1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
8 #include <linux/module.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
15 #include <linux/tcp.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
27 #include "workarounds.h"
29 /**************************************************************************
33 **************************************************************************
36 /* Loopback mode names (see LOOPBACK_MODE()) */
37 const unsigned int ef4_loopback_mode_max
= LOOPBACK_MAX
;
38 const char *const ef4_loopback_mode_names
[] = {
39 [LOOPBACK_NONE
] = "NONE",
40 [LOOPBACK_DATA
] = "DATAPATH",
41 [LOOPBACK_GMAC
] = "GMAC",
42 [LOOPBACK_XGMII
] = "XGMII",
43 [LOOPBACK_XGXS
] = "XGXS",
44 [LOOPBACK_XAUI
] = "XAUI",
45 [LOOPBACK_GMII
] = "GMII",
46 [LOOPBACK_SGMII
] = "SGMII",
47 [LOOPBACK_XGBR
] = "XGBR",
48 [LOOPBACK_XFI
] = "XFI",
49 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
50 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
51 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
52 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
53 [LOOPBACK_GPHY
] = "GPHY",
54 [LOOPBACK_PHYXS
] = "PHYXS",
55 [LOOPBACK_PCS
] = "PCS",
56 [LOOPBACK_PMAPMD
] = "PMA/PMD",
57 [LOOPBACK_XPORT
] = "XPORT",
58 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
59 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
60 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
61 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
62 [LOOPBACK_GMII_WS
] = "GMII_WS",
63 [LOOPBACK_XFI_WS
] = "XFI_WS",
64 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
65 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
68 const unsigned int ef4_reset_type_max
= RESET_TYPE_MAX
;
69 const char *const ef4_reset_type_names
[] = {
70 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
71 [RESET_TYPE_ALL
] = "ALL",
72 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
73 [RESET_TYPE_WORLD
] = "WORLD",
74 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
75 [RESET_TYPE_DATAPATH
] = "DATAPATH",
76 [RESET_TYPE_DISABLE
] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY
] = "RX_RECOVERY",
80 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
81 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
85 * queued onto this work queue. This is not a per-nic work queue, because
86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
88 static struct workqueue_struct
*reset_workqueue
;
90 /* How often and how many times to poll for a reset while waiting for a
91 * BIST that another function started to complete.
93 #define BIST_WAIT_DELAY_MS 100
94 #define BIST_WAIT_DELAY_COUNT 100
96 /**************************************************************************
100 *************************************************************************/
103 * Use separate channels for TX and RX events
105 * Set this to 1 to use separate channels for TX and RX. It allows us
106 * to control interrupt affinity separately for TX and RX.
108 * This is only used in MSI-X interrupt mode
110 bool ef4_separate_tx_channels
;
111 module_param(ef4_separate_tx_channels
, bool, 0444);
112 MODULE_PARM_DESC(ef4_separate_tx_channels
,
113 "Use separate channels for TX and RX");
115 /* This is the weight assigned to each of the (per-channel) virtual
118 static int napi_weight
= 64;
120 /* This is the time (in jiffies) between invocations of the hardware
122 * On Falcon-based NICs, this will:
123 * - Check the on-board hardware monitor;
124 * - Poll the link state and reconfigure the hardware as necessary.
125 * On Siena-based NICs for power systems with EEH support, this will give EEH a
128 static unsigned int ef4_monitor_interval
= 1 * HZ
;
130 /* Initial interrupt moderation settings. They can be modified after
131 * module load with ethtool.
133 * The default for RX should strike a balance between increasing the
134 * round-trip latency and reducing overhead.
136 static unsigned int rx_irq_mod_usec
= 60;
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
141 * This default is chosen to ensure that a 10G link does not go idle
142 * while a TX queue is stopped after it has become full. A queue is
143 * restarted when it drops below half full. The time this takes (assuming
144 * worst case 3 descriptors per packet and 1024 descriptors) is
145 * 512 / 3 * 1.2 = 205 usec.
147 static unsigned int tx_irq_mod_usec
= 150;
149 /* This is the first interrupt mode to try out of:
154 static unsigned int interrupt_mode
;
156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
157 * i.e. the number of CPUs among which we may distribute simultaneous
158 * interrupt handling.
160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161 * The default (0) means to assign an interrupt to each core.
163 static unsigned int rss_cpus
;
164 module_param(rss_cpus
, uint
, 0444);
165 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
167 static bool phy_flash_cfg
;
168 module_param(phy_flash_cfg
, bool, 0644);
169 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
171 static unsigned irq_adapt_low_thresh
= 8000;
172 module_param(irq_adapt_low_thresh
, uint
, 0644);
173 MODULE_PARM_DESC(irq_adapt_low_thresh
,
174 "Threshold score for reducing IRQ moderation");
176 static unsigned irq_adapt_high_thresh
= 16000;
177 module_param(irq_adapt_high_thresh
, uint
, 0644);
178 MODULE_PARM_DESC(irq_adapt_high_thresh
,
179 "Threshold score for increasing IRQ moderation");
181 static unsigned debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
182 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
183 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
184 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
185 module_param(debug
, uint
, 0);
186 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
188 /**************************************************************************
190 * Utility functions and prototypes
192 *************************************************************************/
194 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
);
195 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
);
196 static void ef4_remove_channel(struct ef4_channel
*channel
);
197 static void ef4_remove_channels(struct ef4_nic
*efx
);
198 static const struct ef4_channel_type ef4_default_channel_type
;
199 static void ef4_remove_port(struct ef4_nic
*efx
);
200 static void ef4_init_napi_channel(struct ef4_channel
*channel
);
201 static void ef4_fini_napi(struct ef4_nic
*efx
);
202 static void ef4_fini_napi_channel(struct ef4_channel
*channel
);
203 static void ef4_fini_struct(struct ef4_nic
*efx
);
204 static void ef4_start_all(struct ef4_nic
*efx
);
205 static void ef4_stop_all(struct ef4_nic
*efx
);
207 #define EF4_ASSERT_RESET_SERIALISED(efx) \
209 if ((efx->state == STATE_READY) || \
210 (efx->state == STATE_RECOVERY) || \
211 (efx->state == STATE_DISABLED)) \
215 static int ef4_check_disabled(struct ef4_nic
*efx
)
217 if (efx
->state
== STATE_DISABLED
|| efx
->state
== STATE_RECOVERY
) {
218 netif_err(efx
, drv
, efx
->net_dev
,
219 "device is disabled due to earlier errors\n");
225 /**************************************************************************
227 * Event queue processing
229 *************************************************************************/
231 /* Process channel's event queue
233 * This function is responsible for processing the event queue of a
234 * single channel. The caller must guarantee that this function will
235 * never be concurrently called more than once on the same channel,
236 * though different channels may be being processed concurrently.
238 static int ef4_process_channel(struct ef4_channel
*channel
, int budget
)
240 struct ef4_tx_queue
*tx_queue
;
243 if (unlikely(!channel
->enabled
))
246 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
247 tx_queue
->pkts_compl
= 0;
248 tx_queue
->bytes_compl
= 0;
251 spent
= ef4_nic_process_eventq(channel
, budget
);
252 if (spent
&& ef4_channel_has_rx_queue(channel
)) {
253 struct ef4_rx_queue
*rx_queue
=
254 ef4_channel_get_rx_queue(channel
);
256 ef4_rx_flush_packet(channel
);
257 ef4_fast_push_rx_descriptors(rx_queue
, true);
261 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
262 if (tx_queue
->bytes_compl
) {
263 netdev_tx_completed_queue(tx_queue
->core_txq
,
264 tx_queue
->pkts_compl
, tx_queue
->bytes_compl
);
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by ef4_process_channel().
276 static void ef4_update_irq_mod(struct ef4_nic
*efx
, struct ef4_channel
*channel
)
278 int step
= efx
->irq_mod_step_us
;
280 if (channel
->irq_mod_score
< irq_adapt_low_thresh
) {
281 if (channel
->irq_moderation_us
> step
) {
282 channel
->irq_moderation_us
-= step
;
283 efx
->type
->push_irq_moderation(channel
);
285 } else if (channel
->irq_mod_score
> irq_adapt_high_thresh
) {
286 if (channel
->irq_moderation_us
<
287 efx
->irq_rx_moderation_us
) {
288 channel
->irq_moderation_us
+= step
;
289 efx
->type
->push_irq_moderation(channel
);
293 channel
->irq_count
= 0;
294 channel
->irq_mod_score
= 0;
297 static int ef4_poll(struct napi_struct
*napi
, int budget
)
299 struct ef4_channel
*channel
=
300 container_of(napi
, struct ef4_channel
, napi_str
);
301 struct ef4_nic
*efx
= channel
->efx
;
304 netif_vdbg(efx
, intr
, efx
->net_dev
,
305 "channel %d NAPI poll executing on CPU %d\n",
306 channel
->channel
, raw_smp_processor_id());
308 spent
= ef4_process_channel(channel
, budget
);
310 if (spent
< budget
) {
311 if (ef4_channel_has_rx_queue(channel
) &&
312 efx
->irq_rx_adaptive
&&
313 unlikely(++channel
->irq_count
== 1000)) {
314 ef4_update_irq_mod(efx
, channel
);
317 ef4_filter_rfs_expire(channel
);
319 /* There is no race here; although napi_disable() will
320 * only wait for napi_complete(), this isn't a problem
321 * since ef4_nic_eventq_read_ack() will have no effect if
322 * interrupts have already been disabled.
324 napi_complete_done(napi
, spent
);
325 ef4_nic_eventq_read_ack(channel
);
331 /* Create event queue
332 * Event queue memory allocations are done only once. If the channel
333 * is reset, the memory buffer will be reused; this guards against
334 * errors during channel reset and also simplifies interrupt handling.
336 static int ef4_probe_eventq(struct ef4_channel
*channel
)
338 struct ef4_nic
*efx
= channel
->efx
;
339 unsigned long entries
;
341 netif_dbg(efx
, probe
, efx
->net_dev
,
342 "chan %d create event queue\n", channel
->channel
);
344 /* Build an event queue with room for one event per tx and rx buffer,
345 * plus some extra for link state events and MCDI completions. */
346 entries
= roundup_pow_of_two(efx
->rxq_entries
+ efx
->txq_entries
+ 128);
347 EF4_BUG_ON_PARANOID(entries
> EF4_MAX_EVQ_SIZE
);
348 channel
->eventq_mask
= max(entries
, EF4_MIN_EVQ_SIZE
) - 1;
350 return ef4_nic_probe_eventq(channel
);
353 /* Prepare channel's event queue */
354 static int ef4_init_eventq(struct ef4_channel
*channel
)
356 struct ef4_nic
*efx
= channel
->efx
;
359 EF4_WARN_ON_PARANOID(channel
->eventq_init
);
361 netif_dbg(efx
, drv
, efx
->net_dev
,
362 "chan %d init event queue\n", channel
->channel
);
364 rc
= ef4_nic_init_eventq(channel
);
366 efx
->type
->push_irq_moderation(channel
);
367 channel
->eventq_read_ptr
= 0;
368 channel
->eventq_init
= true;
373 /* Enable event queue processing and NAPI */
374 void ef4_start_eventq(struct ef4_channel
*channel
)
376 netif_dbg(channel
->efx
, ifup
, channel
->efx
->net_dev
,
377 "chan %d start event queue\n", channel
->channel
);
379 /* Make sure the NAPI handler sees the enabled flag set */
380 channel
->enabled
= true;
383 napi_enable(&channel
->napi_str
);
384 ef4_nic_eventq_read_ack(channel
);
387 /* Disable event queue processing and NAPI */
388 void ef4_stop_eventq(struct ef4_channel
*channel
)
390 if (!channel
->enabled
)
393 napi_disable(&channel
->napi_str
);
394 channel
->enabled
= false;
397 static void ef4_fini_eventq(struct ef4_channel
*channel
)
399 if (!channel
->eventq_init
)
402 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
403 "chan %d fini event queue\n", channel
->channel
);
405 ef4_nic_fini_eventq(channel
);
406 channel
->eventq_init
= false;
409 static void ef4_remove_eventq(struct ef4_channel
*channel
)
411 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
412 "chan %d remove event queue\n", channel
->channel
);
414 ef4_nic_remove_eventq(channel
);
417 /**************************************************************************
421 *************************************************************************/
423 /* Allocate and initialise a channel structure. */
424 static struct ef4_channel
*
425 ef4_alloc_channel(struct ef4_nic
*efx
, int i
, struct ef4_channel
*old_channel
)
427 struct ef4_channel
*channel
;
428 struct ef4_rx_queue
*rx_queue
;
429 struct ef4_tx_queue
*tx_queue
;
432 channel
= kzalloc(sizeof(*channel
), GFP_KERNEL
);
437 channel
->channel
= i
;
438 channel
->type
= &ef4_default_channel_type
;
440 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
441 tx_queue
= &channel
->tx_queue
[j
];
443 tx_queue
->queue
= i
* EF4_TXQ_TYPES
+ j
;
444 tx_queue
->channel
= channel
;
447 rx_queue
= &channel
->rx_queue
;
449 timer_setup(&rx_queue
->slow_fill
, ef4_rx_slow_fill
, 0);
454 /* Allocate and initialise a channel structure, copying parameters
455 * (but not resources) from an old channel structure.
