cfg
);
1331 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1332 TX_PA_CFG_IGNORE_SNAP_OUI
|
1333 TX_PA_CFG_IGNORE_LLC_CTRL
|
1334 TX_PA_CFG_IGNORE_L2_ERR
;
1335 writeq(val64
, &bar0
->tx_pa_cfg
);
1337 /* Rx DMA initialization. */
1339 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1340 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1342 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1344 writeq(val64
, &bar0
->rx_queue_priority
);
1347 * Allocating equal share of memory to all the
1351 if (nic
->device_type
& XFRAME_II_DEVICE
)
1356 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1359 mem_share
= (mem_size
/ config
->rx_ring_num
+
1360 mem_size
% config
->rx_ring_num
);
1361 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1364 mem_share
= (mem_size
/ config
->rx_ring_num
);
1365 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1368 mem_share
= (mem_size
/ config
->rx_ring_num
);
1369 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1372 mem_share
= (mem_size
/ config
->rx_ring_num
);
1373 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1376 mem_share
= (mem_size
/ config
->rx_ring_num
);
1377 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1380 mem_share
= (mem_size
/ config
->rx_ring_num
);
1381 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1384 mem_share
= (mem_size
/ config
->rx_ring_num
);
1385 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1388 mem_share
= (mem_size
/ config
->rx_ring_num
);
1389 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1393 writeq(val64
, &bar0
->rx_queue_cfg
);
1396 * Filling Tx round robin registers
1397 * as per the number of FIFOs for equal scheduling priority
1399 switch (config
->tx_fifo_num
) {
1402 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1403 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1404 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1405 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1406 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1409 val64
= 0x0001000100010001ULL
;
1410 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1411 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1412 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1413 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1414 val64
= 0x0001000100000000ULL
;
1415 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1418 val64
= 0x0001020001020001ULL
;
1419 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1420 val64
= 0x0200010200010200ULL
;
1421 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1422 val64
= 0x0102000102000102ULL
;
1423 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1424 val64
= 0x0001020001020001ULL
;
1425 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1426 val64
= 0x0200010200000000ULL
;
1427 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1430 val64
= 0x0001020300010203ULL
;
1431 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1432 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1433 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1434 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1435 val64
= 0x0001020300000000ULL
;
1436 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1439 val64
= 0x0001020304000102ULL
;
1440 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1441 val64
= 0x0304000102030400ULL
;
1442 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1443 val64
= 0x0102030400010203ULL
;
1444 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1445 val64
= 0x0400010203040001ULL
;
1446 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1447 val64
= 0x0203040000000000ULL
;
1448 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1451 val64
= 0x0001020304050001ULL
;
1452 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1453 val64
= 0x0203040500010203ULL
;
1454 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1455 val64
= 0x0405000102030405ULL
;
1456 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1457 val64
= 0x0001020304050001ULL
;
1458 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1459 val64
= 0x0203040500000000ULL
;
1460 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1463 val64
= 0x0001020304050600ULL
;
1464 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1465 val64
= 0x0102030405060001ULL
;
1466 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1467 val64
= 0x0203040506000102ULL
;
1468 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1469 val64
= 0x0304050600010203ULL
;
1470 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1471 val64
= 0x0405060000000000ULL
;
1472 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1475 val64
= 0x0001020304050607ULL
;
1476 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1477 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1479 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1480 val64
= 0x0001020300000000ULL
;
1481 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1485 /* Enable all configured Tx FIFO partitions */
1486 val64
= readq(&bar0
->tx_fifo_partition_0
);
1487 val64
|= (TX_FIFO_PARTITION_EN
);
1488 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1490 /* Filling the Rx round robin registers as per the
1491 * number of Rings and steering based on QoS with
1494 switch (config
->rx_ring_num
) {
1497 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1498 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1499 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1500 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1501 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1503 val64
= 0x8080808080808080ULL
;
1504 writeq(val64
, &bar0
->rts_qos_steering
);
1507 val64
= 0x0001000100010001ULL
;
1508 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1509 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1510 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1511 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1512 val64
= 0x0001000100000000ULL
;
1513 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1515 val64
= 0x8080808040404040ULL
;
1516 writeq(val64
, &bar0
->rts_qos_steering
);
1519 val64
= 0x0001020001020001ULL
;
1520 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1521 val64
= 0x0200010200010200ULL
;
1522 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1523 val64
= 0x0102000102000102ULL
;
1524 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1525 val64
= 0x0001020001020001ULL
;
1526 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1527 val64
= 0x0200010200000000ULL
;
1528 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1530 val64
= 0x8080804040402020ULL
;
1531 writeq(val64
, &bar0
->rts_qos_steering
);
1534 val64
= 0x0001020300010203ULL
;
1535 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1536 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1537 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1538 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1539 val64
= 0x0001020300000000ULL
;
1540 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1542 val64
= 0x8080404020201010ULL
;
1543 writeq(val64
, &bar0
->rts_qos_steering
);
1546 val64
= 0x0001020304000102ULL
;
1547 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1548 val64
= 0x0304000102030400ULL
;
1549 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1550 val64
= 0x0102030400010203ULL
;
1551 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1552 val64
= 0x0400010203040001ULL
;
1553 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1554 val64
= 0x0203040000000000ULL
;
1555 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1557 val64
= 0x8080404020201008ULL
;
1558 writeq(val64
, &bar0
->rts_qos_steering
);
1561 val64
= 0x0001020304050001ULL
;
1562 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1563 val64
= 0x0203040500010203ULL
;
1564 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1565 val64
= 0x0405000102030405ULL
;
1566 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1567 val64
= 0x0001020304050001ULL
;
1568 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1569 val64
= 0x0203040500000000ULL
;
1570 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1572 val64
= 0x8080404020100804ULL
;
1573 writeq(val64
, &bar0
->rts_qos_steering
);
1576 val64
= 0x0001020304050600ULL
;
1577 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1578 val64
= 0x0102030405060001ULL
;
1579 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1580 val64
= 0x0203040506000102ULL
;
1581 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1582 val64
= 0x0304050600010203ULL
;
1583 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1584 val64
= 0x0405060000000000ULL
;
1585 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1587 val64
= 0x8080402010080402ULL
;
1588 writeq(val64
, &bar0
->rts_qos_steering
);
1591 val64
= 0x0001020304050607ULL
;
1592 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1593 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1594 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1595 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1596 val64
= 0x0001020300000000ULL
;
1597 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1599 val64
= 0x8040201008040201ULL
;
1600 writeq(val64
, &bar0
->rts_qos_steering
);
1606 for (i
= 0; i
< 8; i
++)
1607 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1609 /* Set the default rts frame length for the rings configured */
1610 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1611 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1612 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1614 /* Set the frame length for the configured rings
1615 * desired by the user
1617 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1618 /* If rts_frm_len[i] == 0 then it is assumed that user not
1619 * specified frame length steering.
1620 * If the user provides the frame length then program
1621 * the rts_frm_len register for those values or else
1622 * leave it as it is.
1624 if (rts_frm_len
[i
] != 0) {
1625 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1626 &bar0
->rts_frm_len_n
[i
]);
1630 /* Disable differentiated services steering logic */
1631 for (i
= 0; i
< 64; i
++) {
1632 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1634 "%s: rts_ds_steer failed on codepoint %d\n",
1640 /* Program statistics memory */
1641 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1643 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1644 val64
= STAT_BC(0x320);
1645 writeq(val64
, &bar0
->stat_byte_cnt
);
1649 * Initializing the sampling rate for the device to calculate the
1650 * bandwidth utilization.
1652 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1653 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1654 writeq(val64
, &bar0
->mac_link_util
);
1657 * Initializing the Transmit and Receive Traffic Interrupt
1661 /* Initialize TTI */
1662 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
, true))
1665 /* RTI Initialization */
1666 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1668 * Programmed to generate Apprx 500 Intrs per
1671 int count
= (nic
->config
.bus_speed
* 125)/4;
1672 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1674 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1675 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1676 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1677 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1678 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1680 writeq(val64
, &bar0
->rti_data1_mem
);
1682 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1683 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1684 if (nic
->config
.intr_type
== MSI_X
)
1685 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1686 RTI_DATA2_MEM_RX_UFC_D(0x40));
1688 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1689 RTI_DATA2_MEM_RX_UFC_D(0x80));
1690 writeq(val64
, &bar0
->rti_data2_mem
);
1692 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1693 val64
= RTI_CMD_MEM_WE
|
1694 RTI_CMD_MEM_STROBE_NEW_CMD
|
1695 RTI_CMD_MEM_OFFSET(i
);
1696 writeq(val64
, &bar0
->rti_command_mem
);
1699 * Once the operation completes, the Strobe bit of the
1700 * command register will be reset. We poll for this
1701 * particular condition. We wait for a maximum of 500ms
1702 * for the operation to complete, if it's not complete
1703 * by then we return error.
1707 val64
= readq(&bar0
->rti_command_mem
);
1708 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1712 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1722 * Initializing proper values as Pause threshold into all
1723 * the 8 Queues on Rx side.
1725 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1726 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1728 /* Disable RMAC PAD STRIPPING */
1729 add
= &bar0
->mac_cfg
;
1730 val64
= readq(&bar0
->mac_cfg
);
1731 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1732 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1733 writel((u32
) (val64
), add
);
1734 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1735 writel((u32
) (val64
>> 32), (add
+ 4));
1736 val64
= readq(&bar0
->mac_cfg
);
1738 /* Enable FCS stripping by adapter */
1739 add
= &bar0
->mac_cfg
;
1740 val64
= readq(&bar0
->mac_cfg
);
1741 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1742 if (nic
->device_type
== XFRAME_II_DEVICE
)
1743 writeq(val64
, &bar0
->mac_cfg
);
1745 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1746 writel((u32
) (val64
), add
);
1747 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1748 writel((u32
) (val64
>> 32), (add
+ 4));
1752 * Set the time value to be inserted in the pause frame
1753 * generated by xena.
1755 val64
= readq(&bar0
->rmac_pause_cfg
);
1756 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1757 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1758 writeq(val64
, &bar0
->rmac_pause_cfg
);
1761 * Set the Threshold Limit for Generating the pause frame
1762 * If the amount of data in any Queue exceeds ratio of
1763 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1764 * pause frame is generated
1767 for (i
= 0; i
< 4; i
++) {
1768 val64
|= (((u64
)0xFF00 |
1769 nic
->mac_control
.mc_pause_threshold_q0q3
)
1772 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1775 for (i
= 0; i
< 4; i
++) {
1776 val64
|= (((u64
)0xFF00 |
1777 nic
->mac_control
.mc_pause_threshold_q4q7
)
1780 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1783 * TxDMA will stop Read request if the number of read split has
1784 * exceeded the limit pointed by shared_splits
1786 val64
= readq(&bar0
->pic_control
);
1787 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1788 writeq(val64
, &bar0
->pic_control
);
1790 if (nic
->config
.bus_speed
== 266) {
1791 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1792 writeq(0x0, &bar0
->read_retry_delay
);
1793 writeq(0x0, &bar0
->write_retry_delay
);
1797 * Programming the Herc to split every write transaction
1798 * that does not start on an ADB to reduce disconnects.
1800 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1801 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1802 MISC_LINK_STABILITY_PRD(3);
1803 writeq(val64
, &bar0
->misc_control
);
1804 val64
= readq(&bar0
->pic_control2
);
1805 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1806 writeq(val64
, &bar0
->pic_control2
);
1808 if (strstr(nic
->product_name
, "CX4")) {
1809 val64
= TMAC_AVG_IPG(0x17);
1810 writeq(val64
, &bar0
->tmac_avg_ipg
);
1815 #define LINK_UP_DOWN_INTERRUPT 1
1816 #define MAC_RMAC_ERR_TIMER 2
1818 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1820 if (nic
->device_type
== XFRAME_II_DEVICE
)
1821 return LINK_UP_DOWN_INTERRUPT
;
1823 return MAC_RMAC_ERR_TIMER
;
1827 * do_s2io_write_bits - update alarm bits in alarm register
1828 * @value: alarm bits
1829 * @flag: interrupt status
1830 * @addr: address value
1831 * Description: update alarm bits in alarm register
1835 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1839 temp64
= readq(addr
);
1841 if (flag
== ENABLE_INTRS
)
1842 temp64
&= ~((u64
)value
);
1844 temp64
|= ((u64
)value
);
1845 writeq(temp64
, addr
);
1848 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1850 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1851 register u64 gen_int_mask
= 0;
1854 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1855 if (mask
& TX_DMA_INTR
) {
1856 gen_int_mask
|= TXDMA_INT_M
;
1858 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1859 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1860 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1861 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1863 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1864 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1865 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1866 &bar0
->pfc_err_mask
);
1868 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1869 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1870 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1872 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1873 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1874 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1875 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1876 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1878 flag
, &bar0
->pcc_err_mask
);
1880 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1881 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1883 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1884 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1885 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1886 flag
, &bar0
->lso_err_mask
);
1888 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1889 flag
, &bar0
->tpa_err_mask
);
1891 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1894 if (mask
& TX_MAC_INTR
) {
1895 gen_int_mask
|= TXMAC_INT_M
;
1896 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1897 &bar0
->mac_int_mask
);
1898 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1899 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1900 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1901 flag
, &bar0
->mac_tmac_err_mask
);
1904 if (mask
& TX_XGXS_INTR
) {
1905 gen_int_mask
|= TXXGXS_INT_M
;
1906 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1907 &bar0
->xgxs_int_mask
);
1908 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1909 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1910 flag
, &bar0
->xgxs_txgxs_err_mask
);
1913 if (mask
& RX_DMA_INTR
) {
1914 gen_int_mask
|= RXDMA_INT_M
;
1915 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1916 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1917 flag
, &bar0
->rxdma_int_mask
);
1918 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1919 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1920 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1921 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1922 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1923 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1924 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1925 &bar0
->prc_pcix_err_mask
);
1926 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1927 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1928 &bar0
->rpa_err_mask
);
1929 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1930 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1931 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1932 RDA_FRM_ECC_SG_ERR
|
1933 RDA_MISC_ERR
|RDA_PCIX_ERR
,
1934 flag
, &bar0
->rda_err_mask
);
1935 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
1936 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
1937 flag
, &bar0
->rti_err_mask
);
1940 if (mask
& RX_MAC_INTR
) {
1941 gen_int_mask
|= RXMAC_INT_M
;
1942 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
1943 &bar0
->mac_int_mask
);
1944 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
1945 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
1946 RMAC_DOUBLE_ECC_ERR
);
1947 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
1948 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
1949 do_s2io_write_bits(interruptible
,
1950 flag
, &bar0
->mac_rmac_err_mask
);
1953 if (mask
& RX_XGXS_INTR
) {
1954 gen_int_mask
|= RXXGXS_INT_M
;
1955 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
1956 &bar0
->xgxs_int_mask
);
1957 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
1958 &bar0
->xgxs_rxgxs_err_mask
);
1961 if (mask
& MC_INTR
) {
1962 gen_int_mask
|= MC_INT_M
;
1963 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
1964 flag
, &bar0
->mc_int_mask
);
1965 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
1966 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
1967 &bar0
->mc_err_mask
);
1969 nic
->general_int_mask
= gen_int_mask
;
1971 /* Remove this line when alarm interrupts are enabled */
1972 nic
->general_int_mask
= 0;
1976 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1977 * @nic: device private variable,
1978 * @mask: A mask indicating which Intr block must be modified and,
1979 * @flag: A flag indicating whether to enable or disable the Intrs.
1980 * Description: This function will either disable or enable the interrupts
1981 * depending on the flag argument. The mask argument can be used to
1982 * enable/disable any Intr block.
1983 * Return Value: NONE.
1986 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1988 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1989 register u64 temp64
= 0, intr_mask
= 0;
1991 intr_mask
= nic
->general_int_mask
;
1993 /* Top level interrupt classification */
1994 /* PIC Interrupts */
1995 if (mask
& TX_PIC_INTR
) {
1996 /* Enable PIC Intrs in the general intr mask register */
1997 intr_mask
|= TXPIC_INT_M
;
1998 if (flag
== ENABLE_INTRS
) {
2000 * If Hercules adapter enable GPIO otherwise
2001 * disable all PCIX, Flash, MDIO, IIC and GPIO
2002 * interrupts for now.
2005 if (s2io_link_fault_indication(nic
) ==
2006 LINK_UP_DOWN_INTERRUPT
) {
2007 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2008 &bar0
->pic_int_mask
);
2009 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2010 &bar0
->gpio_int_mask
);
2012 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2013 } else if (flag
== DISABLE_INTRS
) {
2015 * Disable PIC Intrs in the general
2016 * intr mask register
2018 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2022 /* Tx traffic interrupts */
2023 if (mask
& TX_TRAFFIC_INTR
) {
2024 intr_mask
|= TXTRAFFIC_INT_M
;
2025 if (flag
== ENABLE_INTRS
) {
2027 * Enable all the Tx side interrupts
2028 * writing 0 Enables all 64 TX interrupt levels
2030 writeq(0x0, &bar0
->tx_traffic_mask
);
2031 } else if (flag
== DISABLE_INTRS
) {
2033 * Disable Tx Traffic Intrs in the general intr mask
2036 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2040 /* Rx traffic interrupts */
2041 if (mask
& RX_TRAFFIC_INTR
) {
2042 intr_mask
|= RXTRAFFIC_INT_M
;
2043 if (flag
== ENABLE_INTRS
) {
2044 /* writing 0 Enables all 8 RX interrupt levels */
2045 writeq(0x0, &bar0
->rx_traffic_mask
);
2046 } else if (flag
== DISABLE_INTRS
) {
2048 * Disable Rx Traffic Intrs in the general intr mask
2051 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2055 temp64
= readq(&bar0
->general_int_mask
);
2056 if (flag
== ENABLE_INTRS
)
2057 temp64
&= ~((u64
)intr_mask
);
2059 temp64
= DISABLE_ALL_INTRS
;
2060 writeq(temp64
, &bar0
->general_int_mask
);
2062 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2066 * verify_pcc_quiescent- Checks for PCC quiescent state
2067 * @sp : private member of the device structure, which is a pointer to the
2068 * s2io_nic structure.
2069 * @flag: boolean controlling function path
2070 * Return: 1 If PCC is quiescence
2071 * 0 If PCC is not quiescence
2073 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2076 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2077 u64 val64
= readq(&bar0
->adapter_status
);
2079 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2081 if (flag
== false) {
2082 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2083 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2086 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2090 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2091 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2092 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2095 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2096 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2104 * verify_xena_quiescence - Checks whether the H/W is ready
2105 * @sp : private member of the device structure, which is a pointer to the
2106 * s2io_nic structure.
2107 * Description: Returns whether the H/W is ready to go or not. Depending
2108 * on whether adapter enable bit was written or not the comparison
2109 * differs and the calling function passes the input argument flag to
2111 * Return: 1 If xena is quiescence
2112 * 0 If Xena is not quiescence
2115 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2118 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2119 u64 val64
= readq(&bar0
->adapter_status
);
2120 mode
= s2io_verify_pci_mode(sp
);
2122 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2123 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2126 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2127 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2130 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2131 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2134 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2135 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2138 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2139 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2142 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2143 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2146 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2147 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2150 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2151 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2156 * In PCI 33 mode, the P_PLL is not used, and therefore,
2157 * the the P_PLL_LOCK bit in the adapter_status register will
2160 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2161 sp
->device_type
== XFRAME_II_DEVICE
&&
2162 mode
!= PCI_MODE_PCI_33
) {
2163 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2166 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2167 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2168 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2175 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2176 * @sp: Pointer to device specifc structure
2178 * New procedure to clear mac address reading problems on Alpha platforms
2182 static void fix_mac_address(struct s2io_nic
*sp
)
2184 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2187 while (fix_mac
[i
] != END_SIGN
) {
2188 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2190 (void) readq(&bar0
->gpio_control
);
2195 * start_nic - Turns the device on
2196 * @nic : device private variable.
2198 * This function actually turns the device on. Before this function is
2199 * called,all Registers are configured from their reset states
2200 * and shared memory is allocated but the NIC is still quiescent. On
2201 * calling this function, the device interrupts are cleared and the NIC is
2202 * literally switched on by writing into the adapter control register.
2204 * SUCCESS on success and -1 on failure.
2207 static int start_nic(struct s2io_nic
*nic
)
2209 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2210 struct net_device
*dev
= nic
->dev
;
2211 register u64 val64
= 0;
2213 struct config_param
*config
= &nic
->config
;
2214 struct mac_info
*mac_control
= &nic
->mac_control
;
2216 /* PRC Initialization and configuration */
2217 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2218 struct ring_info
*ring
= &mac_control
->rings
[i
];
2220 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2221 &bar0
->prc_rxd0_n
[i
]);
2223 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2224 if (nic
->rxd_mode
== RXD_MODE_1
)
2225 val64
|= PRC_CTRL_RC_ENABLED
;
2227 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2228 if (nic
->device_type
== XFRAME_II_DEVICE
)
2229 val64
|= PRC_CTRL_GROUP_READS
;
2230 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2231 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2232 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2235 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2236 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2237 val64
= readq(&bar0
->rx_pa_cfg
);
2238 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2239 writeq(val64
, &bar0
->rx_pa_cfg
);
2242 if (vlan_tag_strip
== 0) {
2243 val64
= readq(&bar0
->rx_pa_cfg
);
2244 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2245 writeq(val64
, &bar0
->rx_pa_cfg
);
2246 nic
->vlan_strip_flag
= 0;
2250 * Enabling MC-RLDRAM. After enabling the device, we timeout
2251 * for around 100ms, which is approximately the time required
2252 * for the device to be ready for operation.
