WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / falcon / efx.c
blobf8979991970ef828976e24f14170addabf21d565
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
27 #include "workarounds.h"
29 /**************************************************************************
31 * Type name strings
33 **************************************************************************
36 /* Loopback mode names (see LOOPBACK_MODE()) */
37 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
38 const char *const ef4_loopback_mode_names[] = {
39 [LOOPBACK_NONE] = "NONE",
40 [LOOPBACK_DATA] = "DATAPATH",
41 [LOOPBACK_GMAC] = "GMAC",
42 [LOOPBACK_XGMII] = "XGMII",
43 [LOOPBACK_XGXS] = "XGXS",
44 [LOOPBACK_XAUI] = "XAUI",
45 [LOOPBACK_GMII] = "GMII",
46 [LOOPBACK_SGMII] = "SGMII",
47 [LOOPBACK_XGBR] = "XGBR",
48 [LOOPBACK_XFI] = "XFI",
49 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
50 [LOOPBACK_GMII_FAR] = "GMII_FAR",
51 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
52 [LOOPBACK_XFI_FAR] = "XFI_FAR",
53 [LOOPBACK_GPHY] = "GPHY",
54 [LOOPBACK_PHYXS] = "PHYXS",
55 [LOOPBACK_PCS] = "PCS",
56 [LOOPBACK_PMAPMD] = "PMA/PMD",
57 [LOOPBACK_XPORT] = "XPORT",
58 [LOOPBACK_XGMII_WS] = "XGMII_WS",
59 [LOOPBACK_XAUI_WS] = "XAUI_WS",
60 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
61 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
62 [LOOPBACK_GMII_WS] = "GMII_WS",
63 [LOOPBACK_XFI_WS] = "XFI_WS",
64 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
65 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
68 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
69 const char *const ef4_reset_type_names[] = {
70 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
71 [RESET_TYPE_ALL] = "ALL",
72 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
73 [RESET_TYPE_WORLD] = "WORLD",
74 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
75 [RESET_TYPE_DATAPATH] = "DATAPATH",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
81 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
85 * queued onto this work queue. This is not a per-nic work queue, because
86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
88 static struct workqueue_struct *reset_workqueue;
90 /* How often and how many times to poll for a reset while waiting for a
91 * BIST that another function started to complete.
93 #define BIST_WAIT_DELAY_MS 100
94 #define BIST_WAIT_DELAY_COUNT 100
96 /**************************************************************************
98 * Configurable values
100 *************************************************************************/
103 * Use separate channels for TX and RX events
105 * Set this to 1 to use separate channels for TX and RX. It allows us
106 * to control interrupt affinity separately for TX and RX.
108 * This is only used in MSI-X interrupt mode
110 bool ef4_separate_tx_channels;
111 module_param(ef4_separate_tx_channels, bool, 0444);
112 MODULE_PARM_DESC(ef4_separate_tx_channels,
113 "Use separate channels for TX and RX");
115 /* This is the weight assigned to each of the (per-channel) virtual
116 * NAPI devices.
118 static int napi_weight = 64;
120 /* This is the time (in jiffies) between invocations of the hardware
121 * monitor.
122 * On Falcon-based NICs, this will:
123 * - Check the on-board hardware monitor;
124 * - Poll the link state and reconfigure the hardware as necessary.
125 * On Siena-based NICs for power systems with EEH support, this will give EEH a
126 * chance to start.
128 static unsigned int ef4_monitor_interval = 1 * HZ;
130 /* Initial interrupt moderation settings. They can be modified after
131 * module load with ethtool.
133 * The default for RX should strike a balance between increasing the
134 * round-trip latency and reducing overhead.
136 static unsigned int rx_irq_mod_usec = 60;
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
141 * This default is chosen to ensure that a 10G link does not go idle
142 * while a TX queue is stopped after it has become full. A queue is
143 * restarted when it drops below half full. The time this takes (assuming
144 * worst case 3 descriptors per packet and 1024 descriptors) is
145 * 512 / 3 * 1.2 = 205 usec.
147 static unsigned int tx_irq_mod_usec = 150;
149 /* This is the first interrupt mode to try out of:
150 * 0 => MSI-X
151 * 1 => MSI
152 * 2 => legacy
154 static unsigned int interrupt_mode;
156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
157 * i.e. the number of CPUs among which we may distribute simultaneous
158 * interrupt handling.
160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161 * The default (0) means to assign an interrupt to each core.