457 static struct ef4_channel
*
458 ef4_copy_channel(const struct ef4_channel
*old_channel
)
460 struct ef4_channel
*channel
;
461 struct ef4_rx_queue
*rx_queue
;
462 struct ef4_tx_queue
*tx_queue
;
465 channel
= kmalloc(sizeof(*channel
), GFP_KERNEL
);
469 *channel
= *old_channel
;
471 channel
->napi_dev
= NULL
;
472 INIT_HLIST_NODE(&channel
->napi_str
.napi_hash_node
);
473 channel
->napi_str
.napi_id
= 0;
474 channel
->napi_str
.state
= 0;
475 memset(&channel
->eventq
, 0, sizeof(channel
->eventq
));
477 for (j
= 0; j
< EF4_TXQ_TYPES
; j
++) {
478 tx_queue
= &channel
->tx_queue
[j
];
479 if (tx_queue
->channel
)
480 tx_queue
->channel
= channel
;
481 tx_queue
->buffer
= NULL
;
482 memset(&tx_queue
->txd
, 0, sizeof(tx_queue
->txd
));
485 rx_queue
= &channel
->rx_queue
;
486 rx_queue
->buffer
= NULL
;
487 memset(&rx_queue
->rxd
, 0, sizeof(rx_queue
->rxd
));
488 timer_setup(&rx_queue
->slow_fill
, ef4_rx_slow_fill
, 0);
493 static int ef4_probe_channel(struct ef4_channel
*channel
)
495 struct ef4_tx_queue
*tx_queue
;
496 struct ef4_rx_queue
*rx_queue
;
499 netif_dbg(channel
->efx
, probe
, channel
->efx
->net_dev
,
500 "creating channel %d\n", channel
->channel
);
502 rc
= channel
->type
->pre_probe(channel
);
506 rc
= ef4_probe_eventq(channel
);
510 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
511 rc
= ef4_probe_tx_queue(tx_queue
);
516 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
517 rc
= ef4_probe_rx_queue(rx_queue
);
525 ef4_remove_channel(channel
);
530 ef4_get_channel_name(struct ef4_channel
*channel
, char *buf
, size_t len
)
532 struct ef4_nic
*efx
= channel
->efx
;
536 number
= channel
->channel
;
537 if (efx
->tx_channel_offset
== 0) {
539 } else if (channel
->channel
< efx
->tx_channel_offset
) {
543 number
-= efx
->tx_channel_offset
;
545 snprintf(buf
, len
, "%s%s-%d", efx
->name
, type
, number
);
548 static void ef4_set_channel_names(struct ef4_nic
*efx
)
550 struct ef4_channel
*channel
;
552 ef4_for_each_channel(channel
, efx
)
553 channel
->type
->get_name(channel
,
554 efx
->msi_context
[channel
->channel
].name
,
555 sizeof(efx
->msi_context
[0].name
));
558 static int ef4_probe_channels(struct ef4_nic
*efx
)
560 struct ef4_channel
*channel
;
563 /* Restart special buffer allocation */
564 efx
->next_buffer_table
= 0;
566 /* Probe channels in reverse, so that any 'extra' channels
567 * use the start of the buffer table. This allows the traffic
568 * channels to be resized without moving them or wasting the
569 * entries before them.
571 ef4_for_each_channel_rev(channel
, efx
) {
572 rc
= ef4_probe_channel(channel
);
574 netif_err(efx
, probe
, efx
->net_dev
,
575 "failed to create channel %d\n",
580 ef4_set_channel_names(efx
);
585 ef4_remove_channels(efx
);
589 /* Channels are shutdown and reinitialised whilst the NIC is running
590 * to propagate configuration changes (mtu, checksum offload), or
591 * to clear hardware error conditions
593 static void ef4_start_datapath(struct ef4_nic
*efx
)
595 netdev_features_t old_features
= efx
->net_dev
->features
;
596 bool old_rx_scatter
= efx
->rx_scatter
;
597 struct ef4_tx_queue
*tx_queue
;
598 struct ef4_rx_queue
*rx_queue
;
599 struct ef4_channel
*channel
;
602 /* Calculate the rx buffer allocation parameters required to
603 * support the current MTU, including padding for header
604 * alignment and overruns.
606 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
607 EF4_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
608 efx
->type
->rx_buffer_padding
);
609 rx_buf_len
= (sizeof(struct ef4_rx_page_state
) +
610 efx
->rx_ip_align
+ efx
->rx_dma_len
);
611 if (rx_buf_len
<= PAGE_SIZE
) {
612 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
613 efx
->rx_buffer_order
= 0;
614 } else if (efx
->type
->can_rx_scatter
) {
615 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
616 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state
) +
617 2 * ALIGN(NET_IP_ALIGN
+ EF4_RX_USR_BUF_SIZE
,
618 EF4_RX_BUF_ALIGNMENT
) >
620 efx
->rx_scatter
= true;
621 efx
->rx_dma_len
= EF4_RX_USR_BUF_SIZE
;
622 efx
->rx_buffer_order
= 0;
624 efx
->rx_scatter
= false;
625 efx
->rx_buffer_order
= get_order(rx_buf_len
);
628 ef4_rx_config_page_split(efx
);
629 if (efx
->rx_buffer_order
)
630 netif_dbg(efx
, drv
, efx
->net_dev
,
631 "RX buf len=%u; page order=%u batch=%u\n",
632 efx
->rx_dma_len
, efx
->rx_buffer_order
,
633 efx
->rx_pages_per_batch
);
635 netif_dbg(efx
, drv
, efx
->net_dev
,
636 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
637 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
638 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
640 /* Restore previously fixed features in hw_features and remove
641 * features which are fixed now
643 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
644 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
645 efx
->net_dev
->features
|= efx
->fixed_features
;
646 if (efx
->net_dev
->features
!= old_features
)
647 netdev_features_change(efx
->net_dev
);
649 /* RX filters may also have scatter-enabled flags */
650 if (efx
->rx_scatter
!= old_rx_scatter
)
651 efx
->type
->filter_update_rx_scatter(efx
);
653 /* We must keep at least one descriptor in a TX ring empty.
654 * We could avoid this when the queue size does not exactly
655 * match the hardware ring size, but it's not that important.
656 * Therefore we stop the queue when one more skb might fill
657 * the ring completely. We wake it when half way back to
660 efx
->txq_stop_thresh
= efx
->txq_entries
- ef4_tx_max_skb_descs(efx
);
661 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
663 /* Initialise the channels */
664 ef4_for_each_channel(channel
, efx
) {
665 ef4_for_each_channel_tx_queue(tx_queue
, channel
) {
666 ef4_init_tx_queue(tx_queue
);
667 atomic_inc(&efx
->active_queues
);
670 ef4_for_each_channel_rx_queue(rx_queue
, channel
) {
671 ef4_init_rx_queue(rx_queue
);
672 atomic_inc(&efx
->active_queues
);
673 ef4_stop_eventq(channel
);
674 ef4_fast_push_rx_descriptors(rx_queue
, false);
675 ef4_start_eventq(channel
);
678 WARN_ON(channel
->rx_pkt_n_frags
);
681 if (netif_device_present(efx
->net_dev
))
682 netif_tx_wake_all_queues(efx
->net_dev
);
685 static void ef4_stop_datapath(struct ef4_nic
*efx
)
687 struct ef4_channel
*channel
;
688 struct ef4_tx_queue
*tx_queue
;
689 struct ef4_rx_queue
*rx_queue
;
692 EF4_ASSERT_RESET_SERIALISED(efx
);
693 BUG_ON(efx
->port_enabled
);
696 ef4_for_each_channel(channel
, efx
) {
697 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
698 rx_queue
->refill_enabled
= false;
701 ef4_for_each_channel(channel
, efx
) {
702 /* RX packet processing is pipelined, so wait for the
703 * NAPI handler to complete. At least event queue 0
704 * might be kept active by non-data events, so don't
705 * use napi_synchronize() but actually disable NAPI
708 if (ef4_channel_has_rx_queue(channel
)) {
709 ef4_stop_eventq(channel
);
710 ef4_start_eventq(channel
);
714 rc
= efx
->type
->fini_dmaq(efx
);
715 if (rc
&& EF4_WORKAROUND_7803(efx
)) {
716 /* Schedule a reset to recover from the flush failure. The
717 * descriptor caches reference memory we're about to free,
718 * but falcon_reconfigure_mac_wrapper() won't reconnect
719 * the MACs because of the pending reset.
721 netif_err(efx
, drv
, efx
->net_dev
,
722 "Resetting to recover from flush failure\n");
723 ef4_schedule_reset(efx
, RESET_TYPE_ALL
);
725 netif_err(efx
, drv
, efx
->net_dev
, "failed to flush queues\n");
727 netif_dbg(efx
, drv
, efx
->net_dev
,
728 "successfully flushed all queues\n");
731 ef4_for_each_channel(channel
, efx
) {
732 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
733 ef4_fini_rx_queue(rx_queue
);
734 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
735 ef4_fini_tx_queue(tx_queue
);
739 static void ef4_remove_channel(struct ef4_channel
*channel
)
741 struct ef4_tx_queue
*tx_queue
;
742 struct ef4_rx_queue
*rx_queue
;
744 netif_dbg(channel
->efx
, drv
, channel
->efx
->net_dev
,
745 "destroy chan %d\n", channel
->channel
);
747 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
748 ef4_remove_rx_queue(rx_queue
);
749 ef4_for_each_possible_channel_tx_queue(tx_queue
, channel
)
750 ef4_remove_tx_queue(tx_queue
);
751 ef4_remove_eventq(channel
);
752 channel
->type
->post_remove(channel
);
755 static void ef4_remove_channels(struct ef4_nic
*efx
)
757 struct ef4_channel
*channel
;
759 ef4_for_each_channel(channel
, efx
)
760 ef4_remove_channel(channel
);
764 ef4_realloc_channels(struct ef4_nic
*efx
, u32 rxq_entries
, u32 txq_entries
)
766 struct ef4_channel
*other_channel
[EF4_MAX_CHANNELS
], *channel
;
767 u32 old_rxq_entries
, old_txq_entries
;
768 unsigned i
, next_buffer_table
= 0;
771 rc
= ef4_check_disabled(efx
);
775 /* Not all channels should be reallocated. We must avoid
776 * reallocating their buffer table entries.
