WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / qlogic / qed / qed_init_fw_funcs.c
blobea888a2c6ddbdd34556dee24ca791d510db89912
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
7 #include <linux/types.h>
8 #include <linux/crc8.h>
9 #include <linux/delay.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 #include "qed_hsi.h"
14 #include "qed_hw.h"
15 #include "qed_init_ops.h"
16 #include "qed_reg_addr.h"
18 #define CDU_VALIDATION_DEFAULT_CFG 61
20 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
21 {400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */
22 {528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */
23 {608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */
26 static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
27 {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
30 /* General constants */
31 #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
32 QM_PQ_ELEMENT_SIZE, \
33 0x1000) : 0)
34 #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
35 0x100) - 1 : 0)
36 #define QM_INVALID_PQ_ID 0xffff
38 /* Max link speed (in Mbps) */
39 #define QM_MAX_LINK_SPEED 100000
41 /* Feature enable */
42 #define QM_BYPASS_EN 1
43 #define QM_BYTE_CRD_EN 1
45 /* Other PQ constants */
46 #define QM_OTHER_PQS_PER_PF 4
48 /* WFQ constants */
50 /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
51 #define QM_WFQ_UPPER_BOUND 62500000
53 /* Bit of VOQ in WFQ VP PQ map */
54 #define QM_WFQ_VP_PQ_VOQ_SHIFT 0
56 /* Bit of PF in WFQ VP PQ map */
57 #define QM_WFQ_VP_PQ_PF_E4_SHIFT 5
59 /* 0x9000 = 4*9*1024 */
60 #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
62 /* Max WFQ increment value is 0.7 * upper bound */
63 #define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10)
65 /* RL constants */
67 /* Period in us */
68 #define QM_RL_PERIOD 5
70 /* Period in 25MHz cycles */
71 #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
73 /* RL increment value - rate is specified in mbps */
74 #define QM_RL_INC_VAL(rate) ({ \
75 typeof(rate) __rate = (rate); \
76 max_t(u32, \
77 (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
78 (8 * 100)), \
79 1); })
81 /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
82 #define QM_PF_RL_UPPER_BOUND 62500000
84 /* Max PF RL increment value is 0.7 * upper bound */
85 #define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
87 /* Vport RL Upper bound, link speed is in Mpbs */
88 #define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \
89 QM_RL_INC_VAL(speed), \
90 9700 + 1000))
92 /* Max Vport RL increment value is the Vport RL upper bound */
93 #define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed)
95 /* Vport RL credit threshold in case of QM bypass */
96 #define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1)
98 /* AFullOprtnstcCrdMask constants */
99 #define QM_OPPOR_LINE_VOQ_DEF 1
100 #define QM_OPPOR_FW_STOP_DEF 0
101 #define QM_OPPOR_PQ_EMPTY_DEF 1
103 /* Command Queue constants */
105 /* Pure LB CmdQ lines (+spare) */
106 #define PBF_CMDQ_PURE_LB_LINES 150
108 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
109 (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
110 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
111 PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
113 #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
114 (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
115 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
116 PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
118 /* Returns the VOQ line credit for the specified number of PBF command lines.
119 * PBF lines are specified in 256b units.
121 #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
122 ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
124 /* BTB: blocks constants (block size = 256B) */
126 /* 256B blocks in 9700B packet */
127 #define BTB_JUMBO_PKT_BLOCKS 38
129 /* Headroom per-port */
130 #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
131 #define BTB_PURE_LB_FACTOR 10
133 /* Factored (hence really 0.7) */
134 #define BTB_PURE_LB_RATIO 7
136 /* QM stop command constants */
137 #define QM_STOP_PQ_MASK_WIDTH 32
138 #define QM_STOP_CMD_ADDR 2
139 #define QM_STOP_CMD_STRUCT_SIZE 2
140 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
141 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
142 #define QM_STOP_CMD_PAUSE_MASK_MASK -1
143 #define QM_STOP_CMD_GROUP_ID_OFFSET 1
144 #define QM_STOP_CMD_GROUP_ID_SHIFT 16
145 #define QM_STOP_CMD_GROUP_ID_MASK 15
146 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1
147 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24
148 #define QM_STOP_CMD_PQ_TYPE_MASK 1
149 #define QM_STOP_CMD_MAX_POLL_COUNT 100
150 #define QM_STOP_CMD_POLL_PERIOD_US 500
152 /* QM command macros */
153 #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
154 #define QM_CMD_SET_FIELD(var, cmd, field, value) \
155 SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
156 cmd ## _ ## field, \
157 value)
159 #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid, \
160 rl_id, ext_voq, wrr) \
161 do { \
162 u32 __reg = 0; \
164 BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg)); \
166 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); \
167 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_VALID, \
168 !!(rl_valid)); \
169 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, (vp_pq_id)); \
170 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_ID, (rl_id)); \
171 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VOQ, (ext_voq)); \
172 SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, \
173 (wrr)); \
175 STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
176 __reg); \
177 (map).reg = cpu_to_le32(__reg); \
178 } while (0)
180 #define WRITE_PQ_INFO_TO_RAM 1
181 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
182 (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
183 ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
184 (((rl) >> 8) << 9))
186 #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
187 XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
188 XSTORM_PQ_INFO_OFFSET(pq_id)
190 /******************** INTERNAL IMPLEMENTATION *********************/
192 /* Returns the external VOQ number */
