1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2016-2018 Netronome Systems, Inc. */
4 #define pr_fmt(fmt) "NFP net bpf: " fmt
8 #include <linux/filter.h>
9 #include <linux/kernel.h>
10 #include <linux/pkt_cls.h>
11 #include <linux/reciprocal_div.h>
12 #include <linux/unistd.h>
15 #include "../nfp_asm.h"
16 #include "../nfp_net_ctrl.h"
18 /* --- NFP prog --- */
19 /* Foreach "multiple" entries macros provide pos and next<n> pointers.
20 * It's safe to modify the next pointers (but not pos).
22 #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \
23 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
24 next = list_next_entry(pos, l); \
25 &(nfp_prog)->insns != &pos->l && \
26 &(nfp_prog)->insns != &next->l; \
27 pos = nfp_meta_next(pos), \
28 next = nfp_meta_next(pos))
30 #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \
31 for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \
32 next = list_next_entry(pos, l), \
33 next2 = list_next_entry(next, l); \
34 &(nfp_prog)->insns != &pos->l && \
35 &(nfp_prog)->insns != &next->l && \
36 &(nfp_prog)->insns != &next2->l; \
37 pos = nfp_meta_next(pos), \
38 next = nfp_meta_next(pos), \
39 next2 = nfp_meta_next(next))
42 nfp_meta_has_prev(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
44 return meta
->l
.prev
!= &nfp_prog
->insns
;
47 static void nfp_prog_push(struct nfp_prog
*nfp_prog
, u64 insn
)
49 if (nfp_prog
->__prog_alloc_len
/ sizeof(u64
) == nfp_prog
->prog_len
) {
50 pr_warn("instruction limit reached (%u NFP instructions)\n",
52 nfp_prog
->error
= -ENOSPC
;
56 nfp_prog
->prog
[nfp_prog
->prog_len
] = insn
;
60 static unsigned int nfp_prog_current_offset(struct nfp_prog
*nfp_prog
)
62 return nfp_prog
->prog_len
;
66 nfp_prog_confirm_current_offset(struct nfp_prog
*nfp_prog
, unsigned int off
)
68 /* If there is a recorded error we may have dropped instructions;
69 * that doesn't have to be due to translator bug, and the translation
70 * will fail anyway, so just return OK.
74 return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog
) != off
);
77 /* --- Emitters --- */
79 __emit_cmd(struct nfp_prog
*nfp_prog
, enum cmd_tgt_map op
,
80 u8 mode
, u8 xfer
, u8 areg
, u8 breg
, u8 size
, enum cmd_ctx_swap ctx
,
85 insn
= FIELD_PREP(OP_CMD_A_SRC
, areg
) |
86 FIELD_PREP(OP_CMD_CTX
, ctx
) |
87 FIELD_PREP(OP_CMD_B_SRC
, breg
) |
88 FIELD_PREP(OP_CMD_TOKEN
, cmd_tgt_act
[op
].token
) |
89 FIELD_PREP(OP_CMD_XFER
, xfer
) |
90 FIELD_PREP(OP_CMD_CNT
, size
) |
91 FIELD_PREP(OP_CMD_SIG
, ctx
!= CMD_CTX_NO_SWAP
) |
92 FIELD_PREP(OP_CMD_TGT_CMD
, cmd_tgt_act
[op
].tgt_cmd
) |
93 FIELD_PREP(OP_CMD_INDIR
, indir
) |
94 FIELD_PREP(OP_CMD_MODE
, mode
);
96 nfp_prog_push(nfp_prog
, insn
);
100 emit_cmd_any(struct nfp_prog
*nfp_prog
, enum cmd_tgt_map op
, u8 mode
, u8 xfer
,
101 swreg lreg
, swreg rreg
, u8 size
, enum cmd_ctx_swap ctx
, bool indir
)
103 struct nfp_insn_re_regs reg
;
106 err
= swreg_to_restricted(reg_none(), lreg
, rreg
, ®
, false);
108 nfp_prog
->error
= err
;
112 pr_err("cmd can't swap arguments\n");
113 nfp_prog
->error
= -EFAULT
;
116 if (reg
.dst_lmextn
|| reg
.src_lmextn
) {
117 pr_err("cmd can't use LMextn\n");
118 nfp_prog
->error
= -EFAULT
;
122 __emit_cmd(nfp_prog
, op
, mode
, xfer
, reg
.areg
, reg
.breg
, size
, ctx
,
127 emit_cmd(struct nfp_prog
*nfp_prog
, enum cmd_tgt_map op
, u8 mode
, u8 xfer
,
128 swreg lreg
, swreg rreg
, u8 size
, enum cmd_ctx_swap ctx
)
130 emit_cmd_any(nfp_prog
, op
, mode
, xfer
, lreg
, rreg
, size
, ctx
, false);
134 emit_cmd_indir(struct nfp_prog
*nfp_prog
, enum cmd_tgt_map op
, u8 mode
, u8 xfer
,
135 swreg lreg
, swreg rreg
, u8 size
, enum cmd_ctx_swap ctx
)
137 emit_cmd_any(nfp_prog
, op
, mode
, xfer
, lreg
, rreg
, size
, ctx
, true);
141 __emit_br(struct nfp_prog
*nfp_prog
, enum br_mask mask
, enum br_ev_pip ev_pip
,
142 enum br_ctx_signal_state css
, u16 addr
, u8 defer
)
144 u16 addr_lo
, addr_hi
;
147 addr_lo
= addr
& (OP_BR_ADDR_LO
>> __bf_shf(OP_BR_ADDR_LO
));
148 addr_hi
= addr
!= addr_lo
;
151 FIELD_PREP(OP_BR_MASK
, mask
) |
152 FIELD_PREP(OP_BR_EV_PIP
, ev_pip
) |
153 FIELD_PREP(OP_BR_CSS
, css
) |
154 FIELD_PREP(OP_BR_DEFBR
, defer
) |
155 FIELD_PREP(OP_BR_ADDR_LO
, addr_lo
) |
156 FIELD_PREP(OP_BR_ADDR_HI
, addr_hi
);
158 nfp_prog_push(nfp_prog
, insn
);
162 emit_br_relo(struct nfp_prog
*nfp_prog
, enum br_mask mask
, u16 addr
, u8 defer
,
163 enum nfp_relo_type relo
)
165 if (mask
== BR_UNC
&& defer
> 2) {
166 pr_err("BUG: branch defer out of bounds %d\n", defer
);
167 nfp_prog
->error
= -EFAULT
;
171 __emit_br(nfp_prog
, mask
,
172 mask
!= BR_UNC
? BR_EV_PIP_COND
: BR_EV_PIP_UNCOND
,
173 BR_CSS_NONE
, addr
, defer
);
175 nfp_prog
->prog
[nfp_prog
->prog_len
- 1] |=
176 FIELD_PREP(OP_RELO_TYPE
, relo
);
180 emit_br(struct nfp_prog
*nfp_prog
, enum br_mask mask
, u16 addr
, u8 defer
)
182 emit_br_relo(nfp_prog
, mask
, addr
, defer
, RELO_BR_REL
);
186 __emit_br_bit(struct nfp_prog
*nfp_prog
, u16 areg
, u16 breg
, u16 addr
, u8 defer
,
187 bool set
, bool src_lmextn
)
189 u16 addr_lo
, addr_hi
;
192 addr_lo
= addr
& (OP_BR_BIT_ADDR_LO
>> __bf_shf(OP_BR_BIT_ADDR_LO
));
193 addr_hi
= addr
!= addr_lo
;
195 insn
= OP_BR_BIT_BASE
|
196 FIELD_PREP(OP_BR_BIT_A_SRC
, areg
) |
197 FIELD_PREP(OP_BR_BIT_B_SRC
, breg
) |
198 FIELD_PREP(OP_BR_BIT_BV
, set
) |
199 FIELD_PREP(OP_BR_BIT_DEFBR
, defer
) |
200 FIELD_PREP(OP_BR_BIT_ADDR_LO
, addr_lo
) |
201 FIELD_PREP(OP_BR_BIT_ADDR_HI
, addr_hi
) |
202 FIELD_PREP(OP_BR_BIT_SRC_LMEXTN
, src_lmextn
);
204 nfp_prog_push(nfp_prog
, insn
);
208 emit_br_bit_relo(struct nfp_prog
*nfp_prog
, swreg src
, u8 bit
, u16 addr
,
209 u8 defer
, bool set
, enum nfp_relo_type relo
)
211 struct nfp_insn_re_regs reg
;
214 /* NOTE: The bit to test is specified as an rotation amount, such that
215 * the bit to test will be placed on the MSB of the result when
216 * doing a rotate right. For bit X, we need right rotate X + 1.
220 err
= swreg_to_restricted(reg_none(), src
, reg_imm(bit
), ®
, false);
222 nfp_prog
->error
= err
;
226 __emit_br_bit(nfp_prog
, reg
.areg
, reg
.breg
, addr
, defer
, set
,
229 nfp_prog
->prog
[nfp_prog
->prog_len
- 1] |=
230 FIELD_PREP(OP_RELO_TYPE
, relo
);
234 emit_br_bset(struct nfp_prog
*nfp_prog
, swreg src
, u8 bit
, u16 addr
, u8 defer
)
236 emit_br_bit_relo(nfp_prog
, src
, bit
, addr
, defer
, true, RELO_BR_REL
);
240 __emit_br_alu(struct nfp_prog
*nfp_prog
, u16 areg
, u16 breg
, u16 imm_hi
,
241 u8 defer
, bool dst_lmextn
, bool src_lmextn
)
245 insn
= OP_BR_ALU_BASE
|
246 FIELD_PREP(OP_BR_ALU_A_SRC
, areg
) |
247 FIELD_PREP(OP_BR_ALU_B_SRC
, breg
) |
248 FIELD_PREP(OP_BR_ALU_DEFBR
, defer
) |
249 FIELD_PREP(OP_BR_ALU_IMM_HI
, imm_hi
) |
250 FIELD_PREP(OP_BR_ALU_SRC_LMEXTN
, src_lmextn
) |
251 FIELD_PREP(OP_BR_ALU_DST_LMEXTN
, dst_lmextn
);
253 nfp_prog_push(nfp_prog
, insn
);
256 static void emit_rtn(struct nfp_prog
*nfp_prog
, swreg base
, u8 defer
)
258 struct nfp_insn_ur_regs reg
;
261 err
= swreg_to_unrestricted(reg_none(), base
, reg_imm(0), ®
);
263 nfp_prog
->error
= err
;
267 __emit_br_alu(nfp_prog
, reg
.areg
, reg
.breg
, 0, defer
, reg
.dst_lmextn
,
272 __emit_immed(struct nfp_prog
*nfp_prog
, u16 areg
, u16 breg
, u16 imm_hi
,
273 enum immed_width width
, bool invert
,
274 enum immed_shift shift
, bool wr_both
,
275 bool dst_lmextn
, bool src_lmextn
)
279 insn
= OP_IMMED_BASE
|
280 FIELD_PREP(OP_IMMED_A_SRC
, areg
) |
281 FIELD_PREP(OP_IMMED_B_SRC
, breg
) |
282 FIELD_PREP(OP_IMMED_IMM
, imm_hi
) |
283 FIELD_PREP(OP_IMMED_WIDTH
, width
) |
284 FIELD_PREP(OP_IMMED_INV
, invert
) |
285 FIELD_PREP(OP_IMMED_SHIFT
, shift
) |
286 FIELD_PREP(OP_IMMED_WR_AB
, wr_both
) |
287 FIELD_PREP(OP_IMMED_SRC_LMEXTN
, src_lmextn
) |
288 FIELD_PREP(OP_IMMED_DST_LMEXTN
, dst_lmextn
);
290 nfp_prog_push(nfp_prog
, insn
);
294 emit_immed(struct nfp_prog
*nfp_prog
, swreg dst
, u16 imm
,
295 enum immed_width width
, bool invert
, enum immed_shift shift
)
297 struct nfp_insn_ur_regs reg
;
300 if (swreg_type(dst
) == NN_REG_IMM
) {
301 nfp_prog
->error
= -EFAULT
;
305 err
= swreg_to_unrestricted(dst
, dst
, reg_imm(imm
& 0xff), ®
);
307 nfp_prog
->error
= err
;
311 /* Use reg.dst when destination is No-Dest. */
312 __emit_immed(nfp_prog
,
313 swreg_type(dst
) == NN_REG_NONE
? reg
.dst
: reg
.areg
,
314 reg
.breg
, imm
>> 8, width
, invert
, shift
,
315 reg
.wr_both
, reg
.dst_lmextn
, reg
.src_lmextn
);
319 __emit_shf(struct nfp_prog
*nfp_prog
, u16 dst
, enum alu_dst_ab dst_ab
,
320 enum shf_sc sc
, u8 shift
,
321 u16 areg
, enum shf_op op
, u16 breg
, bool i8
, bool sw
, bool wr_both
,
322 bool dst_lmextn
, bool src_lmextn
)
326 if (!FIELD_FIT(OP_SHF_SHIFT
, shift
)) {
327 nfp_prog
->error
= -EFAULT
;
331 /* NFP shift instruction has something special. If shift direction is
332 * left then shift amount of 1 to 31 is specified as 32 minus the amount
335 * But no need to do this for indirect shift which has shift amount be
336 * 0. Even after we do this subtraction, shift amount 0 will be turned
337 * into 32 which will eventually be encoded the same as 0 because only
338 * low 5 bits are encoded, but shift amount be 32 will fail the
339 * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of
342 if (sc
== SHF_SC_L_SHF
&& shift
)
346 FIELD_PREP(OP_SHF_A_SRC
, areg
) |
347 FIELD_PREP(OP_SHF_SC
, sc
) |
348 FIELD_PREP(OP_SHF_B_SRC
, breg
) |
349 FIELD_PREP(OP_SHF_I8
, i8
) |
350 FIELD_PREP(OP_SHF_SW
, sw
) |
351 FIELD_PREP(OP_SHF_DST
, dst
) |
352 FIELD_PREP(OP_SHF_SHIFT
, shift
) |
353 FIELD_PREP(OP_SHF_OP
, op
) |
354 FIELD_PREP(OP_SHF_DST_AB
, dst_ab
) |
355 FIELD_PREP(OP_SHF_WR_AB
, wr_both
) |
356 FIELD_PREP(OP_SHF_SRC_LMEXTN
, src_lmextn
) |
357 FIELD_PREP(OP_SHF_DST_LMEXTN
, dst_lmextn
);
359 nfp_prog_push(nfp_prog
, insn
);
363 emit_shf(struct nfp_prog
*nfp_prog
, swreg dst
,
364 swreg lreg
, enum shf_op op
, swreg rreg
, enum shf_sc sc
, u8 shift
)
366 struct nfp_insn_re_regs reg
;
369 err
= swreg_to_restricted(dst
, lreg
, rreg
, ®
, true);
371 nfp_prog
->error
= err
;
375 __emit_shf(nfp_prog
, reg
.dst
, reg
.dst_ab
, sc
, shift
,
376 reg
.areg
, op
, reg
.breg
, reg
.i8
, reg
.swap
, reg
.wr_both
,
377 reg
.dst_lmextn
, reg
.src_lmextn
);
381 emit_shf_indir(struct nfp_prog
*nfp_prog
, swreg dst
,
382 swreg lreg
, enum shf_op op
, swreg rreg
, enum shf_sc sc
)
384 if (sc
== SHF_SC_R_ROT
) {
385 pr_err("indirect shift is not allowed on rotation\n");
386 nfp_prog
->error
= -EFAULT
;
390 emit_shf(nfp_prog
, dst
, lreg
, op
, rreg
, sc
, 0);
394 __emit_alu(struct nfp_prog
*nfp_prog
, u16 dst
, enum alu_dst_ab dst_ab
,
395 u16 areg
, enum alu_op op
, u16 breg
, bool swap
, bool wr_both
,
396 bool dst_lmextn
, bool src_lmextn
)
401 FIELD_PREP(OP_ALU_A_SRC
, areg
) |
402 FIELD_PREP(OP_ALU_B_SRC
, breg
) |
403 FIELD_PREP(OP_ALU_DST
, dst
) |
404 FIELD_PREP(OP_ALU_SW
, swap
) |
405 FIELD_PREP(OP_ALU_OP
, op
) |
406 FIELD_PREP(OP_ALU_DST_AB
, dst_ab
) |
407 FIELD_PREP(OP_ALU_WR_AB
, wr_both
) |
408 FIELD_PREP(OP_ALU_SRC_LMEXTN
, src_lmextn
) |
409 FIELD_PREP(OP_ALU_DST_LMEXTN
, dst_lmextn
);
411 nfp_prog_push(nfp_prog
, insn
);
415 emit_alu(struct nfp_prog
*nfp_prog
, swreg dst
,
416 swreg lreg
, enum alu_op op
, swreg rreg
)
418 struct nfp_insn_ur_regs reg
;
421 err
= swreg_to_unrestricted(dst
, lreg
, rreg
, ®
);
423 nfp_prog
->error
= err
;
427 __emit_alu(nfp_prog
, reg
.dst
, reg
.dst_ab
,
428 reg
.areg
, op
, reg
.breg
, reg
.swap
, reg
.wr_both
,
429 reg
.dst_lmextn
, reg
.src_lmextn
);
433 __emit_mul(struct nfp_prog
*nfp_prog
, enum alu_dst_ab dst_ab
, u16 areg
,
434 enum mul_type type
, enum mul_step step
, u16 breg
, bool swap
,
435 bool wr_both
, bool dst_lmextn
, bool src_lmextn
)
440 FIELD_PREP(OP_MUL_A_SRC
, areg
) |
441 FIELD_PREP(OP_MUL_B_SRC
, breg
) |
442 FIELD_PREP(OP_MUL_STEP
, step
) |
443 FIELD_PREP(OP_MUL_DST_AB
, dst_ab
) |
444 FIELD_PREP(OP_MUL_SW
, swap
) |
445 FIELD_PREP(OP_MUL_TYPE
, type
) |
446 FIELD_PREP(OP_MUL_WR_AB
, wr_both
) |
447 FIELD_PREP(OP_MUL_SRC_LMEXTN
, src_lmextn
) |
448 FIELD_PREP(OP_MUL_DST_LMEXTN
, dst_lmextn
);
450 nfp_prog_push(nfp_prog
, insn
);
454 emit_mul(struct nfp_prog
*nfp_prog
, swreg lreg
, enum mul_type type
,
455 enum mul_step step
, swreg rreg
)
457 struct nfp_insn_ur_regs reg
;
461 if (type
== MUL_TYPE_START
&& step
!= MUL_STEP_NONE
) {
462 nfp_prog
->error
= -EINVAL
;
466 if (step
== MUL_LAST
|| step
== MUL_LAST_2
) {
467 /* When type is step and step Number is LAST or LAST2, left
468 * source is used as destination.
470 err
= swreg_to_unrestricted(lreg
, reg_none(), rreg
, ®
);
473 err
= swreg_to_unrestricted(reg_none(), lreg
, rreg
, ®
);
478 nfp_prog
->error
= err
;
482 __emit_mul(nfp_prog
, reg
.dst_ab
, areg
, type
, step
, reg
.breg
, reg
.swap
,
483 reg
.wr_both
, reg
.dst_lmextn
, reg
.src_lmextn
);
487 __emit_ld_field(struct nfp_prog
*nfp_prog
, enum shf_sc sc
,
488 u8 areg
, u8 bmask
, u8 breg
, u8 shift
, bool imm8
,
489 bool zero
, bool swap
, bool wr_both
,
490 bool dst_lmextn
, bool src_lmextn
)
495 FIELD_PREP(OP_LDF_A_SRC
, areg
) |
496 FIELD_PREP(OP_LDF_SC
, sc
) |
497 FIELD_PREP(OP_LDF_B_SRC
, breg
) |
498 FIELD_PREP(OP_LDF_I8
, imm8
) |
499 FIELD_PREP(OP_LDF_SW
, swap
) |
500 FIELD_PREP(OP_LDF_ZF
, zero
) |
501 FIELD_PREP(OP_LDF_BMASK
, bmask
) |
502 FIELD_PREP(OP_LDF_SHF
, shift
) |
503 FIELD_PREP(OP_LDF_WR_AB
, wr_both
) |
504 FIELD_PREP(OP_LDF_SRC_LMEXTN
, src_lmextn
) |
505 FIELD_PREP(OP_LDF_DST_LMEXTN
, dst_lmextn
);
507 nfp_prog_push(nfp_prog
, insn
);
511 emit_ld_field_any(struct nfp_prog
*nfp_prog
, swreg dst
, u8 bmask
, swreg src
,
512 enum shf_sc sc
, u8 shift
, bool zero
)
514 struct nfp_insn_re_regs reg
;
517 /* Note: ld_field is special as it uses one of the src regs as dst */
518 err
= swreg_to_restricted(dst
, dst
, src
, ®
, true);
520 nfp_prog
->error
= err
;
524 __emit_ld_field(nfp_prog
, sc
, reg
.areg
, bmask
, reg
.breg
, shift
,
525 reg
.i8
, zero
, reg
.swap
, reg
.wr_both
,
526 reg
.dst_lmextn
, reg
.src_lmextn
);
530 emit_ld_field(struct nfp_prog
*nfp_prog
, swreg dst
, u8 bmask
, swreg src
,
531 enum shf_sc sc
, u8 shift
)
533 emit_ld_field_any(nfp_prog
, dst
, bmask
, src
, sc
, shift
, false);
537 __emit_lcsr(struct nfp_prog
*nfp_prog
, u16 areg
, u16 breg
, bool wr
, u16 addr
,
538 bool dst_lmextn
, bool src_lmextn
)
542 insn
= OP_LCSR_BASE
|
543 FIELD_PREP(OP_LCSR_A_SRC
, areg
) |
544 FIELD_PREP(OP_LCSR_B_SRC
, breg
) |
545 FIELD_PREP(OP_LCSR_WRITE
, wr
) |
546 FIELD_PREP(OP_LCSR_ADDR
, addr
/ 4) |
547 FIELD_PREP(OP_LCSR_SRC_LMEXTN
, src_lmextn
) |
548 FIELD_PREP(OP_LCSR_DST_LMEXTN
, dst_lmextn
);
550 nfp_prog_push(nfp_prog
, insn
);
553 static void emit_csr_wr(struct nfp_prog
*nfp_prog
, swreg src
, u16 addr
)
555 struct nfp_insn_ur_regs reg
;
558 /* This instruction takes immeds instead of reg_none() for the ignored
559 * operand, but we can't encode 2 immeds in one instr with our normal
560 * swreg infra so if param is an immed, we encode as reg_none() and
561 * copy the immed to both operands.
