WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / efx_channels.c
bloba4a626e9cd9a10fcd0144da3a35d2ce8111d72ce
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include "efx_channels.h"
14 #include "efx.h"
15 #include "efx_common.h"
16 #include "tx_common.h"
17 #include "rx_common.h"
18 #include "nic.h"
19 #include "sriov.h"
21 /* This is the first interrupt mode to try out of:
22 * 0 => MSI-X
23 * 1 => MSI
24 * 2 => legacy
26 unsigned int efx_interrupt_mode = EFX_INT_MODE_MSIX;
28 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
29 * i.e. the number of CPUs among which we may distribute simultaneous
30 * interrupt handling.
32 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
33 * The default (0) means to assign an interrupt to each core.
35 unsigned int rss_cpus;
37 static unsigned int irq_adapt_low_thresh = 8000;
38 module_param(irq_adapt_low_thresh, uint, 0644);
39 MODULE_PARM_DESC(irq_adapt_low_thresh,
40 "Threshold score for reducing IRQ moderation");
42 static unsigned int irq_adapt_high_thresh = 16000;
43 module_param(irq_adapt_high_thresh, uint, 0644);
44 MODULE_PARM_DESC(irq_adapt_high_thresh,
45 "Threshold score for increasing IRQ moderation");
47 /* This is the weight assigned to each of the (per-channel) virtual
48 * NAPI devices.
50 static int napi_weight = 64;
52 /***************
53 * Housekeeping
54 ***************/
56 int efx_channel_dummy_op_int(struct efx_channel *channel)
58 return 0;
61 void efx_channel_dummy_op_void(struct efx_channel *channel)
65 static const struct efx_channel_type efx_default_channel_type = {
66 .pre_probe = efx_channel_dummy_op_int,
67 .post_remove = efx_channel_dummy_op_void,
68 .get_name = efx_get_channel_name,
69 .copy = efx_copy_channel,
70 .want_txqs = efx_default_channel_want_txqs,
71 .keep_eventq = false,
72 .want_pio = true,
75 /*************
76 * INTERRUPTS
77 *************/
79 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
81 cpumask_var_t thread_mask;
82 unsigned int count;
83 int cpu;
85 if (rss_cpus) {
86 count = rss_cpus;
87 } else {
88 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
89 netif_warn(efx, probe, efx->net_dev,
90 "RSS disabled due to allocation failure\n");
91 return 1;
94 count = 0;
95 for_each_online_cpu(cpu) {
96 if (!cpumask_test_cpu(cpu, thread_mask)) {
97 ++count;
98 cpumask_or(thread_mask, thread_mask,
99 topology_sibling_cpumask(cpu));
103 free_cpumask_var(thread_mask);
106 if (count > EFX_MAX_RX_QUEUES) {
107 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
108 "Reducing number of rx queues from %u to %u.\n",
109 count, EFX_MAX_RX_QUEUES);
110 count = EFX_MAX_RX_QUEUES;
113 /* If RSS is requested for the PF *and* VFs then we can't write RSS
114 * table entries that are inaccessible to VFs
116 #ifdef CONFIG_SFC_SRIOV
117 if (efx->type->sriov_wanted) {
118 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
119 count > efx_vf_size(efx)) {
120 netif_warn(efx, probe, efx->net_dev,
121 "Reducing number of RSS channels from %u to %u for "
122 "VF support. Increase vf-msix-limit to use more "
123 "channels on the PF.\n",
124 count, efx_vf_size(efx));
125 count = efx_vf_size(efx);
128 #endif
130 return count;
133 static int efx_allocate_msix_channels(struct efx_nic *efx,
134 unsigned int max_channels,
135 unsigned int extra_channels,
136 unsigned int parallelism)
138 unsigned int n_channels = parallelism;
139 int vec_count;
140 int n_xdp_tx;
141 int n_xdp_ev;
143 if (efx_separate_tx_channels)
144 n_channels *= 2;
145 n_channels += extra_channels;
147 /* To allow XDP transmit to happen from arbitrary NAPI contexts
148 * we allocate a TX queue per CPU. We share event queues across
149 * multiple tx queues, assuming tx and ev queues are both
150 * maximum size.
153 n_xdp_tx = num_possible_cpus();
154 n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, EFX_MAX_TXQ_PER_CHANNEL);
156 vec_count = pci_msix_vec_count(efx->pci_dev);
157 if (vec_count < 0)
158 return vec_count;
160 max_channels = min_t(unsigned int, vec_count, max_channels);
162 /* Check resources.
163 * We need a channel per event queue, plus a VI per tx queue.
164 * This may be more pessimistic than it needs to be.