163 static unsigned int rss_cpus;
164 module_param(rss_cpus, uint, 0444);
165 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
167 static bool phy_flash_cfg;
168 module_param(phy_flash_cfg, bool, 0644);
169 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
171 static unsigned irq_adapt_low_thresh = 8000;
172 module_param(irq_adapt_low_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_low_thresh,
174 "Threshold score for reducing IRQ moderation");
176 static unsigned irq_adapt_high_thresh = 16000;
177 module_param(irq_adapt_high_thresh, uint, 0644);
178 MODULE_PARM_DESC(irq_adapt_high_thresh,
179 "Threshold score for increasing IRQ moderation");
181 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
184 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
185 module_param(debug, uint, 0);
186 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
188 /**************************************************************************
190 * Utility functions and prototypes
192 *************************************************************************/
194 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
195 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
196 static void ef4_remove_channel(struct ef4_channel *channel);
197 static void ef4_remove_channels(struct ef4_nic *efx);
198 static const struct ef4_channel_type ef4_default_channel_type;
199 static void ef4_remove_port(struct ef4_nic *efx);
200 static void ef4_init_napi_channel(struct ef4_channel *channel);
201 static void ef4_fini_napi(struct ef4_nic *efx);
202 static void ef4_fini_napi_channel(struct ef4_channel *channel);
203 static void ef4_fini_struct(struct ef4_nic *efx);
204 static void ef4_start_all(struct ef4_nic *efx);
205 static void ef4_stop_all(struct ef4_nic *efx);
207 #define EF4_ASSERT_RESET_SERIALISED(efx) \
208 do { \
209 if ((efx->state == STATE_READY) || \
210 (efx->state == STATE_RECOVERY) || \
211 (efx->state == STATE_DISABLED)) \
212 ASSERT_RTNL(); \
213 } while (0)
215 static int ef4_check_disabled(struct ef4_nic *efx)
217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 netif_err(efx, drv, efx->net_dev,
219 "device is disabled due to earlier errors\n");
220 return -EIO;
222 return 0;
225 /**************************************************************************
227 * Event queue processing
229 *************************************************************************/
231 /* Process channel's event queue
233 * This function is responsible for processing the event queue of a
234 * single channel. The caller must guarantee that this function will
235 * never be concurrently called more than once on the same channel,
236 * though different channels may be being processed concurrently.
238 static int ef4_process_channel(struct ef4_channel *channel, int budget)
240 struct ef4_tx_queue *tx_queue;
241 int spent;
243 if (unlikely(!channel->enabled))
244 return 0;
246 ef4_for_each_channel_tx_queue(tx_queue, channel) {
247 tx_queue->pkts_compl = 0;
248 tx_queue->bytes_compl = 0;
251 spent = ef4_nic_process_eventq(channel, budget);
252 if (spent && ef4_channel_has_rx_queue(channel)) {
253 struct ef4_rx_queue *rx_queue =
254 ef4_channel_get_rx_queue(channel);
256 ef4_rx_flush_packet(channel);
257 ef4_fast_push_rx_descriptors(rx_queue, true);
260 /* Update BQL */
261 ef4_for_each_channel_tx_queue(tx_queue, channel) {
262 if (tx_queue->bytes_compl) {
263 netdev_tx_completed_queue(tx_queue->core_txq,
264 tx_queue->pkts_compl, tx_queue->bytes_compl);
268 return spent;
271 /* NAPI poll handler
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by ef4_process_channel().
276 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
278 int step = efx->irq_mod_step_us;
280 if (channel->irq_mod_score < irq_adapt_low_thresh) {
281 if (channel->irq_moderation_us > step) {
282 channel->irq_moderation_us -= step;
283 efx->type->push_irq_moderation(channel);
285 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
286 if (channel->irq_moderation_us <
287 efx->irq_rx_moderation_us) {
288 channel->irq_moderation_us += step;
289 efx->type->push_irq_moderation(channel);
293 channel->irq_count = 0;
294 channel->irq_mod_score = 0;
297 static int ef4_poll(struct napi_struct *napi, int budget)
299 struct ef4_channel *channel =
300 container_of(napi, struct ef4_channel, napi_str);
301 struct ef4_nic *efx = channel->efx;
302 int spent;
304 netif_vdbg(efx, intr, efx->net_dev,
305 "channel %d NAPI poll executing on CPU %d\n",
306 channel->channel, raw_smp_processor_id());
308 spent = ef4_process_channel(channel, budget);
310 if (spent < budget) {
311 if (ef4_channel_has_rx_queue(channel) &&
312 efx->irq_rx_adaptive &&
313 unlikely(++channel->irq_count == 1000)) {
314 ef4_update_irq_mod(efx, channel);
317 ef4_filter_rfs_expire(channel);
319 /* There is no race here; although napi_disable() will
320 * only wait for napi_complete(), this isn't a problem
321 * since ef4_nic_eventq_read_ack() will have no effect if
322 * interrupts have already been disabled.