563 if (swreg_type(src
) == NN_REG_IMM
) {
564 err
= swreg_to_unrestricted(reg_none(), src
, reg_none(), ®
);
567 err
= swreg_to_unrestricted(reg_none(), src
, reg_imm(0), ®
);
570 nfp_prog
->error
= err
;
574 __emit_lcsr(nfp_prog
, reg
.areg
, reg
.breg
, true, addr
,
575 false, reg
.src_lmextn
);
578 /* CSR value is read in following immed[gpr, 0] */
579 static void __emit_csr_rd(struct nfp_prog
*nfp_prog
, u16 addr
)
581 __emit_lcsr(nfp_prog
, 0, 0, false, addr
, false, false);
584 static void emit_nop(struct nfp_prog
*nfp_prog
)
586 __emit_immed(nfp_prog
, UR_REG_IMM
, UR_REG_IMM
, 0, 0, 0, 0, 0, 0, 0);
589 /* --- Wrappers --- */
590 static bool pack_immed(u32 imm
, u16
*val
, enum immed_shift
*shift
)
592 if (!(imm
& 0xffff0000)) {
594 *shift
= IMMED_SHIFT_0B
;
595 } else if (!(imm
& 0xff0000ff)) {
597 *shift
= IMMED_SHIFT_1B
;
598 } else if (!(imm
& 0x0000ffff)) {
600 *shift
= IMMED_SHIFT_2B
;
608 static void wrp_immed(struct nfp_prog
*nfp_prog
, swreg dst
, u32 imm
)
610 enum immed_shift shift
;
613 if (pack_immed(imm
, &val
, &shift
)) {
614 emit_immed(nfp_prog
, dst
, val
, IMMED_WIDTH_ALL
, false, shift
);
615 } else if (pack_immed(~imm
, &val
, &shift
)) {
616 emit_immed(nfp_prog
, dst
, val
, IMMED_WIDTH_ALL
, true, shift
);
618 emit_immed(nfp_prog
, dst
, imm
& 0xffff, IMMED_WIDTH_ALL
,
619 false, IMMED_SHIFT_0B
);
620 emit_immed(nfp_prog
, dst
, imm
>> 16, IMMED_WIDTH_WORD
,
621 false, IMMED_SHIFT_2B
);
626 wrp_zext(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
, u8 dst
)
628 if (meta
->flags
& FLAG_INSN_DO_ZEXT
)
629 wrp_immed(nfp_prog
, reg_both(dst
+ 1), 0);
633 wrp_immed_relo(struct nfp_prog
*nfp_prog
, swreg dst
, u32 imm
,
634 enum nfp_relo_type relo
)
637 pr_err("relocation of a large immediate!\n");
638 nfp_prog
->error
= -EFAULT
;
641 emit_immed(nfp_prog
, dst
, imm
, IMMED_WIDTH_ALL
, false, IMMED_SHIFT_0B
);
643 nfp_prog
->prog
[nfp_prog
->prog_len
- 1] |=
644 FIELD_PREP(OP_RELO_TYPE
, relo
);
647 /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted)
648 * If the @imm is small enough encode it directly in operand and return
649 * otherwise load @imm to a spare register and return its encoding.
651 static swreg
ur_load_imm_any(struct nfp_prog
*nfp_prog
, u32 imm
, swreg tmp_reg
)
653 if (FIELD_FIT(UR_REG_IMM_MAX
, imm
))
656 wrp_immed(nfp_prog
, tmp_reg
, imm
);
660 /* re_load_imm_any() - encode immediate or use tmp register (restricted)
661 * If the @imm is small enough encode it directly in operand and return
662 * otherwise load @imm to a spare register and return its encoding.
664 static swreg
re_load_imm_any(struct nfp_prog
*nfp_prog
, u32 imm
, swreg tmp_reg
)
666 if (FIELD_FIT(RE_REG_IMM_MAX
, imm
))
669 wrp_immed(nfp_prog
, tmp_reg
, imm
);
673 static void wrp_nops(struct nfp_prog
*nfp_prog
, unsigned int count
)
679 static void wrp_mov(struct nfp_prog
*nfp_prog
, swreg dst
, swreg src
)
681 emit_alu(nfp_prog
, dst
, reg_none(), ALU_OP_NONE
, src
);
684 static void wrp_reg_mov(struct nfp_prog
*nfp_prog
, u16 dst
, u16 src
)
686 wrp_mov(nfp_prog
, reg_both(dst
), reg_b(src
));
689 /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the
690 * result to @dst from low end.
693 wrp_reg_subpart(struct nfp_prog
*nfp_prog
, swreg dst
, swreg src
, u8 field_len
,
696 enum shf_sc sc
= offset
? SHF_SC_R_SHF
: SHF_SC_NONE
;
697 u8 mask
= (1 << field_len
) - 1;
699 emit_ld_field_any(nfp_prog
, dst
, mask
, src
, sc
, offset
* 8, true);
702 /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the
703 * result to @dst from offset, there is no change on the other bits of @dst.
706 wrp_reg_or_subpart(struct nfp_prog
*nfp_prog
, swreg dst
, swreg src
,
707 u8 field_len
, u8 offset
)
709 enum shf_sc sc
= offset
? SHF_SC_L_SHF
: SHF_SC_NONE
;
710 u8 mask
= ((1 << field_len
) - 1) << offset
;
712 emit_ld_field(nfp_prog
, dst
, mask
, src
, sc
, 32 - offset
* 8);
716 addr40_offset(struct nfp_prog
*nfp_prog
, u8 src_gpr
, swreg offset
,
717 swreg
*rega
, swreg
*regb
)
719 if (offset
== reg_imm(0)) {
720 *rega
= reg_a(src_gpr
);
721 *regb
= reg_b(src_gpr
+ 1);
725 emit_alu(nfp_prog
, imm_a(nfp_prog
), reg_a(src_gpr
), ALU_OP_ADD
, offset
);
726 emit_alu(nfp_prog
, imm_b(nfp_prog
), reg_b(src_gpr
+ 1), ALU_OP_ADD_C
,
728 *rega
= imm_a(nfp_prog
);
729 *regb
= imm_b(nfp_prog
);
732 /* NFP has Command Push Pull bus which supports bluk memory operations. */
733 static int nfp_cpp_memcpy(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
735 bool descending_seq
= meta
->ldst_gather_len
< 0;
736 s16 len
= abs(meta
->ldst_gather_len
);
742 off
= re_load_imm_any(nfp_prog
, meta
->insn
.off
, imm_b(nfp_prog
));
743 src_40bit_addr
= meta
->ptr
.type
== PTR_TO_MAP_VALUE
;
744 src_base
= reg_a(meta
->insn
.src_reg
* 2);
745 xfer_num
= round_up(len
, 4) / 4;
748 addr40_offset(nfp_prog
, meta
->insn
.src_reg
* 2, off
, &src_base
,
751 /* Setup PREV_ALU fields to override memory read length. */
753 wrp_immed(nfp_prog
, reg_none(),
754 CMD_OVE_LEN
| FIELD_PREP(CMD_OV_LEN
, xfer_num
- 1));
756 /* Memory read from source addr into transfer-in registers. */
757 emit_cmd_any(nfp_prog
, CMD_TGT_READ32_SWAP
,
758 src_40bit_addr
? CMD_MODE_40b_BA
: CMD_MODE_32b
, 0,
759 src_base
, off
, xfer_num
- 1, CMD_CTX_SWAP
, len
> 32);
761 /* Move from transfer-in to transfer-out. */
762 for (i
= 0; i
< xfer_num
; i
++)
763 wrp_mov(nfp_prog
, reg_xfer(i
), reg_xfer(i
));
765 off
= re_load_imm_any(nfp_prog
, meta
->paired_st
->off
, imm_b(nfp_prog
));
768 /* Use single direct_ref write8. */
769 emit_cmd(nfp_prog
, CMD_TGT_WRITE8_SWAP
, CMD_MODE_32b
, 0,
770 reg_a(meta
->paired_st
->dst_reg
* 2), off
, len
- 1,
772 } else if (len
<= 32 && IS_ALIGNED(len
, 4)) {
773 /* Use single direct_ref write32. */
774 emit_cmd(nfp_prog
, CMD_TGT_WRITE32_SWAP
, CMD_MODE_32b
, 0,
775 reg_a(meta
->paired_st
->dst_reg
* 2), off
, xfer_num
- 1,
777 } else if (len
<= 32) {
778 /* Use single indirect_ref write8. */
779 wrp_immed(nfp_prog
, reg_none(),
780 CMD_OVE_LEN
| FIELD_PREP(CMD_OV_LEN
, len
- 1));
781 emit_cmd_indir(nfp_prog
, CMD_TGT_WRITE8_SWAP
, CMD_MODE_32b
, 0,
782 reg_a(meta
->paired_st
->dst_reg
* 2), off
,
783 len
- 1, CMD_CTX_SWAP
);
784 } else if (IS_ALIGNED(len
, 4)) {
785 /* Use single indirect_ref write32. */
786 wrp_immed(nfp_prog
, reg_none(),
787 CMD_OVE_LEN
| FIELD_PREP(CMD_OV_LEN
, xfer_num
- 1));
788 emit_cmd_indir(nfp_prog
, CMD_TGT_WRITE32_SWAP
, CMD_MODE_32b
, 0,
789 reg_a(meta
->paired_st
->dst_reg
* 2), off
,
790 xfer_num
- 1, CMD_CTX_SWAP
);
791 } else if (len
<= 40) {
792 /* Use one direct_ref write32 to write the first 32-bytes, then
793 * another direct_ref write8 to write the remaining bytes.
795 emit_cmd(nfp_prog
, CMD_TGT_WRITE32_SWAP
, CMD_MODE_32b
, 0,
796 reg_a(meta
->paired_st
->dst_reg
* 2), off
, 7,
799 off
= re_load_imm_any(nfp_prog
, meta
->paired_st
->off
+ 32,
801 emit_cmd(nfp_prog
, CMD_TGT_WRITE8_SWAP
, CMD_MODE_32b
, 8,
802 reg_a(meta
->paired_st
->dst_reg
* 2), off
, len
- 33,
805 /* Use one indirect_ref write32 to write 4-bytes aligned length,
806 * then another direct_ref write8 to write the remaining bytes.
810 wrp_immed(nfp_prog
, reg_none(),
811 CMD_OVE_LEN
| FIELD_PREP(CMD_OV_LEN
, xfer_num
- 2));
812 emit_cmd_indir(nfp_prog
, CMD_TGT_WRITE32_SWAP
, CMD_MODE_32b
, 0,
813 reg_a(meta
->paired_st
->dst_reg
* 2), off
,
814 xfer_num
- 2, CMD_CTX_SWAP
);
815 new_off
= meta
->paired_st
->off
+ (xfer_num
- 1) * 4;
816 off
= re_load_imm_any(nfp_prog
, new_off
, imm_b(nfp_prog
));
817 emit_cmd(nfp_prog
, CMD_TGT_WRITE8_SWAP
, CMD_MODE_32b
,
818 xfer_num
- 1, reg_a(meta
->paired_st
->dst_reg
* 2), off
,
819 (len
& 0x3) - 1, CMD_CTX_SWAP
);
822 /* TODO: The following extra load is to make sure data flow be identical
823 * before and after we do memory copy optimization.
825 * The load destination register is not guaranteed to be dead, so we
826 * need to make sure it is loaded with the value the same as before
827 * this transformation.
829 * These extra loads could be removed once we have accurate register
834 else if (BPF_SIZE(meta
->insn
.code
) != BPF_DW
)
835 xfer_num
= xfer_num
- 1;
837 xfer_num
= xfer_num
- 2;
839 switch (BPF_SIZE(meta
->insn
.code
)) {
841 wrp_reg_subpart(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2),
842 reg_xfer(xfer_num
), 1,
843 IS_ALIGNED(len
, 4) ? 3 : (len
& 3) - 1);
846 wrp_reg_subpart(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2),
847 reg_xfer(xfer_num
), 2, (len
& 3) ^ 2);
850 wrp_mov(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2),
854 wrp_mov(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2),
856 wrp_mov(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2 + 1),
857 reg_xfer(xfer_num
+ 1));
861 if (BPF_SIZE(meta
->insn
.code
) != BPF_DW
)
862 wrp_immed(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2 + 1), 0);
868 data_ld(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
, swreg offset
,
869 u8 dst_gpr
, int size
)
874 /* We load the value from the address indicated in @offset and then
875 * shift out the data we don't need. Note: this is big endian!
878 shift
= size
< 4 ? 4 - size
: 0;
880 emit_cmd(nfp_prog
, CMD_TGT_READ8
, CMD_MODE_32b
, 0,
881 pptr_reg(nfp_prog
), offset
, sz
- 1, CMD_CTX_SWAP
);
885 emit_shf(nfp_prog
, reg_both(dst_gpr
), reg_none(), SHF_OP_NONE
,
886 reg_xfer(0), SHF_SC_R_SHF
, shift
* 8);
888 for (; i
* 4 < size
; i
++)
889 wrp_mov(nfp_prog
, reg_both(dst_gpr
+ i
), reg_xfer(i
));
892 wrp_zext(nfp_prog
, meta
, dst_gpr
);
898 data_ld_host_order(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
899 u8 dst_gpr
, swreg lreg
, swreg rreg
, int size
,
905 /* We load the value from the address indicated in rreg + lreg and then
906 * mask out the data we don't need. Note: this is little endian!
909 mask
= size
< 4 ? GENMASK(size
- 1, 0) : 0;
911 emit_cmd(nfp_prog
, CMD_TGT_READ32_SWAP
, mode
, 0,
912 lreg
, rreg
, sz
/ 4 - 1, CMD_CTX_SWAP
);
916 emit_ld_field_any(nfp_prog
, reg_both(dst_gpr
), mask
,
917 reg_xfer(0), SHF_SC_NONE
, 0, true);
919 for (; i
* 4 < size
; i
++)
920 wrp_mov(nfp_prog
, reg_both(dst_gpr
+ i
), reg_xfer(i
));
923 wrp_zext(nfp_prog
, meta
, dst_gpr
);
929 data_ld_host_order_addr32(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
930 u8 src_gpr
, swreg offset
, u8 dst_gpr
, u8 size
)
932 return data_ld_host_order(nfp_prog
, meta
, dst_gpr
, reg_a(src_gpr
),
933 offset
, size
, CMD_MODE_32b
);
937 data_ld_host_order_addr40(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
938 u8 src_gpr
, swreg offset
, u8 dst_gpr
, u8 size
)
942 addr40_offset(nfp_prog
, src_gpr
, offset
, ®a
, ®b
);
944 return data_ld_host_order(nfp_prog
, meta
, dst_gpr
, rega
, regb
,
945 size
, CMD_MODE_40b_BA
);
949 construct_data_ind_ld(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
950 u16 offset
, u16 src
, u8 size
)
954 /* Calculate the true offset (src_reg + imm) */
955 tmp_reg
= ur_load_imm_any(nfp_prog
, offset
, imm_b(nfp_prog
));
956 emit_alu(nfp_prog
, imm_both(nfp_prog
), reg_a(src
), ALU_OP_ADD
, tmp_reg
);
958 /* Check packet length (size guaranteed to fit b/c it's u8) */
959 emit_alu(nfp_prog
, imm_a(nfp_prog
),
960 imm_a(nfp_prog
), ALU_OP_ADD
, reg_imm(size
));
961 emit_alu(nfp_prog
, reg_none(),
962 plen_reg(nfp_prog
), ALU_OP_SUB
, imm_a(nfp_prog
));
963 emit_br_relo(nfp_prog
, BR_BLO
, BR_OFF_RELO
, 0, RELO_BR_GO_ABORT
);
966 return data_ld(nfp_prog
, meta
, imm_b(nfp_prog
), 0, size
);
970 construct_data_ld(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
975 /* Check packet length */
976 tmp_reg
= ur_load_imm_any(nfp_prog
, offset
+ size
, imm_a(nfp_prog
));
977 emit_alu(nfp_prog
, reg_none(), plen_reg(nfp_prog
), ALU_OP_SUB
, tmp_reg
);
978 emit_br_relo(nfp_prog
, BR_BLO
, BR_OFF_RELO
, 0, RELO_BR_GO_ABORT
);
981 tmp_reg
= re_load_imm_any(nfp_prog
, offset
, imm_b(nfp_prog
));
982 return data_ld(nfp_prog
, meta
, tmp_reg
, 0, size
);
986 data_stx_host_order(struct nfp_prog
*nfp_prog
, u8 dst_gpr
, swreg offset
,
991 for (i
= 0; i
* 4 < size
; i
++)
992 wrp_mov(nfp_prog
, reg_xfer(i
), reg_a(src_gpr
+ i
));
994 emit_cmd(nfp_prog
, CMD_TGT_WRITE8_SWAP
, CMD_MODE_32b
, 0,
995 reg_a(dst_gpr
), offset
, size
- 1, CMD_CTX_SWAP
);
1001 data_st_host_order(struct nfp_prog
*nfp_prog
, u8 dst_gpr
, swreg offset
,
1004 wrp_immed(nfp_prog
, reg_xfer(0), imm
);
1006 wrp_immed(nfp_prog
, reg_xfer(1), imm
>> 32);
1008 emit_cmd(nfp_prog
, CMD_TGT_WRITE8_SWAP
, CMD_MODE_32b
, 0,
1009 reg_a(dst_gpr
), offset
, size
- 1, CMD_CTX_SWAP
);
1015 (*lmem_step
)(struct nfp_prog
*nfp_prog
, u8 gpr
, u8 gpr_byte
, s32 off
,
1016 unsigned int size
, bool first
, bool new_gpr
, bool last
, bool lm3
,
1020 wrp_lmem_load(struct nfp_prog
*nfp_prog
, u8 dst
, u8 dst_byte
, s32 off
,
1021 unsigned int size
, bool first
, bool new_gpr
, bool last
, bool lm3
,
1024 bool should_inc
= needs_inc
&& new_gpr
&& !last
;
1031 if (WARN_ON_ONCE(dst_byte
+ size
> 4 || off
% 4 + size
> 4))
1036 /* Move the entire word */
1038 wrp_mov(nfp_prog
, reg_both(dst
),
1039 should_inc
? reg_lm_inc(3) : reg_lm(lm3
? 3 : 0, idx
));
1043 if (WARN_ON_ONCE(lm3
&& idx
> RE_REG_LM_IDX_MAX
))
1048 mask
= (1 << size
) - 1;
1051 if (WARN_ON_ONCE(mask
> 0xf))
1054 shf
= abs(src_byte
- dst_byte
) * 8;
1055 if (src_byte
== dst_byte
) {
1057 } else if (src_byte
< dst_byte
) {
1064 /* ld_field can address fewer indexes, if offset too large do RMW.
1065 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1067 if (idx
<= RE_REG_LM_IDX_MAX
) {
1068 reg
= reg_lm(lm3
? 3 : 0, idx
);
1070 reg
= imm_a(nfp_prog
);
1071 /* If it's not the first part of the load and we start a new GPR
1072 * that means we are loading a second part of the LMEM word into
1073 * a new GPR. IOW we've already looked that LMEM word and
1074 * therefore it has been loaded into imm_a().
1076 if (first
|| !new_gpr
)
1077 wrp_mov(nfp_prog
, reg
, reg_lm(0, idx
));
1080 emit_ld_field_any(nfp_prog
, reg_both(dst
), mask
, reg
, sc
, shf
, new_gpr
);
1083 wrp_mov(nfp_prog
, reg_none(), reg_lm_inc(3));
1089 wrp_lmem_store(struct nfp_prog
*nfp_prog
, u8 src
, u8 src_byte
, s32 off
,
1090 unsigned int size
, bool first
, bool new_gpr
, bool last
, bool lm3
,
1093 bool should_inc
= needs_inc
&& new_gpr
&& !last
;
1100 if (WARN_ON_ONCE(src_byte
+ size
> 4 || off
% 4 + size
> 4))
1105 /* Move the entire word */
1108 should_inc
? reg_lm_inc(3) : reg_lm(lm3
? 3 : 0, idx
),
1113 if (WARN_ON_ONCE(lm3
&& idx
> RE_REG_LM_IDX_MAX
))
1118 mask
= (1 << size
) - 1;
1121 if (WARN_ON_ONCE(mask
> 0xf))
1124 shf
= abs(src_byte
- dst_byte
) * 8;
1125 if (src_byte
== dst_byte
) {
1127 } else if (src_byte
< dst_byte
) {
1134 /* ld_field can address fewer indexes, if offset too large do RMW.
1135 * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes.
1137 if (idx
<= RE_REG_LM_IDX_MAX
) {
1138 reg
= reg_lm(lm3
? 3 : 0, idx
);
1140 reg
= imm_a(nfp_prog
);
1141 /* Only first and last LMEM locations are going to need RMW,
1142 * the middle location will be overwritten fully.
