1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
29 if (status != VXGE_HW_OK) \
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem
*vp_reg
)
38 val64
= readq(&vp_reg
->rxmac_vcfg0
);
39 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
41 val64
= readq(&vp_reg
->rxmac_vcfg0
);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device
*hldev
, u32 vp_id
)
49 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
50 struct __vxge_hw_virtualpath
*vpath
;
51 u64 val64
, rxd_count
, rxd_spat
;
52 int count
= 0, total_count
= 0;
54 vpath
= &hldev
->virtual_paths
[vp_id
];
55 vp_reg
= vpath
->vp_reg
;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg
);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64
= readq(&vp_reg
->prc_cfg6
);
65 rxd_spat
= VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64
) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
74 rxd_count
= readq(&vp_reg
->prc_rxd_doorbell
);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64
= readq(&vp_reg
->frm_in_progress_cnt
);
80 if ((rxd_count
<= rxd_spat
) || (val64
> 0))
85 } while ((count
< VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT
) &&
86 (total_count
< VXGE_HW_MAX_POLLING_COUNT
));
88 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
89 printk(KERN_ALERT
"%s: Still Receiving traffic. Abort wait\n",
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device
*hldev
)
101 int i
, total_count
= 0;
103 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
104 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
107 total_count
+= vxge_hw_vpath_wait_receive_idle(hldev
, i
);
108 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem
*reg
, u64 mask
, u32 max_millis
)
139 } while (++i
<= max_millis
);
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64
, void __iomem
*addr
,
146 u64 mask
, u32 max_millis
)
148 __vxge_hw_pio_mem_write32_lower((u32
)vxge_bVALn(val64
, 32, 32), addr
);
150 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32), addr
);
153 return __vxge_hw_device_register_poll(addr
, mask
, max_millis
);
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath
*vpath
, u32 action
,
158 u32 fw_memo
, u32 offset
, u64
*data0
, u64
*data1
,
161 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
162 enum vxge_hw_status status
;
164 u32 retry
= 0, max_retry
= 3;
166 spin_lock(&vpath
->lock
);
167 if (!vpath
->vp_open
) {
168 spin_unlock(&vpath
->lock
);
172 writeq(*data0
, &vp_reg
->rts_access_steer_data0
);
173 writeq(*data1
, &vp_reg
->rts_access_steer_data1
);
176 val64
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action
) |
177 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo
) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset
) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
|
182 status
= __vxge_hw_pio_mem_write64(val64
,
183 &vp_reg
->rts_access_steer_ctrl
,
184 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
185 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
187 /* The __vxge_hw_device_register_poll can udelay for a significant
188 * amount of time, blocking other process from the CPU. If it delays
189 * for ~5secs, a NMI error can occur. A way around this is to give up
190 * the processor via msleep, but this is not allowed is under lock.
191 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
192 * 1sec and sleep for 10ms until the firmware operation has completed
195 while ((status
!= VXGE_HW_OK
) && retry
++ < max_retry
) {
198 status
= __vxge_hw_device_register_poll(
199 &vp_reg
->rts_access_steer_ctrl
,
200 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
201 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
204 if (status
!= VXGE_HW_OK
)
207 val64
= readq(&vp_reg
->rts_access_steer_ctrl
);
208 if (val64
& VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS
) {
209 *data0
= readq(&vp_reg
->rts_access_steer_data0
);
210 *data1
= readq(&vp_reg
->rts_access_steer_data1
);
213 status
= VXGE_HW_FAIL
;
217 spin_unlock(&vpath
->lock
);
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device
*hldev
, u32
*major
,
223 u32
*minor
, u32
*build
)
225 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
226 struct __vxge_hw_virtualpath
*vpath
;
227 enum vxge_hw_status status
;
229 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
231 status
= vxge_hw_vpath_fw_api(vpath
,
232 VXGE_HW_FW_UPGRADE_ACTION
,
233 VXGE_HW_FW_UPGRADE_MEMO
,
234 VXGE_HW_FW_UPGRADE_OFFSET_READ
,
235 &data0
, &data1
, &steer_ctrl
);
236 if (status
!= VXGE_HW_OK
)
239 *major
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
240 *minor
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
241 *build
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
246 enum vxge_hw_status
vxge_hw_flash_fw(struct __vxge_hw_device
*hldev
)
248 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
249 struct __vxge_hw_virtualpath
*vpath
;
250 enum vxge_hw_status status
;
253 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
255 status
= vxge_hw_vpath_fw_api(vpath
,
256 VXGE_HW_FW_UPGRADE_ACTION
,
257 VXGE_HW_FW_UPGRADE_MEMO
,
258 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT
,
259 &data0
, &data1
, &steer_ctrl
);
260 if (status
!= VXGE_HW_OK
) {
261 vxge_debug_init(VXGE_ERR
, "%s: FW upgrade failed", __func__
);
265 ret
= VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl
) & 0x7F;
267 vxge_debug_init(VXGE_ERR
, "%s: FW commit failed with error %d",
269 status
= VXGE_HW_FAIL
;
277 vxge_update_fw_image(struct __vxge_hw_device
*hldev
, const u8
*fwdata
, int size
)
279 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
280 struct __vxge_hw_virtualpath
*vpath
;
281 enum vxge_hw_status status
;
282 int ret_code
, sec_code
;
284 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
286 /* send upgrade start command */
287 status
= vxge_hw_vpath_fw_api(vpath
,
288 VXGE_HW_FW_UPGRADE_ACTION
,
289 VXGE_HW_FW_UPGRADE_MEMO
,
290 VXGE_HW_FW_UPGRADE_OFFSET_START
,
291 &data0
, &data1
, &steer_ctrl
);
292 if (status
!= VXGE_HW_OK
) {
293 vxge_debug_init(VXGE_ERR
, " %s: Upgrade start cmd failed",
298 /* Transfer fw image to adapter 16 bytes at a time */
299 for (; size
> 0; size
-= VXGE_HW_FW_UPGRADE_BLK_SIZE
) {
302 /* The next 128bits of fwdata to be loaded onto the adapter */
303 data0
= *((u64
*)fwdata
);
304 data1
= *((u64
*)fwdata
+ 1);
306 status
= vxge_hw_vpath_fw_api(vpath
,
307 VXGE_HW_FW_UPGRADE_ACTION
,
308 VXGE_HW_FW_UPGRADE_MEMO
,
309 VXGE_HW_FW_UPGRADE_OFFSET_SEND
,
310 &data0
, &data1
, &steer_ctrl
);
311 if (status
!= VXGE_HW_OK
) {
312 vxge_debug_init(VXGE_ERR
, "%s: Upgrade send failed",
317 ret_code
= VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0
);
319 case VXGE_HW_FW_UPGRADE_OK
:
320 /* All OK, send next 16 bytes. */
322 case VXGE_FW_UPGRADE_BYTES2SKIP
:
323 /* skip bytes in the stream */
324 fwdata
+= (data0
>> 8) & 0xFFFFFFFF;
326 case VXGE_HW_FW_UPGRADE_DONE
:
328 case VXGE_HW_FW_UPGRADE_ERR
:
329 sec_code
= VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0
);
331 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1
:
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7
:
334 "corrupted data from .ncf file\n");
336 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3
:
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4
:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5
:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6
:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8
:
341 printk(KERN_ERR
"invalid .ncf file\n");
343 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW
:
344 printk(KERN_ERR
"buffer overflow\n");
346 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH
:
347 printk(KERN_ERR
"failed to flash the image\n");
349 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN
:
351 "generic error. Unknown error type\n");
354 printk(KERN_ERR
"Unknown error of type %d\n",
358 status
= VXGE_HW_FAIL
;
361 printk(KERN_ERR
"Unknown FW error: %d\n", ret_code
);
362 status
= VXGE_HW_FAIL
;
365 /* point to next 16 bytes */
366 fwdata
+= VXGE_HW_FW_UPGRADE_BLK_SIZE
;
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device
*hldev
,
374 struct eprom_image
*img
)
376 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
377 struct __vxge_hw_virtualpath
*vpath
;
378 enum vxge_hw_status status
;
381 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
383 for (i
= 0; i
< VXGE_HW_MAX_ROM_IMAGES
; i
++) {
384 data0
= VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i
);
385 data1
= steer_ctrl
= 0;
387 status
= vxge_hw_vpath_fw_api(vpath
,
388 VXGE_HW_FW_API_GET_EPROM_REV
,
389 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
390 0, &data0
, &data1
, &steer_ctrl
);
391 if (status
!= VXGE_HW_OK
)
394 img
[i
].is_valid
= VXGE_HW_GET_EPROM_IMAGE_VALID(data0
);
395 img
[i
].index
= VXGE_HW_GET_EPROM_IMAGE_INDEX(data0
);
396 img
[i
].type
= VXGE_HW_GET_EPROM_IMAGE_TYPE(data0
);
397 img
[i
].version
= VXGE_HW_GET_EPROM_IMAGE_REV(data0
);
404 * __vxge_hw_channel_free - Free memory allocated for channel
405 * This function deallocates memory from the channel and various arrays
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel
*channel
)
410 kfree(channel
->work_arr
);
411 kfree(channel
->free_arr
);
412 kfree(channel
->reserve_arr
);
413 kfree(channel
->orig_arr
);
418 * __vxge_hw_channel_initialize - Initialize a channel
419 * This function initializes a channel by properly setting the
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel
*channel
)
426 struct __vxge_hw_virtualpath
*vpath
;
428 vpath
= channel
->vph
->vpath
;
430 if ((channel
->reserve_arr
!= NULL
) && (channel
->orig_arr
!= NULL
)) {
431 for (i
= 0; i
< channel
->length
; i
++)
432 channel
->orig_arr
[i
] = channel
->reserve_arr
[i
];
435 switch (channel
->type
) {
436 case VXGE_HW_CHANNEL_TYPE_FIFO
:
437 vpath
->fifoh
= (struct __vxge_hw_fifo
*)channel
;
438 channel
->stats
= &((struct __vxge_hw_fifo
*)
439 channel
)->stats
->common_stats
;
441 case VXGE_HW_CHANNEL_TYPE_RING
:
442 vpath
->ringh
= (struct __vxge_hw_ring
*)channel
;
443 channel
->stats
= &((struct __vxge_hw_ring
*)
444 channel
)->stats
->common_stats
;
454 * __vxge_hw_channel_reset - Resets a channel
455 * This function resets a channel by properly setting the various references
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel
*channel
)
462 for (i
= 0; i
< channel
->length
; i
++) {
463 if (channel
->reserve_arr
!= NULL
)
464 channel
->reserve_arr
[i
] = channel
->orig_arr
[i
];
465 if (channel
->free_arr
!= NULL
)
466 channel
->free_arr
[i
] = NULL
;
467 if (channel
->work_arr
!= NULL
)
468 channel
->work_arr
[i
] = NULL
;
470 channel
->free_ptr
= channel
->length
;
471 channel
->reserve_ptr
= channel
->length
;
472 channel
->reserve_top
= 0;
473 channel
->post_index
= 0;
474 channel
->compl_index
= 0;
480 * __vxge_hw_device_pci_e_init
481 * Initialize certain PCI/PCI-X configuration registers
482 * with recommended values. Save config space for future hw resets.
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device
*hldev
)
488 /* Set the PErr Repconse bit and SERR in PCI command register. */
489 pci_read_config_word(hldev
->pdev
, PCI_COMMAND
, &cmd
);
491 pci_write_config_word(hldev
->pdev
, PCI_COMMAND
, cmd
);
493 pci_save_state(hldev
->pdev
);
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
498 * This routine checks the vpath reset in progress register is turned zero
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem
*vpath_rst_in_prog
)
503 enum vxge_hw_status status
;
504 status
= __vxge_hw_device_register_poll(vpath_rst_in_prog
,
505 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
511 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512 * Set the swapper bits appropriately for the lagacy section.
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
)
518 enum vxge_hw_status status
= VXGE_HW_OK
;
520 val64
= readq(&legacy_reg
->toc_swapper_fb
);
525 case VXGE_HW_SWAPPER_INITIAL_VALUE
:
528 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED
:
529 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
530 &legacy_reg
->pifm_rd_swap_en
);
531 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
532 &legacy_reg
->pifm_rd_flip_en
);
533 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
534 &legacy_reg
->pifm_wr_swap_en
);
535 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
536 &legacy_reg
->pifm_wr_flip_en
);
539 case VXGE_HW_SWAPPER_BYTE_SWAPPED
:
540 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
541 &legacy_reg
->pifm_rd_swap_en
);
542 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
543 &legacy_reg
->pifm_wr_swap_en
);
546 case VXGE_HW_SWAPPER_BIT_FLIPPED
:
547 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
548 &legacy_reg
->pifm_rd_flip_en
);
549 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
550 &legacy_reg
->pifm_wr_flip_en
);
556 val64
= readq(&legacy_reg
->toc_swapper_fb
);
558 if (val64
!= VXGE_HW_SWAPPER_INITIAL_VALUE
)
559 status
= VXGE_HW_ERR_SWAPPER_CTRL
;
565 * __vxge_hw_device_toc_get
566 * This routine sets the swapper and reads the toc pointer and returns the
567 * memory mapped address of the toc
569 static struct vxge_hw_toc_reg __iomem
*
570 __vxge_hw_device_toc_get(void __iomem
*bar0
)
573 struct vxge_hw_toc_reg __iomem
*toc
= NULL
;
574 enum vxge_hw_status status
;
576 struct vxge_hw_legacy_reg __iomem
*legacy_reg
=
577 (struct vxge_hw_legacy_reg __iomem
*)bar0
;
579 status
= __vxge_hw_legacy_swapper_set(legacy_reg
);
580 if (status
!= VXGE_HW_OK
)
583 val64
= readq(&legacy_reg
->toc_first_pointer
);
590 * __vxge_hw_device_reg_addr_get
591 * This routine sets the swapper and reads the toc pointer and initializes the
592 * register location pointers in the device object. It waits until the ric is
593 * completed initializing registers.
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device
*hldev
)
600 enum vxge_hw_status status
= VXGE_HW_OK
;
602 hldev
->legacy_reg
= hldev
->bar0
;
604 hldev
->toc_reg
= __vxge_hw_device_toc_get(hldev
->bar0
);
605 if (hldev
->toc_reg
== NULL
) {
606 status
= VXGE_HW_FAIL
;
610 val64
= readq(&hldev
->toc_reg
->toc_common_pointer
);
611 hldev
->common_reg
= hldev
->bar0
+ val64
;
613 val64
= readq(&hldev
->toc_reg
->toc_mrpcim_pointer
);
614 hldev
->mrpcim_reg
= hldev
->bar0
+ val64
;
616 for (i
= 0; i
< VXGE_HW_TITAN_SRPCIM_REG_SPACES
; i
++) {
617 val64
= readq(&hldev
->toc_reg
->toc_srpcim_pointer
[i
]);
618 hldev
->srpcim_reg
[i
] = hldev
->bar0
+ val64
;
621 for (i
= 0; i
< VXGE_HW_TITAN_VPMGMT_REG_SPACES
; i
++) {
622 val64
= readq(&hldev
->toc_reg
->toc_vpmgmt_pointer
[i
]);
623 hldev
->vpmgmt_reg
[i
] = hldev
->bar0
+ val64
;
626 for (i
= 0; i
< VXGE_HW_TITAN_VPATH_REG_SPACES
; i
++) {
627 val64
= readq(&hldev
->toc_reg
->toc_vpath_pointer
[i
]);
628 hldev
->vpath_reg
[i
] = hldev
->bar0
+ val64
;
631 val64
= readq(&hldev
->toc_reg
->toc_kdfc
);
633 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64
)) {
635 hldev
->kdfc
= hldev
->bar0
+ VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64
) ;
641 status
= __vxge_hw_device_vpath_reset_in_prog_check(
642 (u64 __iomem
*)&hldev
->common_reg
->vpath_rst_in_prog
);
648 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649 * This routine returns the Access Rights of the driver
652 __vxge_hw_device_access_rights_get(u32 host_type
, u32 func_id
)
654 u32 access_rights
= VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH
;
657 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION
:
659 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
660 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
663 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION
:
664 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
665 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
667 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0
:
668 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
669 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
671 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION
:
672 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION
:
673 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG
:
675 case VXGE_HW_SR_VH_FUNCTION0
:
676 case VXGE_HW_VH_NORMAL_FUNCTION
:
677 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
681 return access_rights
;
684 * __vxge_hw_device_is_privilaged
685 * This routine checks if the device function is privilaged or not
689 __vxge_hw_device_is_privilaged(u32 host_type
, u32 func_id
)
691 if (__vxge_hw_device_access_rights_get(host_type
,
693 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)
696 return VXGE_HW_ERR_PRIVILEGED_OPERATION
;
700 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701 * Returns the function number of the vpath.