193 static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
194 u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
196 if (tc == PURE_LB_TC)
197 return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
198 else
199 return port_id * max_phys_tcs_per_port + tc;
202 /* Prepare PF RL enable/disable runtime init values */
203 static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
205 STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
206 if (pf_rl_en) {
207 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
208 u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
210 /* Enable RLs for all VOQs */
211 STORE_RT_REG(p_hwfn,
212 QM_REG_RLPFVOQENABLE_RT_OFFSET,
213 (u32)voq_bit_mask);
215 /* Write RL period */
216 STORE_RT_REG(p_hwfn,
217 QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
218 STORE_RT_REG(p_hwfn,
219 QM_REG_RLPFPERIODTIMER_RT_OFFSET,
220 QM_RL_PERIOD_CLK_25M);
222 /* Set credit threshold for QM bypass flow */
223 if (QM_BYPASS_EN)
224 STORE_RT_REG(p_hwfn,
225 QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
226 QM_PF_RL_UPPER_BOUND);
230 /* Prepare PF WFQ enable/disable runtime init values */
231 static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
233 STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
235 /* Set credit threshold for QM bypass flow */
236 if (pf_wfq_en && QM_BYPASS_EN)
237 STORE_RT_REG(p_hwfn,
238 QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
239 QM_WFQ_UPPER_BOUND);
242 /* Prepare global RL enable/disable runtime init values */
243 static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
245 STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
246 global_rl_en ? 1 : 0);
247 if (global_rl_en) {
248 /* Write RL period (use timer 0 only) */
249 STORE_RT_REG(p_hwfn,
250 QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
251 QM_RL_PERIOD_CLK_25M);
252 STORE_RT_REG(p_hwfn,
253 QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
254 QM_RL_PERIOD_CLK_25M);
256 /* Set credit threshold for QM bypass flow */
257 if (QM_BYPASS_EN)
258 STORE_RT_REG(p_hwfn,
259 QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
260 QM_VP_RL_BYPASS_THRESH_SPEED);
264 /* Prepare VPORT WFQ enable/disable runtime init values */
265 static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
267 STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
268 vport_wfq_en ? 1 : 0);
270 /* Set credit threshold for QM bypass flow */
271 if (vport_wfq_en && QM_BYPASS_EN)
272 STORE_RT_REG(p_hwfn,
273 QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
274 QM_WFQ_UPPER_BOUND);
277 /* Prepare runtime init values to allocate PBF command queue lines for
278 * the specified VOQ.
280 static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
281 u8 ext_voq, u16 cmdq_lines)
283 u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
285 OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
286 (u32)cmdq_lines);
287 STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
288 qm_line_crd);
289 STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
290 qm_line_crd);
293 /* Prepare runtime init values to allocate PBF command queue lines. */
294 static void qed_cmdq_lines_rt_init(
295 struct qed_hwfn *p_hwfn,
296 u8 max_ports_per_engine,
297 u8 max_phys_tcs_per_port,
298 struct init_qm_port_params port_params[MAX_NUM_PORTS])
300 u8 tc, ext_voq, port_id, num_tcs_in_port;
301 u8 num_ext_voqs = MAX_NUM_VOQS_E4;
303 /* Clear PBF lines of all VOQs */
304 for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
305 STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
307 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
308 u16 phys_lines, phys_lines_per_tc;
310 if (!port_params[port_id].active)
311 continue;
313 /* Find number of command queue lines to divide between the
314 * active physical TCs.
316 phys_lines = port_params[port_id].num_pbf_cmd_lines;
317 phys_lines -= PBF_CMDQ_PURE_LB_LINES;
319 /* Find #lines per active physical TC */
320 num_tcs_in_port = 0;
321 for (tc = 0; tc < max_phys_tcs_per_port; tc++)
322 if (((port_params[port_id].active_phys_tcs >>
323 tc) & 0x1) == 1)
324 num_tcs_in_port++;
325 phys_lines_per_tc = phys_lines / num_tcs_in_port;
327 /* Init registers per active TC */
328 for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
329 ext_voq = qed_get_ext_voq(p_hwfn,
330 port_id,
331 tc, max_phys_tcs_per_port);
332 if (((port_params[port_id].active_phys_tcs >>
333 tc) & 0x1) == 1)
334 qed_cmdq_lines_voq_rt_init(p_hwfn,
335 ext_voq,
336 phys_lines_per_tc);
339 /* Init registers for pure LB TC */
340 ext_voq = qed_get_ext_voq(p_hwfn,
341 port_id,
342 PURE_LB_TC, max_phys_tcs_per_port);
343 qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
344 PBF_CMDQ_PURE_LB_LINES);
348 /* Prepare runtime init values to allocate guaranteed BTB blocks for the
349 * specified port. The guaranteed BTB space is divided between the TCs as
350 * follows (shared space Is currently not used):
351 * 1. Parameters:
352 * B - BTB blocks for this port
353 * C - Number of physical TCs for this port
354 * 2. Calculation:
355 * a. 38 blocks (9700B jumbo frame) are allocated for global per port
356 * headroom.
357 * b. B = B - 38 (remainder after global headroom allocation).
358 * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
359 * d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
360 * e. B/C blocks are allocated for each physical TC.
361 * Assumptions:
362 * - MTU is up to 9700 bytes (38 blocks)
363 * - All TCs are considered symmetrical (same rate and packet size)
364 * - No optimization for lossy TC (all are considered lossless). Shared space
365 * is not enabled and allocated for each TC.
367 static void qed_btb_blocks_rt_init(
368 struct qed_hwfn *p_hwfn,
369 u8 max_ports_per_engine,
370 u8 max_phys_tcs_per_port,
371 struct init_qm_port_params port_params[MAX_NUM_PORTS])
373 u32 usable_blocks, pure_lb_blocks, phys_blocks;
374 u8 tc, ext_voq, port_id, num_tcs_in_port;
376 for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
377 if (!port_params[port_id].active)
378 continue;
380 /* Subtract headroom blocks */
381 usable_blocks = port_params[port_id].num_btb_blocks -
382 BTB_HEADROOM_BLOCKS;
384 /* Find blocks per physical TC. Use factor to avoid floating
385 * arithmethic.