2254 val64
= readq(&bar0
->mc_rldram_mrs
);
2255 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2256 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2257 val64
= readq(&bar0
->mc_rldram_mrs
);
2259 msleep(100); /* Delay by around 100 ms. */
2261 /* Enabling ECC Protection. */
2262 val64
= readq(&bar0
->adapter_control
);
2263 val64
&= ~ADAPTER_ECC_EN
;
2264 writeq(val64
, &bar0
->adapter_control
);
2267 * Verify if the device is ready to be enabled, if so enable
2270 val64
= readq(&bar0
->adapter_status
);
2271 if (!verify_xena_quiescence(nic
)) {
2272 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2273 "Adapter status reads: 0x%llx\n",
2274 dev
->name
, (unsigned long long)val64
);
2279 * With some switches, link might be already up at this point.
2280 * Because of this weird behavior, when we enable laser,
2281 * we may not get link. We need to handle this. We cannot
2282 * figure out which switch is misbehaving. So we are forced to
2283 * make a global change.
2286 /* Enabling Laser. */
2287 val64
= readq(&bar0
->adapter_control
);
2288 val64
|= ADAPTER_EOI_TX_ON
;
2289 writeq(val64
, &bar0
->adapter_control
);
2291 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2293 * Dont see link state interrupts initially on some switches,
2294 * so directly scheduling the link state task here.
2296 schedule_work(&nic
->set_link_task
);
2298 /* SXE-002: Initialize link and activity LED */
2299 subid
= nic
->pdev
->subsystem_device
;
2300 if (((subid
& 0xFF) >= 0x07) &&
2301 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2302 val64
= readq(&bar0
->gpio_control
);
2303 val64
|= 0x0000800000000000ULL
;
2304 writeq(val64
, &bar0
->gpio_control
);
2305 val64
= 0x0411040400000000ULL
;
2306 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2312 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2313 * @fifo_data: fifo data pointer
2314 * @txdlp: descriptor
2317 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2318 struct TxD
*txdlp
, int get_off
)
2320 struct s2io_nic
*nic
= fifo_data
->nic
;
2321 struct sk_buff
*skb
;
2326 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2327 dma_unmap_single(&nic
->pdev
->dev
,
2328 (dma_addr_t
)txds
->Buffer_Pointer
,
2329 sizeof(u64
), DMA_TO_DEVICE
);
2333 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2335 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2338 dma_unmap_single(&nic
->pdev
->dev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2339 skb_headlen(skb
), DMA_TO_DEVICE
);
2340 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2343 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2344 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2345 if (!txds
->Buffer_Pointer
)
2347 dma_unmap_page(&nic
->pdev
->dev
,
2348 (dma_addr_t
)txds
->Buffer_Pointer
,
2349 skb_frag_size(frag
), DMA_TO_DEVICE
);
2352 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2357 * free_tx_buffers - Free all queued Tx buffers
2358 * @nic : device private variable.
2360 * Free all queued Tx buffers.
2361 * Return Value: void
2364 static void free_tx_buffers(struct s2io_nic
*nic
)
2366 struct net_device
*dev
= nic
->dev
;
2367 struct sk_buff
*skb
;
2371 struct config_param
*config
= &nic
->config
;
2372 struct mac_info
*mac_control
= &nic
->mac_control
;
2373 struct stat_block
*stats
= mac_control
->stats_info
;
2374 struct swStat
*swstats
= &stats
->sw_stat
;
2376 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2377 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2378 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2379 unsigned long flags
;
2381 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2382 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2383 txdp
= fifo
->list_info
[j
].list_virt_addr
;
2384 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2386 swstats
->mem_freed
+= skb
->truesize
;
2392 "%s: forcibly freeing %d skbs on FIFO%d\n",
2394 fifo
->tx_curr_get_info
.offset
= 0;
2395 fifo
->tx_curr_put_info
.offset
= 0;
2396 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2401 * stop_nic - To stop the nic
2402 * @nic : device private variable.
2404 * This function does exactly the opposite of what the start_nic()
2405 * function does. This function is called to stop the device.
2410 static void stop_nic(struct s2io_nic
*nic
)
2412 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2413 register u64 val64
= 0;
2416 /* Disable all interrupts */
2417 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2418 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2419 interruptible
|= TX_PIC_INTR
;
2420 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2422 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2423 val64
= readq(&bar0
->adapter_control
);
2424 val64
&= ~(ADAPTER_CNTL_EN
);
2425 writeq(val64
, &bar0
->adapter_control
);
2429 * fill_rx_buffers - Allocates the Rx side skbs
2430 * @nic : device private variable.
2431 * @ring: per ring structure
2432 * @from_card_up: If this is true, we will map the buffer to get
2433 * the dma address for buf0 and buf1 to give it to the card.
2434 * Else we will sync the already mapped buffer to give it to the card.
2436 * The function allocates Rx side skbs and puts the physical
2437 * address of these buffers into the RxD buffer pointers, so that the NIC
2438 * can DMA the received frame into these locations.
2439 * The NIC supports 3 receive modes, viz
2441 * 2. three buffer and
2442 * 3. Five buffer modes.
2443 * Each mode defines how many fragments the received frame will be split
2444 * up into by the NIC. The frame is split into L3 header, L4 Header,
2445 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2446 * is split into 3 fragments. As of now only single buffer mode is
2449 * SUCCESS on success or an appropriate -ve value on failure.
2451 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2454 struct sk_buff
*skb
;
2456 int off
, size
, block_no
, block_no1
;
2461 struct RxD_t
*first_rxdp
= NULL
;
2462 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2465 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2467 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2469 block_no1
= ring
->rx_curr_get_info
.block_index
;
2470 while (alloc_tab
< alloc_cnt
) {
2471 block_no
= ring
->rx_curr_put_info
.block_index
;
2473 off
= ring
->rx_curr_put_info
.offset
;
2475 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2477 if ((block_no
== block_no1
) &&
2478 (off
== ring
->rx_curr_get_info
.offset
) &&
2479 (rxdp
->Host_Control
)) {
2480 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2484 if (off
&& (off
== ring
->rxd_count
)) {
2485 ring
->rx_curr_put_info
.block_index
++;
2486 if (ring
->rx_curr_put_info
.block_index
==
2488 ring
->rx_curr_put_info
.block_index
= 0;
2489 block_no
= ring
->rx_curr_put_info
.block_index
;
2491 ring
->rx_curr_put_info
.offset
= off
;
2492 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2493 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2494 ring
->dev
->name
, rxdp
);
2498 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2499 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2500 (rxdp
->Control_2
& s2BIT(0)))) {
2501 ring
->rx_curr_put_info
.offset
= off
;
2504 /* calculate size of skb based on ring mode */
2506 HEADER_ETHERNET_II_802_3_SIZE
+
2507 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2508 if (ring
->rxd_mode
== RXD_MODE_1
)
2509 size
+= NET_IP_ALIGN
;
2511 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2514 skb
= netdev_alloc_skb(nic
->dev
, size
);
2516 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2520 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2522 swstats
->mem_alloc_fail_cnt
++;
2526 swstats
->mem_allocated
+= skb
->truesize
;
2528 if (ring
->rxd_mode
== RXD_MODE_1
) {
2529 /* 1 buffer mode - normal operation mode */
2530 rxdp1
= (struct RxD1
*)rxdp
;
2531 memset(rxdp
, 0, sizeof(struct RxD1
));
2532 skb_reserve(skb
, NET_IP_ALIGN
);
2533 rxdp1
->Buffer0_ptr
=
2534 dma_map_single(&ring
->pdev
->dev
, skb
->data
,
2535 size
- NET_IP_ALIGN
,
2537 if (dma_mapping_error(&nic
->pdev
->dev
, rxdp1
->Buffer0_ptr
))
2538 goto pci_map_failed
;
2541 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2542 rxdp
->Host_Control
= (unsigned long)skb
;
2543 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2546 * 2 buffer mode provides 128
2547 * byte aligned receive buffers.
2550 rxdp3
= (struct RxD3
*)rxdp
;
2551 /* save buffer pointers to avoid frequent dma mapping */
2552 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2553 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2554 memset(rxdp
, 0, sizeof(struct RxD3
));
2555 /* restore the buffer pointers for dma sync*/
2556 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2557 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2559 ba
= &ring
->ba
[block_no
][off
];
2560 skb_reserve(skb
, BUF0_LEN
);
2561 tmp
= (u64
)(unsigned long)skb
->data
;
2564 skb
->data
= (void *) (unsigned long)tmp
;
2565 skb_reset_tail_pointer(skb
);
2568 rxdp3
->Buffer0_ptr
=
2569 dma_map_single(&ring
->pdev
->dev
,
2572 if (dma_mapping_error(&nic
->pdev
->dev
, rxdp3
->Buffer0_ptr
))
2573 goto pci_map_failed
;
2575 dma_sync_single_for_device(&ring
->pdev
->dev
,
2576 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2580 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2581 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2582 /* Two buffer mode */
2585 * Buffer2 will have L3/L4 header plus
2588 rxdp3
->Buffer2_ptr
= dma_map_single(&ring
->pdev
->dev
,
2593 if (dma_mapping_error(&nic
->pdev
->dev
, rxdp3
->Buffer2_ptr
))
2594 goto pci_map_failed
;
2597 rxdp3
->Buffer1_ptr
=
2598 dma_map_single(&ring
->pdev
->dev
,
2603 if (dma_mapping_error(&nic
->pdev
->dev
,
2604 rxdp3
->Buffer1_ptr
)) {
2605 dma_unmap_single(&ring
->pdev
->dev
,
2606 (dma_addr_t
)(unsigned long)
2610 goto pci_map_failed
;
2613 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2614 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2617 rxdp
->Control_2
|= s2BIT(0);
2618 rxdp
->Host_Control
= (unsigned long) (skb
);
2620 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2621 rxdp
->Control_1
|= RXD_OWN_XENA
;
2623 if (off
== (ring
->rxd_count
+ 1))
2625 ring
->rx_curr_put_info
.offset
= off
;
2627 rxdp
->Control_2
|= SET_RXD_MARKER
;
2628 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2631 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2635 ring
->rx_bufs_left
+= 1;
2640 /* Transfer ownership of first descriptor to adapter just before
2641 * exiting. Before that, use memory barrier so that ownership
2642 * and other fields are seen by adapter correctly.
2646 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2652 swstats
->pci_map_fail_cnt
++;
2653 swstats
->mem_freed
+= skb
->truesize
;
2654 dev_kfree_skb_irq(skb
);
2658 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2660 struct net_device
*dev
= sp
->dev
;
2662 struct sk_buff
*skb
;
2666 struct mac_info
*mac_control
= &sp
->mac_control
;
2667 struct stat_block
*stats
= mac_control
->stats_info
;
2668 struct swStat
*swstats
= &stats
->sw_stat
;
2670 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2671 rxdp
= mac_control
->rings
[ring_no
].
2672 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2673 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2676 if (sp
->rxd_mode
== RXD_MODE_1
) {
2677 rxdp1
= (struct RxD1
*)rxdp
;
2678 dma_unmap_single(&sp
->pdev
->dev
,
2679 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2681 HEADER_ETHERNET_II_802_3_SIZE
+
2682 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2684 memset(rxdp
, 0, sizeof(struct RxD1
));
2685 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2686 rxdp3
= (struct RxD3
*)rxdp
;
2687 dma_unmap_single(&sp
->pdev
->dev
,
2688 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2689 BUF0_LEN
, DMA_FROM_DEVICE
);
2690 dma_unmap_single(&sp
->pdev
->dev
,
2691 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2692 BUF1_LEN
, DMA_FROM_DEVICE
);
2693 dma_unmap_single(&sp
->pdev
->dev
,
2694 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2695 dev
->mtu
+ 4, DMA_FROM_DEVICE
);
2696 memset(rxdp
, 0, sizeof(struct RxD3
));
2698 swstats
->mem_freed
+= skb
->truesize
;
2700 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2705 * free_rx_buffers - Frees all Rx buffers
2706 * @sp: device private variable.
2708 * This function will free all Rx buffers allocated by host.
2713 static void free_rx_buffers(struct s2io_nic
*sp
)
2715 struct net_device
*dev
= sp
->dev
;
2716 int i
, blk
= 0, buf_cnt
= 0;
2717 struct config_param
*config
= &sp
->config
;
2718 struct mac_info
*mac_control
= &sp
->mac_control
;
2720 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2721 struct ring_info
*ring
= &mac_control
->rings
[i
];
2723 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2724 free_rxd_blk(sp
, i
, blk
);
2726 ring
->rx_curr_put_info
.block_index
= 0;
2727 ring
->rx_curr_get_info
.block_index
= 0;
2728 ring
->rx_curr_put_info
.offset
= 0;
2729 ring
->rx_curr_get_info
.offset
= 0;
2730 ring
->rx_bufs_left
= 0;
2731 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2732 dev
->name
, buf_cnt
, i
);
2736 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2738 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2739 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2746 * s2io_poll - Rx interrupt handler for NAPI support
2747 * @napi : pointer to the napi structure.
2748 * @budget : The number of packets that were budgeted to be processed
2749 * during one pass through the 'Poll" function.
2751 * Comes into picture only if NAPI support has been incorporated. It does
2752 * the same thing that rx_intr_handler does, but not in a interrupt context
2753 * also It will process only a given number of packets.
2755 * 0 on success and 1 if there are No Rx packets to be processed.
2758 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2760 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2761 struct net_device
*dev
= ring
->dev
;
2762 int pkts_processed
= 0;
2763 u8 __iomem
*addr
= NULL
;
2765 struct s2io_nic
*nic
= netdev_priv(dev
);
2766 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2767 int budget_org
= budget
;
2769 if (unlikely(!is_s2io_card_up(nic
)))
2772 pkts_processed
= rx_intr_handler(ring
, budget
);
2773 s2io_chk_rx_buffers(nic
, ring
);
2775 if (pkts_processed
< budget_org
) {
2776 napi_complete_done(napi
, pkts_processed
);
2777 /*Re Enable MSI-Rx Vector*/
2778 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2779 addr
+= 7 - ring
->ring_no
;
2780 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2784 return pkts_processed
;
2787 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2789 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2790 int pkts_processed
= 0;
2791 int ring_pkts_processed
, i
;
2792 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2793 int budget_org
= budget
;
2794 struct config_param
*config
= &nic
->config
;
2795 struct mac_info
*mac_control
= &nic
->mac_control
;
2797 if (unlikely(!is_s2io_card_up(nic
)))
2800 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2801 struct ring_info
*ring
= &mac_control
->rings
[i
];
2802 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2803 s2io_chk_rx_buffers(nic
, ring
);
2804 pkts_processed
+= ring_pkts_processed
;
2805 budget
-= ring_pkts_processed
;
2809 if (pkts_processed
< budget_org
) {
2810 napi_complete_done(napi
, pkts_processed
);
2811 /* Re enable the Rx interrupts for the ring */
2812 writeq(0, &bar0
->rx_traffic_mask
);
2813 readl(&bar0
->rx_traffic_mask
);
2815 return pkts_processed
;
2818 #ifdef CONFIG_NET_POLL_CONTROLLER
2820 * s2io_netpoll - netpoll event handler entry point
2821 * @dev : pointer to the device structure.
2823 * This function will be called by upper layer to check for events on the
2824 * interface in situations where interrupts are disabled. It is used for
2825 * specific in-kernel networking tasks, such as remote consoles and kernel
2826 * debugging over the network (example netdump in RedHat).
2828 static void s2io_netpoll(struct net_device
*dev
)
2830 struct s2io_nic
*nic
= netdev_priv(dev
);
2831 const int irq
= nic
->pdev
->irq
;
2832 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2833 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2835 struct config_param
*config
= &nic
->config
;
2836 struct mac_info
*mac_control
= &nic
->mac_control
;
2838 if (pci_channel_offline(nic
->pdev
))
2843 writeq(val64
, &bar0
->rx_traffic_int
);
2844 writeq(val64
, &bar0
->tx_traffic_int
);
2846 /* we need to free up the transmitted skbufs or else netpoll will
2847 * run out of skbs and will fail and eventually netpoll application such
2848 * as netdump will fail.
2850 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2851 tx_intr_handler(&mac_control
->fifos
[i
]);
2853 /* check for received packet and indicate up to network */
2854 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2855 struct ring_info
*ring
= &mac_control
->rings
[i
];
2857 rx_intr_handler(ring
, 0);
2860 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2861 struct ring_info
*ring
= &mac_control
->rings
[i
];
2863 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2865 "%s: Out of memory in Rx Netpoll!!\n",
2875 * rx_intr_handler - Rx interrupt handler
2876 * @ring_data: per ring structure.
2877 * @budget: budget for napi processing.
2879 * If the interrupt is because of a received frame or if the
2880 * receive ring contains fresh as yet un-processed frames,this function is
2881 * called. It picks out the RxD at which place the last Rx processing had
2882 * stopped and sends the skb to the OSM's Rx handler and then increments
2885 * No. of napi packets processed.
2887 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2889 int get_block
, put_block
;
2890 struct rx_curr_get_info get_info
, put_info
;
2892 struct sk_buff
*skb
;
2893 int pkt_cnt
= 0, napi_pkts
= 0;
2901 get_info
= ring_data
->rx_curr_get_info
;
2902 get_block
= get_info
.block_index
;
2903 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2904 put_block
= put_info
.block_index
;
2905 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2907 while (RXD_IS_UP2DT(rxdp
)) {
2909 * If your are next to put index then it's
2910 * FIFO full condition
2912 if ((get_block
== put_block
) &&
2913 (get_info
.offset
+ 1) == put_info
.offset
) {
2914 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2915 ring_data
->dev
->name
);
2918 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2920 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2921 ring_data
->dev
->name
);
2924 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2925 rxdp1
= (struct RxD1
*)rxdp
;
2926 dma_unmap_single(&ring_data
->pdev
->dev
,
2927 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2929 HEADER_ETHERNET_II_802_3_SIZE
+
2933 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
2934 rxdp3
= (struct RxD3
*)rxdp
;
2935 dma_sync_single_for_cpu(&ring_data
->pdev
->dev
,
2936 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2937 BUF0_LEN
, DMA_FROM_DEVICE
);
2938 dma_unmap_single(&ring_data
->pdev
->dev
,
2939 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2940 ring_data
->mtu
+ 4, DMA_FROM_DEVICE
);
2942 prefetch(skb
->data
);
2943 rx_osm_handler(ring_data
, rxdp
);
2945 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2946 rxdp
= ring_data
->rx_blocks
[get_block
].
2947 rxds
[get_info
.offset
].virt_addr
;
2948 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
2949 get_info
.offset
= 0;
2950 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2952 if (get_block
== ring_data
->block_count
)
2954 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2955 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2958 if (ring_data
->nic
->config
.napi
) {
2965 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2968 if (ring_data
->lro
) {
2969 /* Clear all LRO sessions before exiting */
2970 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
2971 struct lro
*lro
= &ring_data
->lro0_n
[i
];
2973 update_L3L4_header(ring_data
->nic
, lro
);
2974 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
2975 clear_lro_session(lro
);
2983 * tx_intr_handler - Transmit interrupt handler
2984 * @fifo_data : fifo data pointer
2986 * If an interrupt was raised to indicate DMA complete of the
2987 * Tx packet, this function is called. It identifies the last TxD
2988 * whose buffer was freed and frees all skbs whose data have already
2989 * DMA'ed into the NICs internal memory.