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
)
708 val64
= readq(&vpmgmt_reg
->vpath_to_func_map_cfg1
);
711 (u32
)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64
);
715 * __vxge_hw_device_host_info_get
716 * This routine returns the host type assignments
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device
*hldev
)
723 val64
= readq(&hldev
->common_reg
->host_type_assignments
);
726 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
728 hldev
->vpath_assignments
= readq(&hldev
->common_reg
->vpath_assignments
);
730 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
731 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
735 __vxge_hw_vpath_func_id_get(hldev
->vpmgmt_reg
[i
]);
737 hldev
->access_rights
= __vxge_hw_device_access_rights_get(
738 hldev
->host_type
, hldev
->func_id
);
740 hldev
->virtual_paths
[i
].vp_open
= VXGE_HW_VP_NOT_OPEN
;
741 hldev
->virtual_paths
[i
].vp_reg
= hldev
->vpath_reg
[i
];
743 hldev
->first_vp_id
= i
;
749 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750 * link width and signalling rate.
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device
*hldev
)
755 struct pci_dev
*dev
= hldev
->pdev
;
758 /* Get the negotiated link width and speed from PCI config space */
759 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnk
);
761 if ((lnk
& PCI_EXP_LNKSTA_CLS
) != 1)
762 return VXGE_HW_ERR_INVALID_PCI_INFO
;
764 switch ((lnk
& PCI_EXP_LNKSTA_NLW
) >> 4) {
765 case PCIE_LNK_WIDTH_RESRV
:
772 return VXGE_HW_ERR_INVALID_PCI_INFO
;
779 * __vxge_hw_device_initialize
780 * Initialize Titan-V hardware.
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device
*hldev
)
785 enum vxge_hw_status status
= VXGE_HW_OK
;
787 if (VXGE_HW_OK
== __vxge_hw_device_is_privilaged(hldev
->host_type
,
789 /* Validate the pci-e link width and speed */
790 status
= __vxge_hw_verify_pci_e_info(hldev
);
791 if (status
!= VXGE_HW_OK
)
800 * __vxge_hw_vpath_fw_ver_get - Get the fw version
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath
*vpath
,
805 struct vxge_hw_device_hw_info
*hw_info
)
807 struct vxge_hw_device_version
*fw_version
= &hw_info
->fw_version
;
808 struct vxge_hw_device_date
*fw_date
= &hw_info
->fw_date
;
809 struct vxge_hw_device_version
*flash_version
= &hw_info
->flash_version
;
810 struct vxge_hw_device_date
*flash_date
= &hw_info
->flash_date
;
811 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
812 enum vxge_hw_status status
;
814 status
= vxge_hw_vpath_fw_api(vpath
,
815 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
817 0, &data0
, &data1
, &steer_ctrl
);
818 if (status
!= VXGE_HW_OK
)
822 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0
);
824 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0
);
826 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0
);
828 snprintf(fw_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
829 fw_date
->month
, fw_date
->day
, fw_date
->year
);
832 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
834 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
836 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
838 snprintf(fw_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
839 fw_version
->major
, fw_version
->minor
, fw_version
->build
);
842 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1
);
844 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1
);
846 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1
);
848 snprintf(flash_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
849 flash_date
->month
, flash_date
->day
, flash_date
->year
);
851 flash_version
->major
=
852 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1
);
853 flash_version
->minor
=
854 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1
);
855 flash_version
->build
=
856 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1
);
858 snprintf(flash_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
859 flash_version
->major
, flash_version
->minor
,
860 flash_version
->build
);
867 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868 * part number and product description.
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath
*vpath
,
872 struct vxge_hw_device_hw_info
*hw_info
)
874 __be64
*serial_number
= (void *)hw_info
->serial_number
;
875 __be64
*product_desc
= (void *)hw_info
->product_desc
;
876 __be64
*part_number
= (void *)hw_info
->part_number
;
877 enum vxge_hw_status status
;
878 u64 data0
, data1
= 0, steer_ctrl
= 0;
881 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER
;
883 status
= vxge_hw_vpath_fw_api(vpath
,
884 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
886 0, &data0
, &data1
, &steer_ctrl
);
887 if (status
!= VXGE_HW_OK
)
890 serial_number
[0] = cpu_to_be64(data0
);
891 serial_number
[1] = cpu_to_be64(data1
);
893 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER
;
894 data1
= steer_ctrl
= 0;
896 status
= vxge_hw_vpath_fw_api(vpath
,
897 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
899 0, &data0
, &data1
, &steer_ctrl
);
900 if (status
!= VXGE_HW_OK
)
903 part_number
[0] = cpu_to_be64(data0
);
904 part_number
[1] = cpu_to_be64(data1
);
906 for (i
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0
;
907 i
<= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3
; i
++) {
909 data1
= steer_ctrl
= 0;
911 status
= vxge_hw_vpath_fw_api(vpath
,
912 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
914 0, &data0
, &data1
, &steer_ctrl
);
915 if (status
!= VXGE_HW_OK
)
918 product_desc
[j
++] = cpu_to_be64(data0
);
919 product_desc
[j
++] = cpu_to_be64(data1
);
926 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927 * Returns pci function mode
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath
*vpath
,
931 struct vxge_hw_device_hw_info
*hw_info
)
933 u64 data0
, data1
= 0, steer_ctrl
= 0;
934 enum vxge_hw_status status
;
938 status
= vxge_hw_vpath_fw_api(vpath
,
939 VXGE_HW_FW_API_GET_FUNC_MODE
,
940 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
941 0, &data0
, &data1
, &steer_ctrl
);
942 if (status
!= VXGE_HW_OK
)
945 hw_info
->function_mode
= VXGE_HW_GET_FUNC_MODE_VAL(data0
);
950 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951 * from MAC address table.
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath
*vpath
,
955 u8
*macaddr
, u8
*macaddr_mask
)
957 u64 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
958 data0
= 0, data1
= 0, steer_ctrl
= 0;
959 enum vxge_hw_status status
;
963 status
= vxge_hw_vpath_fw_api(vpath
, action
,
964 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
965 0, &data0
, &data1
, &steer_ctrl
);
966 if (status
!= VXGE_HW_OK
)
969 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0
);
970 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
973 for (i
= ETH_ALEN
; i
> 0; i
--) {
974 macaddr
[i
- 1] = (u8
) (data0
& 0xFF);
977 macaddr_mask
[i
- 1] = (u8
) (data1
& 0xFF);
981 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
;
982 data0
= 0, data1
= 0, steer_ctrl
= 0;
984 } while (!is_valid_ether_addr(macaddr
));
990 * vxge_hw_device_hw_info_get - Get the hw information
992 * @hw_info: the hw_info struct
994 * Returns the vpath mask that has the bits set for each vpath allocated
995 * for the driver, FW version information, and the first mac address for
999 vxge_hw_device_hw_info_get(void __iomem
*bar0
,
1000 struct vxge_hw_device_hw_info
*hw_info
)
1004 struct vxge_hw_toc_reg __iomem
*toc
;
1005 struct vxge_hw_mrpcim_reg __iomem
*mrpcim_reg
;
1006 struct vxge_hw_common_reg __iomem
*common_reg
;
1007 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
1008 enum vxge_hw_status status
;
1009 struct __vxge_hw_virtualpath vpath
;
1011 memset(hw_info
, 0, sizeof(struct vxge_hw_device_hw_info
));
1013 toc
= __vxge_hw_device_toc_get(bar0
);
1015 status
= VXGE_HW_ERR_CRITICAL
;
1019 val64
= readq(&toc
->toc_common_pointer
);
1020 common_reg
= bar0
+ val64
;
1022 status
= __vxge_hw_device_vpath_reset_in_prog_check(
1023 (u64 __iomem
*)&common_reg
->vpath_rst_in_prog
);
1024 if (status
!= VXGE_HW_OK
)
1027 hw_info
->vpath_mask
= readq(&common_reg
->vpath_assignments
);
1029 val64
= readq(&common_reg
->host_type_assignments
);
1031 hw_info
->host_type
=
1032 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
1034 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1035 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1038 val64
= readq(&toc
->toc_vpmgmt_pointer
[i
]);
1040 vpmgmt_reg
= bar0
+ val64
;
1042 hw_info
->func_id
= __vxge_hw_vpath_func_id_get(vpmgmt_reg
);
1043 if (__vxge_hw_device_access_rights_get(hw_info
->host_type
,
1045 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
) {
1047 val64
= readq(&toc
->toc_mrpcim_pointer
);
1049 mrpcim_reg
= bar0
+ val64
;
1051 writeq(0, &mrpcim_reg
->xgmac_gen_fw_memo_mask
);
1055 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1057 spin_lock_init(&vpath
.lock
);
1058 vpath
.vp_reg
= bar0
+ val64
;
1059 vpath
.vp_open
= VXGE_HW_VP_NOT_OPEN
;
1061 status
= __vxge_hw_vpath_pci_func_mode_get(&vpath
, hw_info
);
1062 if (status
!= VXGE_HW_OK
)
1065 status
= __vxge_hw_vpath_fw_ver_get(&vpath
, hw_info
);
1066 if (status
!= VXGE_HW_OK
)
1069 status
= __vxge_hw_vpath_card_info_get(&vpath
, hw_info
);
1070 if (status
!= VXGE_HW_OK
)
1076 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1077 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1080 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1081 vpath
.vp_reg
= bar0
+ val64
;
1082 vpath
.vp_open
= VXGE_HW_VP_NOT_OPEN
;
1084 status
= __vxge_hw_vpath_addr_get(&vpath
,
1085 hw_info
->mac_addrs
[i
],
1086 hw_info
->mac_addr_masks
[i
]);
1087 if (status
!= VXGE_HW_OK
)
1095 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1097 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool
*blockpool
)
1099 struct __vxge_hw_device
*hldev
;
1100 struct list_head
*p
, *n
;
1105 hldev
= blockpool
->hldev
;
1107 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
1108 dma_unmap_single(&hldev
->pdev
->dev
,
1109 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
1110 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
1113 vxge_os_dma_free(hldev
->pdev
,
1114 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
1115 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
1117 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1119 blockpool
->pool_size
--;
1122 list_for_each_safe(p
, n
, &blockpool
->free_entry_list
) {
1123 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1131 * __vxge_hw_blockpool_create - Create block pool
1133 static enum vxge_hw_status
1134 __vxge_hw_blockpool_create(struct __vxge_hw_device
*hldev
,
1135 struct __vxge_hw_blockpool
*blockpool
,
1140 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
1142 dma_addr_t dma_addr
;
1143 struct pci_dev
*dma_handle
;
1144 struct pci_dev
*acc_handle
;
1145 enum vxge_hw_status status
= VXGE_HW_OK
;
1147 if (blockpool
== NULL
) {
1148 status
= VXGE_HW_FAIL
;
1149 goto blockpool_create_exit
;
1152 blockpool
->hldev
= hldev
;
1153 blockpool
->block_size
= VXGE_HW_BLOCK_SIZE
;
1154 blockpool
->pool_size
= 0;
1155 blockpool
->pool_max
= pool_max
;
1156 blockpool
->req_out
= 0;
1158 INIT_LIST_HEAD(&blockpool
->free_block_list
);
1159 INIT_LIST_HEAD(&blockpool
->free_entry_list
);
1161 for (i
= 0; i
< pool_size
+ pool_max
; i
++) {
1162 entry
= kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1164 if (entry
== NULL
) {
1165 __vxge_hw_blockpool_destroy(blockpool
);
1166 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1167 goto blockpool_create_exit
;
1169 list_add(&entry
->item
, &blockpool
->free_entry_list
);
1172 for (i
= 0; i
< pool_size
; i
++) {
1173 memblock
= vxge_os_dma_malloc(
1178 if (memblock
== NULL
) {
1179 __vxge_hw_blockpool_destroy(blockpool
);
1180 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1181 goto blockpool_create_exit
;
1184 dma_addr
= dma_map_single(&hldev
->pdev
->dev
, memblock
,
1187 if (unlikely(dma_mapping_error(&hldev
->pdev
->dev
, dma_addr
))) {
1188 vxge_os_dma_free(hldev
->pdev
, memblock
, &acc_handle
);
1189 __vxge_hw_blockpool_destroy(blockpool
);
1190 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1191 goto blockpool_create_exit
;
1194 if (!list_empty(&blockpool
->free_entry_list
))
1195 entry
= (struct __vxge_hw_blockpool_entry
*)
1196 list_first_entry(&blockpool
->free_entry_list
,
1197 struct __vxge_hw_blockpool_entry
,
1202 kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1204 if (entry
!= NULL
) {
1205 list_del(&entry
->item
);
1206 entry
->length
= VXGE_HW_BLOCK_SIZE
;
1207 entry
->memblock
= memblock
;
1208 entry
->dma_addr
= dma_addr
;
1209 entry
->acc_handle
= acc_handle
;
1210 entry
->dma_handle
= dma_handle
;
1211 list_add(&entry
->item
,
1212 &blockpool
->free_block_list
);
1213 blockpool
->pool_size
++;
1215 __vxge_hw_blockpool_destroy(blockpool
);
1216 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1217 goto blockpool_create_exit
;
1221 blockpool_create_exit
:
1226 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1227 * Check the fifo configuration
1229 static enum vxge_hw_status
1230 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config
*fifo_config
)
1232 if ((fifo_config
->fifo_blocks
< VXGE_HW_MIN_FIFO_BLOCKS
) ||
1233 (fifo_config
->fifo_blocks
> VXGE_HW_MAX_FIFO_BLOCKS
))
1234 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
1240 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1241 * Check the vpath configuration
1243 static enum vxge_hw_status
1244 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config
*vp_config
)
1246 enum vxge_hw_status status
;
1248 if ((vp_config
->min_bandwidth
< VXGE_HW_VPATH_BANDWIDTH_MIN
) ||
1249 (vp_config
->min_bandwidth
> VXGE_HW_VPATH_BANDWIDTH_MAX
))
1250 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH
;
1252 status
= __vxge_hw_device_fifo_config_check(&vp_config
->fifo
);
1253 if (status
!= VXGE_HW_OK
)
1256 if ((vp_config
->mtu
!= VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) &&
1257 ((vp_config
->mtu
< VXGE_HW_VPATH_MIN_INITIAL_MTU
) ||
1258 (vp_config
->mtu
> VXGE_HW_VPATH_MAX_INITIAL_MTU
)))
1259 return VXGE_HW_BADCFG_VPATH_MTU
;
1261 if ((vp_config
->rpa_strip_vlan_tag
!=
1262 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) &&
1263 (vp_config
->rpa_strip_vlan_tag
!=
1264 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE
) &&
1265 (vp_config
->rpa_strip_vlan_tag
!=
1266 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE
))
1267 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG
;
1273 * __vxge_hw_device_config_check - Check device configuration.
1274 * Check the device configuration
1276 static enum vxge_hw_status
1277 __vxge_hw_device_config_check(struct vxge_hw_device_config
*new_config
)
1280 enum vxge_hw_status status
;
1282 if ((new_config
->intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
1283 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
1284 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
1285 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
1286 return VXGE_HW_BADCFG_INTR_MODE
;
1288 if ((new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_DISABLE
) &&
1289 (new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_ENABLE
))
1290 return VXGE_HW_BADCFG_RTS_MAC_EN
;
1292 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1293 status
= __vxge_hw_device_vpath_config_check(
1294 &new_config
->vp_config
[i
]);
1295 if (status
!= VXGE_HW_OK
)
1303 * vxge_hw_device_initialize - Initialize Titan device.
1304 * Initialize Titan device. Note that all the arguments of this public API
1305 * are 'IN', including @hldev. Driver cooperates with
1306 * OS to find new Titan device, locate its PCI and memory spaces.
1308 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1309 * to enable the latter to perform Titan hardware initialization.