324 napi_complete_done(napi, spent);
325 ef4_nic_eventq_read_ack(channel);
328 return spent;
331 /* Create event queue
332 * Event queue memory allocations are done only once. If the channel
333 * is reset, the memory buffer will be reused; this guards against
334 * errors during channel reset and also simplifies interrupt handling.
336 static int ef4_probe_eventq(struct ef4_channel *channel)
338 struct ef4_nic *efx = channel->efx;
339 unsigned long entries;
341 netif_dbg(efx, probe, efx->net_dev,
342 "chan %d create event queue\n", channel->channel);
344 /* Build an event queue with room for one event per tx and rx buffer,
345 * plus some extra for link state events and MCDI completions. */
346 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
347 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
348 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
350 return ef4_nic_probe_eventq(channel);
353 /* Prepare channel's event queue */
354 static int ef4_init_eventq(struct ef4_channel *channel)
356 struct ef4_nic *efx = channel->efx;
357 int rc;
359 EF4_WARN_ON_PARANOID(channel->eventq_init);
361 netif_dbg(efx, drv, efx->net_dev,
362 "chan %d init event queue\n", channel->channel);
364 rc = ef4_nic_init_eventq(channel);
365 if (rc == 0) {
366 efx->type->push_irq_moderation(channel);
367 channel->eventq_read_ptr = 0;
368 channel->eventq_init = true;
370 return rc;
373 /* Enable event queue processing and NAPI */
374 void ef4_start_eventq(struct ef4_channel *channel)
376 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
377 "chan %d start event queue\n", channel->channel);
379 /* Make sure the NAPI handler sees the enabled flag set */
380 channel->enabled = true;
381 smp_wmb();
383 napi_enable(&channel->napi_str);
384 ef4_nic_eventq_read_ack(channel);
387 /* Disable event queue processing and NAPI */
388 void ef4_stop_eventq(struct ef4_channel *channel)
390 if (!channel->enabled)
391 return;
393 napi_disable(&channel->napi_str);
394 channel->enabled = false;
397 static void ef4_fini_eventq(struct ef4_channel *channel)
399 if (!channel->eventq_init)
400 return;
402 netif_dbg(channel->efx, drv, channel->efx->net_dev,
403 "chan %d fini event queue\n", channel->channel);
405 ef4_nic_fini_eventq(channel);
406 channel->eventq_init = false;
409 static void ef4_remove_eventq(struct ef4_channel *channel)
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d remove event queue\n", channel->channel);
414 ef4_nic_remove_eventq(channel);
417 /**************************************************************************
419 * Channel handling
421 *************************************************************************/
423 /* Allocate and initialise a channel structure. */
424 static struct ef4_channel *
425 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
427 struct ef4_channel *channel;
428 struct ef4_rx_queue *rx_queue;
429 struct ef4_tx_queue *tx_queue;
430 int j;
432 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
433 if (!channel)
434 return NULL;
436 channel->efx = efx;
437 channel->channel = i;
438 channel->type = &ef4_default_channel_type;
440 for (j = 0; j < EF4_TXQ_TYPES; j++) {
441 tx_queue = &channel->tx_queue[j];
442 tx_queue->efx = efx;
443 tx_queue->queue = i * EF4_TXQ_TYPES + j;
444 tx_queue->channel = channel;
447 rx_queue = &channel->rx_queue;
448 rx_queue->efx = efx;
449 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
451 return channel;
454 /* Allocate and initialise a channel structure, copying parameters
455 * (but not resources) from an old channel structure.