2994 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2996 struct s2io_nic
*nic
= fifo_data
->nic
;
2997 struct tx_curr_get_info get_info
, put_info
;
2998 struct sk_buff
*skb
= NULL
;
3001 unsigned long flags
= 0;
3003 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3004 struct swStat
*swstats
= &stats
->sw_stat
;
3006 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3009 get_info
= fifo_data
->tx_curr_get_info
;
3010 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3011 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3012 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3013 (get_info
.offset
!= put_info
.offset
) &&
3014 (txdlp
->Host_Control
)) {
3015 /* Check for TxD errors */
3016 if (txdlp
->Control_1
& TXD_T_CODE
) {
3017 unsigned long long err
;
3018 err
= txdlp
->Control_1
& TXD_T_CODE
;
3020 swstats
->parity_err_cnt
++;
3023 /* update t_code statistics */
3024 err_mask
= err
>> 48;
3027 swstats
->tx_buf_abort_cnt
++;
3031 swstats
->tx_desc_abort_cnt
++;
3035 swstats
->tx_parity_err_cnt
++;
3039 swstats
->tx_link_loss_cnt
++;
3043 swstats
->tx_list_proc_err_cnt
++;
3048 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3050 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3051 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3057 /* Updating the statistics block */
3058 swstats
->mem_freed
+= skb
->truesize
;
3059 dev_consume_skb_irq(skb
);
3062 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3063 get_info
.offset
= 0;
3064 txdlp
= fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3065 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3068 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3070 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3074 * s2io_mdio_write - Function to write in to MDIO registers
3075 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3076 * @addr : address value
3077 * @value : data value
3078 * @dev : pointer to net_device structure
3080 * This function is used to write values to the MDIO registers
3083 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3084 struct net_device
*dev
)
3087 struct s2io_nic
*sp
= netdev_priv(dev
);
3088 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3090 /* address transaction */
3091 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3092 MDIO_MMD_DEV_ADDR(mmd_type
) |
3093 MDIO_MMS_PRT_ADDR(0x0);
3094 writeq(val64
, &bar0
->mdio_control
);
3095 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3096 writeq(val64
, &bar0
->mdio_control
);
3099 /* Data transaction */
3100 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3101 MDIO_MMD_DEV_ADDR(mmd_type
) |
3102 MDIO_MMS_PRT_ADDR(0x0) |
3103 MDIO_MDIO_DATA(value
) |
3104 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3105 writeq(val64
, &bar0
->mdio_control
);
3106 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3107 writeq(val64
, &bar0
->mdio_control
);
3110 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3111 MDIO_MMD_DEV_ADDR(mmd_type
) |
3112 MDIO_MMS_PRT_ADDR(0x0) |
3113 MDIO_OP(MDIO_OP_READ_TRANS
);
3114 writeq(val64
, &bar0
->mdio_control
);
3115 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3116 writeq(val64
, &bar0
->mdio_control
);
3121 * s2io_mdio_read - Function to write in to MDIO registers
3122 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3123 * @addr : address value
3124 * @dev : pointer to net_device structure
3126 * This function is used to read values to the MDIO registers
3129 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3133 struct s2io_nic
*sp
= netdev_priv(dev
);
3134 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3136 /* address transaction */
3137 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3138 | MDIO_MMD_DEV_ADDR(mmd_type
)
3139 | MDIO_MMS_PRT_ADDR(0x0));
3140 writeq(val64
, &bar0
->mdio_control
);
3141 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3142 writeq(val64
, &bar0
->mdio_control
);
3145 /* Data transaction */
3146 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3147 MDIO_MMD_DEV_ADDR(mmd_type
) |
3148 MDIO_MMS_PRT_ADDR(0x0) |
3149 MDIO_OP(MDIO_OP_READ_TRANS
);
3150 writeq(val64
, &bar0
->mdio_control
);
3151 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3152 writeq(val64
, &bar0
->mdio_control
);
3155 /* Read the value from regs */
3156 rval64
= readq(&bar0
->mdio_control
);
3157 rval64
= rval64
& 0xFFFF0000;
3158 rval64
= rval64
>> 16;
3163 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3164 * @counter : counter value to be updated
3165 * @regs_stat : registers status
3167 * @flag : flag to indicate the status
3168 * @type : counter type
3170 * This function is to check the status of the xpak counters value
3174 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3180 for (i
= 0; i
< index
; i
++)
3184 *counter
= *counter
+ 1;
3185 val64
= *regs_stat
& mask
;
3186 val64
= val64
>> (index
* 0x2);
3192 "Take Xframe NIC out of service.\n");
3194 "Excessive temperatures may result in premature transceiver failure.\n");
3198 "Take Xframe NIC out of service.\n");
3200 "Excessive bias currents may indicate imminent laser diode failure.\n");
3204 "Take Xframe NIC out of service.\n");
3206 "Excessive laser output power may saturate far-end receiver.\n");
3210 "Incorrect XPAK Alarm type\n");
3214 val64
= val64
<< (index
* 0x2);
3215 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3218 *regs_stat
= *regs_stat
& (~mask
);
3223 * s2io_updt_xpak_counter - Function to update the xpak counters
3224 * @dev : pointer to net_device struct
3226 * This function is to upate the status of the xpak counters value
3229 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3237 struct s2io_nic
*sp
= netdev_priv(dev
);
3238 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3239 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3241 /* Check the communication with the MDIO slave */
3244 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3245 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3247 "ERR: MDIO slave access failed - Returned %llx\n",
3248 (unsigned long long)val64
);
3252 /* Check for the expected value of control reg 1 */
3253 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3254 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3255 "Returned: %llx- Expected: 0x%x\n",
3256 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3260 /* Loading the DOM register to MDIO register */
3262 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3263 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3265 /* Reading the Alarm flags */
3268 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3270 flag
= CHECKBIT(val64
, 0x7);
3272 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3273 &xstats
->xpak_regs_stat
,
3276 if (CHECKBIT(val64
, 0x6))
3277 xstats
->alarm_transceiver_temp_low
++;
3279 flag
= CHECKBIT(val64
, 0x3);
3281 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3282 &xstats
->xpak_regs_stat
,
3285 if (CHECKBIT(val64
, 0x2))
3286 xstats
->alarm_laser_bias_current_low
++;
3288 flag
= CHECKBIT(val64
, 0x1);
3290 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3291 &xstats
->xpak_regs_stat
,
3294 if (CHECKBIT(val64
, 0x0))
3295 xstats
->alarm_laser_output_power_low
++;
3297 /* Reading the Warning flags */
3300 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3302 if (CHECKBIT(val64
, 0x7))
3303 xstats
->warn_transceiver_temp_high
++;
3305 if (CHECKBIT(val64
, 0x6))
3306 xstats
->warn_transceiver_temp_low
++;
3308 if (CHECKBIT(val64
, 0x3))
3309 xstats
->warn_laser_bias_current_high
++;
3311 if (CHECKBIT(val64
, 0x2))
3312 xstats
->warn_laser_bias_current_low
++;
3314 if (CHECKBIT(val64
, 0x1))
3315 xstats
->warn_laser_output_power_high
++;
3317 if (CHECKBIT(val64
, 0x0))
3318 xstats
->warn_laser_output_power_low
++;
3322 * wait_for_cmd_complete - waits for a command to complete.
3324 * @busy_bit: bit to check for busy
3325 * @bit_state: state to check
3326 * Description: Function that waits for a command to Write into RMAC
3327 * ADDR DATA registers to be completed and returns either success or
3328 * error depending on whether the command was complete or not.
3330 * SUCCESS on success and FAILURE on failure.
3333 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3334 int bit_state
, bool may_sleep
)
3336 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3339 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3343 val64
= readq(addr
);
3344 if (bit_state
== S2IO_BIT_RESET
) {
3345 if (!(val64
& busy_bit
)) {
3350 if (val64
& busy_bit
) {
3367 * check_pci_device_id - Checks if the device id is supported
3369 * Description: Function to check if the pci device id is supported by driver.
3370 * Return value: Actual device id if supported else PCI_ANY_ID
3372 static u16
check_pci_device_id(u16 id
)
3375 case PCI_DEVICE_ID_HERC_WIN
:
3376 case PCI_DEVICE_ID_HERC_UNI
:
3377 return XFRAME_II_DEVICE
;
3378 case PCI_DEVICE_ID_S2IO_UNI
:
3379 case PCI_DEVICE_ID_S2IO_WIN
:
3380 return XFRAME_I_DEVICE
;
3387 * s2io_reset - Resets the card.
3388 * @sp : private member of the device structure.
3389 * Description: Function to Reset the card. This function then also
3390 * restores the previously saved PCI configuration space registers as
3391 * the card reset also resets the configuration space.
3396 static void s2io_reset(struct s2io_nic
*sp
)
3398 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3403 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3404 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3405 struct stat_block
*stats
;
3406 struct swStat
*swstats
;
3408 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3409 __func__
, pci_name(sp
->pdev
));
3411 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3412 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3414 val64
= SW_RESET_ALL
;
3415 writeq(val64
, &bar0
->sw_reset
);
3416 if (strstr(sp
->product_name
, "CX4"))
3419 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3421 /* Restore the PCI state saved during initialization. */
3422 pci_restore_state(sp
->pdev
);
3423 pci_save_state(sp
->pdev
);
3424 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3425 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3430 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3431 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3433 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3437 /* Set swapper to enable I/O register access */
3438 s2io_set_swapper(sp
);
3440 /* restore mac_addr entries */
3441 do_s2io_restore_unicast_mc(sp
);
3443 /* Restore the MSIX table entries from local variables */
3444 restore_xmsi_data(sp
);
3446 /* Clear certain PCI/PCI-X fields after reset */
3447 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3448 /* Clear "detected parity error" bit */
3449 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3451 /* Clearing PCIX Ecc status register */
3452 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3454 /* Clearing PCI_STATUS error reflected here */
3455 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3458 /* Reset device statistics maintained by OS */
3459 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3461 stats
= sp
->mac_control
.stats_info
;
3462 swstats
= &stats
->sw_stat
;
3464 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3465 up_cnt
= swstats
->link_up_cnt
;
3466 down_cnt
= swstats
->link_down_cnt
;
3467 up_time
= swstats
->link_up_time
;
3468 down_time
= swstats
->link_down_time
;
3469 reset_cnt
= swstats
->soft_reset_cnt
;
3470 mem_alloc_cnt
= swstats
->mem_allocated
;
3471 mem_free_cnt
= swstats
->mem_freed
;
3472 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3474 memset(stats
, 0, sizeof(struct stat_block
));
3476 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3477 swstats
->link_up_cnt
= up_cnt
;
3478 swstats
->link_down_cnt
= down_cnt
;
3479 swstats
->link_up_time
= up_time
;
3480 swstats
->link_down_time
= down_time
;
3481 swstats
->soft_reset_cnt
= reset_cnt
;
3482 swstats
->mem_allocated
= mem_alloc_cnt
;
3483 swstats
->mem_freed
= mem_free_cnt
;
3484 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3486 /* SXE-002: Configure link and activity LED to turn it off */
3487 subid
= sp
->pdev
->subsystem_device
;
3488 if (((subid
& 0xFF) >= 0x07) &&
3489 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3490 val64
= readq(&bar0
->gpio_control
);
3491 val64
|= 0x0000800000000000ULL
;
3492 writeq(val64
, &bar0
->gpio_control
);
3493 val64
= 0x0411040400000000ULL
;
3494 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3498 * Clear spurious ECC interrupts that would have occurred on
3499 * XFRAME II cards after reset.
3501 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3502 val64
= readq(&bar0
->pcc_err_reg
);
3503 writeq(val64
, &bar0
->pcc_err_reg
);
3506 sp
->device_enabled_once
= false;
3510 * s2io_set_swapper - to set the swapper controle on the card
3511 * @sp : private member of the device structure,
3512 * pointer to the s2io_nic structure.
3513 * Description: Function to set the swapper control on the card
3514 * correctly depending on the 'endianness' of the system.
3516 * SUCCESS on success and FAILURE on failure.
3519 static int s2io_set_swapper(struct s2io_nic
*sp
)
3521 struct net_device
*dev
= sp
->dev
;
3522 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3523 u64 val64
, valt
, valr
;
3526 * Set proper endian settings and verify the same by reading
3527 * the PIF Feed-back register.
3530 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3531 if (val64
!= 0x0123456789ABCDEFULL
) {
3533 static const u64 value
[] = {
3534 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3535 0x8100008181000081ULL
, /* FE=1, SE=0 */
3536 0x4200004242000042ULL
, /* FE=0, SE=1 */
3541 writeq(value
[i
], &bar0
->swapper_ctrl
);
3542 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3543 if (val64
== 0x0123456789ABCDEFULL
)
3548 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3549 "feedback read %llx\n",
3550 dev
->name
, (unsigned long long)val64
);
3555 valr
= readq(&bar0
->swapper_ctrl
);
3558 valt
= 0x0123456789ABCDEFULL
;
3559 writeq(valt
, &bar0
->xmsi_address
);
3560 val64
= readq(&bar0
->xmsi_address
);
3562 if (val64
!= valt
) {
3564 static const u64 value
[] = {
3565 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3566 0x0081810000818100ULL
, /* FE=1, SE=0 */
3567 0x0042420000424200ULL
, /* FE=0, SE=1 */
3572 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3573 writeq(valt
, &bar0
->xmsi_address
);
3574 val64
= readq(&bar0
->xmsi_address
);
3580 unsigned long long x
= val64
;
3582 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3586 val64
= readq(&bar0
->swapper_ctrl
);
3587 val64
&= 0xFFFF000000000000ULL
;
3591 * The device by default set to a big endian format, so a
3592 * big endian driver need not set anything.
3594 val64
|= (SWAPPER_CTRL_TXP_FE
|
3595 SWAPPER_CTRL_TXP_SE
|
3596 SWAPPER_CTRL_TXD_R_FE
|
3597 SWAPPER_CTRL_TXD_W_FE
|
3598 SWAPPER_CTRL_TXF_R_FE
|
3599 SWAPPER_CTRL_RXD_R_FE
|
3600 SWAPPER_CTRL_RXD_W_FE
|
3601 SWAPPER_CTRL_RXF_W_FE
|
3602 SWAPPER_CTRL_XMSI_FE
|
3603 SWAPPER_CTRL_STATS_FE
|
3604 SWAPPER_CTRL_STATS_SE
);
3605 if (sp
->config
.intr_type
== INTA
)
3606 val64
|= SWAPPER_CTRL_XMSI_SE
;
3607 writeq(val64
, &bar0
->swapper_ctrl
);
3610 * Initially we enable all bits to make it accessible by the
3611 * driver, then we selectively enable only those bits that
3614 val64
|= (SWAPPER_CTRL_TXP_FE
|
3615 SWAPPER_CTRL_TXP_SE
|
3616 SWAPPER_CTRL_TXD_R_FE
|
3617 SWAPPER_CTRL_TXD_R_SE
|
3618 SWAPPER_CTRL_TXD_W_FE
|
3619 SWAPPER_CTRL_TXD_W_SE
|
3620 SWAPPER_CTRL_TXF_R_FE
|
3621 SWAPPER_CTRL_RXD_R_FE
|
3622 SWAPPER_CTRL_RXD_R_SE
|
3623 SWAPPER_CTRL_RXD_W_FE
|
3624 SWAPPER_CTRL_RXD_W_SE
|
3625 SWAPPER_CTRL_RXF_W_FE
|
3626 SWAPPER_CTRL_XMSI_FE
|
3627 SWAPPER_CTRL_STATS_FE
|
3628 SWAPPER_CTRL_STATS_SE
);
3629 if (sp
->config
.intr_type
== INTA
)
3630 val64
|= SWAPPER_CTRL_XMSI_SE
;
3631 writeq(val64
, &bar0
->swapper_ctrl
);
3633 val64
= readq(&bar0
->swapper_ctrl
);
3636 * Verifying if endian settings are accurate by reading a
3637 * feedback register.
3639 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3640 if (val64
!= 0x0123456789ABCDEFULL
) {
3641 /* Endian settings are incorrect, calls for another dekko. */
3643 "%s: Endian settings are wrong, feedback read %llx\n",
3644 dev
->name
, (unsigned long long)val64
);
3651 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3653 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3655 int ret
= 0, cnt
= 0;
3658 val64
= readq(&bar0
->xmsi_access
);
3659 if (!(val64
& s2BIT(15)))
3665 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3672 static void restore_xmsi_data(struct s2io_nic
*nic
)
3674 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3678 if (nic
->device_type
== XFRAME_I_DEVICE
)
3681 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3682 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3683 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3684 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3685 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3686 writeq(val64
, &bar0
->xmsi_access
);
3687 if (wait_for_msix_trans(nic
, msix_index
))
3688 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3689 __func__
, msix_index
);
3693 static void store_xmsi_data(struct s2io_nic
*nic
)
3695 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3696 u64 val64
, addr
, data
;
3699 if (nic
->device_type
== XFRAME_I_DEVICE
)
3702 /* Store and display */
3703 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3704 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3705 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3706 writeq(val64
, &bar0
->xmsi_access
);
3707 if (wait_for_msix_trans(nic
, msix_index
)) {
3708 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3709 __func__
, msix_index
);
3712 addr
= readq(&bar0
->xmsi_address
);
3713 data
= readq(&bar0
->xmsi_data
);
3715 nic
->msix_info
[i
].addr
= addr
;
3716 nic
->msix_info
[i
].data
= data
;
3721 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3723 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3725 u16 msi_control
; /* Temp variable */
3726 int ret
, i
, j
, msix_indx
= 1;
3728 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3729 struct swStat
*swstats
= &stats
->sw_stat
;
3731 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3732 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3733 if (!nic
->entries
) {
3734 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3736 swstats
->mem_alloc_fail_cnt
++;
3739 swstats
->mem_allocated
+= size
;
3741 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3742 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3743 if (!nic
->s2io_entries
) {
3744 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3746 swstats
->mem_alloc_fail_cnt
++;
3747 kfree(nic
->entries
);
3749 += (nic
->num_entries
* sizeof(struct msix_entry
));
3752 swstats
->mem_allocated
+= size
;
3754 nic
->entries
[0].entry
= 0;
3755 nic
->s2io_entries
[0].entry
= 0;
3756 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3757 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3758 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3760 for (i
= 1; i
< nic
->num_entries
; i
++) {
3761 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3762 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3763 nic
->s2io_entries
[i
].arg
= NULL
;
3764 nic
->s2io_entries
[i
].in_use
= 0;
3767 rx_mat
= readq(&bar0
->rx_mat
);
3768 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3769 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3770 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3771 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3772 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3775 writeq(rx_mat
, &bar0
->rx_mat
);
3776 readq(&bar0
->rx_mat
);
3778 ret
= pci_enable_msix_range(nic
->pdev
, nic
->entries
,
3779 nic
->num_entries
, nic
->num_entries
);
3780 /* We fail init if error or we get less vectors than min required */
3782 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3783 kfree(nic
->entries
);
3784 swstats
->mem_freed
+= nic
->num_entries
*
3785 sizeof(struct msix_entry
);
3786 kfree(nic
->s2io_entries
);
3787 swstats
->mem_freed
+= nic
->num_entries
*
3788 sizeof(struct s2io_msix_entry
);
3789 nic
->entries
= NULL
;
3790 nic
->s2io_entries
= NULL
;
3795 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3796 * in the herc NIC. (Temp change, needs to be removed later)
3798 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3799 msi_control
|= 0x1; /* Enable MSI */
3800 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3805 /* Handle software interrupt used during MSI(X) test */
3806 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3808 struct s2io_nic
*sp
= dev_id
;
3810 sp
->msi_detected
= 1;
3811 wake_up(&sp
->msi_wait
);
3816 /* Test interrupt path by forcing a a software IRQ */
3817 static int s2io_test_msi(struct s2io_nic
*sp
)
3819 struct pci_dev
*pdev
= sp
->pdev
;
3820 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3824 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3827 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3828 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3832 init_waitqueue_head(&sp
->msi_wait
);
3833 sp
->msi_detected
= 0;
3835 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3836 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3837 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3838 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3839 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3841 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3843 if (!sp
->msi_detected
) {
3844 /* MSI(X) test failed, go back to INTx mode */
3845 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3846 "using MSI(X) during test\n",
3847 sp
->dev
->name
, pci_name(pdev
));
3852 free_irq(sp
->entries
[1].vector
, sp
);
3854 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3859 static void remove_msix_isr(struct s2io_nic
*sp
)
3864 for (i
= 0; i
< sp
->num_entries
; i
++) {
3865 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3866 int vector
= sp
->entries
[i
].vector
;
3867 void *arg
= sp
->s2io_entries
[i
].arg
;
3868 free_irq(vector
, arg
);
3873 kfree(sp
->s2io_entries
);
3875 sp
->s2io_entries
= NULL
;
3877 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3878 msi_control
&= 0xFFFE; /* Disable MSI */
3879 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3881 pci_disable_msix(sp
->pdev
);
3884 static void remove_inta_isr(struct s2io_nic
*sp
)
3886 free_irq(sp
->pdev
->irq
, sp
->dev
);
3889 /* ********************************************************* *
3890 * Functions defined below concern the OS part of the driver *
3891 * ********************************************************* */
3894 * s2io_open - open entry point of the driver
3895 * @dev : pointer to the device structure.
3897 * This function is the open entry point of the driver. It mainly calls a
3898 * function to allocate Rx buffers and inserts them into the buffer
3899 * descriptors and then enables the Rx part of the NIC.