1312 vxge_hw_device_initialize(
1313 struct __vxge_hw_device
**devh
,
1314 struct vxge_hw_device_attr
*attr
,
1315 struct vxge_hw_device_config
*device_config
)
1319 struct __vxge_hw_device
*hldev
= NULL
;
1320 enum vxge_hw_status status
= VXGE_HW_OK
;
1322 status
= __vxge_hw_device_config_check(device_config
);
1323 if (status
!= VXGE_HW_OK
)
1326 hldev
= vzalloc(sizeof(struct __vxge_hw_device
));
1327 if (hldev
== NULL
) {
1328 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1332 hldev
->magic
= VXGE_HW_DEVICE_MAGIC
;
1334 vxge_hw_device_debug_set(hldev
, VXGE_ERR
, VXGE_COMPONENT_ALL
);
1337 memcpy(&hldev
->config
, device_config
,
1338 sizeof(struct vxge_hw_device_config
));
1340 hldev
->bar0
= attr
->bar0
;
1341 hldev
->pdev
= attr
->pdev
;
1343 hldev
->uld_callbacks
= attr
->uld_callbacks
;
1345 __vxge_hw_device_pci_e_init(hldev
);
1347 status
= __vxge_hw_device_reg_addr_get(hldev
);
1348 if (status
!= VXGE_HW_OK
) {
1353 __vxge_hw_device_host_info_get(hldev
);
1355 /* Incrementing for stats blocks */
1358 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1359 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
1362 if (device_config
->vp_config
[i
].ring
.enable
==
1363 VXGE_HW_RING_ENABLE
)
1364 nblocks
+= device_config
->vp_config
[i
].ring
.ring_blocks
;
1366 if (device_config
->vp_config
[i
].fifo
.enable
==
1367 VXGE_HW_FIFO_ENABLE
)
1368 nblocks
+= device_config
->vp_config
[i
].fifo
.fifo_blocks
;
1372 if (__vxge_hw_blockpool_create(hldev
,
1374 device_config
->dma_blockpool_initial
+ nblocks
,
1375 device_config
->dma_blockpool_max
+ nblocks
) != VXGE_HW_OK
) {
1377 vxge_hw_device_terminate(hldev
);
1378 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1382 status
= __vxge_hw_device_initialize(hldev
);
1383 if (status
!= VXGE_HW_OK
) {
1384 vxge_hw_device_terminate(hldev
);
1394 * vxge_hw_device_terminate - Terminate Titan device.
1395 * Terminate HW device.
1398 vxge_hw_device_terminate(struct __vxge_hw_device
*hldev
)
1400 vxge_assert(hldev
->magic
== VXGE_HW_DEVICE_MAGIC
);
1402 hldev
->magic
= VXGE_HW_DEVICE_DEAD
;
1403 __vxge_hw_blockpool_destroy(&hldev
->block_pool
);
1408 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1409 * and offset and perform an operation
1411 static enum vxge_hw_status
1412 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath
*vpath
,
1413 u32 operation
, u32 offset
, u64
*stat
)
1416 enum vxge_hw_status status
= VXGE_HW_OK
;
1417 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1419 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1420 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1421 goto vpath_stats_access_exit
;
1424 vp_reg
= vpath
->vp_reg
;
1426 val64
= VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation
) |
1427 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
|
1428 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset
);
1430 status
= __vxge_hw_pio_mem_write64(val64
,
1431 &vp_reg
->xmac_stats_access_cmd
,
1432 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
,
1433 vpath
->hldev
->config
.device_poll_millis
);
1434 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1435 *stat
= readq(&vp_reg
->xmac_stats_access_data
);
1439 vpath_stats_access_exit
:
1444 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1446 static enum vxge_hw_status
1447 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1448 struct vxge_hw_xmac_vpath_tx_stats
*vpath_tx_stats
)
1452 u32 offset
= VXGE_HW_STATS_VPATH_TX_OFFSET
;
1453 enum vxge_hw_status status
= VXGE_HW_OK
;
1455 val64
= (u64
*)vpath_tx_stats
;
1457 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1458 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1462 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_tx_stats
) / 8; i
++) {
1463 status
= __vxge_hw_vpath_stats_access(vpath
,
1464 VXGE_HW_STATS_OP_READ
,
1466 if (status
!= VXGE_HW_OK
)
1476 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1478 static enum vxge_hw_status
1479 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1480 struct vxge_hw_xmac_vpath_rx_stats
*vpath_rx_stats
)
1483 enum vxge_hw_status status
= VXGE_HW_OK
;
1485 u32 offset
= VXGE_HW_STATS_VPATH_RX_OFFSET
;
1486 val64
= (u64
*) vpath_rx_stats
;
1488 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1489 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1492 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_rx_stats
) / 8; i
++) {
1493 status
= __vxge_hw_vpath_stats_access(vpath
,
1494 VXGE_HW_STATS_OP_READ
,
1495 offset
>> 3, val64
);
1496 if (status
!= VXGE_HW_OK
)
1507 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1509 static enum vxge_hw_status
1510 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1511 struct vxge_hw_vpath_stats_hw_info
*hw_stats
)
1514 enum vxge_hw_status status
= VXGE_HW_OK
;
1515 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1517 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1518 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1521 vp_reg
= vpath
->vp_reg
;
1523 val64
= readq(&vp_reg
->vpath_debug_stats0
);
1524 hw_stats
->ini_num_mwr_sent
=
1525 (u32
)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64
);
1527 val64
= readq(&vp_reg
->vpath_debug_stats1
);
1528 hw_stats
->ini_num_mrd_sent
=
1529 (u32
)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64
);
1531 val64
= readq(&vp_reg
->vpath_debug_stats2
);
1532 hw_stats
->ini_num_cpl_rcvd
=
1533 (u32
)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64
);
1535 val64
= readq(&vp_reg
->vpath_debug_stats3
);
1536 hw_stats
->ini_num_mwr_byte_sent
=
1537 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64
);
1539 val64
= readq(&vp_reg
->vpath_debug_stats4
);
1540 hw_stats
->ini_num_cpl_byte_rcvd
=
1541 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64
);
1543 val64
= readq(&vp_reg
->vpath_debug_stats5
);
1544 hw_stats
->wrcrdtarb_xoff
=
1545 (u32
)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64
);
1547 val64
= readq(&vp_reg
->vpath_debug_stats6
);
1548 hw_stats
->rdcrdtarb_xoff
=
1549 (u32
)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64
);
1551 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1552 hw_stats
->vpath_genstats_count0
=
1553 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1556 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1557 hw_stats
->vpath_genstats_count1
=
1558 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1561 val64
= readq(&vp_reg
->vpath_genstats_count23
);
1562 hw_stats
->vpath_genstats_count2
=
1563 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1566 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1567 hw_stats
->vpath_genstats_count3
=
1568 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1571 val64
= readq(&vp_reg
->vpath_genstats_count4
);
1572 hw_stats
->vpath_genstats_count4
=
1573 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1576 val64
= readq(&vp_reg
->vpath_genstats_count5
);
1577 hw_stats
->vpath_genstats_count5
=
1578 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1581 status
= __vxge_hw_vpath_xmac_tx_stats_get(vpath
, &hw_stats
->tx_stats
);
1582 if (status
!= VXGE_HW_OK
)
1585 status
= __vxge_hw_vpath_xmac_rx_stats_get(vpath
, &hw_stats
->rx_stats
);
1586 if (status
!= VXGE_HW_OK
)
1589 VXGE_HW_VPATH_STATS_PIO_READ(
1590 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET
);
1592 hw_stats
->prog_event_vnum0
=
1593 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64
);
1595 hw_stats
->prog_event_vnum1
=
1596 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64
);
1598 VXGE_HW_VPATH_STATS_PIO_READ(
1599 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET
);
1601 hw_stats
->prog_event_vnum2
=
1602 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64
);
1604 hw_stats
->prog_event_vnum3
=
1605 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64
);
1607 val64
= readq(&vp_reg
->rx_multi_cast_stats
);
1608 hw_stats
->rx_multi_cast_frame_discard
=
1609 (u16
)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64
);
1611 val64
= readq(&vp_reg
->rx_frm_transferred
);
1612 hw_stats
->rx_frm_transferred
=
1613 (u32
)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64
);
1615 val64
= readq(&vp_reg
->rxd_returned
);
1616 hw_stats
->rxd_returned
=
1617 (u16
)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64
);
1619 val64
= readq(&vp_reg
->dbg_stats_rx_mpa
);
1620 hw_stats
->rx_mpa_len_fail_frms
=
1621 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64
);
1622 hw_stats
->rx_mpa_mrk_fail_frms
=
1623 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64
);
1624 hw_stats
->rx_mpa_crc_fail_frms
=
1625 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64
);
1627 val64
= readq(&vp_reg
->dbg_stats_rx_fau
);
1628 hw_stats
->rx_permitted_frms
=
1629 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64
);
1630 hw_stats
->rx_vp_reset_discarded_frms
=
1631 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64
);
1632 hw_stats
->rx_wol_frms
=
1633 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64
);
1635 val64
= readq(&vp_reg
->tx_vp_reset_discarded_frms
);
1636 hw_stats
->tx_vp_reset_discarded_frms
=
1637 (u16
)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1644 * vxge_hw_device_stats_get - Get the device hw statistics.
1645 * Returns the vpath h/w stats for the device.
1648 vxge_hw_device_stats_get(struct __vxge_hw_device
*hldev
,
1649 struct vxge_hw_device_stats_hw_info
*hw_stats
)
1652 enum vxge_hw_status status
= VXGE_HW_OK
;
1654 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1655 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)) ||
1656 (hldev
->virtual_paths
[i
].vp_open
==
1657 VXGE_HW_VP_NOT_OPEN
))
1660 memcpy(hldev
->virtual_paths
[i
].hw_stats_sav
,
1661 hldev
->virtual_paths
[i
].hw_stats
,
1662 sizeof(struct vxge_hw_vpath_stats_hw_info
));
1664 status
= __vxge_hw_vpath_stats_get(
1665 &hldev
->virtual_paths
[i
],
1666 hldev
->virtual_paths
[i
].hw_stats
);
1669 memcpy(hw_stats
, &hldev
->stats
.hw_dev_info_stats
,
1670 sizeof(struct vxge_hw_device_stats_hw_info
));
1676 * vxge_hw_driver_stats_get - Get the device sw statistics.
1677 * Returns the vpath s/w stats for the device.
1679 enum vxge_hw_status
vxge_hw_driver_stats_get(
1680 struct __vxge_hw_device
*hldev
,
1681 struct vxge_hw_device_stats_sw_info
*sw_stats
)
1683 memcpy(sw_stats
, &hldev
->stats
.sw_dev_info_stats
,
1684 sizeof(struct vxge_hw_device_stats_sw_info
));
1690 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1691 * and offset and perform an operation
1692 * Get the statistics from the given location and offset.
1695 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device
*hldev
,
1696 u32 operation
, u32 location
, u32 offset
, u64
*stat
)
1699 enum vxge_hw_status status
= VXGE_HW_OK
;
1701 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1703 if (status
!= VXGE_HW_OK
)
1706 val64
= VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation
) |
1707 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
|
1708 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location
) |
1709 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset
);
1711 status
= __vxge_hw_pio_mem_write64(val64
,
1712 &hldev
->mrpcim_reg
->xmac_stats_sys_cmd
,
1713 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
,
1714 hldev
->config
.device_poll_millis
);
1716 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1717 *stat
= readq(&hldev
->mrpcim_reg
->xmac_stats_sys_data
);
1725 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1726 * Get the Statistics on aggregate port
1728 static enum vxge_hw_status
1729 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1730 struct vxge_hw_xmac_aggr_stats
*aggr_stats
)
1734 u32 offset
= VXGE_HW_STATS_AGGRn_OFFSET
;
1735 enum vxge_hw_status status
= VXGE_HW_OK
;
1737 val64
= (u64
*)aggr_stats
;
1739 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1741 if (status
!= VXGE_HW_OK
)
1744 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_aggr_stats
) / 8; i
++) {
1745 status
= vxge_hw_mrpcim_stats_access(hldev
,
1746 VXGE_HW_STATS_OP_READ
,
1747 VXGE_HW_STATS_LOC_AGGR
,
1748 ((offset
+ (104 * port
)) >> 3), val64
);
1749 if (status
!= VXGE_HW_OK
)
1760 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1761 * Get the Statistics on port
1763 static enum vxge_hw_status
1764 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1765 struct vxge_hw_xmac_port_stats
*port_stats
)
1768 enum vxge_hw_status status
= VXGE_HW_OK
;
1771 val64
= (u64
*) port_stats
;
1773 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1775 if (status
!= VXGE_HW_OK
)
1778 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_port_stats
) / 8; i
++) {
1779 status
= vxge_hw_mrpcim_stats_access(hldev
,
1780 VXGE_HW_STATS_OP_READ
,
1781 VXGE_HW_STATS_LOC_AGGR
,
1782 ((offset
+ (608 * port
)) >> 3), val64
);
1783 if (status
!= VXGE_HW_OK
)
1795 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1796 * Get the XMAC Statistics
1799 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device
*hldev
,
1800 struct vxge_hw_xmac_stats
*xmac_stats
)
1802 enum vxge_hw_status status
= VXGE_HW_OK
;
1805 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1806 0, &xmac_stats
->aggr_stats
[0]);
1807 if (status
!= VXGE_HW_OK
)
1810 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1811 1, &xmac_stats
->aggr_stats
[1]);
1812 if (status
!= VXGE_HW_OK
)
1815 for (i
= 0; i
<= VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
1817 status
= vxge_hw_device_xmac_port_stats_get(hldev
,
1818 i
, &xmac_stats
->port_stats
[i
]);
1819 if (status
!= VXGE_HW_OK
)
1823 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1825 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
1828 status
= __vxge_hw_vpath_xmac_tx_stats_get(
1829 &hldev
->virtual_paths
[i
],
1830 &xmac_stats
->vpath_tx_stats
[i
]);
1831 if (status
!= VXGE_HW_OK
)
1834 status
= __vxge_hw_vpath_xmac_rx_stats_get(
1835 &hldev
->virtual_paths
[i
],
1836 &xmac_stats
->vpath_rx_stats
[i
]);
1837 if (status
!= VXGE_HW_OK
)
1845 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1846 * This routine is used to dynamically change the debug output
1848 void vxge_hw_device_debug_set(struct __vxge_hw_device
*hldev
,
1849 enum vxge_debug_level level
, u32 mask
)
1854 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1855 defined(VXGE_DEBUG_ERR_MASK)
1856 hldev
->debug_module_mask
= mask
;
1857 hldev
->debug_level
= level
;
1860 #if defined(VXGE_DEBUG_ERR_MASK)
1861 hldev
->level_err
= level
& VXGE_ERR
;
1864 #if defined(VXGE_DEBUG_TRACE_MASK)
1865 hldev
->level_trace
= level
& VXGE_TRACE
;
1870 * vxge_hw_device_error_level_get - Get the error level
1871 * This routine returns the current error level set
1873 u32
vxge_hw_device_error_level_get(struct __vxge_hw_device
*hldev
)
1875 #if defined(VXGE_DEBUG_ERR_MASK)
1879 return hldev
->level_err
;
1886 * vxge_hw_device_trace_level_get - Get the trace level
1887 * This routine returns the current trace level set
1889 u32
vxge_hw_device_trace_level_get(struct __vxge_hw_device
*hldev
)
1891 #if defined(VXGE_DEBUG_TRACE_MASK)
1895 return hldev
->level_trace
;
1902 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1903 * Returns the Pause frame generation and reception capability of the NIC.
1905 enum vxge_hw_status
vxge_hw_device_getpause_data(struct __vxge_hw_device
*hldev
,
1906 u32 port
, u32
*tx
, u32
*rx
)
1909 enum vxge_hw_status status
= VXGE_HW_OK
;
1911 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1912 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1916 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1917 status
= VXGE_HW_ERR_INVALID_PORT
;
1921 if (!(hldev
->access_rights
& VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
1922 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
1926 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1927 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
)
1929 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
)
1936 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1937 * It can be used to set or reset Pause frame generation or reception
1938 * support of the NIC.
