WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / qlogic / qede / qede_fp.c
blobca0ee29a57b50ac4fd15d19be46ab6de0766a311
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/skbuff.h>
10 #include <linux/bpf_trace.h>
11 #include <net/udp_tunnel.h>
12 #include <linux/ip.h>
13 #include <net/ipv6.h>
14 #include <net/tcp.h>
15 #include <linux/if_ether.h>
16 #include <linux/if_vlan.h>
17 #include <net/ip6_checksum.h>
18 #include "qede_ptp.h"
20 #include <linux/qed/qed_if.h>
21 #include "qede.h"
22 /*********************************
23 * Content also used by slowpath *
24 *********************************/
26 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
28 struct sw_rx_data *sw_rx_data;
29 struct eth_rx_bd *rx_bd;
30 dma_addr_t mapping;
31 struct page *data;
33 /* In case lazy-allocation is allowed, postpone allocation until the
34 * end of the NAPI run. We'd still need to make sure the Rx ring has
35 * sufficient buffers to guarantee an additional Rx interrupt.
37 if (allow_lazy && likely(rxq->filled_buffers > 12)) {
38 rxq->filled_buffers--;
39 return 0;
42 data = alloc_pages(GFP_ATOMIC, 0);
43 if (unlikely(!data))
44 return -ENOMEM;
46 /* Map the entire page as it would be used
47 * for multiple RX buffer segment size mapping.
49 mapping = dma_map_page(rxq->dev, data, 0,
50 PAGE_SIZE, rxq->data_direction);
51 if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
52 __free_page(data);
53 return -ENOMEM;
56 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
57 sw_rx_data->page_offset = 0;
58 sw_rx_data->data = data;
59 sw_rx_data->mapping = mapping;
61 /* Advance PROD and get BD pointer */
62 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
63 WARN_ON(!rx_bd);
64 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
65 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
66 rxq->rx_headroom);
68 rxq->sw_rx_prod++;
69 rxq->filled_buffers++;
71 return 0;
74 /* Unmap the data and free skb */
75 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
77 u16 idx = txq->sw_tx_cons;
78 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
79 struct eth_tx_1st_bd *first_bd;
80 struct eth_tx_bd *tx_data_bd;
81 int bds_consumed = 0;
82 int nbds;
83 bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
84 int i, split_bd_len = 0;
86 if (unlikely(!skb)) {
87 DP_ERR(edev,
88 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
89 idx, txq->sw_tx_cons, txq->sw_tx_prod);
90 return -1;
93 *len = skb->len;
95 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
97 bds_consumed++;
99 nbds = first_bd->data.nbds;
101 if (data_split) {
102 struct eth_tx_bd *split = (struct eth_tx_bd *)
103 qed_chain_consume(&txq->tx_pbl);
104 split_bd_len = BD_UNMAP_LEN(split);
105 bds_consumed++;
107 dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
108 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
110 /* Unmap the data of the skb frags */
111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
112 tx_data_bd = (struct eth_tx_bd *)
113 qed_chain_consume(&txq->tx_pbl);
114 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
115 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
118 while (bds_consumed++ < nbds)
119 qed_chain_consume(&txq->tx_pbl);
121 /* Free skb */
122 dev_kfree_skb_any(skb);
123 txq->sw_tx_ring.skbs[idx].skb = NULL;
124 txq->sw_tx_ring.skbs[idx].flags = 0;
126 return 0;
129 /* Unmap the data and free skb when mapping failed during start_xmit */
130 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
131 struct eth_tx_1st_bd *first_bd,
132 int nbd, bool data_split)
134 u16 idx = txq->sw_tx_prod;
135 struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
136 struct eth_tx_bd *tx_data_bd;
137 int i, split_bd_len = 0;
139 /* Return prod to its position before this skb was handled */
140 qed_chain_set_prod(&txq->tx_pbl,
141 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
143 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
145 if (data_split) {
146 struct eth_tx_bd *split = (struct eth_tx_bd *)
147 qed_chain_produce(&txq->tx_pbl);
148 split_bd_len = BD_UNMAP_LEN(split);
149 nbd--;
152 dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
153 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
155 /* Unmap the data of the skb frags */
156 for (i = 0; i < nbd; i++) {
157 tx_data_bd = (struct eth_tx_bd *)
158 qed_chain_produce(&txq->tx_pbl);
159 if (tx_data_bd->nbytes)
160 dma_unmap_page(txq->dev,
161 BD_UNMAP_ADDR(tx_data_bd),
162 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
165 /* Return again prod to its position before this skb was handled */
166 qed_chain_set_prod(&txq->tx_pbl,
167 le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
169 /* Free skb */
170 dev_kfree_skb_any(skb);
171 txq->sw_tx_ring.skbs[idx].skb = NULL;
172 txq->sw_tx_ring.skbs[idx].flags = 0;
175 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
177 u32 rc = XMIT_L4_CSUM;
178 __be16 l3_proto;
180 if (skb->ip_summed != CHECKSUM_PARTIAL)
181 return XMIT_PLAIN;
183 l3_proto = vlan_get_protocol(skb);
184 if (l3_proto == htons(ETH_P_IPV6) &&
185 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
186 *ipv6_ext = 1;
188 if (skb->encapsulation) {
189 rc |= XMIT_ENC;
190 if (skb_is_gso(skb)) {
191 unsigned short gso_type = skb_shinfo(skb)->gso_type;
193 if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
194 (gso_type & SKB_GSO_GRE_CSUM))
195 rc |= XMIT_ENC_GSO_L4_CSUM;
197 rc |= XMIT_LSO;
198 return rc;
202 if (skb_is_gso(skb))
203 rc |= XMIT_LSO;
205 return rc;
208 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
209 struct eth_tx_2nd_bd *second_bd,
210 struct eth_tx_3rd_bd *third_bd)
212 u8 l4_proto;
213 u16 bd2_bits1 = 0, bd2_bits2 = 0;
215 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
217 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
218 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
219 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
221 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
222 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
224 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
225 l4_proto = ipv6_hdr(skb)->nexthdr;
226 else
227 l4_proto = ip_hdr(skb)->protocol;
229 if (l4_proto == IPPROTO_UDP)
230 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
232 if (third_bd)
233 third_bd->data.bitfields |=
234 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
235 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
236 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
238 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
239 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
242 static int map_frag_to_bd(struct qede_tx_queue *txq,
243 skb_frag_t *frag, struct eth_tx_bd *bd)
245 dma_addr_t mapping;
247 /* Map skb non-linear frag data for DMA */
248 mapping = skb_frag_dma_map(txq->dev, frag, 0,
249 skb_frag_size(frag), DMA_TO_DEVICE);
250 if (unlikely(dma_mapping_error(txq->dev, mapping)))
251 return -ENOMEM;
253 /* Setup the data pointer of the frag data */
254 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
256 return 0;
259 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
261 if (is_encap_pkt)
262 return (skb_inner_transport_header(skb) +
263 inner_tcp_hdrlen(skb) - skb->data);
264 else
265 return (skb_transport_header(skb) +
266 tcp_hdrlen(skb) - skb->data);
269 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
270 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
271 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
273 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
275 if (xmit_type & XMIT_LSO) {
276 int hlen;
278 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
280 /* linear payload would require its own BD */
281 if (skb_headlen(skb) > hlen)
282 allowed_frags--;
285 return (skb_shinfo(skb)->nr_frags > allowed_frags);
287 #endif
289 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
291 /* wmb makes sure that the BDs data is updated before updating the
292 * producer, otherwise FW may read old data from the BDs.