778 ef4_for_each_channel(channel
, efx
) {
779 struct ef4_rx_queue
*rx_queue
;
780 struct ef4_tx_queue
*tx_queue
;
782 if (channel
->type
->copy
)
784 next_buffer_table
= max(next_buffer_table
,
785 channel
->eventq
.index
+
786 channel
->eventq
.entries
);
787 ef4_for_each_channel_rx_queue(rx_queue
, channel
)
788 next_buffer_table
= max(next_buffer_table
,
789 rx_queue
->rxd
.index
+
790 rx_queue
->rxd
.entries
);
791 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
792 next_buffer_table
= max(next_buffer_table
,
793 tx_queue
->txd
.index
+
794 tx_queue
->txd
.entries
);
797 ef4_device_detach_sync(efx
);
799 ef4_soft_disable_interrupts(efx
);
801 /* Clone channels (where possible) */
802 memset(other_channel
, 0, sizeof(other_channel
));
803 for (i
= 0; i
< efx
->n_channels
; i
++) {
804 channel
= efx
->channel
[i
];
805 if (channel
->type
->copy
)
806 channel
= channel
->type
->copy(channel
);
811 other_channel
[i
] = channel
;
814 /* Swap entry counts and channel pointers */
815 old_rxq_entries
= efx
->rxq_entries
;
816 old_txq_entries
= efx
->txq_entries
;
817 efx
->rxq_entries
= rxq_entries
;
818 efx
->txq_entries
= txq_entries
;
819 for (i
= 0; i
< efx
->n_channels
; i
++) {
820 channel
= efx
->channel
[i
];
821 efx
->channel
[i
] = other_channel
[i
];
822 other_channel
[i
] = channel
;
825 /* Restart buffer table allocation */
826 efx
->next_buffer_table
= next_buffer_table
;
828 for (i
= 0; i
< efx
->n_channels
; i
++) {
829 channel
= efx
->channel
[i
];
830 if (!channel
->type
->copy
)
832 rc
= ef4_probe_channel(channel
);
835 ef4_init_napi_channel(efx
->channel
[i
]);
839 /* Destroy unused channel structures */
840 for (i
= 0; i
< efx
->n_channels
; i
++) {
841 channel
= other_channel
[i
];
842 if (channel
&& channel
->type
->copy
) {
843 ef4_fini_napi_channel(channel
);
844 ef4_remove_channel(channel
);
849 rc2
= ef4_soft_enable_interrupts(efx
);
852 netif_err(efx
, drv
, efx
->net_dev
,
853 "unable to restart interrupts on channel reallocation\n");
854 ef4_schedule_reset(efx
, RESET_TYPE_DISABLE
);
857 netif_device_attach(efx
->net_dev
);
863 efx
->rxq_entries
= old_rxq_entries
;
864 efx
->txq_entries
= old_txq_entries
;
865 for (i
= 0; i
< efx
->n_channels
; i
++) {
866 channel
= efx
->channel
[i
];
867 efx
->channel
[i
] = other_channel
[i
];
868 other_channel
[i
] = channel
;
873 void ef4_schedule_slow_fill(struct ef4_rx_queue
*rx_queue
)
875 mod_timer(&rx_queue
->slow_fill
, jiffies
+ msecs_to_jiffies(100));
878 static const struct ef4_channel_type ef4_default_channel_type
= {
879 .pre_probe
= ef4_channel_dummy_op_int
,
880 .post_remove
= ef4_channel_dummy_op_void
,
881 .get_name
= ef4_get_channel_name
,
882 .copy
= ef4_copy_channel
,
883 .keep_eventq
= false,
886 int ef4_channel_dummy_op_int(struct ef4_channel
*channel
)
891 void ef4_channel_dummy_op_void(struct ef4_channel
*channel
)
895 /**************************************************************************
899 **************************************************************************/
901 /* This ensures that the kernel is kept informed (via
902 * netif_carrier_on/off) of the link status, and also maintains the
903 * link status's stop on the port's TX queue.
905 void ef4_link_status_changed(struct ef4_nic
*efx
)
907 struct ef4_link_state
*link_state
= &efx
->link_state
;
909 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
910 * that no events are triggered between unregister_netdev() and the
911 * driver unloading. A more general condition is that NETDEV_CHANGE
912 * can only be generated between NETDEV_UP and NETDEV_DOWN */
913 if (!netif_running(efx
->net_dev
))
916 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
917 efx
->n_link_state_changes
++;
920 netif_carrier_on(efx
->net_dev
);
922 netif_carrier_off(efx
->net_dev
);
925 /* Status message for kernel log */
927 netif_info(efx
, link
, efx
->net_dev
,
928 "link up at %uMbps %s-duplex (MTU %d)\n",
929 link_state
->speed
, link_state
->fd
? "full" : "half",
932 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
935 void ef4_link_set_advertising(struct ef4_nic
*efx
, u32 advertising
)
937 efx
->link_advertising
= advertising
;
939 if (advertising
& ADVERTISED_Pause
)
940 efx
->wanted_fc
|= (EF4_FC_TX
| EF4_FC_RX
);
942 efx
->wanted_fc
&= ~(EF4_FC_TX
| EF4_FC_RX
);
943 if (advertising
& ADVERTISED_Asym_Pause
)
944 efx
->wanted_fc
^= EF4_FC_TX
;
948 void ef4_link_set_wanted_fc(struct ef4_nic
*efx
, u8 wanted_fc
)
950 efx
->wanted_fc
= wanted_fc
;
951 if (efx
->link_advertising
) {
952 if (wanted_fc
& EF4_FC_RX
)
953 efx
->link_advertising
|= (ADVERTISED_Pause
|
954 ADVERTISED_Asym_Pause
);
956 efx
->link_advertising
&= ~(ADVERTISED_Pause
|
957 ADVERTISED_Asym_Pause
);
958 if (wanted_fc
& EF4_FC_TX
)
959 efx
->link_advertising
^= ADVERTISED_Asym_Pause
;
963 static void ef4_fini_port(struct ef4_nic
*efx
);
965 /* We assume that efx->type->reconfigure_mac will always try to sync RX
966 * filters and therefore needs to read-lock the filter table against freeing
968 void ef4_mac_reconfigure(struct ef4_nic
*efx
)
970 down_read(&efx
->filter_sem
);
971 efx
->type
->reconfigure_mac(efx
);
972 up_read(&efx
->filter_sem
);
975 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
976 * the MAC appropriately. All other PHY configuration changes are pushed
977 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
978 * through ef4_monitor().
980 * Callers must hold the mac_lock
982 int __ef4_reconfigure_port(struct ef4_nic
*efx
)
984 enum ef4_phy_mode phy_mode
;
987 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
989 /* Disable PHY transmit in mac level loopbacks */
990 phy_mode
= efx
->phy_mode
;
991 if (LOOPBACK_INTERNAL(efx
))
992 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
994 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
996 rc
= efx
->type
->reconfigure_port(efx
);
999 efx
->phy_mode
= phy_mode
;
1004 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1006 int ef4_reconfigure_port(struct ef4_nic
*efx
)
1010 EF4_ASSERT_RESET_SERIALISED(efx
);
1012 mutex_lock(&efx
->mac_lock
);
1013 rc
= __ef4_reconfigure_port(efx
);
1014 mutex_unlock(&efx
->mac_lock
);
1019 /* Asynchronous work item for changing MAC promiscuity and multicast
1020 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1022 static void ef4_mac_work(struct work_struct
*data
)
1024 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, mac_work
);
1026 mutex_lock(&efx
->mac_lock
);
1027 if (efx
->port_enabled
)
1028 ef4_mac_reconfigure(efx
);
1029 mutex_unlock(&efx
->mac_lock
);
1032 static int ef4_probe_port(struct ef4_nic
*efx
)
1036 netif_dbg(efx
, probe
, efx
->net_dev
, "create port\n");
1039 efx
->phy_mode
= PHY_MODE_SPECIAL
;
1041 /* Connect up MAC/PHY operations table */
1042 rc
= efx
->type
->probe_port(efx
);
1046 /* Initialise MAC address to permanent address */
1047 ether_addr_copy(efx
->net_dev
->dev_addr
, efx
->net_dev
->perm_addr
);
1052 static int ef4_init_port(struct ef4_nic
*efx
)
1056 netif_dbg(efx
, drv
, efx
->net_dev
, "init port\n");
1058 mutex_lock(&efx
->mac_lock
);
1060 rc
= efx
->phy_op
->init(efx
);
1064 efx
->port_initialized
= true;
1066 /* Reconfigure the MAC before creating dma queues (required for
1067 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1068 ef4_mac_reconfigure(efx
);
1070 /* Ensure the PHY advertises the correct flow control settings */
1071 rc
= efx
->phy_op
->reconfigure(efx
);
1072 if (rc
&& rc
!= -EPERM
)
1075 mutex_unlock(&efx
->mac_lock
);
1079 efx
->phy_op
->fini(efx
);
1081 mutex_unlock(&efx
->mac_lock
);
1085 static void ef4_start_port(struct ef4_nic
*efx
)
1087 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
1088 BUG_ON(efx
->port_enabled
);
1090 mutex_lock(&efx
->mac_lock
);
1091 efx
->port_enabled
= true;
1093 /* Ensure MAC ingress/egress is enabled */
1094 ef4_mac_reconfigure(efx
);
1096 mutex_unlock(&efx
->mac_lock
);
1099 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1100 * and the async self-test, wait for them to finish and prevent them
1101 * being scheduled again. This doesn't cover online resets, which
1102 * should only be cancelled when removing the device.
1104 static void ef4_stop_port(struct ef4_nic
*efx
)
1106 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
1108 EF4_ASSERT_RESET_SERIALISED(efx
);
1110 mutex_lock(&efx
->mac_lock
);
1111 efx
->port_enabled
= false;
1112 mutex_unlock(&efx
->mac_lock
);
1114 /* Serialise against ef4_set_multicast_list() */
1115 netif_addr_lock_bh(efx
->net_dev
);
1116 netif_addr_unlock_bh(efx
->net_dev
);
1118 cancel_delayed_work_sync(&efx
->monitor_work
);
1119 ef4_selftest_async_cancel(efx
);
1120 cancel_work_sync(&efx
->mac_work
);
1123 static void ef4_fini_port(struct ef4_nic
*efx
)
1125 netif_dbg(efx
, drv
, efx
->net_dev
, "shut down port\n");
1127 if (!efx
->port_initialized
)
1130 efx
->phy_op
->fini(efx
);
1131 efx
->port_initialized
= false;
1133 efx
->link_state
.up
= false;
1134 ef4_link_status_changed(efx
);
1137 static void ef4_remove_port(struct ef4_nic
*efx
)
1139 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying port\n");
1141 efx
->type
->remove_port(efx
);
1144 /**************************************************************************
1148 **************************************************************************/
1150 static LIST_HEAD(ef4_primary_list
);
1151 static LIST_HEAD(ef4_unassociated_list
);
1153 static bool ef4_same_controller(struct ef4_nic
*left
, struct ef4_nic
*right
)
1155 return left
->type
== right
->type
&&
1156 left
->vpd_sn
&& right
->vpd_sn
&&
1157 !strcmp(left
->vpd_sn
, right
->vpd_sn
);
1160 static void ef4_associate(struct ef4_nic
*efx
)
1162 struct ef4_nic
*other
, *next
;
1164 if (efx
->primary
== efx
) {
1165 /* Adding primary function; look for secondaries */
1167 netif_dbg(efx
, probe
, efx
->net_dev
, "adding to primary list\n");
1168 list_add_tail(&efx
->node
, &ef4_primary_list
);
1170 list_for_each_entry_safe(other
, next
, &ef4_unassociated_list
,
1172 if (ef4_same_controller(efx
, other
)) {
1173 list_del(&other
->node
);
1174 netif_dbg(other
, probe
, other
->net_dev
,
1175 "moving to secondary list of %s %s\n",
1176 pci_name(efx
->pci_dev
),
1177 efx
->net_dev
->name
);
1178 list_add_tail(&other
->node
,
1179 &efx
->secondary_list
);
1180 other
->primary
= efx
;
1184 /* Adding secondary function; look for primary */
1186 list_for_each_entry(other
, &ef4_primary_list
, node
) {
1187 if (ef4_same_controller(efx
, other
)) {
1188 netif_dbg(efx
, probe
, efx
->net_dev
,
1189 "adding to secondary list of %s %s\n",
1190 pci_name(other
->pci_dev
),
1191 other
->net_dev
->name
);
1192 list_add_tail(&efx
->node
,
1193 &other
->secondary_list
);
1194 efx
->primary
= other
;
1199 netif_dbg(efx
, probe
, efx
->net_dev
,
1200 "adding to unassociated list\n");
1201 list_add_tail(&efx
->node
, &ef4_unassociated_list
);
1205 static void ef4_dissociate(struct ef4_nic
*efx
)
1207 struct ef4_nic
*other
, *next
;
1209 list_del(&efx
->node
);
1210 efx
->primary
= NULL
;
1212 list_for_each_entry_safe(other
, next
, &efx
->secondary_list
, node
) {
1213 list_del(&other
->node
);
1214 netif_dbg(other
, probe
, other
->net_dev
,
1215 "moving to unassociated list\n");
1216 list_add_tail(&other
->node
, &ef4_unassociated_list
);
1217 other
->primary
= NULL
;
1221 /* This configures the PCI device to enable I/O and DMA. */
1222 static int ef4_init_io(struct ef4_nic
*efx
)
1224 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1225 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
1226 unsigned int mem_map_size
= efx
->type
->mem_map_size(efx
);
1229 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O\n");
1231 bar
= efx
->type
->mem_bar
;
1233 rc
= pci_enable_device(pci_dev
);
1235 netif_err(efx
, probe
, efx
->net_dev
,
1236 "failed to enable PCI device\n");
1240 pci_set_master(pci_dev
);
1242 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1243 * down to 32 bits, because some architectures will allow 40 bit
1244 * masks event though they reject 46 bit masks.