1940 enum vxge_hw_status
vxge_hw_device_setpause_data(struct __vxge_hw_device
*hldev
,
1941 u32 port
, u32 tx
, u32 rx
)
1944 enum vxge_hw_status status
= VXGE_HW_OK
;
1946 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1947 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1951 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1952 status
= VXGE_HW_ERR_INVALID_PORT
;
1956 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1958 if (status
!= VXGE_HW_OK
)
1961 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1963 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1965 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1967 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1969 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1971 writeq(val64
, &hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1976 u16
vxge_hw_device_link_width_get(struct __vxge_hw_device
*hldev
)
1978 struct pci_dev
*dev
= hldev
->pdev
;
1981 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnk
);
1982 return (lnk
& VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH
) >> 4;
1986 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1987 * This function returns the index of memory block
1990 __vxge_hw_ring_block_memblock_idx(u8
*block
)
1992 return (u32
)*((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
));
1996 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1997 * This function sets index to a memory block
2000 __vxge_hw_ring_block_memblock_idx_set(u8
*block
, u32 memblock_idx
)
2002 *((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
)) = memblock_idx
;
2006 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2008 * Sets the next block pointer in RxD block
2011 __vxge_hw_ring_block_next_pointer_set(u8
*block
, dma_addr_t dma_next
)
2013 *((u64
*)(block
+ VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET
)) = dma_next
;
2017 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2019 * Returns the dma address of the first RxD block
2021 static u64
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring
*ring
)
2023 struct vxge_hw_mempool_dma
*dma_object
;
2025 dma_object
= ring
->mempool
->memblocks_dma_arr
;
2026 vxge_assert(dma_object
!= NULL
);
2028 return dma_object
->addr
;
2032 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2033 * This function returns the dma address of a given item
2035 static dma_addr_t
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool
*mempoolh
,
2040 struct vxge_hw_mempool_dma
*memblock_dma_object
;
2041 ptrdiff_t dma_item_offset
;
2043 /* get owner memblock index */
2044 memblock_idx
= __vxge_hw_ring_block_memblock_idx(item
);
2046 /* get owner memblock by memblock index */
2047 memblock
= mempoolh
->memblocks_arr
[memblock_idx
];
2049 /* get memblock DMA object by memblock index */
2050 memblock_dma_object
= mempoolh
->memblocks_dma_arr
+ memblock_idx
;
2052 /* calculate offset in the memblock of this item */
2053 dma_item_offset
= (u8
*)item
- (u8
*)memblock
;
2055 return memblock_dma_object
->addr
+ dma_item_offset
;
2059 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2060 * This function returns the dma address of a given item
2062 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool
*mempoolh
,
2063 struct __vxge_hw_ring
*ring
, u32 from
,
2066 u8
*to_item
, *from_item
;
2069 /* get "from" RxD block */
2070 from_item
= mempoolh
->items_arr
[from
];
2071 vxge_assert(from_item
);
2073 /* get "to" RxD block */
2074 to_item
= mempoolh
->items_arr
[to
];
2075 vxge_assert(to_item
);
2077 /* return address of the beginning of previous RxD block */
2078 to_dma
= __vxge_hw_ring_item_dma_addr(mempoolh
, to_item
);
2080 /* set next pointer for this RxD block to point on
2081 * previous item's DMA start address */
2082 __vxge_hw_ring_block_next_pointer_set(from_item
, to_dma
);
2086 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2088 * This function is callback passed to __vxge_hw_mempool_create to create memory
2089 * pool for RxD block
2092 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool
*mempoolh
,
2094 struct vxge_hw_mempool_dma
*dma_object
,
2095 u32 index
, u32 is_last
)
2098 void *item
= mempoolh
->items_arr
[index
];
2099 struct __vxge_hw_ring
*ring
=
2100 (struct __vxge_hw_ring
*)mempoolh
->userdata
;
2102 /* format rxds array */
2103 for (i
= 0; i
< ring
->rxds_per_block
; i
++) {
2104 void *rxdblock_priv
;
2106 struct vxge_hw_ring_rxd_1
*rxdp
;
2108 u32 reserve_index
= ring
->channel
.reserve_ptr
-
2109 (index
* ring
->rxds_per_block
+ i
+ 1);
2110 u32 memblock_item_idx
;
2112 ring
->channel
.reserve_arr
[reserve_index
] = ((u8
*)item
) +
2115 /* Note: memblock_item_idx is index of the item within
2116 * the memblock. For instance, in case of three RxD-blocks
2117 * per memblock this value can be 0, 1 or 2. */
2118 rxdblock_priv
= __vxge_hw_mempool_item_priv(mempoolh
,
2119 memblock_index
, item
,
2120 &memblock_item_idx
);
2122 rxdp
= ring
->channel
.reserve_arr
[reserve_index
];
2124 uld_priv
= ((u8
*)rxdblock_priv
+ ring
->rxd_priv_size
* i
);
2126 /* pre-format Host_Control */
2127 rxdp
->host_control
= (u64
)(size_t)uld_priv
;
2130 __vxge_hw_ring_block_memblock_idx_set(item
, memblock_index
);
2133 /* link last one with first one */
2134 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
, 0);
2138 /* link this RxD block with previous one */
2139 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
- 1, index
);
2144 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2145 * This function replenishes the RxDs from reserve array to work array
2147 static enum vxge_hw_status
2148 vxge_hw_ring_replenish(struct __vxge_hw_ring
*ring
)
2151 struct __vxge_hw_channel
*channel
;
2152 enum vxge_hw_status status
= VXGE_HW_OK
;
2154 channel
= &ring
->channel
;
2156 while (vxge_hw_channel_dtr_count(channel
) > 0) {
2158 status
= vxge_hw_ring_rxd_reserve(ring
, &rxd
);
2160 vxge_assert(status
== VXGE_HW_OK
);
2162 if (ring
->rxd_init
) {
2163 status
= ring
->rxd_init(rxd
, channel
->userdata
);
2164 if (status
!= VXGE_HW_OK
) {
2165 vxge_hw_ring_rxd_free(ring
, rxd
);
2170 vxge_hw_ring_rxd_post(ring
, rxd
);
2172 status
= VXGE_HW_OK
;
2178 * __vxge_hw_channel_allocate - Allocate memory for channel
2179 * This function allocates required memory for the channel and various arrays
2182 static struct __vxge_hw_channel
*
2183 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle
*vph
,
2184 enum __vxge_hw_channel_type type
,
2185 u32 length
, u32 per_dtr_space
,
2188 struct __vxge_hw_channel
*channel
;
2189 struct __vxge_hw_device
*hldev
;
2193 hldev
= vph
->vpath
->hldev
;
2194 vp_id
= vph
->vpath
->vp_id
;
2197 case VXGE_HW_CHANNEL_TYPE_FIFO
:
2198 size
= sizeof(struct __vxge_hw_fifo
);
2200 case VXGE_HW_CHANNEL_TYPE_RING
:
2201 size
= sizeof(struct __vxge_hw_ring
);
2207 channel
= kzalloc(size
, GFP_KERNEL
);
2208 if (channel
== NULL
)
2210 INIT_LIST_HEAD(&channel
->item
);
2212 channel
->common_reg
= hldev
->common_reg
;
2213 channel
->first_vp_id
= hldev
->first_vp_id
;
2214 channel
->type
= type
;
2215 channel
->devh
= hldev
;
2217 channel
->userdata
= userdata
;
2218 channel
->per_dtr_space
= per_dtr_space
;
2219 channel
->length
= length
;
2220 channel
->vp_id
= vp_id
;
2222 channel
->work_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2223 if (channel
->work_arr
== NULL
)
2226 channel
->free_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2227 if (channel
->free_arr
== NULL
)
2229 channel
->free_ptr
= length
;
2231 channel
->reserve_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2232 if (channel
->reserve_arr
== NULL
)
2234 channel
->reserve_ptr
= length
;
2235 channel
->reserve_top
= 0;
2237 channel
->orig_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2238 if (channel
->orig_arr
== NULL
)
2243 __vxge_hw_channel_free(channel
);
2250 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2251 * Adds a block to block pool
2253 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device
*devh
,
2256 struct pci_dev
*dma_h
,
2257 struct pci_dev
*acc_handle
)
2259 struct __vxge_hw_blockpool
*blockpool
;
2260 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2261 dma_addr_t dma_addr
;
2263 blockpool
= &devh
->block_pool
;
2265 if (block_addr
== NULL
) {
2266 blockpool
->req_out
--;
2270 dma_addr
= dma_map_single(&devh
->pdev
->dev
, block_addr
, length
,
2273 if (unlikely(dma_mapping_error(&devh
->pdev
->dev
, dma_addr
))) {
2274 vxge_os_dma_free(devh
->pdev
, block_addr
, &acc_handle
);
2275 blockpool
->req_out
--;
2279 if (!list_empty(&blockpool
->free_entry_list
))
2280 entry
= (struct __vxge_hw_blockpool_entry
*)
2281 list_first_entry(&blockpool
->free_entry_list
,
2282 struct __vxge_hw_blockpool_entry
,
2286 entry
= vmalloc(sizeof(struct __vxge_hw_blockpool_entry
));
2288 list_del(&entry
->item
);
2291 entry
->length
= length
;
2292 entry
->memblock
= block_addr
;
2293 entry
->dma_addr
= dma_addr
;
2294 entry
->acc_handle
= acc_handle
;
2295 entry
->dma_handle
= dma_h
;
2296 list_add(&entry
->item
, &blockpool
->free_block_list
);
2297 blockpool
->pool_size
++;
2300 blockpool
->req_out
--;
2307 vxge_os_dma_malloc_async(struct pci_dev
*pdev
, void *devh
, unsigned long size
)
2311 vaddr
= kmalloc(size
, GFP_KERNEL
| GFP_DMA
);
2312 vxge_hw_blockpool_block_add(devh
, vaddr
, size
, pdev
, pdev
);
2316 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2319 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool
*blockpool
)
2323 if ((blockpool
->pool_size
+ blockpool
->req_out
) <
2324 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE
) {
2325 nreq
= VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE
;
2326 blockpool
->req_out
+= nreq
;
2329 for (i
= 0; i
< nreq
; i
++)
2330 vxge_os_dma_malloc_async(
2331 (blockpool
->hldev
)->pdev
,
2332 blockpool
->hldev
, VXGE_HW_BLOCK_SIZE
);
2336 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2337 * Allocates a block of memory of given size, either from block pool
2338 * or by calling vxge_os_dma_malloc()
2340 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device
*devh
, u32 size
,
2341 struct vxge_hw_mempool_dma
*dma_object
)
2343 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2344 struct __vxge_hw_blockpool
*blockpool
;
2345 void *memblock
= NULL
;
2347 blockpool
= &devh
->block_pool
;
2349 if (size
!= blockpool
->block_size
) {
2351 memblock
= vxge_os_dma_malloc(devh
->pdev
, size
,
2352 &dma_object
->handle
,
2353 &dma_object
->acc_handle
);
2358 dma_object
->addr
= dma_map_single(&devh
->pdev
->dev
, memblock
,
2359 size
, DMA_BIDIRECTIONAL
);
2361 if (unlikely(dma_mapping_error(&devh
->pdev
->dev
, dma_object
->addr
))) {
2362 vxge_os_dma_free(devh
->pdev
, memblock
,
2363 &dma_object
->acc_handle
);
2370 if (!list_empty(&blockpool
->free_block_list
))
2371 entry
= (struct __vxge_hw_blockpool_entry
*)
2372 list_first_entry(&blockpool
->free_block_list
,
2373 struct __vxge_hw_blockpool_entry
,
2376 if (entry
!= NULL
) {
2377 list_del(&entry
->item
);
2378 dma_object
->addr
= entry
->dma_addr
;
2379 dma_object
->handle
= entry
->dma_handle
;
2380 dma_object
->acc_handle
= entry
->acc_handle
;
2381 memblock
= entry
->memblock
;
2383 list_add(&entry
->item
,
2384 &blockpool
->free_entry_list
);
2385 blockpool
->pool_size
--;
2388 if (memblock
!= NULL
)
2389 __vxge_hw_blockpool_blocks_add(blockpool
);
2396 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2399 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool
*blockpool
)
2401 struct list_head
*p
, *n
;
2403 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
2405 if (blockpool
->pool_size
< blockpool
->pool_max
)
2408 dma_unmap_single(&(blockpool
->hldev
)->pdev
->dev
,
2409 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
2410 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
2414 (blockpool
->hldev
)->pdev
,
2415 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
2416 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
2418 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
2420 list_add(p
, &blockpool
->free_entry_list
);
2422 blockpool
->pool_size
--;
2428 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2429 * __vxge_hw_blockpool_malloc
2431 static void __vxge_hw_blockpool_free(struct __vxge_hw_device
*devh
,
2432 void *memblock
, u32 size
,
2433 struct vxge_hw_mempool_dma
*dma_object
)
2435 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2436 struct __vxge_hw_blockpool
*blockpool
;
2437 enum vxge_hw_status status
= VXGE_HW_OK
;
2439 blockpool
= &devh
->block_pool
;
2441 if (size
!= blockpool
->block_size
) {
2442 dma_unmap_single(&devh
->pdev
->dev
, dma_object
->addr
, size
,
2444 vxge_os_dma_free(devh
->pdev
, memblock
, &dma_object
->acc_handle
);
2447 if (!list_empty(&blockpool
->free_entry_list
))
2448 entry
= (struct __vxge_hw_blockpool_entry
*)
2449 list_first_entry(&blockpool
->free_entry_list
,
2450 struct __vxge_hw_blockpool_entry
,
2454 entry
= vmalloc(sizeof(
2455 struct __vxge_hw_blockpool_entry
));
2457 list_del(&entry
->item
);
2459 if (entry
!= NULL
) {
2460 entry
->length
= size
;
2461 entry
->memblock
= memblock
;
2462 entry
->dma_addr
= dma_object
->addr
;
2463 entry
->acc_handle
= dma_object
->acc_handle
;
2464 entry
->dma_handle
= dma_object
->handle
;
2465 list_add(&entry
->item
,
2466 &blockpool
->free_block_list
);
2467 blockpool
->pool_size
++;
2468 status
= VXGE_HW_OK
;
2470 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2472 if (status
== VXGE_HW_OK
)
2473 __vxge_hw_blockpool_blocks_remove(blockpool
);
2478 * vxge_hw_mempool_destroy
2480 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool
*mempool
)
2483 struct __vxge_hw_device
*devh
= mempool
->devh
;
2485 for (i
= 0; i
< mempool
->memblocks_allocated
; i
++) {
2486 struct vxge_hw_mempool_dma
*dma_object
;
2488 vxge_assert(mempool
->memblocks_arr
[i
]);
2489 vxge_assert(mempool
->memblocks_dma_arr
+ i
);
2491 dma_object
= mempool
->memblocks_dma_arr
+ i
;
2493 for (j
= 0; j
< mempool
->items_per_memblock
; j
++) {
2494 u32 index
= i
* mempool
->items_per_memblock
+ j
;
2496 /* to skip last partially filled(if any) memblock */
2497 if (index
>= mempool
->items_current
)
2501 vfree(mempool
->memblocks_priv_arr
[i
]);
2503 __vxge_hw_blockpool_free(devh
, mempool
->memblocks_arr
[i
],
2504 mempool
->memblock_size
, dma_object
);
2507 vfree(mempool
->items_arr
);
2508 vfree(mempool
->memblocks_dma_arr
);
2509 vfree(mempool
->memblocks_priv_arr
);
2510 vfree(mempool
->memblocks_arr
);
2515 * __vxge_hw_mempool_grow
2516 * Will resize mempool up to %num_allocate value.
2518 static enum vxge_hw_status
2519 __vxge_hw_mempool_grow(struct vxge_hw_mempool
*mempool
, u32 num_allocate
,
2522 u32 i
, first_time
= mempool
->memblocks_allocated
== 0 ? 1 : 0;
2523 u32 n_items
= mempool
->items_per_memblock
;
2524 u32 start_block_idx
= mempool
->memblocks_allocated
;
2525 u32 end_block_idx
= mempool
->memblocks_allocated
+ num_allocate
;
2526 enum vxge_hw_status status
= VXGE_HW_OK
;
2530 if (end_block_idx
> mempool
->memblocks_max
) {
2531 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2535 for (i
= start_block_idx
; i
< end_block_idx
; i
++) {
2537 u32 is_last
= ((end_block_idx
- 1) == i
);
2538 struct vxge_hw_mempool_dma
*dma_object
=
2539 mempool
->memblocks_dma_arr
+ i
;
2542 /* allocate memblock's private part. Each DMA memblock
2543 * has a space allocated for item's private usage upon
2544 * mempool's user request. Each time mempool grows, it will
2545 * allocate new memblock and its private part at once.