294 wmb();
295 barrier();
296 writel(txq->tx_db.raw, txq->doorbell_addr);
298 /* Fence required to flush the write combined buffer, since another
299 * CPU may write to the same doorbell address and data may be lost
300 * due to relaxed order nature of write combined bar.
302 wmb();
305 static int qede_xdp_xmit(struct qede_tx_queue *txq, dma_addr_t dma, u16 pad,
306 u16 len, struct page *page, struct xdp_frame *xdpf)
308 struct eth_tx_1st_bd *bd;
309 struct sw_tx_xdp *xdp;
310 u16 val;
312 if (unlikely(qed_chain_get_elem_used(&txq->tx_pbl) >=
313 txq->num_tx_buffers)) {
314 txq->stopped_cnt++;
315 return -ENOMEM;
318 bd = qed_chain_produce(&txq->tx_pbl);
319 bd->data.nbds = 1;
320 bd->data.bd_flags.bitfields = BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
322 val = (len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
323 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
325 bd->data.bitfields = cpu_to_le16(val);
327 /* We can safely ignore the offset, as it's 0 for XDP */
328 BD_SET_UNMAP_ADDR_LEN(bd, dma + pad, len);
330 xdp = txq->sw_tx_ring.xdp + txq->sw_tx_prod;
331 xdp->mapping = dma;
332 xdp->page = page;
333 xdp->xdpf = xdpf;
335 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
337 return 0;
340 int qede_xdp_transmit(struct net_device *dev, int n_frames,
341 struct xdp_frame **frames, u32 flags)
343 struct qede_dev *edev = netdev_priv(dev);
344 struct device *dmadev = &edev->pdev->dev;
345 struct qede_tx_queue *xdp_tx;
346 struct xdp_frame *xdpf;
347 dma_addr_t mapping;
348 int i, drops = 0;
349 u16 xdp_prod;
351 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
352 return -EINVAL;
354 if (unlikely(!netif_running(dev)))
355 return -ENETDOWN;
357 i = smp_processor_id() % edev->total_xdp_queues;
358 xdp_tx = edev->fp_array[i].xdp_tx;
360 spin_lock(&xdp_tx->xdp_tx_lock);
362 for (i = 0; i < n_frames; i++) {
363 xdpf = frames[i];
365 mapping = dma_map_single(dmadev, xdpf->data, xdpf->len,
366 DMA_TO_DEVICE);
367 if (unlikely(dma_mapping_error(dmadev, mapping))) {
368 xdp_return_frame_rx_napi(xdpf);
369 drops++;
371 continue;
374 if (unlikely(qede_xdp_xmit(xdp_tx, mapping, 0, xdpf->len,
375 NULL, xdpf))) {
376 xdp_return_frame_rx_napi(xdpf);
377 drops++;
381 if (flags & XDP_XMIT_FLUSH) {
382 xdp_prod = qed_chain_get_prod_idx(&xdp_tx->tx_pbl);
384 xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
385 qede_update_tx_producer(xdp_tx);
388 spin_unlock(&xdp_tx->xdp_tx_lock);
390 return n_frames - drops;
393 int qede_txq_has_work(struct qede_tx_queue *txq)
395 u16 hw_bd_cons;
397 /* Tell compiler that consumer and producer can change */
398 barrier();
399 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
400 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
401 return 0;
403 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
406 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
408 struct sw_tx_xdp *xdp_info, *xdp_arr = txq->sw_tx_ring.xdp;
409 struct device *dev = &edev->pdev->dev;
410 struct xdp_frame *xdpf;
411 u16 hw_bd_cons;
413 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
414 barrier();
416 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
417 xdp_info = xdp_arr + txq->sw_tx_cons;
418 xdpf = xdp_info->xdpf;
420 if (xdpf) {
421 dma_unmap_single(dev, xdp_info->mapping, xdpf->len,
422 DMA_TO_DEVICE);
423 xdp_return_frame(xdpf);
425 xdp_info->xdpf = NULL;
426 } else {
427 dma_unmap_page(dev, xdp_info->mapping, PAGE_SIZE,
428 DMA_BIDIRECTIONAL);
429 __free_page(xdp_info->page);
432 qed_chain_consume(&txq->tx_pbl);
433 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
434 txq->xmit_pkts++;
438 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
440 unsigned int pkts_compl = 0, bytes_compl = 0;
441 struct netdev_queue *netdev_txq;
442 u16 hw_bd_cons;
443 int rc;
445 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
447 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
448 barrier();
450 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
451 int len = 0;
453 rc = qede_free_tx_pkt(edev, txq, &len);
454 if (rc) {
455 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
456 hw_bd_cons,
457 qed_chain_get_cons_idx(&txq->tx_pbl));
458 break;
461 bytes_compl += len;
462 pkts_compl++;
463 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
464 txq->xmit_pkts++;
467 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
469 /* Need to make the tx_bd_cons update visible to start_xmit()
470 * before checking for netif_tx_queue_stopped(). Without the
471 * memory barrier, there is a small possibility that
472 * start_xmit() will miss it and cause the queue to be stopped
473 * forever.