1145 wrp_mov(nfp_prog
, reg
, reg_lm(0, idx
));
1148 emit_ld_field(nfp_prog
, reg
, mask
, reg_b(src
), sc
, shf
);
1150 if (new_gpr
|| last
) {
1151 if (idx
> RE_REG_LM_IDX_MAX
)
1152 wrp_mov(nfp_prog
, reg_lm(0, idx
), reg
);
1154 wrp_mov(nfp_prog
, reg_none(), reg_lm_inc(3));
1161 mem_op_stack(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1162 unsigned int size
, unsigned int ptr_off
, u8 gpr
, u8 ptr_gpr
,
1163 bool clr_gpr
, lmem_step step
)
1165 s32 off
= nfp_prog
->stack_frame_depth
+ meta
->insn
.off
+ ptr_off
;
1166 bool first
= true, narrow_ld
, last
;
1167 bool needs_inc
= false;
1168 swreg stack_off_reg
;
1174 if (meta
->ptr_not_const
||
1175 meta
->flags
& FLAG_INSN_PTR_CALLER_STACK_FRAME
) {
1176 /* Use of the last encountered ptr_off is OK, they all have
1177 * the same alignment. Depend on low bits of value being
1178 * discarded when written to LMaddr register.
1180 stack_off_reg
= ur_load_imm_any(nfp_prog
, meta
->insn
.off
,
1181 stack_imm(nfp_prog
));
1183 emit_alu(nfp_prog
, imm_b(nfp_prog
),
1184 reg_a(ptr_gpr
), ALU_OP_ADD
, stack_off_reg
);
1187 } else if (off
+ size
<= 64) {
1188 /* We can reach bottom 64B with LMaddr0 */
1190 } else if (round_down(off
, 32) == round_down(off
+ size
- 1, 32)) {
1191 /* We have to set up a new pointer. If we know the offset
1192 * and the entire access falls into a single 32 byte aligned
1193 * window we won't have to increment the LM pointer.
1194 * The 32 byte alignment is imporant because offset is ORed in
1195 * not added when doing *l$indexN[off].
1197 stack_off_reg
= ur_load_imm_any(nfp_prog
, round_down(off
, 32),
1198 stack_imm(nfp_prog
));
1199 emit_alu(nfp_prog
, imm_b(nfp_prog
),
1200 stack_reg(nfp_prog
), ALU_OP_ADD
, stack_off_reg
);
1204 stack_off_reg
= ur_load_imm_any(nfp_prog
, round_down(off
, 4),
1205 stack_imm(nfp_prog
));
1207 emit_alu(nfp_prog
, imm_b(nfp_prog
),
1208 stack_reg(nfp_prog
), ALU_OP_ADD
, stack_off_reg
);
1213 narrow_ld
= clr_gpr
&& size
< 8;
1216 unsigned int nop_cnt
;
1218 emit_csr_wr(nfp_prog
, imm_b(nfp_prog
), NFP_CSR_ACT_LM_ADDR3
);
1219 /* For size < 4 one slot will be filled by zeroing of upper,
1220 * but be careful, that zeroing could be eliminated by zext
1223 nop_cnt
= narrow_ld
&& meta
->flags
& FLAG_INSN_DO_ZEXT
? 2 : 3;
1224 wrp_nops(nfp_prog
, nop_cnt
);
1228 wrp_zext(nfp_prog
, meta
, gpr
);
1234 slice_size
= min(size
, 4 - gpr_byte
);
1235 slice_end
= min(off
+ slice_size
, round_up(off
+ 1, 4));
1236 slice_size
= slice_end
- off
;
1238 last
= slice_size
== size
;
1243 ret
= step(nfp_prog
, gpr
, gpr_byte
, off
, slice_size
,
1244 first
, gpr
!= prev_gpr
, last
, lm3
, needs_inc
);
1251 gpr_byte
+= slice_size
;
1252 if (gpr_byte
>= 4) {
1265 wrp_alu_imm(struct nfp_prog
*nfp_prog
, u8 dst
, enum alu_op alu_op
, u32 imm
)
1269 if (alu_op
== ALU_OP_AND
) {
1271 wrp_immed(nfp_prog
, reg_both(dst
), 0);
1275 if (alu_op
== ALU_OP_OR
) {
1277 wrp_immed(nfp_prog
, reg_both(dst
), ~0U);
1281 if (alu_op
== ALU_OP_XOR
) {
1283 emit_alu(nfp_prog
, reg_both(dst
), reg_none(),
1284 ALU_OP_NOT
, reg_b(dst
));
1289 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
, imm_b(nfp_prog
));
1290 emit_alu(nfp_prog
, reg_both(dst
), reg_a(dst
), alu_op
, tmp_reg
);
1294 wrp_alu64_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1295 enum alu_op alu_op
, bool skip
)
1297 const struct bpf_insn
*insn
= &meta
->insn
;
1298 u64 imm
= insn
->imm
; /* sign extend */
1301 meta
->flags
|= FLAG_INSN_SKIP_NOOP
;
1305 wrp_alu_imm(nfp_prog
, insn
->dst_reg
* 2, alu_op
, imm
& ~0U);
1306 wrp_alu_imm(nfp_prog
, insn
->dst_reg
* 2 + 1, alu_op
, imm
>> 32);
1312 wrp_alu64_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1315 u8 dst
= meta
->insn
.dst_reg
* 2, src
= meta
->insn
.src_reg
* 2;
1317 emit_alu(nfp_prog
, reg_both(dst
), reg_a(dst
), alu_op
, reg_b(src
));
1318 emit_alu(nfp_prog
, reg_both(dst
+ 1),
1319 reg_a(dst
+ 1), alu_op
, reg_b(src
+ 1));
1325 wrp_alu32_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1328 const struct bpf_insn
*insn
= &meta
->insn
;
1329 u8 dst
= insn
->dst_reg
* 2;
1331 wrp_alu_imm(nfp_prog
, dst
, alu_op
, insn
->imm
);
1332 wrp_zext(nfp_prog
, meta
, dst
);
1338 wrp_alu32_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1341 u8 dst
= meta
->insn
.dst_reg
* 2, src
= meta
->insn
.src_reg
* 2;
1343 emit_alu(nfp_prog
, reg_both(dst
), reg_a(dst
), alu_op
, reg_b(src
));
1344 wrp_zext(nfp_prog
, meta
, dst
);
1350 wrp_test_reg_one(struct nfp_prog
*nfp_prog
, u8 dst
, enum alu_op alu_op
, u8 src
,
1351 enum br_mask br_mask
, u16 off
)
1353 emit_alu(nfp_prog
, reg_none(), reg_a(dst
), alu_op
, reg_b(src
));
1354 emit_br(nfp_prog
, br_mask
, off
, 0);
1358 wrp_test_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1359 enum alu_op alu_op
, enum br_mask br_mask
)
1361 const struct bpf_insn
*insn
= &meta
->insn
;
1363 wrp_test_reg_one(nfp_prog
, insn
->dst_reg
* 2, alu_op
,
1364 insn
->src_reg
* 2, br_mask
, insn
->off
);
1365 if (is_mbpf_jmp64(meta
))
1366 wrp_test_reg_one(nfp_prog
, insn
->dst_reg
* 2 + 1, alu_op
,
1367 insn
->src_reg
* 2 + 1, br_mask
, insn
->off
);
1372 static const struct jmp_code_map
{
1373 enum br_mask br_mask
;
1375 } jmp_code_map
[] = {
1376 [BPF_JGT
>> 4] = { BR_BLO
, true },
1377 [BPF_JGE
>> 4] = { BR_BHS
, false },
1378 [BPF_JLT
>> 4] = { BR_BLO
, false },
1379 [BPF_JLE
>> 4] = { BR_BHS
, true },
1380 [BPF_JSGT
>> 4] = { BR_BLT
, true },
1381 [BPF_JSGE
>> 4] = { BR_BGE
, false },
1382 [BPF_JSLT
>> 4] = { BR_BLT
, false },
1383 [BPF_JSLE
>> 4] = { BR_BGE
, true },
1386 static const struct jmp_code_map
*nfp_jmp_code_get(struct nfp_insn_meta
*meta
)
1390 op
= BPF_OP(meta
->insn
.code
) >> 4;
1391 /* br_mask of 0 is BR_BEQ which we don't use in jump code table */
1392 if (WARN_ONCE(op
>= ARRAY_SIZE(jmp_code_map
) ||
1393 !jmp_code_map
[op
].br_mask
,
1394 "no code found for jump instruction"))
1397 return &jmp_code_map
[op
];
1400 static int cmp_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1402 const struct bpf_insn
*insn
= &meta
->insn
;
1403 u64 imm
= insn
->imm
; /* sign extend */
1404 const struct jmp_code_map
*code
;
1405 enum alu_op alu_op
, carry_op
;
1406 u8 reg
= insn
->dst_reg
* 2;
1409 code
= nfp_jmp_code_get(meta
);
1413 alu_op
= meta
->jump_neg_op
? ALU_OP_ADD
: ALU_OP_SUB
;
1414 carry_op
= meta
->jump_neg_op
? ALU_OP_ADD_C
: ALU_OP_SUB_C
;
1416 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
& ~0U, imm_b(nfp_prog
));
1418 emit_alu(nfp_prog
, reg_none(), reg_a(reg
), alu_op
, tmp_reg
);
1420 emit_alu(nfp_prog
, reg_none(), tmp_reg
, alu_op
, reg_a(reg
));
1422 if (is_mbpf_jmp64(meta
)) {
1423 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
>> 32, imm_b(nfp_prog
));
1425 emit_alu(nfp_prog
, reg_none(),
1426 reg_a(reg
+ 1), carry_op
, tmp_reg
);
1428 emit_alu(nfp_prog
, reg_none(),
1429 tmp_reg
, carry_op
, reg_a(reg
+ 1));
1432 emit_br(nfp_prog
, code
->br_mask
, insn
->off
, 0);
1437 static int cmp_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1439 const struct bpf_insn
*insn
= &meta
->insn
;
1440 const struct jmp_code_map
*code
;
1443 code
= nfp_jmp_code_get(meta
);
1447 areg
= insn
->dst_reg
* 2;
1448 breg
= insn
->src_reg
* 2;
1456 emit_alu(nfp_prog
, reg_none(), reg_a(areg
), ALU_OP_SUB
, reg_b(breg
));
1457 if (is_mbpf_jmp64(meta
))
1458 emit_alu(nfp_prog
, reg_none(),
1459 reg_a(areg
+ 1), ALU_OP_SUB_C
, reg_b(breg
+ 1));
1460 emit_br(nfp_prog
, code
->br_mask
, insn
->off
, 0);
1465 static void wrp_end32(struct nfp_prog
*nfp_prog
, swreg reg_in
, u8 gpr_out
)
1467 emit_ld_field(nfp_prog
, reg_both(gpr_out
), 0xf, reg_in
,
1469 emit_ld_field(nfp_prog
, reg_both(gpr_out
), 0x5, reg_a(gpr_out
),
1474 wrp_mul_u32(struct nfp_prog
*nfp_prog
, swreg dst_hi
, swreg dst_lo
, swreg lreg
,
1475 swreg rreg
, bool gen_high_half
)
1477 emit_mul(nfp_prog
, lreg
, MUL_TYPE_START
, MUL_STEP_NONE
, rreg
);
1478 emit_mul(nfp_prog
, lreg
, MUL_TYPE_STEP_32x32
, MUL_STEP_1
, rreg
);
1479 emit_mul(nfp_prog
, lreg
, MUL_TYPE_STEP_32x32
, MUL_STEP_2
, rreg
);
1480 emit_mul(nfp_prog
, lreg
, MUL_TYPE_STEP_32x32
, MUL_STEP_3
, rreg
);
1481 emit_mul(nfp_prog
, lreg
, MUL_TYPE_STEP_32x32
, MUL_STEP_4
, rreg
);
1482 emit_mul(nfp_prog
, dst_lo
, MUL_TYPE_STEP_32x32
, MUL_LAST
, reg_none());
1484 emit_mul(nfp_prog
, dst_hi
, MUL_TYPE_STEP_32x32
, MUL_LAST_2
,
1487 wrp_immed(nfp_prog
, dst_hi
, 0);
1491 wrp_mul_u16(struct nfp_prog
*nfp_prog
, swreg dst_hi
, swreg dst_lo
, swreg lreg
,
1494 emit_mul(nfp_prog
, lreg
, MUL_TYPE_START
, MUL_STEP_NONE
, rreg
);
1495 emit_mul(nfp_prog
, lreg
, MUL_TYPE_STEP_16x16
, MUL_STEP_1
, rreg
);
1496 emit_mul(nfp_prog
, lreg
, MUL_TYPE_STEP_16x16
, MUL_STEP_2
, rreg
);
1497 emit_mul(nfp_prog
, dst_lo
, MUL_TYPE_STEP_16x16
, MUL_LAST
, reg_none());
1501 wrp_mul(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
1502 bool gen_high_half
, bool ropnd_from_reg
)
1504 swreg multiplier
, multiplicand
, dst_hi
, dst_lo
;
1505 const struct bpf_insn
*insn
= &meta
->insn
;
1506 u32 lopnd_max
, ropnd_max
;
1509 dst_reg
= insn
->dst_reg
;
1510 multiplicand
= reg_a(dst_reg
* 2);
1511 dst_hi
= reg_both(dst_reg
* 2 + 1);
1512 dst_lo
= reg_both(dst_reg
* 2);
1513 lopnd_max
= meta
->umax_dst
;
1514 if (ropnd_from_reg
) {
1515 multiplier
= reg_b(insn
->src_reg
* 2);
1516 ropnd_max
= meta
->umax_src
;
1518 u32 imm
= insn
->imm
;
1520 multiplier
= ur_load_imm_any(nfp_prog
, imm
, imm_b(nfp_prog
));
1523 if (lopnd_max
> U16_MAX
|| ropnd_max
> U16_MAX
)
1524 wrp_mul_u32(nfp_prog
, dst_hi
, dst_lo
, multiplicand
, multiplier
,
1527 wrp_mul_u16(nfp_prog
, dst_hi
, dst_lo
, multiplicand
, multiplier
);
1532 static int wrp_div_imm(struct nfp_prog
*nfp_prog
, u8 dst
, u64 imm
)
1534 swreg dst_both
= reg_both(dst
), dst_a
= reg_a(dst
), dst_b
= reg_a(dst
);
1535 struct reciprocal_value_adv rvalue
;
1539 if (imm
> U32_MAX
) {
1540 wrp_immed(nfp_prog
, dst_both
, 0);
1544 /* NOTE: because we are using "reciprocal_value_adv" which doesn't
1545 * support "divisor > (1u << 31)", we need to JIT separate NFP sequence
1546 * to handle such case which actually equals to the result of unsigned
1547 * comparison "dst >= imm" which could be calculated using the following
1550 * alu[--, dst, -, imm]
1552 * alu[dst, imm, +carry, 0]
1555 if (imm
> 1U << 31) {
1556 swreg tmp_b
= ur_load_imm_any(nfp_prog
, imm
, imm_b(nfp_prog
));
1558 emit_alu(nfp_prog
, reg_none(), dst_a
, ALU_OP_SUB
, tmp_b
);
1559 wrp_immed(nfp_prog
, imm_a(nfp_prog
), 0);
1560 emit_alu(nfp_prog
, dst_both
, imm_a(nfp_prog
), ALU_OP_ADD_C
,
1565 rvalue
= reciprocal_value_adv(imm
, 32);
1567 if (rvalue
.is_wide_m
&& !(imm
& 1)) {
1568 pre_shift
= fls(imm
& -imm
) - 1;
1569 rvalue
= reciprocal_value_adv(imm
>> pre_shift
, 32 - pre_shift
);
1573 magic
= ur_load_imm_any(nfp_prog
, rvalue
.m
, imm_b(nfp_prog
));
1574 if (imm
== 1U << exp
) {
1575 emit_shf(nfp_prog
, dst_both
, reg_none(), SHF_OP_NONE
, dst_b
,
1577 } else if (rvalue
.is_wide_m
) {
1578 wrp_mul_u32(nfp_prog
, imm_both(nfp_prog
), reg_none(), dst_a
,
1580 emit_alu(nfp_prog
, dst_both
, dst_a
, ALU_OP_SUB
,
1582 emit_shf(nfp_prog
, dst_both
, reg_none(), SHF_OP_NONE
, dst_b
,
1584 emit_alu(nfp_prog
, dst_both
, dst_a
, ALU_OP_ADD
,
1586 emit_shf(nfp_prog
, dst_both
, reg_none(), SHF_OP_NONE
, dst_b
,
1587 SHF_SC_R_SHF
, rvalue
.sh
- 1);
1590 emit_shf(nfp_prog
, dst_both
, reg_none(), SHF_OP_NONE
,
1591 dst_b
, SHF_SC_R_SHF
, pre_shift
);
1592 wrp_mul_u32(nfp_prog
, dst_both
, reg_none(), dst_a
, magic
, true);
1593 emit_shf(nfp_prog
, dst_both
, reg_none(), SHF_OP_NONE
,
1594 dst_b
, SHF_SC_R_SHF
, rvalue
.sh
);
1600 static int adjust_head(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1602 swreg tmp
= imm_a(nfp_prog
), tmp_len
= imm_b(nfp_prog
);
1603 struct nfp_bpf_cap_adjust_head
*adjust_head
;
1604 u32 ret_einval
, end
;
1606 adjust_head
= &nfp_prog
->bpf
->adjust_head
;
1608 /* Optimized version - 5 vs 14 cycles */
1609 if (nfp_prog
->adjust_head_location
!= UINT_MAX
) {
1610 if (WARN_ON_ONCE(nfp_prog
->adjust_head_location
!= meta
->n
))
1613 emit_alu(nfp_prog
, pptr_reg(nfp_prog
),
1614 reg_a(2 * 2), ALU_OP_ADD
, pptr_reg(nfp_prog
));
1615 emit_alu(nfp_prog
, plen_reg(nfp_prog
),
1616 plen_reg(nfp_prog
), ALU_OP_SUB
, reg_a(2 * 2));
1617 emit_alu(nfp_prog
, pv_len(nfp_prog
),
1618 pv_len(nfp_prog
), ALU_OP_SUB
, reg_a(2 * 2));
1620 wrp_immed(nfp_prog
, reg_both(0), 0);
1621 wrp_immed(nfp_prog
, reg_both(1), 0);
1623 /* TODO: when adjust head is guaranteed to succeed we can
1624 * also eliminate the following if (r0 == 0) branch.
