1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2015-2018 Netronome Systems, Inc. */
6 * Netronome network device driver: Common functions between PF and VF
7 * Authors: Jakub Kicinski <jakub.kicinski@netronome.com>
8 * Jason McMullan <jason.mcmullan@netronome.com>
9 * Rolf Neugebauer <rolf.neugebauer@netronome.com>
10 * Brad Petrus <brad.petrus@netronome.com>
11 * Chris Telfer <chris.telfer@netronome.com>
14 #include <linux/bitfield.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf_trace.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/interrupt.h>
25 #include <linux/ipv6.h>
27 #include <linux/overflow.h>
28 #include <linux/page_ref.h>
29 #include <linux/pci.h>
30 #include <linux/pci_regs.h>
31 #include <linux/msi.h>
32 #include <linux/ethtool.h>
33 #include <linux/log2.h>
34 #include <linux/if_vlan.h>
35 #include <linux/random.h>
36 #include <linux/vmalloc.h>
37 #include <linux/ktime.h>
40 #include <net/vxlan.h>
42 #include "nfpcore/nfp_nsp.h"
45 #include "nfp_net_ctrl.h"
47 #include "nfp_net_sriov.h"
49 #include "crypto/crypto.h"
50 #include "crypto/fw.h"
53 * nfp_net_get_fw_version() - Read and parse the FW version
54 * @fw_ver: Output fw_version structure to read to
55 * @ctrl_bar: Mapped address of the control BAR
57 void nfp_net_get_fw_version(struct nfp_net_fw_version
*fw_ver
,
58 void __iomem
*ctrl_bar
)
62 reg
= readl(ctrl_bar
+ NFP_NET_CFG_VERSION
);
63 put_unaligned_le32(reg
, fw_ver
);
66 static dma_addr_t
nfp_net_dma_map_rx(struct nfp_net_dp
*dp
, void *frag
)
68 return dma_map_single_attrs(dp
->dev
, frag
+ NFP_NET_RX_BUF_HEADROOM
,
69 dp
->fl_bufsz
- NFP_NET_RX_BUF_NON_DATA
,
70 dp
->rx_dma_dir
, DMA_ATTR_SKIP_CPU_SYNC
);
74 nfp_net_dma_sync_dev_rx(const struct nfp_net_dp
*dp
, dma_addr_t dma_addr
)
76 dma_sync_single_for_device(dp
->dev
, dma_addr
,
77 dp
->fl_bufsz
- NFP_NET_RX_BUF_NON_DATA
,
81 static void nfp_net_dma_unmap_rx(struct nfp_net_dp
*dp
, dma_addr_t dma_addr
)
83 dma_unmap_single_attrs(dp
->dev
, dma_addr
,
84 dp
->fl_bufsz
- NFP_NET_RX_BUF_NON_DATA
,
85 dp
->rx_dma_dir
, DMA_ATTR_SKIP_CPU_SYNC
);
88 static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp
*dp
, dma_addr_t dma_addr
,
91 dma_sync_single_for_cpu(dp
->dev
, dma_addr
- NFP_NET_RX_BUF_HEADROOM
,
97 * Firmware reconfig may take a while so we have two versions of it -
98 * synchronous and asynchronous (posted). All synchronous callers are holding
99 * RTNL so we don't have to worry about serializing them.
101 static void nfp_net_reconfig_start(struct nfp_net
*nn
, u32 update
)
103 nn_writel(nn
, NFP_NET_CFG_UPDATE
, update
);
104 /* ensure update is written before pinging HW */
106 nfp_qcp_wr_ptr_add(nn
->qcp_cfg
, 1);
107 nn
->reconfig_in_progress_update
= update
;
110 /* Pass 0 as update to run posted reconfigs. */
111 static void nfp_net_reconfig_start_async(struct nfp_net
*nn
, u32 update
)
113 update
|= nn
->reconfig_posted
;
114 nn
->reconfig_posted
= 0;
116 nfp_net_reconfig_start(nn
, update
);
118 nn
->reconfig_timer_active
= true;
119 mod_timer(&nn
->reconfig_timer
, jiffies
+ NFP_NET_POLL_TIMEOUT
* HZ
);
122 static bool nfp_net_reconfig_check_done(struct nfp_net
*nn
, bool last_check
)
126 reg
= nn_readl(nn
, NFP_NET_CFG_UPDATE
);
129 if (reg
& NFP_NET_CFG_UPDATE_ERR
) {
130 nn_err(nn
, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
131 reg
, nn
->reconfig_in_progress_update
,
132 nn_readl(nn
, NFP_NET_CFG_CTRL
));
134 } else if (last_check
) {
135 nn_err(nn
, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n",
136 reg
, nn
->reconfig_in_progress_update
,
137 nn_readl(nn
, NFP_NET_CFG_CTRL
));
144 static bool __nfp_net_reconfig_wait(struct nfp_net
*nn
, unsigned long deadline
)
146 bool timed_out
= false;
149 /* Poll update field, waiting for NFP to ack the config.
150 * Do an opportunistic wait-busy loop, afterward sleep.
152 for (i
= 0; i
< 50; i
++) {
153 if (nfp_net_reconfig_check_done(nn
, false))
158 while (!nfp_net_reconfig_check_done(nn
, timed_out
)) {
159 usleep_range(250, 500);
160 timed_out
= time_is_before_eq_jiffies(deadline
);
166 static int nfp_net_reconfig_wait(struct nfp_net
*nn
, unsigned long deadline
)
168 if (__nfp_net_reconfig_wait(nn
, deadline
))
171 if (nn_readl(nn
, NFP_NET_CFG_UPDATE
) & NFP_NET_CFG_UPDATE_ERR
)
177 static void nfp_net_reconfig_timer(struct timer_list
*t
)
179 struct nfp_net
*nn
= from_timer(nn
, t
, reconfig_timer
);
181 spin_lock_bh(&nn
->reconfig_lock
);
183 nn
->reconfig_timer_active
= false;
185 /* If sync caller is present it will take over from us */
186 if (nn
->reconfig_sync_present
)
189 /* Read reconfig status and report errors */
190 nfp_net_reconfig_check_done(nn
, true);
192 if (nn
->reconfig_posted
)
193 nfp_net_reconfig_start_async(nn
, 0);
195 spin_unlock_bh(&nn
->reconfig_lock
);
199 * nfp_net_reconfig_post() - Post async reconfig request
200 * @nn: NFP Net device to reconfigure
201 * @update: The value for the update field in the BAR config
203 * Record FW reconfiguration request. Reconfiguration will be kicked off
204 * whenever reconfiguration machinery is idle. Multiple requests can be
207 static void nfp_net_reconfig_post(struct nfp_net
*nn
, u32 update
)
209 spin_lock_bh(&nn
->reconfig_lock
);
211 /* Sync caller will kick off async reconf when it's done, just post */
212 if (nn
->reconfig_sync_present
) {
213 nn
->reconfig_posted
|= update
;
217 /* Opportunistically check if the previous command is done */
218 if (!nn
->reconfig_timer_active
||
219 nfp_net_reconfig_check_done(nn
, false))
220 nfp_net_reconfig_start_async(nn
, update
);
222 nn
->reconfig_posted
|= update
;
224 spin_unlock_bh(&nn
->reconfig_lock
);
227 static void nfp_net_reconfig_sync_enter(struct nfp_net
*nn
)
229 bool cancelled_timer
= false;
230 u32 pre_posted_requests
;
232 spin_lock_bh(&nn
->reconfig_lock
);
234 WARN_ON(nn
->reconfig_sync_present
);
235 nn
->reconfig_sync_present
= true;
237 if (nn
->reconfig_timer_active
) {
238 nn
->reconfig_timer_active
= false;
239 cancelled_timer
= true;
241 pre_posted_requests
= nn
->reconfig_posted
;
242 nn
->reconfig_posted
= 0;
244 spin_unlock_bh(&nn
->reconfig_lock
);
246 if (cancelled_timer
) {
247 del_timer_sync(&nn
->reconfig_timer
);
248 nfp_net_reconfig_wait(nn
, nn
->reconfig_timer
.expires
);
251 /* Run the posted reconfigs which were issued before we started */
252 if (pre_posted_requests
) {
253 nfp_net_reconfig_start(nn
, pre_posted_requests
);
254 nfp_net_reconfig_wait(nn
, jiffies
+ HZ
* NFP_NET_POLL_TIMEOUT
);
258 static void nfp_net_reconfig_wait_posted(struct nfp_net
*nn
)
260 nfp_net_reconfig_sync_enter(nn
);
262 spin_lock_bh(&nn
->reconfig_lock
);
263 nn
->reconfig_sync_present
= false;
264 spin_unlock_bh(&nn
->reconfig_lock
);
268 * __nfp_net_reconfig() - Reconfigure the firmware
269 * @nn: NFP Net device to reconfigure
270 * @update: The value for the update field in the BAR config
272 * Write the update word to the BAR and ping the reconfig queue. The
273 * poll until the firmware has acknowledged the update by zeroing the
276 * Return: Negative errno on error, 0 on success
278 int __nfp_net_reconfig(struct nfp_net
*nn
, u32 update
)
282 nfp_net_reconfig_sync_enter(nn
);
284 nfp_net_reconfig_start(nn
, update
);
285 ret
= nfp_net_reconfig_wait(nn
, jiffies
+ HZ
* NFP_NET_POLL_TIMEOUT
);
287 spin_lock_bh(&nn
->reconfig_lock
);
289 if (nn
->reconfig_posted
)
290 nfp_net_reconfig_start_async(nn
, 0);
292 nn
->reconfig_sync_present
= false;
294 spin_unlock_bh(&nn
->reconfig_lock
);
299 int nfp_net_reconfig(struct nfp_net
*nn
, u32 update
)
303 nn_ctrl_bar_lock(nn
);
304 ret
= __nfp_net_reconfig(nn
, update
);
305 nn_ctrl_bar_unlock(nn
);
310 int nfp_net_mbox_lock(struct nfp_net
*nn
, unsigned int data_size
)
312 if (nn
->tlv_caps
.mbox_len
< NFP_NET_CFG_MBOX_SIMPLE_VAL
+ data_size
) {
313 nn_err(nn
, "mailbox too small for %u of data (%u)\n",
314 data_size
, nn
->tlv_caps
.mbox_len
);
318 nn_ctrl_bar_lock(nn
);
323 * nfp_net_mbox_reconfig() - Reconfigure the firmware via the mailbox
324 * @nn: NFP Net device to reconfigure
325 * @mbox_cmd: The value for the mailbox command
327 * Helper function for mailbox updates
329 * Return: Negative errno on error, 0 on success
331 int nfp_net_mbox_reconfig(struct nfp_net
*nn
, u32 mbox_cmd
)
333 u32 mbox
= nn
->tlv_caps
.mbox_off
;
336 nn_writeq(nn
, mbox
+ NFP_NET_CFG_MBOX_SIMPLE_CMD
, mbox_cmd
);
338 ret
= __nfp_net_reconfig(nn
, NFP_NET_CFG_UPDATE_MBOX
);
340 nn_err(nn
, "Mailbox update error\n");
344 return -nn_readl(nn
, mbox
+ NFP_NET_CFG_MBOX_SIMPLE_RET
);
347 void nfp_net_mbox_reconfig_post(struct nfp_net
*nn
, u32 mbox_cmd
)
349 u32 mbox
= nn
->tlv_caps
.mbox_off
;
351 nn_writeq(nn
, mbox
+ NFP_NET_CFG_MBOX_SIMPLE_CMD
, mbox_cmd
);
353 nfp_net_reconfig_post(nn
, NFP_NET_CFG_UPDATE_MBOX
);
356 int nfp_net_mbox_reconfig_wait_posted(struct nfp_net
*nn
)
358 u32 mbox
= nn
->tlv_caps
.mbox_off
;
360 nfp_net_reconfig_wait_posted(nn
);
362 return -nn_readl(nn
, mbox
+ NFP_NET_CFG_MBOX_SIMPLE_RET
);
365 int nfp_net_mbox_reconfig_and_unlock(struct nfp_net
*nn
, u32 mbox_cmd
)
369 ret
= nfp_net_mbox_reconfig(nn
, mbox_cmd
);
370 nn_ctrl_bar_unlock(nn
);
374 /* Interrupt configuration and handling
378 * nfp_net_irq_unmask() - Unmask automasked interrupt
379 * @nn: NFP Network structure
380 * @entry_nr: MSI-X table entry
382 * Clear the ICR for the IRQ entry.
384 static void nfp_net_irq_unmask(struct nfp_net
*nn
, unsigned int entry_nr
)
386 nn_writeb(nn
, NFP_NET_CFG_ICR(entry_nr
), NFP_NET_CFG_ICR_UNMASKED
);
391 * nfp_net_irqs_alloc() - allocates MSI-X irqs
392 * @pdev: PCI device structure
393 * @irq_entries: Array to be initialized and used to hold the irq entries
394 * @min_irqs: Minimal acceptable number of interrupts
395 * @wanted_irqs: Target number of interrupts to allocate
397 * Return: Number of irqs obtained or 0 on error.
400 nfp_net_irqs_alloc(struct pci_dev
*pdev
, struct msix_entry
*irq_entries
,
401 unsigned int min_irqs
, unsigned int wanted_irqs
)
406 for (i
= 0; i
< wanted_irqs
; i
++)
407 irq_entries
[i
].entry
= i
;
409 got_irqs
= pci_enable_msix_range(pdev
, irq_entries
,
410 min_irqs
, wanted_irqs
);
412 dev_err(&pdev
->dev
, "Failed to enable %d-%d MSI-X (err=%d)\n",
413 min_irqs
, wanted_irqs
, got_irqs
);
417 if (got_irqs
< wanted_irqs
)
418 dev_warn(&pdev
->dev
, "Unable to allocate %d IRQs got only %d\n",
419 wanted_irqs
, got_irqs
);
425 * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev
426 * @nn: NFP Network structure
427 * @irq_entries: Table of allocated interrupts
428 * @n: Size of @irq_entries (number of entries to grab)
430 * After interrupts are allocated with nfp_net_irqs_alloc() this function
431 * should be called to assign them to a specific netdev (port).
434 nfp_net_irqs_assign(struct nfp_net
*nn
, struct msix_entry
*irq_entries
,
437 struct nfp_net_dp
*dp
= &nn
->dp
;
439 nn
->max_r_vecs
= n
- NFP_NET_NON_Q_VECTORS
;
440 dp
->num_r_vecs
= nn
->max_r_vecs
;
442 memcpy(nn
->irq_entries
, irq_entries
, sizeof(*irq_entries
) * n
);
444 if (dp
->num_rx_rings
> dp
->num_r_vecs
||
445 dp
->num_tx_rings
> dp
->num_r_vecs
)
446 dev_warn(nn
->dp
.dev
, "More rings (%d,%d) than vectors (%d).\n",
447 dp
->num_rx_rings
, dp
->num_tx_rings
,
450 dp
->num_rx_rings
= min(dp
->num_r_vecs
, dp
->num_rx_rings
);
451 dp
->num_tx_rings
= min(dp
->num_r_vecs
, dp
->num_tx_rings
);
452 dp
->num_stack_tx_rings
= dp
->num_tx_rings
;
456 * nfp_net_irqs_disable() - Disable interrupts
457 * @pdev: PCI device structure
459 * Undoes what @nfp_net_irqs_alloc() does.
461 void nfp_net_irqs_disable(struct pci_dev
*pdev
)
463 pci_disable_msix(pdev
);
467 * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings.
469 * @data: Opaque data structure
471 * Return: Indicate if the interrupt has been handled.
473 static irqreturn_t
nfp_net_irq_rxtx(int irq
, void *data
)
475 struct nfp_net_r_vector
*r_vec
= data
;
477 napi_schedule_irqoff(&r_vec
->napi
);
479 /* The FW auto-masks any interrupt, either via the MASK bit in
480 * the MSI-X table or via the per entry ICR field. So there
481 * is no need to disable interrupts here.
486 static irqreturn_t
nfp_ctrl_irq_rxtx(int irq
, void *data
)
488 struct nfp_net_r_vector
*r_vec
= data
;
490 tasklet_schedule(&r_vec
->tasklet
);
496 * nfp_net_read_link_status() - Reread link status from control BAR
497 * @nn: NFP Network structure
499 static void nfp_net_read_link_status(struct nfp_net
*nn
)
505 spin_lock_irqsave(&nn
->link_status_lock
, flags
);
507 sts
= nn_readl(nn
, NFP_NET_CFG_STS
);
508 link_up
= !!(sts
& NFP_NET_CFG_STS_LINK
);
510 if (nn
->link_up
== link_up
)
513 nn
->link_up
= link_up
;
515 set_bit(NFP_PORT_CHANGED
, &nn
->port
->flags
);
518 netif_carrier_on(nn
->dp
.netdev
);
519 netdev_info(nn
->dp
.netdev
, "NIC Link is Up\n");
521 netif_carrier_off(nn
->dp
.netdev
);
522 netdev_info(nn
->dp
.netdev
, "NIC Link is Down\n");
525 spin_unlock_irqrestore(&nn
->link_status_lock
, flags
);
529 * nfp_net_irq_lsc() - Interrupt service routine for link state changes
531 * @data: Opaque data structure
533 * Return: Indicate if the interrupt has been handled.
535 static irqreturn_t
nfp_net_irq_lsc(int irq
, void *data
)
537 struct nfp_net
*nn
= data
;
538 struct msix_entry
*entry
;
540 entry
= &nn
->irq_entries
[NFP_NET_IRQ_LSC_IDX
];
542 nfp_net_read_link_status(nn
);
544 nfp_net_irq_unmask(nn
, entry
->entry
);
550 * nfp_net_irq_exn() - Interrupt service routine for exceptions
552 * @data: Opaque data structure
554 * Return: Indicate if the interrupt has been handled.
556 static irqreturn_t
nfp_net_irq_exn(int irq
, void *data
)
558 struct nfp_net
*nn
= data
;
560 nn_err(nn
, "%s: UNIMPLEMENTED.\n", __func__
);
561 /* XXX TO BE IMPLEMENTED */
566 * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
567 * @tx_ring: TX ring structure
568 * @r_vec: IRQ vector servicing this ring
570 * @is_xdp: Is this an XDP TX ring?