3901 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3905 static int s2io_open(struct net_device
*dev
)
3907 struct s2io_nic
*sp
= netdev_priv(dev
);
3908 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3912 * Make sure you have link off by default every time
3913 * Nic is initialized
3915 netif_carrier_off(dev
);
3916 sp
->last_link_state
= 0;
3918 /* Initialize H/W and enable interrupts */
3919 err
= s2io_card_up(sp
);
3921 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3923 goto hw_init_failed
;
3926 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3927 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3930 goto hw_init_failed
;
3932 s2io_start_all_tx_queue(sp
);
3936 if (sp
->config
.intr_type
== MSI_X
) {
3939 swstats
->mem_freed
+= sp
->num_entries
*
3940 sizeof(struct msix_entry
);
3942 if (sp
->s2io_entries
) {
3943 kfree(sp
->s2io_entries
);
3944 swstats
->mem_freed
+= sp
->num_entries
*
3945 sizeof(struct s2io_msix_entry
);
3952 * s2io_close -close entry point of the driver
3953 * @dev : device pointer.
3955 * This is the stop entry point of the driver. It needs to undo exactly
3956 * whatever was done by the open entry point,thus it's usually referred to
3957 * as the close function.Among other things this function mainly stops the
3958 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3960 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3964 static int s2io_close(struct net_device
*dev
)
3966 struct s2io_nic
*sp
= netdev_priv(dev
);
3967 struct config_param
*config
= &sp
->config
;
3971 /* Return if the device is already closed *
3972 * Can happen when s2io_card_up failed in change_mtu *
3974 if (!is_s2io_card_up(sp
))
3977 s2io_stop_all_tx_queue(sp
);
3978 /* delete all populated mac entries */
3979 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
3980 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
3981 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
3982 do_s2io_delete_unicast_mc(sp
, tmp64
);
3991 * s2io_xmit - Tx entry point of te driver
3992 * @skb : the socket buffer containing the Tx data.
3993 * @dev : device pointer.
3995 * This function is the Tx entry point of the driver. S2IO NIC supports
3996 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3997 * NOTE: when device can't queue the pkt,just the trans_start variable will
4000 * 0 on success & 1 on failure.
4003 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4005 struct s2io_nic
*sp
= netdev_priv(dev
);
4006 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4009 struct TxFIFO_element __iomem
*tx_fifo
;
4010 unsigned long flags
= 0;
4012 struct fifo_info
*fifo
= NULL
;
4014 int enable_per_list_interrupt
= 0;
4015 struct config_param
*config
= &sp
->config
;
4016 struct mac_info
*mac_control
= &sp
->mac_control
;
4017 struct stat_block
*stats
= mac_control
->stats_info
;
4018 struct swStat
*swstats
= &stats
->sw_stat
;
4020 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4022 if (unlikely(skb
->len
<= 0)) {
4023 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4024 dev_kfree_skb_any(skb
);
4025 return NETDEV_TX_OK
;
4028 if (!is_s2io_card_up(sp
)) {
4029 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4031 dev_kfree_skb_any(skb
);
4032 return NETDEV_TX_OK
;
4036 if (skb_vlan_tag_present(skb
))
4037 vlan_tag
= skb_vlan_tag_get(skb
);
4038 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4039 if (skb
->protocol
== htons(ETH_P_IP
)) {
4044 if (!ip_is_fragment(ip
)) {
4045 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4048 if (ip
->protocol
== IPPROTO_TCP
) {
4049 queue_len
= sp
->total_tcp_fifos
;
4050 queue
= (ntohs(th
->source
) +
4052 sp
->fifo_selector
[queue_len
- 1];
4053 if (queue
>= queue_len
)
4054 queue
= queue_len
- 1;
4055 } else if (ip
->protocol
== IPPROTO_UDP
) {
4056 queue_len
= sp
->total_udp_fifos
;
4057 queue
= (ntohs(th
->source
) +
4059 sp
->fifo_selector
[queue_len
- 1];
4060 if (queue
>= queue_len
)
4061 queue
= queue_len
- 1;
4062 queue
+= sp
->udp_fifo_idx
;
4063 if (skb
->len
> 1024)
4064 enable_per_list_interrupt
= 1;
4068 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4069 /* get fifo number based on skb->priority value */
4070 queue
= config
->fifo_mapping
4071 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4072 fifo
= &mac_control
->fifos
[queue
];
4074 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4076 if (sp
->config
.multiq
) {
4077 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4078 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4079 return NETDEV_TX_BUSY
;
4081 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4082 if (netif_queue_stopped(dev
)) {
4083 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4084 return NETDEV_TX_BUSY
;
4088 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4089 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4090 txdp
= fifo
->list_info
[put_off
].list_virt_addr
;
4092 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4093 /* Avoid "put" pointer going beyond "get" pointer */
4094 if (txdp
->Host_Control
||
4095 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4096 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4097 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4098 dev_kfree_skb_any(skb
);
4099 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4100 return NETDEV_TX_OK
;
4103 offload_type
= s2io_offload_type(skb
);
4104 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4105 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4106 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4108 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4109 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4113 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4114 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4115 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4116 if (enable_per_list_interrupt
)
4117 if (put_off
& (queue_len
>> 5))
4118 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4120 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4121 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4124 frg_len
= skb_headlen(skb
);
4125 txdp
->Buffer_Pointer
= dma_map_single(&sp
->pdev
->dev
, skb
->data
,
4126 frg_len
, DMA_TO_DEVICE
);
4127 if (dma_mapping_error(&sp
->pdev
->dev
, txdp
->Buffer_Pointer
))
4128 goto pci_map_failed
;
4130 txdp
->Host_Control
= (unsigned long)skb
;
4131 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4133 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4134 /* For fragmented SKB. */
4135 for (i
= 0; i
< frg_cnt
; i
++) {
4136 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4137 /* A '0' length fragment will be ignored */
4138 if (!skb_frag_size(frag
))
4141 txdp
->Buffer_Pointer
= (u64
)skb_frag_dma_map(&sp
->pdev
->dev
,
4143 skb_frag_size(frag
),
4145 txdp
->Control_1
= TXD_BUFFER0_SIZE(skb_frag_size(frag
));
4147 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4149 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4150 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4151 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4153 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4156 val64
|= TX_FIFO_SPECIAL_FUNC
;
4158 writeq(val64
, &tx_fifo
->List_Control
);
4161 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4163 fifo
->tx_curr_put_info
.offset
= put_off
;
4165 /* Avoid "put" pointer going beyond "get" pointer */
4166 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4167 swstats
->fifo_full_cnt
++;
4169 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4171 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4173 swstats
->mem_allocated
+= skb
->truesize
;
4174 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4176 if (sp
->config
.intr_type
== MSI_X
)
4177 tx_intr_handler(fifo
);
4179 return NETDEV_TX_OK
;
4182 swstats
->pci_map_fail_cnt
++;
4183 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4184 swstats
->mem_freed
+= skb
->truesize
;
4185 dev_kfree_skb_any(skb
);
4186 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4187 return NETDEV_TX_OK
;
4191 s2io_alarm_handle(struct timer_list
*t
)
4193 struct s2io_nic
*sp
= from_timer(sp
, t
, alarm_timer
);
4194 struct net_device
*dev
= sp
->dev
;
4196 s2io_handle_errors(dev
);
4197 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4200 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4202 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4203 struct s2io_nic
*sp
= ring
->nic
;
4204 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4206 if (unlikely(!is_s2io_card_up(sp
)))
4209 if (sp
->config
.napi
) {
4210 u8 __iomem
*addr
= NULL
;
4213 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4214 addr
+= (7 - ring
->ring_no
);
4215 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4218 napi_schedule(&ring
->napi
);
4220 rx_intr_handler(ring
, 0);
4221 s2io_chk_rx_buffers(sp
, ring
);
4227 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4230 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4231 struct s2io_nic
*sp
= fifos
->nic
;
4232 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4233 struct config_param
*config
= &sp
->config
;
4236 if (unlikely(!is_s2io_card_up(sp
)))
4239 reason
= readq(&bar0
->general_int_status
);
4240 if (unlikely(reason
== S2IO_MINUS_ONE
))
4241 /* Nothing much can be done. Get out */
4244 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4245 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4247 if (reason
& GEN_INTR_TXPIC
)
4248 s2io_txpic_intr_handle(sp
);
4250 if (reason
& GEN_INTR_TXTRAFFIC
)
4251 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4253 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4254 tx_intr_handler(&fifos
[i
]);
4256 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4257 readl(&bar0
->general_int_status
);
4260 /* The interrupt was not raised by us */
4264 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4266 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4269 val64
= readq(&bar0
->pic_int_status
);
4270 if (val64
& PIC_INT_GPIO
) {
4271 val64
= readq(&bar0
->gpio_int_reg
);
4272 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4273 (val64
& GPIO_INT_REG_LINK_UP
)) {
4275 * This is unstable state so clear both up/down
4276 * interrupt and adapter to re-evaluate the link state.
4278 val64
|= GPIO_INT_REG_LINK_DOWN
;
4279 val64
|= GPIO_INT_REG_LINK_UP
;
4280 writeq(val64
, &bar0
->gpio_int_reg
);
4281 val64
= readq(&bar0
->gpio_int_mask
);
4282 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4283 GPIO_INT_MASK_LINK_DOWN
);
4284 writeq(val64
, &bar0
->gpio_int_mask
);
4285 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4286 val64
= readq(&bar0
->adapter_status
);
4287 /* Enable Adapter */
4288 val64
= readq(&bar0
->adapter_control
);
4289 val64
|= ADAPTER_CNTL_EN
;
4290 writeq(val64
, &bar0
->adapter_control
);
4291 val64
|= ADAPTER_LED_ON
;
4292 writeq(val64
, &bar0
->adapter_control
);
4293 if (!sp
->device_enabled_once
)
4294 sp
->device_enabled_once
= 1;
4296 s2io_link(sp
, LINK_UP
);
4298 * unmask link down interrupt and mask link-up
4301 val64
= readq(&bar0
->gpio_int_mask
);
4302 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4303 val64
|= GPIO_INT_MASK_LINK_UP
;
4304 writeq(val64
, &bar0
->gpio_int_mask
);
4306 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4307 val64
= readq(&bar0
->adapter_status
);
4308 s2io_link(sp
, LINK_DOWN
);
4309 /* Link is down so unmaks link up interrupt */
4310 val64
= readq(&bar0
->gpio_int_mask
);
4311 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4312 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4313 writeq(val64
, &bar0
->gpio_int_mask
);
4316 val64
= readq(&bar0
->adapter_control
);
4317 val64
= val64
& (~ADAPTER_LED_ON
);
4318 writeq(val64
, &bar0
->adapter_control
);
4321 val64
= readq(&bar0
->gpio_int_mask
);
4325 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4326 * @value: alarm bits
4327 * @addr: address value
4328 * @cnt: counter variable
4329 * Description: Check for alarm and increment the counter
4331 * 1 - if alarm bit set
4332 * 0 - if alarm bit is not set
4334 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4335 unsigned long long *cnt
)
4338 val64
= readq(addr
);
4339 if (val64
& value
) {
4340 writeq(val64
, addr
);
4349 * s2io_handle_errors - Xframe error indication handler
4350 * @dev_id: opaque handle to dev
4351 * Description: Handle alarms such as loss of link, single or
4352 * double ECC errors, critical and serious errors.
4356 static void s2io_handle_errors(void *dev_id
)
4358 struct net_device
*dev
= (struct net_device
*)dev_id
;
4359 struct s2io_nic
*sp
= netdev_priv(dev
);
4360 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4361 u64 temp64
= 0, val64
= 0;
4364 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4365 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4367 if (!is_s2io_card_up(sp
))
4370 if (pci_channel_offline(sp
->pdev
))
4373 memset(&sw_stat
->ring_full_cnt
, 0,
4374 sizeof(sw_stat
->ring_full_cnt
));
4376 /* Handling the XPAK counters update */
4377 if (stats
->xpak_timer_count
< 72000) {
4378 /* waiting for an hour */
4379 stats
->xpak_timer_count
++;
4381 s2io_updt_xpak_counter(dev
);
4382 /* reset the count to zero */
4383 stats
->xpak_timer_count
= 0;
4386 /* Handling link status change error Intr */
4387 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4388 val64
= readq(&bar0
->mac_rmac_err_reg
);
4389 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4390 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4391 schedule_work(&sp
->set_link_task
);
4394 /* In case of a serious error, the device will be Reset. */
4395 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4396 &sw_stat
->serious_err_cnt
))
4399 /* Check for data parity error */
4400 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4401 &sw_stat
->parity_err_cnt
))
4404 /* Check for ring full counter */
4405 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4406 val64
= readq(&bar0
->ring_bump_counter1
);
4407 for (i
= 0; i
< 4; i
++) {
4408 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4409 temp64
>>= 64 - ((i
+1)*16);
4410 sw_stat
->ring_full_cnt
[i
] += temp64
;
4413 val64
= readq(&bar0
->ring_bump_counter2
);
4414 for (i
= 0; i
< 4; i
++) {
4415 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4416 temp64
>>= 64 - ((i
+1)*16);
4417 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4421 val64
= readq(&bar0
->txdma_int_status
);
4422 /*check for pfc_err*/
4423 if (val64
& TXDMA_PFC_INT
) {
4424 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4425 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4428 &sw_stat
->pfc_err_cnt
))
4430 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4432 &sw_stat
->pfc_err_cnt
);
4435 /*check for tda_err*/
4436 if (val64
& TXDMA_TDA_INT
) {
4437 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4441 &sw_stat
->tda_err_cnt
))
4443 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4445 &sw_stat
->tda_err_cnt
);
4447 /*check for pcc_err*/
4448 if (val64
& TXDMA_PCC_INT
) {
4449 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4450 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4451 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4452 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4455 &sw_stat
->pcc_err_cnt
))
4457 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4459 &sw_stat
->pcc_err_cnt
);
4462 /*check for tti_err*/
4463 if (val64
& TXDMA_TTI_INT
) {
4464 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4466 &sw_stat
->tti_err_cnt
))
4468 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4470 &sw_stat
->tti_err_cnt
);
4473 /*check for lso_err*/
4474 if (val64
& TXDMA_LSO_INT
) {
4475 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4476 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4478 &sw_stat
->lso_err_cnt
))
4480 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4482 &sw_stat
->lso_err_cnt
);
4485 /*check for tpa_err*/
4486 if (val64
& TXDMA_TPA_INT
) {
4487 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4489 &sw_stat
->tpa_err_cnt
))
4491 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4493 &sw_stat
->tpa_err_cnt
);
4496 /*check for sm_err*/
4497 if (val64
& TXDMA_SM_INT
) {
4498 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4500 &sw_stat
->sm_err_cnt
))
4504 val64
= readq(&bar0
->mac_int_status
);
4505 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4506 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4507 &bar0
->mac_tmac_err_reg
,
4508 &sw_stat
->mac_tmac_err_cnt
))
4510 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4511 TMAC_DESC_ECC_SG_ERR
|
4512 TMAC_DESC_ECC_DB_ERR
,
4513 &bar0
->mac_tmac_err_reg
,
4514 &sw_stat
->mac_tmac_err_cnt
);
4517 val64
= readq(&bar0
->xgxs_int_status
);
4518 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4519 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4520 &bar0
->xgxs_txgxs_err_reg
,
4521 &sw_stat
->xgxs_txgxs_err_cnt
))
4523 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4524 &bar0
->xgxs_txgxs_err_reg
,
4525 &sw_stat
->xgxs_txgxs_err_cnt
);
4528 val64
= readq(&bar0
->rxdma_int_status
);
4529 if (val64
& RXDMA_INT_RC_INT_M
) {
4530 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4532 RC_PRCn_SM_ERR_ALARM
|
4533 RC_FTC_SM_ERR_ALARM
,
4535 &sw_stat
->rc_err_cnt
))
4537 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4539 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4540 &sw_stat
->rc_err_cnt
);
4541 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4544 &bar0
->prc_pcix_err_reg
,
4545 &sw_stat
->prc_pcix_err_cnt
))
4547 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4550 &bar0
->prc_pcix_err_reg
,
4551 &sw_stat
->prc_pcix_err_cnt
);
4554 if (val64
& RXDMA_INT_RPA_INT_M
) {
4555 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4557 &sw_stat
->rpa_err_cnt
))
4559 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4561 &sw_stat
->rpa_err_cnt
);
4564 if (val64
& RXDMA_INT_RDA_INT_M
) {
4565 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4566 RDA_FRM_ECC_DB_N_AERR
|
4569 RDA_RXD_ECC_DB_SERR
,
4571 &sw_stat
->rda_err_cnt
))
4573 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4574 RDA_FRM_ECC_SG_ERR
|
4578 &sw_stat
->rda_err_cnt
);
4581 if (val64
& RXDMA_INT_RTI_INT_M
) {
4582 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4584 &sw_stat
->rti_err_cnt
))
4586 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4588 &sw_stat
->rti_err_cnt
);
4591 val64
= readq(&bar0
->mac_int_status
);
4592 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4593 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4594 &bar0
->mac_rmac_err_reg
,
4595 &sw_stat
->mac_rmac_err_cnt
))
4597 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4598 RMAC_SINGLE_ECC_ERR
|
4599 RMAC_DOUBLE_ECC_ERR
,
4600 &bar0
->mac_rmac_err_reg
,
4601 &sw_stat
->mac_rmac_err_cnt
);
4604 val64
= readq(&bar0
->xgxs_int_status
);
4605 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4606 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4607 &bar0
->xgxs_rxgxs_err_reg
,
4608 &sw_stat
->xgxs_rxgxs_err_cnt
))
4612 val64
= readq(&bar0
->mc_int_status
);
4613 if (val64
& MC_INT_STATUS_MC_INT
) {
4614 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4616 &sw_stat
->mc_err_cnt
))
4619 /* Handling Ecc errors */
4620 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4621 writeq(val64
, &bar0
->mc_err_reg
);
4622 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4623 sw_stat
->double_ecc_errs
++;
4624 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4626 * Reset XframeI only if critical error
4629 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4630 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4634 sw_stat
->single_ecc_errs
++;
4640 s2io_stop_all_tx_queue(sp
);
4641 schedule_work(&sp
->rst_timer_task
);
4642 sw_stat
->soft_reset_cnt
++;
4646 * s2io_isr - ISR handler of the device .
4647 * @irq: the irq of the device.
4648 * @dev_id: a void pointer to the dev structure of the NIC.
4649 * Description: This function is the ISR handler of the device. It
4650 * identifies the reason for the interrupt and calls the relevant
4651 * service routines. As a contongency measure, this ISR allocates the
4652 * recv buffers, if their numbers are below the panic value which is
4653 * presently set to 25% of the original number of rcv buffers allocated.
4655 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4656 * IRQ_NONE: will be returned if interrupt is not from our device
4658 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4660 struct net_device
*dev
= (struct net_device
*)dev_id
;
4661 struct s2io_nic
*sp
= netdev_priv(dev
);
4662 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4665 struct mac_info
*mac_control
;
4666 struct config_param
*config
;
4668 /* Pretend we handled any irq's from a disconnected card */
4669 if (pci_channel_offline(sp
->pdev
))
4672 if (!is_s2io_card_up(sp
))
4675 config
= &sp
->config
;
4676 mac_control
= &sp
->mac_control
;
4679 * Identify the cause for interrupt and call the appropriate
4680 * interrupt handler. Causes for the interrupt could be;
4685 reason
= readq(&bar0
->general_int_status
);
4687 if (unlikely(reason
== S2IO_MINUS_ONE
))
4688 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4691 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4692 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4695 if (reason
& GEN_INTR_RXTRAFFIC
) {
4696 napi_schedule(&sp
->napi
);
4697 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4698 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4699 readl(&bar0
->rx_traffic_int
);
4703 * rx_traffic_int reg is an R1 register, writing all 1's
4704 * will ensure that the actual interrupt causing bit
4705 * get's cleared and hence a read can be avoided.
4707 if (reason
& GEN_INTR_RXTRAFFIC
)
4708 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4710 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4711 struct ring_info
*ring
= &mac_control
->rings
[i
];
4713 rx_intr_handler(ring
, 0);
4718 * tx_traffic_int reg is an R1 register, writing all 1's
4719 * will ensure that the actual interrupt causing bit get's
4720 * cleared and hence a read can be avoided.
4722 if (reason
& GEN_INTR_TXTRAFFIC
)
4723 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4725 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4726 tx_intr_handler(&mac_control
->fifos
[i
]);
4728 if (reason
& GEN_INTR_TXPIC
)
4729 s2io_txpic_intr_handle(sp
);
4732 * Reallocate the buffers from the interrupt handler itself.
4734 if (!config
->napi
) {
4735 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4736 struct ring_info
*ring
= &mac_control
->rings
[i
];
4738 s2io_chk_rx_buffers(sp
, ring
);
4741 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4742 readl(&bar0
->general_int_status
);
4746 } else if (!reason
) {
4747 /* The interrupt was not raised by us */
4757 static void s2io_updt_stats(struct s2io_nic
*sp
)
4759 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4763 if (is_s2io_card_up(sp
)) {
4764 /* Apprx 30us on a 133 MHz bus */
4765 val64
= SET_UPDT_CLICKS(10) |
4766 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4767 writeq(val64
, &bar0
->stat_cfg
);
4770 val64
= readq(&bar0
->stat_cfg
);
4771 if (!(val64
& s2BIT(0)))
4775 break; /* Updt failed */
4781 * s2io_get_stats - Updates the device statistics structure.