387 num_tcs_in_port = 0;
388 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
389 if (((port_params[port_id].active_phys_tcs >>
390 tc) & 0x1) == 1)
391 num_tcs_in_port++;
393 pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
394 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
395 BTB_PURE_LB_RATIO);
396 pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
397 pure_lb_blocks / BTB_PURE_LB_FACTOR);
398 phys_blocks = (usable_blocks - pure_lb_blocks) /
399 num_tcs_in_port;
401 /* Init physical TCs */
402 for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
403 if (((port_params[port_id].active_phys_tcs >>
404 tc) & 0x1) == 1) {
405 ext_voq =
406 qed_get_ext_voq(p_hwfn,
407 port_id,
409 max_phys_tcs_per_port);
410 STORE_RT_REG(p_hwfn,
411 PBF_BTB_GUARANTEED_RT_OFFSET
412 (ext_voq), phys_blocks);
416 /* Init pure LB TC */
417 ext_voq = qed_get_ext_voq(p_hwfn,
418 port_id,
419 PURE_LB_TC, max_phys_tcs_per_port);
420 STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
421 pure_lb_blocks);
425 /* Prepare runtime init values for the specified RL.
426 * Set max link speed (100Gbps) per rate limiter.
427 * Return -1 on error.
429 static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
431 u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
432 (u32)QM_RL_CRD_REG_SIGN_BIT;
433 u32 inc_val;
434 u16 rl_id;
436 /* Go over all global RLs */
437 for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
438 inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
440 STORE_RT_REG(p_hwfn,
441 QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
442 (u32)QM_RL_CRD_REG_SIGN_BIT);
443 STORE_RT_REG(p_hwfn,
444 QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
445 upper_bound);
446 STORE_RT_REG(p_hwfn,
447 QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
450 return 0;
453 /* Prepare Tx PQ mapping runtime init values for the specified PF */
454 static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
455 struct qed_ptt *p_ptt,
456 struct qed_qm_pf_rt_init_params *p_params,
457 u32 base_mem_addr_4kb)
459 u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
460 struct init_qm_vport_params *vport_params = p_params->vport_params;
461 u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
462 u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
463 struct init_qm_pq_params *pq_params = p_params->pq_params;
464 u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
466 num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
468 first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
469 last_pq_group = (p_params->start_pq + num_pqs - 1) /
470 QM_PF_QUEUE_GROUP_SIZE;
472 pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
473 vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
474 mem_addr_4kb = base_mem_addr_4kb;
476 /* Set mapping from PQ group to PF */
477 for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
478 STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
479 (u32)(p_params->pf_id));
481 /* Set PQ sizes */
482 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
483 QM_PQ_SIZE_256B(p_params->num_pf_cids));
484 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
485 QM_PQ_SIZE_256B(p_params->num_vf_cids));
487 /* Go over all Tx PQs */
488 for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
489 u16 *p_first_tx_pq_id, vport_id_in_pf;
490 struct qm_rf_pq_map_e4 tx_pq_map;
491 u8 tc_id = pq_params[i].tc_id;
492 bool is_vf_pq;
493 u8 ext_voq;
495 ext_voq = qed_get_ext_voq(p_hwfn,
496 pq_params[i].port_id,
497 tc_id,
498 p_params->max_phys_tcs_per_port);
499 is_vf_pq = (i >= p_params->num_pf_pqs);
501 /* Update first Tx PQ of VPORT/TC */
502 vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
503 p_first_tx_pq_id =
504 &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
505 if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
506 u32 map_val =
507 (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
508 (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
510 /* Create new VP PQ */
511 *p_first_tx_pq_id = pq_id;
513 /* Map VP PQ to VOQ and PF */
514 STORE_RT_REG(p_hwfn,
515 QM_REG_WFQVPMAP_RT_OFFSET +
516 *p_first_tx_pq_id,
517 map_val);
520 /* Prepare PQ map entry */
521 QM_INIT_TX_PQ_MAP(p_hwfn,
522 tx_pq_map,
524 pq_id,
525 *p_first_tx_pq_id,
526 pq_params[i].rl_valid,
527 pq_params[i].rl_id,
528 ext_voq, pq_params[i].wrr_group);
530 /* Set PQ base address */
531 STORE_RT_REG(p_hwfn,
532 QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
533 mem_addr_4kb);
535 /* Clear PQ pointer table entry (64 bit) */
536 if (p_params->is_pf_loading)
537 for (j = 0; j < 2; j++)
538 STORE_RT_REG(p_hwfn,
539 QM_REG_PTRTBLTX_RT_OFFSET +
540 (pq_id * 2) + j, 0);
542 /* Write PQ info to RAM */
543 if (WRITE_PQ_INFO_TO_RAM != 0) {
544 u32 pq_info = 0;
546 pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
547 p_params->pf_id,
548 tc_id,
549 pq_params[i].port_id,
550 pq_params[i].rl_valid,
551 pq_params[i].rl_id);
552 qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
553 pq_info);
556 /* If VF PQ, add indication to PQ VF mask */
557 if (is_vf_pq) {
558 tx_pq_vf_mask[pq_id /
559 QM_PF_QUEUE_GROUP_SIZE] |=
560 BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
561 mem_addr_4kb += vport_pq_mem_4kb;
562 } else {
563 mem_addr_4kb += pq_mem_4kb;
567 /* Store Tx PQ VF mask to size select register */
568 for (i = 0; i < num_tx_pq_vf_masks; i++)
569 if (tx_pq_vf_mask[i])
570 STORE_RT_REG(p_hwfn,
571 QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
572 tx_pq_vf_mask[i]);
575 /* Prepare Other PQ mapping runtime init values for the specified PF */
576 static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
577 u8 pf_id,
578 bool is_pf_loading,
579 u32 num_pf_cids,
580 u32 num_tids, u32 base_mem_addr_4kb)
582 u32 pq_size, pq_mem_4kb, mem_addr_4kb;
583 u16 i, j, pq_id, pq_group;
585 /* A single other PQ group is used in each PF, where PQ group i is used
586 * in PF i.