573 nfp_net_tx_ring_init(struct nfp_net_tx_ring
*tx_ring
,
574 struct nfp_net_r_vector
*r_vec
, unsigned int idx
,
577 struct nfp_net
*nn
= r_vec
->nfp_net
;
580 tx_ring
->r_vec
= r_vec
;
581 tx_ring
->is_xdp
= is_xdp
;
582 u64_stats_init(&tx_ring
->r_vec
->tx_sync
);
584 tx_ring
->qcidx
= tx_ring
->idx
* nn
->stride_tx
;
585 tx_ring
->qcp_q
= nn
->tx_bar
+ NFP_QCP_QUEUE_OFF(tx_ring
->qcidx
);
589 * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
590 * @rx_ring: RX ring structure
591 * @r_vec: IRQ vector servicing this ring
595 nfp_net_rx_ring_init(struct nfp_net_rx_ring
*rx_ring
,
596 struct nfp_net_r_vector
*r_vec
, unsigned int idx
)
598 struct nfp_net
*nn
= r_vec
->nfp_net
;
601 rx_ring
->r_vec
= r_vec
;
602 u64_stats_init(&rx_ring
->r_vec
->rx_sync
);
604 rx_ring
->fl_qcidx
= rx_ring
->idx
* nn
->stride_rx
;
605 rx_ring
->qcp_fl
= nn
->rx_bar
+ NFP_QCP_QUEUE_OFF(rx_ring
->fl_qcidx
);
609 * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN)
610 * @nn: NFP Network structure
611 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
612 * @format: printf-style format to construct the interrupt name
613 * @name: Pointer to allocated space for interrupt name
614 * @name_sz: Size of space for interrupt name
615 * @vector_idx: Index of MSI-X vector used for this interrupt
616 * @handler: IRQ handler to register for this interrupt
619 nfp_net_aux_irq_request(struct nfp_net
*nn
, u32 ctrl_offset
,
620 const char *format
, char *name
, size_t name_sz
,
621 unsigned int vector_idx
, irq_handler_t handler
)
623 struct msix_entry
*entry
;
626 entry
= &nn
->irq_entries
[vector_idx
];
628 snprintf(name
, name_sz
, format
, nfp_net_name(nn
));
629 err
= request_irq(entry
->vector
, handler
, 0, name
, nn
);
631 nn_err(nn
, "Failed to request IRQ %d (err=%d).\n",
635 nn_writeb(nn
, ctrl_offset
, entry
->entry
);
636 nfp_net_irq_unmask(nn
, entry
->entry
);
642 * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN)
643 * @nn: NFP Network structure
644 * @ctrl_offset: Control BAR offset where IRQ configuration should be written
645 * @vector_idx: Index of MSI-X vector used for this interrupt
647 static void nfp_net_aux_irq_free(struct nfp_net
*nn
, u32 ctrl_offset
,
648 unsigned int vector_idx
)
650 nn_writeb(nn
, ctrl_offset
, 0xff);
652 free_irq(nn
->irq_entries
[vector_idx
].vector
, nn
);
657 * One queue controller peripheral queue is used for transmit. The
658 * driver en-queues packets for transmit by advancing the write
659 * pointer. The device indicates that packets have transmitted by
660 * advancing the read pointer. The driver maintains a local copy of
661 * the read and write pointer in @struct nfp_net_tx_ring. The driver
662 * keeps @wr_p in sync with the queue controller write pointer and can
663 * determine how many packets have been transmitted by comparing its
664 * copy of the read pointer @rd_p with the read pointer maintained by
665 * the queue controller peripheral.
669 * nfp_net_tx_full() - Check if the TX ring is full
670 * @tx_ring: TX ring to check
671 * @dcnt: Number of descriptors that need to be enqueued (must be >= 1)
673 * This function checks, based on the *host copy* of read/write
674 * pointer if a given TX ring is full. The real TX queue may have
675 * some newly made available slots.
677 * Return: True if the ring is full.
679 static int nfp_net_tx_full(struct nfp_net_tx_ring
*tx_ring
, int dcnt
)
681 return (tx_ring
->wr_p
- tx_ring
->rd_p
) >= (tx_ring
->cnt
- dcnt
);
684 /* Wrappers for deciding when to stop and restart TX queues */
685 static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring
*tx_ring
)
687 return !nfp_net_tx_full(tx_ring
, MAX_SKB_FRAGS
* 4);
690 static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring
*tx_ring
)
692 return nfp_net_tx_full(tx_ring
, MAX_SKB_FRAGS
+ 1);
696 * nfp_net_tx_ring_stop() - stop tx ring
697 * @nd_q: netdev queue
698 * @tx_ring: driver tx queue structure
700 * Safely stop TX ring. Remember that while we are running .start_xmit()
701 * someone else may be cleaning the TX ring completions so we need to be
702 * extra careful here.
704 static void nfp_net_tx_ring_stop(struct netdev_queue
*nd_q
,
705 struct nfp_net_tx_ring
*tx_ring
)
707 netif_tx_stop_queue(nd_q
);
709 /* We can race with the TX completion out of NAPI so recheck */
711 if (unlikely(nfp_net_tx_ring_should_wake(tx_ring
)))
712 netif_tx_start_queue(nd_q
);
716 * nfp_net_tx_tso() - Set up Tx descriptor for LSO
717 * @r_vec: per-ring structure
718 * @txbuf: Pointer to driver soft TX descriptor
719 * @txd: Pointer to HW TX descriptor
720 * @skb: Pointer to SKB
721 * @md_bytes: Prepend length
723 * Set up Tx descriptor for LSO, do nothing for non-LSO skbs.
724 * Return error on packet header greater than maximum supported LSO header size.
726 static void nfp_net_tx_tso(struct nfp_net_r_vector
*r_vec
,
727 struct nfp_net_tx_buf
*txbuf
,
728 struct nfp_net_tx_desc
*txd
, struct sk_buff
*skb
,
731 u32 l3_offset
, l4_offset
, hdrlen
;
734 if (!skb_is_gso(skb
))
737 if (!skb
->encapsulation
) {
738 l3_offset
= skb_network_offset(skb
);
739 l4_offset
= skb_transport_offset(skb
);
740 hdrlen
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
742 l3_offset
= skb_inner_network_offset(skb
);
743 l4_offset
= skb_inner_transport_offset(skb
);
744 hdrlen
= skb_inner_transport_header(skb
) - skb
->data
+
745 inner_tcp_hdrlen(skb
);
748 txbuf
->pkt_cnt
= skb_shinfo(skb
)->gso_segs
;
749 txbuf
->real_len
+= hdrlen
* (txbuf
->pkt_cnt
- 1);
751 mss
= skb_shinfo(skb
)->gso_size
& PCIE_DESC_TX_MSS_MASK
;
752 txd
->l3_offset
= l3_offset
- md_bytes
;
753 txd
->l4_offset
= l4_offset
- md_bytes
;
754 txd
->lso_hdrlen
= hdrlen
- md_bytes
;
755 txd
->mss
= cpu_to_le16(mss
);
756 txd
->flags
|= PCIE_DESC_TX_LSO
;
758 u64_stats_update_begin(&r_vec
->tx_sync
);
760 u64_stats_update_end(&r_vec
->tx_sync
);
764 * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor
765 * @dp: NFP Net data path struct
766 * @r_vec: per-ring structure
767 * @txbuf: Pointer to driver soft TX descriptor
768 * @txd: Pointer to TX descriptor
769 * @skb: Pointer to SKB
771 * This function sets the TX checksum flags in the TX descriptor based
772 * on the configuration and the protocol of the packet to be transmitted.
774 static void nfp_net_tx_csum(struct nfp_net_dp
*dp
,
775 struct nfp_net_r_vector
*r_vec
,
776 struct nfp_net_tx_buf
*txbuf
,
777 struct nfp_net_tx_desc
*txd
, struct sk_buff
*skb
)
779 struct ipv6hdr
*ipv6h
;
783 if (!(dp
->ctrl
& NFP_NET_CFG_CTRL_TXCSUM
))
786 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
789 txd
->flags
|= PCIE_DESC_TX_CSUM
;
790 if (skb
->encapsulation
)
791 txd
->flags
|= PCIE_DESC_TX_ENCAP
;
793 iph
= skb
->encapsulation
? inner_ip_hdr(skb
) : ip_hdr(skb
);
794 ipv6h
= skb
->encapsulation
? inner_ipv6_hdr(skb
) : ipv6_hdr(skb
);
796 if (iph
->version
== 4) {
797 txd
->flags
|= PCIE_DESC_TX_IP4_CSUM
;
798 l4_hdr
= iph
->protocol
;
799 } else if (ipv6h
->version
== 6) {
800 l4_hdr
= ipv6h
->nexthdr
;
802 nn_dp_warn(dp
, "partial checksum but ipv=%x!\n", iph
->version
);
808 txd
->flags
|= PCIE_DESC_TX_TCP_CSUM
;
811 txd
->flags
|= PCIE_DESC_TX_UDP_CSUM
;
814 nn_dp_warn(dp
, "partial checksum but l4 proto=%x!\n", l4_hdr
);
818 u64_stats_update_begin(&r_vec
->tx_sync
);
819 if (skb
->encapsulation
)
820 r_vec
->hw_csum_tx_inner
+= txbuf
->pkt_cnt
;
822 r_vec
->hw_csum_tx
+= txbuf
->pkt_cnt
;
823 u64_stats_update_end(&r_vec
->tx_sync
);
826 static struct sk_buff
*
827 nfp_net_tls_tx(struct nfp_net_dp
*dp
, struct nfp_net_r_vector
*r_vec
,
828 struct sk_buff
*skb
, u64
*tls_handle
, int *nr_frags
)
830 #ifdef CONFIG_TLS_DEVICE
831 struct nfp_net_tls_offload_ctx
*ntls
;
832 struct sk_buff
*nskb
;
836 if (likely(!dp
->ktls_tx
))
838 if (!skb
->sk
|| !tls_is_sk_tx_device_offloaded(skb
->sk
))
841 datalen
= skb
->len
- (skb_transport_offset(skb
) + tcp_hdrlen(skb
));
842 seq
= ntohl(tcp_hdr(skb
)->seq
);
843 ntls
= tls_driver_ctx(skb
->sk
, TLS_OFFLOAD_CTX_DIR_TX
);
844 resync_pending
= tls_offload_tx_resync_pending(skb
->sk
);
845 if (unlikely(resync_pending
|| ntls
->next_seq
!= seq
)) {
846 /* Pure ACK out of order already */
850 u64_stats_update_begin(&r_vec
->tx_sync
);
851 r_vec
->tls_tx_fallback
++;
852 u64_stats_update_end(&r_vec
->tx_sync
);
854 nskb
= tls_encrypt_skb(skb
);
856 u64_stats_update_begin(&r_vec
->tx_sync
);
857 r_vec
->tls_tx_no_fallback
++;
858 u64_stats_update_end(&r_vec
->tx_sync
);
861 /* encryption wasn't necessary */
864 /* we don't re-check ring space */
865 if (unlikely(skb_is_nonlinear(nskb
))) {
866 nn_dp_warn(dp
, "tls_encrypt_skb() produced fragmented frame\n");
867 u64_stats_update_begin(&r_vec
->tx_sync
);
869 u64_stats_update_end(&r_vec
->tx_sync
);
870 dev_kfree_skb_any(nskb
);
874 /* jump forward, a TX may have gotten lost, need to sync TX */
875 if (!resync_pending
&& seq
- ntls
->next_seq
< U32_MAX
/ 4)
876 tls_offload_tx_resync_request(nskb
->sk
, seq
,
884 u64_stats_update_begin(&r_vec
->tx_sync
);
885 if (!skb_is_gso(skb
))
888 r_vec
->hw_tls_tx
+= skb_shinfo(skb
)->gso_segs
;
889 u64_stats_update_end(&r_vec
->tx_sync
);
892 memcpy(tls_handle
, ntls
->fw_handle
, sizeof(ntls
->fw_handle
));
893 ntls
->next_seq
+= datalen
;
898 static void nfp_net_tls_tx_undo(struct sk_buff
*skb
, u64 tls_handle
)
900 #ifdef CONFIG_TLS_DEVICE
901 struct nfp_net_tls_offload_ctx
*ntls
;
906 if (WARN_ON_ONCE(!skb
->sk
|| !tls_is_sk_tx_device_offloaded(skb
->sk
)))
909 datalen
= skb
->len
- (skb_transport_offset(skb
) + tcp_hdrlen(skb
));
910 seq
= ntohl(tcp_hdr(skb
)->seq
);
912 ntls
= tls_driver_ctx(skb
->sk
, TLS_OFFLOAD_CTX_DIR_TX
);
913 if (ntls
->next_seq
== seq
+ datalen
)
914 ntls
->next_seq
= seq
;
920 static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring
*tx_ring
)
923 nfp_qcp_wr_ptr_add(tx_ring
->qcp_q
, tx_ring
->wr_ptr_add
);
924 tx_ring
->wr_ptr_add
= 0;
927 static int nfp_net_prep_tx_meta(struct sk_buff
*skb
, u64 tls_handle
)
929 struct metadata_dst
*md_dst
= skb_metadata_dst(skb
);
934 if (likely(!md_dst
&& !tls_handle
))
936 if (unlikely(md_dst
&& md_dst
->type
!= METADATA_HW_PORT_MUX
)) {
942 md_bytes
= 4 + !!md_dst
* 4 + !!tls_handle
* 8;
944 if (unlikely(skb_cow_head(skb
, md_bytes
)))
948 data
= skb_push(skb
, md_bytes
) + md_bytes
;
951 put_unaligned_be32(md_dst
->u
.port_info
.port_id
, data
);
952 meta_id
= NFP_NET_META_PORTID
;
955 /* conn handle is opaque, we just use u64 to be able to quickly
959 memcpy(data
, &tls_handle
, sizeof(tls_handle
));
960 meta_id
<<= NFP_NET_META_FIELD_SIZE
;
961 meta_id
|= NFP_NET_META_CONN_HANDLE
;
965 put_unaligned_be32(meta_id
, data
);
971 * nfp_net_tx() - Main transmit entry point
972 * @skb: SKB to transmit
973 * @netdev: netdev structure
975 * Return: NETDEV_TX_OK on success.