457 static struct ef4_channel *
458 ef4_copy_channel(const struct ef4_channel *old_channel)
460 struct ef4_channel *channel;
461 struct ef4_rx_queue *rx_queue;
462 struct ef4_tx_queue *tx_queue;
463 int j;
465 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
466 if (!channel)
467 return NULL;
469 *channel = *old_channel;
471 channel->napi_dev = NULL;
472 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
473 channel->napi_str.napi_id = 0;
474 channel->napi_str.state = 0;
475 memset(&channel->eventq, 0, sizeof(channel->eventq));
477 for (j = 0; j < EF4_TXQ_TYPES; j++) {
478 tx_queue = &channel->tx_queue[j];
479 if (tx_queue->channel)
480 tx_queue->channel = channel;
481 tx_queue->buffer = NULL;
482 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
485 rx_queue = &channel->rx_queue;
486 rx_queue->buffer = NULL;
487 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
488 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
490 return channel;
493 static int ef4_probe_channel(struct ef4_channel *channel)
495 struct ef4_tx_queue *tx_queue;
496 struct ef4_rx_queue *rx_queue;
497 int rc;
499 netif_dbg(channel->efx, probe, channel->efx->net_dev,
500 "creating channel %d\n", channel->channel);
502 rc = channel->type->pre_probe(channel);
503 if (rc)
504 goto fail;
506 rc = ef4_probe_eventq(channel);
507 if (rc)
508 goto fail;
510 ef4_for_each_channel_tx_queue(tx_queue, channel) {
511 rc = ef4_probe_tx_queue(tx_queue);
512 if (rc)
513 goto fail;
516 ef4_for_each_channel_rx_queue(rx_queue, channel) {
517 rc = ef4_probe_rx_queue(rx_queue);
518 if (rc)
519 goto fail;
522 return 0;
524 fail:
525 ef4_remove_channel(channel);
526 return rc;
529 static void
530 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
532 struct ef4_nic *efx = channel->efx;
533 const char *type;
534 int number;
536 number = channel->channel;
537 if (efx->tx_channel_offset == 0) {
538 type = "";
539 } else if (channel->channel < efx->tx_channel_offset) {
540 type = "-rx";
541 } else {
542 type = "-tx";
543 number -= efx->tx_channel_offset;
545 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
548 static void ef4_set_channel_names(struct ef4_nic *efx)
550 struct ef4_channel *channel;
552 ef4_for_each_channel(channel, efx)
553 channel->type->get_name(channel,
554 efx->msi_context[channel->channel].name,
555 sizeof(efx->msi_context[0].name));
558 static int ef4_probe_channels(struct ef4_nic *efx)
560 struct ef4_channel *channel;
561 int rc;
563 /* Restart special buffer allocation */
564 efx->next_buffer_table = 0;
566 /* Probe channels in reverse, so that any 'extra' channels
567 * use the start of the buffer table. This allows the traffic
568 * channels to be resized without moving them or wasting the
569 * entries before them.
571 ef4_for_each_channel_rev(channel, efx) {
572 rc = ef4_probe_channel(channel);
573 if (rc) {
574 netif_err(efx, probe, efx->net_dev,
575 "failed to create channel %d\n",
576 channel->channel);
577 goto fail;
580 ef4_set_channel_names(efx);
582 return 0;
584 fail:
585 ef4_remove_channels(efx);
586 return rc;
589 /* Channels are shutdown and reinitialised whilst the NIC is running
590 * to propagate configuration changes (mtu, checksum offload), or
591 * to clear hardware error conditions
593 static void ef4_start_datapath(struct ef4_nic *efx)
595 netdev_features_t old_features = efx->net_dev->features;
596 bool old_rx_scatter = efx->rx_scatter;
597 struct ef4_tx_queue *tx_queue;
598 struct ef4_rx_queue *rx_queue;
599 struct ef4_channel *channel;
600 size_t rx_buf_len;
602 /* Calculate the rx buffer allocation parameters required to
603 * support the current MTU, including padding for header
604 * alignment and overruns.
606 efx->rx_dma_len = (efx->rx_prefix_size +
607 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
608 efx->type->rx_buffer_padding);
609 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
610 efx->rx_ip_align + efx->rx_dma_len);
611 if (rx_buf_len <= PAGE_SIZE) {
612 efx->rx_scatter = efx->type->always_rx_scatter;
613 efx->rx_buffer_order = 0;
614 } else if (efx->type->can_rx_scatter) {
615 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
616 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
617 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
618 EF4_RX_BUF_ALIGNMENT) >
619 PAGE_SIZE);
620 efx->rx_scatter = true;
621 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
622 efx->rx_buffer_order = 0;
623 } else {
624 efx->rx_scatter = false;
625 efx->rx_buffer_order = get_order(rx_buf_len);
628 ef4_rx_config_page_split(efx);
629 if (efx->rx_buffer_order)
630 netif_dbg(efx, drv, efx->net_dev,
631 "RX buf len=%u; page order=%u batch=%u\n",
632 efx->rx_dma_len, efx->rx_buffer_order,
633 efx->rx_pages_per_batch);
634 else
635 netif_dbg(efx, drv, efx->net_dev,
636 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
637 efx->rx_dma_len, efx->rx_page_buf_step,
638 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
640 /* Restore previously fixed features in hw_features and remove
641 * features which are fixed now
643 efx->net_dev->hw_features |= efx->net_dev->features;
644 efx->net_dev->hw_features &= ~efx->fixed_features;
645 efx->net_dev->features |= efx->fixed_features;
646 if (efx->net_dev->features != old_features)
647 netdev_features_change(efx->net_dev);
649 /* RX filters may also have scatter-enabled flags */
650 if (efx->rx_scatter != old_rx_scatter)
651 efx->type->filter_update_rx_scatter(efx);
653 /* We must keep at least one descriptor in a TX ring empty.