1630 ret_einval
= nfp_prog_current_offset(nfp_prog
) + 14;
1631 end
= ret_einval
+ 2;
1633 /* We need to use a temp because offset is just a part of the pkt ptr */
1634 emit_alu(nfp_prog
, tmp
,
1635 reg_a(2 * 2), ALU_OP_ADD_2B
, pptr_reg(nfp_prog
));
1637 /* Validate result will fit within FW datapath constraints */
1638 emit_alu(nfp_prog
, reg_none(),
1639 tmp
, ALU_OP_SUB
, reg_imm(adjust_head
->off_min
));
1640 emit_br(nfp_prog
, BR_BLO
, ret_einval
, 0);
1641 emit_alu(nfp_prog
, reg_none(),
1642 reg_imm(adjust_head
->off_max
), ALU_OP_SUB
, tmp
);
1643 emit_br(nfp_prog
, BR_BLO
, ret_einval
, 0);
1645 /* Validate the length is at least ETH_HLEN */
1646 emit_alu(nfp_prog
, tmp_len
,
1647 plen_reg(nfp_prog
), ALU_OP_SUB
, reg_a(2 * 2));
1648 emit_alu(nfp_prog
, reg_none(),
1649 tmp_len
, ALU_OP_SUB
, reg_imm(ETH_HLEN
));
1650 emit_br(nfp_prog
, BR_BMI
, ret_einval
, 0);
1652 /* Load the ret code */
1653 wrp_immed(nfp_prog
, reg_both(0), 0);
1654 wrp_immed(nfp_prog
, reg_both(1), 0);
1656 /* Modify the packet metadata */
1657 emit_ld_field(nfp_prog
, pptr_reg(nfp_prog
), 0x3, tmp
, SHF_SC_NONE
, 0);
1659 /* Skip over the -EINVAL ret code (defer 2) */
1660 emit_br(nfp_prog
, BR_UNC
, end
, 2);
1662 emit_alu(nfp_prog
, plen_reg(nfp_prog
),
1663 plen_reg(nfp_prog
), ALU_OP_SUB
, reg_a(2 * 2));
1664 emit_alu(nfp_prog
, pv_len(nfp_prog
),
1665 pv_len(nfp_prog
), ALU_OP_SUB
, reg_a(2 * 2));
1667 /* return -EINVAL target */
1668 if (!nfp_prog_confirm_current_offset(nfp_prog
, ret_einval
))
1671 wrp_immed(nfp_prog
, reg_both(0), -22);
1672 wrp_immed(nfp_prog
, reg_both(1), ~0);
1674 if (!nfp_prog_confirm_current_offset(nfp_prog
, end
))
1680 static int adjust_tail(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1682 u32 ret_einval
, end
;
1685 BUILD_BUG_ON(plen_reg(nfp_prog
) != reg_b(STATIC_REG_PKT_LEN
));
1687 plen
= imm_a(nfp_prog
);
1688 delta
= reg_a(2 * 2);
1690 ret_einval
= nfp_prog_current_offset(nfp_prog
) + 9;
1691 end
= nfp_prog_current_offset(nfp_prog
) + 11;
1693 /* Calculate resulting length */
1694 emit_alu(nfp_prog
, plen
, plen_reg(nfp_prog
), ALU_OP_ADD
, delta
);
1695 /* delta == 0 is not allowed by the kernel, add must overflow to make
1698 emit_br(nfp_prog
, BR_BCC
, ret_einval
, 0);
1700 /* if (new_len < 14) then -EINVAL */
1701 emit_alu(nfp_prog
, reg_none(), plen
, ALU_OP_SUB
, reg_imm(ETH_HLEN
));
1702 emit_br(nfp_prog
, BR_BMI
, ret_einval
, 0);
1704 emit_alu(nfp_prog
, plen_reg(nfp_prog
),
1705 plen_reg(nfp_prog
), ALU_OP_ADD
, delta
);
1706 emit_alu(nfp_prog
, pv_len(nfp_prog
),
1707 pv_len(nfp_prog
), ALU_OP_ADD
, delta
);
1709 emit_br(nfp_prog
, BR_UNC
, end
, 2);
1710 wrp_immed(nfp_prog
, reg_both(0), 0);
1711 wrp_immed(nfp_prog
, reg_both(1), 0);
1713 if (!nfp_prog_confirm_current_offset(nfp_prog
, ret_einval
))
1716 wrp_immed(nfp_prog
, reg_both(0), -22);
1717 wrp_immed(nfp_prog
, reg_both(1), ~0);
1719 if (!nfp_prog_confirm_current_offset(nfp_prog
, end
))
1726 map_call_stack_common(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1732 /* We only have to reload LM0 if the key is not at start of stack */
1733 lm_off
= nfp_prog
->stack_frame_depth
;
1734 lm_off
+= meta
->arg2
.reg
.var_off
.value
+ meta
->arg2
.reg
.off
;
1735 load_lm_ptr
= meta
->arg2
.var_off
|| lm_off
;
1737 /* Set LM0 to start of key */
1739 emit_csr_wr(nfp_prog
, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0
);
1740 if (meta
->func_id
== BPF_FUNC_map_update_elem
)
1741 emit_csr_wr(nfp_prog
, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2
);
1743 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
+ meta
->func_id
,
1745 ret_tgt
= nfp_prog_current_offset(nfp_prog
) + 2;
1747 /* Load map ID into A0 */
1748 wrp_mov(nfp_prog
, reg_a(0), reg_a(2));
1750 /* Load the return address into B0 */
1751 wrp_immed_relo(nfp_prog
, reg_b(0), ret_tgt
, RELO_IMMED_REL
);
1753 if (!nfp_prog_confirm_current_offset(nfp_prog
, ret_tgt
))
1756 /* Reset the LM0 pointer */
1760 emit_csr_wr(nfp_prog
, stack_reg(nfp_prog
), NFP_CSR_ACT_LM_ADDR0
);
1761 wrp_nops(nfp_prog
, 3);
1767 nfp_get_prandom_u32(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1769 __emit_csr_rd(nfp_prog
, NFP_CSR_PSEUDO_RND_NUM
);
1770 /* CSR value is read in following immed[gpr, 0] */
1771 emit_immed(nfp_prog
, reg_both(0), 0,
1772 IMMED_WIDTH_ALL
, false, IMMED_SHIFT_0B
);
1773 emit_immed(nfp_prog
, reg_both(1), 0,
1774 IMMED_WIDTH_ALL
, false, IMMED_SHIFT_0B
);
1779 nfp_perf_event_output(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1784 ptr_type
= ur_load_imm_any(nfp_prog
, meta
->arg1
.type
, imm_a(nfp_prog
));
1786 ret_tgt
= nfp_prog_current_offset(nfp_prog
) + 3;
1788 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
+ meta
->func_id
,
1791 /* Load ptr type into A1 */
1792 wrp_mov(nfp_prog
, reg_a(1), ptr_type
);
1794 /* Load the return address into B0 */
1795 wrp_immed_relo(nfp_prog
, reg_b(0), ret_tgt
, RELO_IMMED_REL
);
1797 if (!nfp_prog_confirm_current_offset(nfp_prog
, ret_tgt
))
1804 nfp_queue_select(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1808 jmp_tgt
= nfp_prog_current_offset(nfp_prog
) + 5;
1810 /* Make sure the queue id fits into FW field */
1811 emit_alu(nfp_prog
, reg_none(), reg_a(meta
->insn
.src_reg
* 2),
1812 ALU_OP_AND_NOT_B
, reg_imm(0xff));
1813 emit_br(nfp_prog
, BR_BEQ
, jmp_tgt
, 2);
1815 /* Set the 'queue selected' bit and the queue value */
1816 emit_shf(nfp_prog
, pv_qsel_set(nfp_prog
),
1817 pv_qsel_set(nfp_prog
), SHF_OP_OR
, reg_imm(1),
1818 SHF_SC_L_SHF
, PKT_VEL_QSEL_SET_BIT
);
1819 emit_ld_field(nfp_prog
,
1820 pv_qsel_val(nfp_prog
), 0x1, reg_b(meta
->insn
.src_reg
* 2),
1822 /* Delay slots end here, we will jump over next instruction if queue
1823 * value fits into the field.
1825 emit_ld_field(nfp_prog
,
1826 pv_qsel_val(nfp_prog
), 0x1, reg_imm(NFP_NET_RXR_MAX
),
1829 if (!nfp_prog_confirm_current_offset(nfp_prog
, jmp_tgt
))
1835 /* --- Callbacks --- */
1836 static int mov_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1838 const struct bpf_insn
*insn
= &meta
->insn
;
1839 u8 dst
= insn
->dst_reg
* 2;
1840 u8 src
= insn
->src_reg
* 2;
1842 if (insn
->src_reg
== BPF_REG_10
) {
1843 swreg stack_depth_reg
;
1845 stack_depth_reg
= ur_load_imm_any(nfp_prog
,
1846 nfp_prog
->stack_frame_depth
,
1847 stack_imm(nfp_prog
));
1848 emit_alu(nfp_prog
, reg_both(dst
), stack_reg(nfp_prog
),
1849 ALU_OP_ADD
, stack_depth_reg
);
1850 wrp_immed(nfp_prog
, reg_both(dst
+ 1), 0);
1852 wrp_reg_mov(nfp_prog
, dst
, src
);
1853 wrp_reg_mov(nfp_prog
, dst
+ 1, src
+ 1);
1859 static int mov_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1861 u64 imm
= meta
->insn
.imm
; /* sign extend */
1863 wrp_immed(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2), imm
& ~0U);
1864 wrp_immed(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2 + 1), imm
>> 32);
1869 static int xor_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1871 return wrp_alu64_reg(nfp_prog
, meta
, ALU_OP_XOR
);
1874 static int xor_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1876 return wrp_alu64_imm(nfp_prog
, meta
, ALU_OP_XOR
, !meta
->insn
.imm
);
1879 static int and_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1881 return wrp_alu64_reg(nfp_prog
, meta
, ALU_OP_AND
);
1884 static int and_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1886 return wrp_alu64_imm(nfp_prog
, meta
, ALU_OP_AND
, !~meta
->insn
.imm
);
1889 static int or_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1891 return wrp_alu64_reg(nfp_prog
, meta
, ALU_OP_OR
);
1894 static int or_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1896 return wrp_alu64_imm(nfp_prog
, meta
, ALU_OP_OR
, !meta
->insn
.imm
);
1899 static int add_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1901 const struct bpf_insn
*insn
= &meta
->insn
;
1903 emit_alu(nfp_prog
, reg_both(insn
->dst_reg
* 2),
1904 reg_a(insn
->dst_reg
* 2), ALU_OP_ADD
,
1905 reg_b(insn
->src_reg
* 2));
1906 emit_alu(nfp_prog
, reg_both(insn
->dst_reg
* 2 + 1),
1907 reg_a(insn
->dst_reg
* 2 + 1), ALU_OP_ADD_C
,
1908 reg_b(insn
->src_reg
* 2 + 1));
1913 static int add_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1915 const struct bpf_insn
*insn
= &meta
->insn
;
1916 u64 imm
= insn
->imm
; /* sign extend */
1918 wrp_alu_imm(nfp_prog
, insn
->dst_reg
* 2, ALU_OP_ADD
, imm
& ~0U);
1919 wrp_alu_imm(nfp_prog
, insn
->dst_reg
* 2 + 1, ALU_OP_ADD_C
, imm
>> 32);
1924 static int sub_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1926 const struct bpf_insn
*insn
= &meta
->insn
;
1928 emit_alu(nfp_prog
, reg_both(insn
->dst_reg
* 2),
1929 reg_a(insn
->dst_reg
* 2), ALU_OP_SUB
,
1930 reg_b(insn
->src_reg
* 2));
1931 emit_alu(nfp_prog
, reg_both(insn
->dst_reg
* 2 + 1),
1932 reg_a(insn
->dst_reg
* 2 + 1), ALU_OP_SUB_C
,
1933 reg_b(insn
->src_reg
* 2 + 1));
1938 static int sub_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1940 const struct bpf_insn
*insn
= &meta
->insn
;
1941 u64 imm
= insn
->imm
; /* sign extend */
1943 wrp_alu_imm(nfp_prog
, insn
->dst_reg
* 2, ALU_OP_SUB
, imm
& ~0U);
1944 wrp_alu_imm(nfp_prog
, insn
->dst_reg
* 2 + 1, ALU_OP_SUB_C
, imm
>> 32);
1949 static int mul_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1951 return wrp_mul(nfp_prog
, meta
, true, true);
1954 static int mul_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1956 return wrp_mul(nfp_prog
, meta
, true, false);
1959 static int div_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1961 const struct bpf_insn
*insn
= &meta
->insn
;
1963 return wrp_div_imm(nfp_prog
, insn
->dst_reg
* 2, insn
->imm
);
1966 static int div_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1968 /* NOTE: verifier hook has rejected cases for which verifier doesn't
1969 * know whether the source operand is constant or not.
1971 return wrp_div_imm(nfp_prog
, meta
->insn
.dst_reg
* 2, meta
->umin_src
);
1974 static int neg_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
1976 const struct bpf_insn
*insn
= &meta
->insn
;
1978 emit_alu(nfp_prog
, reg_both(insn
->dst_reg
* 2), reg_imm(0),
1979 ALU_OP_SUB
, reg_b(insn
->dst_reg
* 2));
1980 emit_alu(nfp_prog
, reg_both(insn
->dst_reg
* 2 + 1), reg_imm(0),
1981 ALU_OP_SUB_C
, reg_b(insn
->dst_reg
* 2 + 1));
1987 * if shift_amt >= 32
1988 * dst_high = dst_low << shift_amt[4:0]
1991 * dst_high = (dst_high, dst_low) >> (32 - shift_amt)
1992 * dst_low = dst_low << shift_amt
1994 * The indirect shift will use the same logic at runtime.
1996 static int __shl_imm64(struct nfp_prog
*nfp_prog
, u8 dst
, u8 shift_amt
)
2001 if (shift_amt
< 32) {
2002 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_a(dst
+ 1),
2003 SHF_OP_NONE
, reg_b(dst
), SHF_SC_R_DSHF
,
2005 emit_shf(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2006 reg_b(dst
), SHF_SC_L_SHF
, shift_amt
);
2007 } else if (shift_amt
== 32) {
2008 wrp_reg_mov(nfp_prog
, dst
+ 1, dst
);
2009 wrp_immed(nfp_prog
, reg_both(dst
), 0);
2010 } else if (shift_amt
> 32) {
2011 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_NONE
,
2012 reg_b(dst
), SHF_SC_L_SHF
, shift_amt
- 32);
2013 wrp_immed(nfp_prog
, reg_both(dst
), 0);
2019 static int shl_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2021 const struct bpf_insn
*insn
= &meta
->insn
;
2022 u8 dst
= insn
->dst_reg
* 2;
2024 return __shl_imm64(nfp_prog
, dst
, insn
->imm
);
2027 static void shl_reg64_lt32_high(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2029 emit_alu(nfp_prog
, imm_both(nfp_prog
), reg_imm(32), ALU_OP_SUB
,
2031 emit_alu(nfp_prog
, reg_none(), imm_a(nfp_prog
), ALU_OP_OR
, reg_imm(0));
2032 emit_shf_indir(nfp_prog
, reg_both(dst
+ 1), reg_a(dst
+ 1), SHF_OP_NONE
,
2033 reg_b(dst
), SHF_SC_R_DSHF
);
2036 /* NOTE: for indirect left shift, HIGH part should be calculated first. */
2037 static void shl_reg64_lt32_low(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2039 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_imm(0));
2040 emit_shf_indir(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2041 reg_b(dst
), SHF_SC_L_SHF
);
2044 static void shl_reg64_lt32(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2046 shl_reg64_lt32_high(nfp_prog
, dst
, src
);
2047 shl_reg64_lt32_low(nfp_prog
, dst
, src
);
2050 static void shl_reg64_ge32(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2052 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_imm(0));
2053 emit_shf_indir(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_NONE
,
2054 reg_b(dst
), SHF_SC_L_SHF
);
2055 wrp_immed(nfp_prog
, reg_both(dst
), 0);
2058 static int shl_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2060 const struct bpf_insn
*insn
= &meta
->insn
;
2064 dst
= insn
->dst_reg
* 2;
2065 umin
= meta
->umin_src
;
2066 umax
= meta
->umax_src
;
2068 return __shl_imm64(nfp_prog
, dst
, umin
);
2070 src
= insn
->src_reg
* 2;
2072 shl_reg64_lt32(nfp_prog
, dst
, src
);
2073 } else if (umin
>= 32) {
2074 shl_reg64_ge32(nfp_prog
, dst
, src
);
2076 /* Generate different instruction sequences depending on runtime
2077 * value of shift amount.
2079 u16 label_ge32
, label_end
;
2081 label_ge32
= nfp_prog_current_offset(nfp_prog
) + 7;
2082 emit_br_bset(nfp_prog
, reg_a(src
), 5, label_ge32
, 0);
2084 shl_reg64_lt32_high(nfp_prog
, dst
, src
);
2085 label_end
= nfp_prog_current_offset(nfp_prog
) + 6;
2086 emit_br(nfp_prog
, BR_UNC
, label_end
, 2);
2087 /* shl_reg64_lt32_low packed in delay slot. */
2088 shl_reg64_lt32_low(nfp_prog
, dst
, src
);
2090 if (!nfp_prog_confirm_current_offset(nfp_prog
, label_ge32
))
2092 shl_reg64_ge32(nfp_prog
, dst
, src
);
2094 if (!nfp_prog_confirm_current_offset(nfp_prog
, label_end
))
2102 * if shift_amt >= 32
2104 * dst_low = dst_high >> shift_amt[4:0]
2106 * dst_high = dst_high >> shift_amt
2107 * dst_low = (dst_high, dst_low) >> shift_amt
2109 * The indirect shift will use the same logic at runtime.
2111 static int __shr_imm64(struct nfp_prog
*nfp_prog
, u8 dst
, u8 shift_amt
)
2116 if (shift_amt
< 32) {
2117 emit_shf(nfp_prog
, reg_both(dst
), reg_a(dst
+ 1), SHF_OP_NONE
,
2118 reg_b(dst
), SHF_SC_R_DSHF
, shift_amt
);
2119 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_NONE
,
2120 reg_b(dst
+ 1), SHF_SC_R_SHF
, shift_amt
);
2121 } else if (shift_amt
== 32) {
2122 wrp_reg_mov(nfp_prog
, dst
, dst
+ 1);
2123 wrp_immed(nfp_prog
, reg_both(dst
+ 1), 0);
2124 } else if (shift_amt
> 32) {
2125 emit_shf(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2126 reg_b(dst
+ 1), SHF_SC_R_SHF
, shift_amt
- 32);
2127 wrp_immed(nfp_prog
, reg_both(dst
+ 1), 0);
2133 static int shr_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2135 const struct bpf_insn
*insn
= &meta
->insn
;
2136 u8 dst
= insn
->dst_reg
* 2;
2138 return __shr_imm64(nfp_prog
, dst
, insn
->imm
);
2141 /* NOTE: for indirect right shift, LOW part should be calculated first. */
2142 static void shr_reg64_lt32_high(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2144 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_imm(0));
2145 emit_shf_indir(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_NONE
,
2146 reg_b(dst
+ 1), SHF_SC_R_SHF
);
2149 static void shr_reg64_lt32_low(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2151 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_imm(0));
2152 emit_shf_indir(nfp_prog
, reg_both(dst
), reg_a(dst
+ 1), SHF_OP_NONE
,
2153 reg_b(dst
), SHF_SC_R_DSHF
);
2156 static void shr_reg64_lt32(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2158 shr_reg64_lt32_low(nfp_prog
, dst
, src
);
2159 shr_reg64_lt32_high(nfp_prog
, dst
, src
);
2162 static void shr_reg64_ge32(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2164 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_imm(0));
2165 emit_shf_indir(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2166 reg_b(dst
+ 1), SHF_SC_R_SHF
);
2167 wrp_immed(nfp_prog
, reg_both(dst
+ 1), 0);
2170 static int shr_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2172 const struct bpf_insn
*insn
= &meta
->insn
;
2176 dst
= insn
->dst_reg
* 2;
2177 umin
= meta
->umin_src
;
2178 umax
= meta
->umax_src
;
2180 return __shr_imm64(nfp_prog
, dst
, umin
);
2182 src
= insn
->src_reg
* 2;
2184 shr_reg64_lt32(nfp_prog
, dst
, src
);
2185 } else if (umin
>= 32) {
2186 shr_reg64_ge32(nfp_prog
, dst
, src
);
2188 /* Generate different instruction sequences depending on runtime
2189 * value of shift amount.
2191 u16 label_ge32
, label_end
;
2193 label_ge32
= nfp_prog_current_offset(nfp_prog
) + 6;
2194 emit_br_bset(nfp_prog
, reg_a(src
), 5, label_ge32
, 0);
2195 shr_reg64_lt32_low(nfp_prog
, dst
, src
);
2196 label_end
= nfp_prog_current_offset(nfp_prog
) + 6;
2197 emit_br(nfp_prog
, BR_UNC
, label_end
, 2);
2198 /* shr_reg64_lt32_high packed in delay slot. */
2199 shr_reg64_lt32_high(nfp_prog
, dst
, src
);
2201 if (!nfp_prog_confirm_current_offset(nfp_prog
, label_ge32
))
2203 shr_reg64_ge32(nfp_prog
, dst
, src
);
2205 if (!nfp_prog_confirm_current_offset(nfp_prog
, label_end
))
2212 /* Code logic is the same as __shr_imm64 except ashr requires signedness bit
2213 * told through PREV_ALU result.
2215 static int __ashr_imm64(struct nfp_prog
*nfp_prog
, u8 dst
, u8 shift_amt
)
2220 if (shift_amt
< 32) {
2221 emit_shf(nfp_prog
, reg_both(dst
), reg_a(dst
+ 1), SHF_OP_NONE
,
2222 reg_b(dst
), SHF_SC_R_DSHF
, shift_amt
);
2223 /* Set signedness bit. */
2224 emit_alu(nfp_prog
, reg_none(), reg_a(dst
+ 1), ALU_OP_OR
,
2226 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_ASHR
,
2227 reg_b(dst
+ 1), SHF_SC_R_SHF
, shift_amt
);
2228 } else if (shift_amt
== 32) {
2229 /* NOTE: this also helps setting signedness bit. */
2230 wrp_reg_mov(nfp_prog
, dst
, dst
+ 1);
2231 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_ASHR
,
2232 reg_b(dst
+ 1), SHF_SC_R_SHF
, 31);
2233 } else if (shift_amt
> 32) {
2234 emit_alu(nfp_prog
, reg_none(), reg_a(dst
+ 1), ALU_OP_OR
,
2236 emit_shf(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_ASHR
,
2237 reg_b(dst
+ 1), SHF_SC_R_SHF
, shift_amt
- 32);
2238 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_ASHR
,
2239 reg_b(dst
+ 1), SHF_SC_R_SHF
, 31);
2245 static int ashr_imm64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2247 const struct bpf_insn
*insn
= &meta
->insn
;
2248 u8 dst
= insn
->dst_reg
* 2;
2250 return __ashr_imm64(nfp_prog
, dst
, insn
->imm
);
2253 static void ashr_reg64_lt32_high(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2255 /* NOTE: the first insn will set both indirect shift amount (source A)
2256 * and signedness bit (MSB of result).
2258 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_b(dst
+ 1));
2259 emit_shf_indir(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_ASHR
,
2260 reg_b(dst
+ 1), SHF_SC_R_SHF
);
2263 static void ashr_reg64_lt32_low(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2265 /* NOTE: it is the same as logic shift because we don't need to shift in
2266 * signedness bit when the shift amount is less than 32.