1246 while (dma_mask
> 0x7fffffffUL
) {
1247 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1253 netif_err(efx
, probe
, efx
->net_dev
,
1254 "could not find a suitable DMA mask\n");
1257 netif_dbg(efx
, probe
, efx
->net_dev
,
1258 "using DMA mask %llx\n", (unsigned long long) dma_mask
);
1260 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1261 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1263 netif_err(efx
, probe
, efx
->net_dev
,
1264 "request for memory BAR failed\n");
1268 efx
->membase
= ioremap(efx
->membase_phys
, mem_map_size
);
1269 if (!efx
->membase
) {
1270 netif_err(efx
, probe
, efx
->net_dev
,
1271 "could not map memory BAR at %llx+%x\n",
1272 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1276 netif_dbg(efx
, probe
, efx
->net_dev
,
1277 "memory BAR at %llx+%x (virtual %p)\n",
1278 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1284 pci_release_region(efx
->pci_dev
, bar
);
1286 efx
->membase_phys
= 0;
1288 pci_disable_device(efx
->pci_dev
);
1293 static void ef4_fini_io(struct ef4_nic
*efx
)
1297 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1300 iounmap(efx
->membase
);
1301 efx
->membase
= NULL
;
1304 if (efx
->membase_phys
) {
1305 bar
= efx
->type
->mem_bar
;
1306 pci_release_region(efx
->pci_dev
, bar
);
1307 efx
->membase_phys
= 0;
1310 /* Don't disable bus-mastering if VFs are assigned */
1311 if (!pci_vfs_assigned(efx
->pci_dev
))
1312 pci_disable_device(efx
->pci_dev
);
1315 void ef4_set_default_rx_indir_table(struct ef4_nic
*efx
)
1319 for (i
= 0; i
< ARRAY_SIZE(efx
->rx_indir_table
); i
++)
1320 efx
->rx_indir_table
[i
] =
1321 ethtool_rxfh_indir_default(i
, efx
->rss_spread
);
1324 static unsigned int ef4_wanted_parallelism(struct ef4_nic
*efx
)
1326 cpumask_var_t thread_mask
;
1333 if (unlikely(!zalloc_cpumask_var(&thread_mask
, GFP_KERNEL
))) {
1334 netif_warn(efx
, probe
, efx
->net_dev
,
1335 "RSS disabled due to allocation failure\n");
1340 for_each_online_cpu(cpu
) {
1341 if (!cpumask_test_cpu(cpu
, thread_mask
)) {
1343 cpumask_or(thread_mask
, thread_mask
,
1344 topology_sibling_cpumask(cpu
));
1348 free_cpumask_var(thread_mask
);
1351 if (count
> EF4_MAX_RX_QUEUES
) {
1352 netif_cond_dbg(efx
, probe
, efx
->net_dev
, !rss_cpus
, warn
,
1353 "Reducing number of rx queues from %u to %u.\n",
1354 count
, EF4_MAX_RX_QUEUES
);
1355 count
= EF4_MAX_RX_QUEUES
;
1361 /* Probe the number and type of interrupts we are able to obtain, and
1362 * the resulting numbers of channels and RX queues.
1364 static int ef4_probe_interrupts(struct ef4_nic
*efx
)
1366 unsigned int extra_channels
= 0;
1370 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++)
1371 if (efx
->extra_channel_type
[i
])
1374 if (efx
->interrupt_mode
== EF4_INT_MODE_MSIX
) {
1375 struct msix_entry xentries
[EF4_MAX_CHANNELS
];
1376 unsigned int n_channels
;
1378 n_channels
= ef4_wanted_parallelism(efx
);
1379 if (ef4_separate_tx_channels
)
1381 n_channels
+= extra_channels
;
1382 n_channels
= min(n_channels
, efx
->max_channels
);
1384 for (i
= 0; i
< n_channels
; i
++)
1385 xentries
[i
].entry
= i
;
1386 rc
= pci_enable_msix_range(efx
->pci_dev
,
1387 xentries
, 1, n_channels
);
1389 /* Fall back to single channel MSI */
1390 efx
->interrupt_mode
= EF4_INT_MODE_MSI
;
1391 netif_err(efx
, drv
, efx
->net_dev
,
1392 "could not enable MSI-X\n");
1393 } else if (rc
< n_channels
) {
1394 netif_err(efx
, drv
, efx
->net_dev
,
1395 "WARNING: Insufficient MSI-X vectors"
1396 " available (%d < %u).\n", rc
, n_channels
);
1397 netif_err(efx
, drv
, efx
->net_dev
,
1398 "WARNING: Performance may be reduced.\n");
1403 efx
->n_channels
= n_channels
;
1404 if (n_channels
> extra_channels
)
1405 n_channels
-= extra_channels
;
1406 if (ef4_separate_tx_channels
) {
1407 efx
->n_tx_channels
= min(max(n_channels
/ 2,
1409 efx
->max_tx_channels
);
1410 efx
->n_rx_channels
= max(n_channels
-
1414 efx
->n_tx_channels
= min(n_channels
,
1415 efx
->max_tx_channels
);
1416 efx
->n_rx_channels
= n_channels
;
1418 for (i
= 0; i
< efx
->n_channels
; i
++)
1419 ef4_get_channel(efx
, i
)->irq
=
1424 /* Try single interrupt MSI */
1425 if (efx
->interrupt_mode
== EF4_INT_MODE_MSI
) {
1426 efx
->n_channels
= 1;
1427 efx
->n_rx_channels
= 1;
1428 efx
->n_tx_channels
= 1;
1429 rc
= pci_enable_msi(efx
->pci_dev
);
1431 ef4_get_channel(efx
, 0)->irq
= efx
->pci_dev
->irq
;
1433 netif_err(efx
, drv
, efx
->net_dev
,
1434 "could not enable MSI\n");
1435 efx
->interrupt_mode
= EF4_INT_MODE_LEGACY
;
1439 /* Assume legacy interrupts */
1440 if (efx
->interrupt_mode
== EF4_INT_MODE_LEGACY
) {
1441 efx
->n_channels
= 1 + (ef4_separate_tx_channels
? 1 : 0);
1442 efx
->n_rx_channels
= 1;
1443 efx
->n_tx_channels
= 1;
1444 efx
->legacy_irq
= efx
->pci_dev
->irq
;
1447 /* Assign extra channels if possible */
1448 j
= efx
->n_channels
;
1449 for (i
= 0; i
< EF4_MAX_EXTRA_CHANNELS
; i
++) {
1450 if (!efx
->extra_channel_type
[i
])
1452 if (efx
->interrupt_mode
!= EF4_INT_MODE_MSIX
||
1453 efx
->n_channels
<= extra_channels
) {
1454 efx
->extra_channel_type
[i
]->handle_no_channel(efx
);
1457 ef4_get_channel(efx
, j
)->type
=
1458 efx
->extra_channel_type
[i
];
1462 efx
->rss_spread
= efx
->n_rx_channels
;
1467 static int ef4_soft_enable_interrupts(struct ef4_nic
*efx
)
1469 struct ef4_channel
*channel
, *end_channel
;
1472 BUG_ON(efx
->state
== STATE_DISABLED
);
1474 efx
->irq_soft_enabled
= true;
1477 ef4_for_each_channel(channel
, efx
) {
1478 if (!channel
->type
->keep_eventq
) {
1479 rc
= ef4_init_eventq(channel
);
1483 ef4_start_eventq(channel
);
1488 end_channel
= channel
;
1489 ef4_for_each_channel(channel
, efx
) {
1490 if (channel
== end_channel
)
1492 ef4_stop_eventq(channel
);
1493 if (!channel
->type
->keep_eventq
)
1494 ef4_fini_eventq(channel
);
1500 static void ef4_soft_disable_interrupts(struct ef4_nic
*efx
)
1502 struct ef4_channel
*channel
;
1504 if (efx
->state
== STATE_DISABLED
)
1507 efx
->irq_soft_enabled
= false;
1510 if (efx
->legacy_irq
)
1511 synchronize_irq(efx
->legacy_irq
);
1513 ef4_for_each_channel(channel
, efx
) {
1515 synchronize_irq(channel
->irq
);
1517 ef4_stop_eventq(channel
);
1518 if (!channel
->type
->keep_eventq
)
1519 ef4_fini_eventq(channel
);
1523 static int ef4_enable_interrupts(struct ef4_nic
*efx
)
1525 struct ef4_channel
*channel
, *end_channel
;
1528 BUG_ON(efx
->state
== STATE_DISABLED
);
1530 if (efx
->eeh_disabled_legacy_irq
) {
1531 enable_irq(efx
->legacy_irq
);
1532 efx
->eeh_disabled_legacy_irq
= false;
1535 efx
->type
->irq_enable_master(efx
);
1537 ef4_for_each_channel(channel
, efx
) {
1538 if (channel
->type
->keep_eventq
) {
1539 rc
= ef4_init_eventq(channel
);
1545 rc
= ef4_soft_enable_interrupts(efx
);
1552 end_channel
= channel
;
1553 ef4_for_each_channel(channel
, efx
) {
1554 if (channel
== end_channel
)
1556 if (channel
->type
->keep_eventq
)
1557 ef4_fini_eventq(channel
);
1560 efx
->type
->irq_disable_non_ev(efx
);
1565 static void ef4_disable_interrupts(struct ef4_nic
*efx
)
1567 struct ef4_channel
*channel
;
1569 ef4_soft_disable_interrupts(efx
);
1571 ef4_for_each_channel(channel
, efx
) {
1572 if (channel
->type
->keep_eventq
)
1573 ef4_fini_eventq(channel
);
1576 efx
->type
->irq_disable_non_ev(efx
);
1579 static void ef4_remove_interrupts(struct ef4_nic
*efx
)
1581 struct ef4_channel
*channel
;
1583 /* Remove MSI/MSI-X interrupts */
1584 ef4_for_each_channel(channel
, efx
)
1586 pci_disable_msi(efx
->pci_dev
);
1587 pci_disable_msix(efx
->pci_dev
);
1589 /* Remove legacy interrupt */
1590 efx
->legacy_irq
= 0;
1593 static void ef4_set_channels(struct ef4_nic
*efx
)
1595 struct ef4_channel
*channel
;
1596 struct ef4_tx_queue
*tx_queue
;
1598 efx
->tx_channel_offset
=
1599 ef4_separate_tx_channels
?