2546 * This helps to minimize memory usage a lot. */
2547 mempool
->memblocks_priv_arr
[i
] =
2548 vzalloc(array_size(mempool
->items_priv_size
, n_items
));
2549 if (mempool
->memblocks_priv_arr
[i
] == NULL
) {
2550 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2554 /* allocate DMA-capable memblock */
2555 mempool
->memblocks_arr
[i
] =
2556 __vxge_hw_blockpool_malloc(mempool
->devh
,
2557 mempool
->memblock_size
, dma_object
);
2558 if (mempool
->memblocks_arr
[i
] == NULL
) {
2559 vfree(mempool
->memblocks_priv_arr
[i
]);
2560 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2565 mempool
->memblocks_allocated
++;
2567 memset(mempool
->memblocks_arr
[i
], 0, mempool
->memblock_size
);
2569 the_memblock
= mempool
->memblocks_arr
[i
];
2571 /* fill the items hash array */
2572 for (j
= 0; j
< n_items
; j
++) {
2573 u32 index
= i
* n_items
+ j
;
2575 if (first_time
&& index
>= mempool
->items_initial
)
2578 mempool
->items_arr
[index
] =
2579 ((char *)the_memblock
+ j
*mempool
->item_size
);
2581 /* let caller to do more job on each item */
2582 if (mempool
->item_func_alloc
!= NULL
)
2583 mempool
->item_func_alloc(mempool
, i
,
2584 dma_object
, index
, is_last
);
2586 mempool
->items_current
= index
+ 1;
2589 if (first_time
&& mempool
->items_current
==
2590 mempool
->items_initial
)
2598 * vxge_hw_mempool_create
2599 * This function will create memory pool object. Pool may grow but will
2600 * never shrink. Pool consists of number of dynamically allocated blocks
2601 * with size enough to hold %items_initial number of items. Memory is
2602 * DMA-able but client must map/unmap before interoperating with the device.
2604 static struct vxge_hw_mempool
*
2605 __vxge_hw_mempool_create(struct __vxge_hw_device
*devh
,
2608 u32 items_priv_size
,
2611 const struct vxge_hw_mempool_cbs
*mp_callback
,
2614 enum vxge_hw_status status
= VXGE_HW_OK
;
2615 u32 memblocks_to_allocate
;
2616 struct vxge_hw_mempool
*mempool
= NULL
;
2619 if (memblock_size
< item_size
) {
2620 status
= VXGE_HW_FAIL
;
2624 mempool
= vzalloc(sizeof(struct vxge_hw_mempool
));
2625 if (mempool
== NULL
) {
2626 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2630 mempool
->devh
= devh
;
2631 mempool
->memblock_size
= memblock_size
;
2632 mempool
->items_max
= items_max
;
2633 mempool
->items_initial
= items_initial
;
2634 mempool
->item_size
= item_size
;
2635 mempool
->items_priv_size
= items_priv_size
;
2636 mempool
->item_func_alloc
= mp_callback
->item_func_alloc
;
2637 mempool
->userdata
= userdata
;
2639 mempool
->memblocks_allocated
= 0;
2641 mempool
->items_per_memblock
= memblock_size
/ item_size
;
2643 mempool
->memblocks_max
= (items_max
+ mempool
->items_per_memblock
- 1) /
2644 mempool
->items_per_memblock
;
2646 /* allocate array of memblocks */
2647 mempool
->memblocks_arr
=
2648 vzalloc(array_size(sizeof(void *), mempool
->memblocks_max
));
2649 if (mempool
->memblocks_arr
== NULL
) {
2650 __vxge_hw_mempool_destroy(mempool
);
2651 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2656 /* allocate array of private parts of items per memblocks */
2657 mempool
->memblocks_priv_arr
=
2658 vzalloc(array_size(sizeof(void *), mempool
->memblocks_max
));
2659 if (mempool
->memblocks_priv_arr
== NULL
) {
2660 __vxge_hw_mempool_destroy(mempool
);
2661 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2666 /* allocate array of memblocks DMA objects */
2667 mempool
->memblocks_dma_arr
=
2668 vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma
),
2669 mempool
->memblocks_max
));
2670 if (mempool
->memblocks_dma_arr
== NULL
) {
2671 __vxge_hw_mempool_destroy(mempool
);
2672 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2677 /* allocate hash array of items */
2678 mempool
->items_arr
= vzalloc(array_size(sizeof(void *),
2679 mempool
->items_max
));
2680 if (mempool
->items_arr
== NULL
) {
2681 __vxge_hw_mempool_destroy(mempool
);
2682 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2687 /* calculate initial number of memblocks */
2688 memblocks_to_allocate
= (mempool
->items_initial
+
2689 mempool
->items_per_memblock
- 1) /
2690 mempool
->items_per_memblock
;
2692 /* pre-allocate the mempool */
2693 status
= __vxge_hw_mempool_grow(mempool
, memblocks_to_allocate
,
2695 if (status
!= VXGE_HW_OK
) {
2696 __vxge_hw_mempool_destroy(mempool
);
2697 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2707 * __vxge_hw_ring_abort - Returns the RxD
2708 * This function terminates the RxDs of ring
2710 static enum vxge_hw_status
__vxge_hw_ring_abort(struct __vxge_hw_ring
*ring
)
2713 struct __vxge_hw_channel
*channel
;
2715 channel
= &ring
->channel
;
2718 vxge_hw_channel_dtr_try_complete(channel
, &rxdh
);
2723 vxge_hw_channel_dtr_complete(channel
);
2726 ring
->rxd_term(rxdh
, VXGE_HW_RXD_STATE_POSTED
,
2729 vxge_hw_channel_dtr_free(channel
, rxdh
);
2736 * __vxge_hw_ring_reset - Resets the ring
2737 * This function resets the ring during vpath reset operation
2739 static enum vxge_hw_status
__vxge_hw_ring_reset(struct __vxge_hw_ring
*ring
)
2741 enum vxge_hw_status status
= VXGE_HW_OK
;
2742 struct __vxge_hw_channel
*channel
;
2744 channel
= &ring
->channel
;
2746 __vxge_hw_ring_abort(ring
);
2748 status
= __vxge_hw_channel_reset(channel
);
2750 if (status
!= VXGE_HW_OK
)
2753 if (ring
->rxd_init
) {
2754 status
= vxge_hw_ring_replenish(ring
);
2755 if (status
!= VXGE_HW_OK
)
2763 * __vxge_hw_ring_delete - Removes the ring
2764 * This function freeup the memory pool and removes the ring
2766 static enum vxge_hw_status
2767 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle
*vp
)
2769 struct __vxge_hw_ring
*ring
= vp
->vpath
->ringh
;
2771 __vxge_hw_ring_abort(ring
);
2774 __vxge_hw_mempool_destroy(ring
->mempool
);
2776 vp
->vpath
->ringh
= NULL
;
2777 __vxge_hw_channel_free(&ring
->channel
);
2783 * __vxge_hw_ring_create - Create a Ring
2784 * This function creates Ring and initializes it.
2786 static enum vxge_hw_status
2787 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle
*vp
,
2788 struct vxge_hw_ring_attr
*attr
)
2790 enum vxge_hw_status status
= VXGE_HW_OK
;
2791 struct __vxge_hw_ring
*ring
;
2793 struct vxge_hw_ring_config
*config
;
2794 struct __vxge_hw_device
*hldev
;
2796 static const struct vxge_hw_mempool_cbs ring_mp_callback
= {
2797 .item_func_alloc
= __vxge_hw_ring_mempool_item_alloc
,
2800 if ((vp
== NULL
) || (attr
== NULL
)) {
2801 status
= VXGE_HW_FAIL
;
2805 hldev
= vp
->vpath
->hldev
;
2806 vp_id
= vp
->vpath
->vp_id
;
2808 config
= &hldev
->config
.vp_config
[vp_id
].ring
;
2810 ring_length
= config
->ring_blocks
*
2811 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2813 ring
= (struct __vxge_hw_ring
*)__vxge_hw_channel_allocate(vp
,
2814 VXGE_HW_CHANNEL_TYPE_RING
,
2816 attr
->per_rxd_space
,
2819 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2823 vp
->vpath
->ringh
= ring
;
2824 ring
->vp_id
= vp_id
;
2825 ring
->vp_reg
= vp
->vpath
->vp_reg
;
2826 ring
->common_reg
= hldev
->common_reg
;
2827 ring
->stats
= &vp
->vpath
->sw_stats
->ring_stats
;
2828 ring
->config
= config
;
2829 ring
->callback
= attr
->callback
;
2830 ring
->rxd_init
= attr
->rxd_init
;
2831 ring
->rxd_term
= attr
->rxd_term
;
2832 ring
->buffer_mode
= config
->buffer_mode
;
2833 ring
->tim_rti_cfg1_saved
= vp
->vpath
->tim_rti_cfg1_saved
;
2834 ring
->tim_rti_cfg3_saved
= vp
->vpath
->tim_rti_cfg3_saved
;
2835 ring
->rxds_limit
= config
->rxds_limit
;
2837 ring
->rxd_size
= vxge_hw_ring_rxd_size_get(config
->buffer_mode
);
2838 ring
->rxd_priv_size
=
2839 sizeof(struct __vxge_hw_ring_rxd_priv
) + attr
->per_rxd_space
;
2840 ring
->per_rxd_space
= attr
->per_rxd_space
;
2842 ring
->rxd_priv_size
=
2843 ((ring
->rxd_priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
2844 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
2846 /* how many RxDs can fit into one block. Depends on configured
2848 ring
->rxds_per_block
=
2849 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2851 /* calculate actual RxD block private size */
2852 ring
->rxdblock_priv_size
= ring
->rxd_priv_size
* ring
->rxds_per_block
;
2853 ring
->mempool
= __vxge_hw_mempool_create(hldev
,
2856 ring
->rxdblock_priv_size
,
2857 ring
->config
->ring_blocks
,
2858 ring
->config
->ring_blocks
,
2861 if (ring
->mempool
== NULL
) {
2862 __vxge_hw_ring_delete(vp
);
2863 return VXGE_HW_ERR_OUT_OF_MEMORY
;
2866 status
= __vxge_hw_channel_initialize(&ring
->channel
);
2867 if (status
!= VXGE_HW_OK
) {
2868 __vxge_hw_ring_delete(vp
);
2873 * Specifying rxd_init callback means two things:
2874 * 1) rxds need to be initialized by driver at channel-open time;
2875 * 2) rxds need to be posted at channel-open time
2876 * (that's what the initial_replenish() below does)
2877 * Currently we don't have a case when the 1) is done without the 2).
2879 if (ring
->rxd_init
) {
2880 status
= vxge_hw_ring_replenish(ring
);
2881 if (status
!= VXGE_HW_OK
) {
2882 __vxge_hw_ring_delete(vp
);
2887 /* initial replenish will increment the counter in its post() routine,
2888 * we have to reset it */
2889 ring
->stats
->common_stats
.usage_cnt
= 0;
2895 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2896 * Initialize Titan device config with default values.
2899 vxge_hw_device_config_default_get(struct vxge_hw_device_config
*device_config
)
2903 device_config
->dma_blockpool_initial
=
2904 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE
;
2905 device_config
->dma_blockpool_max
= VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE
;
2906 device_config
->intr_mode
= VXGE_HW_INTR_MODE_DEF
;
2907 device_config
->rth_en
= VXGE_HW_RTH_DEFAULT
;
2908 device_config
->rth_it_type
= VXGE_HW_RTH_IT_TYPE_DEFAULT
;
2909 device_config
->device_poll_millis
= VXGE_HW_DEF_DEVICE_POLL_MILLIS
;
2910 device_config
->rts_mac_en
= VXGE_HW_RTS_MAC_DEFAULT
;
2912 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
2913 device_config
->vp_config
[i
].vp_id
= i
;
2915 device_config
->vp_config
[i
].min_bandwidth
=
2916 VXGE_HW_VPATH_BANDWIDTH_DEFAULT
;
2918 device_config
->vp_config
[i
].ring
.enable
= VXGE_HW_RING_DEFAULT
;
2920 device_config
->vp_config
[i
].ring
.ring_blocks
=
2921 VXGE_HW_DEF_RING_BLOCKS
;
2923 device_config
->vp_config
[i
].ring
.buffer_mode
=
2924 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT
;
2926 device_config
->vp_config
[i
].ring
.scatter_mode
=
2927 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
;
2929 device_config
->vp_config
[i
].ring
.rxds_limit
=
2930 VXGE_HW_DEF_RING_RXDS_LIMIT
;
2932 device_config
->vp_config
[i
].fifo
.enable
= VXGE_HW_FIFO_ENABLE
;
2934 device_config
->vp_config
[i
].fifo
.fifo_blocks
=
2935 VXGE_HW_MIN_FIFO_BLOCKS
;
2937 device_config
->vp_config
[i
].fifo
.max_frags
=
2938 VXGE_HW_MAX_FIFO_FRAGS
;
2940 device_config
->vp_config
[i
].fifo
.memblock_size
=
2941 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE
;
2943 device_config
->vp_config
[i
].fifo
.alignment_size
=
2944 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE
;
2946 device_config
->vp_config
[i
].fifo
.intr
=
2947 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT
;
2949 device_config
->vp_config
[i
].fifo
.no_snoop_bits
=
2950 VXGE_HW_FIFO_NO_SNOOP_DEFAULT
;
2951 device_config
->vp_config
[i
].tti
.intr_enable
=
2952 VXGE_HW_TIM_INTR_DEFAULT
;
2954 device_config
->vp_config
[i
].tti
.btimer_val
=
2955 VXGE_HW_USE_FLASH_DEFAULT
;
2957 device_config
->vp_config
[i
].tti
.timer_ac_en
=
2958 VXGE_HW_USE_FLASH_DEFAULT
;
2960 device_config
->vp_config
[i
].tti
.timer_ci_en
=
2961 VXGE_HW_USE_FLASH_DEFAULT
;
2963 device_config
->vp_config
[i
].tti
.timer_ri_en
=
2964 VXGE_HW_USE_FLASH_DEFAULT
;
2966 device_config
->vp_config
[i
].tti
.rtimer_val
=
2967 VXGE_HW_USE_FLASH_DEFAULT
;
2969 device_config
->vp_config
[i
].tti
.util_sel
=
2970 VXGE_HW_USE_FLASH_DEFAULT
;
2972 device_config
->vp_config
[i
].tti
.ltimer_val
=
2973 VXGE_HW_USE_FLASH_DEFAULT
;
2975 device_config
->vp_config
[i
].tti
.urange_a
=
2976 VXGE_HW_USE_FLASH_DEFAULT
;
2978 device_config
->vp_config
[i
].tti
.uec_a
=
2979 VXGE_HW_USE_FLASH_DEFAULT
;
2981 device_config
->vp_config
[i
].tti
.urange_b
=
2982 VXGE_HW_USE_FLASH_DEFAULT
;
2984 device_config
->vp_config
[i
].tti
.uec_b
=
2985 VXGE_HW_USE_FLASH_DEFAULT
;
2987 device_config
->vp_config
[i
].tti
.urange_c
=
2988 VXGE_HW_USE_FLASH_DEFAULT
;
2990 device_config
->vp_config
[i
].tti
.uec_c
=
2991 VXGE_HW_USE_FLASH_DEFAULT
;
2993 device_config
->vp_config
[i
].tti
.uec_d
=
2994 VXGE_HW_USE_FLASH_DEFAULT
;
2996 device_config
->vp_config
[i
].rti
.intr_enable
=
2997 VXGE_HW_TIM_INTR_DEFAULT
;
2999 device_config
->vp_config
[i
].rti
.btimer_val
=
3000 VXGE_HW_USE_FLASH_DEFAULT
;
3002 device_config
->vp_config
[i
].rti
.timer_ac_en
=
3003 VXGE_HW_USE_FLASH_DEFAULT
;
3005 device_config
->vp_config
[i
].rti
.timer_ci_en
=
3006 VXGE_HW_USE_FLASH_DEFAULT
;
3008 device_config
->vp_config
[i
].rti
.timer_ri_en
=
3009 VXGE_HW_USE_FLASH_DEFAULT
;
3011 device_config
->vp_config
[i
].rti
.rtimer_val
=
3012 VXGE_HW_USE_FLASH_DEFAULT
;
3014 device_config
->vp_config
[i
].rti
.util_sel
=
3015 VXGE_HW_USE_FLASH_DEFAULT
;
3017 device_config
->vp_config
[i
].rti
.ltimer_val
=
3018 VXGE_HW_USE_FLASH_DEFAULT
;
3020 device_config
->vp_config
[i
].rti
.urange_a
=
3021 VXGE_HW_USE_FLASH_DEFAULT
;
3023 device_config
->vp_config
[i
].rti
.uec_a
=
3024 VXGE_HW_USE_FLASH_DEFAULT
;
3026 device_config
->vp_config
[i
].rti
.urange_b
=
3027 VXGE_HW_USE_FLASH_DEFAULT
;
3029 device_config
->vp_config
[i
].rti
.uec_b
=
3030 VXGE_HW_USE_FLASH_DEFAULT
;
3032 device_config
->vp_config
[i
].rti
.urange_c
=
3033 VXGE_HW_USE_FLASH_DEFAULT
;
3035 device_config
->vp_config
[i
].rti
.uec_c
=
3036 VXGE_HW_USE_FLASH_DEFAULT
;
3038 device_config
->vp_config
[i
].rti
.uec_d
=
3039 VXGE_HW_USE_FLASH_DEFAULT
;
3041 device_config
->vp_config
[i
].mtu
=
3042 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
;
3044 device_config
->vp_config
[i
].rpa_strip_vlan_tag
=
3045 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
;
3052 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3053 * Set the swapper bits appropriately for the vpath.