166 if (n_channels + n_xdp_ev > max_channels) {
167 netif_err(efx, drv, efx->net_dev,
168 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
169 n_xdp_ev, n_channels, max_channels);
170 efx->n_xdp_channels = 0;
171 efx->xdp_tx_per_channel = 0;
172 efx->xdp_tx_queue_count = 0;
173 } else if (n_channels + n_xdp_tx > efx->max_vis) {
174 netif_err(efx, drv, efx->net_dev,
175 "Insufficient resources for %d XDP TX queues (%d other channels, max VIs %d)\n",
176 n_xdp_tx, n_channels, efx->max_vis);
177 efx->n_xdp_channels = 0;
178 efx->xdp_tx_per_channel = 0;
179 efx->xdp_tx_queue_count = 0;
180 } else {
181 efx->n_xdp_channels = n_xdp_ev;
182 efx->xdp_tx_per_channel = EFX_MAX_TXQ_PER_CHANNEL;
183 efx->xdp_tx_queue_count = n_xdp_tx;
184 n_channels += n_xdp_ev;
185 netif_dbg(efx, drv, efx->net_dev,
186 "Allocating %d TX and %d event queues for XDP\n",
187 n_xdp_tx, n_xdp_ev);
190 if (vec_count < n_channels) {
191 netif_err(efx, drv, efx->net_dev,
192 "WARNING: Insufficient MSI-X vectors available (%d < %u).\n",
193 vec_count, n_channels);
194 netif_err(efx, drv, efx->net_dev,
195 "WARNING: Performance may be reduced.\n");
196 n_channels = vec_count;
199 n_channels = min(n_channels, max_channels);
201 efx->n_channels = n_channels;
203 /* Ignore XDP tx channels when creating rx channels. */
204 n_channels -= efx->n_xdp_channels;
206 if (efx_separate_tx_channels) {
207 efx->n_tx_channels =
208 min(max(n_channels / 2, 1U),
209 efx->max_tx_channels);
210 efx->tx_channel_offset =
211 n_channels - efx->n_tx_channels;
212 efx->n_rx_channels =
213 max(n_channels -
214 efx->n_tx_channels, 1U);
215 } else {
216 efx->n_tx_channels = min(n_channels, efx->max_tx_channels);
217 efx->tx_channel_offset = 0;
218 efx->n_rx_channels = n_channels;
221 efx->n_rx_channels = min(efx->n_rx_channels, parallelism);
222 efx->n_tx_channels = min(efx->n_tx_channels, parallelism);
224 efx->xdp_channel_offset = n_channels;
226 netif_dbg(efx, drv, efx->net_dev,
227 "Allocating %u RX channels\n",
228 efx->n_rx_channels);
230 return efx->n_channels;
233 /* Probe the number and type of interrupts we are able to obtain, and
234 * the resulting numbers of channels and RX queues.
236 int efx_probe_interrupts(struct efx_nic *efx)
238 unsigned int extra_channels = 0;
239 unsigned int rss_spread;
240 unsigned int i, j;
241 int rc;
243 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
244 if (efx->extra_channel_type[i])
245 ++extra_channels;
247 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
248 unsigned int parallelism = efx_wanted_parallelism(efx);
249 struct msix_entry xentries[EFX_MAX_CHANNELS];
250 unsigned int n_channels;
252 rc = efx_allocate_msix_channels(efx, efx->max_channels,
253 extra_channels, parallelism);
254 if (rc >= 0) {
255 n_channels = rc;
256 for (i = 0; i < n_channels; i++)
257 xentries[i].entry = i;
258 rc = pci_enable_msix_range(efx->pci_dev, xentries, 1,
259 n_channels);
261 if (rc < 0) {
262 /* Fall back to single channel MSI */
263 netif_err(efx, drv, efx->net_dev,
264 "could not enable MSI-X\n");
265 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
266 efx->interrupt_mode = EFX_INT_MODE_MSI;
267 else
268 return rc;
269 } else if (rc < n_channels) {
270 netif_err(efx, drv, efx->net_dev,
271 "WARNING: Insufficient MSI-X vectors"
272 " available (%d < %u).\n", rc, n_channels);
273 netif_err(efx, drv, efx->net_dev,
274 "WARNING: Performance may be reduced.\n");
275 n_channels = rc;
278 if (rc > 0) {
279 for (i = 0; i < efx->n_channels; i++)
280 efx_get_channel(efx, i)->irq =
281 xentries[i].vector;
285 /* Try single interrupt MSI */
286 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
287 efx->n_channels = 1;
288 efx->n_rx_channels = 1;
289 efx->n_tx_channels = 1;
290 efx->n_xdp_channels = 0;
291 efx->xdp_channel_offset = efx->n_channels;
292 rc = pci_enable_msi(efx->pci_dev);
293 if (rc == 0) {
294 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
295 } else {
296 netif_err(efx, drv, efx->net_dev,
297 "could not enable MSI\n");
298 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
299 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
300 else
301 return rc;
305 /* Assume legacy interrupts */
306 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
307 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
308 efx->n_rx_channels = 1;
309 efx->n_tx_channels = 1;
310 efx->n_xdp_channels = 0;
311 efx->xdp_channel_offset = efx->n_channels;
312 efx->legacy_irq = efx->pci_dev->irq;
315 /* Assign extra channels if possible, before XDP channels */
316 efx->n_extra_tx_channels = 0;
317 j = efx->xdp_channel_offset;
318 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
319 if (!efx->extra_channel_type[i])
320 continue;
321 if (j <= efx->tx_channel_offset + efx->n_tx_channels) {
322 efx->extra_channel_type[i]->handle_no_channel(efx);
323 } else {
324 --j;
325 efx_get_channel(efx, j)->type =
326 efx->extra_channel_type[i];
327 if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
328 efx->n_extra_tx_channels++;
332 rss_spread = efx->n_rx_channels;
333 /* RSS might be usable on VFs even if it is disabled on the PF */
334 #ifdef CONFIG_SFC_SRIOV
335 if (efx->type->sriov_wanted) {
336 efx->rss_spread = ((rss_spread > 1 ||
337 !efx->type->sriov_wanted(efx)) ?