977 static netdev_tx_t
nfp_net_tx(struct sk_buff
*skb
, struct net_device
*netdev
)
979 struct nfp_net
*nn
= netdev_priv(netdev
);
980 const skb_frag_t
*frag
;
981 int f
, nr_frags
, wr_idx
, md_bytes
;
982 struct nfp_net_tx_ring
*tx_ring
;
983 struct nfp_net_r_vector
*r_vec
;
984 struct nfp_net_tx_buf
*txbuf
;
985 struct nfp_net_tx_desc
*txd
;
986 struct netdev_queue
*nd_q
;
987 struct nfp_net_dp
*dp
;
994 qidx
= skb_get_queue_mapping(skb
);
995 tx_ring
= &dp
->tx_rings
[qidx
];
996 r_vec
= tx_ring
->r_vec
;
998 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1000 if (unlikely(nfp_net_tx_full(tx_ring
, nr_frags
+ 1))) {
1001 nn_dp_warn(dp
, "TX ring %d busy. wrp=%u rdp=%u\n",
1002 qidx
, tx_ring
->wr_p
, tx_ring
->rd_p
);
1003 nd_q
= netdev_get_tx_queue(dp
->netdev
, qidx
);
1004 netif_tx_stop_queue(nd_q
);
1005 nfp_net_tx_xmit_more_flush(tx_ring
);
1006 u64_stats_update_begin(&r_vec
->tx_sync
);
1008 u64_stats_update_end(&r_vec
->tx_sync
);
1009 return NETDEV_TX_BUSY
;
1012 skb
= nfp_net_tls_tx(dp
, r_vec
, skb
, &tls_handle
, &nr_frags
);
1013 if (unlikely(!skb
)) {
1014 nfp_net_tx_xmit_more_flush(tx_ring
);
1015 return NETDEV_TX_OK
;
1018 md_bytes
= nfp_net_prep_tx_meta(skb
, tls_handle
);
1019 if (unlikely(md_bytes
< 0))
1022 /* Start with the head skbuf */
1023 dma_addr
= dma_map_single(dp
->dev
, skb
->data
, skb_headlen(skb
),
1025 if (dma_mapping_error(dp
->dev
, dma_addr
))
1028 wr_idx
= D_IDX(tx_ring
, tx_ring
->wr_p
);
1030 /* Stash the soft descriptor of the head then initialize it */
1031 txbuf
= &tx_ring
->txbufs
[wr_idx
];
1033 txbuf
->dma_addr
= dma_addr
;
1036 txbuf
->real_len
= skb
->len
;
1038 /* Build TX descriptor */
1039 txd
= &tx_ring
->txds
[wr_idx
];
1040 txd
->offset_eop
= (nr_frags
? 0 : PCIE_DESC_TX_EOP
) | md_bytes
;
1041 txd
->dma_len
= cpu_to_le16(skb_headlen(skb
));
1042 nfp_desc_set_dma_addr(txd
, dma_addr
);
1043 txd
->data_len
= cpu_to_le16(skb
->len
);
1047 txd
->lso_hdrlen
= 0;
1049 /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */
1050 nfp_net_tx_tso(r_vec
, txbuf
, txd
, skb
, md_bytes
);
1051 nfp_net_tx_csum(dp
, r_vec
, txbuf
, txd
, skb
);
1052 if (skb_vlan_tag_present(skb
) && dp
->ctrl
& NFP_NET_CFG_CTRL_TXVLAN
) {
1053 txd
->flags
|= PCIE_DESC_TX_VLAN
;
1054 txd
->vlan
= cpu_to_le16(skb_vlan_tag_get(skb
));
1061 /* all descs must match except for in addr, length and eop */
1062 second_half
= txd
->vals8
[1];
1064 for (f
= 0; f
< nr_frags
; f
++) {
1065 frag
= &skb_shinfo(skb
)->frags
[f
];
1066 fsize
= skb_frag_size(frag
);
1068 dma_addr
= skb_frag_dma_map(dp
->dev
, frag
, 0,
1069 fsize
, DMA_TO_DEVICE
);
1070 if (dma_mapping_error(dp
->dev
, dma_addr
))
1073 wr_idx
= D_IDX(tx_ring
, wr_idx
+ 1);
1074 tx_ring
->txbufs
[wr_idx
].skb
= skb
;
1075 tx_ring
->txbufs
[wr_idx
].dma_addr
= dma_addr
;
1076 tx_ring
->txbufs
[wr_idx
].fidx
= f
;
1078 txd
= &tx_ring
->txds
[wr_idx
];
1079 txd
->dma_len
= cpu_to_le16(fsize
);
1080 nfp_desc_set_dma_addr(txd
, dma_addr
);
1081 txd
->offset_eop
= md_bytes
|
1082 ((f
== nr_frags
- 1) ? PCIE_DESC_TX_EOP
: 0);
1083 txd
->vals8
[1] = second_half
;
1086 u64_stats_update_begin(&r_vec
->tx_sync
);
1088 u64_stats_update_end(&r_vec
->tx_sync
);
1091 skb_tx_timestamp(skb
);
1093 nd_q
= netdev_get_tx_queue(dp
->netdev
, tx_ring
->idx
);
1095 tx_ring
->wr_p
+= nr_frags
+ 1;
1096 if (nfp_net_tx_ring_should_stop(tx_ring
))
1097 nfp_net_tx_ring_stop(nd_q
, tx_ring
);
1099 tx_ring
->wr_ptr_add
+= nr_frags
+ 1;
1100 if (__netdev_tx_sent_queue(nd_q
, txbuf
->real_len
, netdev_xmit_more()))
1101 nfp_net_tx_xmit_more_flush(tx_ring
);
1103 return NETDEV_TX_OK
;
1107 frag
= &skb_shinfo(skb
)->frags
[f
];
1108 dma_unmap_page(dp
->dev
, tx_ring
->txbufs
[wr_idx
].dma_addr
,
1109 skb_frag_size(frag
), DMA_TO_DEVICE
);
1110 tx_ring
->txbufs
[wr_idx
].skb
= NULL
;
1111 tx_ring
->txbufs
[wr_idx
].dma_addr
= 0;
1112 tx_ring
->txbufs
[wr_idx
].fidx
= -2;
1113 wr_idx
= wr_idx
- 1;
1115 wr_idx
+= tx_ring
->cnt
;
1117 dma_unmap_single(dp
->dev
, tx_ring
->txbufs
[wr_idx
].dma_addr
,
1118 skb_headlen(skb
), DMA_TO_DEVICE
);
1119 tx_ring
->txbufs
[wr_idx
].skb
= NULL
;
1120 tx_ring
->txbufs
[wr_idx
].dma_addr
= 0;
1121 tx_ring
->txbufs
[wr_idx
].fidx
= -2;
1123 nn_dp_warn(dp
, "Failed to map DMA TX buffer\n");
1125 nfp_net_tx_xmit_more_flush(tx_ring
);
1126 u64_stats_update_begin(&r_vec
->tx_sync
);
1128 u64_stats_update_end(&r_vec
->tx_sync
);
1129 nfp_net_tls_tx_undo(skb
, tls_handle
);
1130 dev_kfree_skb_any(skb
);
1131 return NETDEV_TX_OK
;
1135 * nfp_net_tx_complete() - Handled completed TX packets
1136 * @tx_ring: TX ring structure
1137 * @budget: NAPI budget (only used as bool to determine if in NAPI context)
1139 static void nfp_net_tx_complete(struct nfp_net_tx_ring
*tx_ring
, int budget
)
1141 struct nfp_net_r_vector
*r_vec
= tx_ring
->r_vec
;
1142 struct nfp_net_dp
*dp
= &r_vec
->nfp_net
->dp
;
1143 struct netdev_queue
*nd_q
;
1144 u32 done_pkts
= 0, done_bytes
= 0;
1148 if (tx_ring
->wr_p
== tx_ring
->rd_p
)
1151 /* Work out how many descriptors have been transmitted */
1152 qcp_rd_p
= nfp_qcp_rd_ptr_read(tx_ring
->qcp_q
);
1154 if (qcp_rd_p
== tx_ring
->qcp_rd_p
)
1157 todo
= D_IDX(tx_ring
, qcp_rd_p
- tx_ring
->qcp_rd_p
);
1160 const skb_frag_t
*frag
;
1161 struct nfp_net_tx_buf
*tx_buf
;
1162 struct sk_buff
*skb
;
1166 idx
= D_IDX(tx_ring
, tx_ring
->rd_p
++);
1167 tx_buf
= &tx_ring
->txbufs
[idx
];
1173 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1174 fidx
= tx_buf
->fidx
;
1178 dma_unmap_single(dp
->dev
, tx_buf
->dma_addr
,
1179 skb_headlen(skb
), DMA_TO_DEVICE
);
1181 done_pkts
+= tx_buf
->pkt_cnt
;
1182 done_bytes
+= tx_buf
->real_len
;
1184 /* unmap fragment */
1185 frag
= &skb_shinfo(skb
)->frags
[fidx
];
1186 dma_unmap_page(dp
->dev
, tx_buf
->dma_addr
,
1187 skb_frag_size(frag
), DMA_TO_DEVICE
);
1190 /* check for last gather fragment */
1191 if (fidx
== nr_frags
- 1)
1192 napi_consume_skb(skb
, budget
);
1194 tx_buf
->dma_addr
= 0;
1199 tx_ring
->qcp_rd_p
= qcp_rd_p
;
1201 u64_stats_update_begin(&r_vec
->tx_sync
);
1202 r_vec
->tx_bytes
+= done_bytes
;
1203 r_vec
->tx_pkts
+= done_pkts
;
1204 u64_stats_update_end(&r_vec
->tx_sync
);
1209 nd_q
= netdev_get_tx_queue(dp
->netdev
, tx_ring
->idx
);
1210 netdev_tx_completed_queue(nd_q
, done_pkts
, done_bytes
);
1211 if (nfp_net_tx_ring_should_wake(tx_ring
)) {
1212 /* Make sure TX thread will see updated tx_ring->rd_p */
1215 if (unlikely(netif_tx_queue_stopped(nd_q
)))
1216 netif_tx_wake_queue(nd_q
);
1219 WARN_ONCE(tx_ring
->wr_p
- tx_ring
->rd_p
> tx_ring
->cnt
,
1220 "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1221 tx_ring
->rd_p
, tx_ring
->wr_p
, tx_ring
->cnt
);
1224 static bool nfp_net_xdp_complete(struct nfp_net_tx_ring
*tx_ring
)
1226 struct nfp_net_r_vector
*r_vec
= tx_ring
->r_vec
;
1227 u32 done_pkts
= 0, done_bytes
= 0;
1232 /* Work out how many descriptors have been transmitted */
1233 qcp_rd_p
= nfp_qcp_rd_ptr_read(tx_ring
->qcp_q
);
1235 if (qcp_rd_p
== tx_ring
->qcp_rd_p
)
1238 todo
= D_IDX(tx_ring
, qcp_rd_p
- tx_ring
->qcp_rd_p
);
1240 done_all
= todo
<= NFP_NET_XDP_MAX_COMPLETE
;
1241 todo
= min(todo
, NFP_NET_XDP_MAX_COMPLETE
);
1243 tx_ring
->qcp_rd_p
= D_IDX(tx_ring
, tx_ring
->qcp_rd_p
+ todo
);
1247 idx
= D_IDX(tx_ring
, tx_ring
->rd_p
);
1250 done_bytes
+= tx_ring
->txbufs
[idx
].real_len
;
1253 u64_stats_update_begin(&r_vec
->tx_sync
);
1254 r_vec
->tx_bytes
+= done_bytes
;
1255 r_vec
->tx_pkts
+= done_pkts
;
1256 u64_stats_update_end(&r_vec
->tx_sync
);
1258 WARN_ONCE(tx_ring
->wr_p
- tx_ring
->rd_p
> tx_ring
->cnt
,
1259 "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n",
1260 tx_ring
->rd_p
, tx_ring
->wr_p
, tx_ring
->cnt
);
1266 * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers
1267 * @dp: NFP Net data path struct
1268 * @tx_ring: TX ring structure
1270 * Assumes that the device is stopped, must be idempotent.
1273 nfp_net_tx_ring_reset(struct nfp_net_dp
*dp
, struct nfp_net_tx_ring
*tx_ring
)
1275 const skb_frag_t
*frag
;
1276 struct netdev_queue
*nd_q
;
1278 while (!tx_ring
->is_xdp
&& tx_ring
->rd_p
!= tx_ring
->wr_p
) {
1279 struct nfp_net_tx_buf
*tx_buf
;
1280 struct sk_buff
*skb
;
1283 idx
= D_IDX(tx_ring
, tx_ring
->rd_p
);
1284 tx_buf
= &tx_ring
->txbufs
[idx
];
1286 skb
= tx_ring
->txbufs
[idx
].skb
;
1287 nr_frags
= skb_shinfo(skb
)->nr_frags
;
1289 if (tx_buf
->fidx
== -1) {
1291 dma_unmap_single(dp
->dev
, tx_buf
->dma_addr
,
1292 skb_headlen(skb
), DMA_TO_DEVICE
);
1294 /* unmap fragment */
1295 frag
= &skb_shinfo(skb
)->frags
[tx_buf
->fidx
];
1296 dma_unmap_page(dp
->dev
, tx_buf
->dma_addr
,
1297 skb_frag_size(frag
), DMA_TO_DEVICE
);
1300 /* check for last gather fragment */
1301 if (tx_buf
->fidx
== nr_frags
- 1)
1302 dev_kfree_skb_any(skb
);
1304 tx_buf
->dma_addr
= 0;
1308 tx_ring
->qcp_rd_p
++;
1312 memset(tx_ring
->txds
, 0, tx_ring
->size
);
1315 tx_ring
->qcp_rd_p
= 0;
1316 tx_ring
->wr_ptr_add
= 0;
1318 if (tx_ring
->is_xdp
|| !dp
->netdev
)
1321 nd_q
= netdev_get_tx_queue(dp
->netdev
, tx_ring
->idx
);
1322 netdev_tx_reset_queue(nd_q
);
1325 static void nfp_net_tx_timeout(struct net_device
*netdev
, unsigned int txqueue
)
1327 struct nfp_net
*nn
= netdev_priv(netdev
);
1329 nn_warn(nn
, "TX watchdog timeout on ring: %u\n", txqueue
);
1332 /* Receive processing
1335 nfp_net_calc_fl_bufsz(struct nfp_net_dp
*dp
)
1337 unsigned int fl_bufsz
;
1339 fl_bufsz
= NFP_NET_RX_BUF_HEADROOM
;
1340 fl_bufsz
+= dp
->rx_dma_off
;
1341 if (dp
->rx_offset
== NFP_NET_CFG_RX_OFFSET_DYNAMIC
)
1342 fl_bufsz
+= NFP_NET_MAX_PREPEND
;
1344 fl_bufsz
+= dp
->rx_offset
;
1345 fl_bufsz
+= ETH_HLEN
+ VLAN_HLEN
* 2 + dp
->mtu
;
1347 fl_bufsz
= SKB_DATA_ALIGN(fl_bufsz
);
1348 fl_bufsz
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
1354 nfp_net_free_frag(void *frag
, bool xdp
)
1357 skb_free_frag(frag
);
1359 __free_page(virt_to_page(frag
));
1363 * nfp_net_rx_alloc_one() - Allocate and map page frag for RX
1364 * @dp: NFP Net data path struct
1365 * @dma_addr: Pointer to storage for DMA address (output param)
1367 * This function will allcate a new page frag, map it for DMA.
1369 * Return: allocated page frag or NULL on failure.
1371 static void *nfp_net_rx_alloc_one(struct nfp_net_dp
*dp
, dma_addr_t
*dma_addr
)
1375 if (!dp
->xdp_prog
) {
1376 frag
= netdev_alloc_frag(dp
->fl_bufsz
);
1380 page
= alloc_page(GFP_KERNEL
);
1381 frag
= page
? page_address(page
) : NULL
;
1384 nn_dp_warn(dp
, "Failed to alloc receive page frag\n");
1388 *dma_addr
= nfp_net_dma_map_rx(dp
, frag
);
1389 if (dma_mapping_error(dp
->dev
, *dma_addr
)) {
1390 nfp_net_free_frag(frag
, dp
->xdp_prog
);
1391 nn_dp_warn(dp
, "Failed to map DMA RX buffer\n");
1398 static void *nfp_net_napi_alloc_one(struct nfp_net_dp
*dp
, dma_addr_t
*dma_addr
)
1402 if (!dp
->xdp_prog
) {
1403 frag
= napi_alloc_frag(dp
->fl_bufsz
);
1404 if (unlikely(!frag
))
1409 page
= dev_alloc_page();
1410 if (unlikely(!page
))
1412 frag
= page_address(page
);
1415 *dma_addr
= nfp_net_dma_map_rx(dp
, frag
);
1416 if (dma_mapping_error(dp
->dev
, *dma_addr
)) {
1417 nfp_net_free_frag(frag
, dp
->xdp_prog
);
1418 nn_dp_warn(dp
, "Failed to map DMA RX buffer\n");
1426 * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings
1427 * @dp: NFP Net data path struct
1428 * @rx_ring: RX ring structure
1429 * @frag: page fragment buffer
1430 * @dma_addr: DMA address of skb mapping
1432 static void nfp_net_rx_give_one(const struct nfp_net_dp
*dp
,
1433 struct nfp_net_rx_ring
*rx_ring
,
1434 void *frag
, dma_addr_t dma_addr
)
1436 unsigned int wr_idx
;
1438 wr_idx
= D_IDX(rx_ring
, rx_ring
->wr_p
);
1440 nfp_net_dma_sync_dev_rx(dp
, dma_addr
);
1442 /* Stash SKB and DMA address away */
1443 rx_ring
->rxbufs
[wr_idx
].frag
= frag
;
1444 rx_ring
->rxbufs
[wr_idx
].dma_addr
= dma_addr
;
1446 /* Fill freelist descriptor */
1447 rx_ring
->rxds
[wr_idx
].fld
.reserved
= 0;
1448 rx_ring
->rxds
[wr_idx
].fld
.meta_len_dd
= 0;
1449 nfp_desc_set_dma_addr(&rx_ring
->rxds
[wr_idx
].fld
,
1450 dma_addr
+ dp
->rx_dma_off
);
1453 if (!(rx_ring
->wr_p
% NFP_NET_FL_BATCH
)) {
1454 /* Update write pointer of the freelist queue. Make
1455 * sure all writes are flushed before telling the hardware.
1458 nfp_qcp_wr_ptr_add(rx_ring
->qcp_fl
, NFP_NET_FL_BATCH
);
1463 * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
1464 * @rx_ring: RX ring structure
1466 * Assumes that the device is stopped, must be idempotent.
1468 static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring
*rx_ring
)
1470 unsigned int wr_idx
, last_idx
;
1472 /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always
1473 * kept at cnt - 1 FL bufs.
1475 if (rx_ring
->wr_p
== 0 && rx_ring
->rd_p
== 0)
1478 /* Move the empty entry to the end of the list */
1479 wr_idx
= D_IDX(rx_ring
, rx_ring
->wr_p
);
1480 last_idx
= rx_ring
->cnt
- 1;
1481 rx_ring
->rxbufs
[wr_idx
].dma_addr
= rx_ring
->rxbufs
[last_idx
].dma_addr
;
1482 rx_ring
->rxbufs
[wr_idx
].frag
= rx_ring
->rxbufs
[last_idx
].frag
;
1483 rx_ring
->rxbufs
[last_idx
].dma_addr
= 0;
1484 rx_ring
->rxbufs
[last_idx
].frag
= NULL
;
1486 memset(rx_ring
->rxds
, 0, rx_ring
->size
);
1492 * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
1493 * @dp: NFP Net data path struct
1494 * @rx_ring: RX ring to remove buffers from
1496 * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
1497 * entries. After device is disabled nfp_net_rx_ring_reset() must be called
1498 * to restore required ring geometry.
1501 nfp_net_rx_ring_bufs_free(struct nfp_net_dp
*dp
,
1502 struct nfp_net_rx_ring
*rx_ring
)
1506 for (i
= 0; i
< rx_ring
->cnt
- 1; i
++) {
1507 /* NULL skb can only happen when initial filling of the ring
1508 * fails to allocate enough buffers and calls here to free
1509 * already allocated ones.
1511 if (!rx_ring
->rxbufs
[i
].frag
)
1514 nfp_net_dma_unmap_rx(dp
, rx_ring
->rxbufs
[i
].dma_addr
);
1515 nfp_net_free_frag(rx_ring
->rxbufs
[i
].frag
, dp
->xdp_prog
);
1516 rx_ring
->rxbufs
[i
].dma_addr
= 0;
1517 rx_ring
->rxbufs
[i
].frag
= NULL
;
1522 * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
1523 * @dp: NFP Net data path struct
1524 * @rx_ring: RX ring to remove buffers from
1527 nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp
*dp
,
1528 struct nfp_net_rx_ring
*rx_ring
)
1530 struct nfp_net_rx_buf
*rxbufs
;
1533 rxbufs
= rx_ring
->rxbufs
;
1535 for (i
= 0; i
< rx_ring
->cnt
- 1; i
++) {
1536 rxbufs
[i
].frag
= nfp_net_rx_alloc_one(dp
, &rxbufs
[i
].dma_addr
);
1537 if (!rxbufs
[i
].frag
) {
1538 nfp_net_rx_ring_bufs_free(dp
, rx_ring
);
1547 * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW
1548 * @dp: NFP Net data path struct
1549 * @rx_ring: RX ring to fill
1552 nfp_net_rx_ring_fill_freelist(struct nfp_net_dp
*dp
,
1553 struct nfp_net_rx_ring
*rx_ring
)
1557 for (i
= 0; i
< rx_ring
->cnt
- 1; i
++)
1558 nfp_net_rx_give_one(dp
, rx_ring
, rx_ring
->rxbufs
[i
].frag
,
1559 rx_ring
->rxbufs
[i
].dma_addr
);
1563 * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors
1564 * @flags: RX descriptor flags field in CPU byte order
1566 static int nfp_net_rx_csum_has_errors(u16 flags
)
1568 u16 csum_all_checked
, csum_all_ok
;
1570 csum_all_checked
= flags
& __PCIE_DESC_RX_CSUM_ALL
;
1571 csum_all_ok
= flags
& __PCIE_DESC_RX_CSUM_ALL_OK
;
1573 return csum_all_checked
!= (csum_all_ok
<< PCIE_DESC_RX_CSUM_OK_SHIFT
);
1577 * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags
1578 * @dp: NFP Net data path struct
1579 * @r_vec: per-ring structure
1580 * @rxd: Pointer to RX descriptor
1581 * @meta: Parsed metadata prepend
1582 * @skb: Pointer to SKB
1584 static void nfp_net_rx_csum(struct nfp_net_dp
*dp
,
1585 struct nfp_net_r_vector
*r_vec
,
1586 struct nfp_net_rx_desc
*rxd
,
1587 struct nfp_meta_parsed
*meta
, struct sk_buff
*skb
)
1589 skb_checksum_none_assert(skb
);
1591 if (!(dp
->netdev
->features
& NETIF_F_RXCSUM
))
1594 if (meta
->csum_type
) {
1595 skb
->ip_summed
= meta
->csum_type
;
1596 skb
->csum
= meta
->csum
;
1597 u64_stats_update_begin(&r_vec
->rx_sync
);
1598 r_vec
->hw_csum_rx_complete
++;
1599 u64_stats_update_end(&r_vec
->rx_sync
);
1603 if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd
->rxd
.flags
))) {
1604 u64_stats_update_begin(&r_vec
->rx_sync
);
1605 r_vec
->hw_csum_rx_error
++;
1606 u64_stats_update_end(&r_vec
->rx_sync
);
1610 /* Assume that the firmware will never report inner CSUM_OK unless outer
1611 * L4 headers were successfully parsed. FW will always report zero UDP
1612 * checksum as CSUM_OK.