588 pq_group = pf_id;
589 pq_size = num_pf_cids + num_tids;
590 pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
591 mem_addr_4kb = base_mem_addr_4kb;
593 /* Map PQ group to PF */
594 STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
595 (u32)(pf_id));
597 /* Set PQ sizes */
598 STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
599 QM_PQ_SIZE_256B(pq_size));
601 for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
602 i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
603 /* Set PQ base address */
604 STORE_RT_REG(p_hwfn,
605 QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
606 mem_addr_4kb);
608 /* Clear PQ pointer table entry */
609 if (is_pf_loading)
610 for (j = 0; j < 2; j++)
611 STORE_RT_REG(p_hwfn,
612 QM_REG_PTRTBLOTHER_RT_OFFSET +
613 (pq_id * 2) + j, 0);
615 mem_addr_4kb += pq_mem_4kb;
619 /* Prepare PF WFQ runtime init values for the specified PF.
620 * Return -1 on error.
622 static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
624 struct qed_qm_pf_rt_init_params *p_params)
626 u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
627 struct init_qm_pq_params *pq_params = p_params->pq_params;
628 u32 inc_val, crd_reg_offset;
629 u8 ext_voq;
630 u16 i;
632 inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
633 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
634 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
635 return -1;
638 for (i = 0; i < num_tx_pqs; i++) {
639 ext_voq = qed_get_ext_voq(p_hwfn,
640 pq_params[i].port_id,
641 pq_params[i].tc_id,
642 p_params->max_phys_tcs_per_port);
643 crd_reg_offset =
644 (p_params->pf_id < MAX_NUM_PFS_BB ?
645 QM_REG_WFQPFCRD_RT_OFFSET :
646 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
647 ext_voq * MAX_NUM_PFS_BB +
648 (p_params->pf_id % MAX_NUM_PFS_BB);
649 OVERWRITE_RT_REG(p_hwfn,
650 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
653 STORE_RT_REG(p_hwfn,
654 QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
655 QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
656 STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
657 inc_val);
659 return 0;
662 /* Prepare PF RL runtime init values for the specified PF.
663 * Return -1 on error.
665 static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
667 u32 inc_val = QM_RL_INC_VAL(pf_rl);
669 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
670 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
671 return -1;
674 STORE_RT_REG(p_hwfn,
675 QM_REG_RLPFCRD_RT_OFFSET + pf_id,
676 (u32)QM_RL_CRD_REG_SIGN_BIT);
677 STORE_RT_REG(p_hwfn,
678 QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
679 QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
680 STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
682 return 0;
685 /* Prepare VPORT WFQ runtime init values for the specified VPORTs.
686 * Return -1 on error.
688 static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
689 u16 num_vports,
690 struct init_qm_vport_params *vport_params)
692 u16 vport_pq_id, i;
693 u32 inc_val;
694 u8 tc;
696 /* Go over all PF VPORTs */
697 for (i = 0; i < num_vports; i++) {
698 if (!vport_params[i].wfq)
699 continue;
701 inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq);
702 if (inc_val > QM_WFQ_MAX_INC_VAL) {
703 DP_NOTICE(p_hwfn,
704 "Invalid VPORT WFQ weight configuration\n");
705 return -1;
708 /* Each VPORT can have several VPORT PQ IDs for various TCs */
709 for (tc = 0; tc < NUM_OF_TCS; tc++) {
710 vport_pq_id = vport_params[i].first_tx_pq_id[tc];
711 if (vport_pq_id != QM_INVALID_PQ_ID) {
712 STORE_RT_REG(p_hwfn,
713 QM_REG_WFQVPCRD_RT_OFFSET +
714 vport_pq_id,
715 (u32)QM_WFQ_CRD_REG_SIGN_BIT);
716 STORE_RT_REG(p_hwfn,
717 QM_REG_WFQVPWEIGHT_RT_OFFSET +
718 vport_pq_id, inc_val);
723 return 0;
726 static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
727 struct qed_ptt *p_ptt)
729 u32 reg_val, i;
731 for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
732 i++) {
733 udelay(QM_STOP_CMD_POLL_PERIOD_US);
734 reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
737 /* Check if timeout while waiting for SDM command ready */
738 if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
739 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
740 "Timeout when waiting for QM SDM command ready signal\n");
741 return false;
744 return true;
747 static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
748 struct qed_ptt *p_ptt,
749 u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
751 if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
752 return false;
754 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
755 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
756 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
757 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
758 qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
760 return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
763 /******************** INTERFACE IMPLEMENTATION *********************/
765 u32 qed_qm_pf_mem_size(u32 num_pf_cids,
766 u32 num_vf_cids,
767 u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
769 return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
770 QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
771 QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
774 int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
775 struct qed_qm_common_rt_init_params *p_params)
777 u32 mask = 0;
779 /* Init AFullOprtnstcCrdMask */
780 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
781 QM_OPPOR_LINE_VOQ_DEF);
782 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
783 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en);
784 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en);
785 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en);
786 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
787 p_params->global_rl_en);
788 SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
789 SET_FIELD(mask,
790 QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