4782 * @dev : pointer to the device structure.
4784 * This function updates the device statistics structure in the s2io_nic
4785 * structure and returns a pointer to the same.
4787 * pointer to the updated net_device_stats structure.
4789 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4791 struct s2io_nic
*sp
= netdev_priv(dev
);
4792 struct mac_info
*mac_control
= &sp
->mac_control
;
4793 struct stat_block
*stats
= mac_control
->stats_info
;
4796 /* Configure Stats for immediate updt */
4797 s2io_updt_stats(sp
);
4799 /* A device reset will cause the on-adapter statistics to be zero'ed.
4800 * This can be done while running by changing the MTU. To prevent the
4801 * system from having the stats zero'ed, the driver keeps a copy of the
4802 * last update to the system (which is also zero'ed on reset). This
4803 * enables the driver to accurately know the delta between the last
4804 * update and the current update.
4806 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4807 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4808 sp
->stats
.rx_packets
+= delta
;
4809 dev
->stats
.rx_packets
+= delta
;
4811 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4812 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4813 sp
->stats
.tx_packets
+= delta
;
4814 dev
->stats
.tx_packets
+= delta
;
4816 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4817 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4818 sp
->stats
.rx_bytes
+= delta
;
4819 dev
->stats
.rx_bytes
+= delta
;
4821 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4822 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4823 sp
->stats
.tx_bytes
+= delta
;
4824 dev
->stats
.tx_bytes
+= delta
;
4826 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4827 sp
->stats
.rx_errors
+= delta
;
4828 dev
->stats
.rx_errors
+= delta
;
4830 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4831 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4832 sp
->stats
.tx_errors
+= delta
;
4833 dev
->stats
.tx_errors
+= delta
;
4835 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4836 sp
->stats
.rx_dropped
+= delta
;
4837 dev
->stats
.rx_dropped
+= delta
;
4839 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4840 sp
->stats
.tx_dropped
+= delta
;
4841 dev
->stats
.tx_dropped
+= delta
;
4843 /* The adapter MAC interprets pause frames as multicast packets, but
4844 * does not pass them up. This erroneously increases the multicast
4845 * packet count and needs to be deducted when the multicast frame count
4848 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4849 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4850 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4851 delta
-= sp
->stats
.multicast
;
4852 sp
->stats
.multicast
+= delta
;
4853 dev
->stats
.multicast
+= delta
;
4855 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4856 le32_to_cpu(stats
->rmac_usized_frms
)) +
4857 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4858 sp
->stats
.rx_length_errors
+= delta
;
4859 dev
->stats
.rx_length_errors
+= delta
;
4861 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4862 sp
->stats
.rx_crc_errors
+= delta
;
4863 dev
->stats
.rx_crc_errors
+= delta
;
4869 * s2io_set_multicast - entry point for multicast address enable/disable.
4870 * @dev : pointer to the device structure
4872 * This function is a driver entry point which gets called by the kernel
4873 * whenever multicast addresses must be enabled/disabled. This also gets
4874 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4875 * determine, if multicast address must be enabled or if promiscuous mode
4876 * is to be disabled etc.
4880 static void s2io_set_multicast(struct net_device
*dev
, bool may_sleep
)
4883 struct netdev_hw_addr
*ha
;
4884 struct s2io_nic
*sp
= netdev_priv(dev
);
4885 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4886 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4888 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
4890 struct config_param
*config
= &sp
->config
;
4892 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4893 /* Enable all Multicast addresses */
4894 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4895 &bar0
->rmac_addr_data0_mem
);
4896 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4897 &bar0
->rmac_addr_data1_mem
);
4898 val64
= RMAC_ADDR_CMD_MEM_WE
|
4899 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4900 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
4901 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4902 /* Wait till command completes */
4903 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4904 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4905 S2IO_BIT_RESET
, may_sleep
);
4908 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
4909 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4910 /* Disable all Multicast addresses */
4911 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4912 &bar0
->rmac_addr_data0_mem
);
4913 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4914 &bar0
->rmac_addr_data1_mem
);
4915 val64
= RMAC_ADDR_CMD_MEM_WE
|
4916 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4917 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4918 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4919 /* Wait till command completes */
4920 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4921 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4922 S2IO_BIT_RESET
, may_sleep
);
4925 sp
->all_multi_pos
= 0;
4928 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4929 /* Put the NIC into promiscuous mode */
4930 add
= &bar0
->mac_cfg
;
4931 val64
= readq(&bar0
->mac_cfg
);
4932 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4934 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4935 writel((u32
)val64
, add
);
4936 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4937 writel((u32
) (val64
>> 32), (add
+ 4));
4939 if (vlan_tag_strip
!= 1) {
4940 val64
= readq(&bar0
->rx_pa_cfg
);
4941 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4942 writeq(val64
, &bar0
->rx_pa_cfg
);
4943 sp
->vlan_strip_flag
= 0;
4946 val64
= readq(&bar0
->mac_cfg
);
4947 sp
->promisc_flg
= 1;
4948 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4950 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4951 /* Remove the NIC from promiscuous mode */
4952 add
= &bar0
->mac_cfg
;
4953 val64
= readq(&bar0
->mac_cfg
);
4954 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4956 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4957 writel((u32
)val64
, add
);
4958 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4959 writel((u32
) (val64
>> 32), (add
+ 4));
4961 if (vlan_tag_strip
!= 0) {
4962 val64
= readq(&bar0
->rx_pa_cfg
);
4963 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4964 writeq(val64
, &bar0
->rx_pa_cfg
);
4965 sp
->vlan_strip_flag
= 1;
4968 val64
= readq(&bar0
->mac_cfg
);
4969 sp
->promisc_flg
= 0;
4970 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
4973 /* Update individual M_CAST address list */
4974 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
4975 if (netdev_mc_count(dev
) >
4976 (config
->max_mc_addr
- config
->max_mac_addr
)) {
4978 "%s: No more Rx filters can be added - "
4979 "please enable ALL_MULTI instead\n",
4984 prev_cnt
= sp
->mc_addr_count
;
4985 sp
->mc_addr_count
= netdev_mc_count(dev
);
4987 /* Clear out the previous list of Mc in the H/W. */
4988 for (i
= 0; i
< prev_cnt
; i
++) {
4989 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4990 &bar0
->rmac_addr_data0_mem
);
4991 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4992 &bar0
->rmac_addr_data1_mem
);
4993 val64
= RMAC_ADDR_CMD_MEM_WE
|
4994 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4995 RMAC_ADDR_CMD_MEM_OFFSET
4996 (config
->mc_start_offset
+ i
);
4997 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4999 /* Wait for command completes */
5000 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5001 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5002 S2IO_BIT_RESET
, may_sleep
)) {
5004 "%s: Adding Multicasts failed\n",
5010 /* Create the new Rx filter list and update the same in H/W. */
5012 netdev_for_each_mc_addr(ha
, dev
) {
5014 for (j
= 0; j
< ETH_ALEN
; j
++) {
5015 mac_addr
|= ha
->addr
[j
];
5019 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5020 &bar0
->rmac_addr_data0_mem
);
5021 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5022 &bar0
->rmac_addr_data1_mem
);
5023 val64
= RMAC_ADDR_CMD_MEM_WE
|
5024 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5025 RMAC_ADDR_CMD_MEM_OFFSET
5026 (i
+ config
->mc_start_offset
);
5027 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5029 /* Wait for command completes */
5030 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5031 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5032 S2IO_BIT_RESET
, may_sleep
)) {
5034 "%s: Adding Multicasts failed\n",
5043 /* NDO wrapper for s2io_set_multicast */
5044 static void s2io_ndo_set_multicast(struct net_device
*dev
)
5046 s2io_set_multicast(dev
, false);
5049 /* read from CAM unicast & multicast addresses and store it in
5050 * def_mac_addr structure
5052 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5056 struct config_param
*config
= &sp
->config
;
5058 /* store unicast & multicast mac addresses */
5059 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5060 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5061 /* if read fails disable the entry */
5062 if (mac_addr
== FAILURE
)
5063 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5064 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5068 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5069 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5072 struct config_param
*config
= &sp
->config
;
5073 /* restore unicast mac address */
5074 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5075 do_s2io_prog_unicast(sp
->dev
,
5076 sp
->def_mac_addr
[offset
].mac_addr
);
5078 /* restore multicast mac address */
5079 for (offset
= config
->mc_start_offset
;
5080 offset
< config
->max_mc_addr
; offset
++)
5081 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5084 /* add a multicast MAC address to CAM */
5085 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5089 struct config_param
*config
= &sp
->config
;
5091 for (i
= 0; i
< ETH_ALEN
; i
++) {
5093 mac_addr
|= addr
[i
];
5095 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5098 /* check if the multicast mac already preset in CAM */
5099 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5101 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5102 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5105 if (tmp64
== mac_addr
)
5108 if (i
== config
->max_mc_addr
) {
5110 "CAM full no space left for multicast MAC\n");
5113 /* Update the internal structure with this new mac address */
5114 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5116 return do_s2io_add_mac(sp
, mac_addr
, i
);
5119 /* add MAC address to CAM */
5120 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5123 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5125 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5126 &bar0
->rmac_addr_data0_mem
);
5128 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5129 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5130 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5132 /* Wait till command completes */
5133 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5134 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5135 S2IO_BIT_RESET
, true)) {
5136 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5141 /* deletes a specified unicast/multicast mac entry from CAM */
5142 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5145 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5146 struct config_param
*config
= &sp
->config
;
5149 offset
< config
->max_mc_addr
; offset
++) {
5150 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5151 if (tmp64
== addr
) {
5152 /* disable the entry by writing 0xffffffffffffULL */
5153 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5155 /* store the new mac list from CAM */
5156 do_s2io_store_unicast_mc(sp
);
5160 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5161 (unsigned long long)addr
);
5165 /* read mac entries from CAM */
5166 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5169 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5172 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5173 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5174 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5176 /* Wait till command completes */
5177 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5178 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5179 S2IO_BIT_RESET
, true)) {
5180 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5183 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5189 * s2io_set_mac_addr - driver entry point
5192 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5194 struct sockaddr
*addr
= p
;
5196 if (!is_valid_ether_addr(addr
->sa_data
))
5197 return -EADDRNOTAVAIL
;
5199 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5201 /* store the MAC address in CAM */
5202 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5205 * do_s2io_prog_unicast - Programs the Xframe mac address
5206 * @dev : pointer to the device structure.
5207 * @addr: a uchar pointer to the new mac address which is to be set.
5208 * Description : This procedure will program the Xframe to receive
5209 * frames with new Mac Address
5210 * Return value: SUCCESS on success and an appropriate (-)ve integer
5211 * as defined in errno.h file on failure.
5214 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5216 struct s2io_nic
*sp
= netdev_priv(dev
);
5217 register u64 mac_addr
= 0, perm_addr
= 0;
5220 struct config_param
*config
= &sp
->config
;
5223 * Set the new MAC address as the new unicast filter and reflect this
5224 * change on the device address registered with the OS. It will be
5227 for (i
= 0; i
< ETH_ALEN
; i
++) {
5229 mac_addr
|= addr
[i
];
5231 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5234 /* check if the dev_addr is different than perm_addr */
5235 if (mac_addr
== perm_addr
)
5238 /* check if the mac already preset in CAM */
5239 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5240 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5241 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5244 if (tmp64
== mac_addr
) {
5246 "MAC addr:0x%llx already present in CAM\n",
5247 (unsigned long long)mac_addr
);
5251 if (i
== config
->max_mac_addr
) {
5252 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5255 /* Update the internal structure with this new mac address */
5256 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5258 return do_s2io_add_mac(sp
, mac_addr
, i
);
5262 * s2io_ethtool_set_link_ksettings - Sets different link parameters.
5263 * @dev : pointer to netdev
5264 * @cmd: pointer to the structure with parameters given by ethtool to set
5267 * The function sets different link parameters provided by the user onto
5274 s2io_ethtool_set_link_ksettings(struct net_device
*dev
,
5275 const struct ethtool_link_ksettings
*cmd
)
5277 struct s2io_nic
*sp
= netdev_priv(dev
);
5278 if ((cmd
->base
.autoneg
== AUTONEG_ENABLE
) ||
5279 (cmd
->base
.speed
!= SPEED_10000
) ||
5280 (cmd
->base
.duplex
!= DUPLEX_FULL
))
5283 s2io_close(sp
->dev
);
5291 * s2io_ethtol_get_link_ksettings - Return link specific information.
5292 * @dev: pointer to netdev
5293 * @cmd : pointer to the structure with parameters given by ethtool
5294 * to return link information.
5296 * Returns link specific information like speed, duplex etc.. to ethtool.
5298 * return 0 on success.
5302 s2io_ethtool_get_link_ksettings(struct net_device
*dev
,
5303 struct ethtool_link_ksettings
*cmd
)
5305 struct s2io_nic
*sp
= netdev_priv(dev
);
5307 ethtool_link_ksettings_zero_link_mode(cmd
, supported
);
5308 ethtool_link_ksettings_add_link_mode(cmd
, supported
, 10000baseT_Full
);
5309 ethtool_link_ksettings_add_link_mode(cmd
, supported
, FIBRE
);
5311 ethtool_link_ksettings_zero_link_mode(cmd
, advertising
);
5312 ethtool_link_ksettings_add_link_mode(cmd
, advertising
, 10000baseT_Full
);
5313 ethtool_link_ksettings_add_link_mode(cmd
, advertising
, FIBRE
);
5315 cmd
->base
.port
= PORT_FIBRE
;
5317 if (netif_carrier_ok(sp
->dev
)) {
5318 cmd
->base
.speed
= SPEED_10000
;
5319 cmd
->base
.duplex
= DUPLEX_FULL
;
5321 cmd
->base
.speed
= SPEED_UNKNOWN
;
5322 cmd
->base
.duplex
= DUPLEX_UNKNOWN
;
5325 cmd
->base
.autoneg
= AUTONEG_DISABLE
;
5330 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5331 * @dev: pointer to netdev
5332 * @info : pointer to the structure with parameters given by ethtool to
5333 * return driver information.
5335 * Returns driver specefic information like name, version etc.. to ethtool.
5340 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5341 struct ethtool_drvinfo
*info
)
5343 struct s2io_nic
*sp
= netdev_priv(dev
);
5345 strlcpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5346 strlcpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5347 strlcpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5351 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5352 * @dev: pointer to netdev
5353 * @regs : pointer to the structure with parameters given by ethtool for
5354 * dumping the registers.
5355 * @space: The input argument into which all the registers are dumped.
5357 * Dumps the entire register space of xFrame NIC into the user given
5363 static void s2io_ethtool_gregs(struct net_device
*dev
,
5364 struct ethtool_regs
*regs
, void *space
)
5368 u8
*reg_space
= (u8
*)space
;
5369 struct s2io_nic
*sp
= netdev_priv(dev
);
5371 regs
->len
= XENA_REG_SPACE
;
5372 regs
->version
= sp
->pdev
->subsystem_device
;
5374 for (i
= 0; i
< regs
->len
; i
+= 8) {
5375 reg
= readq(sp
->bar0
+ i
);
5376 memcpy((reg_space
+ i
), ®
, 8);
5381 * s2io_set_led - control NIC led
5383 static void s2io_set_led(struct s2io_nic
*sp
, bool on
)
5385 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5386 u16 subid
= sp
->pdev
->subsystem_device
;
5389 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5390 ((subid
& 0xFF) >= 0x07)) {
5391 val64
= readq(&bar0
->gpio_control
);
5393 val64
|= GPIO_CTRL_GPIO_0
;
5395 val64
&= ~GPIO_CTRL_GPIO_0
;
5397 writeq(val64
, &bar0
->gpio_control
);
5399 val64
= readq(&bar0
->adapter_control
);
5401 val64
|= ADAPTER_LED_ON
;
5403 val64
&= ~ADAPTER_LED_ON
;
5405 writeq(val64
, &bar0
->adapter_control
);
5411 * s2io_ethtool_set_led - To physically identify the nic on the system.
5412 * @dev : network device
5413 * @state: led setting
5415 * Description: Used to physically identify the NIC on the system.
5416 * The Link LED will blink for a time specified by the user for
5418 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5419 * identification is possible only if it's link is up.
5422 static int s2io_ethtool_set_led(struct net_device
*dev
,
5423 enum ethtool_phys_id_state state
)
5425 struct s2io_nic
*sp
= netdev_priv(dev
);
5426 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5427 u16 subid
= sp
->pdev
->subsystem_device
;
5429 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5430 u64 val64
= readq(&bar0
->adapter_control
);
5431 if (!(val64
& ADAPTER_CNTL_EN
)) {
5432 pr_err("Adapter Link down, cannot blink LED\n");
5438 case ETHTOOL_ID_ACTIVE
:
5439 sp
->adapt_ctrl_org
= readq(&bar0
->gpio_control
);
5440 return 1; /* cycle on/off once per second */
5443 s2io_set_led(sp
, true);
5446 case ETHTOOL_ID_OFF
:
5447 s2io_set_led(sp
, false);
5450 case ETHTOOL_ID_INACTIVE
:
5451 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
))
5452 writeq(sp
->adapt_ctrl_org
, &bar0
->gpio_control
);
5458 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5459 struct ethtool_ringparam
*ering
)
5461 struct s2io_nic
*sp
= netdev_priv(dev
);
5462 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5464 if (sp
->rxd_mode
== RXD_MODE_1
) {
5465 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5466 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5468 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5469 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5472 ering
->tx_max_pending
= MAX_TX_DESC
;
5474 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
5475 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5476 ering
->rx_pending
= rx_desc_count
;
5477 ering
->rx_jumbo_pending
= rx_desc_count
;
5479 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
5480 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5481 ering
->tx_pending
= tx_desc_count
;
5482 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5486 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5487 * @dev: pointer to netdev
5488 * @ep : pointer to the structure with pause parameters given by ethtool.
5490 * Returns the Pause frame generation and reception capability of the NIC.
5494 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5495 struct ethtool_pauseparam
*ep
)
5498 struct s2io_nic
*sp
= netdev_priv(dev
);
5499 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5501 val64
= readq(&bar0
->rmac_pause_cfg
);
5502 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5503 ep
->tx_pause
= true;
5504 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5505 ep
->rx_pause
= true;
5506 ep
->autoneg
= false;
5510 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5511 * @dev: pointer to netdev
5512 * @ep : pointer to the structure with pause parameters given by ethtool.
5514 * It can be used to set or reset Pause frame generation or reception
5515 * support of the NIC.
5517 * int, returns 0 on Success
5520 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5521 struct ethtool_pauseparam
*ep
)
5524 struct s2io_nic
*sp
= netdev_priv(dev
);
5525 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5527 val64
= readq(&bar0
->rmac_pause_cfg
);
5529 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5531 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5533 val64
|= RMAC_PAUSE_RX_ENABLE
;
5535 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5536 writeq(val64
, &bar0
->rmac_pause_cfg
);
5540 #define S2IO_DEV_ID 5
5542 * read_eeprom - reads 4 bytes of data from user given offset.
5543 * @sp : private member of the device structure, which is a pointer to the
5544 * s2io_nic structure.
5545 * @off : offset at which the data must be written
5546 * @data : Its an output parameter where the data read at the given
5549 * Will read 4 bytes of data from the user given offset and return the
5551 * NOTE: Will allow to read only part of the EEPROM visible through the
5554 * -1 on failure and 0 on success.
5556 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5561 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5563 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5564 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5565 I2C_CONTROL_ADDR(off
) |
5566 I2C_CONTROL_BYTE_CNT(0x3) |
5568 I2C_CONTROL_CNTL_START
;
5569 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5571 while (exit_cnt
< 5) {
5572 val64
= readq(&bar0
->i2c_control
);
5573 if (I2C_CONTROL_CNTL_END(val64
)) {
5574 *data
= I2C_CONTROL_GET_DATA(val64
);
5583 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5584 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5585 SPI_CONTROL_BYTECNT(0x3) |
5586 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5587 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5588 val64
|= SPI_CONTROL_REQ
;
5589 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5590 while (exit_cnt
< 5) {
5591 val64
= readq(&bar0
->spi_control
);
5592 if (val64
& SPI_CONTROL_NACK
) {
5595 } else if (val64
& SPI_CONTROL_DONE
) {
5596 *data
= readq(&bar0
->spi_data
);
5609 * write_eeprom - actually writes the relevant part of the data value.
5610 * @sp : private member of the device structure, which is a pointer to the
5611 * s2io_nic structure.
5612 * @off : offset at which the data must be written
5613 * @data : The data that is to be written
5614 * @cnt : Number of bytes of the data that are actually to be written into
5615 * the Eeprom. (max of 3)
5617 * Actually writes the relevant part of the data value into the Eeprom
5618 * through the I2C bus.
5620 * 0 on success, -1 on failure.