3055 static enum vxge_hw_status
3056 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3058 #ifndef __BIG_ENDIAN
3061 val64
= readq(&vpath_reg
->vpath_general_cfg1
);
3063 val64
|= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN
;
3064 writeq(val64
, &vpath_reg
->vpath_general_cfg1
);
3071 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3072 * Set the swapper bits appropriately for the vpath.
3074 static enum vxge_hw_status
3075 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
,
3076 struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3080 val64
= readq(&legacy_reg
->pifm_wr_swap_en
);
3082 if (val64
== VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
) {
3083 val64
= readq(&vpath_reg
->kdfcctl_cfg0
);
3086 val64
|= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0
|
3087 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1
|
3088 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2
;
3090 writeq(val64
, &vpath_reg
->kdfcctl_cfg0
);
3098 * vxge_hw_mgmt_reg_read - Read Titan register.
3101 vxge_hw_mgmt_reg_read(struct __vxge_hw_device
*hldev
,
3102 enum vxge_hw_mgmt_reg_type type
,
3103 u32 index
, u32 offset
, u64
*value
)
3105 enum vxge_hw_status status
= VXGE_HW_OK
;
3107 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3108 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3113 case vxge_hw_mgmt_reg_type_legacy
:
3114 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3115 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3118 *value
= readq((void __iomem
*)hldev
->legacy_reg
+ offset
);
3120 case vxge_hw_mgmt_reg_type_toc
:
3121 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3122 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3125 *value
= readq((void __iomem
*)hldev
->toc_reg
+ offset
);
3127 case vxge_hw_mgmt_reg_type_common
:
3128 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3129 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3132 *value
= readq((void __iomem
*)hldev
->common_reg
+ offset
);
3134 case vxge_hw_mgmt_reg_type_mrpcim
:
3135 if (!(hldev
->access_rights
&
3136 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3137 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3140 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3141 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3144 *value
= readq((void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3146 case vxge_hw_mgmt_reg_type_srpcim
:
3147 if (!(hldev
->access_rights
&
3148 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3149 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3152 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3153 status
= VXGE_HW_ERR_INVALID_INDEX
;
3156 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3157 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3160 *value
= readq((void __iomem
*)hldev
->srpcim_reg
[index
] +
3163 case vxge_hw_mgmt_reg_type_vpmgmt
:
3164 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3165 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3166 status
= VXGE_HW_ERR_INVALID_INDEX
;
3169 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3170 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3173 *value
= readq((void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3176 case vxge_hw_mgmt_reg_type_vpath
:
3177 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) ||
3178 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3179 status
= VXGE_HW_ERR_INVALID_INDEX
;
3182 if (index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) {
3183 status
= VXGE_HW_ERR_INVALID_INDEX
;
3186 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3187 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3190 *value
= readq((void __iomem
*)hldev
->vpath_reg
[index
] +
3194 status
= VXGE_HW_ERR_INVALID_TYPE
;
3203 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3206 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device
*hldev
, u64 vpath_mask
)
3208 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
3211 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
3212 if (!((vpath_mask
) & vxge_mBIT(i
)))
3214 vpmgmt_reg
= hldev
->vpmgmt_reg
[i
];
3215 for (j
= 0; j
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; j
++) {
3216 if (readq(&vpmgmt_reg
->rxmac_cfg0_port_vpmgmt_clone
[j
])
3217 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS
)
3218 return VXGE_HW_FAIL
;
3224 * vxge_hw_mgmt_reg_Write - Write Titan register.
3227 vxge_hw_mgmt_reg_write(struct __vxge_hw_device
*hldev
,
3228 enum vxge_hw_mgmt_reg_type type
,
3229 u32 index
, u32 offset
, u64 value
)
3231 enum vxge_hw_status status
= VXGE_HW_OK
;
3233 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3234 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3239 case vxge_hw_mgmt_reg_type_legacy
:
3240 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3241 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3244 writeq(value
, (void __iomem
*)hldev
->legacy_reg
+ offset
);
3246 case vxge_hw_mgmt_reg_type_toc
:
3247 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3248 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3251 writeq(value
, (void __iomem
*)hldev
->toc_reg
+ offset
);
3253 case vxge_hw_mgmt_reg_type_common
:
3254 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3255 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3258 writeq(value
, (void __iomem
*)hldev
->common_reg
+ offset
);
3260 case vxge_hw_mgmt_reg_type_mrpcim
:
3261 if (!(hldev
->access_rights
&
3262 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3263 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3266 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3267 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3270 writeq(value
, (void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3272 case vxge_hw_mgmt_reg_type_srpcim
:
3273 if (!(hldev
->access_rights
&
3274 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3275 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3278 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3279 status
= VXGE_HW_ERR_INVALID_INDEX
;
3282 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3283 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3286 writeq(value
, (void __iomem
*)hldev
->srpcim_reg
[index
] +
3290 case vxge_hw_mgmt_reg_type_vpmgmt
:
3291 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3292 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3293 status
= VXGE_HW_ERR_INVALID_INDEX
;
3296 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3297 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3300 writeq(value
, (void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3303 case vxge_hw_mgmt_reg_type_vpath
:
3304 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
-1) ||
3305 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3306 status
= VXGE_HW_ERR_INVALID_INDEX
;
3309 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3310 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3313 writeq(value
, (void __iomem
*)hldev
->vpath_reg
[index
] +
3317 status
= VXGE_HW_ERR_INVALID_TYPE
;
3325 * __vxge_hw_fifo_abort - Returns the TxD
3326 * This function terminates the TxDs of fifo
3328 static enum vxge_hw_status
__vxge_hw_fifo_abort(struct __vxge_hw_fifo
*fifo
)
3333 vxge_hw_channel_dtr_try_complete(&fifo
->channel
, &txdlh
);
3338 vxge_hw_channel_dtr_complete(&fifo
->channel
);
3340 if (fifo
->txdl_term
) {
3341 fifo
->txdl_term(txdlh
,
3342 VXGE_HW_TXDL_STATE_POSTED
,
3343 fifo
->channel
.userdata
);
3346 vxge_hw_channel_dtr_free(&fifo
->channel
, txdlh
);
3353 * __vxge_hw_fifo_reset - Resets the fifo
3354 * This function resets the fifo during vpath reset operation
3356 static enum vxge_hw_status
__vxge_hw_fifo_reset(struct __vxge_hw_fifo
*fifo
)
3358 enum vxge_hw_status status
= VXGE_HW_OK
;
3360 __vxge_hw_fifo_abort(fifo
);
3361 status
= __vxge_hw_channel_reset(&fifo
->channel
);
3367 * __vxge_hw_fifo_delete - Removes the FIFO
3368 * This function freeup the memory pool and removes the FIFO
3370 static enum vxge_hw_status
3371 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle
*vp
)
3373 struct __vxge_hw_fifo
*fifo
= vp
->vpath
->fifoh
;
3375 __vxge_hw_fifo_abort(fifo
);
3378 __vxge_hw_mempool_destroy(fifo
->mempool
);
3380 vp
->vpath
->fifoh
= NULL
;
3382 __vxge_hw_channel_free(&fifo
->channel
);
3388 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3390 * This function is callback passed to __vxge_hw_mempool_create to create memory
3394 __vxge_hw_fifo_mempool_item_alloc(
3395 struct vxge_hw_mempool
*mempoolh
,
3396 u32 memblock_index
, struct vxge_hw_mempool_dma
*dma_object
,
3397 u32 index
, u32 is_last
)
3399 u32 memblock_item_idx
;
3400 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
3401 struct vxge_hw_fifo_txd
*txdp
=
3402 (struct vxge_hw_fifo_txd
*)mempoolh
->items_arr
[index
];
3403 struct __vxge_hw_fifo
*fifo
=
3404 (struct __vxge_hw_fifo
*)mempoolh
->userdata
;
3405 void *memblock
= mempoolh
->memblocks_arr
[memblock_index
];
3409 txdp
->host_control
= (u64
) (size_t)
3410 __vxge_hw_mempool_item_priv(mempoolh
, memblock_index
, txdp
,
3411 &memblock_item_idx
);
3413 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
3415 vxge_assert(txdl_priv
);
3417 fifo
->channel
.reserve_arr
[fifo
->channel
.reserve_ptr
- 1 - index
] = txdp
;
3419 /* pre-format HW's TxDL's private */
3420 txdl_priv
->dma_offset
= (char *)txdp
- (char *)memblock
;
3421 txdl_priv
->dma_addr
= dma_object
->addr
+ txdl_priv
->dma_offset
;
3422 txdl_priv
->dma_handle
= dma_object
->handle
;
3423 txdl_priv
->memblock
= memblock
;
3424 txdl_priv
->first_txdp
= txdp
;
3425 txdl_priv
->next_txdl_priv
= NULL
;
3426 txdl_priv
->alloc_frags
= 0;
3430 * __vxge_hw_fifo_create - Create a FIFO
3431 * This function creates FIFO and initializes it.
3433 static enum vxge_hw_status
3434 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle
*vp
,
3435 struct vxge_hw_fifo_attr
*attr
)
3437 enum vxge_hw_status status
= VXGE_HW_OK
;
3438 struct __vxge_hw_fifo
*fifo
;
3439 struct vxge_hw_fifo_config
*config
;
3440 u32 txdl_size
, txdl_per_memblock
;
3441 struct vxge_hw_mempool_cbs fifo_mp_callback
;
3442 struct __vxge_hw_virtualpath
*vpath
;
3444 if ((vp
== NULL
) || (attr
== NULL
)) {
3445 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3449 config
= &vpath
->hldev
->config
.vp_config
[vpath
->vp_id
].fifo
;
3451 txdl_size
= config
->max_frags
* sizeof(struct vxge_hw_fifo_txd
);
3453 txdl_per_memblock
= config
->memblock_size
/ txdl_size
;
3455 fifo
= (struct __vxge_hw_fifo
*)__vxge_hw_channel_allocate(vp
,
3456 VXGE_HW_CHANNEL_TYPE_FIFO
,
3457 config
->fifo_blocks
* txdl_per_memblock
,
3458 attr
->per_txdl_space
, attr
->userdata
);
3461 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3465 vpath
->fifoh
= fifo
;
3466 fifo
->nofl_db
= vpath
->nofl_db
;
3468 fifo
->vp_id
= vpath
->vp_id
;
3469 fifo
->vp_reg
= vpath
->vp_reg
;
3470 fifo
->stats
= &vpath
->sw_stats
->fifo_stats
;
3472 fifo
->config
= config
;
3474 /* apply "interrupts per txdl" attribute */
3475 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ
;
3476 fifo
->tim_tti_cfg1_saved
= vpath
->tim_tti_cfg1_saved
;
3477 fifo
->tim_tti_cfg3_saved
= vpath
->tim_tti_cfg3_saved
;
3479 if (fifo
->config
->intr
)
3480 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST
;
3482 fifo
->no_snoop_bits
= config
->no_snoop_bits
;
3485 * FIFO memory management strategy:
3487 * TxDL split into three independent parts:
3489 * - TxD HW private part
3490 * - driver private part
3492 * Adaptative memory allocation used. i.e. Memory allocated on
3493 * demand with the size which will fit into one memory block.
3494 * One memory block may contain more than one TxDL.
3496 * During "reserve" operations more memory can be allocated on demand
3497 * for example due to FIFO full condition.
3499 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3500 * routine which will essentially stop the channel and free resources.
3503 /* TxDL common private size == TxDL private + driver private */
3505 sizeof(struct __vxge_hw_fifo_txdl_priv
) + attr
->per_txdl_space
;
3506 fifo
->priv_size
= ((fifo
->priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
3507 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
3509 fifo
->per_txdl_space
= attr
->per_txdl_space
;
3511 /* recompute txdl size to be cacheline aligned */
3512 fifo
->txdl_size
= txdl_size
;
3513 fifo
->txdl_per_memblock
= txdl_per_memblock
;
3515 fifo
->txdl_term
= attr
->txdl_term
;
3516 fifo
->callback
= attr
->callback
;
3518 if (fifo
->txdl_per_memblock
== 0) {
3519 __vxge_hw_fifo_delete(vp
);
3520 status
= VXGE_HW_ERR_INVALID_BLOCK_SIZE
;
3524 fifo_mp_callback
.item_func_alloc
= __vxge_hw_fifo_mempool_item_alloc
;
3527 __vxge_hw_mempool_create(vpath
->hldev
,
3528 fifo
->config
->memblock_size
,
3531 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3532 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3536 if (fifo
->mempool
== NULL
) {
3537 __vxge_hw_fifo_delete(vp
);
3538 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3542 status
= __vxge_hw_channel_initialize(&fifo
->channel
);
3543 if (status
!= VXGE_HW_OK
) {
3544 __vxge_hw_fifo_delete(vp
);
3548 vxge_assert(fifo
->channel
.reserve_ptr
);
3554 * __vxge_hw_vpath_pci_read - Read the content of given address
3555 * in pci config space.
3556 * Read from the vpath pci config space.
3558 static enum vxge_hw_status
3559 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath
*vpath
,
3560 u32 phy_func_0
, u32 offset
, u32
*val
)
3563 enum vxge_hw_status status
= VXGE_HW_OK
;
3564 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
3566 val64
= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset
);
3569 val64
|= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0
;
3571 writeq(val64
, &vp_reg
->pci_config_access_cfg1
);
3573 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ
,
3574 &vp_reg
->pci_config_access_cfg2
);
3577 status
= __vxge_hw_device_register_poll(
3578 &vp_reg
->pci_config_access_cfg2
,
3579 VXGE_HW_INTR_MASK_ALL
, VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
3581 if (status
!= VXGE_HW_OK
)
3584 val64
= readq(&vp_reg
->pci_config_access_status
);
3586 if (val64
& VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR
) {
3587 status
= VXGE_HW_FAIL
;
3590 *val
= (u32
)vxge_bVALn(val64
, 32, 32);
3596 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3597 * @hldev: HW device.
3598 * @on_off: TRUE if flickering to be on, FALSE to be off
3600 * Flicker the link LED.