791 STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
793 /* Enable/disable PF RL */
794 qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
796 /* Enable/disable PF WFQ */
797 qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
799 /* Enable/disable global RL */
800 qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
802 /* Enable/disable VPORT WFQ */
803 qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
805 /* Init PBF CMDQ line credit */
806 qed_cmdq_lines_rt_init(p_hwfn,
807 p_params->max_ports_per_engine,
808 p_params->max_phys_tcs_per_port,
809 p_params->port_params);
811 /* Init BTB blocks in PBF */
812 qed_btb_blocks_rt_init(p_hwfn,
813 p_params->max_ports_per_engine,
814 p_params->max_phys_tcs_per_port,
815 p_params->port_params);
817 qed_global_rl_rt_init(p_hwfn);
819 return 0;
822 int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
823 struct qed_ptt *p_ptt,
824 struct qed_qm_pf_rt_init_params *p_params)
826 struct init_qm_vport_params *vport_params = p_params->vport_params;
827 u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
828 p_params->num_tids) *
829 QM_OTHER_PQS_PER_PF;
830 u16 i;
831 u8 tc;
834 /* Clear first Tx PQ ID array for each VPORT */
835 for (i = 0; i < p_params->num_vports; i++)
836 for (tc = 0; tc < NUM_OF_TCS; tc++)
837 vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
839 /* Map Other PQs (if any) */
840 qed_other_pq_map_rt_init(p_hwfn,
841 p_params->pf_id,
842 p_params->is_pf_loading, p_params->num_pf_cids,
843 p_params->num_tids, 0);
845 /* Map Tx PQs */
846 qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
848 /* Init PF WFQ */
849 if (p_params->pf_wfq)
850 if (qed_pf_wfq_rt_init(p_hwfn, p_params))
851 return -1;
853 /* Init PF RL */
854 if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
855 return -1;
857 /* Init VPORT WFQ */
858 if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
859 return -1;
861 return 0;
864 int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
865 struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
867 u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
869 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
870 DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
871 return -1;
874 qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
876 return 0;
879 int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
880 struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
882 u32 inc_val = QM_RL_INC_VAL(pf_rl);
884 if (inc_val > QM_PF_RL_MAX_INC_VAL) {
885 DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
886 return -1;
889 qed_wr(p_hwfn,
890 p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
891 qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
893 return 0;
896 int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
897 struct qed_ptt *p_ptt,
898 u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
900 u16 vport_pq_id;
901 u32 inc_val;
902 u8 tc;
904 inc_val = QM_WFQ_INC_VAL(wfq);
905 if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
906 DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
907 return -1;
910 /* A VPORT can have several VPORT PQ IDs for various TCs */
911 for (tc = 0; tc < NUM_OF_TCS; tc++) {
912 vport_pq_id = first_tx_pq_id[tc];
913 if (vport_pq_id != QM_INVALID_PQ_ID)
914 qed_wr(p_hwfn,
915 p_ptt,
916 QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
919 return 0;
922 int qed_init_global_rl(struct qed_hwfn *p_hwfn,
923 struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit)
925 u32 inc_val;
927 inc_val = QM_RL_INC_VAL(rate_limit);
928 if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) {
929 DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n");
930 return -1;
933 qed_wr(p_hwfn, p_ptt,
934 QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
935 qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
937 return 0;
940 bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
941 struct qed_ptt *p_ptt,
942 bool is_release_cmd,
943 bool is_tx_pq, u16 start_pq, u16 num_pqs)
945 u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
946 u32 pq_mask = 0, last_pq, pq_id;
948 last_pq = start_pq + num_pqs - 1;
950 /* Set command's PQ type */
951 QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
953 /* Go over requested PQs */
954 for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
955 /* Set PQ bit in mask (stop command only) */
956 if (!is_release_cmd)
957 pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
959 /* If last PQ or end of PQ mask, write command */
960 if ((pq_id == last_pq) ||
961 (pq_id % QM_STOP_PQ_MASK_WIDTH ==
962 (QM_STOP_PQ_MASK_WIDTH - 1))) {
963 QM_CMD_SET_FIELD(cmd_arr,
964 QM_STOP_CMD, PAUSE_MASK, pq_mask);
965 QM_CMD_SET_FIELD(cmd_arr,
966 QM_STOP_CMD,
967 GROUP_ID,
968 pq_id / QM_STOP_PQ_MASK_WIDTH);
969 if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
970 cmd_arr[0], cmd_arr[1]))
971 return false;
972 pq_mask = 0;
976 return true;
979 #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
980 do { \
981 typeof(var) *__p_var = &(var); \
982 typeof(offset) __offset = offset; \
983 *__p_var = (*__p_var & ~BIT(__offset)) | \
984 ((enable) ? BIT(__offset) : 0); \
985 } while (0)
987 #define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910
988 #define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910
990 #define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \
991 do { \
992 u32 i; \
994 for (i = 0; i < (arr_size); i++) \
995 qed_wr(dev, ptt, \
996 ((addr) + (4 * i)), \
997 ((u32 *)&(arr))[i]); \
998 } while (0)
1001 * qed_dmae_to_grc() - Internal function for writing from host to
1002 * wide-bus registers (split registers are not supported yet).
1004 * @p_hwfn: HW device data.
1005 * @p_ptt: PTT window used for writing the registers.
1006 * @p_data: Pointer to source data.
1007 * @addr: Destination register address.
1008 * @len_in_dwords: Data length in dwords (u32).
1010 * Return: Length of the written data in dwords (u32) or -1 on invalid
1011 * input.