5623 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5625 int exit_cnt
= 0, ret
= -1;
5627 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5629 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5630 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5631 I2C_CONTROL_ADDR(off
) |
5632 I2C_CONTROL_BYTE_CNT(cnt
) |
5633 I2C_CONTROL_SET_DATA((u32
)data
) |
5634 I2C_CONTROL_CNTL_START
;
5635 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5637 while (exit_cnt
< 5) {
5638 val64
= readq(&bar0
->i2c_control
);
5639 if (I2C_CONTROL_CNTL_END(val64
)) {
5640 if (!(val64
& I2C_CONTROL_NACK
))
5649 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5650 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5651 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5653 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5654 SPI_CONTROL_BYTECNT(write_cnt
) |
5655 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5656 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5657 val64
|= SPI_CONTROL_REQ
;
5658 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5659 while (exit_cnt
< 5) {
5660 val64
= readq(&bar0
->spi_control
);
5661 if (val64
& SPI_CONTROL_NACK
) {
5664 } else if (val64
& SPI_CONTROL_DONE
) {
5674 static void s2io_vpd_read(struct s2io_nic
*nic
)
5678 int i
= 0, cnt
, len
, fail
= 0;
5679 int vpd_addr
= 0x80;
5680 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5682 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5683 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5686 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5689 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5691 vpd_data
= kmalloc(256, GFP_KERNEL
);
5693 swstats
->mem_alloc_fail_cnt
++;
5696 swstats
->mem_allocated
+= 256;
5698 for (i
= 0; i
< 256; i
+= 4) {
5699 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5700 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5701 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5702 for (cnt
= 0; cnt
< 5; cnt
++) {
5704 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5709 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5713 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5714 (u32
*)&vpd_data
[i
]);
5718 /* read serial number of adapter */
5719 for (cnt
= 0; cnt
< 252; cnt
++) {
5720 if ((vpd_data
[cnt
] == 'S') &&
5721 (vpd_data
[cnt
+1] == 'N')) {
5722 len
= vpd_data
[cnt
+2];
5723 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5724 memcpy(nic
->serial_num
,
5727 memset(nic
->serial_num
+len
,
5729 VPD_STRING_LEN
-len
);
5736 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5738 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5739 nic
->product_name
[len
] = 0;
5742 swstats
->mem_freed
+= 256;
5746 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5747 * @dev: pointer to netdev
5748 * @eeprom : pointer to the user level structure provided by ethtool,
5749 * containing all relevant information.
5750 * @data_buf : user defined value to be written into Eeprom.
5751 * Description: Reads the values stored in the Eeprom at given offset
5752 * for a given length. Stores these values int the input argument data
5753 * buffer 'data_buf' and returns these to the caller (ethtool.)
5758 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5759 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5763 struct s2io_nic
*sp
= netdev_priv(dev
);
5765 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5767 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5768 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5770 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5771 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5772 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5776 memcpy((data_buf
+ i
), &valid
, 4);
5782 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5783 * @dev: pointer to netdev
5784 * @eeprom : pointer to the user level structure provided by ethtool,
5785 * containing all relevant information.
5786 * @data_buf : user defined value to be written into Eeprom.
5788 * Tries to write the user provided value in the Eeprom, at the offset
5789 * given by the user.
5791 * 0 on success, -EFAULT on failure.
5794 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5795 struct ethtool_eeprom
*eeprom
,
5798 int len
= eeprom
->len
, cnt
= 0;
5799 u64 valid
= 0, data
;
5800 struct s2io_nic
*sp
= netdev_priv(dev
);
5802 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5804 "ETHTOOL_WRITE_EEPROM Err: "
5805 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5806 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5812 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5814 valid
= (u32
)(data
<< 24);
5818 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5820 "ETHTOOL_WRITE_EEPROM Err: "
5821 "Cannot write into the specified offset\n");
5832 * s2io_register_test - reads and writes into all clock domains.
5833 * @sp : private member of the device structure, which is a pointer to the
5834 * s2io_nic structure.
5835 * @data : variable that returns the result of each of the test conducted b
5838 * Read and write into all clock domains. The NIC has 3 clock domains,
5839 * see that registers in all the three regions are accessible.
5844 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5846 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5847 u64 val64
= 0, exp_val
;
5850 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5851 if (val64
!= 0x123456789abcdefULL
) {
5853 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5856 val64
= readq(&bar0
->rmac_pause_cfg
);
5857 if (val64
!= 0xc000ffff00000000ULL
) {
5859 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5862 val64
= readq(&bar0
->rx_queue_cfg
);
5863 if (sp
->device_type
== XFRAME_II_DEVICE
)
5864 exp_val
= 0x0404040404040404ULL
;
5866 exp_val
= 0x0808080808080808ULL
;
5867 if (val64
!= exp_val
) {
5869 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5872 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5873 if (val64
!= 0x000000001923141EULL
) {
5875 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5878 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5879 writeq(val64
, &bar0
->xmsi_data
);
5880 val64
= readq(&bar0
->xmsi_data
);
5881 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5883 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
5886 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5887 writeq(val64
, &bar0
->xmsi_data
);
5888 val64
= readq(&bar0
->xmsi_data
);
5889 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5891 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
5899 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5900 * @sp : private member of the device structure, which is a pointer to the
5901 * s2io_nic structure.
5902 * @data:variable that returns the result of each of the test conducted by
5905 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5911 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
5914 u64 ret_data
, org_4F0
, org_7F0
;
5915 u8 saved_4F0
= 0, saved_7F0
= 0;
5916 struct net_device
*dev
= sp
->dev
;
5918 /* Test Write Error at offset 0 */
5919 /* Note that SPI interface allows write access to all areas
5920 * of EEPROM. Hence doing all negative testing only for Xframe I.
5922 if (sp
->device_type
== XFRAME_I_DEVICE
)
5923 if (!write_eeprom(sp
, 0, 0, 3))
5926 /* Save current values at offsets 0x4F0 and 0x7F0 */
5927 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5929 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5932 /* Test Write at offset 4f0 */
5933 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5935 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5938 if (ret_data
!= 0x012345) {
5939 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5940 "Data written %llx Data read %llx\n",
5941 dev
->name
, (unsigned long long)0x12345,
5942 (unsigned long long)ret_data
);
5946 /* Reset the EEPROM data go FFFF */
5947 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5949 /* Test Write Request Error at offset 0x7c */
5950 if (sp
->device_type
== XFRAME_I_DEVICE
)
5951 if (!write_eeprom(sp
, 0x07C, 0, 3))
5954 /* Test Write Request at offset 0x7f0 */
5955 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5957 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5960 if (ret_data
!= 0x012345) {
5961 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5962 "Data written %llx Data read %llx\n",
5963 dev
->name
, (unsigned long long)0x12345,
5964 (unsigned long long)ret_data
);
5968 /* Reset the EEPROM data go FFFF */
5969 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5971 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5972 /* Test Write Error at offset 0x80 */
5973 if (!write_eeprom(sp
, 0x080, 0, 3))
5976 /* Test Write Error at offset 0xfc */
5977 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5980 /* Test Write Error at offset 0x100 */
5981 if (!write_eeprom(sp
, 0x100, 0, 3))
5984 /* Test Write Error at offset 4ec */
5985 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5989 /* Restore values at offsets 0x4F0 and 0x7F0 */
5991 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5993 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6000 * s2io_bist_test - invokes the MemBist test of the card .
6001 * @sp : private member of the device structure, which is a pointer to the
6002 * s2io_nic structure.
6003 * @data:variable that returns the result of each of the test conducted by
6006 * This invokes the MemBist test of the card. We give around
6007 * 2 secs time for the Test to complete. If it's still not complete
6008 * within this peiod, we consider that the test failed.
6010 * 0 on success and -1 on failure.
6013 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6016 int cnt
= 0, ret
= -1;
6018 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6019 bist
|= PCI_BIST_START
;
6020 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6023 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6024 if (!(bist
& PCI_BIST_START
)) {
6025 *data
= (bist
& PCI_BIST_CODE_MASK
);
6037 * s2io_link_test - verifies the link state of the nic
6038 * @sp: private member of the device structure, which is a pointer to the
6039 * s2io_nic structure.
6040 * @data: variable that returns the result of each of the test conducted by
6043 * The function verifies the link state of the NIC and updates the input
6044 * argument 'data' appropriately.
6049 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6051 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6054 val64
= readq(&bar0
->adapter_status
);
6055 if (!(LINK_IS_UP(val64
)))
6064 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6065 * @sp: private member of the device structure, which is a pointer to the
6066 * s2io_nic structure.
6067 * @data: variable that returns the result of each of the test
6068 * conducted by the driver.
6070 * This is one of the offline test that tests the read and write
6071 * access to the RldRam chip on the NIC.
6076 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6078 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6080 int cnt
, iteration
= 0, test_fail
= 0;
6082 val64
= readq(&bar0
->adapter_control
);
6083 val64
&= ~ADAPTER_ECC_EN
;
6084 writeq(val64
, &bar0
->adapter_control
);
6086 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6087 val64
|= MC_RLDRAM_TEST_MODE
;
6088 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6090 val64
= readq(&bar0
->mc_rldram_mrs
);
6091 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6092 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6094 val64
|= MC_RLDRAM_MRS_ENABLE
;
6095 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6097 while (iteration
< 2) {
6098 val64
= 0x55555555aaaa0000ULL
;
6100 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6101 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6103 val64
= 0xaaaa5a5555550000ULL
;
6105 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6106 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6108 val64
= 0x55aaaaaaaa5a0000ULL
;
6110 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6111 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6113 val64
= (u64
) (0x0000003ffffe0100ULL
);
6114 writeq(val64
, &bar0
->mc_rldram_test_add
);
6116 val64
= MC_RLDRAM_TEST_MODE
|
6117 MC_RLDRAM_TEST_WRITE
|
6119 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6121 for (cnt
= 0; cnt
< 5; cnt
++) {
6122 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6123 if (val64
& MC_RLDRAM_TEST_DONE
)
6131 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6132 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6134 for (cnt
= 0; cnt
< 5; cnt
++) {
6135 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6136 if (val64
& MC_RLDRAM_TEST_DONE
)
6144 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6145 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6153 /* Bring the adapter out of test mode */
6154 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6160 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6161 * @dev: pointer to netdev
6162 * @ethtest : pointer to a ethtool command specific structure that will be
6163 * returned to the user.
6164 * @data : variable that returns the result of each of the test
6165 * conducted by the driver.
6167 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6168 * the health of the card.
6173 static void s2io_ethtool_test(struct net_device
*dev
,
6174 struct ethtool_test
*ethtest
,
6177 struct s2io_nic
*sp
= netdev_priv(dev
);
6178 int orig_state
= netif_running(sp
->dev
);
6180 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6181 /* Offline Tests. */
6183 s2io_close(sp
->dev
);
6185 if (s2io_register_test(sp
, &data
[0]))
6186 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6190 if (s2io_rldram_test(sp
, &data
[3]))
6191 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6195 if (s2io_eeprom_test(sp
, &data
[1]))
6196 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6198 if (s2io_bist_test(sp
, &data
[4]))
6199 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6208 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6217 if (s2io_link_test(sp
, &data
[2]))
6218 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6227 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6228 struct ethtool_stats
*estats
,
6232 struct s2io_nic
*sp
= netdev_priv(dev
);
6233 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6234 struct swStat
*swstats
= &stats
->sw_stat
;
6235 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6237 s2io_updt_stats(sp
);
6239 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6240 le32_to_cpu(stats
->tmac_frms
);
6242 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6243 le32_to_cpu(stats
->tmac_data_octets
);
6244 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6246 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6247 le32_to_cpu(stats
->tmac_mcst_frms
);
6249 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6250 le32_to_cpu(stats
->tmac_bcst_frms
);
6251 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6253 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6254 le32_to_cpu(stats
->tmac_ttl_octets
);
6256 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6257 le32_to_cpu(stats
->tmac_ucst_frms
);
6259 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6260 le32_to_cpu(stats
->tmac_nucst_frms
);
6262 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6263 le32_to_cpu(stats
->tmac_any_err_frms
);
6264 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6265 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6267 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6268 le32_to_cpu(stats
->tmac_vld_ip
);
6270 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6271 le32_to_cpu(stats
->tmac_drop_ip
);
6273 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6274 le32_to_cpu(stats
->tmac_icmp
);
6276 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6277 le32_to_cpu(stats
->tmac_rst_tcp
);
6278 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6279 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6280 le32_to_cpu(stats
->tmac_udp
);
6282 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6283 le32_to_cpu(stats
->rmac_vld_frms
);
6285 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6286 le32_to_cpu(stats
->rmac_data_octets
);
6287 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6288 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6290 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6291 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6293 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6294 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6295 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6296 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6297 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6298 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6299 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6301 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6302 le32_to_cpu(stats
->rmac_ttl_octets
);
6304 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6305 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6307 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6308 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6310 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6311 le32_to_cpu(stats
->rmac_discarded_frms
);
6313 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6314 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6315 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6316 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6318 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6319 le32_to_cpu(stats
->rmac_usized_frms
);
6321 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6322 le32_to_cpu(stats
->rmac_osized_frms
);
6324 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6325 le32_to_cpu(stats
->rmac_frag_frms
);
6327 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6328 le32_to_cpu(stats
->rmac_jabber_frms
);
6329 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6330 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6331 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6332 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6333 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6334 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6336 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6337 le32_to_cpu(stats
->rmac_ip
);
6338 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6339 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6341 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6342 le32_to_cpu(stats
->rmac_drop_ip
);
6344 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6345 le32_to_cpu(stats
->rmac_icmp
);
6346 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6348 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6349 le32_to_cpu(stats
->rmac_udp
);
6351 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6352 le32_to_cpu(stats
->rmac_err_drp_udp
);
6353 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6354 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6355 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6356 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6357 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6358 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6359 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6360 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6361 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6362 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6363 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6364 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6365 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6366 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6367 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6368 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6369 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6371 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6372 le32_to_cpu(stats
->rmac_pause_cnt
);
6373 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6374 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6376 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6377 le32_to_cpu(stats
->rmac_accepted_ip
);
6378 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6379 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6380 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6381 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6382 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6383 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6384 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6385 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6386 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6387 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6388 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6389 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6390 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6391 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6392 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6393 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6394 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6395 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6396 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6398 /* Enhanced statistics exist only for Hercules */
6399 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6401 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6403 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6405 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6406 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6407 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6408 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6409 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6410 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6411 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6412 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6413 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6414 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6415 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6416 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6417 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6418 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6422 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6423 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6424 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6425 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6426 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6427 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6428 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6429 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6430 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6431 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6432 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6433 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6434 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6435 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6436 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6437 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6438 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6439 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6440 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6441 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6442 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6443 tmp_stats
[i
++] = swstats
->sending_both
;
6444 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6445 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6446 if (swstats
->num_aggregations
) {
6447 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6450 * Since 64-bit divide does not work on all platforms,
6451 * do repeated subtraction.
6453 while (tmp
>= swstats
->num_aggregations
) {
6454 tmp
-= swstats
->num_aggregations
;
6457 tmp_stats
[i
++] = count
;
6460 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6461 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6462 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6463 tmp_stats
[i
++] = swstats
->mem_allocated
;
6464 tmp_stats
[i
++] = swstats
->mem_freed
;
6465 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6466 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6467 tmp_stats
[i
++] = swstats
->link_up_time
;
6468 tmp_stats
[i
++] = swstats
->link_down_time
;
6470 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6471 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6472 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6473 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6474 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6476 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6477 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6478 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6479 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6480 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6481 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6482 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6483 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6484 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6485 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6486 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6487 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6488 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6489 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6490 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6491 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6492 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6493 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6494 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6495 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6496 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6497 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6498 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6499 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6500 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6501 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6504 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6506 return XENA_REG_SPACE
;
6510 static int s2io_get_eeprom_len(struct net_device
*dev
)
6512 return XENA_EEPROM_SPACE
;
6515 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6517 struct s2io_nic
*sp
= netdev_priv(dev
);
6521 return S2IO_TEST_LEN
;
6523 switch (sp
->device_type
) {
6524 case XFRAME_I_DEVICE
:
6525 return XFRAME_I_STAT_LEN
;
6526 case XFRAME_II_DEVICE
:
6527 return XFRAME_II_STAT_LEN
;
6536 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6537 u32 stringset
, u8
*data
)
6540 struct s2io_nic
*sp
= netdev_priv(dev
);
6542 switch (stringset
) {
6544 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6547 stat_size
= sizeof(ethtool_xena_stats_keys
);
6548 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6549 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6550 memcpy(data
+ stat_size
,
6551 ðtool_enhanced_stats_keys
,
6552 sizeof(ethtool_enhanced_stats_keys
));
6553 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6556 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6557 sizeof(ethtool_driver_stats_keys
));
6561 static int s2io_set_features(struct net_device
*dev
, netdev_features_t features
)
6563 struct s2io_nic
*sp
= netdev_priv(dev
);
6564 netdev_features_t changed
= (features
^ dev
->features
) & NETIF_F_LRO
;
6566 if (changed
&& netif_running(dev
)) {
6569 s2io_stop_all_tx_queue(sp
);
6571 dev
->features
= features
;
6572 rc
= s2io_card_up(sp
);
6576 s2io_start_all_tx_queue(sp
);
6584 static const struct ethtool_ops netdev_ethtool_ops
= {
6585 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6586 .get_regs_len
= s2io_ethtool_get_regs_len
,
6587 .get_regs
= s2io_ethtool_gregs
,
6588 .get_link
= ethtool_op_get_link
,
6589 .get_eeprom_len
= s2io_get_eeprom_len
,
6590 .get_eeprom
= s2io_ethtool_geeprom
,
6591 .set_eeprom
= s2io_ethtool_seeprom
,
6592 .get_ringparam
= s2io_ethtool_gringparam
,
6593 .get_pauseparam
= s2io_ethtool_getpause_data
,
6594 .set_pauseparam
= s2io_ethtool_setpause_data
,
6595 .self_test
= s2io_ethtool_test
,
6596 .get_strings
= s2io_ethtool_get_strings
,
6597 .set_phys_id
= s2io_ethtool_set_led
,
6598 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6599 .get_sset_count
= s2io_get_sset_count
,
6600 .get_link_ksettings
= s2io_ethtool_get_link_ksettings
,
6601 .set_link_ksettings
= s2io_ethtool_set_link_ksettings
,
6605 * s2io_ioctl - Entry point for the Ioctl
6606 * @dev : Device pointer.
6607 * @rq : An IOCTL specefic structure, that can contain a pointer to
6608 * a proprietary structure used to pass information to the driver.
6609 * @cmd : This is used to distinguish between the different commands that
6610 * can be passed to the IOCTL functions.
6612 * Currently there are no special functionality supported in IOCTL, hence
6613 * function always return EOPNOTSUPPORTED
6616 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6622 * s2io_change_mtu - entry point to change MTU size for the device.
6623 * @dev : device pointer.
6624 * @new_mtu : the new MTU size for the device.
6625 * Description: A driver entry point to change MTU size for the device.
6626 * Before changing the MTU the device must be stopped.
6628 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6632 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6634 struct s2io_nic
*sp
= netdev_priv(dev
);
6638 if (netif_running(dev
)) {
6639 s2io_stop_all_tx_queue(sp
);
6641 ret
= s2io_card_up(sp
);
6643 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6647 s2io_wake_all_tx_queue(sp
);
6648 } else { /* Device is down */
6649 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6650 u64 val64
= new_mtu
;
6652 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6659 * s2io_set_link - Set the LInk status
6660 * @work: work struct containing a pointer to device private structue
6661 * Description: Sets the link status for the adapter
6664 static void s2io_set_link(struct work_struct
*work
)
6666 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6668 struct net_device
*dev
= nic
->dev
;
6669 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6675 if (!netif_running(dev
))
6678 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6679 /* The card is being reset, no point doing anything */
6683 subid
= nic
->pdev
->subsystem_device
;
6684 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6686 * Allow a small delay for the NICs self initiated
6687 * cleanup to complete.