2268 return shr_reg64_lt32_low(nfp_prog
, dst
, src
);
2271 static void ashr_reg64_lt32(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2273 ashr_reg64_lt32_low(nfp_prog
, dst
, src
);
2274 ashr_reg64_lt32_high(nfp_prog
, dst
, src
);
2277 static void ashr_reg64_ge32(struct nfp_prog
*nfp_prog
, u8 dst
, u8 src
)
2279 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_b(dst
+ 1));
2280 emit_shf_indir(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_ASHR
,
2281 reg_b(dst
+ 1), SHF_SC_R_SHF
);
2282 emit_shf(nfp_prog
, reg_both(dst
+ 1), reg_none(), SHF_OP_ASHR
,
2283 reg_b(dst
+ 1), SHF_SC_R_SHF
, 31);
2286 /* Like ashr_imm64, but need to use indirect shift. */
2287 static int ashr_reg64(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2289 const struct bpf_insn
*insn
= &meta
->insn
;
2293 dst
= insn
->dst_reg
* 2;
2294 umin
= meta
->umin_src
;
2295 umax
= meta
->umax_src
;
2297 return __ashr_imm64(nfp_prog
, dst
, umin
);
2299 src
= insn
->src_reg
* 2;
2301 ashr_reg64_lt32(nfp_prog
, dst
, src
);
2302 } else if (umin
>= 32) {
2303 ashr_reg64_ge32(nfp_prog
, dst
, src
);
2305 u16 label_ge32
, label_end
;
2307 label_ge32
= nfp_prog_current_offset(nfp_prog
) + 6;
2308 emit_br_bset(nfp_prog
, reg_a(src
), 5, label_ge32
, 0);
2309 ashr_reg64_lt32_low(nfp_prog
, dst
, src
);
2310 label_end
= nfp_prog_current_offset(nfp_prog
) + 6;
2311 emit_br(nfp_prog
, BR_UNC
, label_end
, 2);
2312 /* ashr_reg64_lt32_high packed in delay slot. */
2313 ashr_reg64_lt32_high(nfp_prog
, dst
, src
);
2315 if (!nfp_prog_confirm_current_offset(nfp_prog
, label_ge32
))
2317 ashr_reg64_ge32(nfp_prog
, dst
, src
);
2319 if (!nfp_prog_confirm_current_offset(nfp_prog
, label_end
))
2326 static int mov_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2328 const struct bpf_insn
*insn
= &meta
->insn
;
2330 wrp_reg_mov(nfp_prog
, insn
->dst_reg
* 2, insn
->src_reg
* 2);
2331 wrp_immed(nfp_prog
, reg_both(insn
->dst_reg
* 2 + 1), 0);
2336 static int mov_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2338 const struct bpf_insn
*insn
= &meta
->insn
;
2340 wrp_immed(nfp_prog
, reg_both(insn
->dst_reg
* 2), insn
->imm
);
2341 wrp_immed(nfp_prog
, reg_both(insn
->dst_reg
* 2 + 1), 0);
2346 static int xor_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2348 return wrp_alu32_reg(nfp_prog
, meta
, ALU_OP_XOR
);
2351 static int xor_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2353 return wrp_alu32_imm(nfp_prog
, meta
, ALU_OP_XOR
);
2356 static int and_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2358 return wrp_alu32_reg(nfp_prog
, meta
, ALU_OP_AND
);
2361 static int and_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2363 return wrp_alu32_imm(nfp_prog
, meta
, ALU_OP_AND
);
2366 static int or_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2368 return wrp_alu32_reg(nfp_prog
, meta
, ALU_OP_OR
);
2371 static int or_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2373 return wrp_alu32_imm(nfp_prog
, meta
, ALU_OP_OR
);
2376 static int add_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2378 return wrp_alu32_reg(nfp_prog
, meta
, ALU_OP_ADD
);
2381 static int add_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2383 return wrp_alu32_imm(nfp_prog
, meta
, ALU_OP_ADD
);
2386 static int sub_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2388 return wrp_alu32_reg(nfp_prog
, meta
, ALU_OP_SUB
);
2391 static int sub_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2393 return wrp_alu32_imm(nfp_prog
, meta
, ALU_OP_SUB
);
2396 static int mul_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2398 return wrp_mul(nfp_prog
, meta
, false, true);
2401 static int mul_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2403 return wrp_mul(nfp_prog
, meta
, false, false);
2406 static int div_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2408 return div_reg64(nfp_prog
, meta
);
2411 static int div_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2413 return div_imm64(nfp_prog
, meta
);
2416 static int neg_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2418 u8 dst
= meta
->insn
.dst_reg
* 2;
2420 emit_alu(nfp_prog
, reg_both(dst
), reg_imm(0), ALU_OP_SUB
, reg_b(dst
));
2421 wrp_zext(nfp_prog
, meta
, dst
);
2427 __ashr_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
, u8 dst
,
2431 /* Set signedness bit (MSB of result). */
2432 emit_alu(nfp_prog
, reg_none(), reg_a(dst
), ALU_OP_OR
,
2434 emit_shf(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_ASHR
,
2435 reg_b(dst
), SHF_SC_R_SHF
, shift_amt
);
2437 wrp_zext(nfp_prog
, meta
, dst
);
2442 static int ashr_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2444 const struct bpf_insn
*insn
= &meta
->insn
;
2448 dst
= insn
->dst_reg
* 2;
2449 umin
= meta
->umin_src
;
2450 umax
= meta
->umax_src
;
2452 return __ashr_imm(nfp_prog
, meta
, dst
, umin
);
2454 src
= insn
->src_reg
* 2;
2455 /* NOTE: the first insn will set both indirect shift amount (source A)
2456 * and signedness bit (MSB of result).
2458 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_b(dst
));
2459 emit_shf_indir(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_ASHR
,
2460 reg_b(dst
), SHF_SC_R_SHF
);
2461 wrp_zext(nfp_prog
, meta
, dst
);
2466 static int ashr_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2468 const struct bpf_insn
*insn
= &meta
->insn
;
2469 u8 dst
= insn
->dst_reg
* 2;
2471 return __ashr_imm(nfp_prog
, meta
, dst
, insn
->imm
);
2475 __shr_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
, u8 dst
,
2479 emit_shf(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2480 reg_b(dst
), SHF_SC_R_SHF
, shift_amt
);
2481 wrp_zext(nfp_prog
, meta
, dst
);
2485 static int shr_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2487 const struct bpf_insn
*insn
= &meta
->insn
;
2488 u8 dst
= insn
->dst_reg
* 2;
2490 return __shr_imm(nfp_prog
, meta
, dst
, insn
->imm
);
2493 static int shr_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2495 const struct bpf_insn
*insn
= &meta
->insn
;
2499 dst
= insn
->dst_reg
* 2;
2500 umin
= meta
->umin_src
;
2501 umax
= meta
->umax_src
;
2503 return __shr_imm(nfp_prog
, meta
, dst
, umin
);
2505 src
= insn
->src_reg
* 2;
2506 emit_alu(nfp_prog
, reg_none(), reg_a(src
), ALU_OP_OR
, reg_imm(0));
2507 emit_shf_indir(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2508 reg_b(dst
), SHF_SC_R_SHF
);
2509 wrp_zext(nfp_prog
, meta
, dst
);
2514 __shl_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
, u8 dst
,
2518 emit_shf(nfp_prog
, reg_both(dst
), reg_none(), SHF_OP_NONE
,
2519 reg_b(dst
), SHF_SC_L_SHF
, shift_amt
);
2520 wrp_zext(nfp_prog
, meta
, dst
);
2524 static int shl_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2526 const struct bpf_insn
*insn
= &meta
->insn
;
2527 u8 dst
= insn
->dst_reg
* 2;
2529 return __shl_imm(nfp_prog
, meta
, dst
, insn
->imm
);
2532 static int shl_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2534 const struct bpf_insn
*insn
= &meta
->insn
;
2538 dst
= insn
->dst_reg
* 2;
2539 umin
= meta
->umin_src
;
2540 umax
= meta
->umax_src
;
2542 return __shl_imm(nfp_prog
, meta
, dst
, umin
);
2544 src
= insn
->src_reg
* 2;
2545 shl_reg64_lt32_low(nfp_prog
, dst
, src
);
2546 wrp_zext(nfp_prog
, meta
, dst
);
2550 static int end_reg32(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2552 const struct bpf_insn
*insn
= &meta
->insn
;
2553 u8 gpr
= insn
->dst_reg
* 2;
2555 switch (insn
->imm
) {
2557 emit_ld_field(nfp_prog
, reg_both(gpr
), 0x9, reg_b(gpr
),
2559 emit_ld_field(nfp_prog
, reg_both(gpr
), 0xe, reg_a(gpr
),
2562 wrp_immed(nfp_prog
, reg_both(gpr
+ 1), 0);
2565 wrp_end32(nfp_prog
, reg_a(gpr
), gpr
);
2566 wrp_immed(nfp_prog
, reg_both(gpr
+ 1), 0);
2569 wrp_mov(nfp_prog
, imm_a(nfp_prog
), reg_b(gpr
+ 1));
2571 wrp_end32(nfp_prog
, reg_a(gpr
), gpr
+ 1);
2572 wrp_end32(nfp_prog
, imm_a(nfp_prog
), gpr
);
2579 static int imm_ld8_part2(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2581 struct nfp_insn_meta
*prev
= nfp_meta_prev(meta
);
2585 dst
= prev
->insn
.dst_reg
* 2;
2586 imm_lo
= prev
->insn
.imm
;
2587 imm_hi
= meta
->insn
.imm
;
2589 wrp_immed(nfp_prog
, reg_both(dst
), imm_lo
);
2591 /* mov is always 1 insn, load imm may be two, so try to use mov */
2592 if (imm_hi
== imm_lo
)
2593 wrp_mov(nfp_prog
, reg_both(dst
+ 1), reg_a(dst
));
2595 wrp_immed(nfp_prog
, reg_both(dst
+ 1), imm_hi
);
2600 static int imm_ld8(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2602 meta
->double_cb
= imm_ld8_part2
;
2606 static int data_ld1(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2608 return construct_data_ld(nfp_prog
, meta
, meta
->insn
.imm
, 1);
2611 static int data_ld2(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2613 return construct_data_ld(nfp_prog
, meta
, meta
->insn
.imm
, 2);
2616 static int data_ld4(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2618 return construct_data_ld(nfp_prog
, meta
, meta
->insn
.imm
, 4);
2621 static int data_ind_ld1(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2623 return construct_data_ind_ld(nfp_prog
, meta
, meta
->insn
.imm
,
2624 meta
->insn
.src_reg
* 2, 1);
2627 static int data_ind_ld2(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2629 return construct_data_ind_ld(nfp_prog
, meta
, meta
->insn
.imm
,
2630 meta
->insn
.src_reg
* 2, 2);
2633 static int data_ind_ld4(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2635 return construct_data_ind_ld(nfp_prog
, meta
, meta
->insn
.imm
,
2636 meta
->insn
.src_reg
* 2, 4);
2640 mem_ldx_stack(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2641 unsigned int size
, unsigned int ptr_off
)
2643 return mem_op_stack(nfp_prog
, meta
, size
, ptr_off
,
2644 meta
->insn
.dst_reg
* 2, meta
->insn
.src_reg
* 2,
2645 true, wrp_lmem_load
);
2648 static int mem_ldx_skb(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2651 swreg dst
= reg_both(meta
->insn
.dst_reg
* 2);
2653 switch (meta
->insn
.off
) {
2654 case offsetof(struct __sk_buff
, len
):
2655 if (size
!= sizeof_field(struct __sk_buff
, len
))
2657 wrp_mov(nfp_prog
, dst
, plen_reg(nfp_prog
));
2659 case offsetof(struct __sk_buff
, data
):
2660 if (size
!= sizeof_field(struct __sk_buff
, data
))
2662 wrp_mov(nfp_prog
, dst
, pptr_reg(nfp_prog
));
2664 case offsetof(struct __sk_buff
, data_end
):
2665 if (size
!= sizeof_field(struct __sk_buff
, data_end
))
2667 emit_alu(nfp_prog
, dst
,
2668 plen_reg(nfp_prog
), ALU_OP_ADD
, pptr_reg(nfp_prog
));
2674 wrp_immed(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2 + 1), 0);
2679 static int mem_ldx_xdp(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2682 swreg dst
= reg_both(meta
->insn
.dst_reg
* 2);
2684 switch (meta
->insn
.off
) {
2685 case offsetof(struct xdp_md
, data
):
2686 if (size
!= sizeof_field(struct xdp_md
, data
))
2688 wrp_mov(nfp_prog
, dst
, pptr_reg(nfp_prog
));
2690 case offsetof(struct xdp_md
, data_end
):
2691 if (size
!= sizeof_field(struct xdp_md
, data_end
))
2693 emit_alu(nfp_prog
, dst
,
2694 plen_reg(nfp_prog
), ALU_OP_ADD
, pptr_reg(nfp_prog
));
2700 wrp_immed(nfp_prog
, reg_both(meta
->insn
.dst_reg
* 2 + 1), 0);
2706 mem_ldx_data(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2711 tmp_reg
= re_load_imm_any(nfp_prog
, meta
->insn
.off
, imm_b(nfp_prog
));
2713 return data_ld_host_order_addr32(nfp_prog
, meta
, meta
->insn
.src_reg
* 2,
2714 tmp_reg
, meta
->insn
.dst_reg
* 2, size
);
2718 mem_ldx_emem(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2723 tmp_reg
= re_load_imm_any(nfp_prog
, meta
->insn
.off
, imm_b(nfp_prog
));
2725 return data_ld_host_order_addr40(nfp_prog
, meta
, meta
->insn
.src_reg
* 2,
2726 tmp_reg
, meta
->insn
.dst_reg
* 2, size
);
2730 mem_ldx_data_init_pktcache(struct nfp_prog
*nfp_prog
,
2731 struct nfp_insn_meta
*meta
)
2733 s16 range_start
= meta
->pkt_cache
.range_start
;
2734 s16 range_end
= meta
->pkt_cache
.range_end
;
2735 swreg src_base
, off
;
2739 off
= re_load_imm_any(nfp_prog
, range_start
, imm_b(nfp_prog
));
2740 src_base
= reg_a(meta
->insn
.src_reg
* 2);
2741 len
= range_end
- range_start
;
2742 xfer_num
= round_up(len
, REG_WIDTH
) / REG_WIDTH
;
2744 indir
= len
> 8 * REG_WIDTH
;
2745 /* Setup PREV_ALU for indirect mode. */
2747 wrp_immed(nfp_prog
, reg_none(),
2748 CMD_OVE_LEN
| FIELD_PREP(CMD_OV_LEN
, xfer_num
- 1));
2750 /* Cache memory into transfer-in registers. */
2751 emit_cmd_any(nfp_prog
, CMD_TGT_READ32_SWAP
, CMD_MODE_32b
, 0, src_base
,
2752 off
, xfer_num
- 1, CMD_CTX_SWAP
, indir
);
2756 mem_ldx_data_from_pktcache_unaligned(struct nfp_prog
*nfp_prog
,
2757 struct nfp_insn_meta
*meta
,
2760 s16 range_start
= meta
->pkt_cache
.range_start
;
2761 s16 insn_off
= meta
->insn
.off
- range_start
;
2762 swreg dst_lo
, dst_hi
, src_lo
, src_mid
;
2763 u8 dst_gpr
= meta
->insn
.dst_reg
* 2;
2764 u8 len_lo
= size
, len_mid
= 0;
2765 u8 idx
= insn_off
/ REG_WIDTH
;
2766 u8 off
= insn_off
% REG_WIDTH
;
2768 dst_hi
= reg_both(dst_gpr
+ 1);
2769 dst_lo
= reg_both(dst_gpr
);
2770 src_lo
= reg_xfer(idx
);
2772 /* The read length could involve as many as three registers. */
2773 if (size
> REG_WIDTH
- off
) {
2774 /* Calculate the part in the second register. */
2775 len_lo
= REG_WIDTH
- off
;
2776 len_mid
= size
- len_lo
;
2778 /* Calculate the part in the third register. */
2779 if (size
> 2 * REG_WIDTH
- off
)
2780 len_mid
= REG_WIDTH
;
2783 wrp_reg_subpart(nfp_prog
, dst_lo
, src_lo
, len_lo
, off
);
2786 wrp_zext(nfp_prog
, meta
, dst_gpr
);
2790 src_mid
= reg_xfer(idx
+ 1);
2792 if (size
<= REG_WIDTH
) {
2793 wrp_reg_or_subpart(nfp_prog
, dst_lo
, src_mid
, len_mid
, len_lo
);
2794 wrp_zext(nfp_prog
, meta
, dst_gpr
);
2796 swreg src_hi
= reg_xfer(idx
+ 2);
2798 wrp_reg_or_subpart(nfp_prog
, dst_lo
, src_mid
,
2799 REG_WIDTH
- len_lo
, len_lo
);
2800 wrp_reg_subpart(nfp_prog
, dst_hi
, src_mid
, len_lo
,
2801 REG_WIDTH
- len_lo
);
2802 wrp_reg_or_subpart(nfp_prog
, dst_hi
, src_hi
, REG_WIDTH
- len_lo
,
2810 mem_ldx_data_from_pktcache_aligned(struct nfp_prog
*nfp_prog
,
2811 struct nfp_insn_meta
*meta
,
2814 swreg dst_lo
, dst_hi
, src_lo
;
2817 idx
= (meta
->insn
.off
- meta
->pkt_cache
.range_start
) / REG_WIDTH
;
2818 dst_gpr
= meta
->insn
.dst_reg
* 2;
2819 dst_hi
= reg_both(dst_gpr
+ 1);
2820 dst_lo
= reg_both(dst_gpr
);
2821 src_lo
= reg_xfer(idx
);
2823 if (size
< REG_WIDTH
) {
2824 wrp_reg_subpart(nfp_prog
, dst_lo
, src_lo
, size
, 0);
2825 wrp_zext(nfp_prog
, meta
, dst_gpr
);
2826 } else if (size
== REG_WIDTH
) {
2827 wrp_mov(nfp_prog
, dst_lo
, src_lo
);
2828 wrp_zext(nfp_prog
, meta
, dst_gpr
);
2830 swreg src_hi
= reg_xfer(idx
+ 1);
2832 wrp_mov(nfp_prog
, dst_lo
, src_lo
);
2833 wrp_mov(nfp_prog
, dst_hi
, src_hi
);
2840 mem_ldx_data_from_pktcache(struct nfp_prog
*nfp_prog
,
2841 struct nfp_insn_meta
*meta
, unsigned int size
)
2843 u8 off
= meta
->insn
.off
- meta
->pkt_cache
.range_start
;
2845 if (IS_ALIGNED(off
, REG_WIDTH
))
2846 return mem_ldx_data_from_pktcache_aligned(nfp_prog
, meta
, size
);
2848 return mem_ldx_data_from_pktcache_unaligned(nfp_prog
, meta
, size
);
2852 mem_ldx(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2855 if (meta
->ldst_gather_len
)
2856 return nfp_cpp_memcpy(nfp_prog
, meta
);
2858 if (meta
->ptr
.type
== PTR_TO_CTX
) {
2859 if (nfp_prog
->type
== BPF_PROG_TYPE_XDP
)
2860 return mem_ldx_xdp(nfp_prog
, meta
, size
);
2862 return mem_ldx_skb(nfp_prog
, meta
, size
);
2865 if (meta
->ptr
.type
== PTR_TO_PACKET