474 * On the other hand we need an rmb() here to ensure the proper
475 * ordering of bit testing in the following
476 * netif_tx_queue_stopped(txq) call.
478 smp_mb();
480 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
481 /* Taking tx_lock is needed to prevent reenabling the queue
482 * while it's empty. This could have happen if rx_action() gets
483 * suspended in qede_tx_int() after the condition before
484 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
486 * stops the queue->sees fresh tx_bd_cons->releases the queue->
487 * sends some packets consuming the whole queue again->
488 * stops the queue
491 __netif_tx_lock(netdev_txq, smp_processor_id());
493 if ((netif_tx_queue_stopped(netdev_txq)) &&
494 (edev->state == QEDE_STATE_OPEN) &&
495 (qed_chain_get_elem_left(&txq->tx_pbl)
496 >= (MAX_SKB_FRAGS + 1))) {
497 netif_tx_wake_queue(netdev_txq);
498 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
499 "Wake queue was called\n");
502 __netif_tx_unlock(netdev_txq);
505 return 0;
508 bool qede_has_rx_work(struct qede_rx_queue *rxq)
510 u16 hw_comp_cons, sw_comp_cons;
512 /* Tell compiler that status block fields can change */
513 barrier();
515 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
516 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
518 return hw_comp_cons != sw_comp_cons;
521 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
523 qed_chain_consume(&rxq->rx_bd_ring);
524 rxq->sw_rx_cons++;
527 /* This function reuses the buffer(from an offset) from
528 * consumer index to producer index in the bd ring
530 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
531 struct sw_rx_data *curr_cons)
533 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
534 struct sw_rx_data *curr_prod;
535 dma_addr_t new_mapping;
537 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
538 *curr_prod = *curr_cons;
540 new_mapping = curr_prod->mapping + curr_prod->page_offset;
542 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
543 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
544 rxq->rx_headroom);
546 rxq->sw_rx_prod++;
547 curr_cons->data = NULL;
550 /* In case of allocation failures reuse buffers
551 * from consumer index to produce buffers for firmware
553 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
555 struct sw_rx_data *curr_cons;
557 for (; count > 0; count--) {
558 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
559 qede_reuse_page(rxq, curr_cons);
560 qede_rx_bd_ring_consume(rxq);
564 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
565 struct sw_rx_data *curr_cons)
567 /* Move to the next segment in the page */
568 curr_cons->page_offset += rxq->rx_buf_seg_size;
570 if (curr_cons->page_offset == PAGE_SIZE) {
571 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
572 /* Since we failed to allocate new buffer
573 * current buffer can be used again.
575 curr_cons->page_offset -= rxq->rx_buf_seg_size;
577 return -ENOMEM;
580 dma_unmap_page(rxq->dev, curr_cons->mapping,
581 PAGE_SIZE, rxq->data_direction);
582 } else {
583 /* Increment refcount of the page as we don't want
584 * network stack to take the ownership of the page
585 * which can be recycled multiple times by the driver.
587 page_ref_inc(curr_cons->data);
588 qede_reuse_page(rxq, curr_cons);
591 return 0;
594 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
596 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
597 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
598 struct eth_rx_prod_data rx_prods = {0};
600 /* Update producers */
601 rx_prods.bd_prod = cpu_to_le16(bd_prod);
602 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
604 /* Make sure that the BD and SGE data is updated before updating the
605 * producers since FW might read the BD/SGE right after the producer
606 * is updated.
608 wmb();
610 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
611 (u32 *)&rx_prods);
614 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
616 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
617 enum rss_hash_type htype;
618 u32 hash = 0;
620 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
621 if (htype) {
622 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
623 (htype == RSS_HASH_TYPE_IPV6)) ?
624 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
625 hash = le32_to_cpu(rss_hash);
627 skb_set_hash(skb, hash, hash_type);
630 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
632 skb_checksum_none_assert(skb);
634 if (csum_flag & QEDE_CSUM_UNNECESSARY)
635 skb->ip_summed = CHECKSUM_UNNECESSARY;
637 if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
638 skb->csum_level = 1;
639 skb->encapsulation = 1;
643 static inline void qede_skb_receive(struct qede_dev *edev,
644 struct qede_fastpath *fp,
645 struct qede_rx_queue *rxq,
646 struct sk_buff *skb, u16 vlan_tag)
648 if (vlan_tag)
649 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
651 napi_gro_receive(&fp->napi, skb);
654 static void qede_set_gro_params(struct qede_dev *edev,
655 struct sk_buff *skb,
656 struct eth_fast_path_rx_tpa_start_cqe *cqe)
658 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
660 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
661 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
662 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
663 else
664 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
666 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
667 cqe->header_len;
670 static int qede_fill_frag_skb(struct qede_dev *edev,
671 struct qede_rx_queue *rxq,
672 u8 tpa_agg_index, u16 len_on_bd)
674 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
675 NUM_RX_BDS_MAX];
676 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
677 struct sk_buff *skb = tpa_info->skb;
679 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
680 goto out;
682 /* Add one frag and update the appropriate fields in the skb */
683 skb_fill_page_desc(skb, tpa_info->frag_id++,
684 current_bd->data,
685 current_bd->page_offset + rxq->rx_headroom,
686 len_on_bd);
688 if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
689 /* Incr page ref count to reuse on allocation failure
690 * so that it doesn't get freed while freeing SKB.