1600 efx
->n_channels
- efx
->n_tx_channels
: 0;
1602 /* We need to mark which channels really have RX and TX
1603 * queues, and adjust the TX queue numbers if we have separate
1604 * RX-only and TX-only channels.
1606 ef4_for_each_channel(channel
, efx
) {
1607 if (channel
->channel
< efx
->n_rx_channels
)
1608 channel
->rx_queue
.core_index
= channel
->channel
;
1610 channel
->rx_queue
.core_index
= -1;
1612 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
1613 tx_queue
->queue
-= (efx
->tx_channel_offset
*
1618 static int ef4_probe_nic(struct ef4_nic
*efx
)
1622 netif_dbg(efx
, probe
, efx
->net_dev
, "creating NIC\n");
1624 /* Carry out hardware-type specific initialisation */
1625 rc
= efx
->type
->probe(efx
);
1630 if (!efx
->max_channels
|| !efx
->max_tx_channels
) {
1631 netif_err(efx
, drv
, efx
->net_dev
,
1632 "Insufficient resources to allocate"
1638 /* Determine the number of channels and queues by trying
1639 * to hook in MSI-X interrupts.
1641 rc
= ef4_probe_interrupts(efx
);
1645 ef4_set_channels(efx
);
1647 /* dimension_resources can fail with EAGAIN */
1648 rc
= efx
->type
->dimension_resources(efx
);
1649 if (rc
!= 0 && rc
!= -EAGAIN
)
1653 /* try again with new max_channels */
1654 ef4_remove_interrupts(efx
);
1656 } while (rc
== -EAGAIN
);
1658 if (efx
->n_channels
> 1)
1659 netdev_rss_key_fill(&efx
->rx_hash_key
,
1660 sizeof(efx
->rx_hash_key
));
1661 ef4_set_default_rx_indir_table(efx
);
1663 netif_set_real_num_tx_queues(efx
->net_dev
, efx
->n_tx_channels
);
1664 netif_set_real_num_rx_queues(efx
->net_dev
, efx
->n_rx_channels
);
1666 /* Initialise the interrupt moderation settings */
1667 efx
->irq_mod_step_us
= DIV_ROUND_UP(efx
->timer_quantum_ns
, 1000);
1668 ef4_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true,
1674 ef4_remove_interrupts(efx
);
1676 efx
->type
->remove(efx
);
1680 static void ef4_remove_nic(struct ef4_nic
*efx
)
1682 netif_dbg(efx
, drv
, efx
->net_dev
, "destroying NIC\n");
1684 ef4_remove_interrupts(efx
);
1685 efx
->type
->remove(efx
);
1688 static int ef4_probe_filters(struct ef4_nic
*efx
)
1692 spin_lock_init(&efx
->filter_lock
);
1693 init_rwsem(&efx
->filter_sem
);
1694 mutex_lock(&efx
->mac_lock
);
1695 down_write(&efx
->filter_sem
);
1696 rc
= efx
->type
->filter_table_probe(efx
);
1700 #ifdef CONFIG_RFS_ACCEL
1701 if (efx
->type
->offload_features
& NETIF_F_NTUPLE
) {
1702 struct ef4_channel
*channel
;
1705 ef4_for_each_channel(channel
, efx
) {
1706 channel
->rps_flow_id
=
1707 kcalloc(efx
->type
->max_rx_ip_filters
,
1708 sizeof(*channel
->rps_flow_id
),
1710 if (!channel
->rps_flow_id
)
1714 i
< efx
->type
->max_rx_ip_filters
;
1716 channel
->rps_flow_id
[i
] =
1717 RPS_FLOW_ID_INVALID
;
1721 ef4_for_each_channel(channel
, efx
)
1722 kfree(channel
->rps_flow_id
);
1723 efx
->type
->filter_table_remove(efx
);
1728 efx
->rps_expire_index
= efx
->rps_expire_channel
= 0;
1732 up_write(&efx
->filter_sem
);
1733 mutex_unlock(&efx
->mac_lock
);
1737 static void ef4_remove_filters(struct ef4_nic
*efx
)
1739 #ifdef CONFIG_RFS_ACCEL
1740 struct ef4_channel
*channel
;
1742 ef4_for_each_channel(channel
, efx
)
1743 kfree(channel
->rps_flow_id
);
1745 down_write(&efx
->filter_sem
);
1746 efx
->type
->filter_table_remove(efx
);
1747 up_write(&efx
->filter_sem
);
1750 static void ef4_restore_filters(struct ef4_nic
*efx
)
1752 down_read(&efx
->filter_sem
);
1753 efx
->type
->filter_table_restore(efx
);
1754 up_read(&efx
->filter_sem
);
1757 /**************************************************************************
1759 * NIC startup/shutdown
1761 *************************************************************************/
1763 static int ef4_probe_all(struct ef4_nic
*efx
)
1767 rc
= ef4_probe_nic(efx
);
1769 netif_err(efx
, probe
, efx
->net_dev
, "failed to create NIC\n");
1773 rc
= ef4_probe_port(efx
);
1775 netif_err(efx
, probe
, efx
->net_dev
, "failed to create port\n");
1779 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_RXQ_MIN_ENT
);
1780 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE
< EF4_TXQ_MIN_ENT(efx
))) {
1784 efx
->rxq_entries
= efx
->txq_entries
= EF4_DEFAULT_DMAQ_SIZE
;
1786 rc
= ef4_probe_filters(efx
);
1788 netif_err(efx
, probe
, efx
->net_dev
,
1789 "failed to create filter tables\n");
1793 rc
= ef4_probe_channels(efx
);
1800 ef4_remove_filters(efx
);
1803 ef4_remove_port(efx
);
1805 ef4_remove_nic(efx
);
1810 /* If the interface is supposed to be running but is not, start
1811 * the hardware and software data path, regular activity for the port
1812 * (MAC statistics, link polling, etc.) and schedule the port to be
1813 * reconfigured. Interrupts must already be enabled. This function
1814 * is safe to call multiple times, so long as the NIC is not disabled.
1815 * Requires the RTNL lock.
1817 static void ef4_start_all(struct ef4_nic
*efx
)
1819 EF4_ASSERT_RESET_SERIALISED(efx
);
1820 BUG_ON(efx
->state
== STATE_DISABLED
);
1822 /* Check that it is appropriate to restart the interface. All
1823 * of these flags are safe to read under just the rtnl lock */
1824 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
1828 ef4_start_port(efx
);
1829 ef4_start_datapath(efx
);
1831 /* Start the hardware monitor if there is one */
1832 if (efx
->type
->monitor
!= NULL
)
1833 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1834 ef4_monitor_interval
);
1836 efx
->type
->start_stats(efx
);
1837 efx
->type
->pull_stats(efx
);
1838 spin_lock_bh(&efx
->stats_lock
);
1839 efx
->type
->update_stats(efx
, NULL
, NULL
);
1840 spin_unlock_bh(&efx
->stats_lock
);
1843 /* Quiesce the hardware and software data path, and regular activity
1844 * for the port without bringing the link down. Safe to call multiple
1845 * times with the NIC in almost any state, but interrupts should be
1846 * enabled. Requires the RTNL lock.
1848 static void ef4_stop_all(struct ef4_nic
*efx
)
1850 EF4_ASSERT_RESET_SERIALISED(efx
);
1852 /* port_enabled can be read safely under the rtnl lock */
1853 if (!efx
->port_enabled
)
1856 /* update stats before we go down so we can accurately count
1859 efx
->type
->pull_stats(efx
);
1860 spin_lock_bh(&efx
->stats_lock
);
1861 efx
->type
->update_stats(efx
, NULL
, NULL
);
1862 spin_unlock_bh(&efx
->stats_lock
);
1863 efx
->type
->stop_stats(efx
);
1866 /* Stop the kernel transmit interface. This is only valid if
1867 * the device is stopped or detached; otherwise the watchdog
1868 * may fire immediately.
1870 WARN_ON(netif_running(efx
->net_dev
) &&
1871 netif_device_present(efx
->net_dev
));
1872 netif_tx_disable(efx
->net_dev
);
1874 ef4_stop_datapath(efx
);
1877 static void ef4_remove_all(struct ef4_nic
*efx
)
1879 ef4_remove_channels(efx
);
1880 ef4_remove_filters(efx
);
1881 ef4_remove_port(efx
);
1882 ef4_remove_nic(efx
);
1885 /**************************************************************************
1887 * Interrupt moderation
1889 **************************************************************************/
1890 unsigned int ef4_usecs_to_ticks(struct ef4_nic
*efx
, unsigned int usecs
)
1894 if (usecs
* 1000 < efx
->timer_quantum_ns
)
1895 return 1; /* never round down to 0 */
1896 return usecs
* 1000 / efx
->timer_quantum_ns
;
1899 unsigned int ef4_ticks_to_usecs(struct ef4_nic
*efx
, unsigned int ticks
)
1901 /* We must round up when converting ticks to microseconds
1902 * because we round down when converting the other way.
1904 return DIV_ROUND_UP(ticks
* efx
->timer_quantum_ns
, 1000);
1907 /* Set interrupt moderation parameters */
1908 int ef4_init_irq_moderation(struct ef4_nic
*efx
, unsigned int tx_usecs
,
1909 unsigned int rx_usecs
, bool rx_adaptive
,
1910 bool rx_may_override_tx
)
1912 struct ef4_channel
*channel
;
1913 unsigned int timer_max_us
;
1915 EF4_ASSERT_RESET_SERIALISED(efx
);
1917 timer_max_us
= efx
->timer_max_ns
/ 1000;
1919 if (tx_usecs
> timer_max_us
|| rx_usecs
> timer_max_us
)
1922 if (tx_usecs
!= rx_usecs
&& efx
->tx_channel_offset
== 0 &&
1923 !rx_may_override_tx
) {
1924 netif_err(efx
, drv
, efx
->net_dev
, "Channels are shared. "
1925 "RX and TX IRQ moderation must be equal\n");
1929 efx
->irq_rx_adaptive
= rx_adaptive
;
1930 efx
->irq_rx_moderation_us
= rx_usecs
;
1931 ef4_for_each_channel(channel
, efx
) {
1932 if (ef4_channel_has_rx_queue(channel
))
1933 channel
->irq_moderation_us
= rx_usecs
;
1934 else if (ef4_channel_has_tx_queues(channel
))
1935 channel
->irq_moderation_us
= tx_usecs
;
1941 void ef4_get_irq_moderation(struct ef4_nic
*efx
, unsigned int *tx_usecs
,
1942 unsigned int *rx_usecs
, bool *rx_adaptive
)
1944 *rx_adaptive
= efx
->irq_rx_adaptive
;
1945 *rx_usecs
= efx
->irq_rx_moderation_us
;
1947 /* If channels are shared between RX and TX, so is IRQ
1948 * moderation. Otherwise, IRQ moderation is the same for all
1949 * TX channels and is not adaptive.
1951 if (efx
->tx_channel_offset
== 0) {
1952 *tx_usecs
= *rx_usecs
;
1954 struct ef4_channel
*tx_channel
;
1956 tx_channel
= efx
->channel
[efx
->tx_channel_offset
];
1957 *tx_usecs
= tx_channel
->irq_moderation_us
;
1961 /**************************************************************************
1965 **************************************************************************/
1967 /* Run periodically off the general workqueue */
1968 static void ef4_monitor(struct work_struct
*data
)
1970 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
,
1973 netif_vdbg(efx
, timer
, efx
->net_dev
,
1974 "hardware monitor executing on CPU %d\n",
1975 raw_smp_processor_id());
1976 BUG_ON(efx
->type
->monitor
== NULL
);
1978 /* If the mac_lock is already held then it is likely a port
1979 * reconfiguration is already in place, which will likely do
1980 * most of the work of monitor() anyway. */
1981 if (mutex_trylock(&efx
->mac_lock
)) {
1982 if (efx
->port_enabled
)
1983 efx
->type
->monitor(efx
);
1984 mutex_unlock(&efx
->mac_lock
);
1987 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1988 ef4_monitor_interval
);
1991 /**************************************************************************
1995 *************************************************************************/
1998 * Context: process, rtnl_lock() held.