1614 if (rxd
->rxd
.flags
& PCIE_DESC_RX_TCP_CSUM_OK
||
1615 rxd
->rxd
.flags
& PCIE_DESC_RX_UDP_CSUM_OK
) {
1616 __skb_incr_checksum_unnecessary(skb
);
1617 u64_stats_update_begin(&r_vec
->rx_sync
);
1618 r_vec
->hw_csum_rx_ok
++;
1619 u64_stats_update_end(&r_vec
->rx_sync
);
1622 if (rxd
->rxd
.flags
& PCIE_DESC_RX_I_TCP_CSUM_OK
||
1623 rxd
->rxd
.flags
& PCIE_DESC_RX_I_UDP_CSUM_OK
) {
1624 __skb_incr_checksum_unnecessary(skb
);
1625 u64_stats_update_begin(&r_vec
->rx_sync
);
1626 r_vec
->hw_csum_rx_inner_ok
++;
1627 u64_stats_update_end(&r_vec
->rx_sync
);
1632 nfp_net_set_hash(struct net_device
*netdev
, struct nfp_meta_parsed
*meta
,
1633 unsigned int type
, __be32
*hash
)
1635 if (!(netdev
->features
& NETIF_F_RXHASH
))
1639 case NFP_NET_RSS_IPV4
:
1640 case NFP_NET_RSS_IPV6
:
1641 case NFP_NET_RSS_IPV6_EX
:
1642 meta
->hash_type
= PKT_HASH_TYPE_L3
;
1645 meta
->hash_type
= PKT_HASH_TYPE_L4
;
1649 meta
->hash
= get_unaligned_be32(hash
);
1653 nfp_net_set_hash_desc(struct net_device
*netdev
, struct nfp_meta_parsed
*meta
,
1654 void *data
, struct nfp_net_rx_desc
*rxd
)
1656 struct nfp_net_rx_hash
*rx_hash
= data
;
1658 if (!(rxd
->rxd
.flags
& PCIE_DESC_RX_RSS
))
1661 nfp_net_set_hash(netdev
, meta
, get_unaligned_be32(&rx_hash
->hash_type
),
1666 nfp_net_parse_meta(struct net_device
*netdev
, struct nfp_meta_parsed
*meta
,
1667 void *data
, void *pkt
, unsigned int pkt_len
, int meta_len
)
1671 meta_info
= get_unaligned_be32(data
);
1675 switch (meta_info
& NFP_NET_META_FIELD_MASK
) {
1676 case NFP_NET_META_HASH
:
1677 meta_info
>>= NFP_NET_META_FIELD_SIZE
;
1678 nfp_net_set_hash(netdev
, meta
,
1679 meta_info
& NFP_NET_META_FIELD_MASK
,
1683 case NFP_NET_META_MARK
:
1684 meta
->mark
= get_unaligned_be32(data
);
1687 case NFP_NET_META_PORTID
:
1688 meta
->portid
= get_unaligned_be32(data
);
1691 case NFP_NET_META_CSUM
:
1692 meta
->csum_type
= CHECKSUM_COMPLETE
;
1694 (__force __wsum
)__get_unaligned_cpu32(data
);
1697 case NFP_NET_META_RESYNC_INFO
:
1698 if (nfp_net_tls_rx_resync_req(netdev
, data
, pkt
,
1701 data
+= sizeof(struct nfp_net_tls_resync_req
);
1707 meta_info
>>= NFP_NET_META_FIELD_SIZE
;
1714 nfp_net_rx_drop(const struct nfp_net_dp
*dp
, struct nfp_net_r_vector
*r_vec
,
1715 struct nfp_net_rx_ring
*rx_ring
, struct nfp_net_rx_buf
*rxbuf
,
1716 struct sk_buff
*skb
)
1718 u64_stats_update_begin(&r_vec
->rx_sync
);
1720 /* If we have both skb and rxbuf the replacement buffer allocation
1721 * must have failed, count this as an alloc failure.
1724 r_vec
->rx_replace_buf_alloc_fail
++;
1725 u64_stats_update_end(&r_vec
->rx_sync
);
1727 /* skb is build based on the frag, free_skb() would free the frag
1728 * so to be able to reuse it we need an extra ref.
1730 if (skb
&& rxbuf
&& skb
->head
== rxbuf
->frag
)
1731 page_ref_inc(virt_to_head_page(rxbuf
->frag
));
1733 nfp_net_rx_give_one(dp
, rx_ring
, rxbuf
->frag
, rxbuf
->dma_addr
);
1735 dev_kfree_skb_any(skb
);
1739 nfp_net_tx_xdp_buf(struct nfp_net_dp
*dp
, struct nfp_net_rx_ring
*rx_ring
,
1740 struct nfp_net_tx_ring
*tx_ring
,
1741 struct nfp_net_rx_buf
*rxbuf
, unsigned int dma_off
,
1742 unsigned int pkt_len
, bool *completed
)
1744 unsigned int dma_map_sz
= dp
->fl_bufsz
- NFP_NET_RX_BUF_NON_DATA
;
1745 struct nfp_net_tx_buf
*txbuf
;
1746 struct nfp_net_tx_desc
*txd
;
1749 /* Reject if xdp_adjust_tail grow packet beyond DMA area */
1750 if (pkt_len
+ dma_off
> dma_map_sz
)
1753 if (unlikely(nfp_net_tx_full(tx_ring
, 1))) {
1755 nfp_net_xdp_complete(tx_ring
);
1759 if (unlikely(nfp_net_tx_full(tx_ring
, 1))) {
1760 nfp_net_rx_drop(dp
, rx_ring
->r_vec
, rx_ring
, rxbuf
,
1766 wr_idx
= D_IDX(tx_ring
, tx_ring
->wr_p
);
1768 /* Stash the soft descriptor of the head then initialize it */
1769 txbuf
= &tx_ring
->txbufs
[wr_idx
];
1771 nfp_net_rx_give_one(dp
, rx_ring
, txbuf
->frag
, txbuf
->dma_addr
);
1773 txbuf
->frag
= rxbuf
->frag
;
1774 txbuf
->dma_addr
= rxbuf
->dma_addr
;
1777 txbuf
->real_len
= pkt_len
;
1779 dma_sync_single_for_device(dp
->dev
, rxbuf
->dma_addr
+ dma_off
,
1780 pkt_len
, DMA_BIDIRECTIONAL
);
1782 /* Build TX descriptor */
1783 txd
= &tx_ring
->txds
[wr_idx
];
1784 txd
->offset_eop
= PCIE_DESC_TX_EOP
;
1785 txd
->dma_len
= cpu_to_le16(pkt_len
);
1786 nfp_desc_set_dma_addr(txd
, rxbuf
->dma_addr
+ dma_off
);
1787 txd
->data_len
= cpu_to_le16(pkt_len
);
1791 txd
->lso_hdrlen
= 0;
1794 tx_ring
->wr_ptr_add
++;
1799 * nfp_net_rx() - receive up to @budget packets on @rx_ring
1800 * @rx_ring: RX ring to receive from
1801 * @budget: NAPI budget
1803 * Note, this function is separated out from the napi poll function to
1804 * more cleanly separate packet receive code from other bookkeeping
1805 * functions performed in the napi poll function.
1807 * Return: Number of packets received.
1809 static int nfp_net_rx(struct nfp_net_rx_ring
*rx_ring
, int budget
)
1811 struct nfp_net_r_vector
*r_vec
= rx_ring
->r_vec
;
1812 struct nfp_net_dp
*dp
= &r_vec
->nfp_net
->dp
;
1813 struct nfp_net_tx_ring
*tx_ring
;
1814 struct bpf_prog
*xdp_prog
;
1815 bool xdp_tx_cmpl
= false;
1816 unsigned int true_bufsz
;
1817 struct sk_buff
*skb
;
1818 int pkts_polled
= 0;
1819 struct xdp_buff xdp
;
1823 xdp_prog
= READ_ONCE(dp
->xdp_prog
);
1824 true_bufsz
= xdp_prog
? PAGE_SIZE
: dp
->fl_bufsz
;
1825 xdp
.frame_sz
= PAGE_SIZE
- NFP_NET_RX_BUF_HEADROOM
;
1826 xdp
.rxq
= &rx_ring
->xdp_rxq
;
1827 tx_ring
= r_vec
->xdp_ring
;
1829 while (pkts_polled
< budget
) {
1830 unsigned int meta_len
, data_len
, meta_off
, pkt_len
, pkt_off
;
1831 struct nfp_net_rx_buf
*rxbuf
;
1832 struct nfp_net_rx_desc
*rxd
;
1833 struct nfp_meta_parsed meta
;
1834 bool redir_egress
= false;
1835 struct net_device
*netdev
;
1836 dma_addr_t new_dma_addr
;
1837 u32 meta_len_xdp
= 0;
1840 idx
= D_IDX(rx_ring
, rx_ring
->rd_p
);
1842 rxd
= &rx_ring
->rxds
[idx
];
1843 if (!(rxd
->rxd
.meta_len_dd
& PCIE_DESC_RX_DD
))
1846 /* Memory barrier to ensure that we won't do other reads
1847 * before the DD bit.
1851 memset(&meta
, 0, sizeof(meta
));
1856 rxbuf
= &rx_ring
->rxbufs
[idx
];
1858 * <-- [rx_offset] -->
1859 * ---------------------------------------------------------
1860 * | [XX] | metadata | packet | XXXX |
1861 * ---------------------------------------------------------
1862 * <---------------- data_len --------------->
1864 * The rx_offset is fixed for all packets, the meta_len can vary
1865 * on a packet by packet basis. If rx_offset is set to zero
1866 * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the
1867 * buffer and is immediately followed by the packet (no [XX]).
1869 meta_len
= rxd
->rxd
.meta_len_dd
& PCIE_DESC_RX_META_LEN_MASK
;
1870 data_len
= le16_to_cpu(rxd
->rxd
.data_len
);
1871 pkt_len
= data_len
- meta_len
;
1873 pkt_off
= NFP_NET_RX_BUF_HEADROOM
+ dp
->rx_dma_off
;
1874 if (dp
->rx_offset
== NFP_NET_CFG_RX_OFFSET_DYNAMIC
)
1875 pkt_off
+= meta_len
;
1877 pkt_off
+= dp
->rx_offset
;
1878 meta_off
= pkt_off
- meta_len
;
1881 u64_stats_update_begin(&r_vec
->rx_sync
);
1883 r_vec
->rx_bytes
+= pkt_len
;
1884 u64_stats_update_end(&r_vec
->rx_sync
);
1886 if (unlikely(meta_len
> NFP_NET_MAX_PREPEND
||
1887 (dp
->rx_offset
&& meta_len
> dp
->rx_offset
))) {
1888 nn_dp_warn(dp
, "oversized RX packet metadata %u\n",
1890 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
, NULL
);
1894 nfp_net_dma_sync_cpu_rx(dp
, rxbuf
->dma_addr
+ meta_off
,
1897 if (!dp
->chained_metadata_format
) {
1898 nfp_net_set_hash_desc(dp
->netdev
, &meta
,
1899 rxbuf
->frag
+ meta_off
, rxd
);
1900 } else if (meta_len
) {
1901 if (unlikely(nfp_net_parse_meta(dp
->netdev
, &meta
,
1902 rxbuf
->frag
+ meta_off
,
1903 rxbuf
->frag
+ pkt_off
,
1904 pkt_len
, meta_len
))) {
1905 nn_dp_warn(dp
, "invalid RX packet metadata\n");
1906 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
,
1912 if (xdp_prog
&& !meta
.portid
) {
1913 void *orig_data
= rxbuf
->frag
+ pkt_off
;
1914 unsigned int dma_off
;
1917 xdp
.data_hard_start
= rxbuf
->frag
+ NFP_NET_RX_BUF_HEADROOM
;
1918 xdp
.data
= orig_data
;
1919 xdp
.data_meta
= orig_data
;
1920 xdp
.data_end
= orig_data
+ pkt_len
;
1922 act
= bpf_prog_run_xdp(xdp_prog
, &xdp
);
1924 pkt_len
= xdp
.data_end
- xdp
.data
;
1925 pkt_off
+= xdp
.data
- orig_data
;
1929 meta_len_xdp
= xdp
.data
- xdp
.data_meta
;
1932 dma_off
= pkt_off
- NFP_NET_RX_BUF_HEADROOM
;
1933 if (unlikely(!nfp_net_tx_xdp_buf(dp
, rx_ring
,
1938 trace_xdp_exception(dp
->netdev
,
1942 bpf_warn_invalid_xdp_action(act
);
1945 trace_xdp_exception(dp
->netdev
, xdp_prog
, act
);
1948 nfp_net_rx_give_one(dp
, rx_ring
, rxbuf
->frag
,
1954 if (likely(!meta
.portid
)) {
1955 netdev
= dp
->netdev
;
1956 } else if (meta
.portid
== NFP_META_PORT_ID_CTRL
) {
1957 struct nfp_net
*nn
= netdev_priv(dp
->netdev
);
1959 nfp_app_ctrl_rx_raw(nn
->app
, rxbuf
->frag
+ pkt_off
,
1961 nfp_net_rx_give_one(dp
, rx_ring
, rxbuf
->frag
,
1967 nn
= netdev_priv(dp
->netdev
);
1968 netdev
= nfp_app_dev_get(nn
->app
, meta
.portid
,
1970 if (unlikely(!netdev
)) {
1971 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
,
1976 if (nfp_netdev_is_nfp_repr(netdev
))
1977 nfp_repr_inc_rx_stats(netdev
, pkt_len
);
1980 skb
= build_skb(rxbuf
->frag
, true_bufsz
);
1981 if (unlikely(!skb
)) {
1982 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
, NULL
);
1985 new_frag
= nfp_net_napi_alloc_one(dp
, &new_dma_addr
);
1986 if (unlikely(!new_frag
)) {
1987 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
, skb
);
1991 nfp_net_dma_unmap_rx(dp
, rxbuf
->dma_addr
);
1993 nfp_net_rx_give_one(dp
, rx_ring
, new_frag
, new_dma_addr
);
1995 skb_reserve(skb
, pkt_off
);
1996 skb_put(skb
, pkt_len
);
1998 skb
->mark
= meta
.mark
;
1999 skb_set_hash(skb
, meta
.hash
, meta
.hash_type
);
2001 skb_record_rx_queue(skb
, rx_ring
->idx
);
2002 skb
->protocol
= eth_type_trans(skb
, netdev
);
2004 nfp_net_rx_csum(dp
, r_vec
, rxd
, &meta
, skb
);
2006 #ifdef CONFIG_TLS_DEVICE
2007 if (rxd
->rxd
.flags
& PCIE_DESC_RX_DECRYPTED
) {
2008 skb
->decrypted
= true;
2009 u64_stats_update_begin(&r_vec
->rx_sync
);
2011 u64_stats_update_end(&r_vec
->rx_sync
);
2015 if (rxd
->rxd
.flags
& PCIE_DESC_RX_VLAN
)
2016 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
2017 le16_to_cpu(rxd
->rxd
.vlan
));
2019 skb_metadata_set(skb
, meta_len_xdp
);
2021 if (likely(!redir_egress
)) {
2022 napi_gro_receive(&rx_ring
->r_vec
->napi
, skb
);
2025 skb_reset_network_header(skb
);
2026 __skb_push(skb
, ETH_HLEN
);
2027 dev_queue_xmit(skb
);
2032 if (tx_ring
->wr_ptr_add
)
2033 nfp_net_tx_xmit_more_flush(tx_ring
);
2034 else if (unlikely(tx_ring
->wr_p
!= tx_ring
->rd_p
) &&
2036 if (!nfp_net_xdp_complete(tx_ring
))
2037 pkts_polled
= budget
;
2045 * nfp_net_poll() - napi poll function
2046 * @napi: NAPI structure
2047 * @budget: NAPI budget
2049 * Return: number of packets polled.