692 page_ref_inc(current_bd->data);
693 goto out;
696 qede_rx_bd_ring_consume(rxq);
698 skb->data_len += len_on_bd;
699 skb->truesize += rxq->rx_buf_seg_size;
700 skb->len += len_on_bd;
702 return 0;
704 out:
705 tpa_info->state = QEDE_AGG_STATE_ERROR;
706 qede_recycle_rx_bd_ring(rxq, 1);
708 return -ENOMEM;
711 static bool qede_tunn_exist(u16 flag)
713 return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
714 PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
717 static u8 qede_check_tunn_csum(u16 flag)
719 u16 csum_flag = 0;
720 u8 tcsum = 0;
722 if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
723 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
724 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
725 PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
727 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
728 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
729 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
730 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
731 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
734 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
735 PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
736 PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
737 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
739 if (csum_flag & flag)
740 return QEDE_CSUM_ERROR;
742 return QEDE_CSUM_UNNECESSARY | tcsum;
745 static inline struct sk_buff *
746 qede_build_skb(struct qede_rx_queue *rxq,
747 struct sw_rx_data *bd, u16 len, u16 pad)
749 struct sk_buff *skb;
750 void *buf;
752 buf = page_address(bd->data) + bd->page_offset;
753 skb = build_skb(buf, rxq->rx_buf_seg_size);
755 skb_reserve(skb, pad);
756 skb_put(skb, len);
758 return skb;
761 static struct sk_buff *
762 qede_tpa_rx_build_skb(struct qede_dev *edev,
763 struct qede_rx_queue *rxq,
764 struct sw_rx_data *bd, u16 len, u16 pad,
765 bool alloc_skb)
767 struct sk_buff *skb;
769 skb = qede_build_skb(rxq, bd, len, pad);
770 bd->page_offset += rxq->rx_buf_seg_size;
772 if (bd->page_offset == PAGE_SIZE) {
773 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
774 DP_NOTICE(edev,
775 "Failed to allocate RX buffer for tpa start\n");
776 bd->page_offset -= rxq->rx_buf_seg_size;
777 page_ref_inc(bd->data);
778 dev_kfree_skb_any(skb);
779 return NULL;
781 } else {
782 page_ref_inc(bd->data);
783 qede_reuse_page(rxq, bd);
786 /* We've consumed the first BD and prepared an SKB */
787 qede_rx_bd_ring_consume(rxq);
789 return skb;
792 static struct sk_buff *
793 qede_rx_build_skb(struct qede_dev *edev,
794 struct qede_rx_queue *rxq,
795 struct sw_rx_data *bd, u16 len, u16 pad)
797 struct sk_buff *skb = NULL;
799 /* For smaller frames still need to allocate skb, memcpy
800 * data and benefit in reusing the page segment instead of
801 * un-mapping it.
803 if ((len + pad <= edev->rx_copybreak)) {
804 unsigned int offset = bd->page_offset + pad;
806 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
807 if (unlikely(!skb))
808 return NULL;
810 skb_reserve(skb, pad);
811 skb_put_data(skb, page_address(bd->data) + offset, len);
812 qede_reuse_page(rxq, bd);
813 goto out;
816 skb = qede_build_skb(rxq, bd, len, pad);
818 if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
819 /* Incr page ref count to reuse on allocation failure so
820 * that it doesn't get freed while freeing SKB [as its
821 * already mapped there].
823 page_ref_inc(bd->data);
824 dev_kfree_skb_any(skb);
825 return NULL;
827 out:
828 /* We've consumed the first BD and prepared an SKB */
829 qede_rx_bd_ring_consume(rxq);
831 return skb;
834 static void qede_tpa_start(struct qede_dev *edev,
835 struct qede_rx_queue *rxq,
836 struct eth_fast_path_rx_tpa_start_cqe *cqe)
838 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
839 struct sw_rx_data *sw_rx_data_cons;
840 u16 pad;
842 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
843 pad = cqe->placement_offset + rxq->rx_headroom;
845 tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
846 le16_to_cpu(cqe->len_on_first_bd),
847 pad, false);
848 tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
849 tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
851 if (unlikely(!tpa_info->skb)) {
852 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
854 /* Consume from ring but do not produce since
855 * this might be used by FW still, it will be re-used
856 * at TPA end.
858 tpa_info->tpa_start_fail = true;
859 qede_rx_bd_ring_consume(rxq);
860 tpa_info->state = QEDE_AGG_STATE_ERROR;
861 goto cons_buf;
864 tpa_info->frag_id = 0;
865 tpa_info->state = QEDE_AGG_STATE_START;
867 if ((le16_to_cpu(cqe->pars_flags.flags) >>
868 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
869 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
870 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
871 else
872 tpa_info->vlan_tag = 0;
874 qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
876 /* This is needed in order to enable forwarding support */
877 qede_set_gro_params(edev, tpa_info->skb, cqe);
879 cons_buf: /* We still need to handle bd_len_list to consume buffers */
880 if (likely(cqe->bw_ext_bd_len_list[0]))
881 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
882 le16_to_cpu(cqe->bw_ext_bd_len_list[0]));
884 if (unlikely(cqe->bw_ext_bd_len_list[1])) {
885 DP_ERR(edev,
886 "Unlikely - got a TPA aggregation with more than one bw_ext_bd_len_list entry in the TPA start\n");
887 tpa_info->state = QEDE_AGG_STATE_ERROR;
891 #ifdef CONFIG_INET
892 static void qede_gro_ip_csum(struct sk_buff *skb)
894 const struct iphdr *iph = ip_hdr(skb);
895 struct tcphdr *th;
897 skb_set_transport_header(skb, sizeof(struct iphdr));
898 th = tcp_hdr(skb);
900 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
901 iph->saddr, iph->daddr, 0);
903 tcp_gro_complete(skb);
906 static void qede_gro_ipv6_csum(struct sk_buff *skb)
908 struct ipv6hdr *iph = ipv6_hdr(skb);
909 struct tcphdr *th;
911 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
912 th = tcp_hdr(skb);
914 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
915 &iph->saddr, &iph->daddr, 0);
916 tcp_gro_complete(skb);
918 #endif
920 static void qede_gro_receive(struct qede_dev *edev,
921 struct qede_fastpath *fp,
922 struct sk_buff *skb,
923 u16 vlan_tag)
925 /* FW can send a single MTU sized packet from gro flow
926 * due to aggregation timeout/last segment etc. which
927 * is not expected to be a gro packet. If a skb has zero
928 * frags then simply push it in the stack as non gso skb.