338 rss_spread : efx_vf_size(efx));
339 return 0;
341 #endif
342 efx->rss_spread = rss_spread;
344 return 0;
347 #if defined(CONFIG_SMP)
348 void efx_set_interrupt_affinity(struct efx_nic *efx)
350 struct efx_channel *channel;
351 unsigned int cpu;
353 efx_for_each_channel(channel, efx) {
354 cpu = cpumask_local_spread(channel->channel,
355 pcibus_to_node(efx->pci_dev->bus));
356 irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
360 void efx_clear_interrupt_affinity(struct efx_nic *efx)
362 struct efx_channel *channel;
364 efx_for_each_channel(channel, efx)
365 irq_set_affinity_hint(channel->irq, NULL);
367 #else
368 void
369 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
373 void
374 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
377 #endif /* CONFIG_SMP */
379 void efx_remove_interrupts(struct efx_nic *efx)
381 struct efx_channel *channel;
383 /* Remove MSI/MSI-X interrupts */
384 efx_for_each_channel(channel, efx)
385 channel->irq = 0;
386 pci_disable_msi(efx->pci_dev);
387 pci_disable_msix(efx->pci_dev);
389 /* Remove legacy interrupt */
390 efx->legacy_irq = 0;
393 /***************
394 * EVENT QUEUES
395 ***************/
397 /* Create event queue
398 * Event queue memory allocations are done only once. If the channel
399 * is reset, the memory buffer will be reused; this guards against
400 * errors during channel reset and also simplifies interrupt handling.
402 int efx_probe_eventq(struct efx_channel *channel)
404 struct efx_nic *efx = channel->efx;
405 unsigned long entries;
407 netif_dbg(efx, probe, efx->net_dev,
408 "chan %d create event queue\n", channel->channel);
410 /* Build an event queue with room for one event per tx and rx buffer,
411 * plus some extra for link state events and MCDI completions.
413 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
414 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
415 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
417 return efx_nic_probe_eventq(channel);
420 /* Prepare channel's event queue */
421 int efx_init_eventq(struct efx_channel *channel)
423 struct efx_nic *efx = channel->efx;
424 int rc;
426 EFX_WARN_ON_PARANOID(channel->eventq_init);
428 netif_dbg(efx, drv, efx->net_dev,
429 "chan %d init event queue\n", channel->channel);
431 rc = efx_nic_init_eventq(channel);
432 if (rc == 0) {
433 efx->type->push_irq_moderation(channel);
434 channel->eventq_read_ptr = 0;
435 channel->eventq_init = true;
437 return rc;
440 /* Enable event queue processing and NAPI */
441 void efx_start_eventq(struct efx_channel *channel)
443 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
444 "chan %d start event queue\n", channel->channel);
446 /* Make sure the NAPI handler sees the enabled flag set */
447 channel->enabled = true;
448 smp_wmb();
450 napi_enable(&channel->napi_str);
451 efx_nic_eventq_read_ack(channel);
454 /* Disable event queue processing and NAPI */
455 void efx_stop_eventq(struct efx_channel *channel)
457 if (!channel->enabled)
458 return;
460 napi_disable(&channel->napi_str);
461 channel->enabled = false;
464 void efx_fini_eventq(struct efx_channel *channel)
466 if (!channel->eventq_init)
467 return;
469 netif_dbg(channel->efx, drv, channel->efx->net_dev,
470 "chan %d fini event queue\n", channel->channel);
472 efx_nic_fini_eventq(channel);
473 channel->eventq_init = false;
476 void efx_remove_eventq(struct efx_channel *channel)
478 netif_dbg(channel->efx, drv, channel->efx->net_dev,
479 "chan %d remove event queue\n", channel->channel);
481 efx_nic_remove_eventq(channel);
484 /**************************************************************************
486 * Channel handling
488 *************************************************************************/
490 #ifdef CONFIG_RFS_ACCEL
491 static void efx_filter_rfs_expire(struct work_struct *data)
493 struct delayed_work *dwork = to_delayed_work(data);
494 struct efx_channel *channel;
495 unsigned int time, quota;
497 channel = container_of(dwork, struct efx_channel, filter_work);
498 time = jiffies - channel->rfs_last_expiry;
499 quota = channel->rfs_filter_count * time / (30 * HZ);
500 if (quota >= 20 && __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, quota)))
501 channel->rfs_last_expiry += time;
502 /* Ensure we do more work eventually even if NAPI poll is not happening */
503 schedule_delayed_work(dwork, 30 * HZ);
505 #endif
507 /* Allocate and initialise a channel structure. */
508 static struct efx_channel *efx_alloc_channel(struct efx_nic *efx, int i)
510 struct efx_rx_queue *rx_queue;
511 struct efx_tx_queue *tx_queue;