) {
2866 if (meta
->pkt_cache
.range_end
) {
2867 if (meta
->pkt_cache
.do_init
)
2868 mem_ldx_data_init_pktcache(nfp_prog
, meta
);
2870 return mem_ldx_data_from_pktcache(nfp_prog
, meta
, size
);
2872 return mem_ldx_data(nfp_prog
, meta
, size
);
2876 if (meta
->ptr
.type
== PTR_TO_STACK
)
2877 return mem_ldx_stack(nfp_prog
, meta
, size
,
2878 meta
->ptr
.off
+ meta
->ptr
.var_off
.value
);
2880 if (meta
->ptr
.type
== PTR_TO_MAP_VALUE
)
2881 return mem_ldx_emem(nfp_prog
, meta
, size
);
2886 static int mem_ldx1(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2888 return mem_ldx(nfp_prog
, meta
, 1);
2891 static int mem_ldx2(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2893 return mem_ldx(nfp_prog
, meta
, 2);
2896 static int mem_ldx4(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2898 return mem_ldx(nfp_prog
, meta
, 4);
2901 static int mem_ldx8(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2903 return mem_ldx(nfp_prog
, meta
, 8);
2907 mem_st_data(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2910 u64 imm
= meta
->insn
.imm
; /* sign extend */
2913 off_reg
= re_load_imm_any(nfp_prog
, meta
->insn
.off
, imm_b(nfp_prog
));
2915 return data_st_host_order(nfp_prog
, meta
->insn
.dst_reg
* 2, off_reg
,
2919 static int mem_st(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2922 if (meta
->ptr
.type
== PTR_TO_PACKET
)
2923 return mem_st_data(nfp_prog
, meta
, size
);
2928 static int mem_st1(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2930 return mem_st(nfp_prog
, meta
, 1);
2933 static int mem_st2(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2935 return mem_st(nfp_prog
, meta
, 2);
2938 static int mem_st4(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2940 return mem_st(nfp_prog
, meta
, 4);
2943 static int mem_st8(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2945 return mem_st(nfp_prog
, meta
, 8);
2949 mem_stx_data(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2954 off_reg
= re_load_imm_any(nfp_prog
, meta
->insn
.off
, imm_b(nfp_prog
));
2956 return data_stx_host_order(nfp_prog
, meta
->insn
.dst_reg
* 2, off_reg
,
2957 meta
->insn
.src_reg
* 2, size
);
2961 mem_stx_stack(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2962 unsigned int size
, unsigned int ptr_off
)
2964 return mem_op_stack(nfp_prog
, meta
, size
, ptr_off
,
2965 meta
->insn
.src_reg
* 2, meta
->insn
.dst_reg
* 2,
2966 false, wrp_lmem_store
);
2969 static int mem_stx_xdp(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2971 switch (meta
->insn
.off
) {
2972 case offsetof(struct xdp_md
, rx_queue_index
):
2973 return nfp_queue_select(nfp_prog
, meta
);
2976 WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */
2981 mem_stx(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
2984 if (meta
->ptr
.type
== PTR_TO_PACKET
)
2985 return mem_stx_data(nfp_prog
, meta
, size
);
2987 if (meta
->ptr
.type
== PTR_TO_STACK
)
2988 return mem_stx_stack(nfp_prog
, meta
, size
,
2989 meta
->ptr
.off
+ meta
->ptr
.var_off
.value
);
2994 static int mem_stx1(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
2996 return mem_stx(nfp_prog
, meta
, 1);
2999 static int mem_stx2(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3001 return mem_stx(nfp_prog
, meta
, 2);
3004 static int mem_stx4(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3006 if (meta
->ptr
.type
== PTR_TO_CTX
)
3007 if (nfp_prog
->type
== BPF_PROG_TYPE_XDP
)
3008 return mem_stx_xdp(nfp_prog
, meta
);
3009 return mem_stx(nfp_prog
, meta
, 4);
3012 static int mem_stx8(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3014 return mem_stx(nfp_prog
, meta
, 8);
3018 mem_xadd(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
, bool is64
)
3020 u8 dst_gpr
= meta
->insn
.dst_reg
* 2;
3021 u8 src_gpr
= meta
->insn
.src_reg
* 2;
3022 unsigned int full_add
, out
;
3023 swreg addra
, addrb
, off
;
3025 off
= ur_load_imm_any(nfp_prog
, meta
->insn
.off
, imm_b(nfp_prog
));
3027 /* We can fit 16 bits into command immediate, if we know the immediate
3028 * is guaranteed to either always or never fit into 16 bit we only
3029 * generate code to handle that particular case, otherwise generate
3032 out
= nfp_prog_current_offset(nfp_prog
);
3033 full_add
= nfp_prog_current_offset(nfp_prog
);
3035 if (meta
->insn
.off
) {
3039 if (meta
->xadd_maybe_16bit
) {
3043 if (meta
->xadd_over_16bit
)
3045 if (meta
->xadd_maybe_16bit
&& meta
->xadd_over_16bit
) {
3050 /* Generate the branch for choosing add_imm vs add */
3051 if (meta
->xadd_maybe_16bit
&& meta
->xadd_over_16bit
) {
3052 swreg max_imm
= imm_a(nfp_prog
);
3054 wrp_immed(nfp_prog
, max_imm
, 0xffff);
3055 emit_alu(nfp_prog
, reg_none(),
3056 max_imm
, ALU_OP_SUB
, reg_b(src_gpr
));
3057 emit_alu(nfp_prog
, reg_none(),
3058 reg_imm(0), ALU_OP_SUB_C
, reg_b(src_gpr
+ 1));
3059 emit_br(nfp_prog
, BR_BLO
, full_add
, meta
->insn
.off
? 2 : 0);
3063 /* If insn has an offset add to the address */
3064 if (!meta
->insn
.off
) {
3065 addra
= reg_a(dst_gpr
);
3066 addrb
= reg_b(dst_gpr
+ 1);
3068 emit_alu(nfp_prog
, imma_a(nfp_prog
),
3069 reg_a(dst_gpr
), ALU_OP_ADD
, off
);
3070 emit_alu(nfp_prog
, imma_b(nfp_prog
),
3071 reg_a(dst_gpr
+ 1), ALU_OP_ADD_C
, reg_imm(0));
3072 addra
= imma_a(nfp_prog
);
3073 addrb
= imma_b(nfp_prog
);
3076 /* Generate the add_imm if 16 bits are possible */
3077 if (meta
->xadd_maybe_16bit
) {
3078 swreg prev_alu
= imm_a(nfp_prog
);
3080 wrp_immed(nfp_prog
, prev_alu
,
3081 FIELD_PREP(CMD_OVE_DATA
, 2) |
3083 FIELD_PREP(CMD_OV_LEN
, 0x8 | is64
<< 2));
3084 wrp_reg_or_subpart(nfp_prog
, prev_alu
, reg_b(src_gpr
), 2, 2);
3085 emit_cmd_indir(nfp_prog
, CMD_TGT_ADD_IMM
, CMD_MODE_40b_BA
, 0,
3086 addra
, addrb
, 0, CMD_CTX_NO_SWAP
);
3088 if (meta
->xadd_over_16bit
)
3089 emit_br(nfp_prog
, BR_UNC
, out
, 0);
3092 if (!nfp_prog_confirm_current_offset(nfp_prog
, full_add
))
3095 /* Generate the add if 16 bits are not guaranteed */
3096 if (meta
->xadd_over_16bit
) {
3097 emit_cmd(nfp_prog
, CMD_TGT_ADD
, CMD_MODE_40b_BA
, 0,
3098 addra
, addrb
, is64
<< 2,
3099 is64
? CMD_CTX_SWAP_DEFER2
: CMD_CTX_SWAP_DEFER1
);
3101 wrp_mov(nfp_prog
, reg_xfer(0), reg_a(src_gpr
));
3103 wrp_mov(nfp_prog
, reg_xfer(1), reg_a(src_gpr
+ 1));
3106 if (!nfp_prog_confirm_current_offset(nfp_prog
, out
))
3112 static int mem_xadd4(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3114 return mem_xadd(nfp_prog
, meta
, false);
3117 static int mem_xadd8(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3119 return mem_xadd(nfp_prog
, meta
, true);
3122 static int jump(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3124 emit_br(nfp_prog
, BR_UNC
, meta
->insn
.off
, 0);
3129 static int jeq_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3131 const struct bpf_insn
*insn
= &meta
->insn
;
3132 u64 imm
= insn
->imm
; /* sign extend */
3133 swreg or1
, or2
, tmp_reg
;
3135 or1
= reg_a(insn
->dst_reg
* 2);
3136 or2
= reg_b(insn
->dst_reg
* 2 + 1);
3139 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
& ~0U, imm_b(nfp_prog
));
3140 emit_alu(nfp_prog
, imm_a(nfp_prog
),
3141 reg_a(insn
->dst_reg
* 2), ALU_OP_XOR
, tmp_reg
);
3142 or1
= imm_a(nfp_prog
);
3146 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
>> 32, imm_b(nfp_prog
));
3147 emit_alu(nfp_prog
, imm_b(nfp_prog
),
3148 reg_a(insn
->dst_reg
* 2 + 1), ALU_OP_XOR
, tmp_reg
);
3149 or2
= imm_b(nfp_prog
);
3152 emit_alu(nfp_prog
, reg_none(), or1
, ALU_OP_OR
, or2
);
3153 emit_br(nfp_prog
, BR_BEQ
, insn
->off
, 0);
3158 static int jeq32_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3160 const struct bpf_insn
*insn
= &meta
->insn
;
3163 tmp_reg
= ur_load_imm_any(nfp_prog
, insn
->imm
, imm_b(nfp_prog
));
3164 emit_alu(nfp_prog
, reg_none(),
3165 reg_a(insn
->dst_reg
* 2), ALU_OP_XOR
, tmp_reg
);
3166 emit_br(nfp_prog
, BR_BEQ
, insn
->off
, 0);
3171 static int jset_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3173 const struct bpf_insn
*insn
= &meta
->insn
;
3174 u64 imm
= insn
->imm
; /* sign extend */
3175 u8 dst_gpr
= insn
->dst_reg
* 2;
3178 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
& ~0U, imm_b(nfp_prog
));
3179 emit_alu(nfp_prog
, imm_b(nfp_prog
),
3180 reg_a(dst_gpr
), ALU_OP_AND
, tmp_reg
);
3181 /* Upper word of the mask can only be 0 or ~0 from sign extension,
3182 * so either ignore it or OR the whole thing in.
3184 if (is_mbpf_jmp64(meta
) && imm
>> 32) {
3185 emit_alu(nfp_prog
, reg_none(),
3186 reg_a(dst_gpr
+ 1), ALU_OP_OR
, imm_b(nfp_prog
));
3188 emit_br(nfp_prog
, BR_BNE
, insn
->off
, 0);
3193 static int jne_imm(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3195 const struct bpf_insn
*insn
= &meta
->insn
;
3196 u64 imm
= insn
->imm
; /* sign extend */
3197 bool is_jmp32
= is_mbpf_jmp32(meta
);
3202 emit_alu(nfp_prog
, reg_none(), reg_none(), ALU_OP_NONE
,
3203 reg_b(insn
->dst_reg
* 2));
3205 emit_alu(nfp_prog
, reg_none(), reg_a(insn
->dst_reg
* 2),
3206 ALU_OP_OR
, reg_b(insn
->dst_reg
* 2 + 1));
3207 emit_br(nfp_prog
, BR_BNE
, insn
->off
, 0);
3211 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
& ~0U, imm_b(nfp_prog
));
3212 emit_alu(nfp_prog
, reg_none(),
3213 reg_a(insn
->dst_reg
* 2), ALU_OP_XOR
, tmp_reg
);
3214 emit_br(nfp_prog
, BR_BNE
, insn
->off
, 0);
3219 tmp_reg
= ur_load_imm_any(nfp_prog
, imm
>> 32, imm_b(nfp_prog
));
3220 emit_alu(nfp_prog
, reg_none(),
3221 reg_a(insn
->dst_reg
* 2 + 1), ALU_OP_XOR
, tmp_reg
);
3222 emit_br(nfp_prog
, BR_BNE
, insn
->off
, 0);
3227 static int jeq_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3229 const struct bpf_insn
*insn
= &meta
->insn
;
3231 emit_alu(nfp_prog
, imm_a(nfp_prog
), reg_a(insn
->dst_reg
* 2),
3232 ALU_OP_XOR
, reg_b(insn
->src_reg
* 2));
3233 if (is_mbpf_jmp64(meta
)) {
3234 emit_alu(nfp_prog
, imm_b(nfp_prog
),
3235 reg_a(insn
->dst_reg
* 2 + 1), ALU_OP_XOR
,
3236 reg_b(insn
->src_reg
* 2 + 1));
3237 emit_alu(nfp_prog
, reg_none(), imm_a(nfp_prog
), ALU_OP_OR
,
3240 emit_br(nfp_prog
, BR_BEQ
, insn
->off
, 0);
3245 static int jset_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3247 return wrp_test_reg(nfp_prog
, meta
, ALU_OP_AND
, BR_BNE
);
3250 static int jne_reg(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3252 return wrp_test_reg(nfp_prog
, meta
, ALU_OP_XOR
, BR_BNE
);
3256 bpf_to_bpf_call(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3258 u32 ret_tgt
, stack_depth
, offset_br
;
3261 stack_depth
= round_up(nfp_prog
->stack_frame_depth
, STACK_FRAME_ALIGN
);
3262 /* Space for saving the return address is accounted for by the callee,
3263 * so stack_depth can be zero for the main function.
3266 tmp_reg
= ur_load_imm_any(nfp_prog
, stack_depth
,
3267 stack_imm(nfp_prog
));
3268 emit_alu(nfp_prog
, stack_reg(nfp_prog
),
3269 stack_reg(nfp_prog
), ALU_OP_ADD
, tmp_reg
);
3270 emit_csr_wr(nfp_prog
, stack_reg(nfp_prog
),
3271 NFP_CSR_ACT_LM_ADDR0
);
3274 /* Two cases for jumping to the callee:
3276 * - If callee uses and needs to save R6~R9 then:
3277 * 1. Put the start offset of the callee into imm_b(). This will
3278 * require a fixup step, as we do not necessarily know this
3280 * 2. Put the return address from the callee to the caller into
3281 * register ret_reg().
3282 * 3. (After defer slots are consumed) Jump to the subroutine that
3283 * pushes the registers to the stack.
3284 * The subroutine acts as a trampoline, and returns to the address in
3285 * imm_b(), i.e. jumps to the callee.
3287 * - If callee does not need to save R6~R9 then just load return
3288 * address to the caller in ret_reg(), and jump to the callee
3291 * Using ret_reg() to pass the return address to the callee is set here
3292 * as a convention. The callee can then push this address onto its
3293 * stack frame in its prologue. The advantages of passing the return
3294 * address through ret_reg(), instead of pushing it to the stack right
3295 * here, are the following:
3296 * - It looks cleaner.
3297 * - If the called function is called multiple time, we get a lower
3299 * - We save two no-op instructions that should be added just before
3300 * the emit_br() when stack depth is not null otherwise.
3301 * - If we ever find a register to hold the return address during whole
3302 * execution of the callee, we will not have to push the return
3303 * address to the stack for leaf functions.
3305 if (!meta
->jmp_dst
) {
3306 pr_err("BUG: BPF-to-BPF call has no destination recorded\n");
3309 if (nfp_prog
->subprog
[meta
->jmp_dst
->subprog_idx
].needs_reg_push
) {
3310 ret_tgt
= nfp_prog_current_offset(nfp_prog
) + 3;
3311 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 2,
3312 RELO_BR_GO_CALL_PUSH_REGS
);
3313 offset_br
= nfp_prog_current_offset(nfp_prog
);
3314 wrp_immed_relo(nfp_prog
, imm_b(nfp_prog
), 0, RELO_IMMED_REL
);
3316 ret_tgt
= nfp_prog_current_offset(nfp_prog
) + 2;
3317 emit_br(nfp_prog
, BR_UNC
, meta
->insn
.imm
, 1);
3318 offset_br
= nfp_prog_current_offset(nfp_prog
);
3320 wrp_immed_relo(nfp_prog
, ret_reg(nfp_prog
), ret_tgt
, RELO_IMMED_REL
);
3322 if (!nfp_prog_confirm_current_offset(nfp_prog
, ret_tgt
))
3326 tmp_reg
= ur_load_imm_any(nfp_prog
, stack_depth
,
3327 stack_imm(nfp_prog
));
3328 emit_alu(nfp_prog
, stack_reg(nfp_prog
),
3329 stack_reg(nfp_prog
), ALU_OP_SUB
, tmp_reg
);
3330 emit_csr_wr(nfp_prog
, stack_reg(nfp_prog
),
3331 NFP_CSR_ACT_LM_ADDR0
);
3332 wrp_nops(nfp_prog
, 3);
3335 meta
->num_insns_after_br
= nfp_prog_current_offset(nfp_prog
);
3336 meta
->num_insns_after_br
-= offset_br
;
3341 static int helper_call(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3343 switch (meta
->insn
.imm
) {
3344 case BPF_FUNC_xdp_adjust_head
:
3345 return adjust_head(nfp_prog
, meta
);
3346 case BPF_FUNC_xdp_adjust_tail
:
3347 return adjust_tail(nfp_prog
, meta
);
3348 case BPF_FUNC_map_lookup_elem
:
3349 case BPF_FUNC_map_update_elem
:
3350 case BPF_FUNC_map_delete_elem
:
3351 return map_call_stack_common(nfp_prog
, meta
);
3352 case BPF_FUNC_get_prandom_u32
:
3353 return nfp_get_prandom_u32(nfp_prog
, meta
);
3354 case BPF_FUNC_perf_event_output
:
3355 return nfp_perf_event_output(nfp_prog
, meta
);
3357 WARN_ONCE(1, "verifier allowed unsupported function\n");
3362 static int call(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3364 if (is_mbpf_pseudo_call(meta
))
3365 return bpf_to_bpf_call(nfp_prog
, meta
);
3367 return helper_call(nfp_prog
, meta
);
3370 static bool nfp_is_main_function(struct nfp_insn_meta
*meta
)
3372 return meta
->subprog_idx
== 0;
3375 static int goto_out(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3377 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 0, RELO_BR_GO_OUT
);
3383 nfp_subprog_epilogue(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3385 if (nfp_prog
->subprog
[meta
->subprog_idx
].needs_reg_push
) {
3386 /* Pop R6~R9 to the stack via related subroutine.
3387 * We loaded the return address to the caller into ret_reg().
3388 * This means that the subroutine does not come back here, we
3389 * make it jump back to the subprogram caller directly!
3391 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 1,
3392 RELO_BR_GO_CALL_POP_REGS
);
3393 /* Pop return address from the stack. */
3394 wrp_mov(nfp_prog
, ret_reg(nfp_prog
), reg_lm(0, 0));
3396 /* Pop return address from the stack. */
3397 wrp_mov(nfp_prog
, ret_reg(nfp_prog
), reg_lm(0, 0));
3398 /* Jump back to caller if no callee-saved registers were used
3399 * by the subprogram.