930 if (unlikely(!skb->data_len)) {
931 skb_shinfo(skb)->gso_type = 0;
932 skb_shinfo(skb)->gso_size = 0;
933 goto send_skb;
936 #ifdef CONFIG_INET
937 if (skb_shinfo(skb)->gso_size) {
938 skb_reset_network_header(skb);
940 switch (skb->protocol) {
941 case htons(ETH_P_IP):
942 qede_gro_ip_csum(skb);
943 break;
944 case htons(ETH_P_IPV6):
945 qede_gro_ipv6_csum(skb);
946 break;
947 default:
948 DP_ERR(edev,
949 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
950 ntohs(skb->protocol));
953 #endif
955 send_skb:
956 skb_record_rx_queue(skb, fp->rxq->rxq_id);
957 qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
960 static inline void qede_tpa_cont(struct qede_dev *edev,
961 struct qede_rx_queue *rxq,
962 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
964 int i;
966 for (i = 0; cqe->len_list[i]; i++)
967 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
968 le16_to_cpu(cqe->len_list[i]));
970 if (unlikely(i > 1))
971 DP_ERR(edev,
972 "Strange - TPA cont with more than a single len_list entry\n");
975 static int qede_tpa_end(struct qede_dev *edev,
976 struct qede_fastpath *fp,
977 struct eth_fast_path_rx_tpa_end_cqe *cqe)
979 struct qede_rx_queue *rxq = fp->rxq;
980 struct qede_agg_info *tpa_info;
981 struct sk_buff *skb;
982 int i;
984 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
985 skb = tpa_info->skb;
987 if (tpa_info->buffer.page_offset == PAGE_SIZE)
988 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
989 PAGE_SIZE, rxq->data_direction);
991 for (i = 0; cqe->len_list[i]; i++)
992 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
993 le16_to_cpu(cqe->len_list[i]));
994 if (unlikely(i > 1))
995 DP_ERR(edev,
996 "Strange - TPA emd with more than a single len_list entry\n");
998 if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
999 goto err;
1001 /* Sanity */
1002 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1003 DP_ERR(edev,
1004 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1005 cqe->num_of_bds, tpa_info->frag_id);
1006 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1007 DP_ERR(edev,
1008 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1009 le16_to_cpu(cqe->total_packet_len), skb->len);
1011 /* Finalize the SKB */
1012 skb->protocol = eth_type_trans(skb, edev->ndev);
1013 skb->ip_summed = CHECKSUM_UNNECESSARY;
1015 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1016 * to skb_shinfo(skb)->gso_segs
1018 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1020 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1022 tpa_info->state = QEDE_AGG_STATE_NONE;
1024 return 1;
1025 err:
1026 tpa_info->state = QEDE_AGG_STATE_NONE;
1028 if (tpa_info->tpa_start_fail) {
1029 qede_reuse_page(rxq, &tpa_info->buffer);
1030 tpa_info->tpa_start_fail = false;
1033 dev_kfree_skb_any(tpa_info->skb);
1034 tpa_info->skb = NULL;
1035 return 0;
1038 static u8 qede_check_notunn_csum(u16 flag)
1040 u16 csum_flag = 0;
1041 u8 csum = 0;
1043 if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1044 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1045 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1046 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1047 csum = QEDE_CSUM_UNNECESSARY;
1050 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1051 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1053 if (csum_flag & flag)
1054 return QEDE_CSUM_ERROR;
1056 return csum;
1059 static u8 qede_check_csum(u16 flag)
1061 if (!qede_tunn_exist(flag))
1062 return qede_check_notunn_csum(flag);
1063 else
1064 return qede_check_tunn_csum(flag);
1067 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1068 u16 flag)
1070 u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1072 if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1073 ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1074 (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1075 PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1076 return true;
1078 return false;
1081 /* Return true iff packet is to be passed to stack */
1082 static bool qede_rx_xdp(struct qede_dev *edev,
1083 struct qede_fastpath *fp,
1084 struct qede_rx_queue *rxq,
1085 struct bpf_prog *prog,
1086 struct sw_rx_data *bd,
1087 struct eth_fast_path_rx_reg_cqe *cqe,
1088 u16 *data_offset, u16 *len)
1090 struct xdp_buff xdp;
1091 enum xdp_action act;
1093 xdp.data_hard_start = page_address(bd->data);
1094 xdp.data = xdp.data_hard_start + *data_offset;
1095 xdp_set_data_meta_invalid(&xdp);
1096 xdp.data_end = xdp.data + *len;
1097 xdp.rxq = &rxq->xdp_rxq;
1098 xdp.frame_sz = rxq->rx_buf_seg_size; /* PAGE_SIZE when XDP enabled */
1100 /* Queues always have a full reset currently, so for the time
1101 * being until there's atomic program replace just mark read
1102 * side for map helpers.
1104 rcu_read_lock();
1105 act = bpf_prog_run_xdp(prog, &xdp);
1106 rcu_read_unlock();
1108 /* Recalculate, as XDP might have changed the headers */
1109 *data_offset = xdp.data - xdp.data_hard_start;
1110 *len = xdp.data_end - xdp.data;
1112 if (act == XDP_PASS)
1113 return true;
1115 /* Count number of packets not to be passed to stack */
1116 rxq->xdp_no_pass++;
1118 switch (act) {
1119 case XDP_TX:
1120 /* We need the replacement buffer before transmit. */
1121 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1122 qede_recycle_rx_bd_ring(rxq, 1);
1124 trace_xdp_exception(edev->ndev, prog, act);
1125 break;
1128 /* Now if there's a transmission problem, we'd still have to
1129 * throw current buffer, as replacement was already allocated.