512 struct efx_channel *channel;
513 int j;
515 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
516 if (!channel)
517 return NULL;
519 channel->efx = efx;
520 channel->channel = i;
521 channel->type = &efx_default_channel_type;
523 for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
524 tx_queue = &channel->tx_queue[j];
525 tx_queue->efx = efx;
526 tx_queue->queue = -1;
527 tx_queue->label = j;
528 tx_queue->channel = channel;
531 #ifdef CONFIG_RFS_ACCEL
532 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
533 #endif
535 rx_queue = &channel->rx_queue;
536 rx_queue->efx = efx;
537 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
539 return channel;
542 int efx_init_channels(struct efx_nic *efx)
544 unsigned int i;
546 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
547 efx->channel[i] = efx_alloc_channel(efx, i);
548 if (!efx->channel[i])
549 return -ENOMEM;
550 efx->msi_context[i].efx = efx;
551 efx->msi_context[i].index = i;
554 /* Higher numbered interrupt modes are less capable! */
555 efx->interrupt_mode = min(efx->type->min_interrupt_mode,
556 efx_interrupt_mode);
558 efx->max_channels = EFX_MAX_CHANNELS;
559 efx->max_tx_channels = EFX_MAX_CHANNELS;
561 return 0;
564 void efx_fini_channels(struct efx_nic *efx)
566 unsigned int i;
568 for (i = 0; i < EFX_MAX_CHANNELS; i++)
569 if (efx->channel[i]) {
570 kfree(efx->channel[i]);
571 efx->channel[i] = NULL;
575 /* Allocate and initialise a channel structure, copying parameters
576 * (but not resources) from an old channel structure.
578 struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel)
580 struct efx_rx_queue *rx_queue;
581 struct efx_tx_queue *tx_queue;
582 struct efx_channel *channel;
583 int j;
585 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
586 if (!channel)
587 return NULL;
589 *channel = *old_channel;
591 channel->napi_dev = NULL;
592 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
593 channel->napi_str.napi_id = 0;
594 channel->napi_str.state = 0;
595 memset(&channel->eventq, 0, sizeof(channel->eventq));
597 for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
598 tx_queue = &channel->tx_queue[j];
599 if (tx_queue->channel)
600 tx_queue->channel = channel;
601 tx_queue->buffer = NULL;
602 tx_queue->cb_page = NULL;
603 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
606 rx_queue = &channel->rx_queue;
607 rx_queue->buffer = NULL;
608 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
609 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
610 #ifdef CONFIG_RFS_ACCEL
611 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
612 #endif
614 return channel;
617 static int efx_probe_channel(struct efx_channel *channel)
619 struct efx_tx_queue *tx_queue;
620 struct efx_rx_queue *rx_queue;
621 int rc;
623 netif_dbg(channel->efx, probe, channel->efx->net_dev,
624 "creating channel %d\n", channel->channel);
626 rc = channel->type->pre_probe(channel);
627 if (rc)
628 goto fail;
630 rc = efx_probe_eventq(channel);
631 if (rc)
632 goto fail;
634 efx_for_each_channel_tx_queue(tx_queue, channel) {
635 rc = efx_probe_tx_queue(tx_queue);
636 if (rc)
637 goto fail;
640 efx_for_each_channel_rx_queue(rx_queue, channel) {
641 rc = efx_probe_rx_queue(rx_queue);
642 if (rc)
643 goto fail;
646 channel->rx_list = NULL;
648 return 0;
650 fail:
651 efx_remove_channel(channel);
652 return rc;
655 void efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
657 struct efx_nic *efx = channel->efx;
658 const char *type;
659 int number;
661 number = channel->channel;
663 if (number >= efx->xdp_channel_offset &&
664 !WARN_ON_ONCE(!efx->n_xdp_channels)) {
665 type = "-xdp";
666 number -= efx->xdp_channel_offset;
667 } else if (efx->tx_channel_offset == 0) {
668 type = "";
669 } else if (number < efx->tx_channel_offset) {
670 type = "-rx";
671 } else {
672 type = "-tx";
673 number -= efx->tx_channel_offset;
675 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
678 void efx_set_channel_names(struct efx_nic *efx)
680 struct efx_channel *channel;
682 efx_for_each_channel(channel, efx)
683 channel->type->get_name(channel,
684 efx->msi_context[channel->channel].name,
685 sizeof(efx->msi_context[0].name));
688 int efx_probe_channels(struct efx_nic *efx)
690 struct efx_channel *channel;
691 int rc;
693 /* Restart special buffer allocation */
694 efx->next_buffer_table = 0;
696 /* Probe channels in reverse, so that any 'extra' channels
697 * use the start of the buffer table. This allows the traffic
698 * channels to be resized without moving them or wasting the
699 * entries before them.