2051 static int nfp_net_poll(struct napi_struct
*napi
, int budget
)
2053 struct nfp_net_r_vector
*r_vec
=
2054 container_of(napi
, struct nfp_net_r_vector
, napi
);
2055 unsigned int pkts_polled
= 0;
2058 nfp_net_tx_complete(r_vec
->tx_ring
, budget
);
2060 pkts_polled
= nfp_net_rx(r_vec
->rx_ring
, budget
);
2062 if (pkts_polled
< budget
)
2063 if (napi_complete_done(napi
, pkts_polled
))
2064 nfp_net_irq_unmask(r_vec
->nfp_net
, r_vec
->irq_entry
);
2069 /* Control device data path
2073 nfp_ctrl_tx_one(struct nfp_net
*nn
, struct nfp_net_r_vector
*r_vec
,
2074 struct sk_buff
*skb
, bool old
)
2076 unsigned int real_len
= skb
->len
, meta_len
= 0;
2077 struct nfp_net_tx_ring
*tx_ring
;
2078 struct nfp_net_tx_buf
*txbuf
;
2079 struct nfp_net_tx_desc
*txd
;
2080 struct nfp_net_dp
*dp
;
2081 dma_addr_t dma_addr
;
2084 dp
= &r_vec
->nfp_net
->dp
;
2085 tx_ring
= r_vec
->tx_ring
;
2087 if (WARN_ON_ONCE(skb_shinfo(skb
)->nr_frags
)) {
2088 nn_dp_warn(dp
, "Driver's CTRL TX does not implement gather\n");
2092 if (unlikely(nfp_net_tx_full(tx_ring
, 1))) {
2093 u64_stats_update_begin(&r_vec
->tx_sync
);
2095 u64_stats_update_end(&r_vec
->tx_sync
);
2097 __skb_queue_tail(&r_vec
->queue
, skb
);
2099 __skb_queue_head(&r_vec
->queue
, skb
);
2103 if (nfp_app_ctrl_has_meta(nn
->app
)) {
2104 if (unlikely(skb_headroom(skb
) < 8)) {
2105 nn_dp_warn(dp
, "CTRL TX on skb without headroom\n");
2109 put_unaligned_be32(NFP_META_PORT_ID_CTRL
, skb_push(skb
, 4));
2110 put_unaligned_be32(NFP_NET_META_PORTID
, skb_push(skb
, 4));
2113 /* Start with the head skbuf */
2114 dma_addr
= dma_map_single(dp
->dev
, skb
->data
, skb_headlen(skb
),
2116 if (dma_mapping_error(dp
->dev
, dma_addr
))
2119 wr_idx
= D_IDX(tx_ring
, tx_ring
->wr_p
);
2121 /* Stash the soft descriptor of the head then initialize it */
2122 txbuf
= &tx_ring
->txbufs
[wr_idx
];
2124 txbuf
->dma_addr
= dma_addr
;
2127 txbuf
->real_len
= real_len
;
2129 /* Build TX descriptor */
2130 txd
= &tx_ring
->txds
[wr_idx
];
2131 txd
->offset_eop
= meta_len
| PCIE_DESC_TX_EOP
;
2132 txd
->dma_len
= cpu_to_le16(skb_headlen(skb
));
2133 nfp_desc_set_dma_addr(txd
, dma_addr
);
2134 txd
->data_len
= cpu_to_le16(skb
->len
);
2138 txd
->lso_hdrlen
= 0;
2141 tx_ring
->wr_ptr_add
++;
2142 nfp_net_tx_xmit_more_flush(tx_ring
);
2147 nn_dp_warn(dp
, "Failed to DMA map TX CTRL buffer\n");
2149 u64_stats_update_begin(&r_vec
->tx_sync
);
2151 u64_stats_update_end(&r_vec
->tx_sync
);
2152 dev_kfree_skb_any(skb
);
2156 bool __nfp_ctrl_tx(struct nfp_net
*nn
, struct sk_buff
*skb
)
2158 struct nfp_net_r_vector
*r_vec
= &nn
->r_vecs
[0];
2160 return nfp_ctrl_tx_one(nn
, r_vec
, skb
, false);
2163 bool nfp_ctrl_tx(struct nfp_net
*nn
, struct sk_buff
*skb
)
2165 struct nfp_net_r_vector
*r_vec
= &nn
->r_vecs
[0];
2168 spin_lock_bh(&r_vec
->lock
);
2169 ret
= nfp_ctrl_tx_one(nn
, r_vec
, skb
, false);
2170 spin_unlock_bh(&r_vec
->lock
);
2175 static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector
*r_vec
)
2177 struct sk_buff
*skb
;
2179 while ((skb
= __skb_dequeue(&r_vec
->queue
)))
2180 if (nfp_ctrl_tx_one(r_vec
->nfp_net
, r_vec
, skb
, true))
2185 nfp_ctrl_meta_ok(struct nfp_net
*nn
, void *data
, unsigned int meta_len
)
2187 u32 meta_type
, meta_tag
;
2189 if (!nfp_app_ctrl_has_meta(nn
->app
))
2195 meta_type
= get_unaligned_be32(data
);
2196 meta_tag
= get_unaligned_be32(data
+ 4);
2198 return (meta_type
== NFP_NET_META_PORTID
&&
2199 meta_tag
== NFP_META_PORT_ID_CTRL
);
2203 nfp_ctrl_rx_one(struct nfp_net
*nn
, struct nfp_net_dp
*dp
,
2204 struct nfp_net_r_vector
*r_vec
, struct nfp_net_rx_ring
*rx_ring
)
2206 unsigned int meta_len
, data_len
, meta_off
, pkt_len
, pkt_off
;
2207 struct nfp_net_rx_buf
*rxbuf
;
2208 struct nfp_net_rx_desc
*rxd
;
2209 dma_addr_t new_dma_addr
;
2210 struct sk_buff
*skb
;
2214 idx
= D_IDX(rx_ring
, rx_ring
->rd_p
);
2216 rxd
= &rx_ring
->rxds
[idx
];
2217 if (!(rxd
->rxd
.meta_len_dd
& PCIE_DESC_RX_DD
))
2220 /* Memory barrier to ensure that we won't do other reads
2221 * before the DD bit.
2227 rxbuf
= &rx_ring
->rxbufs
[idx
];
2228 meta_len
= rxd
->rxd
.meta_len_dd
& PCIE_DESC_RX_META_LEN_MASK
;
2229 data_len
= le16_to_cpu(rxd
->rxd
.data_len
);
2230 pkt_len
= data_len
- meta_len
;
2232 pkt_off
= NFP_NET_RX_BUF_HEADROOM
+ dp
->rx_dma_off
;
2233 if (dp
->rx_offset
== NFP_NET_CFG_RX_OFFSET_DYNAMIC
)
2234 pkt_off
+= meta_len
;
2236 pkt_off
+= dp
->rx_offset
;
2237 meta_off
= pkt_off
- meta_len
;
2240 u64_stats_update_begin(&r_vec
->rx_sync
);
2242 r_vec
->rx_bytes
+= pkt_len
;
2243 u64_stats_update_end(&r_vec
->rx_sync
);
2245 nfp_net_dma_sync_cpu_rx(dp
, rxbuf
->dma_addr
+ meta_off
, data_len
);
2247 if (unlikely(!nfp_ctrl_meta_ok(nn
, rxbuf
->frag
+ meta_off
, meta_len
))) {
2248 nn_dp_warn(dp
, "incorrect metadata for ctrl packet (%d)\n",
2250 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
, NULL
);
2254 skb
= build_skb(rxbuf
->frag
, dp
->fl_bufsz
);
2255 if (unlikely(!skb
)) {
2256 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
, NULL
);
2259 new_frag
= nfp_net_napi_alloc_one(dp
, &new_dma_addr
);
2260 if (unlikely(!new_frag
)) {
2261 nfp_net_rx_drop(dp
, r_vec
, rx_ring
, rxbuf
, skb
);
2265 nfp_net_dma_unmap_rx(dp
, rxbuf
->dma_addr
);
2267 nfp_net_rx_give_one(dp
, rx_ring
, new_frag
, new_dma_addr
);
2269 skb_reserve(skb
, pkt_off
);
2270 skb_put(skb
, pkt_len
);
2272 nfp_app_ctrl_rx(nn
->app
, skb
);
2277 static bool nfp_ctrl_rx(struct nfp_net_r_vector
*r_vec
)
2279 struct nfp_net_rx_ring
*rx_ring
= r_vec
->rx_ring
;
2280 struct nfp_net
*nn
= r_vec
->nfp_net
;
2281 struct nfp_net_dp
*dp
= &nn
->dp
;
2282 unsigned int budget
= 512;
2284 while (nfp_ctrl_rx_one(nn
, dp
, r_vec
, rx_ring
) && budget
--)
2290 static void nfp_ctrl_poll(struct tasklet_struct
*t
)
2292 struct nfp_net_r_vector
*r_vec
= from_tasklet(r_vec
, t
, tasklet
);
2294 spin_lock(&r_vec
->lock
);
2295 nfp_net_tx_complete(r_vec
->tx_ring
, 0);
2296 __nfp_ctrl_tx_queued(r_vec
);
2297 spin_unlock(&r_vec
->lock
);
2299 if (nfp_ctrl_rx(r_vec
)) {
2300 nfp_net_irq_unmask(r_vec
->nfp_net
, r_vec
->irq_entry
);
2302 tasklet_schedule(&r_vec
->tasklet
);
2303 nn_dp_warn(&r_vec
->nfp_net
->dp
,
2304 "control message budget exceeded!\n");
2308 /* Setup and Configuration
2312 * nfp_net_vecs_init() - Assign IRQs and setup rvecs.
2313 * @nn: NFP Network structure
2315 static void nfp_net_vecs_init(struct nfp_net
*nn
)
2317 struct nfp_net_r_vector
*r_vec
;
2320 nn
->lsc_handler
= nfp_net_irq_lsc
;
2321 nn
->exn_handler
= nfp_net_irq_exn
;
2323 for (r
= 0; r
< nn
->max_r_vecs
; r
++) {
2324 struct msix_entry
*entry
;
2326 entry
= &nn
->irq_entries
[NFP_NET_NON_Q_VECTORS
+ r
];
2328 r_vec
= &nn
->r_vecs
[r
];
2329 r_vec
->nfp_net
= nn
;
2330 r_vec
->irq_entry
= entry
->entry
;
2331 r_vec
->irq_vector
= entry
->vector
;
2333 if (nn
->dp
.netdev
) {
2334 r_vec
->handler
= nfp_net_irq_rxtx
;
2336 r_vec
->handler
= nfp_ctrl_irq_rxtx
;
2338 __skb_queue_head_init(&r_vec
->queue
);
2339 spin_lock_init(&r_vec
->lock
);
2340 tasklet_setup(&r_vec
->tasklet
, nfp_ctrl_poll
);
2341 tasklet_disable(&r_vec
->tasklet
);
2344 cpumask_set_cpu(r
, &r_vec
->affinity_mask
);
2349 * nfp_net_tx_ring_free() - Free resources allocated to a TX ring
2350 * @tx_ring: TX ring to free
2352 static void nfp_net_tx_ring_free(struct nfp_net_tx_ring
*tx_ring
)
2354 struct nfp_net_r_vector
*r_vec
= tx_ring
->r_vec
;
2355 struct nfp_net_dp
*dp
= &r_vec
->nfp_net
->dp
;
2357 kvfree(tx_ring
->txbufs
);
2360 dma_free_coherent(dp
->dev
, tx_ring
->size
,
2361 tx_ring
->txds
, tx_ring
->dma
);
2364 tx_ring
->txbufs
= NULL
;
2365 tx_ring
->txds
= NULL
;
2371 * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring
2372 * @dp: NFP Net data path struct
2373 * @tx_ring: TX Ring structure to allocate
2375 * Return: 0 on success, negative errno otherwise.
2378 nfp_net_tx_ring_alloc(struct nfp_net_dp
*dp
, struct nfp_net_tx_ring
*tx_ring
)
2380 struct nfp_net_r_vector
*r_vec
= tx_ring
->r_vec
;
2382 tx_ring
->cnt
= dp
->txd_cnt
;
2384 tx_ring
->size
= array_size(tx_ring
->cnt
, sizeof(*tx_ring
->txds
));
2385 tx_ring
->txds
= dma_alloc_coherent(dp
->dev
, tx_ring
->size
,
2387 GFP_KERNEL
| __GFP_NOWARN
);
2388 if (!tx_ring
->txds
) {
2389 netdev_warn(dp
->netdev
, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2394 tx_ring
->txbufs
= kvcalloc(tx_ring
->cnt
, sizeof(*tx_ring
->txbufs
),
2396 if (!tx_ring
->txbufs
)
2399 if (!tx_ring
->is_xdp
&& dp
->netdev
)
2400 netif_set_xps_queue(dp
->netdev
, &r_vec
->affinity_mask
,
2406 nfp_net_tx_ring_free(tx_ring
);
2411 nfp_net_tx_ring_bufs_free(struct nfp_net_dp
*dp
,
2412 struct nfp_net_tx_ring
*tx_ring
)
2416 if (!tx_ring
->is_xdp
)
2419 for (i
= 0; i
< tx_ring
->cnt
; i
++) {
2420 if (!tx_ring
->txbufs
[i
].frag
)
2423 nfp_net_dma_unmap_rx(dp
, tx_ring
->txbufs
[i
].dma_addr
);
2424 __free_page(virt_to_page(tx_ring
->txbufs
[i
].frag
));
2429 nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp
*dp
,
2430 struct nfp_net_tx_ring
*tx_ring
)
2432 struct nfp_net_tx_buf
*txbufs
= tx_ring
->txbufs
;
2435 if (!tx_ring
->is_xdp
)
2438 for (i
= 0; i
< tx_ring
->cnt
; i
++) {
2439 txbufs
[i
].frag
= nfp_net_rx_alloc_one(dp
, &txbufs
[i
].dma_addr
);
2440 if (!txbufs
[i
].frag
) {
2441 nfp_net_tx_ring_bufs_free(dp
, tx_ring
);
2449 static int nfp_net_tx_rings_prepare(struct nfp_net
*nn
, struct nfp_net_dp
*dp
)
2453 dp
->tx_rings
= kcalloc(dp
->num_tx_rings
, sizeof(*dp
->tx_rings
),
2458 for (r
= 0; r
< dp
->num_tx_rings
; r
++) {
2461 if (r
>= dp
->num_stack_tx_rings
)
2462 bias
= dp
->num_stack_tx_rings
;
2464 nfp_net_tx_ring_init(&dp
->tx_rings
[r
], &nn
->r_vecs
[r
- bias
],
2467 if (nfp_net_tx_ring_alloc(dp
, &dp
->tx_rings
[r
]))
2470 if (nfp_net_tx_ring_bufs_alloc(dp
, &dp
->tx_rings
[r
]))
2478 nfp_net_tx_ring_bufs_free(dp
, &dp
->tx_rings
[r
]);
2480 nfp_net_tx_ring_free(&dp
->tx_rings
[r
]);
2482 kfree(dp
->tx_rings
);
2486 static void nfp_net_tx_rings_free(struct nfp_net_dp
*dp
)
2490 for (r
= 0; r
< dp
->num_tx_rings
; r
++) {
2491 nfp_net_tx_ring_bufs_free(dp
, &dp
->tx_rings
[r
]);
2492 nfp_net_tx_ring_free(&dp
->tx_rings
[r
]);
2495 kfree(dp
->tx_rings
);
2499 * nfp_net_rx_ring_free() - Free resources allocated to a RX ring
2500 * @rx_ring: RX ring to free
2502 static void nfp_net_rx_ring_free(struct nfp_net_rx_ring
*rx_ring
)
2504 struct nfp_net_r_vector
*r_vec
= rx_ring
->r_vec
;
2505 struct nfp_net_dp
*dp
= &r_vec
->nfp_net
->dp
;
2508 xdp_rxq_info_unreg(&rx_ring
->xdp_rxq
);
2509 kvfree(rx_ring
->rxbufs
);
2512 dma_free_coherent(dp
->dev
, rx_ring
->size
,
2513 rx_ring
->rxds
, rx_ring
->dma
);
2516 rx_ring
->rxbufs
= NULL
;
2517 rx_ring
->rxds
= NULL
;
2523 * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
2524 * @dp: NFP Net data path struct
2525 * @rx_ring: RX ring to allocate
2527 * Return: 0 on success, negative errno otherwise.
2530 nfp_net_rx_ring_alloc(struct nfp_net_dp
*dp
, struct nfp_net_rx_ring
*rx_ring
)
2535 err
= xdp_rxq_info_reg(&rx_ring
->xdp_rxq
, dp
->netdev
,
2536 rx_ring
->idx
, rx_ring
->r_vec
->napi
.napi_id
);
2541 rx_ring
->cnt
= dp
->rxd_cnt
;
2542 rx_ring
->size
= array_size(rx_ring
->cnt
, sizeof(*rx_ring
->rxds
));
2543 rx_ring
->rxds
= dma_alloc_coherent(dp
->dev
, rx_ring
->size
,
2545 GFP_KERNEL
| __GFP_NOWARN
);
2546 if (!rx_ring
->rxds
) {
2547 netdev_warn(dp
->netdev
, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
2552 rx_ring
->rxbufs
= kvcalloc(rx_ring
->cnt
, sizeof(*rx_ring
->rxbufs
),
2554 if (!rx_ring
->rxbufs
)
2560 nfp_net_rx_ring_free(rx_ring
);
2564 static int nfp_net_rx_rings_prepare(struct nfp_net
*nn
, struct nfp_net_dp
*dp
)
2568 dp
->rx_rings
= kcalloc(dp
->num_rx_rings
, sizeof(*dp
->rx_rings
),
2573 for (r
= 0; r
< dp
->num_rx_rings
; r
++) {
2574 nfp_net_rx_ring_init(&dp
->rx_rings
[r
], &nn
->r_vecs
[r
], r
);
2576 if (nfp_net_rx_ring_alloc(dp
, &dp
->rx_rings
[r
]))
2579 if (nfp_net_rx_ring_bufs_alloc(dp
, &dp
->rx_rings
[r
]))
2587 nfp_net_rx_ring_bufs_free(dp
, &dp
->rx_rings
[r
]);
2589 nfp_net_rx_ring_free(&dp
->rx_rings
[r
]);
2591 kfree(dp
->rx_rings
);
2595 static void nfp_net_rx_rings_free(struct nfp_net_dp
*dp
)
2599 for (r
= 0; r
< dp
->num_rx_rings
; r
++) {
2600 nfp_net_rx_ring_bufs_free(dp
, &dp
->rx_rings
[r
]);
2601 nfp_net_rx_ring_free(&dp
->rx_rings
[r
]);
2604 kfree(dp
->rx_rings
);
2608 nfp_net_vector_assign_rings(struct nfp_net_dp
*dp
,
2609 struct nfp_net_r_vector
*r_vec
, int idx
)
2611 r_vec
->rx_ring
= idx
< dp
->num_rx_rings
? &dp
->rx_rings
[idx
] : NULL
;
2613 idx
< dp
->num_stack_tx_rings
? &dp
->tx_rings
[idx
] : NULL
;
2615 r_vec
->xdp_ring
= idx
< dp
->num_tx_rings
- dp
->num_stack_tx_rings
?