1013 static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
1014 __le32 *p_data, u32 addr, u32 len_in_dwords)
1016 struct qed_dmae_params params = {};
1017 u32 *data_cpu;
1018 int rc;
1020 if (!p_data)
1021 return -1;
1023 /* Set DMAE params */
1024 SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
1026 /* Execute DMAE command */
1027 rc = qed_dmae_host2grc(p_hwfn, p_ptt,
1028 (u64)(uintptr_t)(p_data),
1029 addr, len_in_dwords, &params);
1031 /* If not read using DMAE, read using GRC */
1032 if (rc) {
1033 DP_VERBOSE(p_hwfn,
1034 QED_MSG_DEBUG,
1035 "Failed writing to chip using DMAE, using GRC instead\n");
1037 /* Swap to CPU byteorder and write to registers using GRC */
1038 data_cpu = (__force u32 *)p_data;
1039 le32_to_cpu_array(data_cpu, len_in_dwords);
1041 ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
1042 cpu_to_le32_array(data_cpu, len_in_dwords);
1045 return len_in_dwords;
1048 void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
1049 struct qed_ptt *p_ptt, u16 dest_port)
1051 /* Update PRS register */
1052 qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
1054 /* Update NIG register */
1055 qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
1057 /* Update PBF register */
1058 qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
1061 void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
1062 struct qed_ptt *p_ptt, bool vxlan_enable)
1064 u32 reg_val;
1065 u8 shift;
1067 /* Update PRS register */
1068 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1069 shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
1070 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1071 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1072 if (reg_val) {
1073 reg_val =
1074 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1076 /* Update output only if tunnel blocks not included. */
1077 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1078 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1079 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1082 /* Update NIG register */
1083 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1084 shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
1085 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
1086 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1088 /* Update DORQ register */
1089 qed_wr(p_hwfn,
1090 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
1093 void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
1094 struct qed_ptt *p_ptt,
1095 bool eth_gre_enable, bool ip_gre_enable)
1097 u32 reg_val;
1098 u8 shift;
1100 /* Update PRS register */
1101 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1102 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
1103 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1104 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
1105 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1106 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1107 if (reg_val) {
1108 reg_val =
1109 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1111 /* Update output only if tunnel blocks not included. */
1112 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1113 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1114 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1117 /* Update NIG register */
1118 reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
1119 shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
1120 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
1121 shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
1122 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
1123 qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
1125 /* Update DORQ registers */
1126 qed_wr(p_hwfn,
1127 p_ptt,
1128 DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
1129 qed_wr(p_hwfn,
1130 p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
1133 void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
1134 struct qed_ptt *p_ptt, u16 dest_port)
1136 /* Update PRS register */
1137 qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
1139 /* Update NIG register */
1140 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
1142 /* Update PBF register */
1143 qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
1146 void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
1147 struct qed_ptt *p_ptt,
1148 bool eth_geneve_enable, bool ip_geneve_enable)
1150 u32 reg_val;
1151 u8 shift;
1153 /* Update PRS register */
1154 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
1155 shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
1156 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
1157 shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
1158 SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
1159 qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
1160 if (reg_val) {
1161 reg_val =
1162 qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
1164 /* Update output only if tunnel blocks not included. */
1165 if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
1166 qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1167 (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
1170 /* Update NIG register */
1171 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
1172 eth_geneve_enable ? 1 : 0);
1173 qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
1175 /* EDPM with geneve tunnel not supported in BB */
1176 if (QED_IS_BB_B0(p_hwfn->cdev))
1177 return;
1179 /* Update DORQ registers */
1180 qed_wr(p_hwfn,
1181 p_ptt,
1182 DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
1183 eth_geneve_enable ? 1 : 0);
1184 qed_wr(p_hwfn,
1185 p_ptt,
1186 DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
1187 ip_geneve_enable ? 1 : 0);
1190 #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3
1191 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -925189872
1193 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
1194 struct qed_ptt *p_ptt, bool enable)
1196 u32 reg_val, cfg_mask;
1198 /* read PRS config register */
1199 reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
1201 /* set VXLAN_NO_L2_ENABLE mask */
1202 cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
1204 if (enable) {
1205 /* set VXLAN_NO_L2_ENABLE flag */
1206 reg_val |= cfg_mask;
1208 /* update PRS FIC register */
1209 qed_wr(p_hwfn,
1210 p_ptt,
1211 PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
1212 (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
1213 } else {
1214 /* clear VXLAN_NO_L2_ENABLE flag */
1215 reg_val &= ~cfg_mask;
1218 /* write PRS config register */
1219 qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
1222 #define T_ETH_PACKET_ACTION_GFT_EVENTID 23
1223 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
1224 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25
1225 #define PARSER_ETH_CONN_CM_HDR 0
1226 #define CAM_LINE_SIZE sizeof(u32)
1227 #define RAM_LINE_SIZE sizeof(u64)
1228 #define REG_SIZE sizeof(u32)
1230 void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
1232 struct regpair ram_line = { };
1234 /* Disable gft search for PF */
1235 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
1237 /* Clean ram & cam for next gft session */
1239 /* Zero camline */
1240 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
1242 /* Zero ramline */