3603 vxge_hw_device_flick_link_led(struct __vxge_hw_device
*hldev
, u64 on_off
)
3605 struct __vxge_hw_virtualpath
*vpath
;
3606 u64 data0
, data1
= 0, steer_ctrl
= 0;
3607 enum vxge_hw_status status
;
3609 if (hldev
== NULL
) {
3610 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3614 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
3617 status
= vxge_hw_vpath_fw_api(vpath
,
3618 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL
,
3619 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
3620 0, &data0
, &data1
, &steer_ctrl
);
3626 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3629 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle
*vp
,
3630 u32 action
, u32 rts_table
, u32 offset
,
3631 u64
*data0
, u64
*data1
)
3633 enum vxge_hw_status status
;
3637 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3642 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
) ||
3644 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
) ||
3646 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK
) ||
3648 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY
)) {
3649 steer_ctrl
= VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL
;
3652 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3653 data0
, data1
, &steer_ctrl
);
3654 if (status
!= VXGE_HW_OK
)
3657 if ((rts_table
!= VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) &&
3659 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3666 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3669 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle
*vp
, u32 action
,
3670 u32 rts_table
, u32 offset
, u64 steer_data0
,
3673 u64 data0
, data1
= 0, steer_ctrl
= 0;
3674 enum vxge_hw_status status
;
3677 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3681 data0
= steer_data0
;
3683 if ((rts_table
== VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) ||
3685 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3686 data1
= steer_data1
;
3688 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3689 &data0
, &data1
, &steer_ctrl
);
3695 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3697 enum vxge_hw_status
vxge_hw_vpath_rts_rth_set(
3698 struct __vxge_hw_vpath_handle
*vp
,
3699 enum vxge_hw_rth_algoritms algorithm
,
3700 struct vxge_hw_rth_hash_types
*hash_type
,
3704 enum vxge_hw_status status
= VXGE_HW_OK
;
3707 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3711 status
= __vxge_hw_vpath_rts_table_get(vp
,
3712 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
3713 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3715 if (status
!= VXGE_HW_OK
)
3718 data0
&= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3719 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3721 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN
|
3722 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size
) |
3723 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm
);
3725 if (hash_type
->hash_type_tcpipv4_en
)
3726 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN
;
3728 if (hash_type
->hash_type_ipv4_en
)
3729 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN
;
3731 if (hash_type
->hash_type_tcpipv6_en
)
3732 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN
;
3734 if (hash_type
->hash_type_ipv6_en
)
3735 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN
;
3737 if (hash_type
->hash_type_tcpipv6ex_en
)
3739 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN
;
3741 if (hash_type
->hash_type_ipv6ex_en
)
3742 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN
;
3744 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0
))
3745 data0
&= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3747 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3749 status
= __vxge_hw_vpath_rts_table_set(vp
,
3750 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
,
3751 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3758 vxge_hw_rts_rth_data0_data1_get(u32 j
, u64
*data0
, u64
*data1
,
3759 u16 flag
, u8
*itable
)
3763 *data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j
)|
3764 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN
|
3765 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3770 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j
)|
3771 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN
|
3772 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3776 *data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j
)|
3777 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN
|
3778 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3783 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j
)|
3784 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN
|
3785 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3792 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3794 enum vxge_hw_status
vxge_hw_vpath_rts_rth_itable_set(
3795 struct __vxge_hw_vpath_handle
**vpath_handles
,
3801 u32 i
, j
, action
, rts_table
;
3805 enum vxge_hw_status status
= VXGE_HW_OK
;
3806 struct __vxge_hw_vpath_handle
*vp
= vpath_handles
[0];
3809 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3813 max_entries
= (((u32
)1) << itable_size
);
3815 if (vp
->vpath
->hldev
->config
.rth_it_type
3816 == VXGE_HW_RTH_IT_TYPE_SOLO_IT
) {
3817 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3819 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
;
3821 for (j
= 0; j
< max_entries
; j
++) {
3826 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3829 status
= __vxge_hw_vpath_rts_table_set(vpath_handles
[0],
3830 action
, rts_table
, j
, data0
, data1
);
3832 if (status
!= VXGE_HW_OK
)
3836 for (j
= 0; j
< max_entries
; j
++) {
3841 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN
|
3842 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3845 status
= __vxge_hw_vpath_rts_table_set(
3846 vpath_handles
[mtable
[itable
[j
]]], action
,
3847 rts_table
, j
, data0
, data1
);
3849 if (status
!= VXGE_HW_OK
)
3853 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3855 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
;
3856 for (i
= 0; i
< vpath_count
; i
++) {
3858 for (j
= 0; j
< max_entries
;) {
3863 while (j
< max_entries
) {
3864 if (mtable
[itable
[j
]] != i
) {
3868 vxge_hw_rts_rth_data0_data1_get(j
,
3869 &data0
, &data1
, 1, itable
);
3874 while (j
< max_entries
) {
3875 if (mtable
[itable
[j
]] != i
) {
3879 vxge_hw_rts_rth_data0_data1_get(j
,
3880 &data0
, &data1
, 2, itable
);
3885 while (j
< max_entries
) {
3886 if (mtable
[itable
[j
]] != i
) {
3890 vxge_hw_rts_rth_data0_data1_get(j
,
3891 &data0
, &data1
, 3, itable
);
3896 while (j
< max_entries
) {
3897 if (mtable
[itable
[j
]] != i
) {
3901 vxge_hw_rts_rth_data0_data1_get(j
,
3902 &data0
, &data1
, 4, itable
);
3908 status
= __vxge_hw_vpath_rts_table_set(
3913 if (status
!= VXGE_HW_OK
)
3924 * vxge_hw_vpath_check_leak - Check for memory leak
3925 * @ring: Handle to the ring object used for receive
3927 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3928 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3929 * Returns: VXGE_HW_FAIL, if leak has occurred.
3933 vxge_hw_vpath_check_leak(struct __vxge_hw_ring
*ring
)
3935 enum vxge_hw_status status
= VXGE_HW_OK
;
3936 u64 rxd_new_count
, rxd_spat
;
3941 rxd_new_count
= readl(&ring
->vp_reg
->prc_rxd_doorbell
);
3942 rxd_spat
= readq(&ring
->vp_reg
->prc_cfg6
);
3943 rxd_spat
= VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat
);
3945 if (rxd_new_count
>= rxd_spat
)
3946 status
= VXGE_HW_FAIL
;
3952 * __vxge_hw_vpath_mgmt_read
3953 * This routine reads the vpath_mgmt registers
3955 static enum vxge_hw_status
3956 __vxge_hw_vpath_mgmt_read(
3957 struct __vxge_hw_device
*hldev
,
3958 struct __vxge_hw_virtualpath
*vpath
)
3960 u32 i
, mtu
= 0, max_pyld
= 0;
3963 for (i
= 0; i
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
3965 val64
= readq(&vpath
->vpmgmt_reg
->
3966 rxmac_cfg0_port_vpmgmt_clone
[i
]);
3969 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3975 vpath
->max_mtu
= mtu
+ VXGE_HW_MAC_HEADER_MAX_SIZE
;
3977 val64
= readq(&vpath
->vpmgmt_reg
->xmac_vsport_choices_vp
);
3979 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
3980 if (val64
& vxge_mBIT(i
))
3981 vpath
->vsport_number
= i
;
3984 val64
= readq(&vpath
->vpmgmt_reg
->xgmac_gen_status_vpmgmt_clone
);
3986 if (val64
& VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK
)
3987 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_UP
);
3989 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_DOWN
);
3995 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3996 * This routine checks the vpath_rst_in_prog register to see if
3997 * adapter completed the reset process for the vpath
3999 static enum vxge_hw_status
4000 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath
*vpath
)
4002 enum vxge_hw_status status
;
4004 status
= __vxge_hw_device_register_poll(
4005 &vpath
->hldev
->common_reg
->vpath_rst_in_prog
,
4006 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4007 1 << (16 - vpath
->vp_id
)),
4008 vpath
->hldev
->config
.device_poll_millis
);
4014 * __vxge_hw_vpath_reset
4015 * This routine resets the vpath on the device
4017 static enum vxge_hw_status
4018 __vxge_hw_vpath_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4022 val64
= VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id
));
4024 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
4025 &hldev
->common_reg
->cmn_rsthdlr_cfg0
);
4031 * __vxge_hw_vpath_sw_reset
4032 * This routine resets the vpath structures
4034 static enum vxge_hw_status
4035 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4037 enum vxge_hw_status status
= VXGE_HW_OK
;
4038 struct __vxge_hw_virtualpath
*vpath
;
4040 vpath
= &hldev
->virtual_paths
[vp_id
];
4043 status
= __vxge_hw_ring_reset(vpath
->ringh
);
4044 if (status
!= VXGE_HW_OK
)
4049 status
= __vxge_hw_fifo_reset(vpath
->fifoh
);
4055 * __vxge_hw_vpath_prc_configure
4056 * This routine configures the prc registers of virtual path using the config
4060 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4063 struct __vxge_hw_virtualpath
*vpath
;
4064 struct vxge_hw_vp_config
*vp_config
;
4065 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4067 vpath
= &hldev
->virtual_paths
[vp_id
];
4068 vp_reg
= vpath
->vp_reg
;
4069 vp_config
= vpath
->vp_config
;
4071 if (vp_config
->ring
.enable
== VXGE_HW_RING_DISABLE
)
4074 val64
= readq(&vp_reg
->prc_cfg1
);
4075 val64
|= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE
;
4076 writeq(val64
, &vp_reg
->prc_cfg1
);
4078 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4079 val64
|= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN
;
4080 writeq(val64
, &vpath
->vp_reg
->prc_cfg6
);
4082 val64
= readq(&vp_reg
->prc_cfg7
);
4084 if (vpath
->vp_config
->ring
.scatter_mode
!=
4085 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
) {
4087 val64
&= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4089 switch (vpath
->vp_config
->ring
.scatter_mode
) {
4090 case VXGE_HW_RING_SCATTER_MODE_A
:
4091 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4092 VXGE_HW_PRC_CFG7_SCATTER_MODE_A
);
4094 case VXGE_HW_RING_SCATTER_MODE_B
:
4095 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4096 VXGE_HW_PRC_CFG7_SCATTER_MODE_B
);
4098 case VXGE_HW_RING_SCATTER_MODE_C
:
4099 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4100 VXGE_HW_PRC_CFG7_SCATTER_MODE_C
);
4105 writeq(val64
, &vp_reg
->prc_cfg7
);
4107 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4108 __vxge_hw_ring_first_block_address_get(
4109 vpath
->ringh
) >> 3), &vp_reg
->prc_cfg5
);
4111 val64
= readq(&vp_reg
->prc_cfg4
);
4112 val64
|= VXGE_HW_PRC_CFG4_IN_SVC
;
4113 val64
&= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4115 val64
|= VXGE_HW_PRC_CFG4_RING_MODE(
4116 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER
);
4118 if (hldev
->config
.rth_en
== VXGE_HW_RTH_DISABLE
)
4119 val64
|= VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4121 val64
&= ~VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4123 writeq(val64
, &vp_reg
->prc_cfg4
);
4127 * __vxge_hw_vpath_kdfc_configure
4128 * This routine configures the kdfc registers of virtual path using the
4131 static enum vxge_hw_status
4132 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4136 enum vxge_hw_status status
= VXGE_HW_OK
;
4137 struct __vxge_hw_virtualpath
*vpath
;
4138 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4140 vpath
= &hldev
->virtual_paths
[vp_id
];
4141 vp_reg
= vpath
->vp_reg
;
4142 status
= __vxge_hw_kdfc_swapper_set(hldev
->legacy_reg
, vp_reg
);
4144 if (status
!= VXGE_HW_OK
)
4147 val64
= readq(&vp_reg
->kdfc_drbl_triplet_total
);
4149 vpath
->max_kdfc_db
=
4150 (u32
)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4153 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4155 vpath
->max_nofl_db
= vpath
->max_kdfc_db
;
4157 if (vpath
->max_nofl_db
<
4158 ((vpath
->vp_config
->fifo
.memblock_size
/
4159 (vpath
->vp_config
->fifo
.max_frags
*
4160 sizeof(struct vxge_hw_fifo_txd
))) *
4161 vpath
->vp_config
->fifo
.fifo_blocks
)) {
4163 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
4165 val64
= VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4166 (vpath
->max_nofl_db
*2)-1);
4169 writeq(val64
, &vp_reg
->kdfc_fifo_trpl_partition
);
4171 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE
,
4172 &vp_reg
->kdfc_fifo_trpl_ctrl
);
4174 val64
= readq(&vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4176 val64
&= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4177 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4179 val64
|= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4180 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY
) |
4181 #ifndef __BIG_ENDIAN
4182 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN
|
4184 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4186 writeq(val64
, &vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4187 writeq((u64
)0, &vp_reg
->kdfc_trpl_fifo_0_wb_address
);
4189 vpath_stride
= readq(&hldev
->toc_reg
->toc_kdfc_vpath_stride
);
4192 (struct __vxge_hw_non_offload_db_wrapper __iomem
*)
4193 (hldev
->kdfc
+ (vp_id
*
4194 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4201 * __vxge_hw_vpath_mac_configure
4202 * This routine configures the mac of virtual path using the config passed
4204 static enum vxge_hw_status
4205 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4208 struct __vxge_hw_virtualpath
*vpath
;
4209 struct vxge_hw_vp_config
*vp_config
;
4210 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4212 vpath
= &hldev
->virtual_paths
[vp_id
];
4213 vp_reg
= vpath
->vp_reg
;
4214 vp_config
= vpath
->vp_config
;
4216 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4217 vpath
->vsport_number
), &vp_reg
->xmac_vsport_choice
);
4219 if (vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4221 val64
= readq(&vp_reg
->xmac_rpa_vcfg
);
4223 if (vp_config
->rpa_strip_vlan_tag
!=
4224 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) {
4225 if (vp_config
->rpa_strip_vlan_tag
)
4226 val64
|= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4228 val64
&= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4231 writeq(val64
, &vp_reg
->xmac_rpa_vcfg
);
4232 val64
= readq(&vp_reg
->rxmac_vcfg0
);
4234 if (vp_config
->mtu
!=
4235 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) {
4236 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4237 if ((vp_config
->mtu
+
4238 VXGE_HW_MAC_HEADER_MAX_SIZE
) < vpath
->max_mtu
)
4239 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4241 VXGE_HW_MAC_HEADER_MAX_SIZE
);
4243 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4247 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
4249 val64
= readq(&vp_reg
->rxmac_vcfg1
);
4251 val64
&= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4252 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
);
4254 if (hldev
->config
.rth_it_type
==
4255 VXGE_HW_RTH_IT_TYPE_MULTI_IT
) {
4256 val64
|= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4258 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
;
4261 writeq(val64
, &vp_reg
->rxmac_vcfg1
);
4267 * __vxge_hw_vpath_tim_configure
4268 * This routine configures the tim registers of virtual path using the config
4271 static enum vxge_hw_status
4272 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4275 struct __vxge_hw_virtualpath
*vpath
;
4276 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4277 struct vxge_hw_vp_config
*config
;
4279 vpath
= &hldev
->virtual_paths
[vp_id
];
4280 vp_reg
= vpath
->vp_reg
;
4281 config
= vpath
->vp_config
;
4283 writeq(0, &vp_reg
->tim_dest_addr
);
4284 writeq(0, &vp_reg
->tim_vpath_map
);
4285 writeq(0, &vp_reg
->tim_bitmap
);
4286 writeq(0, &vp_reg
->tim_remap
);
4288 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
)
4289 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4290 (vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4291 VXGE_HW_VPATH_INTR_RX
), &vp_reg
->tim_ring_assn
);
4293 val64
= readq(&vp_reg
->tim_pci_cfg
);
4294 val64
|= VXGE_HW_TIM_PCI_CFG_ADD_PAD
;
4295 writeq(val64
, &vp_reg
->tim_pci_cfg
);
4297 if (config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4299 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4301 if (config
->tti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4302 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4304 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4305 config
->tti
.btimer_val
);
4308 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4310 if (config
->tti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4311 if (config
->tti
.timer_ac_en
)
4312 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4314 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4317 if (config
->tti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4318 if (config
->tti
.timer_ci_en
)
4319 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4321 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4324 if (config
->tti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4325 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4326 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4327 config
->tti
.urange_a
);
4330 if (config
->tti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4331 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4332 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4333 config
->tti
.urange_b
);
4336 if (config
->tti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4337 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4338 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4339 config
->tti
.urange_c
);
4342 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4343 vpath
->tim_tti_cfg1_saved
= val64
;
4345 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4347 if (config
->tti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4348 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4349 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4353 if (config
->tti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4354 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4355 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4359 if (config
->tti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4360 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4361 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4365 if (config
->tti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4366 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4367 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4371 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4372 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4374 if (config
->tti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4375 if (config
->tti
.timer_ri_en
)
4376 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4378 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4381 if (config
->tti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4382 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4384 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4385 config
->tti
.rtimer_val
);
4388 if (config
->tti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4389 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4390 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4393 if (config
->tti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4394 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4396 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4397 config
->tti
.ltimer_val
);
4400 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4401 vpath
->tim_tti_cfg3_saved
= val64
;
4404 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4406 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4408 if (config
->rti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4409 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4411 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4412 config
->rti
.btimer_val
);
4415 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4417 if (config
->rti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4418 if (config
->rti
.timer_ac_en
)
4419 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4421 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4424 if (config
->rti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4425 if (config
->rti
.timer_ci_en
)
4426 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4428 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4431 if (config
->rti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4432 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4433 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4434 config
->rti
.urange_a
);
4437 if (config
->rti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4438 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4439 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4440 config
->rti
.urange_b
);
4443 if (config
->rti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4444 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4445 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4446 config
->rti
.urange_c
);
4449 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4450 vpath
->tim_rti_cfg1_saved
= val64
;
4452 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4454 if (config
->rti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4455 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4456 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4460 if (config
->rti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4461 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4462 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4466 if (config
->rti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4467 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4468 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4472 if (config
->rti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4473 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4474 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4478 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4479 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4481 if (config
->rti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4482 if (config
->rti
.timer_ri_en
)
4483 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4485 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4488 if (config
->rti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4489 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4491 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4492 config
->rti
.rtimer_val
);
4495 if (config
->rti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4496 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4497 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4500 if (config
->rti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4501 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4503 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4504 config
->rti
.ltimer_val
);
4507 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4508 vpath
->tim_rti_cfg3_saved
= val64
;
4512 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4513 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4514 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4515 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4516 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4517 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4519 val64
= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4520 val64
|= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4521 val64
|= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4522 writeq(val64
, &vp_reg
->tim_wrkld_clc
);
4528 * __vxge_hw_vpath_initialize
4529 * This routine is the final phase of init which initializes the
4530 * registers of the vpath using the configuration passed.