6692 val64
= readq(&bar0
->adapter_status
);
6693 if (LINK_IS_UP(val64
)) {
6694 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6695 if (verify_xena_quiescence(nic
)) {
6696 val64
= readq(&bar0
->adapter_control
);
6697 val64
|= ADAPTER_CNTL_EN
;
6698 writeq(val64
, &bar0
->adapter_control
);
6699 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6700 nic
->device_type
, subid
)) {
6701 val64
= readq(&bar0
->gpio_control
);
6702 val64
|= GPIO_CTRL_GPIO_0
;
6703 writeq(val64
, &bar0
->gpio_control
);
6704 val64
= readq(&bar0
->gpio_control
);
6706 val64
|= ADAPTER_LED_ON
;
6707 writeq(val64
, &bar0
->adapter_control
);
6709 nic
->device_enabled_once
= true;
6712 "%s: Error: device is not Quiescent\n",
6714 s2io_stop_all_tx_queue(nic
);
6717 val64
= readq(&bar0
->adapter_control
);
6718 val64
|= ADAPTER_LED_ON
;
6719 writeq(val64
, &bar0
->adapter_control
);
6720 s2io_link(nic
, LINK_UP
);
6722 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6724 val64
= readq(&bar0
->gpio_control
);
6725 val64
&= ~GPIO_CTRL_GPIO_0
;
6726 writeq(val64
, &bar0
->gpio_control
);
6727 val64
= readq(&bar0
->gpio_control
);
6730 val64
= readq(&bar0
->adapter_control
);
6731 val64
= val64
& (~ADAPTER_LED_ON
);
6732 writeq(val64
, &bar0
->adapter_control
);
6733 s2io_link(nic
, LINK_DOWN
);
6735 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6741 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6743 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6744 u64
*temp2
, int size
)
6746 struct net_device
*dev
= sp
->dev
;
6747 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6749 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6750 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6753 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6755 * As Rx frame are not going to be processed,
6756 * using same mapped address for the Rxd
6759 rxdp1
->Buffer0_ptr
= *temp0
;
6761 *skb
= netdev_alloc_skb(dev
, size
);
6764 "%s: Out of memory to allocate %s\n",
6765 dev
->name
, "1 buf mode SKBs");
6766 stats
->mem_alloc_fail_cnt
++;
6769 stats
->mem_allocated
+= (*skb
)->truesize
;
6770 /* storing the mapped addr in a temp variable
6771 * such it will be used for next rxd whose
6772 * Host Control is NULL
6774 rxdp1
->Buffer0_ptr
= *temp0
=
6775 dma_map_single(&sp
->pdev
->dev
, (*skb
)->data
,
6776 size
- NET_IP_ALIGN
,
6778 if (dma_mapping_error(&sp
->pdev
->dev
, rxdp1
->Buffer0_ptr
))
6779 goto memalloc_failed
;
6780 rxdp
->Host_Control
= (unsigned long) (*skb
);
6782 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6783 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6784 /* Two buffer Mode */
6786 rxdp3
->Buffer2_ptr
= *temp2
;
6787 rxdp3
->Buffer0_ptr
= *temp0
;
6788 rxdp3
->Buffer1_ptr
= *temp1
;
6790 *skb
= netdev_alloc_skb(dev
, size
);
6793 "%s: Out of memory to allocate %s\n",
6796 stats
->mem_alloc_fail_cnt
++;
6799 stats
->mem_allocated
+= (*skb
)->truesize
;
6800 rxdp3
->Buffer2_ptr
= *temp2
=
6801 dma_map_single(&sp
->pdev
->dev
, (*skb
)->data
,
6802 dev
->mtu
+ 4, DMA_FROM_DEVICE
);
6803 if (dma_mapping_error(&sp
->pdev
->dev
, rxdp3
->Buffer2_ptr
))
6804 goto memalloc_failed
;
6805 rxdp3
->Buffer0_ptr
= *temp0
=
6806 dma_map_single(&sp
->pdev
->dev
, ba
->ba_0
,
6807 BUF0_LEN
, DMA_FROM_DEVICE
);
6808 if (dma_mapping_error(&sp
->pdev
->dev
, rxdp3
->Buffer0_ptr
)) {
6809 dma_unmap_single(&sp
->pdev
->dev
,
6810 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6813 goto memalloc_failed
;
6815 rxdp
->Host_Control
= (unsigned long) (*skb
);
6817 /* Buffer-1 will be dummy buffer not used */
6818 rxdp3
->Buffer1_ptr
= *temp1
=
6819 dma_map_single(&sp
->pdev
->dev
, ba
->ba_1
,
6820 BUF1_LEN
, DMA_FROM_DEVICE
);
6821 if (dma_mapping_error(&sp
->pdev
->dev
, rxdp3
->Buffer1_ptr
)) {
6822 dma_unmap_single(&sp
->pdev
->dev
,
6823 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
6824 BUF0_LEN
, DMA_FROM_DEVICE
);
6825 dma_unmap_single(&sp
->pdev
->dev
,
6826 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6829 goto memalloc_failed
;
6836 stats
->pci_map_fail_cnt
++;
6837 stats
->mem_freed
+= (*skb
)->truesize
;
6838 dev_kfree_skb(*skb
);
6842 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6845 struct net_device
*dev
= sp
->dev
;
6846 if (sp
->rxd_mode
== RXD_MODE_1
) {
6847 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
6848 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6849 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6850 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6851 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
6855 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6857 int i
, j
, k
, blk_cnt
= 0, size
;
6858 struct config_param
*config
= &sp
->config
;
6859 struct mac_info
*mac_control
= &sp
->mac_control
;
6860 struct net_device
*dev
= sp
->dev
;
6861 struct RxD_t
*rxdp
= NULL
;
6862 struct sk_buff
*skb
= NULL
;
6863 struct buffAdd
*ba
= NULL
;
6864 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6866 /* Calculate the size based on ring mode */
6867 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6868 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6869 if (sp
->rxd_mode
== RXD_MODE_1
)
6870 size
+= NET_IP_ALIGN
;
6871 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6872 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6874 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6875 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
6876 struct ring_info
*ring
= &mac_control
->rings
[i
];
6878 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
6880 for (j
= 0; j
< blk_cnt
; j
++) {
6881 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6882 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
6883 if (sp
->rxd_mode
== RXD_MODE_3B
)
6884 ba
= &ring
->ba
[j
][k
];
6885 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
6893 set_rxd_buffer_size(sp
, rxdp
, size
);
6895 /* flip the Ownership bit to Hardware */
6896 rxdp
->Control_1
|= RXD_OWN_XENA
;
6904 static int s2io_add_isr(struct s2io_nic
*sp
)
6907 struct net_device
*dev
= sp
->dev
;
6910 if (sp
->config
.intr_type
== MSI_X
)
6911 ret
= s2io_enable_msi_x(sp
);
6913 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6914 sp
->config
.intr_type
= INTA
;
6918 * Store the values of the MSIX table in
6919 * the struct s2io_nic structure
6921 store_xmsi_data(sp
);
6923 /* After proper initialization of H/W, register ISR */
6924 if (sp
->config
.intr_type
== MSI_X
) {
6925 int i
, msix_rx_cnt
= 0;
6927 for (i
= 0; i
< sp
->num_entries
; i
++) {
6928 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
6929 if (sp
->s2io_entries
[i
].type
==
6931 snprintf(sp
->desc
[i
],
6932 sizeof(sp
->desc
[i
]),
6935 err
= request_irq(sp
->entries
[i
].vector
,
6936 s2io_msix_ring_handle
,
6939 sp
->s2io_entries
[i
].arg
);
6940 } else if (sp
->s2io_entries
[i
].type
==
6942 snprintf(sp
->desc
[i
],
6943 sizeof(sp
->desc
[i
]),
6946 err
= request_irq(sp
->entries
[i
].vector
,
6947 s2io_msix_fifo_handle
,
6950 sp
->s2io_entries
[i
].arg
);
6953 /* if either data or addr is zero print it. */
6954 if (!(sp
->msix_info
[i
].addr
&&
6955 sp
->msix_info
[i
].data
)) {
6957 "%s @Addr:0x%llx Data:0x%llx\n",
6959 (unsigned long long)
6960 sp
->msix_info
[i
].addr
,
6961 (unsigned long long)
6962 ntohl(sp
->msix_info
[i
].data
));
6966 remove_msix_isr(sp
);
6969 "%s:MSI-X-%d registration "
6970 "failed\n", dev
->name
, i
);
6973 "%s: Defaulting to INTA\n",
6975 sp
->config
.intr_type
= INTA
;
6978 sp
->s2io_entries
[i
].in_use
=
6979 MSIX_REGISTERED_SUCCESS
;
6983 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
6985 "MSI-X-TX entries enabled through alarm vector\n");
6988 if (sp
->config
.intr_type
== INTA
) {
6989 err
= request_irq(sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6992 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7000 static void s2io_rem_isr(struct s2io_nic
*sp
)
7002 if (sp
->config
.intr_type
== MSI_X
)
7003 remove_msix_isr(sp
);
7005 remove_inta_isr(sp
);
7008 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7011 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7012 register u64 val64
= 0;
7013 struct config_param
*config
;
7014 config
= &sp
->config
;
7016 if (!is_s2io_card_up(sp
))
7019 del_timer_sync(&sp
->alarm_timer
);
7020 /* If s2io_set_link task is executing, wait till it completes. */
7021 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7023 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7026 if (sp
->config
.napi
) {
7028 if (config
->intr_type
== MSI_X
) {
7029 for (; off
< sp
->config
.rx_ring_num
; off
++)
7030 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7033 napi_disable(&sp
->napi
);
7036 /* disable Tx and Rx traffic on the NIC */
7042 /* stop the tx queue, indicate link down */
7043 s2io_link(sp
, LINK_DOWN
);
7045 /* Check if the device is Quiescent and then Reset the NIC */
7047 /* As per the HW requirement we need to replenish the
7048 * receive buffer to avoid the ring bump. Since there is
7049 * no intention of processing the Rx frame at this pointwe are
7050 * just setting the ownership bit of rxd in Each Rx
7051 * ring to HW and set the appropriate buffer size
7052 * based on the ring mode
7054 rxd_owner_bit_reset(sp
);
7056 val64
= readq(&bar0
->adapter_status
);
7057 if (verify_xena_quiescence(sp
)) {
7058 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7065 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7066 "adapter status reads 0x%llx\n",
7067 (unsigned long long)val64
);
7074 /* Free all Tx buffers */
7075 free_tx_buffers(sp
);
7077 /* Free all Rx buffers */
7078 free_rx_buffers(sp
);
7080 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7083 static void s2io_card_down(struct s2io_nic
*sp
)
7085 do_s2io_card_down(sp
, 1);
7088 static int s2io_card_up(struct s2io_nic
*sp
)
7091 struct config_param
*config
;
7092 struct mac_info
*mac_control
;
7093 struct net_device
*dev
= sp
->dev
;
7096 /* Initialize the H/W I/O registers */
7099 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7107 * Initializing the Rx buffers. For now we are considering only 1
7108 * Rx ring and initializing buffers into 30 Rx blocks
7110 config
= &sp
->config
;
7111 mac_control
= &sp
->mac_control
;
7113 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7114 struct ring_info
*ring
= &mac_control
->rings
[i
];
7116 ring
->mtu
= dev
->mtu
;
7117 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7118 ret
= fill_rx_buffers(sp
, ring
, 1);
7120 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7123 free_rx_buffers(sp
);
7126 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7127 ring
->rx_bufs_left
);
7130 /* Initialise napi */
7132 if (config
->intr_type
== MSI_X
) {
7133 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7134 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7136 napi_enable(&sp
->napi
);
7140 /* Maintain the state prior to the open */
7141 if (sp
->promisc_flg
)
7142 sp
->promisc_flg
= 0;
7143 if (sp
->m_cast_flg
) {
7145 sp
->all_multi_pos
= 0;
7148 /* Setting its receive mode */
7149 s2io_set_multicast(dev
, true);
7151 if (dev
->features
& NETIF_F_LRO
) {
7152 /* Initialize max aggregatable pkts per session based on MTU */
7153 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7154 /* Check if we can use (if specified) user provided value */
7155 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7156 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7159 /* Enable Rx Traffic and interrupts on the NIC */
7160 if (start_nic(sp
)) {
7161 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7163 free_rx_buffers(sp
);
7167 /* Add interrupt service routine */
7168 if (s2io_add_isr(sp
) != 0) {
7169 if (sp
->config
.intr_type
== MSI_X
)
7172 free_rx_buffers(sp
);
7176 timer_setup(&sp
->alarm_timer
, s2io_alarm_handle
, 0);
7177 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
7179 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7181 /* Enable select interrupts */
7182 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7183 if (sp
->config
.intr_type
!= INTA
) {
7184 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7185 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7187 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7188 interruptible
|= TX_PIC_INTR
;
7189 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7196 * s2io_restart_nic - Resets the NIC.
7197 * @work : work struct containing a pointer to the device private structure
7199 * This function is scheduled to be run by the s2io_tx_watchdog
7200 * function after 0.5 secs to reset the NIC. The idea is to reduce
7201 * the run time of the watch dog routine which is run holding a
7205 static void s2io_restart_nic(struct work_struct
*work
)
7207 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7208 struct net_device
*dev
= sp
->dev
;
7212 if (!netif_running(dev
))
7216 if (s2io_card_up(sp
)) {
7217 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7219 s2io_wake_all_tx_queue(sp
);
7220 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7226 * s2io_tx_watchdog - Watchdog for transmit side.
7227 * @dev : Pointer to net device structure
7228 * @txqueue: index of the hanging queue
7230 * This function is triggered if the Tx Queue is stopped
7231 * for a pre-defined amount of time when the Interface is still up.
7232 * If the Interface is jammed in such a situation, the hardware is
7233 * reset (by s2io_close) and restarted again (by s2io_open) to
7234 * overcome any problem that might have been caused in the hardware.
7239 static void s2io_tx_watchdog(struct net_device
*dev
, unsigned int txqueue
)
7241 struct s2io_nic
*sp
= netdev_priv(dev
);
7242 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7244 if (netif_carrier_ok(dev
)) {
7245 swstats
->watchdog_timer_cnt
++;
7246 schedule_work(&sp
->rst_timer_task
);
7247 swstats
->soft_reset_cnt
++;
7252 * rx_osm_handler - To perform some OS related operations on SKB.
7253 * @ring_data : the ring from which this RxD was extracted.
7256 * This function is called by the Rx interrupt serivce routine to perform
7257 * some OS related operations on the SKB before passing it to the upper
7258 * layers. It mainly checks if the checksum is OK, if so adds it to the
7259 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7260 * to the upper layer. If the checksum is wrong, it increments the Rx
7261 * packet error count, frees the SKB and returns error.
7263 * SUCCESS on success and -1 on failure.
7265 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7267 struct s2io_nic
*sp
= ring_data
->nic
;
7268 struct net_device
*dev
= ring_data
->dev
;
7269 struct sk_buff
*skb
= (struct sk_buff
*)
7270 ((unsigned long)rxdp
->Host_Control
);
7271 int ring_no
= ring_data
->ring_no
;
7272 u16 l3_csum
, l4_csum
;
7273 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7276 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7281 /* Check for parity error */
7283 swstats
->parity_err_cnt
++;
7285 err_mask
= err
>> 48;
7288 swstats
->rx_parity_err_cnt
++;
7292 swstats
->rx_abort_cnt
++;
7296 swstats
->rx_parity_abort_cnt
++;
7300 swstats
->rx_rda_fail_cnt
++;
7304 swstats
->rx_unkn_prot_cnt
++;
7308 swstats
->rx_fcs_err_cnt
++;
7312 swstats
->rx_buf_size_err_cnt
++;
7316 swstats
->rx_rxd_corrupt_cnt
++;
7320 swstats
->rx_unkn_err_cnt
++;
7324 * Drop the packet if bad transfer code. Exception being
7325 * 0x5, which could be due to unsupported IPv6 extension header.
7326 * In this case, we let stack handle the packet.
7327 * Note that in this case, since checksum will be incorrect,
7328 * stack will validate the same.
7330 if (err_mask
!= 0x5) {
7331 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7332 dev
->name
, err_mask
);
7333 dev
->stats
.rx_crc_errors
++;
7337 ring_data
->rx_bufs_left
-= 1;
7338 rxdp
->Host_Control
= 0;
7343 rxdp
->Host_Control
= 0;
7344 if (sp
->rxd_mode
== RXD_MODE_1
) {
7345 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7348 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7349 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7350 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7351 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7352 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7353 unsigned char *buff
= skb_push(skb
, buf0_len
);
7355 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7356 memcpy(buff
, ba
->ba_0
, buf0_len
);
7357 skb_put(skb
, buf2_len
);
7360 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7361 ((!ring_data
->lro
) ||
7362 (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
))) &&
7363 (dev
->features
& NETIF_F_RXCSUM
)) {
7364 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7365 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7366 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7368 * NIC verifies if the Checksum of the received
7369 * frame is Ok or not and accordingly returns
7370 * a flag in the RxD.
7372 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7373 if (ring_data
->lro
) {
7378 ret
= s2io_club_tcp_session(ring_data
,
7383 case 3: /* Begin anew */
7386 case 1: /* Aggregate */
7387 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7389 case 4: /* Flush session */
7390 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7391 queue_rx_frame(lro
->parent
,
7393 clear_lro_session(lro
);
7394 swstats
->flush_max_pkts
++;
7396 case 2: /* Flush both */
7397 lro
->parent
->data_len
= lro
->frags_len
;
7398 swstats
->sending_both
++;
7399 queue_rx_frame(lro
->parent
,
7401 clear_lro_session(lro
);
7403 case 0: /* sessions exceeded */
7404 case -1: /* non-TCP or not L2 aggregatable */
7406 * First pkt in session not
7407 * L3/L4 aggregatable
7412 "%s: Samadhana!!\n",
7419 * Packet with erroneous checksum, let the
7420 * upper layers deal with it.
7422 skb_checksum_none_assert(skb
);
7425 skb_checksum_none_assert(skb
);
7427 swstats
->mem_freed
+= skb
->truesize
;
7429 skb_record_rx_queue(skb
, ring_no
);
7430 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7432 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7437 * s2io_link - stops/starts the Tx queue.
7438 * @sp : private member of the device structure, which is a pointer to the
7439 * s2io_nic structure.
7440 * @link : inidicates whether link is UP/DOWN.
7442 * This function stops/starts the Tx queue depending on whether the link
7443 * status of the NIC is is down or up. This is called by the Alarm
7444 * interrupt handler whenever a link change interrupt comes up.
7449 static void s2io_link(struct s2io_nic
*sp
, int link
)
7451 struct net_device
*dev
= sp
->dev
;
7452 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7454 if (link
!= sp
->last_link_state
) {
7455 init_tti(sp
, link
, false);
7456 if (link
== LINK_DOWN
) {
7457 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7458 s2io_stop_all_tx_queue(sp
);
7459 netif_carrier_off(dev
);
7460 if (swstats
->link_up_cnt
)
7461 swstats
->link_up_time
=
7462 jiffies
- sp
->start_time
;
7463 swstats
->link_down_cnt
++;
7465 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7466 if (swstats
->link_down_cnt
)
7467 swstats
->link_down_time
=
7468 jiffies
- sp
->start_time
;
7469 swstats
->link_up_cnt
++;
7470 netif_carrier_on(dev
);
7471 s2io_wake_all_tx_queue(sp
);
7474 sp
->last_link_state
= link
;
7475 sp
->start_time
= jiffies
;
7479 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7480 * @sp : private member of the device structure, which is a pointer to the
7481 * s2io_nic structure.
7483 * This function initializes a few of the PCI and PCI-X configuration registers
7484 * with recommended values.
7489 static void s2io_init_pci(struct s2io_nic
*sp
)
7491 u16 pci_cmd
= 0, pcix_cmd
= 0;
7493 /* Enable Data Parity Error Recovery in PCI-X command register. */
7494 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7496 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7498 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7501 /* Set the PErr Response bit in PCI command register. */
7502 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7503 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7504 (pci_cmd
| PCI_COMMAND_PARITY
));
7505 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7508 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7513 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7514 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7515 "(%d) not supported\n", tx_fifo_num
);
7517 if (tx_fifo_num
< 1)
7520 tx_fifo_num
= MAX_TX_FIFOS
;
7522 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7526 *dev_multiq
= multiq
;
7528 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7529 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7531 "Tx steering is not supported with "
7532 "one fifo. Disabling Tx steering.\n");
7533 tx_steering_type
= NO_STEERING
;
7536 if ((tx_steering_type
< NO_STEERING
) ||
7537 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7539 "Requested transmit steering not supported\n");
7540 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7541 tx_steering_type
= NO_STEERING
;
7544 if (rx_ring_num
> MAX_RX_RINGS
) {
7546 "Requested number of rx rings not supported\n");
7547 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7549 rx_ring_num
= MAX_RX_RINGS
;
7552 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7553 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7554 "Defaulting to INTA\n");
7555 *dev_intr_type
= INTA
;
7558 if ((*dev_intr_type
== MSI_X
) &&
7559 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7560 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7561 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7562 "Defaulting to INTA\n");
7563 *dev_intr_type
= INTA
;
7566 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7567 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7568 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7572 for (i
= 0; i
< MAX_RX_RINGS
; i
++)
7573 if (rx_ring_sz
[i
] > MAX_RX_BLOCKS_PER_RING
) {
7574 DBG_PRINT(ERR_DBG
, "Requested rx ring size not "
7575 "supported\nDefaulting to %d\n",
7576 MAX_RX_BLOCKS_PER_RING
);
7577 rx_ring_sz
[i
] = MAX_RX_BLOCKS_PER_RING
;
7584 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS or Traffic class respectively.
7585 * @nic: device private variable
7586 * @ds_codepoint: data
7588 * Description: The function configures the receive steering to
7589 * desired receive ring.
7590 * Return Value: SUCCESS on success and
7591 * '-1' on failure (endian settings incorrect).