2616 &dp
->tx_rings
[dp
->num_stack_tx_rings
+ idx
] : NULL
;
2620 nfp_net_prepare_vector(struct nfp_net
*nn
, struct nfp_net_r_vector
*r_vec
,
2627 netif_napi_add(nn
->dp
.netdev
, &r_vec
->napi
,
2628 nfp_net_poll
, NAPI_POLL_WEIGHT
);
2630 tasklet_enable(&r_vec
->tasklet
);
2632 snprintf(r_vec
->name
, sizeof(r_vec
->name
),
2633 "%s-rxtx-%d", nfp_net_name(nn
), idx
);
2634 err
= request_irq(r_vec
->irq_vector
, r_vec
->handler
, 0, r_vec
->name
,
2638 netif_napi_del(&r_vec
->napi
);
2640 tasklet_disable(&r_vec
->tasklet
);
2642 nn_err(nn
, "Error requesting IRQ %d\n", r_vec
->irq_vector
);
2645 disable_irq(r_vec
->irq_vector
);
2647 irq_set_affinity_hint(r_vec
->irq_vector
, &r_vec
->affinity_mask
);
2649 nn_dbg(nn
, "RV%02d: irq=%03d/%03d\n", idx
, r_vec
->irq_vector
,
2656 nfp_net_cleanup_vector(struct nfp_net
*nn
, struct nfp_net_r_vector
*r_vec
)
2658 irq_set_affinity_hint(r_vec
->irq_vector
, NULL
);
2660 netif_napi_del(&r_vec
->napi
);
2662 tasklet_disable(&r_vec
->tasklet
);
2664 free_irq(r_vec
->irq_vector
, r_vec
);
2668 * nfp_net_rss_write_itbl() - Write RSS indirection table to device
2669 * @nn: NFP Net device to reconfigure
2671 void nfp_net_rss_write_itbl(struct nfp_net
*nn
)
2675 for (i
= 0; i
< NFP_NET_CFG_RSS_ITBL_SZ
; i
+= 4)
2676 nn_writel(nn
, NFP_NET_CFG_RSS_ITBL
+ i
,
2677 get_unaligned_le32(nn
->rss_itbl
+ i
));
2681 * nfp_net_rss_write_key() - Write RSS hash key to device
2682 * @nn: NFP Net device to reconfigure
2684 void nfp_net_rss_write_key(struct nfp_net
*nn
)
2688 for (i
= 0; i
< nfp_net_rss_key_sz(nn
); i
+= 4)
2689 nn_writel(nn
, NFP_NET_CFG_RSS_KEY
+ i
,
2690 get_unaligned_le32(nn
->rss_key
+ i
));
2694 * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW
2695 * @nn: NFP Net device to reconfigure
2697 void nfp_net_coalesce_write_cfg(struct nfp_net
*nn
)
2703 /* Compute factor used to convert coalesce '_usecs' parameters to
2704 * ME timestamp ticks. There are 16 ME clock cycles for each timestamp
2707 factor
= nn
->tlv_caps
.me_freq_mhz
/ 16;
2709 /* copy RX interrupt coalesce parameters */
2710 value
= (nn
->rx_coalesce_max_frames
<< 16) |
2711 (factor
* nn
->rx_coalesce_usecs
);
2712 for (i
= 0; i
< nn
->dp
.num_rx_rings
; i
++)
2713 nn_writel(nn
, NFP_NET_CFG_RXR_IRQ_MOD(i
), value
);
2715 /* copy TX interrupt coalesce parameters */
2716 value
= (nn
->tx_coalesce_max_frames
<< 16) |
2717 (factor
* nn
->tx_coalesce_usecs
);
2718 for (i
= 0; i
< nn
->dp
.num_tx_rings
; i
++)
2719 nn_writel(nn
, NFP_NET_CFG_TXR_IRQ_MOD(i
), value
);
2723 * nfp_net_write_mac_addr() - Write mac address to the device control BAR
2724 * @nn: NFP Net device to reconfigure
2725 * @addr: MAC address to write
2727 * Writes the MAC address from the netdev to the device control BAR. Does not
2728 * perform the required reconfig. We do a bit of byte swapping dance because
2731 static void nfp_net_write_mac_addr(struct nfp_net
*nn
, const u8
*addr
)
2733 nn_writel(nn
, NFP_NET_CFG_MACADDR
+ 0, get_unaligned_be32(addr
));
2734 nn_writew(nn
, NFP_NET_CFG_MACADDR
+ 6, get_unaligned_be16(addr
+ 4));
2737 static void nfp_net_vec_clear_ring_data(struct nfp_net
*nn
, unsigned int idx
)
2739 nn_writeq(nn
, NFP_NET_CFG_RXR_ADDR(idx
), 0);
2740 nn_writeb(nn
, NFP_NET_CFG_RXR_SZ(idx
), 0);
2741 nn_writeb(nn
, NFP_NET_CFG_RXR_VEC(idx
), 0);
2743 nn_writeq(nn
, NFP_NET_CFG_TXR_ADDR(idx
), 0);
2744 nn_writeb(nn
, NFP_NET_CFG_TXR_SZ(idx
), 0);
2745 nn_writeb(nn
, NFP_NET_CFG_TXR_VEC(idx
), 0);
2749 * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP
2750 * @nn: NFP Net device to reconfigure
2752 * Warning: must be fully idempotent.
2754 static void nfp_net_clear_config_and_disable(struct nfp_net
*nn
)
2756 u32 new_ctrl
, update
;
2760 new_ctrl
= nn
->dp
.ctrl
;
2761 new_ctrl
&= ~NFP_NET_CFG_CTRL_ENABLE
;
2762 update
= NFP_NET_CFG_UPDATE_GEN
;
2763 update
|= NFP_NET_CFG_UPDATE_MSIX
;
2764 update
|= NFP_NET_CFG_UPDATE_RING
;
2766 if (nn
->cap
& NFP_NET_CFG_CTRL_RINGCFG
)
2767 new_ctrl
&= ~NFP_NET_CFG_CTRL_RINGCFG
;
2769 nn_writeq(nn
, NFP_NET_CFG_TXRS_ENABLE
, 0);
2770 nn_writeq(nn
, NFP_NET_CFG_RXRS_ENABLE
, 0);
2772 nn_writel(nn
, NFP_NET_CFG_CTRL
, new_ctrl
);
2773 err
= nfp_net_reconfig(nn
, update
);
2775 nn_err(nn
, "Could not disable device: %d\n", err
);
2777 for (r
= 0; r
< nn
->dp
.num_rx_rings
; r
++)
2778 nfp_net_rx_ring_reset(&nn
->dp
.rx_rings
[r
]);
2779 for (r
= 0; r
< nn
->dp
.num_tx_rings
; r
++)
2780 nfp_net_tx_ring_reset(&nn
->dp
, &nn
->dp
.tx_rings
[r
]);
2781 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++)
2782 nfp_net_vec_clear_ring_data(nn
, r
);
2784 nn
->dp
.ctrl
= new_ctrl
;
2788 nfp_net_rx_ring_hw_cfg_write(struct nfp_net
*nn
,
2789 struct nfp_net_rx_ring
*rx_ring
, unsigned int idx
)
2791 /* Write the DMA address, size and MSI-X info to the device */
2792 nn_writeq(nn
, NFP_NET_CFG_RXR_ADDR(idx
), rx_ring
->dma
);
2793 nn_writeb(nn
, NFP_NET_CFG_RXR_SZ(idx
), ilog2(rx_ring
->cnt
));
2794 nn_writeb(nn
, NFP_NET_CFG_RXR_VEC(idx
), rx_ring
->r_vec
->irq_entry
);
2798 nfp_net_tx_ring_hw_cfg_write(struct nfp_net
*nn
,
2799 struct nfp_net_tx_ring
*tx_ring
, unsigned int idx
)
2801 nn_writeq(nn
, NFP_NET_CFG_TXR_ADDR(idx
), tx_ring
->dma
);
2802 nn_writeb(nn
, NFP_NET_CFG_TXR_SZ(idx
), ilog2(tx_ring
->cnt
));
2803 nn_writeb(nn
, NFP_NET_CFG_TXR_VEC(idx
), tx_ring
->r_vec
->irq_entry
);
2807 * nfp_net_set_config_and_enable() - Write control BAR and enable NFP
2808 * @nn: NFP Net device to reconfigure
2810 static int nfp_net_set_config_and_enable(struct nfp_net
*nn
)
2812 u32 bufsz
, new_ctrl
, update
= 0;
2816 new_ctrl
= nn
->dp
.ctrl
;
2818 if (nn
->dp
.ctrl
& NFP_NET_CFG_CTRL_RSS_ANY
) {
2819 nfp_net_rss_write_key(nn
);
2820 nfp_net_rss_write_itbl(nn
);
2821 nn_writel(nn
, NFP_NET_CFG_RSS_CTRL
, nn
->rss_cfg
);
2822 update
|= NFP_NET_CFG_UPDATE_RSS
;
2825 if (nn
->dp
.ctrl
& NFP_NET_CFG_CTRL_IRQMOD
) {
2826 nfp_net_coalesce_write_cfg(nn
);
2827 update
|= NFP_NET_CFG_UPDATE_IRQMOD
;
2830 for (r
= 0; r
< nn
->dp
.num_tx_rings
; r
++)
2831 nfp_net_tx_ring_hw_cfg_write(nn
, &nn
->dp
.tx_rings
[r
], r
);
2832 for (r
= 0; r
< nn
->dp
.num_rx_rings
; r
++)
2833 nfp_net_rx_ring_hw_cfg_write(nn
, &nn
->dp
.rx_rings
[r
], r
);
2835 nn_writeq(nn
, NFP_NET_CFG_TXRS_ENABLE
, nn
->dp
.num_tx_rings
== 64 ?
2836 0xffffffffffffffffULL
: ((u64
)1 << nn
->dp
.num_tx_rings
) - 1);
2838 nn_writeq(nn
, NFP_NET_CFG_RXRS_ENABLE
, nn
->dp
.num_rx_rings
== 64 ?
2839 0xffffffffffffffffULL
: ((u64
)1 << nn
->dp
.num_rx_rings
) - 1);
2842 nfp_net_write_mac_addr(nn
, nn
->dp
.netdev
->dev_addr
);
2844 nn_writel(nn
, NFP_NET_CFG_MTU
, nn
->dp
.mtu
);
2846 bufsz
= nn
->dp
.fl_bufsz
- nn
->dp
.rx_dma_off
- NFP_NET_RX_BUF_NON_DATA
;
2847 nn_writel(nn
, NFP_NET_CFG_FLBUFSZ
, bufsz
);
2850 new_ctrl
|= NFP_NET_CFG_CTRL_ENABLE
;
2851 update
|= NFP_NET_CFG_UPDATE_GEN
;
2852 update
|= NFP_NET_CFG_UPDATE_MSIX
;
2853 update
|= NFP_NET_CFG_UPDATE_RING
;
2854 if (nn
->cap
& NFP_NET_CFG_CTRL_RINGCFG
)
2855 new_ctrl
|= NFP_NET_CFG_CTRL_RINGCFG
;
2857 nn_writel(nn
, NFP_NET_CFG_CTRL
, new_ctrl
);
2858 err
= nfp_net_reconfig(nn
, update
);
2860 nfp_net_clear_config_and_disable(nn
);
2864 nn
->dp
.ctrl
= new_ctrl
;
2866 for (r
= 0; r
< nn
->dp
.num_rx_rings
; r
++)
2867 nfp_net_rx_ring_fill_freelist(&nn
->dp
, &nn
->dp
.rx_rings
[r
]);
2873 * nfp_net_close_stack() - Quiesce the stack (part of close)
2874 * @nn: NFP Net device to reconfigure
2876 static void nfp_net_close_stack(struct nfp_net
*nn
)
2880 disable_irq(nn
->irq_entries
[NFP_NET_IRQ_LSC_IDX
].vector
);
2881 netif_carrier_off(nn
->dp
.netdev
);
2882 nn
->link_up
= false;
2884 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++) {
2885 disable_irq(nn
->r_vecs
[r
].irq_vector
);
2886 napi_disable(&nn
->r_vecs
[r
].napi
);
2889 netif_tx_disable(nn
->dp
.netdev
);
2893 * nfp_net_close_free_all() - Free all runtime resources
2894 * @nn: NFP Net device to reconfigure
2896 static void nfp_net_close_free_all(struct nfp_net
*nn
)
2900 nfp_net_tx_rings_free(&nn
->dp
);
2901 nfp_net_rx_rings_free(&nn
->dp
);
2903 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++)
2904 nfp_net_cleanup_vector(nn
, &nn
->r_vecs
[r
]);
2906 nfp_net_aux_irq_free(nn
, NFP_NET_CFG_LSC
, NFP_NET_IRQ_LSC_IDX
);
2907 nfp_net_aux_irq_free(nn
, NFP_NET_CFG_EXN
, NFP_NET_IRQ_EXN_IDX
);
2911 * nfp_net_netdev_close() - Called when the device is downed
2912 * @netdev: netdev structure
2914 static int nfp_net_netdev_close(struct net_device
*netdev
)
2916 struct nfp_net
*nn
= netdev_priv(netdev
);
2918 /* Step 1: Disable RX and TX rings from the Linux kernel perspective
2920 nfp_net_close_stack(nn
);
2924 nfp_net_clear_config_and_disable(nn
);
2925 nfp_port_configure(netdev
, false);
2927 /* Step 3: Free resources
2929 nfp_net_close_free_all(nn
);
2931 nn_dbg(nn
, "%s down", netdev
->name
);
2935 void nfp_ctrl_close(struct nfp_net
*nn
)
2941 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++) {
2942 disable_irq(nn
->r_vecs
[r
].irq_vector
);
2943 tasklet_disable(&nn
->r_vecs
[r
].tasklet
);
2946 nfp_net_clear_config_and_disable(nn
);
2948 nfp_net_close_free_all(nn
);
2954 * nfp_net_open_stack() - Start the device from stack's perspective
2955 * @nn: NFP Net device to reconfigure
2957 static void nfp_net_open_stack(struct nfp_net
*nn
)
2961 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++) {
2962 napi_enable(&nn
->r_vecs
[r
].napi
);
2963 enable_irq(nn
->r_vecs
[r
].irq_vector
);
2966 netif_tx_wake_all_queues(nn
->dp
.netdev
);
2968 enable_irq(nn
->irq_entries
[NFP_NET_IRQ_LSC_IDX
].vector
);
2969 nfp_net_read_link_status(nn
);
2972 static int nfp_net_open_alloc_all(struct nfp_net
*nn
)
2976 err
= nfp_net_aux_irq_request(nn
, NFP_NET_CFG_EXN
, "%s-exn",
2977 nn
->exn_name
, sizeof(nn
->exn_name
),
2978 NFP_NET_IRQ_EXN_IDX
, nn
->exn_handler
);
2981 err
= nfp_net_aux_irq_request(nn
, NFP_NET_CFG_LSC
, "%s-lsc",
2982 nn
->lsc_name
, sizeof(nn
->lsc_name
),
2983 NFP_NET_IRQ_LSC_IDX
, nn
->lsc_handler
);
2986 disable_irq(nn
->irq_entries
[NFP_NET_IRQ_LSC_IDX
].vector
);
2988 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++) {
2989 err
= nfp_net_prepare_vector(nn
, &nn
->r_vecs
[r
], r
);
2991 goto err_cleanup_vec_p
;
2994 err
= nfp_net_rx_rings_prepare(nn
, &nn
->dp
);
2996 goto err_cleanup_vec
;
2998 err
= nfp_net_tx_rings_prepare(nn
, &nn
->dp
);
3000 goto err_free_rx_rings
;
3002 for (r
= 0; r
< nn
->max_r_vecs
; r
++)
3003 nfp_net_vector_assign_rings(&nn
->dp
, &nn
->r_vecs
[r
], r
);
3008 nfp_net_rx_rings_free(&nn
->dp
);
3010 r
= nn
->dp
.num_r_vecs
;
3013 nfp_net_cleanup_vector(nn
, &nn
->r_vecs
[r
]);
3014 nfp_net_aux_irq_free(nn
, NFP_NET_CFG_LSC
, NFP_NET_IRQ_LSC_IDX
);
3016 nfp_net_aux_irq_free(nn
, NFP_NET_CFG_EXN
, NFP_NET_IRQ_EXN_IDX
);
3020 static int nfp_net_netdev_open(struct net_device
*netdev
)
3022 struct nfp_net
*nn
= netdev_priv(netdev
);
3025 /* Step 1: Allocate resources for rings and the like
3026 * - Request interrupts
3027 * - Allocate RX and TX ring resources
3028 * - Setup initial RSS table
3030 err
= nfp_net_open_alloc_all(nn
);
3034 err
= netif_set_real_num_tx_queues(netdev
, nn
->dp
.num_stack_tx_rings
);
3038 err
= netif_set_real_num_rx_queues(netdev
, nn
->dp
.num_rx_rings
);
3042 /* Step 2: Configure the NFP
3043 * - Ifup the physical interface if it exists
3044 * - Enable rings from 0 to tx_rings/rx_rings - 1.