701 efx_for_each_channel_rev(channel, efx) {
702 rc = efx_probe_channel(channel);
703 if (rc) {
704 netif_err(efx, probe, efx->net_dev,
705 "failed to create channel %d\n",
706 channel->channel);
707 goto fail;
710 efx_set_channel_names(efx);
712 return 0;
714 fail:
715 efx_remove_channels(efx);
716 return rc;
719 void efx_remove_channel(struct efx_channel *channel)
721 struct efx_tx_queue *tx_queue;
722 struct efx_rx_queue *rx_queue;
724 netif_dbg(channel->efx, drv, channel->efx->net_dev,
725 "destroy chan %d\n", channel->channel);
727 efx_for_each_channel_rx_queue(rx_queue, channel)
728 efx_remove_rx_queue(rx_queue);
729 efx_for_each_channel_tx_queue(tx_queue, channel)
730 efx_remove_tx_queue(tx_queue);
731 efx_remove_eventq(channel);
732 channel->type->post_remove(channel);
735 void efx_remove_channels(struct efx_nic *efx)
737 struct efx_channel *channel;
739 efx_for_each_channel(channel, efx)
740 efx_remove_channel(channel);
742 kfree(efx->xdp_tx_queues);
745 int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
747 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
748 unsigned int i, next_buffer_table = 0;
749 u32 old_rxq_entries, old_txq_entries;
750 int rc, rc2;
752 rc = efx_check_disabled(efx);
753 if (rc)
754 return rc;
756 /* Not all channels should be reallocated. We must avoid
757 * reallocating their buffer table entries.
759 efx_for_each_channel(channel, efx) {
760 struct efx_rx_queue *rx_queue;
761 struct efx_tx_queue *tx_queue;
763 if (channel->type->copy)
764 continue;
765 next_buffer_table = max(next_buffer_table,
766 channel->eventq.index +
767 channel->eventq.entries);
768 efx_for_each_channel_rx_queue(rx_queue, channel)
769 next_buffer_table = max(next_buffer_table,
770 rx_queue->rxd.index +
771 rx_queue->rxd.entries);
772 efx_for_each_channel_tx_queue(tx_queue, channel)
773 next_buffer_table = max(next_buffer_table,
774 tx_queue->txd.index +
775 tx_queue->txd.entries);
778 efx_device_detach_sync(efx);
779 efx_stop_all(efx);
780 efx_soft_disable_interrupts(efx);
782 /* Clone channels (where possible) */
783 memset(other_channel, 0, sizeof(other_channel));
784 for (i = 0; i < efx->n_channels; i++) {
785 channel = efx->channel[i];
786 if (channel->type->copy)
787 channel = channel->type->copy(channel);
788 if (!channel) {
789 rc = -ENOMEM;
790 goto out;
792 other_channel[i] = channel;
795 /* Swap entry counts and channel pointers */
796 old_rxq_entries = efx->rxq_entries;
797 old_txq_entries = efx->txq_entries;
798 efx->rxq_entries = rxq_entries;
799 efx->txq_entries = txq_entries;
800 for (i = 0; i < efx->n_channels; i++) {
801 channel = efx->channel[i];
802 efx->channel[i] = other_channel[i];
803 other_channel[i] = channel;
806 /* Restart buffer table allocation */
807 efx->next_buffer_table = next_buffer_table;
809 for (i = 0; i < efx->n_channels; i++) {
810 channel = efx->channel[i];
811 if (!channel->type->copy)
812 continue;
813 rc = efx_probe_channel(channel);
814 if (rc)
815 goto rollback;
816 efx_init_napi_channel(efx->channel[i]);
819 out:
820 /* Destroy unused channel structures */
821 for (i = 0; i < efx->n_channels; i++) {
822 channel = other_channel[i];
823 if (channel && channel->type->copy) {
824 efx_fini_napi_channel(channel);
825 efx_remove_channel(channel);
826 kfree(channel);
830 rc2 = efx_soft_enable_interrupts(efx);
831 if (rc2) {
832 rc = rc ? rc : rc2;
833 netif_err(efx, drv, efx->net_dev,
834 "unable to restart interrupts on channel reallocation\n");
835 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
836 } else {
837 efx_start_all(efx);
838 efx_device_attach_if_not_resetting(efx);