3401 emit_rtn(nfp_prog
, ret_reg(nfp_prog
), 0);
3407 static int jmp_exit(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3409 if (nfp_is_main_function(meta
))
3410 return goto_out(nfp_prog
, meta
);
3412 return nfp_subprog_epilogue(nfp_prog
, meta
);
3415 static const instr_cb_t instr_cb
[256] = {
3416 [BPF_ALU64
| BPF_MOV
| BPF_X
] = mov_reg64
,
3417 [BPF_ALU64
| BPF_MOV
| BPF_K
] = mov_imm64
,
3418 [BPF_ALU64
| BPF_XOR
| BPF_X
] = xor_reg64
,
3419 [BPF_ALU64
| BPF_XOR
| BPF_K
] = xor_imm64
,
3420 [BPF_ALU64
| BPF_AND
| BPF_X
] = and_reg64
,
3421 [BPF_ALU64
| BPF_AND
| BPF_K
] = and_imm64
,
3422 [BPF_ALU64
| BPF_OR
| BPF_X
] = or_reg64
,
3423 [BPF_ALU64
| BPF_OR
| BPF_K
] = or_imm64
,
3424 [BPF_ALU64
| BPF_ADD
| BPF_X
] = add_reg64
,
3425 [BPF_ALU64
| BPF_ADD
| BPF_K
] = add_imm64
,
3426 [BPF_ALU64
| BPF_SUB
| BPF_X
] = sub_reg64
,
3427 [BPF_ALU64
| BPF_SUB
| BPF_K
] = sub_imm64
,
3428 [BPF_ALU64
| BPF_MUL
| BPF_X
] = mul_reg64
,
3429 [BPF_ALU64
| BPF_MUL
| BPF_K
] = mul_imm64
,
3430 [BPF_ALU64
| BPF_DIV
| BPF_X
] = div_reg64
,
3431 [BPF_ALU64
| BPF_DIV
| BPF_K
] = div_imm64
,
3432 [BPF_ALU64
| BPF_NEG
] = neg_reg64
,
3433 [BPF_ALU64
| BPF_LSH
| BPF_X
] = shl_reg64
,
3434 [BPF_ALU64
| BPF_LSH
| BPF_K
] = shl_imm64
,
3435 [BPF_ALU64
| BPF_RSH
| BPF_X
] = shr_reg64
,
3436 [BPF_ALU64
| BPF_RSH
| BPF_K
] = shr_imm64
,
3437 [BPF_ALU64
| BPF_ARSH
| BPF_X
] = ashr_reg64
,
3438 [BPF_ALU64
| BPF_ARSH
| BPF_K
] = ashr_imm64
,
3439 [BPF_ALU
| BPF_MOV
| BPF_X
] = mov_reg
,
3440 [BPF_ALU
| BPF_MOV
| BPF_K
] = mov_imm
,
3441 [BPF_ALU
| BPF_XOR
| BPF_X
] = xor_reg
,
3442 [BPF_ALU
| BPF_XOR
| BPF_K
] = xor_imm
,
3443 [BPF_ALU
| BPF_AND
| BPF_X
] = and_reg
,
3444 [BPF_ALU
| BPF_AND
| BPF_K
] = and_imm
,
3445 [BPF_ALU
| BPF_OR
| BPF_X
] = or_reg
,
3446 [BPF_ALU
| BPF_OR
| BPF_K
] = or_imm
,
3447 [BPF_ALU
| BPF_ADD
| BPF_X
] = add_reg
,
3448 [BPF_ALU
| BPF_ADD
| BPF_K
] = add_imm
,
3449 [BPF_ALU
| BPF_SUB
| BPF_X
] = sub_reg
,
3450 [BPF_ALU
| BPF_SUB
| BPF_K
] = sub_imm
,
3451 [BPF_ALU
| BPF_MUL
| BPF_X
] = mul_reg
,
3452 [BPF_ALU
| BPF_MUL
| BPF_K
] = mul_imm
,
3453 [BPF_ALU
| BPF_DIV
| BPF_X
] = div_reg
,
3454 [BPF_ALU
| BPF_DIV
| BPF_K
] = div_imm
,
3455 [BPF_ALU
| BPF_NEG
] = neg_reg
,
3456 [BPF_ALU
| BPF_LSH
| BPF_X
] = shl_reg
,
3457 [BPF_ALU
| BPF_LSH
| BPF_K
] = shl_imm
,
3458 [BPF_ALU
| BPF_RSH
| BPF_X
] = shr_reg
,
3459 [BPF_ALU
| BPF_RSH
| BPF_K
] = shr_imm
,
3460 [BPF_ALU
| BPF_ARSH
| BPF_X
] = ashr_reg
,
3461 [BPF_ALU
| BPF_ARSH
| BPF_K
] = ashr_imm
,
3462 [BPF_ALU
| BPF_END
| BPF_X
] = end_reg32
,
3463 [BPF_LD
| BPF_IMM
| BPF_DW
] = imm_ld8
,
3464 [BPF_LD
| BPF_ABS
| BPF_B
] = data_ld1
,
3465 [BPF_LD
| BPF_ABS
| BPF_H
] = data_ld2
,
3466 [BPF_LD
| BPF_ABS
| BPF_W
] = data_ld4
,
3467 [BPF_LD
| BPF_IND
| BPF_B
] = data_ind_ld1
,
3468 [BPF_LD
| BPF_IND
| BPF_H
] = data_ind_ld2
,
3469 [BPF_LD
| BPF_IND
| BPF_W
] = data_ind_ld4
,
3470 [BPF_LDX
| BPF_MEM
| BPF_B
] = mem_ldx1
,
3471 [BPF_LDX
| BPF_MEM
| BPF_H
] = mem_ldx2
,
3472 [BPF_LDX
| BPF_MEM
| BPF_W
] = mem_ldx4
,
3473 [BPF_LDX
| BPF_MEM
| BPF_DW
] = mem_ldx8
,
3474 [BPF_STX
| BPF_MEM
| BPF_B
] = mem_stx1
,
3475 [BPF_STX
| BPF_MEM
| BPF_H
] = mem_stx2
,
3476 [BPF_STX
| BPF_MEM
| BPF_W
] = mem_stx4
,
3477 [BPF_STX
| BPF_MEM
| BPF_DW
] = mem_stx8
,
3478 [BPF_STX
| BPF_XADD
| BPF_W
] = mem_xadd4
,
3479 [BPF_STX
| BPF_XADD
| BPF_DW
] = mem_xadd8
,
3480 [BPF_ST
| BPF_MEM
| BPF_B
] = mem_st1
,
3481 [BPF_ST
| BPF_MEM
| BPF_H
] = mem_st2
,
3482 [BPF_ST
| BPF_MEM
| BPF_W
] = mem_st4
,
3483 [BPF_ST
| BPF_MEM
| BPF_DW
] = mem_st8
,
3484 [BPF_JMP
| BPF_JA
| BPF_K
] = jump
,
3485 [BPF_JMP
| BPF_JEQ
| BPF_K
] = jeq_imm
,
3486 [BPF_JMP
| BPF_JGT
| BPF_K
] = cmp_imm
,
3487 [BPF_JMP
| BPF_JGE
| BPF_K
] = cmp_imm
,
3488 [BPF_JMP
| BPF_JLT
| BPF_K
] = cmp_imm
,
3489 [BPF_JMP
| BPF_JLE
| BPF_K
] = cmp_imm
,
3490 [BPF_JMP
| BPF_JSGT
| BPF_K
] = cmp_imm
,
3491 [BPF_JMP
| BPF_JSGE
| BPF_K
] = cmp_imm
,
3492 [BPF_JMP
| BPF_JSLT
| BPF_K
] = cmp_imm
,
3493 [BPF_JMP
| BPF_JSLE
| BPF_K
] = cmp_imm
,
3494 [BPF_JMP
| BPF_JSET
| BPF_K
] = jset_imm
,
3495 [BPF_JMP
| BPF_JNE
| BPF_K
] = jne_imm
,
3496 [BPF_JMP
| BPF_JEQ
| BPF_X
] = jeq_reg
,
3497 [BPF_JMP
| BPF_JGT
| BPF_X
] = cmp_reg
,
3498 [BPF_JMP
| BPF_JGE
| BPF_X
] = cmp_reg
,
3499 [BPF_JMP
| BPF_JLT
| BPF_X
] = cmp_reg
,
3500 [BPF_JMP
| BPF_JLE
| BPF_X
] = cmp_reg
,
3501 [BPF_JMP
| BPF_JSGT
| BPF_X
] = cmp_reg
,
3502 [BPF_JMP
| BPF_JSGE
| BPF_X
] = cmp_reg
,
3503 [BPF_JMP
| BPF_JSLT
| BPF_X
] = cmp_reg
,
3504 [BPF_JMP
| BPF_JSLE
| BPF_X
] = cmp_reg
,
3505 [BPF_JMP
| BPF_JSET
| BPF_X
] = jset_reg
,
3506 [BPF_JMP
| BPF_JNE
| BPF_X
] = jne_reg
,
3507 [BPF_JMP32
| BPF_JEQ
| BPF_K
] = jeq32_imm
,
3508 [BPF_JMP32
| BPF_JGT
| BPF_K
] = cmp_imm
,
3509 [BPF_JMP32
| BPF_JGE
| BPF_K
] = cmp_imm
,
3510 [BPF_JMP32
| BPF_JLT
| BPF_K
] = cmp_imm
,
3511 [BPF_JMP32
| BPF_JLE
| BPF_K
] = cmp_imm
,
3512 [BPF_JMP32
| BPF_JSGT
| BPF_K
] =cmp_imm
,
3513 [BPF_JMP32
| BPF_JSGE
| BPF_K
] =cmp_imm
,
3514 [BPF_JMP32
| BPF_JSLT
| BPF_K
] =cmp_imm
,
3515 [BPF_JMP32
| BPF_JSLE
| BPF_K
] =cmp_imm
,
3516 [BPF_JMP32
| BPF_JSET
| BPF_K
] =jset_imm
,
3517 [BPF_JMP32
| BPF_JNE
| BPF_K
] = jne_imm
,
3518 [BPF_JMP32
| BPF_JEQ
| BPF_X
] = jeq_reg
,
3519 [BPF_JMP32
| BPF_JGT
| BPF_X
] = cmp_reg
,
3520 [BPF_JMP32
| BPF_JGE
| BPF_X
] = cmp_reg
,
3521 [BPF_JMP32
| BPF_JLT
| BPF_X
] = cmp_reg
,
3522 [BPF_JMP32
| BPF_JLE
| BPF_X
] = cmp_reg
,
3523 [BPF_JMP32
| BPF_JSGT
| BPF_X
] =cmp_reg
,
3524 [BPF_JMP32
| BPF_JSGE
| BPF_X
] =cmp_reg
,
3525 [BPF_JMP32
| BPF_JSLT
| BPF_X
] =cmp_reg
,
3526 [BPF_JMP32
| BPF_JSLE
| BPF_X
] =cmp_reg
,
3527 [BPF_JMP32
| BPF_JSET
| BPF_X
] =jset_reg
,
3528 [BPF_JMP32
| BPF_JNE
| BPF_X
] = jne_reg
,
3529 [BPF_JMP
| BPF_CALL
] = call
,
3530 [BPF_JMP
| BPF_EXIT
] = jmp_exit
,
3533 /* --- Assembler logic --- */
3535 nfp_fixup_immed_relo(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
,
3536 struct nfp_insn_meta
*jmp_dst
, u32 br_idx
)
3538 if (immed_get_value(nfp_prog
->prog
[br_idx
+ 1])) {
3539 pr_err("BUG: failed to fix up callee register saving\n");
3543 immed_set_value(&nfp_prog
->prog
[br_idx
+ 1], jmp_dst
->off
);
3548 static int nfp_fixup_branches(struct nfp_prog
*nfp_prog
)
3550 struct nfp_insn_meta
*meta
, *jmp_dst
;
3554 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
3555 if (meta
->flags
& FLAG_INSN_SKIP_MASK
)
3557 if (!is_mbpf_jmp(meta
))
3559 if (meta
->insn
.code
== (BPF_JMP
| BPF_EXIT
) &&
3560 !nfp_is_main_function(meta
))
3562 if (is_mbpf_helper_call(meta
))
3565 if (list_is_last(&meta
->l
, &nfp_prog
->insns
))
3566 br_idx
= nfp_prog
->last_bpf_off
;
3568 br_idx
= list_next_entry(meta
, l
)->off
- 1;
3570 /* For BPF-to-BPF function call, a stack adjustment sequence is
3571 * generated after the return instruction. Therefore, we must
3572 * withdraw the length of this sequence to have br_idx pointing
3573 * to where the "branch" NFP instruction is expected to be.
3575 if (is_mbpf_pseudo_call(meta
))
3576 br_idx
-= meta
->num_insns_after_br
;
3578 if (!nfp_is_br(nfp_prog
->prog
[br_idx
])) {
3579 pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n",
3580 br_idx
, meta
->insn
.code
, nfp_prog
->prog
[br_idx
]);
3584 if (meta
->insn
.code
== (BPF_JMP
| BPF_EXIT
))
3587 /* Leave special branches for later */
3588 if (FIELD_GET(OP_RELO_TYPE
, nfp_prog
->prog
[br_idx
]) !=
3589 RELO_BR_REL
&& !is_mbpf_pseudo_call(meta
))
3592 if (!meta
->jmp_dst
) {
3593 pr_err("Non-exit jump doesn't have destination info recorded!!\n");
3597 jmp_dst
= meta
->jmp_dst
;
3599 if (jmp_dst
->flags
& FLAG_INSN_SKIP_PREC_DEPENDENT
) {
3600 pr_err("Branch landing on removed instruction!!\n");
3604 if (is_mbpf_pseudo_call(meta
) &&
3605 nfp_prog
->subprog
[jmp_dst
->subprog_idx
].needs_reg_push
) {
3606 err
= nfp_fixup_immed_relo(nfp_prog
, meta
,
3612 if (FIELD_GET(OP_RELO_TYPE
, nfp_prog
->prog
[br_idx
]) !=
3616 for (idx
= meta
->off
; idx
<= br_idx
; idx
++) {
3617 if (!nfp_is_br(nfp_prog
->prog
[idx
]))
3619 br_set_offset(&nfp_prog
->prog
[idx
], jmp_dst
->off
);
3626 static void nfp_intro(struct nfp_prog
*nfp_prog
)
3628 wrp_immed(nfp_prog
, plen_reg(nfp_prog
), GENMASK(13, 0));
3629 emit_alu(nfp_prog
, plen_reg(nfp_prog
),
3630 plen_reg(nfp_prog
), ALU_OP_AND
, pv_len(nfp_prog
));
3634 nfp_subprog_prologue(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3636 /* Save return address into the stack. */
3637 wrp_mov(nfp_prog
, reg_lm(0, 0), ret_reg(nfp_prog
));
3641 nfp_start_subprog(struct nfp_prog
*nfp_prog
, struct nfp_insn_meta
*meta
)
3643 unsigned int depth
= nfp_prog
->subprog
[meta
->subprog_idx
].stack_depth
;
3645 nfp_prog
->stack_frame_depth
= round_up(depth
, 4);
3646 nfp_subprog_prologue(nfp_prog
, meta
);
3649 bool nfp_is_subprog_start(struct nfp_insn_meta
*meta
)
3651 return meta
->flags
& FLAG_INSN_IS_SUBPROG_START
;
3654 static void nfp_outro_tc_da(struct nfp_prog
*nfp_prog
)
3656 /* TC direct-action mode:
3657 * 0,1 ok NOT SUPPORTED[1]
3658 * 2 drop 0x22 -> drop, count as stat1
3659 * 4,5 nuke 0x02 -> drop
3660 * 7 redir 0x44 -> redir, count as stat2
3661 * * unspec 0x11 -> pass, count as stat0
3663 * [1] We can't support OK and RECLASSIFY because we can't tell TC
3664 * the exact decision made. We are forced to support UNSPEC
3665 * to handle aborts so that's the only one we handle for passing
3666 * packets up the stack.
3668 /* Target for aborts */
3669 nfp_prog
->tgt_abort
= nfp_prog_current_offset(nfp_prog
);
3671 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 2, RELO_BR_NEXT_PKT
);
3673 wrp_mov(nfp_prog
, reg_a(0), NFP_BPF_ABI_FLAGS
);
3674 emit_ld_field(nfp_prog
, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF
, 16);
3676 /* Target for normal exits */
3677 nfp_prog
->tgt_out
= nfp_prog_current_offset(nfp_prog
);
3679 /* if R0 > 7 jump to abort */
3680 emit_alu(nfp_prog
, reg_none(), reg_imm(7), ALU_OP_SUB
, reg_b(0));
3681 emit_br(nfp_prog
, BR_BLO
, nfp_prog
->tgt_abort
, 0);
3682 wrp_mov(nfp_prog
, reg_a(0), NFP_BPF_ABI_FLAGS
);
3684 wrp_immed(nfp_prog
, reg_b(2), 0x41221211);
3685 wrp_immed(nfp_prog
, reg_b(3), 0x41001211);
3687 emit_shf(nfp_prog
, reg_a(1),
3688 reg_none(), SHF_OP_NONE
, reg_b(0), SHF_SC_L_SHF
, 2);
3690 emit_alu(nfp_prog
, reg_none(), reg_a(1), ALU_OP_OR
, reg_imm(0));
3691 emit_shf(nfp_prog
, reg_a(2),
3692 reg_imm(0xf), SHF_OP_AND
, reg_b(2), SHF_SC_R_SHF
, 0);
3694 emit_alu(nfp_prog
, reg_none(), reg_a(1), ALU_OP_OR
, reg_imm(0));
3695 emit_shf(nfp_prog
, reg_b(2),
3696 reg_imm(0xf), SHF_OP_AND
, reg_b(3), SHF_SC_R_SHF
, 0);
3698 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 2, RELO_BR_NEXT_PKT
);
3700 emit_shf(nfp_prog
, reg_b(2),
3701 reg_a(2), SHF_OP_OR
, reg_b(2), SHF_SC_L_SHF
, 4);
3702 emit_ld_field(nfp_prog
, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF
, 16);
3705 static void nfp_outro_xdp(struct nfp_prog
*nfp_prog
)
3707 /* XDP return codes:
3708 * 0 aborted 0x82 -> drop, count as stat3
3709 * 1 drop 0x22 -> drop, count as stat1
3710 * 2 pass 0x11 -> pass, count as stat0
3711 * 3 tx 0x44 -> redir, count as stat2
3712 * * unknown 0x82 -> drop, count as stat3
3714 /* Target for aborts */
3715 nfp_prog
->tgt_abort
= nfp_prog_current_offset(nfp_prog
);
3717 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 2, RELO_BR_NEXT_PKT
);
3719 wrp_mov(nfp_prog
, reg_a(0), NFP_BPF_ABI_FLAGS
);
3720 emit_ld_field(nfp_prog
, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF
, 16);
3722 /* Target for normal exits */
3723 nfp_prog
->tgt_out
= nfp_prog_current_offset(nfp_prog
);
3725 /* if R0 > 3 jump to abort */
3726 emit_alu(nfp_prog
, reg_none(), reg_imm(3), ALU_OP_SUB
, reg_b(0));
3727 emit_br(nfp_prog
, BR_BLO
, nfp_prog
->tgt_abort
, 0);
3729 wrp_immed(nfp_prog
, reg_b(2), 0x44112282);
3731 emit_shf(nfp_prog
, reg_a(1),
3732 reg_none(), SHF_OP_NONE
, reg_b(0), SHF_SC_L_SHF
, 3);
3734 emit_alu(nfp_prog
, reg_none(), reg_a(1), ALU_OP_OR
, reg_imm(0));
3735 emit_shf(nfp_prog
, reg_b(2),
3736 reg_imm(0xff), SHF_OP_AND
, reg_b(2), SHF_SC_R_SHF
, 0);
3738 emit_br_relo(nfp_prog
, BR_UNC
, BR_OFF_RELO
, 2, RELO_BR_NEXT_PKT
);
3740 wrp_mov(nfp_prog
, reg_a(0), NFP_BPF_ABI_FLAGS
);
3741 emit_ld_field(nfp_prog
, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF
, 16);
3744 static bool nfp_prog_needs_callee_reg_save(struct nfp_prog
*nfp_prog
)
3748 for (idx
= 1; idx
< nfp_prog
->subprog_cnt
; idx
++)
3749 if (nfp_prog
->subprog
[idx
].needs_reg_push
)
3755 static void nfp_push_callee_registers(struct nfp_prog
*nfp_prog
)
3759 /* Subroutine: Save all callee saved registers (R6 ~ R9).
3760 * imm_b() holds the return address.
3762 nfp_prog
->tgt_call_push_regs
= nfp_prog_current_offset(nfp_prog
);
3763 for (reg
= BPF_REG_6
; reg
<= BPF_REG_9
; reg
++) {
3764 u8 adj
= (reg
- BPF_REG_0
) * 2;
3765 u8 idx
= (reg
- BPF_REG_6
) * 2;
3767 /* The first slot in the stack frame is used to push the return
3768 * address in bpf_to_bpf_call(), start just after.
3770 wrp_mov(nfp_prog
, reg_lm(0, 1 + idx
), reg_b(adj
));
3772 if (reg
== BPF_REG_8
)
3773 /* Prepare to jump back, last 3 insns use defer slots */
3774 emit_rtn(nfp_prog
, imm_b(nfp_prog
), 3);
3776 wrp_mov(nfp_prog
, reg_lm(0, 1 + idx
+ 1), reg_b(adj
+ 1));
3780 static void nfp_pop_callee_registers(struct nfp_prog
*nfp_prog
)
3784 /* Subroutine: Restore all callee saved registers (R6 ~ R9).
3785 * ret_reg() holds the return address.
3787 nfp_prog
->tgt_call_pop_regs
= nfp_prog_current_offset(nfp_prog
);
3788 for (reg
= BPF_REG_6
; reg
<= BPF_REG_9
; reg
++) {
3789 u8 adj
= (reg
- BPF_REG_0
) * 2;
3790 u8 idx
= (reg
- BPF_REG_6
) * 2;
3792 /* The first slot in the stack frame holds the return address,
3793 * start popping just after that.
3795 wrp_mov(nfp_prog
, reg_both(adj
), reg_lm(0, 1 + idx
));
3797 if (reg
== BPF_REG_8
)
3798 /* Prepare to jump back, last 3 insns use defer slots */
3799 emit_rtn(nfp_prog
, ret_reg(nfp_prog
), 3);
3801 wrp_mov(nfp_prog
, reg_both(adj
+ 1), reg_lm(0, 1 + idx
+ 1));
3805 static void nfp_outro(struct nfp_prog
*nfp_prog
)
3807 switch (nfp_prog
->type
) {
3808 case BPF_PROG_TYPE_SCHED_CLS
:
3809 nfp_outro_tc_da(nfp_prog
);
3811 case BPF_PROG_TYPE_XDP
:
3812 nfp_outro_xdp(nfp_prog
);
3818 if (!nfp_prog_needs_callee_reg_save(nfp_prog
))
3821 nfp_push_callee_registers(nfp_prog
);
3822 nfp_pop_callee_registers(nfp_prog
);
3825 static int nfp_translate(struct nfp_prog
*nfp_prog
)
3827 struct nfp_insn_meta
*meta
;
3831 depth
= nfp_prog
->subprog
[0].stack_depth
;
3832 nfp_prog
->stack_frame_depth
= round_up(depth
, 4);
3834 nfp_intro(nfp_prog
);
3835 if (nfp_prog
->error
)
3836 return nfp_prog
->error
;
3838 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
3839 instr_cb_t cb
= instr_cb
[meta
->insn
.code
];
3841 meta
->off
= nfp_prog_current_offset(nfp_prog
);
3843 if (nfp_is_subprog_start(meta
)) {
3844 nfp_start_subprog(nfp_prog
, meta
);
3845 if (nfp_prog
->error
)
3846 return nfp_prog
->error
;
3849 if (meta
->flags
& FLAG_INSN_SKIP_MASK
) {
3850 nfp_prog
->n_translated
++;
3854 if (nfp_meta_has_prev(nfp_prog
, meta
) &&
3855 nfp_meta_prev(meta
)->double_cb
)
3856 cb
= nfp_meta_prev(meta
)->double_cb
;
3859 err
= cb(nfp_prog
, meta
);
3862 if (nfp_prog
->error
)
3863 return nfp_prog
->error
;
3865 nfp_prog
->n_translated
++;
3868 nfp_prog
->last_bpf_off
= nfp_prog_current_offset(nfp_prog
) - 1;
3870 nfp_outro(nfp_prog
);
3871 if (nfp_prog
->error
)
3872 return nfp_prog
->error
;
3874 wrp_nops(nfp_prog
, NFP_USTORE_PREFETCH_WINDOW
);
3875 if (nfp_prog
->error
)
3876 return nfp_prog
->error
;
3878 return nfp_fixup_branches(nfp_prog
);
3881 /* --- Optimizations --- */
3882 static void nfp_bpf_opt_reg_init(struct nfp_prog
*nfp_prog
)
3884 struct nfp_insn_meta
*meta
;
3886 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
3887 struct bpf_insn insn
= meta
->insn
;
3889 /* Programs converted from cBPF start with register xoring */
3890 if (insn
.code
== (BPF_ALU64
| BPF_XOR
| BPF_X
) &&
3891 insn
.src_reg
== insn
.dst_reg
)
3894 /* Programs start with R6 = R1 but we ignore the skb pointer */
3895 if (insn
.code
== (BPF_ALU64
| BPF_MOV
| BPF_X
) &&
3896 insn
.src_reg
== 1 && insn
.dst_reg
== 6)
3897 meta
->flags
|= FLAG_INSN_SKIP_PREC_DEPENDENT
;
3899 /* Return as soon as something doesn't match */
3900 if (!(meta
->flags
& FLAG_INSN_SKIP_MASK
))
3905 /* abs(insn.imm) will fit better into unrestricted reg immediate -
3906 * convert add/sub of a negative number into a sub/add of a positive one.