1131 if (unlikely(qede_xdp_xmit(fp->xdp_tx, bd->mapping,
1132 *data_offset, *len, bd->data,
1133 NULL))) {
1134 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1135 rxq->data_direction);
1136 __free_page(bd->data);
1138 trace_xdp_exception(edev->ndev, prog, act);
1139 } else {
1140 dma_sync_single_for_device(rxq->dev,
1141 bd->mapping + *data_offset,
1142 *len, rxq->data_direction);
1143 fp->xdp_xmit |= QEDE_XDP_TX;
1146 /* Regardless, we've consumed an Rx BD */
1147 qede_rx_bd_ring_consume(rxq);
1148 break;
1149 case XDP_REDIRECT:
1150 /* We need the replacement buffer before transmit. */
1151 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
1152 qede_recycle_rx_bd_ring(rxq, 1);
1154 trace_xdp_exception(edev->ndev, prog, act);
1155 break;
1158 dma_unmap_page(rxq->dev, bd->mapping, PAGE_SIZE,
1159 rxq->data_direction);
1161 if (unlikely(xdp_do_redirect(edev->ndev, &xdp, prog)))
1162 DP_NOTICE(edev, "Failed to redirect the packet\n");
1163 else
1164 fp->xdp_xmit |= QEDE_XDP_REDIRECT;
1166 qede_rx_bd_ring_consume(rxq);
1167 break;
1168 default:
1169 bpf_warn_invalid_xdp_action(act);
1170 fallthrough;
1171 case XDP_ABORTED:
1172 trace_xdp_exception(edev->ndev, prog, act);
1173 fallthrough;
1174 case XDP_DROP:
1175 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1178 return false;
1181 static int qede_rx_build_jumbo(struct qede_dev *edev,
1182 struct qede_rx_queue *rxq,
1183 struct sk_buff *skb,
1184 struct eth_fast_path_rx_reg_cqe *cqe,
1185 u16 first_bd_len)
1187 u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1188 struct sw_rx_data *bd;
1189 u16 bd_cons_idx;
1190 u8 num_frags;
1192 pkt_len -= first_bd_len;
1194 /* We've already used one BD for the SKB. Now take care of the rest */
1195 for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1196 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1197 pkt_len;
1199 if (unlikely(!cur_size)) {
1200 DP_ERR(edev,
1201 "Still got %d BDs for mapping jumbo, but length became 0\n",
1202 num_frags);
1203 goto out;
1206 /* We need a replacement buffer for each BD */
1207 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1208 goto out;
1210 /* Now that we've allocated the replacement buffer,
1211 * we can safely consume the next BD and map it to the SKB.
1213 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1214 bd = &rxq->sw_rx_ring[bd_cons_idx];
1215 qede_rx_bd_ring_consume(rxq);
1217 dma_unmap_page(rxq->dev, bd->mapping,
1218 PAGE_SIZE, DMA_FROM_DEVICE);
1220 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1221 bd->data, rxq->rx_headroom, cur_size);
1223 skb->truesize += PAGE_SIZE;
1224 skb->data_len += cur_size;
1225 skb->len += cur_size;
1226 pkt_len -= cur_size;
1229 if (unlikely(pkt_len))
1230 DP_ERR(edev,
1231 "Mapped all BDs of jumbo, but still have %d bytes\n",
1232 pkt_len);
1234 out:
1235 return num_frags;
1238 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1239 struct qede_fastpath *fp,
1240 struct qede_rx_queue *rxq,
1241 union eth_rx_cqe *cqe,
1242 enum eth_rx_cqe_type type)
1244 switch (type) {
1245 case ETH_RX_CQE_TYPE_TPA_START:
1246 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1247 return 0;
1248 case ETH_RX_CQE_TYPE_TPA_CONT:
1249 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1250 return 0;
1251 case ETH_RX_CQE_TYPE_TPA_END:
1252 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1253 default:
1254 return 0;
1258 static int qede_rx_process_cqe(struct qede_dev *edev,
1259 struct qede_fastpath *fp,
1260 struct qede_rx_queue *rxq)
1262 struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1263 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1264 u16 len, pad, bd_cons_idx, parse_flag;
1265 enum eth_rx_cqe_type cqe_type;
1266 union eth_rx_cqe *cqe;
1267 struct sw_rx_data *bd;
1268 struct sk_buff *skb;
1269 __le16 flags;
1270 u8 csum_flag;
1272 /* Get the CQE from the completion ring */
1273 cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1274 cqe_type = cqe->fast_path_regular.type;
1276 /* Process an unlikely slowpath event */
1277 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1278 struct eth_slow_path_rx_cqe *sp_cqe;
1280 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1281 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1282 return 0;
1285 /* Handle TPA cqes */
1286 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1287 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1289 /* Get the data from the SW ring; Consume it only after it's evident
1290 * we wouldn't recycle it.
1292 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1293 bd = &rxq->sw_rx_ring[bd_cons_idx];
1295 fp_cqe = &cqe->fast_path_regular;
1296 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1297 pad = fp_cqe->placement_offset + rxq->rx_headroom;
1299 /* Run eBPF program if one is attached */
1300 if (xdp_prog)
1301 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1302 &pad, &len))
1303 return 0;
1305 /* If this is an error packet then drop it */
1306 flags = cqe->fast_path_regular.pars_flags.flags;
1307 parse_flag = le16_to_cpu(flags);
1309 csum_flag = qede_check_csum(parse_flag);
1310 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1311 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1312 rxq->rx_ip_frags++;
1313 else
1314 rxq->rx_hw_errors++;
1317 /* Basic validation passed; Need to prepare an SKB. This would also
1318 * guarantee to finally consume the first BD upon success.
1320 skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1321 if (!skb) {
1322 rxq->rx_alloc_errors++;
1323 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1324 return 0;
1327 /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1328 * by a single cqe.
1330 if (fp_cqe->bd_num > 1) {
1331 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1332 fp_cqe, len);
1334 if (unlikely(unmapped_frags > 0)) {
1335 qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1336 dev_kfree_skb_any(skb);
1337 return 0;
1341 /* The SKB contains all the data. Now prepare meta-magic */
1342 skb->protocol = eth_type_trans(skb, edev->ndev);
1343 qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1344 qede_set_skb_csum(skb, csum_flag);
1345 skb_record_rx_queue(skb, rxq->rxq_id);
1346 qede_ptp_record_rx_ts(edev, cqe, skb);
1348 /* SKB is prepared - pass it to stack */
1349 qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1351 return 1;
1354 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1356 struct qede_rx_queue *rxq = fp->rxq;
1357 struct qede_dev *edev = fp->edev;
1358 int work_done = 0, rcv_pkts = 0;
1359 u16 hw_comp_cons, sw_comp_cons;
1361 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1362 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1364 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1365 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1366 * read before it is written by FW, then FW writes CQE and SB, and then
1367 * the CPU reads the hw_comp_cons, it will use an old CQE.
1369 rmb();
1371 /* Loop to complete all indicated BDs */
1372 while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1373 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1374 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1375 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1376 work_done++;
1379 rxq->rcv_pkts += rcv_pkts;
1381 /* Allocate replacement buffers */
1382 while (rxq->num_rx_buffers - rxq->filled_buffers)
1383 if (qede_alloc_rx_buffer(rxq, false))
1384 break;
1386 /* Update producers */
1387 qede_update_rx_prod(edev, rxq);
1389 return work_done;
1392 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1394 qed_sb_update_sb_idx(fp->sb_info);
1396 /* *_has_*_work() reads the status block, thus we need to ensure that
1397 * status block indices have been actually read (qed_sb_update_sb_idx)
1398 * prior to this check (*_has_*_work) so that we won't write the
1399 * "newer" value of the status block to HW (if there was a DMA right
1400 * after qede_has_rx_work and if there is no rmb, the memory reading
1401 * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1402 * In this case there will never be another interrupt until there is
1403 * another update of the status block, while there is still unhandled
1404 * work.