1243 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1244 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1245 sizeof(ram_line) / REG_SIZE);
1248 void qed_gft_config(struct qed_hwfn *p_hwfn,
1249 struct qed_ptt *p_ptt,
1250 u16 pf_id,
1251 bool tcp,
1252 bool udp,
1253 bool ipv4, bool ipv6, enum gft_profile_type profile_type)
1255 struct regpair ram_line;
1256 u32 search_non_ip_as_gft;
1257 u32 reg_val, cam_line;
1258 u32 lo = 0, hi = 0;
1260 if (!ipv6 && !ipv4)
1261 DP_NOTICE(p_hwfn,
1262 "gft_config: must accept at least on of - ipv4 or ipv6'\n");
1263 if (!tcp && !udp)
1264 DP_NOTICE(p_hwfn,
1265 "gft_config: must accept at least on of - udp or tcp\n");
1266 if (profile_type >= MAX_GFT_PROFILE_TYPE)
1267 DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
1269 /* Set RFS event ID to be awakened i Tstorm By Prs */
1270 reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
1271 PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
1272 reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
1273 qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
1275 /* Do not load context only cid in PRS on match. */
1276 qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
1278 /* Do not use tenant ID exist bit for gft search */
1279 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
1281 /* Set Cam */
1282 cam_line = 0;
1283 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
1285 /* Filters are per PF!! */
1286 SET_FIELD(cam_line,
1287 GFT_CAM_LINE_MAPPED_PF_ID_MASK,
1288 GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
1289 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
1291 if (!(tcp && udp)) {
1292 SET_FIELD(cam_line,
1293 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
1294 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
1295 if (tcp)
1296 SET_FIELD(cam_line,
1297 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1298 GFT_PROFILE_TCP_PROTOCOL);
1299 else
1300 SET_FIELD(cam_line,
1301 GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
1302 GFT_PROFILE_UDP_PROTOCOL);
1305 if (!(ipv4 && ipv6)) {
1306 SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
1307 if (ipv4)
1308 SET_FIELD(cam_line,
1309 GFT_CAM_LINE_MAPPED_IP_VERSION,
1310 GFT_PROFILE_IPV4);
1311 else
1312 SET_FIELD(cam_line,
1313 GFT_CAM_LINE_MAPPED_IP_VERSION,
1314 GFT_PROFILE_IPV6);
1317 /* Write characteristics to cam */
1318 qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
1319 cam_line);
1320 cam_line =
1321 qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
1323 /* Write line to RAM - compare to filter 4 tuple */
1325 /* Search no IP as GFT */
1326 search_non_ip_as_gft = 0;
1328 /* Tunnel type */
1329 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
1330 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
1332 if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
1333 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1334 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1335 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1336 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1337 SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
1338 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1339 } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
1340 SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
1341 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1342 SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
1343 } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
1344 SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
1345 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1346 } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
1347 SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
1348 SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
1349 } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
1350 SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
1352 /* Allow tunneled traffic without inner IP */
1353 search_non_ip_as_gft = 1;
1356 ram_line.lo = cpu_to_le32(lo);
1357 ram_line.hi = cpu_to_le32(hi);
1359 qed_wr(p_hwfn,
1360 p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
1361 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1362 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
1363 sizeof(ram_line) / REG_SIZE);
1365 /* Set default profile so that no filter match will happen */
1366 ram_line.lo = cpu_to_le32(0xffffffff);
1367 ram_line.hi = cpu_to_le32(0x3ff);
1368 qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
1369 PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
1370 PRS_GFT_CAM_LINES_NO_MATCH,
1371 sizeof(ram_line) / REG_SIZE);
1373 /* Enable gft search */
1374 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
1377 DECLARE_CRC8_TABLE(cdu_crc8_table);
1379 /* Calculate and return CDU validation byte per connection type/region/cid */
1380 static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
1382 const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
1383 u8 crc, validation_byte = 0;
1384 static u8 crc8_table_valid; /* automatically initialized to 0 */
1385 u32 validation_string = 0;
1386 __be32 data_to_crc;
1388 if (!crc8_table_valid) {
1389 crc8_populate_msb(cdu_crc8_table, 0x07);
1390 crc8_table_valid = 1;
1393 /* The CRC is calculated on the String-to-compress:
1394 * [31:8] = {CID[31:20],CID[11:0]}
1395 * [7:4] = Region
1396 * [3:0] = Type
1398 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
1399 validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
1401 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
1402 validation_string |= ((region & 0xF) << 4);
1404 if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
1405 validation_string |= (conn_type & 0xF);
1407 /* Convert to big-endian and calculate CRC8 */
1408 data_to_crc = cpu_to_be32(validation_string);
1409 crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
1410 CRC8_INIT_VALUE);
1412 /* The validation byte [7:0] is composed:
1413 * for type A validation
1414 * [7] = active configuration bit
1415 * [6:0] = crc[6:0]
1417 * for type B validation
1418 * [7] = active configuration bit
1419 * [6:3] = connection_type[3:0]
1420 * [2:0] = crc[2:0]
1422 validation_byte |=
1423 ((validation_cfg >>
1424 CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
1426 if ((validation_cfg >>
1427 CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
1428 validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
1429 else
1430 validation_byte |= crc & 0x7F;
1432 return validation_byte;
1435 /* Calcualte and set validation bytes for session context */
1436 void qed_calc_session_ctx_validation(void *p_ctx_mem,
1437 u16 ctx_size, u8 ctx_type, u32 cid)
1439 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1441 p_ctx = (u8 * const)p_ctx_mem;
1442 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1443 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1444 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1446 memset(p_ctx, 0, ctx_size);
1448 *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
1449 *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
1450 *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
1453 /* Calcualte and set validation bytes for task context */
1454 void qed_calc_task_ctx_validation(void *p_ctx_mem,
1455 u16 ctx_size, u8 ctx_type, u32 tid)