840 return rc;
842 rollback:
843 /* Swap back */
844 efx->rxq_entries = old_rxq_entries;
845 efx->txq_entries = old_txq_entries;
846 for (i = 0; i < efx->n_channels; i++) {
847 channel = efx->channel[i];
848 efx->channel[i] = other_channel[i];
849 other_channel[i] = channel;
851 goto out;
854 int efx_set_channels(struct efx_nic *efx)
856 struct efx_tx_queue *tx_queue;
857 struct efx_channel *channel;
858 unsigned int next_queue = 0;
859 int xdp_queue_number;
860 int rc;
862 efx->tx_channel_offset =
863 efx_separate_tx_channels ?
864 efx->n_channels - efx->n_tx_channels : 0;
866 if (efx->xdp_tx_queue_count) {
867 EFX_WARN_ON_PARANOID(efx->xdp_tx_queues);
869 /* Allocate array for XDP TX queue lookup. */
870 efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count,
871 sizeof(*efx->xdp_tx_queues),
872 GFP_KERNEL);
873 if (!efx->xdp_tx_queues)
874 return -ENOMEM;
877 /* We need to mark which channels really have RX and TX
878 * queues, and adjust the TX queue numbers if we have separate
879 * RX-only and TX-only channels.
881 xdp_queue_number = 0;
882 efx_for_each_channel(channel, efx) {
883 if (channel->channel < efx->n_rx_channels)
884 channel->rx_queue.core_index = channel->channel;
885 else
886 channel->rx_queue.core_index = -1;
888 if (channel->channel >= efx->tx_channel_offset) {
889 if (efx_channel_is_xdp_tx(channel)) {
890 efx_for_each_channel_tx_queue(tx_queue, channel) {
891 tx_queue->queue = next_queue++;
892 netif_dbg(efx, drv, efx->net_dev, "Channel %u TXQ %u is XDP %u, HW %u\n",
893 channel->channel, tx_queue->label,
894 xdp_queue_number, tx_queue->queue);
895 /* We may have a few left-over XDP TX
896 * queues owing to xdp_tx_queue_count
897 * not dividing evenly by EFX_MAX_TXQ_PER_CHANNEL.
898 * We still allocate and probe those
899 * TXQs, but never use them.
901 if (xdp_queue_number < efx->xdp_tx_queue_count)
902 efx->xdp_tx_queues[xdp_queue_number] = tx_queue;
903 xdp_queue_number++;
905 } else {
906 efx_for_each_channel_tx_queue(tx_queue, channel) {
907 tx_queue->queue = next_queue++;
908 netif_dbg(efx, drv, efx->net_dev, "Channel %u TXQ %u is HW %u\n",
909 channel->channel, tx_queue->label,
910 tx_queue->queue);
916 rc = netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
917 if (rc)
918 return rc;
919 return netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
922 bool efx_default_channel_want_txqs(struct efx_channel *channel)
924 return channel->channel - channel->efx->tx_channel_offset <
925 channel->efx->n_tx_channels;
928 /*************
929 * START/STOP
930 *************/
932 int efx_soft_enable_interrupts(struct efx_nic *efx)
934 struct efx_channel *channel, *end_channel;
935 int rc;
937 BUG_ON(efx->state == STATE_DISABLED);
939 efx->irq_soft_enabled = true;
940 smp_wmb();
942 efx_for_each_channel(channel, efx) {
943 if (!channel->type->keep_eventq) {
944 rc = efx_init_eventq(channel);
945 if (rc)
946 goto fail;
948 efx_start_eventq(channel);
951 efx_mcdi_mode_event(efx);
953 return 0;
954 fail:
955 end_channel = channel;
956 efx_for_each_channel(channel, efx) {
957 if (channel == end_channel)
958 break;
959 efx_stop_eventq(channel);
960 if (!channel->type->keep_eventq)
961 efx_fini_eventq(channel);
964 return rc;
967 void efx_soft_disable_interrupts(struct efx_nic *efx)
969 struct efx_channel *channel;
971 if (efx->state == STATE_DISABLED)
972 return;
974 efx_mcdi_mode_poll(efx);
976 efx->irq_soft_enabled = false;
977 smp_wmb();
979 if (efx->legacy_irq)
980 synchronize_irq(efx->legacy_irq);
982 efx_for_each_channel(channel, efx) {
983 if (channel->irq)
984 synchronize_irq(channel->irq);