3045 * - Write MAC address (in case it changed)
3047 * - Set the Freelist buffer size
3050 err
= nfp_port_configure(netdev
, true);
3054 err
= nfp_net_set_config_and_enable(nn
);
3056 goto err_port_disable
;
3058 /* Step 3: Enable for kernel
3059 * - put some freelist descriptors on each RX ring
3060 * - enable NAPI on each ring
3061 * - enable all TX queues
3064 nfp_net_open_stack(nn
);
3069 nfp_port_configure(netdev
, false);
3071 nfp_net_close_free_all(nn
);
3075 int nfp_ctrl_open(struct nfp_net
*nn
)
3079 /* ring dumping depends on vNICs being opened/closed under rtnl */
3082 err
= nfp_net_open_alloc_all(nn
);
3086 err
= nfp_net_set_config_and_enable(nn
);
3090 for (r
= 0; r
< nn
->dp
.num_r_vecs
; r
++)
3091 enable_irq(nn
->r_vecs
[r
].irq_vector
);
3098 nfp_net_close_free_all(nn
);
3104 static void nfp_net_set_rx_mode(struct net_device
*netdev
)
3106 struct nfp_net
*nn
= netdev_priv(netdev
);
3109 new_ctrl
= nn
->dp
.ctrl
;
3111 if (!netdev_mc_empty(netdev
) || netdev
->flags
& IFF_ALLMULTI
)
3112 new_ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_L2MC
;
3114 new_ctrl
&= ~NFP_NET_CFG_CTRL_L2MC
;
3116 if (netdev
->flags
& IFF_PROMISC
) {
3117 if (nn
->cap
& NFP_NET_CFG_CTRL_PROMISC
)
3118 new_ctrl
|= NFP_NET_CFG_CTRL_PROMISC
;
3120 nn_warn(nn
, "FW does not support promiscuous mode\n");
3122 new_ctrl
&= ~NFP_NET_CFG_CTRL_PROMISC
;
3125 if (new_ctrl
== nn
->dp
.ctrl
)
3128 nn_writel(nn
, NFP_NET_CFG_CTRL
, new_ctrl
);
3129 nfp_net_reconfig_post(nn
, NFP_NET_CFG_UPDATE_GEN
);
3131 nn
->dp
.ctrl
= new_ctrl
;
3134 static void nfp_net_rss_init_itbl(struct nfp_net
*nn
)
3138 for (i
= 0; i
< sizeof(nn
->rss_itbl
); i
++)
3140 ethtool_rxfh_indir_default(i
, nn
->dp
.num_rx_rings
);
3143 static void nfp_net_dp_swap(struct nfp_net
*nn
, struct nfp_net_dp
*dp
)
3145 struct nfp_net_dp new_dp
= *dp
;
3150 nn
->dp
.netdev
->mtu
= new_dp
.mtu
;
3152 if (!netif_is_rxfh_configured(nn
->dp
.netdev
))
3153 nfp_net_rss_init_itbl(nn
);
3156 static int nfp_net_dp_swap_enable(struct nfp_net
*nn
, struct nfp_net_dp
*dp
)
3161 nfp_net_dp_swap(nn
, dp
);
3163 for (r
= 0; r
< nn
->max_r_vecs
; r
++)
3164 nfp_net_vector_assign_rings(&nn
->dp
, &nn
->r_vecs
[r
], r
);
3166 err
= netif_set_real_num_rx_queues(nn
->dp
.netdev
, nn
->dp
.num_rx_rings
);
3170 if (nn
->dp
.netdev
->real_num_tx_queues
!= nn
->dp
.num_stack_tx_rings
) {
3171 err
= netif_set_real_num_tx_queues(nn
->dp
.netdev
,
3172 nn
->dp
.num_stack_tx_rings
);
3177 return nfp_net_set_config_and_enable(nn
);
3180 struct nfp_net_dp
*nfp_net_clone_dp(struct nfp_net
*nn
)
3182 struct nfp_net_dp
*new;
3184 new = kmalloc(sizeof(*new), GFP_KERNEL
);
3190 /* Clear things which need to be recomputed */
3192 new->tx_rings
= NULL
;
3193 new->rx_rings
= NULL
;
3194 new->num_r_vecs
= 0;
3195 new->num_stack_tx_rings
= 0;
3201 nfp_net_check_config(struct nfp_net
*nn
, struct nfp_net_dp
*dp
,
3202 struct netlink_ext_ack
*extack
)
3204 /* XDP-enabled tests */
3207 if (dp
->fl_bufsz
> PAGE_SIZE
) {
3208 NL_SET_ERR_MSG_MOD(extack
, "MTU too large w/ XDP enabled");
3211 if (dp
->num_tx_rings
> nn
->max_tx_rings
) {
3212 NL_SET_ERR_MSG_MOD(extack
, "Insufficient number of TX rings w/ XDP enabled");
3219 int nfp_net_ring_reconfig(struct nfp_net
*nn
, struct nfp_net_dp
*dp
,
3220 struct netlink_ext_ack
*extack
)
3224 dp
->fl_bufsz
= nfp_net_calc_fl_bufsz(dp
);
3226 dp
->num_stack_tx_rings
= dp
->num_tx_rings
;
3228 dp
->num_stack_tx_rings
-= dp
->num_rx_rings
;
3230 dp
->num_r_vecs
= max(dp
->num_rx_rings
, dp
->num_stack_tx_rings
);
3232 err
= nfp_net_check_config(nn
, dp
, extack
);
3236 if (!netif_running(dp
->netdev
)) {
3237 nfp_net_dp_swap(nn
, dp
);
3242 /* Prepare new rings */
3243 for (r
= nn
->dp
.num_r_vecs
; r
< dp
->num_r_vecs
; r
++) {
3244 err
= nfp_net_prepare_vector(nn
, &nn
->r_vecs
[r
], r
);
3247 goto err_cleanup_vecs
;
3251 err
= nfp_net_rx_rings_prepare(nn
, dp
);
3253 goto err_cleanup_vecs
;
3255 err
= nfp_net_tx_rings_prepare(nn
, dp
);
3259 /* Stop device, swap in new rings, try to start the firmware */
3260 nfp_net_close_stack(nn
);
3261 nfp_net_clear_config_and_disable(nn
);
3263 err
= nfp_net_dp_swap_enable(nn
, dp
);
3267 nfp_net_clear_config_and_disable(nn
);
3269 /* Try with old configuration and old rings */
3270 err2
= nfp_net_dp_swap_enable(nn
, dp
);
3272 nn_err(nn
, "Can't restore ring config - FW communication failed (%d,%d)\n",
3275 for (r
= dp
->num_r_vecs
- 1; r
>= nn
->dp
.num_r_vecs
; r
--)
3276 nfp_net_cleanup_vector(nn
, &nn
->r_vecs
[r
]);
3278 nfp_net_rx_rings_free(dp
);
3279 nfp_net_tx_rings_free(dp
);
3281 nfp_net_open_stack(nn
);
3288 nfp_net_rx_rings_free(dp
);
3290 for (r
= dp
->num_r_vecs
- 1; r
>= nn
->dp
.num_r_vecs
; r
--)
3291 nfp_net_cleanup_vector(nn
, &nn
->r_vecs
[r
]);
3296 static int nfp_net_change_mtu(struct net_device
*netdev
, int new_mtu
)
3298 struct nfp_net
*nn
= netdev_priv(netdev
);
3299 struct nfp_net_dp
*dp
;
3302 err
= nfp_app_check_mtu(nn
->app
, netdev
, new_mtu
);
3306 dp
= nfp_net_clone_dp(nn
);
3312 return nfp_net_ring_reconfig(nn
, dp
, NULL
);
3316 nfp_net_vlan_rx_add_vid(struct net_device
*netdev
, __be16 proto
, u16 vid
)
3318 const u32 cmd
= NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD
;
3319 struct nfp_net
*nn
= netdev_priv(netdev
);
3322 /* Priority tagged packets with vlan id 0 are processed by the
3323 * NFP as untagged packets
3328 err
= nfp_net_mbox_lock(nn
, NFP_NET_CFG_VLAN_FILTER_SZ
);
3332 nn_writew(nn
, nn
->tlv_caps
.mbox_off
+ NFP_NET_CFG_VLAN_FILTER_VID
, vid
);
3333 nn_writew(nn
, nn
->tlv_caps
.mbox_off
+ NFP_NET_CFG_VLAN_FILTER_PROTO
,
3336 return nfp_net_mbox_reconfig_and_unlock(nn
, cmd
);
3340 nfp_net_vlan_rx_kill_vid(struct net_device
*netdev
, __be16 proto
, u16 vid
)
3342 const u32 cmd
= NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL
;
3343 struct nfp_net
*nn
= netdev_priv(netdev
);
3346 /* Priority tagged packets with vlan id 0 are processed by the
3347 * NFP as untagged packets
3352 err
= nfp_net_mbox_lock(nn
, NFP_NET_CFG_VLAN_FILTER_SZ
);
3356 nn_writew(nn
, nn
->tlv_caps
.mbox_off
+ NFP_NET_CFG_VLAN_FILTER_VID
, vid
);
3357 nn_writew(nn
, nn
->tlv_caps
.mbox_off
+ NFP_NET_CFG_VLAN_FILTER_PROTO
,
3360 return nfp_net_mbox_reconfig_and_unlock(nn
, cmd
);
3363 static void nfp_net_stat64(struct net_device
*netdev
,
3364 struct rtnl_link_stats64
*stats
)
3366 struct nfp_net
*nn
= netdev_priv(netdev
);
3369 /* Collect software stats */
3370 for (r
= 0; r
< nn
->max_r_vecs
; r
++) {
3371 struct nfp_net_r_vector
*r_vec
= &nn
->r_vecs
[r
];
3376 start
= u64_stats_fetch_begin(&r_vec
->rx_sync
);
3377 data
[0] = r_vec
->rx_pkts
;
3378 data
[1] = r_vec
->rx_bytes
;
3379 data
[2] = r_vec
->rx_drops
;
3380 } while (u64_stats_fetch_retry(&r_vec
->rx_sync
, start
));
3381 stats
->rx_packets
+= data
[0];
3382 stats
->rx_bytes
+= data
[1];
3383 stats
->rx_dropped
+= data
[2];
3386 start
= u64_stats_fetch_begin(&r_vec
->tx_sync
);
3387 data
[0] = r_vec
->tx_pkts
;
3388 data
[1] = r_vec
->tx_bytes
;
3389 data
[2] = r_vec
->tx_errors
;
3390 } while (u64_stats_fetch_retry(&r_vec
->tx_sync
, start
));
3391 stats
->tx_packets
+= data
[0];
3392 stats
->tx_bytes
+= data
[1];
3393 stats
->tx_errors
+= data
[2];
3396 /* Add in device stats */
3397 stats
->multicast
+= nn_readq(nn
, NFP_NET_CFG_STATS_RX_MC_FRAMES
);
3398 stats
->rx_dropped
+= nn_readq(nn
, NFP_NET_CFG_STATS_RX_DISCARDS
);
3399 stats
->rx_errors
+= nn_readq(nn
, NFP_NET_CFG_STATS_RX_ERRORS
);
3401 stats
->tx_dropped
+= nn_readq(nn
, NFP_NET_CFG_STATS_TX_DISCARDS
);
3402 stats
->tx_errors
+= nn_readq(nn
, NFP_NET_CFG_STATS_TX_ERRORS
);
3405 static int nfp_net_set_features(struct net_device
*netdev
,
3406 netdev_features_t features
)
3408 netdev_features_t changed
= netdev
->features
^ features
;
3409 struct nfp_net
*nn
= netdev_priv(netdev
);
3413 /* Assume this is not called with features we have not advertised */
3415 new_ctrl
= nn
->dp
.ctrl
;
3417 if (changed
& NETIF_F_RXCSUM
) {
3418 if (features
& NETIF_F_RXCSUM
)
3419 new_ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_RXCSUM_ANY
;
3421 new_ctrl
&= ~NFP_NET_CFG_CTRL_RXCSUM_ANY
;
3424 if (changed
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
)) {
3425 if (features
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
))
3426 new_ctrl
|= NFP_NET_CFG_CTRL_TXCSUM
;
3428 new_ctrl
&= ~NFP_NET_CFG_CTRL_TXCSUM
;
3431 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
)) {
3432 if (features
& (NETIF_F_TSO
| NETIF_F_TSO6
))
3433 new_ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_LSO2
?:
3434 NFP_NET_CFG_CTRL_LSO
;
3436 new_ctrl
&= ~NFP_NET_CFG_CTRL_LSO_ANY
;
3439 if (changed
& NETIF_F_HW_VLAN_CTAG_RX
) {
3440 if (features
& NETIF_F_HW_VLAN_CTAG_RX
)
3441 new_ctrl
|= NFP_NET_CFG_CTRL_RXVLAN
;
3443 new_ctrl
&= ~NFP_NET_CFG_CTRL_RXVLAN
;
3446 if (changed
& NETIF_F_HW_VLAN_CTAG_TX
) {
3447 if (features
& NETIF_F_HW_VLAN_CTAG_TX
)
3448 new_ctrl
|= NFP_NET_CFG_CTRL_TXVLAN
;
3450 new_ctrl
&= ~NFP_NET_CFG_CTRL_TXVLAN
;
3453 if (changed
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
3454 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
)
3455 new_ctrl
|= NFP_NET_CFG_CTRL_CTAG_FILTER
;
3457 new_ctrl
&= ~NFP_NET_CFG_CTRL_CTAG_FILTER
;
3460 if (changed
& NETIF_F_SG
) {
3461 if (features
& NETIF_F_SG
)
3462 new_ctrl
|= NFP_NET_CFG_CTRL_GATHER
;
3464 new_ctrl
&= ~NFP_NET_CFG_CTRL_GATHER
;
3467 err
= nfp_port_set_features(netdev
, features
);
3471 nn_dbg(nn
, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n",
3472 netdev
->features
, features
, changed
);
3474 if (new_ctrl
== nn
->dp
.ctrl
)
3477 nn_dbg(nn
, "NIC ctrl: 0x%x -> 0x%x\n", nn
->dp
.ctrl
, new_ctrl
);
3478 nn_writel(nn
, NFP_NET_CFG_CTRL
, new_ctrl
);
3479 err
= nfp_net_reconfig(nn
, NFP_NET_CFG_UPDATE_GEN
);
3483 nn
->dp
.ctrl
= new_ctrl
;
3488 static netdev_features_t
3489 nfp_net_features_check(struct sk_buff
*skb
, struct net_device
*dev
,
3490 netdev_features_t features
)
3494 /* We can't do TSO over double tagged packets (802.1AD) */
3495 features
&= vlan_features_check(skb
, features
);
3497 if (!skb
->encapsulation
)
3500 /* Ensure that inner L4 header offset fits into TX descriptor field */
3501 if (skb_is_gso(skb
)) {
3504 hdrlen
= skb_inner_transport_header(skb
) - skb
->data
+
3505 inner_tcp_hdrlen(skb
);
3507 /* Assume worst case scenario of having longest possible
3508 * metadata prepend - 8B
3510 if (unlikely(hdrlen
> NFP_NET_LSO_MAX_HDR_SZ
- 8))
3511 features
&= ~NETIF_F_GSO_MASK
;
3514 /* VXLAN/GRE check */
3515 switch (vlan_get_protocol(skb
)) {
3516 case htons(ETH_P_IP
):
3517 l4_hdr
= ip_hdr(skb
)->protocol
;
3519 case htons(ETH_P_IPV6
):
3520 l4_hdr
= ipv6_hdr(skb
)->nexthdr
;
3523 return features
& ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3526 if (skb
->inner_protocol_type
!= ENCAP_TYPE_ETHER
||
3527 skb
->inner_protocol
!= htons(ETH_P_TEB
) ||
3528 (l4_hdr
!= IPPROTO_UDP
&& l4_hdr
!= IPPROTO_GRE
) ||
3529 (l4_hdr
== IPPROTO_UDP
&&
3530 (skb_inner_mac_header(skb
) - skb_transport_header(skb
) !=
3531 sizeof(struct udphdr
) + sizeof(struct vxlanhdr
))))
3532 return features
& ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3538 nfp_net_get_phys_port_name(struct net_device
*netdev
, char *name
, size_t len
)
3540 struct nfp_net
*nn
= netdev_priv(netdev
);
3543 /* If port is defined, devlink_port is registered and devlink core
3544 * is taking care of name formatting.
3549 if (nn
->dp
.is_vf
|| nn
->vnic_no_name
)
3552 n
= snprintf(name
, len
, "n%d", nn
->id
);
3559 static int nfp_net_xdp_setup_drv(struct nfp_net
*nn
, struct netdev_bpf
*bpf
)
3561 struct bpf_prog
*prog
= bpf
->prog
;
3562 struct nfp_net_dp
*dp
;
3565 if (!prog
== !nn
->dp
.xdp_prog
) {
3566 WRITE_ONCE(nn
->dp
.xdp_prog
, prog
);
3567 xdp_attachment_setup(&nn
->xdp
, bpf
);
3571 dp
= nfp_net_clone_dp(nn
);
3575 dp
->xdp_prog
= prog
;
3576 dp
->num_tx_rings
+= prog
? nn
->dp
.num_rx_rings
: -nn
->dp
.num_rx_rings
;
3577 dp
->rx_dma_dir
= prog
? DMA_BIDIRECTIONAL
: DMA_FROM_DEVICE
;
3578 dp
->rx_dma_off
= prog
? XDP_PACKET_HEADROOM
- nn
->dp
.rx_offset
: 0;
3580 /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */
3581 err
= nfp_net_ring_reconfig(nn
, dp
, bpf
->extack
);
3585 xdp_attachment_setup(&nn
->xdp
, bpf
);
3589 static int nfp_net_xdp_setup_hw(struct nfp_net
*nn
, struct netdev_bpf
*bpf
)
3593 err
= nfp_app_xdp_offload(nn
->app
, nn
, bpf
->prog
, bpf
->extack
);
3597 xdp_attachment_setup(&nn
->xdp_hw
, bpf
);
3601 static int nfp_net_xdp(struct net_device
*netdev
, struct netdev_bpf
*xdp
)
3603 struct nfp_net
*nn
= netdev_priv(netdev
);
3605 switch (xdp
->command
) {
3606 case XDP_SETUP_PROG
:
3607 return nfp_net_xdp_setup_drv(nn
, xdp
);
3608 case XDP_SETUP_PROG_HW
:
3609 return nfp_net_xdp_setup_hw(nn
, xdp
);
3611 return nfp_app_bpf(nn
->app
, nn
, xdp
);
3615 static int nfp_net_set_mac_address(struct net_device
*netdev
, void *addr
)
3617 struct nfp_net
*nn
= netdev_priv(netdev
);
3618 struct sockaddr
*saddr
= addr
;
3621 err
= eth_prepare_mac_addr_change(netdev
, addr
);
3625 nfp_net_write_mac_addr(nn
, saddr
->sa_data
);
3627 err
= nfp_net_reconfig(nn
, NFP_NET_CFG_UPDATE_MACADDR
);
3631 eth_commit_mac_addr_change(netdev
, addr
);
3636 const struct net_device_ops nfp_net_netdev_ops
= {
3637 .ndo_init
= nfp_app_ndo_init
,
3638 .ndo_uninit
= nfp_app_ndo_uninit
,
3639 .ndo_open
= nfp_net_netdev_open
,
3640 .ndo_stop
= nfp_net_netdev_close
,
3641 .ndo_start_xmit
= nfp_net_tx
,
3642 .ndo_get_stats64
= nfp_net_stat64
,
3643 .ndo_vlan_rx_add_vid
= nfp_net_vlan_rx_add_vid
,
3644 .ndo_vlan_rx_kill_vid
= nfp_net_vlan_rx_kill_vid
,
3645 .ndo_set_vf_mac
= nfp_app_set_vf_mac
,
3646 .ndo_set_vf_vlan
= nfp_app_set_vf_vlan
,
3647 .ndo_set_vf_spoofchk
= nfp_app_set_vf_spoofchk
,
3648 .ndo_set_vf_trust
= nfp_app_set_vf_trust
,
3649 .ndo_get_vf_config
= nfp_app_get_vf_config
,
3650 .ndo_set_vf_link_state
= nfp_app_set_vf_link_state
,
3651 .ndo_setup_tc
= nfp_port_setup_tc
,
3652 .ndo_tx_timeout
= nfp_net_tx_timeout
,
3653 .ndo_set_rx_mode
= nfp_net_set_rx_mode
,
3654 .ndo_change_mtu
= nfp_net_change_mtu
,
3655 .ndo_set_mac_address
= nfp_net_set_mac_address
,
3656 .ndo_set_features
= nfp_net_set_features
,
3657 .ndo_features_check
= nfp_net_features_check
,
3658 .ndo_get_phys_port_name
= nfp_net_get_phys_port_name
,
3659 .ndo_udp_tunnel_add
= udp_tunnel_nic_add_port
,
3660 .ndo_udp_tunnel_del
= udp_tunnel_nic_del_port
,
3661 .ndo_bpf
= nfp_net_xdp
,
3662 .ndo_get_devlink_port
= nfp_devlink_get_devlink_port
,
3665 static int nfp_udp_tunnel_sync(struct net_device
*netdev
, unsigned int table
)
3667 struct nfp_net
*nn
= netdev_priv(netdev
);
3670 BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS
& 1);
3671 for (i
= 0; i
< NFP_NET_N_VXLAN_PORTS
; i
+= 2) {
3672 struct udp_tunnel_info ti0
, ti1
;
3674 udp_tunnel_nic_get_port(netdev
, table
, i
, &ti0
);
3675 udp_tunnel_nic_get_port(netdev
, table
, i
+ 1, &ti1
);
3677 nn_writel(nn
, NFP_NET_CFG_VXLAN_PORT
+ i
* sizeof(ti0
.port
),
3678 be16_to_cpu(ti1
.port
) << 16 | be16_to_cpu(ti0
.port
));
3681 return nfp_net_reconfig(nn
, NFP_NET_CFG_UPDATE_VXLAN
);
3684 static const struct udp_tunnel_nic_info nfp_udp_tunnels
= {
3685 .sync_table
= nfp_udp_tunnel_sync
,
3686 .flags
= UDP_TUNNEL_NIC_INFO_MAY_SLEEP
|
3687 UDP_TUNNEL_NIC_INFO_OPEN_ONLY
,
3690 .n_entries
= NFP_NET_N_VXLAN_PORTS
,
3691 .tunnel_types
= UDP_TUNNEL_TYPE_VXLAN
,
3697 * nfp_net_info() - Print general info about the NIC
3698 * @nn: NFP Net device to reconfigure
3700 void nfp_net_info(struct nfp_net
*nn
)
3702 nn_info(nn
, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n",
3703 nn
->dp
.is_vf
? "VF " : "",
3704 nn
->dp
.num_tx_rings
, nn
->max_tx_rings
,
3705 nn
->dp
.num_rx_rings
, nn
->max_rx_rings
);
3706 nn_info(nn
, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n",
3707 nn
->fw_ver
.resv
, nn
->fw_ver
.class,
3708 nn
->fw_ver
.major
, nn
->fw_ver
.minor
,
3710 nn_info(nn
, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
3712 nn
->cap
& NFP_NET_CFG_CTRL_PROMISC
? "PROMISC " : "",
3713 nn
->cap
& NFP_NET_CFG_CTRL_L2BC
? "L2BCFILT " : "",
3714 nn
->cap
& NFP_NET_CFG_CTRL_L2MC
? "L2MCFILT " : "",
3715 nn
->cap
& NFP_NET_CFG_CTRL_RXCSUM
? "RXCSUM " : "",
3716 nn
->cap
& NFP_NET_CFG_CTRL_TXCSUM
? "TXCSUM " : "",
3717 nn
->cap
& NFP_NET_CFG_CTRL_RXVLAN
? "RXVLAN " : "",
3718 nn
->cap
& NFP_NET_CFG_CTRL_TXVLAN
? "TXVLAN " : "",
3719 nn
->cap
& NFP_NET_CFG_CTRL_SCATTER
? "SCATTER " : "",
3720 nn
->cap
& NFP_NET_CFG_CTRL_GATHER
? "GATHER " : "",
3721 nn
->cap
& NFP_NET_CFG_CTRL_LSO
? "TSO1 " : "",
3722 nn
->cap
& NFP_NET_CFG_CTRL_LSO2
? "TSO2 " : "",
3723 nn
->cap
& NFP_NET_CFG_CTRL_RSS
? "RSS1 " : "",
3724 nn
->cap
& NFP_NET_CFG_CTRL_RSS2
? "RSS2 " : "",
3725 nn
->cap
& NFP_NET_CFG_CTRL_CTAG_FILTER
? "CTAG_FILTER " : "",
3726 nn
->cap
& NFP_NET_CFG_CTRL_MSIXAUTO
? "AUTOMASK " : "",
3727 nn
->cap
& NFP_NET_CFG_CTRL_IRQMOD
? "IRQMOD " : "",
3728 nn
->cap
& NFP_NET_CFG_CTRL_VXLAN
? "VXLAN " : "",
3729 nn
->cap
& NFP_NET_CFG_CTRL_NVGRE
? "NVGRE " : "",
3730 nn
->cap
& NFP_NET_CFG_CTRL_CSUM_COMPLETE
?