2000 static int ef4_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
2002 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2003 struct mii_ioctl_data
*data
= if_mii(ifr
);
2005 /* Convert phy_id from older PRTAD/DEVAD format */
2006 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
2007 (data
->phy_id
& 0xfc00) == 0x0400)
2008 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
2010 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
2013 /**************************************************************************
2017 **************************************************************************/
2019 static void ef4_init_napi_channel(struct ef4_channel
*channel
)
2021 struct ef4_nic
*efx
= channel
->efx
;
2023 channel
->napi_dev
= efx
->net_dev
;
2024 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
2025 ef4_poll
, napi_weight
);
2028 static void ef4_init_napi(struct ef4_nic
*efx
)
2030 struct ef4_channel
*channel
;
2032 ef4_for_each_channel(channel
, efx
)
2033 ef4_init_napi_channel(channel
);
2036 static void ef4_fini_napi_channel(struct ef4_channel
*channel
)
2038 if (channel
->napi_dev
)
2039 netif_napi_del(&channel
->napi_str
);
2041 channel
->napi_dev
= NULL
;
2044 static void ef4_fini_napi(struct ef4_nic
*efx
)
2046 struct ef4_channel
*channel
;
2048 ef4_for_each_channel(channel
, efx
)
2049 ef4_fini_napi_channel(channel
);
2052 /**************************************************************************
2054 * Kernel net device interface
2056 *************************************************************************/
2058 /* Context: process, rtnl_lock() held. */
2059 int ef4_net_open(struct net_device
*net_dev
)
2061 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2064 netif_dbg(efx
, ifup
, efx
->net_dev
, "opening device on CPU %d\n",
2065 raw_smp_processor_id());
2067 rc
= ef4_check_disabled(efx
);
2070 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
2073 /* Notify the kernel of the link state polled during driver load,
2074 * before the monitor starts running */
2075 ef4_link_status_changed(efx
);
2078 ef4_selftest_async_start(efx
);
2082 /* Context: process, rtnl_lock() held.
2083 * Note that the kernel will ignore our return code; this method
2084 * should really be a void.
2086 int ef4_net_stop(struct net_device
*net_dev
)
2088 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2090 netif_dbg(efx
, ifdown
, efx
->net_dev
, "closing on CPU %d\n",
2091 raw_smp_processor_id());
2093 /* Stop the device and flush all the channels */
2099 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2100 static void ef4_net_stats(struct net_device
*net_dev
,
2101 struct rtnl_link_stats64
*stats
)
2103 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2105 spin_lock_bh(&efx
->stats_lock
);
2106 efx
->type
->update_stats(efx
, NULL
, stats
);
2107 spin_unlock_bh(&efx
->stats_lock
);
2110 /* Context: netif_tx_lock held, BHs disabled. */
2111 static void ef4_watchdog(struct net_device
*net_dev
, unsigned int txqueue
)
2113 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2115 netif_err(efx
, tx_err
, efx
->net_dev
,
2116 "TX stuck with port_enabled=%d: resetting channels\n",
2119 ef4_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
2123 /* Context: process, rtnl_lock() held. */
2124 static int ef4_change_mtu(struct net_device
*net_dev
, int new_mtu
)
2126 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2129 rc
= ef4_check_disabled(efx
);
2133 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
2135 ef4_device_detach_sync(efx
);
2138 mutex_lock(&efx
->mac_lock
);
2139 net_dev
->mtu
= new_mtu
;
2140 ef4_mac_reconfigure(efx
);
2141 mutex_unlock(&efx
->mac_lock
);
2144 netif_device_attach(efx
->net_dev
);
2148 static int ef4_set_mac_address(struct net_device
*net_dev
, void *data
)
2150 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2151 struct sockaddr
*addr
= data
;
2152 u8
*new_addr
= addr
->sa_data
;
2156 if (!is_valid_ether_addr(new_addr
)) {
2157 netif_err(efx
, drv
, efx
->net_dev
,
2158 "invalid ethernet MAC address requested: %pM\n",
2160 return -EADDRNOTAVAIL
;
2163 /* save old address */
2164 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
2165 ether_addr_copy(net_dev
->dev_addr
, new_addr
);
2166 if (efx
->type
->set_mac_address
) {
2167 rc
= efx
->type
->set_mac_address(efx
);
2169 ether_addr_copy(net_dev
->dev_addr
, old_addr
);
2174 /* Reconfigure the MAC */
2175 mutex_lock(&efx
->mac_lock
);
2176 ef4_mac_reconfigure(efx
);
2177 mutex_unlock(&efx
->mac_lock
);
2182 /* Context: netif_addr_lock held, BHs disabled. */
2183 static void ef4_set_rx_mode(struct net_device
*net_dev
)
2185 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2187 if (efx
->port_enabled
)
2188 queue_work(efx
->workqueue
, &efx
->mac_work
);
2189 /* Otherwise ef4_start_port() will do this */
2192 static int ef4_set_features(struct net_device
*net_dev
, netdev_features_t data
)
2194 struct ef4_nic
*efx
= netdev_priv(net_dev
);
2197 /* If disabling RX n-tuple filtering, clear existing filters */
2198 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
2199 rc
= efx
->type
->filter_clear_rx(efx
, EF4_FILTER_PRI_MANUAL
);
2204 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2205 if ((net_dev
->features
^ data
) & NETIF_F_HW_VLAN_CTAG_FILTER
) {
2206 /* ef4_set_rx_mode() will schedule MAC work to update filters
2207 * when a new features are finally set in net_dev.
2209 ef4_set_rx_mode(net_dev
);
2215 static const struct net_device_ops ef4_netdev_ops
= {
2216 .ndo_open
= ef4_net_open
,
2217 .ndo_stop
= ef4_net_stop
,
2218 .ndo_get_stats64
= ef4_net_stats
,
2219 .ndo_tx_timeout
= ef4_watchdog
,
2220 .ndo_start_xmit
= ef4_hard_start_xmit
,
2221 .ndo_validate_addr
= eth_validate_addr
,
2222 .ndo_do_ioctl
= ef4_ioctl
,
2223 .ndo_change_mtu
= ef4_change_mtu
,
2224 .ndo_set_mac_address
= ef4_set_mac_address
,
2225 .ndo_set_rx_mode
= ef4_set_rx_mode
,
2226 .ndo_set_features
= ef4_set_features
,
2227 .ndo_setup_tc
= ef4_setup_tc
,
2228 #ifdef CONFIG_RFS_ACCEL
2229 .ndo_rx_flow_steer
= ef4_filter_rfs
,
2233 static void ef4_update_name(struct ef4_nic
*efx
)
2235 strcpy(efx
->name
, efx
->net_dev
->name
);
2236 ef4_mtd_rename(efx
);
2237 ef4_set_channel_names(efx
);
2240 static int ef4_netdev_event(struct notifier_block
*this,
2241 unsigned long event
, void *ptr
)
2243 struct net_device
*net_dev
= netdev_notifier_info_to_dev(ptr
);
2245 if ((net_dev
->netdev_ops
== &ef4_netdev_ops
) &&
2246 event
== NETDEV_CHANGENAME
)
2247 ef4_update_name(netdev_priv(net_dev
));
2252 static struct notifier_block ef4_netdev_notifier
= {
2253 .notifier_call
= ef4_netdev_event
,
2257 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
2259 struct ef4_nic
*efx
= dev_get_drvdata(dev
);
2260 return sprintf(buf
, "%d\n", efx
->phy_type
);
2262 static DEVICE_ATTR(phy_type
, 0444, show_phy_type
, NULL
);
2264 static int ef4_register_netdev(struct ef4_nic
*efx
)
2266 struct net_device
*net_dev
= efx
->net_dev
;
2267 struct ef4_channel
*channel
;
2270 net_dev
->watchdog_timeo
= 5 * HZ
;
2271 net_dev
->irq
= efx
->pci_dev
->irq
;
2272 net_dev
->netdev_ops
= &ef4_netdev_ops
;
2273 net_dev
->ethtool_ops
= &ef4_ethtool_ops
;
2274 net_dev
->gso_max_segs
= EF4_TSO_MAX_SEGS
;
2275 net_dev
->min_mtu
= EF4_MIN_MTU
;
2276 net_dev
->max_mtu
= EF4_MAX_MTU
;
2280 /* Enable resets to be scheduled and check whether any were
2281 * already requested. If so, the NIC is probably hosed so we
2284 efx
->state
= STATE_READY
;
2285 smp_mb(); /* ensure we change state before checking reset_pending */
2286 if (efx
->reset_pending
) {
2287 netif_err(efx
, probe
, efx
->net_dev
,
2288 "aborting probe due to scheduled reset\n");
2293 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
2296 ef4_update_name(efx
);
2298 /* Always start with carrier off; PHY events will detect the link */
2299 netif_carrier_off(net_dev
);
2301 rc
= register_netdevice(net_dev
);
2305 ef4_for_each_channel(channel
, efx
) {
2306 struct ef4_tx_queue
*tx_queue
;
2307 ef4_for_each_channel_tx_queue(tx_queue
, channel
)
2308 ef4_init_tx_queue_core_txq(tx_queue
);
2315 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2317 netif_err(efx
, drv
, efx
->net_dev
,
2318 "failed to init net dev attributes\n");
2319 goto fail_registered
;
2325 ef4_dissociate(efx
);
2326 unregister_netdevice(net_dev
);
2328 efx
->state
= STATE_UNINIT
;
2330 netif_err(efx
, drv
, efx
->net_dev
, "could not register net dev\n");
2334 static void ef4_unregister_netdev(struct ef4_nic
*efx
)
2339 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
2341 if (ef4_dev_registered(efx
)) {
2342 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
2343 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
2344 unregister_netdev(efx
->net_dev
);
2348 /**************************************************************************
2350 * Device reset and suspend
2352 **************************************************************************/
2354 /* Tears down the entire software state and most of the hardware state
2356 void ef4_reset_down(struct ef4_nic
*efx
, enum reset_type method
)
2358 EF4_ASSERT_RESET_SERIALISED(efx
);
2361 ef4_disable_interrupts(efx
);
2363 mutex_lock(&efx
->mac_lock
);
2364 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2365 method
!= RESET_TYPE_DATAPATH
)
2366 efx
->phy_op
->fini(efx
);
2367 efx
->type
->fini(efx
);
2370 /* This function will always ensure that the locks acquired in
2371 * ef4_reset_down() are released. A failure return code indicates
2372 * that we were unable to reinitialise the hardware, and the
2373 * driver should be disabled. If ok is false, then the rx and tx
2374 * engines are not restarted, pending a RESET_DISABLE. */
2375 int ef4_reset_up(struct ef4_nic
*efx
, enum reset_type method
, bool ok
)
2379 EF4_ASSERT_RESET_SERIALISED(efx
);
2381 /* Ensure that SRAM is initialised even if we're disabling the device */
2382 rc
= efx
->type
->init(efx
);
2384 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
2391 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
2392 method
!= RESET_TYPE_DATAPATH
) {
2393 rc
= efx
->phy_op
->init(efx
);
2396 rc
= efx
->phy_op
->reconfigure(efx
);
2397 if (rc
&& rc
!= -EPERM
)
2398 netif_err(efx
, drv
, efx
->net_dev
,
2399 "could not restore PHY settings\n");
2402 rc
= ef4_enable_interrupts(efx
);
2406 down_read(&efx
->filter_sem
);
2407 ef4_restore_filters(efx
);
2408 up_read(&efx
->filter_sem
);
2410 mutex_unlock(&efx
->mac_lock
);
2417 efx
->port_initialized
= false;
2419 mutex_unlock(&efx
->mac_lock
);
2424 /* Reset the NIC using the specified method. Note that the reset may
2425 * fail, in which case the card will be left in an unusable state.