7593 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7595 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7596 register u64 val64
= 0;
7598 if (ds_codepoint
> 63)
7601 val64
= RTS_DS_MEM_DATA(ring
);
7602 writeq(val64
, &bar0
->rts_ds_mem_data
);
7604 val64
= RTS_DS_MEM_CTRL_WE
|
7605 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7606 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7608 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7610 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7611 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7612 S2IO_BIT_RESET
, true);
7615 static const struct net_device_ops s2io_netdev_ops
= {
7616 .ndo_open
= s2io_open
,
7617 .ndo_stop
= s2io_close
,
7618 .ndo_get_stats
= s2io_get_stats
,
7619 .ndo_start_xmit
= s2io_xmit
,
7620 .ndo_validate_addr
= eth_validate_addr
,
7621 .ndo_set_rx_mode
= s2io_ndo_set_multicast
,
7622 .ndo_do_ioctl
= s2io_ioctl
,
7623 .ndo_set_mac_address
= s2io_set_mac_addr
,
7624 .ndo_change_mtu
= s2io_change_mtu
,
7625 .ndo_set_features
= s2io_set_features
,
7626 .ndo_tx_timeout
= s2io_tx_watchdog
,
7627 #ifdef CONFIG_NET_POLL_CONTROLLER
7628 .ndo_poll_controller
= s2io_netpoll
,
7633 * s2io_init_nic - Initialization of the adapter .
7634 * @pdev : structure containing the PCI related information of the device.
7635 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7637 * The function initializes an adapter identified by the pci_dec structure.
7638 * All OS related initialization including memory and device structure and
7639 * initlaization of the device private variable is done. Also the swapper
7640 * control register is initialized to enable read and write into the I/O
7641 * registers of the device.
7643 * returns 0 on success and negative on failure.
7647 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7649 struct s2io_nic
*sp
;
7650 struct net_device
*dev
;
7652 int dma_flag
= false;
7653 u32 mac_up
, mac_down
;
7654 u64 val64
= 0, tmp64
= 0;
7655 struct XENA_dev_config __iomem
*bar0
= NULL
;
7657 struct config_param
*config
;
7658 struct mac_info
*mac_control
;
7660 u8 dev_intr_type
= intr_type
;
7663 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7667 ret
= pci_enable_device(pdev
);
7670 "%s: pci_enable_device failed\n", __func__
);
7674 if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
7675 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7677 if (dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
7679 "Unable to obtain 64bit DMA for coherent allocations\n");
7680 pci_disable_device(pdev
);
7683 } else if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32))) {
7684 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7686 pci_disable_device(pdev
);
7689 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7691 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7693 pci_disable_device(pdev
);
7697 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7699 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7701 pci_disable_device(pdev
);
7702 pci_release_regions(pdev
);
7706 pci_set_master(pdev
);
7707 pci_set_drvdata(pdev
, dev
);
7708 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7710 /* Private member variable initialized to s2io NIC structure */
7711 sp
= netdev_priv(dev
);
7714 sp
->high_dma_flag
= dma_flag
;
7715 sp
->device_enabled_once
= false;
7716 if (rx_ring_mode
== 1)
7717 sp
->rxd_mode
= RXD_MODE_1
;
7718 if (rx_ring_mode
== 2)
7719 sp
->rxd_mode
= RXD_MODE_3B
;
7721 sp
->config
.intr_type
= dev_intr_type
;
7723 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7724 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7725 sp
->device_type
= XFRAME_II_DEVICE
;
7727 sp
->device_type
= XFRAME_I_DEVICE
;
7730 /* Initialize some PCI/PCI-X fields of the NIC. */
7734 * Setting the device configuration parameters.
7735 * Most of these parameters can be specified by the user during
7736 * module insertion as they are module loadable parameters. If
7737 * these parameters are not not specified during load time, they
7738 * are initialized with default values.
7740 config
= &sp
->config
;
7741 mac_control
= &sp
->mac_control
;
7743 config
->napi
= napi
;
7744 config
->tx_steering_type
= tx_steering_type
;
7746 /* Tx side parameters. */
7747 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7748 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7750 config
->tx_fifo_num
= tx_fifo_num
;
7752 /* Initialize the fifos used for tx steering */
7753 if (config
->tx_fifo_num
< 5) {
7754 if (config
->tx_fifo_num
== 1)
7755 sp
->total_tcp_fifos
= 1;
7757 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7758 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7759 sp
->total_udp_fifos
= 1;
7760 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7762 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7763 FIFO_OTHER_MAX_NUM
);
7764 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7765 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7766 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7769 config
->multiq
= dev_multiq
;
7770 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7771 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7773 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7774 tx_cfg
->fifo_priority
= i
;
7777 /* mapping the QoS priority to the configured fifos */
7778 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7779 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7781 /* map the hashing selector table to the configured fifos */
7782 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7783 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7786 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7787 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7788 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7790 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7791 if (tx_cfg
->fifo_len
< 65) {
7792 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7796 /* + 2 because one Txd for skb->data and one Txd for UFO */
7797 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7799 /* Rx side parameters. */
7800 config
->rx_ring_num
= rx_ring_num
;
7801 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7802 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7803 struct ring_info
*ring
= &mac_control
->rings
[i
];
7805 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7806 rx_cfg
->ring_priority
= i
;
7807 ring
->rx_bufs_left
= 0;
7808 ring
->rxd_mode
= sp
->rxd_mode
;
7809 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7810 ring
->pdev
= sp
->pdev
;
7811 ring
->dev
= sp
->dev
;
7814 for (i
= 0; i
< rx_ring_num
; i
++) {
7815 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7817 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7818 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7821 /* Setting Mac Control parameters */
7822 mac_control
->rmac_pause_time
= rmac_pause_time
;
7823 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7824 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7827 /* initialize the shared memory used by the NIC and the host */
7828 if (init_shared_mem(sp
)) {
7829 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
7831 goto mem_alloc_failed
;
7834 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
7836 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7839 goto bar0_remap_failed
;
7842 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
7844 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7847 goto bar1_remap_failed
;
7850 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7851 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7852 mac_control
->tx_FIFO_start
[j
] = sp
->bar1
+ (j
* 0x00020000);
7855 /* Driver entry points */
7856 dev
->netdev_ops
= &s2io_netdev_ops
;
7857 dev
->ethtool_ops
= &netdev_ethtool_ops
;
7858 dev
->hw_features
= NETIF_F_SG
| NETIF_F_IP_CSUM
|
7859 NETIF_F_TSO
| NETIF_F_TSO6
|
7860 NETIF_F_RXCSUM
| NETIF_F_LRO
;
7861 dev
->features
|= dev
->hw_features
|
7862 NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
7863 if (sp
->high_dma_flag
== true)
7864 dev
->features
|= NETIF_F_HIGHDMA
;
7865 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7866 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7867 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7869 pci_save_state(sp
->pdev
);
7871 /* Setting swapper control on the NIC, for proper reset operation */
7872 if (s2io_set_swapper(sp
)) {
7873 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
7876 goto set_swap_failed
;
7879 /* Verify if the Herc works on the slot its placed into */
7880 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7881 mode
= s2io_verify_pci_mode(sp
);
7883 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
7886 goto set_swap_failed
;
7890 if (sp
->config
.intr_type
== MSI_X
) {
7891 sp
->num_entries
= config
->rx_ring_num
+ 1;
7892 ret
= s2io_enable_msi_x(sp
);
7895 ret
= s2io_test_msi(sp
);
7896 /* rollback MSI-X, will re-enable during add_isr() */
7897 remove_msix_isr(sp
);
7902 "MSI-X requested but failed to enable\n");
7903 sp
->config
.intr_type
= INTA
;
7907 if (config
->intr_type
== MSI_X
) {
7908 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7909 struct ring_info
*ring
= &mac_control
->rings
[i
];
7911 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
7914 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
7917 /* Not needed for Herc */
7918 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7920 * Fix for all "FFs" MAC address problems observed on
7923 fix_mac_address(sp
);
7928 * MAC address initialization.
7929 * For now only one mac address will be read and used.
7932 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7933 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
7934 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7935 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7936 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
7937 S2IO_BIT_RESET
, true);
7938 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7939 mac_down
= (u32
)tmp64
;
7940 mac_up
= (u32
) (tmp64
>> 32);
7942 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7943 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7944 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7945 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7946 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7947 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7949 /* Set the factory defined MAC address initially */
7950 dev
->addr_len
= ETH_ALEN
;
7951 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7953 /* initialize number of multicast & unicast MAC entries variables */
7954 if (sp
->device_type
== XFRAME_I_DEVICE
) {
7955 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
7956 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
7957 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
7958 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
7959 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
7960 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
7961 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
7964 /* MTU range: 46 - 9600 */
7965 dev
->min_mtu
= MIN_MTU
;
7966 dev
->max_mtu
= S2IO_JUMBO_SIZE
;
7968 /* store mac addresses from CAM to s2io_nic structure */
7969 do_s2io_store_unicast_mc(sp
);
7971 /* Configure MSIX vector for number of rings configured plus one */
7972 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
7973 (config
->intr_type
== MSI_X
))
7974 sp
->num_entries
= config
->rx_ring_num
+ 1;
7976 /* Store the values of the MSIX table in the s2io_nic structure */
7977 store_xmsi_data(sp
);
7978 /* reset Nic and bring it to known state */
7982 * Initialize link state flags
7983 * and the card state parameter
7987 /* Initialize spinlocks */
7988 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
7989 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
7991 spin_lock_init(&fifo
->tx_lock
);
7995 * SXE-002: Configure link and activity LED to init state
7998 subid
= sp
->pdev
->subsystem_device
;
7999 if ((subid
& 0xFF) >= 0x07) {
8000 val64
= readq(&bar0
->gpio_control
);
8001 val64
|= 0x0000800000000000ULL
;
8002 writeq(val64
, &bar0
->gpio_control
);
8003 val64
= 0x0411040400000000ULL
;
8004 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8005 val64
= readq(&bar0
->gpio_control
);
8008 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8010 if (register_netdev(dev
)) {
8011 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8013 goto register_failed
;
8016 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8017 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8018 sp
->product_name
, pdev
->revision
);
8019 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8020 s2io_driver_version
);
8021 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8022 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8023 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8024 mode
= s2io_print_pci_mode(sp
);
8027 unregister_netdev(dev
);
8028 goto set_swap_failed
;
8031 switch (sp
->rxd_mode
) {
8033 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8037 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8042 switch (sp
->config
.napi
) {
8044 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8047 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8051 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8052 sp
->config
.tx_fifo_num
);
8054 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8055 sp
->config
.rx_ring_num
);
8057 switch (sp
->config
.intr_type
) {
8059 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8062 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8065 if (sp
->config
.multiq
) {
8066 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8067 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8069 fifo
->multiq
= config
->multiq
;
8071 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8074 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8077 switch (sp
->config
.tx_steering_type
) {
8079 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8082 case TX_PRIORITY_STEERING
:
8084 "%s: Priority steering enabled for transmit\n",
8087 case TX_DEFAULT_STEERING
:
8089 "%s: Default steering enabled for transmit\n",
8093 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8095 /* Initialize device name */
8096 snprintf(sp
->name
, sizeof(sp
->name
), "%s Neterion %s", dev
->name
,
8100 sp
->vlan_strip_flag
= 1;
8102 sp
->vlan_strip_flag
= 0;
8105 * Make Link state as off at this point, when the Link change
8106 * interrupt comes the state will be automatically changed to
8109 netif_carrier_off(dev
);
8120 free_shared_mem(sp
);
8121 pci_disable_device(pdev
);
8122 pci_release_regions(pdev
);
8129 * s2io_rem_nic - Free the PCI device
8130 * @pdev: structure containing the PCI related information of the device.
8131 * Description: This function is called by the Pci subsystem to release a
8132 * PCI device and free up all resource held up by the device. This could
8133 * be in response to a Hot plug event or when the driver is to be removed
8137 static void s2io_rem_nic(struct pci_dev
*pdev
)
8139 struct net_device
*dev
= pci_get_drvdata(pdev
);
8140 struct s2io_nic
*sp
;
8143 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8147 sp
= netdev_priv(dev
);
8149 cancel_work_sync(&sp
->rst_timer_task
);
8150 cancel_work_sync(&sp
->set_link_task
);
8152 unregister_netdev(dev
);
8154 free_shared_mem(sp
);
8157 pci_release_regions(pdev
);
8159 pci_disable_device(pdev
);
8162 module_pci_driver(s2io_driver
);
8164 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8165 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8166 struct s2io_nic
*sp
)
8169 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8171 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8173 "%s: Non-TCP frames not supported for LRO\n",
8178 /* Checking for DIX type or DIX type with VLAN */
8179 if ((l2_type
== 0) || (l2_type
== 4)) {
8180 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8182 * If vlan stripping is disabled and the frame is VLAN tagged,
8183 * shift the offset by the VLAN header size bytes.
8185 if ((!sp
->vlan_strip_flag
) &&
8186 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8187 ip_off
+= HEADER_VLAN_SIZE
;
8189 /* LLC, SNAP etc are considered non-mergeable */
8193 *ip
= (struct iphdr
*)(buffer
+ ip_off
);
8194 ip_len
= (u8
)((*ip
)->ihl
);
8196 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8201 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8204 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8205 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8206 (lro
->iph
->daddr
!= ip
->daddr
) ||
8207 (lro
->tcph
->source
!= tcp
->source
) ||
8208 (lro
->tcph
->dest
!= tcp
->dest
))
8213 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8215 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8218 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8219 struct iphdr
*ip
, struct tcphdr
*tcp
,
8220 u32 tcp_pyld_len
, u16 vlan_tag
)
8222 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8226 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8227 lro
->tcp_ack
= tcp
->ack_seq
;
8229 lro
->total_len
= ntohs(ip
->tot_len
);
8231 lro
->vlan_tag
= vlan_tag
;
8233 * Check if we saw TCP timestamp.
8234 * Other consistency checks have already been done.
8236 if (tcp
->doff
== 8) {
8238 ptr
= (__be32
*)(tcp
+1);
8240 lro
->cur_tsval
= ntohl(*(ptr
+1));
8241 lro
->cur_tsecr
= *(ptr
+2);
8246 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8248 struct iphdr
*ip
= lro
->iph
;
8249 struct tcphdr
*tcp
= lro
->tcph
;
8250 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8252 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8254 /* Update L3 header */
8255 csum_replace2(&ip
->check
, ip
->tot_len
, htons(lro
->total_len
));
8256 ip
->tot_len
= htons(lro
->total_len
);
8258 /* Update L4 header */
8259 tcp
->ack_seq
= lro
->tcp_ack
;
8260 tcp
->window
= lro
->window
;
8262 /* Update tsecr field if this session has timestamps enabled */
8264 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8265 *(ptr
+2) = lro
->cur_tsecr
;
8268 /* Update counters required for calculation of
8269 * average no. of packets aggregated.
8271 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8272 swstats
->num_aggregations
++;
8275 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8276 struct tcphdr
*tcp
, u32 l4_pyld
)
8278 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8279 lro
->total_len
+= l4_pyld
;
8280 lro
->frags_len
+= l4_pyld
;
8281 lro
->tcp_next_seq
+= l4_pyld
;
8284 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8285 lro
->tcp_ack
= tcp
->ack_seq
;
8286 lro
->window
= tcp
->window
;
8290 /* Update tsecr and tsval from this packet */
8291 ptr
= (__be32
*)(tcp
+1);
8292 lro
->cur_tsval
= ntohl(*(ptr
+1));
8293 lro
->cur_tsecr
= *(ptr
+ 2);
8297 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8298 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8302 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8304 if (!tcp_pyld_len
) {
8305 /* Runt frame or a pure ack */
8309 if (ip
->ihl
!= 5) /* IP has options */
8312 /* If we see CE codepoint in IP header, packet is not mergeable */
8313 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8316 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8317 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8318 tcp
->syn
|| tcp
->fin
||
8319 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8321 * Currently recognize only the ack control word and
8322 * any other control field being set would result in
8323 * flushing the LRO session
8329 * Allow only one TCP timestamp option. Don't aggregate if
8330 * any other options are detected.
8332 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8335 if (tcp
->doff
== 8) {
8336 ptr
= (u8
*)(tcp
+ 1);
8337 while (*ptr
== TCPOPT_NOP
)
8339 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8342 /* Ensure timestamp value increases monotonically */
8344 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8347 /* timestamp echo reply should be non-zero */
8348 if (*((__be32
*)(ptr
+6)) == 0)
8355 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8356 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8357 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8360 struct tcphdr
*tcph
;
8363 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8365 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8370 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8372 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8373 tcph
= (struct tcphdr
*)*tcp
;
8374 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8375 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8376 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8377 if (l_lro
->in_use
) {
8378 if (check_for_socket_match(l_lro
, ip
, tcph
))
8380 /* Sock pair matched */
8383 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8384 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8385 "expected 0x%x, actual 0x%x\n",
8387 (*lro
)->tcp_next_seq
,
8390 swstats
->outof_sequence_pkts
++;
8395 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8397 ret
= 1; /* Aggregate */
8399 ret
= 2; /* Flush both */
8405 /* Before searching for available LRO objects,
8406 * check if the pkt is L3/L4 aggregatable. If not
8407 * don't create new LRO session. Just send this
8410 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8413 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8414 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8415 if (!(l_lro
->in_use
)) {
8417 ret
= 3; /* Begin anew */
8423 if (ret
== 0) { /* sessions exceeded */
8424 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8432 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8436 update_L3L4_header(sp
, *lro
);
8439 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8440 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8441 update_L3L4_header(sp
, *lro
);
8442 ret
= 4; /* Flush the LRO */
8446 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8453 static void clear_lro_session(struct lro
*lro
)
8455 static u16 lro_struct_size
= sizeof(struct lro
);
8457 memset(lro
, 0, lro_struct_size
);
8460 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8462 struct net_device
*dev
= skb
->dev
;
8463 struct s2io_nic
*sp
= netdev_priv(dev
);
8465 skb
->protocol
= eth_type_trans(skb
, dev
);
8466 if (vlan_tag
&& sp
->vlan_strip_flag
)
8467 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vlan_tag
);
8468 if (sp
->config
.napi
)
8469 netif_receive_skb(skb
);
8474 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8475 struct sk_buff
*skb
, u32 tcp_len
)
8477 struct sk_buff
*first
= lro
->parent
;
8478 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8480 first
->len
+= tcp_len
;
8481 first
->data_len
= lro
->frags_len
;
8482 skb_pull(skb
, (skb
->len
- tcp_len
));
8483 if (skb_shinfo(first
)->frag_list
)
8484 lro
->last_frag
->next
= skb
;
8486 skb_shinfo(first
)->frag_list
= skb
;
8487 first
->truesize
+= skb
->truesize
;
8488 lro
->last_frag
= skb
;
8489 swstats
->clubbed_frms_cnt
++;
8493 * s2io_io_error_detected - called when PCI error is detected
8494 * @pdev: Pointer to PCI device
8495 * @state: The current pci connection state
8497 * This function is called after a PCI bus error affecting
8498 * this device has been detected.
8500 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8501 pci_channel_state_t state
)
8503 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8504 struct s2io_nic
*sp
= netdev_priv(netdev
);
8506 netif_device_detach(netdev
);
8508 if (state
== pci_channel_io_perm_failure
)
8509 return PCI_ERS_RESULT_DISCONNECT
;
8511 if (netif_running(netdev
)) {
8512 /* Bring down the card, while avoiding PCI I/O */
8513 do_s2io_card_down(sp
, 0);
8515 pci_disable_device(pdev
);
8517 return PCI_ERS_RESULT_NEED_RESET
;
8521 * s2io_io_slot_reset - called after the pci bus has been reset.
8522 * @pdev: Pointer to PCI device
8524 * Restart the card from scratch, as if from a cold-boot.
8525 * At this point, the card has exprienced a hard reset,
8526 * followed by fixups by BIOS, and has its config space
8527 * set up identically to what it was at cold boot.
8529 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8531 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8532 struct s2io_nic
*sp
= netdev_priv(netdev
);
8534 if (pci_enable_device(pdev
)) {
8535 pr_err("Cannot re-enable PCI device after reset.\n");
8536 return PCI_ERS_RESULT_DISCONNECT
;
8539 pci_set_master(pdev
);
8542 return PCI_ERS_RESULT_RECOVERED
;
8546 * s2io_io_resume - called when traffic can start flowing again.
8547 * @pdev: Pointer to PCI device
8549 * This callback is called when the error recovery driver tells
8550 * us that its OK to resume normal operation.
8552 static void s2io_io_resume(struct pci_dev
*pdev
)
8554 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8555 struct s2io_nic
*sp
= netdev_priv(netdev
);
8557 if (netif_running(netdev
)) {
8558 if (s2io_card_up(sp
)) {
8559 pr_err("Can't bring device back up after reset.\n");
8563 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8565 pr_err("Can't restore mac addr after reset.\n");
8570 netif_device_attach(netdev
);
8571 netif_tx_wake_all_queues(netdev
);