1406 rmb();
1408 if (likely(fp->type & QEDE_FASTPATH_RX))
1409 if (qede_has_rx_work(fp->rxq))
1410 return true;
1412 if (fp->type & QEDE_FASTPATH_XDP)
1413 if (qede_txq_has_work(fp->xdp_tx))
1414 return true;
1416 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1417 int cos;
1419 for_each_cos_in_txq(fp->edev, cos) {
1420 if (qede_txq_has_work(&fp->txq[cos]))
1421 return true;
1425 return false;
1428 /*********************
1429 * NDO & API related *
1430 *********************/
1431 int qede_poll(struct napi_struct *napi, int budget)
1433 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1434 napi);
1435 struct qede_dev *edev = fp->edev;
1436 int rx_work_done = 0;
1437 u16 xdp_prod;
1439 fp->xdp_xmit = 0;
1441 if (likely(fp->type & QEDE_FASTPATH_TX)) {
1442 int cos;
1444 for_each_cos_in_txq(fp->edev, cos) {
1445 if (qede_txq_has_work(&fp->txq[cos]))
1446 qede_tx_int(edev, &fp->txq[cos]);
1450 if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1451 qede_xdp_tx_int(edev, fp->xdp_tx);
1453 rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1454 qede_has_rx_work(fp->rxq)) ?
1455 qede_rx_int(fp, budget) : 0;
1456 if (rx_work_done < budget) {
1457 if (!qede_poll_is_more_work(fp)) {
1458 napi_complete_done(napi, rx_work_done);
1460 /* Update and reenable interrupts */
1461 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1462 } else {
1463 rx_work_done = budget;
1467 if (fp->xdp_xmit & QEDE_XDP_TX) {
1468 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1470 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1471 qede_update_tx_producer(fp->xdp_tx);
1474 if (fp->xdp_xmit & QEDE_XDP_REDIRECT)
1475 xdp_do_flush_map();
1477 return rx_work_done;
1480 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1482 struct qede_fastpath *fp = fp_cookie;
1484 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1486 napi_schedule_irqoff(&fp->napi);
1487 return IRQ_HANDLED;
1490 /* Main transmit function */
1491 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1493 struct qede_dev *edev = netdev_priv(ndev);
1494 struct netdev_queue *netdev_txq;
1495 struct qede_tx_queue *txq;
1496 struct eth_tx_1st_bd *first_bd;
1497 struct eth_tx_2nd_bd *second_bd = NULL;
1498 struct eth_tx_3rd_bd *third_bd = NULL;
1499 struct eth_tx_bd *tx_data_bd = NULL;
1500 u16 txq_index, val = 0;
1501 u8 nbd = 0;
1502 dma_addr_t mapping;
1503 int rc, frag_idx = 0, ipv6_ext = 0;
1504 u8 xmit_type;
1505 u16 idx;
1506 u16 hlen;
1507 bool data_split = false;
1509 /* Get tx-queue context and netdev index */
1510 txq_index = skb_get_queue_mapping(skb);
1511 WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1512 txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1513 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1515 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1517 xmit_type = qede_xmit_type(skb, &ipv6_ext);
1519 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1520 if (qede_pkt_req_lin(skb, xmit_type)) {
1521 if (skb_linearize(skb)) {
1522 txq->tx_mem_alloc_err++;
1524 dev_kfree_skb_any(skb);
1525 return NETDEV_TX_OK;
1528 #endif
1530 /* Fill the entry in the SW ring and the BDs in the FW ring */
1531 idx = txq->sw_tx_prod;
1532 txq->sw_tx_ring.skbs[idx].skb = skb;
1533 first_bd = (struct eth_tx_1st_bd *)
1534 qed_chain_produce(&txq->tx_pbl);
1535 memset(first_bd, 0, sizeof(*first_bd));
1536 first_bd->data.bd_flags.bitfields =
1537 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1539 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1540 qede_ptp_tx_ts(edev, skb);
1542 /* Map skb linear data for DMA and set in the first BD */
1543 mapping = dma_map_single(txq->dev, skb->data,
1544 skb_headlen(skb), DMA_TO_DEVICE);
1545 if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1546 DP_NOTICE(edev, "SKB mapping failed\n");
1547 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1548 qede_update_tx_producer(txq);
1549 return NETDEV_TX_OK;
1551 nbd++;
1552 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1554 /* In case there is IPv6 with extension headers or LSO we need 2nd and
1555 * 3rd BDs.
1557 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1558 second_bd = (struct eth_tx_2nd_bd *)
1559 qed_chain_produce(&txq->tx_pbl);
1560 memset(second_bd, 0, sizeof(*second_bd));
1562 nbd++;
1563 third_bd = (struct eth_tx_3rd_bd *)
1564 qed_chain_produce(&txq->tx_pbl);
1565 memset(third_bd, 0, sizeof(*third_bd));
1567 nbd++;
1568 /* We need to fill in additional data in second_bd... */
1569 tx_data_bd = (struct eth_tx_bd *)second_bd;
1572 if (skb_vlan_tag_present(skb)) {
1573 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1574 first_bd->data.bd_flags.bitfields |=
1575 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1578 /* Fill the parsing flags & params according to the requested offload */
1579 if (xmit_type & XMIT_L4_CSUM) {
1580 /* We don't re-calculate IP checksum as it is already done by
1581 * the upper stack
1583 first_bd->data.bd_flags.bitfields |=
1584 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1586 if (xmit_type & XMIT_ENC) {
1587 first_bd->data.bd_flags.bitfields |=
1588 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1590 val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1593 /* Legacy FW had flipped behavior in regard to this bit -
1594 * I.e., needed to set to prevent FW from touching encapsulated
1595 * packets when it didn't need to.