2427 * Caller must hold the rtnl_lock.
2429 int ef4_reset(struct ef4_nic
*efx
, enum reset_type method
)
2434 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
2435 RESET_TYPE(method
));
2437 ef4_device_detach_sync(efx
);
2438 ef4_reset_down(efx
, method
);
2440 rc
= efx
->type
->reset(efx
, method
);
2442 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
2446 /* Clear flags for the scopes we covered. We assume the NIC and
2447 * driver are now quiescent so that there is no race here.
2449 if (method
< RESET_TYPE_MAX_METHOD
)
2450 efx
->reset_pending
&= -(1 << (method
+ 1));
2451 else /* it doesn't fit into the well-ordered scope hierarchy */
2452 __clear_bit(method
, &efx
->reset_pending
);
2454 /* Reinitialise bus-mastering, which may have been turned off before
2455 * the reset was scheduled. This is still appropriate, even in the
2456 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2457 * can respond to requests. */
2458 pci_set_master(efx
->pci_dev
);
2461 /* Leave device stopped if necessary */
2463 method
== RESET_TYPE_DISABLE
||
2464 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
2465 rc2
= ef4_reset_up(efx
, method
, !disabled
);
2473 dev_close(efx
->net_dev
);
2474 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
2475 efx
->state
= STATE_DISABLED
;
2477 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
2478 netif_device_attach(efx
->net_dev
);
2483 /* Try recovery mechanisms.
2484 * For now only EEH is supported.
2485 * Returns 0 if the recovery mechanisms are unsuccessful.
2486 * Returns a non-zero value otherwise.
2488 int ef4_try_recovery(struct ef4_nic
*efx
)
2491 /* A PCI error can occur and not be seen by EEH because nothing
2492 * happens on the PCI bus. In this case the driver may fail and
2493 * schedule a 'recover or reset', leading to this recovery handler.
2494 * Manually call the eeh failure check function.
2496 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
2497 if (eeh_dev_check_failure(eehdev
)) {
2498 /* The EEH mechanisms will handle the error and reset the
2499 * device if necessary.
2507 /* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2510 static void ef4_reset_work(struct work_struct
*data
)
2512 struct ef4_nic
*efx
= container_of(data
, struct ef4_nic
, reset_work
);
2513 unsigned long pending
;
2514 enum reset_type method
;
2516 pending
= READ_ONCE(efx
->reset_pending
);
2517 method
= fls(pending
) - 1;
2519 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
2520 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
2521 ef4_try_recovery(efx
))
2529 /* We checked the state in ef4_schedule_reset() but it may
2530 * have changed by now. Now that we have the RTNL lock,
2531 * it cannot change again.
2533 if (efx
->state
== STATE_READY
)
2534 (void)ef4_reset(efx
, method
);
2539 void ef4_schedule_reset(struct ef4_nic
*efx
, enum reset_type type
)
2541 enum reset_type method
;
2543 if (efx
->state
== STATE_RECOVERY
) {
2544 netif_dbg(efx
, drv
, efx
->net_dev
,
2545 "recovering: skip scheduling %s reset\n",
2551 case RESET_TYPE_INVISIBLE
:
2552 case RESET_TYPE_ALL
:
2553 case RESET_TYPE_RECOVER_OR_ALL
:
2554 case RESET_TYPE_WORLD
:
2555 case RESET_TYPE_DISABLE
:
2556 case RESET_TYPE_RECOVER_OR_DISABLE
:
2557 case RESET_TYPE_DATAPATH
:
2559 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
2560 RESET_TYPE(method
));
2563 method
= efx
->type
->map_reset_reason(type
);
2564 netif_dbg(efx
, drv
, efx
->net_dev
,
2565 "scheduling %s reset for %s\n",
2566 RESET_TYPE(method
), RESET_TYPE(type
));
2570 set_bit(method
, &efx
->reset_pending
);
2571 smp_mb(); /* ensure we change reset_pending before checking state */
2573 /* If we're not READY then just leave the flags set as the cue
2574 * to abort probing or reschedule the reset later.
2576 if (READ_ONCE(efx
->state
) != STATE_READY
)
2579 queue_work(reset_workqueue
, &efx
->reset_work
);
2582 /**************************************************************************
2584 * List of NICs we support
2586 **************************************************************************/
2588 /* PCI device ID table */
2589 static const struct pci_device_id ef4_pci_table
[] = {
2590 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2591 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0
),
2592 .driver_data
= (unsigned long) &falcon_a1_nic_type
},
2593 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE
,
2594 PCI_DEVICE_ID_SOLARFLARE_SFC4000B
),
2595 .driver_data
= (unsigned long) &falcon_b0_nic_type
},
2596 {0} /* end of list */
2599 /**************************************************************************
2601 * Dummy PHY/MAC operations
2603 * Can be used for some unimplemented operations
2604 * Needed so all function pointers are valid and do not have to be tested
2607 **************************************************************************/
2608 int ef4_port_dummy_op_int(struct ef4_nic
*efx
)
2612 void ef4_port_dummy_op_void(struct ef4_nic
*efx
) {}
2614 static bool ef4_port_dummy_op_poll(struct ef4_nic
*efx
)
2619 static const struct ef4_phy_operations ef4_dummy_phy_operations
= {
2620 .init
= ef4_port_dummy_op_int
,
2621 .reconfigure
= ef4_port_dummy_op_int
,
2622 .poll
= ef4_port_dummy_op_poll
,
2623 .fini
= ef4_port_dummy_op_void
,
2626 /**************************************************************************
2630 **************************************************************************/
2632 /* This zeroes out and then fills in the invariants in a struct
2633 * ef4_nic (including all sub-structures).
2635 static int ef4_init_struct(struct ef4_nic
*efx
,
2636 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
2640 /* Initialise common structures */
2641 INIT_LIST_HEAD(&efx
->node
);
2642 INIT_LIST_HEAD(&efx
->secondary_list
);
2643 spin_lock_init(&efx
->biu_lock
);
2644 #ifdef CONFIG_SFC_FALCON_MTD
2645 INIT_LIST_HEAD(&efx
->mtd_list
);
2647 INIT_WORK(&efx
->reset_work
, ef4_reset_work
);
2648 INIT_DELAYED_WORK(&efx
->monitor_work
, ef4_monitor
);
2649 INIT_DELAYED_WORK(&efx
->selftest_work
, ef4_selftest_async_work
);
2650 efx
->pci_dev
= pci_dev
;
2651 efx
->msg_enable
= debug
;
2652 efx
->state
= STATE_UNINIT
;
2653 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
2655 efx
->net_dev
= net_dev
;
2656 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
2658 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
2659 efx
->rx_packet_hash_offset
=
2660 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
2661 efx
->rx_packet_ts_offset
=
2662 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
2663 spin_lock_init(&efx
->stats_lock
);
2664 mutex_init(&efx
->mac_lock
);
2665 efx
->phy_op
= &ef4_dummy_phy_operations
;
2666 efx
->mdio
.dev
= net_dev
;
2667 INIT_WORK(&efx
->mac_work
, ef4_mac_work
);
2668 init_waitqueue_head(&efx
->flush_wq
);
2670 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++) {
2671 efx
->channel
[i
] = ef4_alloc_channel(efx
, i
, NULL
);
2672 if (!efx
->channel
[i
])
2674 efx
->msi_context
[i
].efx
= efx
;
2675 efx
->msi_context
[i
].index
= i
;
2678 /* Higher numbered interrupt modes are less capable! */
2679 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
2682 /* Would be good to use the net_dev name, but we're too early */
2683 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2685 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2686 if (!efx
->workqueue
)
2692 ef4_fini_struct(efx
);
2696 static void ef4_fini_struct(struct ef4_nic
*efx
)
2700 for (i
= 0; i
< EF4_MAX_CHANNELS
; i
++)
2701 kfree(efx
->channel
[i
]);
2705 if (efx
->workqueue
) {
2706 destroy_workqueue(efx
->workqueue
);
2707 efx
->workqueue
= NULL
;
2711 void ef4_update_sw_stats(struct ef4_nic
*efx
, u64
*stats
)
2713 u64 n_rx_nodesc_trunc
= 0;
2714 struct ef4_channel
*channel
;
2716 ef4_for_each_channel(channel
, efx
)
2717 n_rx_nodesc_trunc
+= channel
->n_rx_nodesc_trunc
;
2718 stats
[GENERIC_STAT_rx_nodesc_trunc
] = n_rx_nodesc_trunc
;
2719 stats
[GENERIC_STAT_rx_noskb_drops
] = atomic_read(&efx
->n_rx_noskb_drops
);
2722 /**************************************************************************
2726 **************************************************************************/
2728 /* Main body of final NIC shutdown code
2729 * This is called only at module unload (or hotplug removal).
2731 static void ef4_pci_remove_main(struct ef4_nic
*efx
)
2733 /* Flush reset_work. It can no longer be scheduled since we
2736 BUG_ON(efx
->state
== STATE_READY
);
2737 cancel_work_sync(&efx
->reset_work
);
2739 ef4_disable_interrupts(efx
);
2740 ef4_nic_fini_interrupt(efx
);
2742 efx
->type
->fini(efx
);
2744 ef4_remove_all(efx
);
2747 /* Final NIC shutdown
2748 * This is called only at module unload (or hotplug removal). A PF can call
2749 * this on its VFs to ensure they are unbound first.
2751 static void ef4_pci_remove(struct pci_dev
*pci_dev
)
2753 struct ef4_nic
*efx
;
2755 efx
= pci_get_drvdata(pci_dev
);
2759 /* Mark the NIC as fini, then stop the interface */
2761 ef4_dissociate(efx
);
2762 dev_close(efx
->net_dev
);
2763 ef4_disable_interrupts(efx
);
2764 efx
->state
= STATE_UNINIT
;
2767 ef4_unregister_netdev(efx
);
2769 ef4_mtd_remove(efx
);
2771 ef4_pci_remove_main(efx
);
2774 netif_dbg(efx
, drv
, efx
->net_dev
, "shutdown successful\n");
2776 ef4_fini_struct(efx
);
2777 free_netdev(efx
->net_dev
);
2779 pci_disable_pcie_error_reporting(pci_dev
);
2782 /* NIC VPD information
2783 * Called during probe to display the part number of the
2784 * installed NIC. VPD is potentially very large but this should
2785 * always appear within the first 512 bytes.
2787 #define SFC_VPD_LEN 512
2788 static void ef4_probe_vpd_strings(struct ef4_nic
*efx
)
2790 struct pci_dev
*dev
= efx
->pci_dev
;
2791 char vpd_data
[SFC_VPD_LEN
];
2793 int ro_start
, ro_size
, i
, j
;
2795 /* Get the vpd data from the device */
2796 vpd_size
= pci_read_vpd(dev
, 0, sizeof(vpd_data
), vpd_data
);
2797 if (vpd_size
<= 0) {
2798 netif_err(efx
, drv
, efx
->net_dev
, "Unable to read VPD\n");
2802 /* Get the Read only section */
2803 ro_start
= pci_vpd_find_tag(vpd_data
, 0, vpd_size
, PCI_VPD_LRDT_RO_DATA
);
2805 netif_err(efx
, drv
, efx
->net_dev
, "VPD Read-only not found\n");
2809 ro_size
= pci_vpd_lrdt_size(&vpd_data
[ro_start
]);
2811 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
2812 if (i
+ j
> vpd_size
)
2815 /* Get the Part number */
2816 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "PN");
2818 netif_err(efx
, drv
, efx
->net_dev
, "Part number not found\n");
2822 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2823 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2824 if (i
+ j
> vpd_size
) {
2825 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete part number\n");
2829 netif_info(efx
, drv
, efx
->net_dev
,
2830 "Part Number : %.*s\n", j
, &vpd_data
[i
]);
2832 i
= ro_start
+ PCI_VPD_LRDT_TAG_SIZE
;
2834 i
= pci_vpd_find_info_keyword(vpd_data
, i
, j
, "SN");
2836 netif_err(efx
, drv
, efx
->net_dev
, "Serial number not found\n");
2840 j
= pci_vpd_info_field_size(&vpd_data
[i
]);
2841 i
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
2842 if (i
+ j
> vpd_size
) {
2843 netif_err(efx
, drv
, efx
->net_dev
, "Incomplete serial number\n");
2847 efx
->vpd_sn
= kmalloc(j
+ 1, GFP_KERNEL
);
2851 snprintf(efx
->vpd_sn
, j
+ 1, "%s", &vpd_data
[i
]);
2855 /* Main body of NIC initialisation
2856 * This is called at module load (or hotplug insertion, theoretically).