986 efx_stop_eventq(channel);
987 if (!channel->type->keep_eventq)
988 efx_fini_eventq(channel);
991 /* Flush the asynchronous MCDI request queue */
992 efx_mcdi_flush_async(efx);
995 int efx_enable_interrupts(struct efx_nic *efx)
997 struct efx_channel *channel, *end_channel;
998 int rc;
1000 /* TODO: Is this really a bug? */
1001 BUG_ON(efx->state == STATE_DISABLED);
1003 if (efx->eeh_disabled_legacy_irq) {
1004 enable_irq(efx->legacy_irq);
1005 efx->eeh_disabled_legacy_irq = false;
1008 efx->type->irq_enable_master(efx);
1010 efx_for_each_channel(channel, efx) {
1011 if (channel->type->keep_eventq) {
1012 rc = efx_init_eventq(channel);
1013 if (rc)
1014 goto fail;
1018 rc = efx_soft_enable_interrupts(efx);
1019 if (rc)
1020 goto fail;
1022 return 0;
1024 fail:
1025 end_channel = channel;
1026 efx_for_each_channel(channel, efx) {
1027 if (channel == end_channel)
1028 break;
1029 if (channel->type->keep_eventq)
1030 efx_fini_eventq(channel);
1033 efx->type->irq_disable_non_ev(efx);
1035 return rc;
1038 void efx_disable_interrupts(struct efx_nic *efx)
1040 struct efx_channel *channel;
1042 efx_soft_disable_interrupts(efx);
1044 efx_for_each_channel(channel, efx) {
1045 if (channel->type->keep_eventq)
1046 efx_fini_eventq(channel);
1049 efx->type->irq_disable_non_ev(efx);
1052 void efx_start_channels(struct efx_nic *efx)
1054 struct efx_tx_queue *tx_queue;
1055 struct efx_rx_queue *rx_queue;
1056 struct efx_channel *channel;
1058 efx_for_each_channel(channel, efx) {
1059 efx_for_each_channel_tx_queue(tx_queue, channel) {
1060 efx_init_tx_queue(tx_queue);
1061 atomic_inc(&efx->active_queues);
1064 efx_for_each_channel_rx_queue(rx_queue, channel) {
1065 efx_init_rx_queue(rx_queue);
1066 atomic_inc(&efx->active_queues);
1067 efx_stop_eventq(channel);
1068 efx_fast_push_rx_descriptors(rx_queue, false);
1069 efx_start_eventq(channel);
1072 WARN_ON(channel->rx_pkt_n_frags);
1076 void efx_stop_channels(struct efx_nic *efx)
1078 struct efx_tx_queue *tx_queue;
1079 struct efx_rx_queue *rx_queue;
1080 struct efx_channel *channel;
1081 int rc = 0;
1083 /* Stop RX refill */
1084 efx_for_each_channel(channel, efx) {
1085 efx_for_each_channel_rx_queue(rx_queue, channel)
1086 rx_queue->refill_enabled = false;
1089 efx_for_each_channel(channel, efx) {
1090 /* RX packet processing is pipelined, so wait for the
1091 * NAPI handler to complete. At least event queue 0
1092 * might be kept active by non-data events, so don't
1093 * use napi_synchronize() but actually disable NAPI
1094 * temporarily.
1096 if (efx_channel_has_rx_queue(channel)) {
1097 efx_stop_eventq(channel);
1098 efx_start_eventq(channel);
1102 if (efx->type->fini_dmaq)
1103 rc = efx->type->fini_dmaq(efx);
1105 if (rc) {
1106 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
1107 } else {
1108 netif_dbg(efx, drv, efx->net_dev,
1109 "successfully flushed all queues\n");
1112 efx_for_each_channel(channel, efx) {
1113 efx_for_each_channel_rx_queue(rx_queue, channel)
1114 efx_fini_rx_queue(rx_queue);
1115 efx_for_each_channel_tx_queue(tx_queue, channel)
1116 efx_fini_tx_queue(tx_queue);
1120 /**************************************************************************
1122 * NAPI interface
1124 *************************************************************************/
1126 /* Process channel's event queue
1128 * This function is responsible for processing the event queue of a
1129 * single channel. The caller must guarantee that this function will
1130 * never be concurrently called more than once on the same channel,
1131 * though different channels may be being processed concurrently.