1597 if (unlikely(txq->is_legacy))
1598 val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1600 /* If the packet is IPv6 with extension header, indicate that
1601 * to FW and pass few params, since the device cracker doesn't
1602 * support parsing IPv6 with extension header/s.
1604 if (unlikely(ipv6_ext))
1605 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1608 if (xmit_type & XMIT_LSO) {
1609 first_bd->data.bd_flags.bitfields |=
1610 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1611 third_bd->data.lso_mss =
1612 cpu_to_le16(skb_shinfo(skb)->gso_size);
1614 if (unlikely(xmit_type & XMIT_ENC)) {
1615 first_bd->data.bd_flags.bitfields |=
1616 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1618 if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1619 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1621 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1623 hlen = qede_get_skb_hlen(skb, true);
1624 } else {
1625 first_bd->data.bd_flags.bitfields |=
1626 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1627 hlen = qede_get_skb_hlen(skb, false);
1630 /* @@@TBD - if will not be removed need to check */
1631 third_bd->data.bitfields |=
1632 cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1634 /* Make life easier for FW guys who can't deal with header and
1635 * data on same BD. If we need to split, use the second bd...
1637 if (unlikely(skb_headlen(skb) > hlen)) {
1638 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1639 "TSO split header size is %d (%x:%x)\n",
1640 first_bd->nbytes, first_bd->addr.hi,
1641 first_bd->addr.lo);
1643 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1644 le32_to_cpu(first_bd->addr.lo)) +
1645 hlen;
1647 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1648 le16_to_cpu(first_bd->nbytes) -
1649 hlen);
1651 /* this marks the BD as one that has no
1652 * individual mapping
1654 txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1656 first_bd->nbytes = cpu_to_le16(hlen);
1658 tx_data_bd = (struct eth_tx_bd *)third_bd;
1659 data_split = true;
1661 } else {
1662 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1663 ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1666 first_bd->data.bitfields = cpu_to_le16(val);
1668 /* Handle fragmented skb */
1669 /* special handle for frags inside 2nd and 3rd bds.. */
1670 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1671 rc = map_frag_to_bd(txq,
1672 &skb_shinfo(skb)->frags[frag_idx],
1673 tx_data_bd);
1674 if (rc) {
1675 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1676 qede_update_tx_producer(txq);
1677 return NETDEV_TX_OK;
1680 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1681 tx_data_bd = (struct eth_tx_bd *)third_bd;
1682 else
1683 tx_data_bd = NULL;
1685 frag_idx++;
1688 /* map last frags into 4th, 5th .... */
1689 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1690 tx_data_bd = (struct eth_tx_bd *)
1691 qed_chain_produce(&txq->tx_pbl);
1693 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1695 rc = map_frag_to_bd(txq,
1696 &skb_shinfo(skb)->frags[frag_idx],
1697 tx_data_bd);
1698 if (rc) {
1699 qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1700 qede_update_tx_producer(txq);
1701 return NETDEV_TX_OK;
1705 /* update the first BD with the actual num BDs */
1706 first_bd->data.nbds = nbd;
1708 netdev_tx_sent_queue(netdev_txq, skb->len);
1710 skb_tx_timestamp(skb);
1712 /* Advance packet producer only before sending the packet since mapping
1713 * of pages may fail.
1715 txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1717 /* 'next page' entries are counted in the producer value */
1718 txq->tx_db.data.bd_prod =
1719 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1721 if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1722 qede_update_tx_producer(txq);
1724 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1725 < (MAX_SKB_FRAGS + 1))) {
1726 if (netdev_xmit_more())
1727 qede_update_tx_producer(txq);
1729 netif_tx_stop_queue(netdev_txq);
1730 txq->stopped_cnt++;
1731 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1732 "Stop queue was called\n");
1733 /* paired memory barrier is in qede_tx_int(), we have to keep
1734 * ordering of set_bit() in netif_tx_stop_queue() and read of
1735 * fp->bd_tx_cons
1737 smp_mb();
1739 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1740 (MAX_SKB_FRAGS + 1)) &&
1741 (edev->state == QEDE_STATE_OPEN)) {
1742 netif_tx_wake_queue(netdev_txq);
1743 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1744 "Wake queue was called\n");
1748 return NETDEV_TX_OK;
1751 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1752 struct net_device *sb_dev)
1754 struct qede_dev *edev = netdev_priv(dev);
1755 int total_txq;
1757 total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1759 return QEDE_TSS_COUNT(edev) ?
1760 netdev_pick_tx(dev, skb, NULL) % total_txq : 0;
1763 /* 8B udp header + 8B base tunnel header + 32B option length */
1764 #define QEDE_MAX_TUN_HDR_LEN 48
1766 netdev_features_t qede_features_check(struct sk_buff *skb,
1767 struct net_device *dev,
1768 netdev_features_t features)
1770 if (skb->encapsulation) {
1771 u8 l4_proto = 0;
1773 switch (vlan_get_protocol(skb)) {
1774 case htons(ETH_P_IP):
1775 l4_proto = ip_hdr(skb)->protocol;
1776 break;
1777 case htons(ETH_P_IPV6):
1778 l4_proto = ipv6_hdr(skb)->nexthdr;
1779 break;
1780 default:
1781 return features;
1784 /* Disable offloads for geneve tunnels, as HW can't parse
1785 * the geneve header which has option length greater than 32b
1786 * and disable offloads for the ports which are not offloaded.
1788 if (l4_proto == IPPROTO_UDP) {
1789 struct qede_dev *edev = netdev_priv(dev);
1790 u16 hdrlen, vxln_port, gnv_port;
1792 hdrlen = QEDE_MAX_TUN_HDR_LEN;
1793 vxln_port = edev->vxlan_dst_port;
1794 gnv_port = edev->geneve_dst_port;
1796 if ((skb_inner_mac_header(skb) -
1797 skb_transport_header(skb)) > hdrlen ||
1798 (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1799 ntohs(udp_hdr(skb)->dest) != gnv_port))
1800 return features & ~(NETIF_F_CSUM_MASK |
1801 NETIF_F_GSO_MASK);
1802 } else if (l4_proto == IPPROTO_IPIP) {
1803 /* IPIP tunnels are unknown to the device or at least unsupported natively,
1804 * offloads for them can't be done trivially, so disable them for such skb.
1806 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1810 return features;