3731 "RXCSUM_COMPLETE " : "",
3732 nn
->cap
& NFP_NET_CFG_CTRL_LIVE_ADDR
? "LIVE_ADDR " : "",
3733 nfp_app_extra_cap(nn
->app
, nn
));
3737 * nfp_net_alloc() - Allocate netdev and related structure
3739 * @ctrl_bar: PCI IOMEM with vNIC config memory
3740 * @needs_netdev: Whether to allocate a netdev for this vNIC
3741 * @max_tx_rings: Maximum number of TX rings supported by device
3742 * @max_rx_rings: Maximum number of RX rings supported by device
3744 * This function allocates a netdev device and fills in the initial
3745 * part of the @struct nfp_net structure. In case of control device
3746 * nfp_net structure is allocated without the netdev.
3748 * Return: NFP Net device structure, or ERR_PTR on error.
3751 nfp_net_alloc(struct pci_dev
*pdev
, void __iomem
*ctrl_bar
, bool needs_netdev
,
3752 unsigned int max_tx_rings
, unsigned int max_rx_rings
)
3758 struct net_device
*netdev
;
3760 netdev
= alloc_etherdev_mqs(sizeof(struct nfp_net
),
3761 max_tx_rings
, max_rx_rings
);
3763 return ERR_PTR(-ENOMEM
);
3765 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3766 nn
= netdev_priv(netdev
);
3767 nn
->dp
.netdev
= netdev
;
3769 nn
= vzalloc(sizeof(*nn
));
3771 return ERR_PTR(-ENOMEM
);
3774 nn
->dp
.dev
= &pdev
->dev
;
3775 nn
->dp
.ctrl_bar
= ctrl_bar
;
3778 nn
->max_tx_rings
= max_tx_rings
;
3779 nn
->max_rx_rings
= max_rx_rings
;
3781 nn
->dp
.num_tx_rings
= min_t(unsigned int,
3782 max_tx_rings
, num_online_cpus());
3783 nn
->dp
.num_rx_rings
= min_t(unsigned int, max_rx_rings
,
3784 netif_get_num_default_rss_queues());
3786 nn
->dp
.num_r_vecs
= max(nn
->dp
.num_tx_rings
, nn
->dp
.num_rx_rings
);
3787 nn
->dp
.num_r_vecs
= min_t(unsigned int,
3788 nn
->dp
.num_r_vecs
, num_online_cpus());
3790 nn
->dp
.txd_cnt
= NFP_NET_TX_DESCS_DEFAULT
;
3791 nn
->dp
.rxd_cnt
= NFP_NET_RX_DESCS_DEFAULT
;
3793 sema_init(&nn
->bar_lock
, 1);
3795 spin_lock_init(&nn
->reconfig_lock
);
3796 spin_lock_init(&nn
->link_status_lock
);
3798 timer_setup(&nn
->reconfig_timer
, nfp_net_reconfig_timer
, 0);
3800 err
= nfp_net_tlv_caps_parse(&nn
->pdev
->dev
, nn
->dp
.ctrl_bar
,
3805 err
= nfp_ccm_mbox_alloc(nn
);
3813 free_netdev(nn
->dp
.netdev
);
3816 return ERR_PTR(err
);
3820 * nfp_net_free() - Undo what @nfp_net_alloc() did
3821 * @nn: NFP Net device to reconfigure
3823 void nfp_net_free(struct nfp_net
*nn
)
3825 WARN_ON(timer_pending(&nn
->reconfig_timer
) || nn
->reconfig_posted
);
3826 nfp_ccm_mbox_free(nn
);
3829 free_netdev(nn
->dp
.netdev
);
3835 * nfp_net_rss_key_sz() - Get current size of the RSS key
3836 * @nn: NFP Net device instance
3838 * Return: size of the RSS key for currently selected hash function.
3840 unsigned int nfp_net_rss_key_sz(struct nfp_net
*nn
)
3842 switch (nn
->rss_hfunc
) {
3843 case ETH_RSS_HASH_TOP
:
3844 return NFP_NET_CFG_RSS_KEY_SZ
;
3845 case ETH_RSS_HASH_XOR
:
3847 case ETH_RSS_HASH_CRC32
:
3851 nn_warn(nn
, "Unknown hash function: %u\n", nn
->rss_hfunc
);
3856 * nfp_net_rss_init() - Set the initial RSS parameters
3857 * @nn: NFP Net device to reconfigure
3859 static void nfp_net_rss_init(struct nfp_net
*nn
)
3861 unsigned long func_bit
, rss_cap_hfunc
;
3864 /* Read the RSS function capability and select first supported func */
3865 reg
= nn_readl(nn
, NFP_NET_CFG_RSS_CAP
);
3866 rss_cap_hfunc
= FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC
, reg
);
3868 rss_cap_hfunc
= FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC
,
3869 NFP_NET_CFG_RSS_TOEPLITZ
);
3871 func_bit
= find_first_bit(&rss_cap_hfunc
, NFP_NET_CFG_RSS_HFUNCS
);
3872 if (func_bit
== NFP_NET_CFG_RSS_HFUNCS
) {
3873 dev_warn(nn
->dp
.dev
,
3874 "Bad RSS config, defaulting to Toeplitz hash\n");
3875 func_bit
= ETH_RSS_HASH_TOP_BIT
;
3877 nn
->rss_hfunc
= 1 << func_bit
;
3879 netdev_rss_key_fill(nn
->rss_key
, nfp_net_rss_key_sz(nn
));
3881 nfp_net_rss_init_itbl(nn
);
3883 /* Enable IPv4/IPv6 TCP by default */
3884 nn
->rss_cfg
= NFP_NET_CFG_RSS_IPV4_TCP
|
3885 NFP_NET_CFG_RSS_IPV6_TCP
|
3886 FIELD_PREP(NFP_NET_CFG_RSS_HFUNC
, nn
->rss_hfunc
) |
3887 NFP_NET_CFG_RSS_MASK
;
3891 * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters
3892 * @nn: NFP Net device to reconfigure
3894 static void nfp_net_irqmod_init(struct nfp_net
*nn
)
3896 nn
->rx_coalesce_usecs
= 50;
3897 nn
->rx_coalesce_max_frames
= 64;
3898 nn
->tx_coalesce_usecs
= 50;
3899 nn
->tx_coalesce_max_frames
= 64;
3902 static void nfp_net_netdev_init(struct nfp_net
*nn
)
3904 struct net_device
*netdev
= nn
->dp
.netdev
;
3906 nfp_net_write_mac_addr(nn
, nn
->dp
.netdev
->dev_addr
);
3908 netdev
->mtu
= nn
->dp
.mtu
;
3910 /* Advertise/enable offloads based on capabilities
3912 * Note: netdev->features show the currently enabled features
3913 * and netdev->hw_features advertises which features are
3914 * supported. By default we enable most features.
3916 if (nn
->cap
& NFP_NET_CFG_CTRL_LIVE_ADDR
)
3917 netdev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
3919 netdev
->hw_features
= NETIF_F_HIGHDMA
;
3920 if (nn
->cap
& NFP_NET_CFG_CTRL_RXCSUM_ANY
) {
3921 netdev
->hw_features
|= NETIF_F_RXCSUM
;
3922 nn
->dp
.ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_RXCSUM_ANY
;
3924 if (nn
->cap
& NFP_NET_CFG_CTRL_TXCSUM
) {
3925 netdev
->hw_features
|= NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
;
3926 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_TXCSUM
;
3928 if (nn
->cap
& NFP_NET_CFG_CTRL_GATHER
) {
3929 netdev
->hw_features
|= NETIF_F_SG
;
3930 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_GATHER
;
3932 if ((nn
->cap
& NFP_NET_CFG_CTRL_LSO
&& nn
->fw_ver
.major
> 2) ||
3933 nn
->cap
& NFP_NET_CFG_CTRL_LSO2
) {
3934 netdev
->hw_features
|= NETIF_F_TSO
| NETIF_F_TSO6
;
3935 nn
->dp
.ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_LSO2
?:
3936 NFP_NET_CFG_CTRL_LSO
;
3938 if (nn
->cap
& NFP_NET_CFG_CTRL_RSS_ANY
)
3939 netdev
->hw_features
|= NETIF_F_RXHASH
;
3940 if (nn
->cap
& NFP_NET_CFG_CTRL_VXLAN
) {
3941 if (nn
->cap
& NFP_NET_CFG_CTRL_LSO
)
3942 netdev
->hw_features
|= NETIF_F_GSO_UDP_TUNNEL
;
3943 netdev
->udp_tunnel_nic_info
= &nfp_udp_tunnels
;
3944 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_VXLAN
;
3946 if (nn
->cap
& NFP_NET_CFG_CTRL_NVGRE
) {
3947 if (nn
->cap
& NFP_NET_CFG_CTRL_LSO
)
3948 netdev
->hw_features
|= NETIF_F_GSO_GRE
;
3949 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_NVGRE
;
3951 if (nn
->cap
& (NFP_NET_CFG_CTRL_VXLAN
| NFP_NET_CFG_CTRL_NVGRE
))
3952 netdev
->hw_enc_features
= netdev
->hw_features
;
3954 netdev
->vlan_features
= netdev
->hw_features
;
3956 if (nn
->cap
& NFP_NET_CFG_CTRL_RXVLAN
) {
3957 netdev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_RX
;
3958 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_RXVLAN
;
3960 if (nn
->cap
& NFP_NET_CFG_CTRL_TXVLAN
) {
3961 if (nn
->cap
& NFP_NET_CFG_CTRL_LSO2
) {
3962 nn_warn(nn
, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n");
3964 netdev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
;
3965 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_TXVLAN
;
3968 if (nn
->cap
& NFP_NET_CFG_CTRL_CTAG_FILTER
) {
3969 netdev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_FILTER
;
3970 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_CTAG_FILTER
;
3973 netdev
->features
= netdev
->hw_features
;
3975 if (nfp_app_has_tc(nn
->app
) && nn
->port
)
3976 netdev
->hw_features
|= NETIF_F_HW_TC
;
3978 /* Advertise but disable TSO by default. */
3979 netdev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
3980 nn
->dp
.ctrl
&= ~NFP_NET_CFG_CTRL_LSO_ANY
;
3982 /* Finalise the netdev setup */
3983 netdev
->netdev_ops
= &nfp_net_netdev_ops
;
3984 netdev
->watchdog_timeo
= msecs_to_jiffies(5 * 1000);
3986 /* MTU range: 68 - hw-specific max */
3987 netdev
->min_mtu
= ETH_MIN_MTU
;
3988 netdev
->max_mtu
= nn
->max_mtu
;
3990 netdev
->gso_max_segs
= NFP_NET_LSO_MAX_SEGS
;
3992 netif_carrier_off(netdev
);
3994 nfp_net_set_ethtool_ops(netdev
);
3997 static int nfp_net_read_caps(struct nfp_net
*nn
)
3999 /* Get some of the read-only fields from the BAR */
4000 nn
->cap
= nn_readl(nn
, NFP_NET_CFG_CAP
);
4001 nn
->max_mtu
= nn_readl(nn
, NFP_NET_CFG_MAX_MTU
);
4003 /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases
4004 * we allow use of non-chained metadata if RSS(v1) is the only
4005 * advertised capability requiring metadata.
4007 nn
->dp
.chained_metadata_format
= nn
->fw_ver
.major
== 4 ||
4009 !(nn
->cap
& NFP_NET_CFG_CTRL_RSS
) ||
4010 nn
->cap
& NFP_NET_CFG_CTRL_CHAIN_META
;
4011 /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where
4012 * it has the same meaning as RSSv2.
4014 if (nn
->dp
.chained_metadata_format
&& nn
->fw_ver
.major
!= 4)
4015 nn
->cap
&= ~NFP_NET_CFG_CTRL_RSS
;
4017 /* Determine RX packet/metadata boundary offset */
4018 if (nn
->fw_ver
.major
>= 2) {
4021 reg
= nn_readl(nn
, NFP_NET_CFG_RX_OFFSET
);
4022 if (reg
> NFP_NET_MAX_PREPEND
) {
4023 nn_err(nn
, "Invalid rx offset: %d\n", reg
);
4026 nn
->dp
.rx_offset
= reg
;
4028 nn
->dp
.rx_offset
= NFP_NET_RX_OFFSET
;
4031 /* For control vNICs mask out the capabilities app doesn't want. */
4033 nn
->cap
&= nn
->app
->type
->ctrl_cap_mask
;
4039 * nfp_net_init() - Initialise/finalise the nfp_net structure
4040 * @nn: NFP Net device structure
4042 * Return: 0 on success or negative errno on error.
4044 int nfp_net_init(struct nfp_net
*nn
)
4048 nn
->dp
.rx_dma_dir
= DMA_FROM_DEVICE
;
4050 err
= nfp_net_read_caps(nn
);
4054 /* Set default MTU and Freelist buffer size */
4055 if (!nfp_net_is_data_vnic(nn
) && nn
->app
->ctrl_mtu
) {
4056 nn
->dp
.mtu
= min(nn
->app
->ctrl_mtu
, nn
->max_mtu
);
4057 } else if (nn
->max_mtu
< NFP_NET_DEFAULT_MTU
) {
4058 nn
->dp
.mtu
= nn
->max_mtu
;
4060 nn
->dp
.mtu
= NFP_NET_DEFAULT_MTU
;
4062 nn
->dp
.fl_bufsz
= nfp_net_calc_fl_bufsz(&nn
->dp
);
4064 if (nfp_app_ctrl_uses_data_vnics(nn
->app
))
4065 nn
->dp
.ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_CMSG_DATA
;
4067 if (nn
->cap
& NFP_NET_CFG_CTRL_RSS_ANY
) {
4068 nfp_net_rss_init(nn
);
4069 nn
->dp
.ctrl
|= nn
->cap
& NFP_NET_CFG_CTRL_RSS2
?:
4070 NFP_NET_CFG_CTRL_RSS
;
4073 /* Allow L2 Broadcast and Multicast through by default, if supported */
4074 if (nn
->cap
& NFP_NET_CFG_CTRL_L2BC
)
4075 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_L2BC
;
4077 /* Allow IRQ moderation, if supported */
4078 if (nn
->cap
& NFP_NET_CFG_CTRL_IRQMOD
) {
4079 nfp_net_irqmod_init(nn
);
4080 nn
->dp
.ctrl
|= NFP_NET_CFG_CTRL_IRQMOD
;
4083 /* Stash the re-configuration queue away. First odd queue in TX Bar */
4084 nn
->qcp_cfg
= nn
->tx_bar
+ NFP_QCP_QUEUE_ADDR_SZ
;
4086 /* Make sure the FW knows the netdev is supposed to be disabled here */
4087 nn_writel(nn
, NFP_NET_CFG_CTRL
, 0);
4088 nn_writeq(nn
, NFP_NET_CFG_TXRS_ENABLE
, 0);
4089 nn_writeq(nn
, NFP_NET_CFG_RXRS_ENABLE
, 0);
4090 err
= nfp_net_reconfig(nn
, NFP_NET_CFG_UPDATE_RING
|
4091 NFP_NET_CFG_UPDATE_GEN
);
4095 if (nn
->dp
.netdev
) {
4096 nfp_net_netdev_init(nn
);
4098 err
= nfp_ccm_mbox_init(nn
);
4102 err
= nfp_net_tls_init(nn
);
4104 goto err_clean_mbox
;
4107 nfp_net_vecs_init(nn
);
4111 return register_netdev(nn
->dp
.netdev
);
4114 nfp_ccm_mbox_clean(nn
);
4119 * nfp_net_clean() - Undo what nfp_net_init() did.
4120 * @nn: NFP Net device structure
4122 void nfp_net_clean(struct nfp_net
*nn
)
4127 unregister_netdev(nn
->dp
.netdev
);
4128 nfp_ccm_mbox_clean(nn
);
4129 nfp_net_reconfig_wait_posted(nn
);