1457 u8 *p_ctx, *region1_val_ptr;
1459 p_ctx = (u8 * const)p_ctx_mem;
1460 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1462 memset(p_ctx, 0, ctx_size);
1464 *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
1467 /* Memset session context to 0 while preserving validation bytes */
1468 void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1470 u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
1471 u8 x_val, t_val, u_val;
1473 p_ctx = (u8 * const)p_ctx_mem;
1474 x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
1475 t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
1476 u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
1478 x_val = *x_val_ptr;
1479 t_val = *t_val_ptr;
1480 u_val = *u_val_ptr;
1482 memset(p_ctx, 0, ctx_size);
1484 *x_val_ptr = x_val;
1485 *t_val_ptr = t_val;
1486 *u_val_ptr = u_val;
1489 /* Memset task context to 0 while preserving validation bytes */
1490 void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
1492 u8 *p_ctx, *region1_val_ptr;
1493 u8 region1_val;
1495 p_ctx = (u8 * const)p_ctx_mem;
1496 region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
1498 region1_val = *region1_val_ptr;
1500 memset(p_ctx, 0, ctx_size);
1502 *region1_val_ptr = region1_val;
1505 /* Enable and configure context validation */
1506 void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
1507 struct qed_ptt *p_ptt)
1509 u32 ctx_validation;
1511 /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
1512 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
1513 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
1515 /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
1516 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1517 qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
1519 /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
1520 ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
1521 qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
1524 static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1526 switch (storm_id) {
1527 case 0:
1528 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1529 TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1530 case 1:
1531 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1532 MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1533 case 2:
1534 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1535 USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1536 case 3:
1537 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1538 XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1539 case 4:
1540 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1541 YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1542 case 5:
1543 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1544 PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
1546 default:
1547 return 0;
1551 void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
1552 struct qed_ptt *p_ptt,
1553 u8 assert_level[NUM_STORMS])
1555 u8 storm_id;
1557 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1558 u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
1560 qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
1564 #define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4)
1565 #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
1567 static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
1569 switch (storm_id) {
1570 case 0:
1571 return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1572 TSTORM_OVERLAY_BUF_ADDR_OFFSET;
1573 case 1:
1574 return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1575 MSTORM_OVERLAY_BUF_ADDR_OFFSET;
1576 case 2:
1577 return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1578 USTORM_OVERLAY_BUF_ADDR_OFFSET;
1579 case 3:
1580 return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1581 XSTORM_OVERLAY_BUF_ADDR_OFFSET;
1582 case 4:
1583 return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1584 YSTORM_OVERLAY_BUF_ADDR_OFFSET;
1585 case 5:
1586 return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
1587 PSTORM_OVERLAY_BUF_ADDR_OFFSET;
1589 default:
1590 return 0;
1594 struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
1595 const u32 * const
1596 fw_overlay_in_buf,
1597 u32 buf_size_in_bytes)
1599 u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
1600 struct phys_mem_desc *allocated_mem;
1602 if (!buf_size)
1603 return NULL;
1605 allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
1606 GFP_KERNEL);
1607 if (!allocated_mem)
1608 return NULL;
1610 memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc));
1612 /* For each Storm, set physical address in RAM */
1613 while (buf_offset < buf_size) {
1614 struct phys_mem_desc *storm_mem_desc;
1615 struct fw_overlay_buf_hdr *hdr;
1616 u32 storm_buf_size;
1617 u8 storm_id;
1619 hdr =
1620 (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
1621 storm_buf_size = GET_FIELD(hdr->data,
1622 FW_OVERLAY_BUF_HDR_BUF_SIZE);
1623 storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
1624 storm_mem_desc = allocated_mem + storm_id;
1625 storm_mem_desc->size = storm_buf_size * sizeof(u32);
1627 /* Allocate physical memory for Storm's overlays buffer */
1628 storm_mem_desc->virt_addr =
1629 dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1630 storm_mem_desc->size,
1631 &storm_mem_desc->phys_addr, GFP_KERNEL);
1632 if (!storm_mem_desc->virt_addr)
1633 break;
1635 /* Skip overlays buffer header */
1636 buf_offset += OVERLAY_HDR_SIZE_DWORDS;
1638 /* Copy Storm's overlays buffer to allocated memory */
1639 memcpy(storm_mem_desc->virt_addr,
1640 &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
1642 /* Advance to next Storm */
1643 buf_offset += storm_buf_size;
1646 /* If memory allocation has failed, free all allocated memory */
1647 if (buf_offset < buf_size) {
1648 qed_fw_overlay_mem_free(p_hwfn, allocated_mem);
1649 return NULL;
1652 return allocated_mem;
1655 void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
1656 struct qed_ptt *p_ptt,
1657 struct phys_mem_desc *fw_overlay_mem)
1659 u8 storm_id;
1661 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1662 struct phys_mem_desc *storm_mem_desc =
1663 (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1664 u32 ram_addr, i;
1666 /* Skip Storms with no FW overlays */
1667 if (!storm_mem_desc->virt_addr)
1668 continue;
1670 /* Calculate overlay RAM GRC address of current PF */
1671 ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
1672 sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
1674 /* Write Storm's overlay physical address to RAM */
1675 for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
1676 qed_wr(p_hwfn, p_ptt, ram_addr,
1677 ((u32 *)&storm_mem_desc->phys_addr)[i]);
1681 void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
1682 struct phys_mem_desc *fw_overlay_mem)
1684 u8 storm_id;
1686 if (!fw_overlay_mem)
1687 return;
1689 for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
1690 struct phys_mem_desc *storm_mem_desc =
1691 (struct phys_mem_desc *)fw_overlay_mem + storm_id;
1693 /* Free Storm's physical memory */
1694 if (storm_mem_desc->virt_addr)
1695 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1696 storm_mem_desc->size,
1697 storm_mem_desc->virt_addr,
1698 storm_mem_desc->phys_addr);
1701 /* Free allocated virtual memory */
1702 kfree(fw_overlay_mem);