1133 static int efx_process_channel(struct efx_channel *channel, int budget)
1135 struct efx_tx_queue *tx_queue;
1136 struct list_head rx_list;
1137 int spent;
1139 if (unlikely(!channel->enabled))
1140 return 0;
1142 /* Prepare the batch receive list */
1143 EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
1144 INIT_LIST_HEAD(&rx_list);
1145 channel->rx_list = &rx_list;
1147 efx_for_each_channel_tx_queue(tx_queue, channel) {
1148 tx_queue->pkts_compl = 0;
1149 tx_queue->bytes_compl = 0;
1152 spent = efx_nic_process_eventq(channel, budget);
1153 if (spent && efx_channel_has_rx_queue(channel)) {
1154 struct efx_rx_queue *rx_queue =
1155 efx_channel_get_rx_queue(channel);
1157 efx_rx_flush_packet(channel);
1158 efx_fast_push_rx_descriptors(rx_queue, true);
1161 /* Update BQL */
1162 efx_for_each_channel_tx_queue(tx_queue, channel) {
1163 if (tx_queue->bytes_compl) {
1164 netdev_tx_completed_queue(tx_queue->core_txq,
1165 tx_queue->pkts_compl,
1166 tx_queue->bytes_compl);
1170 /* Receive any packets we queued up */
1171 netif_receive_skb_list(channel->rx_list);
1172 channel->rx_list = NULL;
1174 return spent;
1177 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
1179 int step = efx->irq_mod_step_us;
1181 if (channel->irq_mod_score < irq_adapt_low_thresh) {
1182 if (channel->irq_moderation_us > step) {
1183 channel->irq_moderation_us -= step;
1184 efx->type->push_irq_moderation(channel);
1186 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
1187 if (channel->irq_moderation_us <
1188 efx->irq_rx_moderation_us) {
1189 channel->irq_moderation_us += step;
1190 efx->type->push_irq_moderation(channel);
1194 channel->irq_count = 0;
1195 channel->irq_mod_score = 0;
1198 /* NAPI poll handler
1200 * NAPI guarantees serialisation of polls of the same device, which
1201 * provides the guarantee required by efx_process_channel().
1203 static int efx_poll(struct napi_struct *napi, int budget)
1205 struct efx_channel *channel =
1206 container_of(napi, struct efx_channel, napi_str);
1207 struct efx_nic *efx = channel->efx;
1208 #ifdef CONFIG_RFS_ACCEL
1209 unsigned int time;
1210 #endif
1211 int spent;
1213 netif_vdbg(efx, intr, efx->net_dev,
1214 "channel %d NAPI poll executing on CPU %d\n",
1215 channel->channel, raw_smp_processor_id());
1217 spent = efx_process_channel(channel, budget);
1219 xdp_do_flush_map();
1221 if (spent < budget) {
1222 if (efx_channel_has_rx_queue(channel) &&
1223 efx->irq_rx_adaptive &&
1224 unlikely(++channel->irq_count == 1000)) {
1225 efx_update_irq_mod(efx, channel);
1228 #ifdef CONFIG_RFS_ACCEL
1229 /* Perhaps expire some ARFS filters */
1230 time = jiffies - channel->rfs_last_expiry;
1231 /* Would our quota be >= 20? */
1232 if (channel->rfs_filter_count * time >= 600 * HZ)
1233 mod_delayed_work(system_wq, &channel->filter_work, 0);
1234 #endif
1236 /* There is no race here; although napi_disable() will
1237 * only wait for napi_complete(), this isn't a problem
1238 * since efx_nic_eventq_read_ack() will have no effect if
1239 * interrupts have already been disabled.
1241 if (napi_complete_done(napi, spent))
1242 efx_nic_eventq_read_ack(channel);
1245 return spent;
1248 void efx_init_napi_channel(struct efx_channel *channel)
1250 struct efx_nic *efx = channel->efx;
1252 channel->napi_dev = efx->net_dev;
1253 netif_napi_add(channel->napi_dev, &channel->napi_str,
1254 efx_poll, napi_weight);
1257 void efx_init_napi(struct efx_nic *efx)
1259 struct efx_channel *channel;
1261 efx_for_each_channel(channel, efx)
1262 efx_init_napi_channel(channel);
1265 void efx_fini_napi_channel(struct efx_channel *channel)
1267 if (channel->napi_dev)
1268 netif_napi_del(&channel->napi_str);
1270 channel->napi_dev = NULL;
1273 void efx_fini_napi(struct efx_nic *efx)
1275 struct efx_channel *channel;
1277 efx_for_each_channel(channel, efx)
1278 efx_fini_napi_channel(channel);