4532 static enum vxge_hw_status
4533 __vxge_hw_vpath_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4537 enum vxge_hw_status status
= VXGE_HW_OK
;
4538 struct __vxge_hw_virtualpath
*vpath
;
4539 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4541 vpath
= &hldev
->virtual_paths
[vp_id
];
4543 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4544 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4547 vp_reg
= vpath
->vp_reg
;
4549 status
= __vxge_hw_vpath_swapper_set(vpath
->vp_reg
);
4550 if (status
!= VXGE_HW_OK
)
4553 status
= __vxge_hw_vpath_mac_configure(hldev
, vp_id
);
4554 if (status
!= VXGE_HW_OK
)
4557 status
= __vxge_hw_vpath_kdfc_configure(hldev
, vp_id
);
4558 if (status
!= VXGE_HW_OK
)
4561 status
= __vxge_hw_vpath_tim_configure(hldev
, vp_id
);
4562 if (status
!= VXGE_HW_OK
)
4565 val64
= readq(&vp_reg
->rtdma_rd_optimization_ctrl
);
4567 /* Get MRRS value from device control */
4568 status
= __vxge_hw_vpath_pci_read(vpath
, 1, 0x78, &val32
);
4569 if (status
== VXGE_HW_OK
) {
4570 val32
= (val32
& VXGE_HW_PCI_EXP_DEVCTL_READRQ
) >> 12;
4572 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4574 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32
);
4576 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE
;
4579 val64
&= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4581 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4582 VXGE_HW_MAX_PAYLOAD_SIZE_512
);
4584 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN
;
4585 writeq(val64
, &vp_reg
->rtdma_rd_optimization_ctrl
);
4592 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4593 * This routine closes all channels it opened and freeup memory
4595 static void __vxge_hw_vp_terminate(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4597 struct __vxge_hw_virtualpath
*vpath
;
4599 vpath
= &hldev
->virtual_paths
[vp_id
];
4601 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
)
4604 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath
->hldev
->tim_int_mask0
,
4605 vpath
->hldev
->tim_int_mask1
, vpath
->vp_id
);
4606 hldev
->stats
.hw_dev_info_stats
.vpath_info
[vpath
->vp_id
] = NULL
;
4608 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4609 * work after the interface is brought down.
4611 spin_lock(&vpath
->lock
);
4612 vpath
->vp_open
= VXGE_HW_VP_NOT_OPEN
;
4613 spin_unlock(&vpath
->lock
);
4615 vpath
->vpmgmt_reg
= NULL
;
4616 vpath
->nofl_db
= NULL
;
4618 vpath
->vsport_number
= 0;
4619 vpath
->max_kdfc_db
= 0;
4620 vpath
->max_nofl_db
= 0;
4621 vpath
->ringh
= NULL
;
4622 vpath
->fifoh
= NULL
;
4623 memset(&vpath
->vpath_handles
, 0, sizeof(struct list_head
));
4624 vpath
->stats_block
= NULL
;
4625 vpath
->hw_stats
= NULL
;
4626 vpath
->hw_stats_sav
= NULL
;
4627 vpath
->sw_stats
= NULL
;
4634 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4635 * This routine is the initial phase of init which resets the vpath and
4636 * initializes the software support structures.
4638 static enum vxge_hw_status
4639 __vxge_hw_vp_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
,
4640 struct vxge_hw_vp_config
*config
)
4642 struct __vxge_hw_virtualpath
*vpath
;
4643 enum vxge_hw_status status
= VXGE_HW_OK
;
4645 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4646 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4650 vpath
= &hldev
->virtual_paths
[vp_id
];
4652 spin_lock_init(&vpath
->lock
);
4653 vpath
->vp_id
= vp_id
;
4654 vpath
->vp_open
= VXGE_HW_VP_OPEN
;
4655 vpath
->hldev
= hldev
;
4656 vpath
->vp_config
= config
;
4657 vpath
->vp_reg
= hldev
->vpath_reg
[vp_id
];
4658 vpath
->vpmgmt_reg
= hldev
->vpmgmt_reg
[vp_id
];
4660 __vxge_hw_vpath_reset(hldev
, vp_id
);
4662 status
= __vxge_hw_vpath_reset_check(vpath
);
4663 if (status
!= VXGE_HW_OK
) {
4664 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4668 status
= __vxge_hw_vpath_mgmt_read(hldev
, vpath
);
4669 if (status
!= VXGE_HW_OK
) {
4670 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4674 INIT_LIST_HEAD(&vpath
->vpath_handles
);
4676 vpath
->sw_stats
= &hldev
->stats
.sw_dev_info_stats
.vpath_info
[vp_id
];
4678 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev
->tim_int_mask0
,
4679 hldev
->tim_int_mask1
, vp_id
);
4681 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
4682 if (status
!= VXGE_HW_OK
)
4683 __vxge_hw_vp_terminate(hldev
, vp_id
);
4689 * vxge_hw_vpath_mtu_set - Set MTU.
4690 * Set new MTU value. Example, to use jumbo frames:
4691 * vxge_hw_vpath_mtu_set(my_device, 9600);
4694 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle
*vp
, u32 new_mtu
)
4697 enum vxge_hw_status status
= VXGE_HW_OK
;
4698 struct __vxge_hw_virtualpath
*vpath
;
4701 status
= VXGE_HW_ERR_INVALID_HANDLE
;
4706 new_mtu
+= VXGE_HW_MAC_HEADER_MAX_SIZE
;
4708 if ((new_mtu
< VXGE_HW_MIN_MTU
) || (new_mtu
> vpath
->max_mtu
))
4709 status
= VXGE_HW_ERR_INVALID_MTU_SIZE
;
4711 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
4713 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4714 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu
);
4716 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
4718 vpath
->vp_config
->mtu
= new_mtu
- VXGE_HW_MAC_HEADER_MAX_SIZE
;
4725 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4726 * Enable the DMA vpath statistics. The function is to be called to re-enable
4727 * the adapter to update stats into the host memory
4729 static enum vxge_hw_status
4730 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle
*vp
)
4732 enum vxge_hw_status status
= VXGE_HW_OK
;
4733 struct __vxge_hw_virtualpath
*vpath
;
4737 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4738 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4742 memcpy(vpath
->hw_stats_sav
, vpath
->hw_stats
,
4743 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4745 status
= __vxge_hw_vpath_stats_get(vpath
, vpath
->hw_stats
);
4751 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4752 * This function allocates a block from block pool or from the system
4754 static struct __vxge_hw_blockpool_entry
*
4755 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device
*devh
, u32 size
)
4757 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
4758 struct __vxge_hw_blockpool
*blockpool
;
4760 blockpool
= &devh
->block_pool
;
4762 if (size
== blockpool
->block_size
) {
4764 if (!list_empty(&blockpool
->free_block_list
))
4765 entry
= (struct __vxge_hw_blockpool_entry
*)
4766 list_first_entry(&blockpool
->free_block_list
,
4767 struct __vxge_hw_blockpool_entry
,
4770 if (entry
!= NULL
) {
4771 list_del(&entry
->item
);
4772 blockpool
->pool_size
--;
4777 __vxge_hw_blockpool_blocks_add(blockpool
);
4783 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4784 * This function is used to open access to virtual path of an
4785 * adapter for offload, GRO operations. This function returns
4789 vxge_hw_vpath_open(struct __vxge_hw_device
*hldev
,
4790 struct vxge_hw_vpath_attr
*attr
,
4791 struct __vxge_hw_vpath_handle
**vpath_handle
)
4793 struct __vxge_hw_virtualpath
*vpath
;
4794 struct __vxge_hw_vpath_handle
*vp
;
4795 enum vxge_hw_status status
;
4797 vpath
= &hldev
->virtual_paths
[attr
->vp_id
];
4799 if (vpath
->vp_open
== VXGE_HW_VP_OPEN
) {
4800 status
= VXGE_HW_ERR_INVALID_STATE
;
4801 goto vpath_open_exit1
;
4804 status
= __vxge_hw_vp_initialize(hldev
, attr
->vp_id
,
4805 &hldev
->config
.vp_config
[attr
->vp_id
]);
4806 if (status
!= VXGE_HW_OK
)
4807 goto vpath_open_exit1
;
4809 vp
= vzalloc(sizeof(struct __vxge_hw_vpath_handle
));
4811 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4812 goto vpath_open_exit2
;
4817 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4818 status
= __vxge_hw_fifo_create(vp
, &attr
->fifo_attr
);
4819 if (status
!= VXGE_HW_OK
)
4820 goto vpath_open_exit6
;
4823 if (vpath
->vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4824 status
= __vxge_hw_ring_create(vp
, &attr
->ring_attr
);
4825 if (status
!= VXGE_HW_OK
)
4826 goto vpath_open_exit7
;
4828 __vxge_hw_vpath_prc_configure(hldev
, attr
->vp_id
);
4831 vpath
->fifoh
->tx_intr_num
=
4832 (attr
->vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4833 VXGE_HW_VPATH_INTR_TX
;
4835 vpath
->stats_block
= __vxge_hw_blockpool_block_allocate(hldev
,
4836 VXGE_HW_BLOCK_SIZE
);
4837 if (vpath
->stats_block
== NULL
) {
4838 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4839 goto vpath_open_exit8
;
4842 vpath
->hw_stats
= vpath
->stats_block
->memblock
;
4843 memset(vpath
->hw_stats
, 0,
4844 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4846 hldev
->stats
.hw_dev_info_stats
.vpath_info
[attr
->vp_id
] =
4849 vpath
->hw_stats_sav
=
4850 &hldev
->stats
.hw_dev_info_stats
.vpath_info_sav
[attr
->vp_id
];
4851 memset(vpath
->hw_stats_sav
, 0,
4852 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4854 writeq(vpath
->stats_block
->dma_addr
, &vpath
->vp_reg
->stats_cfg
);
4856 status
= vxge_hw_vpath_stats_enable(vp
);
4857 if (status
!= VXGE_HW_OK
)
4858 goto vpath_open_exit8
;
4860 list_add(&vp
->item
, &vpath
->vpath_handles
);
4862 hldev
->vpaths_deployed
|= vxge_mBIT(vpath
->vp_id
);
4866 attr
->fifo_attr
.userdata
= vpath
->fifoh
;
4867 attr
->ring_attr
.userdata
= vpath
->ringh
;
4872 if (vpath
->ringh
!= NULL
)
4873 __vxge_hw_ring_delete(vp
);
4875 if (vpath
->fifoh
!= NULL
)
4876 __vxge_hw_fifo_delete(vp
);
4880 __vxge_hw_vp_terminate(hldev
, attr
->vp_id
);
4887 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4889 * @vp: Handle got from previous vpath open
4891 * This function is used to close access to virtual path opened
4894 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle
*vp
)
4896 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
4897 struct __vxge_hw_ring
*ring
= vpath
->ringh
;
4898 struct vxgedev
*vdev
= netdev_priv(vpath
->hldev
->ndev
);
4899 u64 new_count
, val64
, val164
;
4902 new_count
= readq(&vpath
->vp_reg
->rxdmem_size
);
4903 new_count
&= 0x1fff;
4905 new_count
= ring
->config
->ring_blocks
* VXGE_HW_BLOCK_SIZE
/ 8;
4907 val164
= VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count
);
4909 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164
),
4910 &vpath
->vp_reg
->prc_rxd_doorbell
);
4911 readl(&vpath
->vp_reg
->prc_rxd_doorbell
);
4914 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4915 val64
= VXGE_HW_PRC_CFG6_RXD_SPAT(val64
);
4919 * Each RxD is of 4 qwords
4921 new_count
-= (val64
+ 1);
4922 val64
= min(val164
, new_count
) / 4;
4924 ring
->rxds_limit
= min(ring
->rxds_limit
, val64
);
4925 if (ring
->rxds_limit
< 4)
4926 ring
->rxds_limit
= 4;
4930 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4932 * @entry: Entry of block to be freed
4934 * This function frees a block from block pool
4937 __vxge_hw_blockpool_block_free(struct __vxge_hw_device
*devh
,
4938 struct __vxge_hw_blockpool_entry
*entry
)
4940 struct __vxge_hw_blockpool
*blockpool
;
4942 blockpool
= &devh
->block_pool
;
4944 if (entry
->length
== blockpool
->block_size
) {
4945 list_add(&entry
->item
, &blockpool
->free_block_list
);
4946 blockpool
->pool_size
++;
4949 __vxge_hw_blockpool_blocks_remove(blockpool
);
4953 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4954 * This function is used to close access to virtual path opened
4957 enum vxge_hw_status
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle
*vp
)
4959 struct __vxge_hw_virtualpath
*vpath
= NULL
;
4960 struct __vxge_hw_device
*devh
= NULL
;
4961 u32 vp_id
= vp
->vpath
->vp_id
;
4962 u32 is_empty
= TRUE
;
4963 enum vxge_hw_status status
= VXGE_HW_OK
;
4966 devh
= vpath
->hldev
;
4968 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4969 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4970 goto vpath_close_exit
;
4973 list_del(&vp
->item
);
4975 if (!list_empty(&vpath
->vpath_handles
)) {
4976 list_add(&vp
->item
, &vpath
->vpath_handles
);
4981 status
= VXGE_HW_FAIL
;
4982 goto vpath_close_exit
;
4985 devh
->vpaths_deployed
&= ~vxge_mBIT(vp_id
);
4987 if (vpath
->ringh
!= NULL
)
4988 __vxge_hw_ring_delete(vp
);
4990 if (vpath
->fifoh
!= NULL
)
4991 __vxge_hw_fifo_delete(vp
);
4993 if (vpath
->stats_block
!= NULL
)
4994 __vxge_hw_blockpool_block_free(devh
, vpath
->stats_block
);
4998 __vxge_hw_vp_terminate(devh
, vp_id
);
5005 * vxge_hw_vpath_reset - Resets vpath
5006 * This function is used to request a reset of vpath
5008 enum vxge_hw_status
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle
*vp
)
5010 enum vxge_hw_status status
;
5012 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
5014 vp_id
= vpath
->vp_id
;
5016 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5017 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5021 status
= __vxge_hw_vpath_reset(vpath
->hldev
, vp_id
);
5022 if (status
== VXGE_HW_OK
)
5023 vpath
->sw_stats
->soft_reset_cnt
++;
5029 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5030 * This function poll's for the vpath reset completion and re initializes
5034 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle
*vp
)
5036 struct __vxge_hw_virtualpath
*vpath
= NULL
;
5037 enum vxge_hw_status status
;
5038 struct __vxge_hw_device
*hldev
;
5041 vp_id
= vp
->vpath
->vp_id
;
5043 hldev
= vpath
->hldev
;
5045 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5046 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5050 status
= __vxge_hw_vpath_reset_check(vpath
);
5051 if (status
!= VXGE_HW_OK
)
5054 status
= __vxge_hw_vpath_sw_reset(hldev
, vp_id
);
5055 if (status
!= VXGE_HW_OK
)
5058 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
5059 if (status
!= VXGE_HW_OK
)
5062 if (vpath
->ringh
!= NULL
)
5063 __vxge_hw_vpath_prc_configure(hldev
, vp_id
);
5065 memset(vpath
->hw_stats
, 0,
5066 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5068 memset(vpath
->hw_stats_sav
, 0,
5069 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5071 writeq(vpath
->stats_block
->dma_addr
,
5072 &vpath
->vp_reg
->stats_cfg
);
5074 status
= vxge_hw_vpath_stats_enable(vp
);
5081 * vxge_hw_vpath_enable - Enable vpath.
5082 * This routine clears the vpath reset thereby enabling a vpath
5083 * to start forwarding frames and generating interrupts.
5086 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle
*vp
)
5088 struct __vxge_hw_device
*hldev
;
5091 hldev
= vp
->vpath
->hldev
;
5093 val64
= VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5094 1 << (16 - vp
->vpath
->vp_id
));
5096 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
5097 &hldev
->common_reg
->cmn_rsthdlr_cfg1
);