3908 static void nfp_bpf_opt_neg_add_sub(struct nfp_prog
*nfp_prog
)
3910 struct nfp_insn_meta
*meta
;
3912 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
3913 struct bpf_insn insn
= meta
->insn
;
3915 if (meta
->flags
& FLAG_INSN_SKIP_MASK
)
3918 if (!is_mbpf_alu(meta
) && !is_mbpf_jmp(meta
))
3920 if (BPF_SRC(insn
.code
) != BPF_K
)
3925 if (is_mbpf_jmp(meta
)) {
3926 switch (BPF_OP(insn
.code
)) {
3931 meta
->jump_neg_op
= true;
3937 if (BPF_OP(insn
.code
) == BPF_ADD
)
3938 insn
.code
= BPF_CLASS(insn
.code
) | BPF_SUB
;
3939 else if (BPF_OP(insn
.code
) == BPF_SUB
)
3940 insn
.code
= BPF_CLASS(insn
.code
) | BPF_ADD
;
3944 meta
->insn
.code
= insn
.code
| BPF_K
;
3947 meta
->insn
.imm
= -insn
.imm
;
3951 /* Remove masking after load since our load guarantees this is not needed */
3952 static void nfp_bpf_opt_ld_mask(struct nfp_prog
*nfp_prog
)
3954 struct nfp_insn_meta
*meta1
, *meta2
;
3955 static const s32 exp_mask
[] = {
3956 [BPF_B
] = 0x000000ffU
,
3957 [BPF_H
] = 0x0000ffffU
,
3958 [BPF_W
] = 0xffffffffU
,
3961 nfp_for_each_insn_walk2(nfp_prog
, meta1
, meta2
) {
3962 struct bpf_insn insn
, next
;
3967 if (BPF_CLASS(insn
.code
) != BPF_LD
)
3969 if (BPF_MODE(insn
.code
) != BPF_ABS
&&
3970 BPF_MODE(insn
.code
) != BPF_IND
)
3973 if (next
.code
!= (BPF_ALU64
| BPF_AND
| BPF_K
))
3976 if (!exp_mask
[BPF_SIZE(insn
.code
)])
3978 if (exp_mask
[BPF_SIZE(insn
.code
)] != next
.imm
)
3981 if (next
.src_reg
|| next
.dst_reg
)
3984 if (meta2
->flags
& FLAG_INSN_IS_JUMP_DST
)
3987 meta2
->flags
|= FLAG_INSN_SKIP_PREC_DEPENDENT
;
3991 static void nfp_bpf_opt_ld_shift(struct nfp_prog
*nfp_prog
)
3993 struct nfp_insn_meta
*meta1
, *meta2
, *meta3
;
3995 nfp_for_each_insn_walk3(nfp_prog
, meta1
, meta2
, meta3
) {
3996 struct bpf_insn insn
, next1
, next2
;
3999 next1
= meta2
->insn
;
4000 next2
= meta3
->insn
;
4002 if (BPF_CLASS(insn
.code
) != BPF_LD
)
4004 if (BPF_MODE(insn
.code
) != BPF_ABS
&&
4005 BPF_MODE(insn
.code
) != BPF_IND
)
4007 if (BPF_SIZE(insn
.code
) != BPF_W
)
4010 if (!(next1
.code
== (BPF_LSH
| BPF_K
| BPF_ALU64
) &&
4011 next2
.code
== (BPF_RSH
| BPF_K
| BPF_ALU64
)) &&
4012 !(next1
.code
== (BPF_RSH
| BPF_K
| BPF_ALU64
) &&
4013 next2
.code
== (BPF_LSH
| BPF_K
| BPF_ALU64
)))
4016 if (next1
.src_reg
|| next1
.dst_reg
||
4017 next2
.src_reg
|| next2
.dst_reg
)
4020 if (next1
.imm
!= 0x20 || next2
.imm
!= 0x20)
4023 if (meta2
->flags
& FLAG_INSN_IS_JUMP_DST
||
4024 meta3
->flags
& FLAG_INSN_IS_JUMP_DST
)
4027 meta2
->flags
|= FLAG_INSN_SKIP_PREC_DEPENDENT
;
4028 meta3
->flags
|= FLAG_INSN_SKIP_PREC_DEPENDENT
;
4032 /* load/store pair that forms memory copy sould look like the following:
4034 * ld_width R, [addr_src + offset_src]
4035 * st_width [addr_dest + offset_dest], R
4037 * The destination register of load and source register of store should
4038 * be the same, load and store should also perform at the same width.
4039 * If either of addr_src or addr_dest is stack pointer, we don't do the
4040 * CPP optimization as stack is modelled by registers on NFP.
4043 curr_pair_is_memcpy(struct nfp_insn_meta
*ld_meta
,
4044 struct nfp_insn_meta
*st_meta
)
4046 struct bpf_insn
*ld
= &ld_meta
->insn
;
4047 struct bpf_insn
*st
= &st_meta
->insn
;
4049 if (!is_mbpf_load(ld_meta
) || !is_mbpf_store(st_meta
))
4052 if (ld_meta
->ptr
.type
!= PTR_TO_PACKET
&&
4053 ld_meta
->ptr
.type
!= PTR_TO_MAP_VALUE
)
4056 if (st_meta
->ptr
.type
!= PTR_TO_PACKET
)
4059 if (BPF_SIZE(ld
->code
) != BPF_SIZE(st
->code
))
4062 if (ld
->dst_reg
!= st
->src_reg
)
4065 /* There is jump to the store insn in this pair. */
4066 if (st_meta
->flags
& FLAG_INSN_IS_JUMP_DST
)
4072 /* Currently, we only support chaining load/store pairs if:
4074 * - Their address base registers are the same.
4075 * - Their address offsets are in the same order.
4076 * - They operate at the same memory width.
4077 * - There is no jump into the middle of them.
4080 curr_pair_chain_with_previous(struct nfp_insn_meta
*ld_meta
,
4081 struct nfp_insn_meta
*st_meta
,
4082 struct bpf_insn
*prev_ld
,
4083 struct bpf_insn
*prev_st
)
4085 u8 prev_size
, curr_size
, prev_ld_base
, prev_st_base
, prev_ld_dst
;
4086 struct bpf_insn
*ld
= &ld_meta
->insn
;
4087 struct bpf_insn
*st
= &st_meta
->insn
;
4088 s16 prev_ld_off
, prev_st_off
;
4090 /* This pair is the start pair. */
4094 prev_size
= BPF_LDST_BYTES(prev_ld
);
4095 curr_size
= BPF_LDST_BYTES(ld
);
4096 prev_ld_base
= prev_ld
->src_reg
;
4097 prev_st_base
= prev_st
->dst_reg
;
4098 prev_ld_dst
= prev_ld
->dst_reg
;
4099 prev_ld_off
= prev_ld
->off
;
4100 prev_st_off
= prev_st
->off
;
4102 if (ld
->dst_reg
!= prev_ld_dst
)
4105 if (ld
->src_reg
!= prev_ld_base
|| st
->dst_reg
!= prev_st_base
)
4108 if (curr_size
!= prev_size
)
4111 /* There is jump to the head of this pair. */
4112 if (ld_meta
->flags
& FLAG_INSN_IS_JUMP_DST
)
4115 /* Both in ascending order. */
4116 if (prev_ld_off
+ prev_size
== ld
->off
&&
4117 prev_st_off
+ prev_size
== st
->off
)
4120 /* Both in descending order. */
4121 if (ld
->off
+ curr_size
== prev_ld_off
&&
4122 st
->off
+ curr_size
== prev_st_off
)
4128 /* Return TRUE if cross memory access happens. Cross memory access means
4129 * store area is overlapping with load area that a later load might load
4130 * the value from previous store, for this case we can't treat the sequence
4131 * as an memory copy.
4134 cross_mem_access(struct bpf_insn
*ld
, struct nfp_insn_meta
*head_ld_meta
,
4135 struct nfp_insn_meta
*head_st_meta
)
4137 s16 head_ld_off
, head_st_off
, ld_off
;
4139 /* Different pointer types does not overlap. */
4140 if (head_ld_meta
->ptr
.type
!= head_st_meta
->ptr
.type
)
4143 /* load and store are both PTR_TO_PACKET, check ID info. */
4144 if (head_ld_meta
->ptr
.id
!= head_st_meta
->ptr
.id
)
4147 /* Canonicalize the offsets. Turn all of them against the original
4150 head_ld_off
= head_ld_meta
->insn
.off
+ head_ld_meta
->ptr
.off
;
4151 head_st_off
= head_st_meta
->insn
.off
+ head_st_meta
->ptr
.off
;
4152 ld_off
= ld
->off
+ head_ld_meta
->ptr
.off
;
4154 /* Ascending order cross. */
4155 if (ld_off
> head_ld_off
&&
4156 head_ld_off
< head_st_off
&& ld_off
>= head_st_off
)
4159 /* Descending order cross. */
4160 if (ld_off
< head_ld_off
&&
4161 head_ld_off
> head_st_off
&& ld_off
<= head_st_off
)
4167 /* This pass try to identify the following instructoin sequences.
4169 * load R, [regA + offA]
4170 * store [regB + offB], R
4171 * load R, [regA + offA + const_imm_A]
4172 * store [regB + offB + const_imm_A], R
4173 * load R, [regA + offA + 2 * const_imm_A]
4174 * store [regB + offB + 2 * const_imm_A], R
4177 * Above sequence is typically generated by compiler when lowering
4178 * memcpy. NFP prefer using CPP instructions to accelerate it.
4180 static void nfp_bpf_opt_ldst_gather(struct nfp_prog
*nfp_prog
)
4182 struct nfp_insn_meta
*head_ld_meta
= NULL
;
4183 struct nfp_insn_meta
*head_st_meta
= NULL
;
4184 struct nfp_insn_meta
*meta1
, *meta2
;
4185 struct bpf_insn
*prev_ld
= NULL
;
4186 struct bpf_insn
*prev_st
= NULL
;
4189 nfp_for_each_insn_walk2(nfp_prog
, meta1
, meta2
) {
4190 struct bpf_insn
*ld
= &meta1
->insn
;
4191 struct bpf_insn
*st
= &meta2
->insn
;
4193 /* Reset record status if any of the following if true:
4194 * - The current insn pair is not load/store.
4195 * - The load/store pair doesn't chain with previous one.
4196 * - The chained load/store pair crossed with previous pair.
4197 * - The chained load/store pair has a total size of memory
4198 * copy beyond 128 bytes which is the maximum length a
4199 * single NFP CPP command can transfer.
4201 if (!curr_pair_is_memcpy(meta1
, meta2
) ||
4202 !curr_pair_chain_with_previous(meta1
, meta2
, prev_ld
,
4204 (head_ld_meta
&& (cross_mem_access(ld
, head_ld_meta
,
4206 head_ld_meta
->ldst_gather_len
>= 128))) {
4211 s16 prev_ld_off
= prev_ld
->off
;
4212 s16 prev_st_off
= prev_st
->off
;
4213 s16 head_ld_off
= head_ld_meta
->insn
.off
;
4215 if (prev_ld_off
< head_ld_off
) {
4216 head_ld_meta
->insn
.off
= prev_ld_off
;
4217 head_st_meta
->insn
.off
= prev_st_off
;
4218 head_ld_meta
->ldst_gather_len
=
4219 -head_ld_meta
->ldst_gather_len
;
4222 head_ld_meta
->paired_st
= &head_st_meta
->insn
;
4223 head_st_meta
->flags
|=
4224 FLAG_INSN_SKIP_PREC_DEPENDENT
;
4226 head_ld_meta
->ldst_gather_len
= 0;
4229 /* If the chain is ended by an load/store pair then this
4230 * could serve as the new head of the the next chain.
4232 if (curr_pair_is_memcpy(meta1
, meta2
)) {
4233 head_ld_meta
= meta1
;
4234 head_st_meta
= meta2
;
4235 head_ld_meta
->ldst_gather_len
=
4237 meta1
= nfp_meta_next(meta1
);
4238 meta2
= nfp_meta_next(meta2
);
4243 head_ld_meta
= NULL
;
4244 head_st_meta
= NULL
;
4253 if (!head_ld_meta
) {
4254 head_ld_meta
= meta1
;
4255 head_st_meta
= meta2
;
4257 meta1
->flags
|= FLAG_INSN_SKIP_PREC_DEPENDENT
;
4258 meta2
->flags
|= FLAG_INSN_SKIP_PREC_DEPENDENT
;
4261 head_ld_meta
->ldst_gather_len
+= BPF_LDST_BYTES(ld
);
4262 meta1
= nfp_meta_next(meta1
);
4263 meta2
= nfp_meta_next(meta2
);
4270 static void nfp_bpf_opt_pkt_cache(struct nfp_prog
*nfp_prog
)
4272 struct nfp_insn_meta
*meta
, *range_node
= NULL
;
4273 s16 range_start
= 0, range_end
= 0;
4274 bool cache_avail
= false;
4275 struct bpf_insn
*insn
;
4276 s32 range_ptr_off
= 0;
4277 u32 range_ptr_id
= 0;
4279 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
4280 if (meta
->flags
& FLAG_INSN_IS_JUMP_DST
)
4281 cache_avail
= false;
4283 if (meta
->flags
& FLAG_INSN_SKIP_MASK
)
4288 if (is_mbpf_store_pkt(meta
) ||
4289 insn
->code
== (BPF_JMP
| BPF_CALL
) ||
4290 is_mbpf_classic_store_pkt(meta
) ||
4291 is_mbpf_classic_load(meta
)) {
4292 cache_avail
= false;
4296 if (!is_mbpf_load(meta
))
4299 if (meta
->ptr
.type
!= PTR_TO_PACKET
|| meta
->ldst_gather_len
) {
4300 cache_avail
= false;
4307 goto end_current_then_start_new
;
4311 /* Check ID to make sure two reads share the same
4312 * variable offset against PTR_TO_PACKET, and check OFF
4313 * to make sure they also share the same constant
4316 * OFFs don't really need to be the same, because they
4317 * are the constant offsets against PTR_TO_PACKET, so
4318 * for different OFFs, we could canonicalize them to
4319 * offsets against original packet pointer. We don't
4322 if (meta
->ptr
.id
== range_ptr_id
&&
4323 meta
->ptr
.off
== range_ptr_off
) {
4324 s16 new_start
= range_start
;
4325 s16 end
, off
= insn
->off
;
4326 s16 new_end
= range_end
;
4327 bool changed
= false;
4329 if (off
< range_start
) {
4334 end
= off
+ BPF_LDST_BYTES(insn
);
4335 if (end
> range_end
) {
4343 if (new_end
- new_start
<= 64) {
4344 /* Install new range. */
4345 range_start
= new_start
;
4346 range_end
= new_end
;
4351 end_current_then_start_new
:
4352 range_node
->pkt_cache
.range_start
= range_start
;
4353 range_node
->pkt_cache
.range_end
= range_end
;
4356 range_node
->pkt_cache
.do_init
= true;
4357 range_ptr_id
= range_node
->ptr
.id
;
4358 range_ptr_off
= range_node
->ptr
.off
;
4359 range_start
= insn
->off
;
4360 range_end
= insn
->off
+ BPF_LDST_BYTES(insn
);
4364 range_node
->pkt_cache
.range_start
= range_start
;
4365 range_node
->pkt_cache
.range_end
= range_end
;
4368 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
4369 if (meta
->flags
& FLAG_INSN_SKIP_MASK
)
4372 if (is_mbpf_load_pkt(meta
) && !meta
->ldst_gather_len
) {
4373 if (meta
->pkt_cache
.do_init
) {
4374 range_start
= meta
->pkt_cache
.range_start
;
4375 range_end
= meta
->pkt_cache
.range_end
;
4377 meta
->pkt_cache
.range_start
= range_start
;
4378 meta
->pkt_cache
.range_end
= range_end
;
4384 static int nfp_bpf_optimize(struct nfp_prog
*nfp_prog
)
4386 nfp_bpf_opt_reg_init(nfp_prog
);
4388 nfp_bpf_opt_neg_add_sub(nfp_prog
);
4389 nfp_bpf_opt_ld_mask(nfp_prog
);
4390 nfp_bpf_opt_ld_shift(nfp_prog
);
4391 nfp_bpf_opt_ldst_gather(nfp_prog
);
4392 nfp_bpf_opt_pkt_cache(nfp_prog
);
4397 static int nfp_bpf_replace_map_ptrs(struct nfp_prog
*nfp_prog
)
4399 struct nfp_insn_meta
*meta1
, *meta2
;
4400 struct nfp_bpf_map
*nfp_map
;
4401 struct bpf_map
*map
;
4404 nfp_for_each_insn_walk2(nfp_prog
, meta1
, meta2
) {
4405 if (meta1
->flags
& FLAG_INSN_SKIP_MASK
||
4406 meta2
->flags
& FLAG_INSN_SKIP_MASK
)
4409 if (meta1
->insn
.code
!= (BPF_LD
| BPF_IMM
| BPF_DW
) ||
4410 meta1
->insn
.src_reg
!= BPF_PSEUDO_MAP_FD
)
4413 map
= (void *)(unsigned long)((u32
)meta1
->insn
.imm
|
4414 (u64
)meta2
->insn
.imm
<< 32);
4415 if (bpf_map_offload_neutral(map
)) {
4418 nfp_map
= map_to_offmap(map
)->dev_priv
;
4422 meta1
->insn
.imm
= id
;
4423 meta2
->insn
.imm
= 0;
4429 static int nfp_bpf_ustore_calc(u64
*prog
, unsigned int len
)
4431 __le64
*ustore
= (__force __le64
*)prog
;
4434 for (i
= 0; i
< len
; i
++) {
4437 err
= nfp_ustore_check_valid_no_ecc(prog
[i
]);
4441 ustore
[i
] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog
[i
]));
4447 static void nfp_bpf_prog_trim(struct nfp_prog
*nfp_prog
)
4451 prog
= kvmalloc_array(nfp_prog
->prog_len
, sizeof(u64
), GFP_KERNEL
);
4455 nfp_prog
->__prog_alloc_len
= nfp_prog
->prog_len
* sizeof(u64
);
4456 memcpy(prog
, nfp_prog
->prog
, nfp_prog
->__prog_alloc_len
);
4457 kvfree(nfp_prog
->prog
);
4458 nfp_prog
->prog
= prog
;
4461 int nfp_bpf_jit(struct nfp_prog
*nfp_prog
)
4465 ret
= nfp_bpf_replace_map_ptrs(nfp_prog
);
4469 ret
= nfp_bpf_optimize(nfp_prog
);
4473 ret
= nfp_translate(nfp_prog
);
4475 pr_err("Translation failed with error %d (translated: %u)\n",
4476 ret
, nfp_prog
->n_translated
);
4480 nfp_bpf_prog_trim(nfp_prog
);
4485 void nfp_bpf_jit_prepare(struct nfp_prog
*nfp_prog
)
4487 struct nfp_insn_meta
*meta
;
4489 /* Another pass to record jump information. */
4490 list_for_each_entry(meta
, &nfp_prog
->insns
, l
) {
4491 struct nfp_insn_meta
*dst_meta
;
4492 u64 code
= meta
->insn
.code
;
4493 unsigned int dst_idx
;
4496 if (!is_mbpf_jmp(meta
))
4498 if (BPF_OP(code
) == BPF_EXIT
)
4500 if (is_mbpf_helper_call(meta
))
4503 /* If opcode is BPF_CALL at this point, this can only be a
4504 * BPF-to-BPF call (a.k.a pseudo call).
4506 pseudo_call
= BPF_OP(code
) == BPF_CALL
;
4509 dst_idx
= meta
->n
+ 1 + meta
->insn
.imm
;
4511 dst_idx
= meta
->n
+ 1 + meta
->insn
.off
;
4513 dst_meta
= nfp_bpf_goto_meta(nfp_prog
, meta
, dst_idx
);
4516 dst_meta
->flags
|= FLAG_INSN_IS_SUBPROG_START
;
4518 dst_meta
->flags
|= FLAG_INSN_IS_JUMP_DST
;
4519 meta
->jmp_dst
= dst_meta
;
4523 bool nfp_bpf_supported_opcode(u8 code
)
4525 return !!instr_cb
[code
];
4528 void *nfp_bpf_relo_for_vnic(struct nfp_prog
*nfp_prog
, struct nfp_bpf_vnic
*bv
)
4534 prog
= kmemdup(nfp_prog
->prog
, nfp_prog
->prog_len
* sizeof(u64
),
4537 return ERR_PTR(-ENOMEM
);
4539 for (i
= 0; i
< nfp_prog
->prog_len
; i
++) {
4540 enum nfp_relo_type special
;
4544 special
= FIELD_GET(OP_RELO_TYPE
, prog
[i
]);
4549 br_add_offset(&prog
[i
], bv
->start_off
);
4551 case RELO_BR_GO_OUT
:
4552 br_set_offset(&prog
[i
],
4553 nfp_prog
->tgt_out
+ bv
->start_off
);
4555 case RELO_BR_GO_ABORT
:
4556 br_set_offset(&prog
[i
],
4557 nfp_prog
->tgt_abort
+ bv
->start_off
);
4559 case RELO_BR_GO_CALL_PUSH_REGS
:
4560 if (!nfp_prog
->tgt_call_push_regs
) {
4561 pr_err("BUG: failed to detect subprogram registers needs\n");
4565 off
= nfp_prog
->tgt_call_push_regs
+ bv
->start_off
;
4566 br_set_offset(&prog
[i
], off
);
4568 case RELO_BR_GO_CALL_POP_REGS
:
4569 if (!nfp_prog
->tgt_call_pop_regs
) {
4570 pr_err("BUG: failed to detect subprogram registers needs\n");
4574 off
= nfp_prog
->tgt_call_pop_regs
+ bv
->start_off
;
4575 br_set_offset(&prog
[i
], off
);
4577 case RELO_BR_NEXT_PKT
:
4578 br_set_offset(&prog
[i
], bv
->tgt_done
);
4580 case RELO_BR_HELPER
:
4581 val
= br_get_offset(prog
[i
]);
4584 case BPF_FUNC_map_lookup_elem
:
4585 val
= nfp_prog
->bpf
->helpers
.map_lookup
;
4587 case BPF_FUNC_map_update_elem
:
4588 val
= nfp_prog
->bpf
->helpers
.map_update
;
4590 case BPF_FUNC_map_delete_elem
:
4591 val
= nfp_prog
->bpf
->helpers
.map_delete
;
4593 case BPF_FUNC_perf_event_output
:
4594 val
= nfp_prog
->bpf
->helpers
.perf_event_output
;
4597 pr_err("relocation of unknown helper %d\n",
4602 br_set_offset(&prog
[i
], val
);
4604 case RELO_IMMED_REL
:
4605 immed_add_value(&prog
[i
], bv
->start_off
);
4609 prog
[i
] &= ~OP_RELO_TYPE
;
4612 err
= nfp_bpf_ustore_calc(prog
, nfp_prog
->prog_len
);
4620 return ERR_PTR(err
);