2858 static int ef4_pci_probe_main(struct ef4_nic
*efx
)
2862 /* Do start-of-day initialisation */
2863 rc
= ef4_probe_all(efx
);
2869 rc
= efx
->type
->init(efx
);
2871 netif_err(efx
, probe
, efx
->net_dev
,
2872 "failed to initialise NIC\n");
2876 rc
= ef4_init_port(efx
);
2878 netif_err(efx
, probe
, efx
->net_dev
,
2879 "failed to initialise port\n");
2883 rc
= ef4_nic_init_interrupt(efx
);
2886 rc
= ef4_enable_interrupts(efx
);
2893 ef4_nic_fini_interrupt(efx
);
2897 efx
->type
->fini(efx
);
2900 ef4_remove_all(efx
);
2905 /* NIC initialisation
2907 * This is called at module load (or hotplug insertion,
2908 * theoretically). It sets up PCI mappings, resets the NIC,
2909 * sets up and registers the network devices with the kernel and hooks
2910 * the interrupt service routine. It does not prepare the device for
2911 * transmission; this is left to the first time one of the network
2912 * interfaces is brought up (i.e. ef4_net_open).
2914 static int ef4_pci_probe(struct pci_dev
*pci_dev
,
2915 const struct pci_device_id
*entry
)
2917 struct net_device
*net_dev
;
2918 struct ef4_nic
*efx
;
2921 /* Allocate and initialise a struct net_device and struct ef4_nic */
2922 net_dev
= alloc_etherdev_mqs(sizeof(*efx
), EF4_MAX_CORE_TX_QUEUES
,
2926 efx
= netdev_priv(net_dev
);
2927 efx
->type
= (const struct ef4_nic_type
*) entry
->driver_data
;
2928 efx
->fixed_features
|= NETIF_F_HIGHDMA
;
2930 pci_set_drvdata(pci_dev
, efx
);
2931 SET_NETDEV_DEV(net_dev
, &pci_dev
->dev
);
2932 rc
= ef4_init_struct(efx
, pci_dev
, net_dev
);
2936 netif_info(efx
, probe
, efx
->net_dev
,
2937 "Solarflare NIC detected\n");
2939 ef4_probe_vpd_strings(efx
);
2941 /* Set up basic I/O (BAR mappings etc) */
2942 rc
= ef4_init_io(efx
);
2946 rc
= ef4_pci_probe_main(efx
);
2950 net_dev
->features
|= (efx
->type
->offload_features
| NETIF_F_SG
|
2952 /* Mask for features that also apply to VLAN devices */
2953 net_dev
->vlan_features
|= (NETIF_F_HW_CSUM
| NETIF_F_SG
|
2954 NETIF_F_HIGHDMA
| NETIF_F_RXCSUM
);
2956 net_dev
->hw_features
= net_dev
->features
& ~efx
->fixed_features
;
2958 /* Disable VLAN filtering by default. It may be enforced if
2959 * the feature is fixed (i.e. VLAN filters are required to
2960 * receive VLAN tagged packets due to vPort restrictions).
2962 net_dev
->features
&= ~NETIF_F_HW_VLAN_CTAG_FILTER
;
2963 net_dev
->features
|= efx
->fixed_features
;
2965 rc
= ef4_register_netdev(efx
);
2969 netif_dbg(efx
, probe
, efx
->net_dev
, "initialisation successful\n");
2971 /* Try to create MTDs, but allow this to fail */
2973 rc
= ef4_mtd_probe(efx
);
2975 if (rc
&& rc
!= -EPERM
)
2976 netif_warn(efx
, probe
, efx
->net_dev
,
2977 "failed to create MTDs (%d)\n", rc
);
2979 rc
= pci_enable_pcie_error_reporting(pci_dev
);
2980 if (rc
&& rc
!= -EINVAL
)
2981 netif_notice(efx
, probe
, efx
->net_dev
,
2982 "PCIE error reporting unavailable (%d).\n",
2988 ef4_pci_remove_main(efx
);
2992 ef4_fini_struct(efx
);
2995 netif_dbg(efx
, drv
, efx
->net_dev
, "initialisation failed. rc=%d\n", rc
);
2996 free_netdev(net_dev
);
3000 static int ef4_pm_freeze(struct device
*dev
)
3002 struct ef4_nic
*efx
= dev_get_drvdata(dev
);
3006 if (efx
->state
!= STATE_DISABLED
) {
3007 efx
->state
= STATE_UNINIT
;
3009 ef4_device_detach_sync(efx
);
3012 ef4_disable_interrupts(efx
);
3020 static int ef4_pm_thaw(struct device
*dev
)
3023 struct ef4_nic
*efx
= dev_get_drvdata(dev
);
3027 if (efx
->state
!= STATE_DISABLED
) {
3028 rc
= ef4_enable_interrupts(efx
);
3032 mutex_lock(&efx
->mac_lock
);
3033 efx
->phy_op
->reconfigure(efx
);
3034 mutex_unlock(&efx
->mac_lock
);
3038 netif_device_attach(efx
->net_dev
);
3040 efx
->state
= STATE_READY
;
3042 efx
->type
->resume_wol(efx
);
3047 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3048 queue_work(reset_workqueue
, &efx
->reset_work
);
3058 static int ef4_pm_poweroff(struct device
*dev
)
3060 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3061 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3063 efx
->type
->fini(efx
);
3065 efx
->reset_pending
= 0;
3067 pci_save_state(pci_dev
);
3068 return pci_set_power_state(pci_dev
, PCI_D3hot
);
3071 /* Used for both resume and restore */
3072 static int ef4_pm_resume(struct device
*dev
)
3074 struct pci_dev
*pci_dev
= to_pci_dev(dev
);
3075 struct ef4_nic
*efx
= pci_get_drvdata(pci_dev
);
3078 rc
= pci_set_power_state(pci_dev
, PCI_D0
);
3081 pci_restore_state(pci_dev
);
3082 rc
= pci_enable_device(pci_dev
);
3085 pci_set_master(efx
->pci_dev
);
3086 rc
= efx
->type
->reset(efx
, RESET_TYPE_ALL
);
3089 rc
= efx
->type
->init(efx
);
3092 rc
= ef4_pm_thaw(dev
);
3096 static int ef4_pm_suspend(struct device
*dev
)
3101 rc
= ef4_pm_poweroff(dev
);
3107 static const struct dev_pm_ops ef4_pm_ops
= {
3108 .suspend
= ef4_pm_suspend
,
3109 .resume
= ef4_pm_resume
,
3110 .freeze
= ef4_pm_freeze
,
3111 .thaw
= ef4_pm_thaw
,
3112 .poweroff
= ef4_pm_poweroff
,
3113 .restore
= ef4_pm_resume
,
3116 /* A PCI error affecting this device was detected.
3117 * At this point MMIO and DMA may be disabled.
3118 * Stop the software path and request a slot reset.
3120 static pci_ers_result_t
ef4_io_error_detected(struct pci_dev
*pdev
,
3121 pci_channel_state_t state
)
3123 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3124 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3126 if (state
== pci_channel_io_perm_failure
)
3127 return PCI_ERS_RESULT_DISCONNECT
;
3131 if (efx
->state
!= STATE_DISABLED
) {
3132 efx
->state
= STATE_RECOVERY
;
3133 efx
->reset_pending
= 0;
3135 ef4_device_detach_sync(efx
);
3138 ef4_disable_interrupts(efx
);
3140 status
= PCI_ERS_RESULT_NEED_RESET
;
3142 /* If the interface is disabled we don't want to do anything
3145 status
= PCI_ERS_RESULT_RECOVERED
;
3150 pci_disable_device(pdev
);
3155 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3156 static pci_ers_result_t
ef4_io_slot_reset(struct pci_dev
*pdev
)
3158 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3159 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
3161 if (pci_enable_device(pdev
)) {
3162 netif_err(efx
, hw
, efx
->net_dev
,
3163 "Cannot re-enable PCI device after reset.\n");
3164 status
= PCI_ERS_RESULT_DISCONNECT
;
3170 /* Perform the actual reset and resume I/O operations. */
3171 static void ef4_io_resume(struct pci_dev
*pdev
)
3173 struct ef4_nic
*efx
= pci_get_drvdata(pdev
);
3178 if (efx
->state
== STATE_DISABLED
)
3181 rc
= ef4_reset(efx
, RESET_TYPE_ALL
);
3183 netif_err(efx
, hw
, efx
->net_dev
,
3184 "ef4_reset failed after PCI error (%d)\n", rc
);
3186 efx
->state
= STATE_READY
;
3187 netif_dbg(efx
, hw
, efx
->net_dev
,
3188 "Done resetting and resuming IO after PCI error.\n");
3195 /* For simplicity and reliability, we always require a slot reset and try to
3196 * reset the hardware when a pci error affecting the device is detected.
3197 * We leave both the link_reset and mmio_enabled callback unimplemented:
3198 * with our request for slot reset the mmio_enabled callback will never be
3199 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3201 static const struct pci_error_handlers ef4_err_handlers
= {
3202 .error_detected
= ef4_io_error_detected
,
3203 .slot_reset
= ef4_io_slot_reset
,
3204 .resume
= ef4_io_resume
,
3207 static struct pci_driver ef4_pci_driver
= {
3208 .name
= KBUILD_MODNAME
,
3209 .id_table
= ef4_pci_table
,
3210 .probe
= ef4_pci_probe
,
3211 .remove
= ef4_pci_remove
,
3212 .driver
.pm
= &ef4_pm_ops
,
3213 .err_handler
= &ef4_err_handlers
,
3216 /**************************************************************************
3218 * Kernel module interface
3220 *************************************************************************/
3222 module_param(interrupt_mode
, uint
, 0444);
3223 MODULE_PARM_DESC(interrupt_mode
,
3224 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3226 static int __init
ef4_init_module(void)
3230 printk(KERN_INFO
"Solarflare Falcon driver v" EF4_DRIVER_VERSION
"\n");
3232 rc
= register_netdevice_notifier(&ef4_netdev_notifier
);
3236 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
3237 if (!reset_workqueue
) {
3242 rc
= pci_register_driver(&ef4_pci_driver
);
3249 destroy_workqueue(reset_workqueue
);
3251 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3256 static void __exit
ef4_exit_module(void)
3258 printk(KERN_INFO
"Solarflare Falcon driver unloading\n");
3260 pci_unregister_driver(&ef4_pci_driver
);
3261 destroy_workqueue(reset_workqueue
);
3262 unregister_netdevice_notifier(&ef4_netdev_notifier
);
3266 module_init(ef4_init_module
);
3267 module_exit(ef4_exit_module
);
3269 MODULE_AUTHOR("Solarflare Communications and "
3270 "Michael Brown <mbrown@fensystems.co.uk>");
3271 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3272 MODULE_LICENSE("GPL");
3273 MODULE_DEVICE_TABLE(pci
, ef4_pci_table
);
3274 MODULE_VERSION(EF4_DRIVER_VERSION
);