654 * We could avoid this when the queue size does not exactly
655 * match the hardware ring size, but it's not that important.
656 * Therefore we stop the queue when one more skb might fill
657 * the ring completely. We wake it when half way back to
658 * empty.
660 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
661 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
663 /* Initialise the channels */
664 ef4_for_each_channel(channel, efx) {
665 ef4_for_each_channel_tx_queue(tx_queue, channel) {
666 ef4_init_tx_queue(tx_queue);
667 atomic_inc(&efx->active_queues);
670 ef4_for_each_channel_rx_queue(rx_queue, channel) {
671 ef4_init_rx_queue(rx_queue);
672 atomic_inc(&efx->active_queues);
673 ef4_stop_eventq(channel);
674 ef4_fast_push_rx_descriptors(rx_queue, false);
675 ef4_start_eventq(channel);
678 WARN_ON(channel->rx_pkt_n_frags);
681 if (netif_device_present(efx->net_dev))
682 netif_tx_wake_all_queues(efx->net_dev);
685 static void ef4_stop_datapath(struct ef4_nic *efx)
687 struct ef4_channel *channel;
688 struct ef4_tx_queue *tx_queue;
689 struct ef4_rx_queue *rx_queue;
690 int rc;
692 EF4_ASSERT_RESET_SERIALISED(efx);
693 BUG_ON(efx->port_enabled);
695 /* Stop RX refill */
696 ef4_for_each_channel(channel, efx) {
697 ef4_for_each_channel_rx_queue(rx_queue, channel)
698 rx_queue->refill_enabled = false;
701 ef4_for_each_channel(channel, efx) {
702 /* RX packet processing is pipelined, so wait for the
703 * NAPI handler to complete. At least event queue 0
704 * might be kept active by non-data events, so don't
705 * use napi_synchronize() but actually disable NAPI
706 * temporarily.
708 if (ef4_channel_has_rx_queue(channel)) {
709 ef4_stop_eventq(channel);
710 ef4_start_eventq(channel);
714 rc = efx->type->fini_dmaq(efx);
715 if (rc && EF4_WORKAROUND_7803(efx)) {
716 /* Schedule a reset to recover from the flush failure. The
717 * descriptor caches reference memory we're about to free,
718 * but falcon_reconfigure_mac_wrapper() won't reconnect
719 * the MACs because of the pending reset.
721 netif_err(efx, drv, efx->net_dev,
722 "Resetting to recover from flush failure\n");
723 ef4_schedule_reset(efx, RESET_TYPE_ALL);
724 } else if (rc) {
725 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
726 } else {
727 netif_dbg(efx, drv, efx->net_dev,
728 "successfully flushed all queues\n");
731 ef4_for_each_channel(channel, efx) {
732 ef4_for_each_channel_rx_queue(rx_queue, channel)
733 ef4_fini_rx_queue(rx_queue);
734 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
735 ef4_fini_tx_queue(tx_queue);
739 static void ef4_remove_channel(struct ef4_channel *channel)
741 struct ef4_tx_queue *tx_queue;
742 struct ef4_rx_queue *rx_queue;
744 netif_dbg(channel->efx, drv, channel->efx->net_dev,
745 "destroy chan %d\n", channel->channel);
747 ef4_for_each_channel_rx_queue(rx_queue, channel)
748 ef4_remove_rx_queue(rx_queue);
749 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
750 ef4_remove_tx_queue(tx_queue);
751 ef4_remove_eventq(channel);
752 channel->type->post_remove(channel);
755 static void ef4_remove_channels(struct ef4_nic *efx)
757 struct ef4_channel *channel;
759 ef4_for_each_channel(channel, efx)
760 ef4_remove_channel(channel);
764 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
766 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
767 u32 old_rxq_entries, old_txq_entries;
768 unsigned i, next_buffer_table = 0;
769 int rc, rc2;
771 rc = ef4_check_disabled(efx);
772 if (rc)
773 return rc;
775 /* Not all channels should be reallocated. We must avoid
776 * reallocating their buffer table entries.
778 ef4_for_each_channel(channel, efx) {
779 struct ef4_rx_queue *rx_queue;
780 struct ef4_tx_queue *tx_queue;
782 if (channel->type->copy)
783 continue;
784 next_buffer_table = max(next_buffer_table,
785 channel->eventq.index +
786 channel->eventq.entries);
787 ef4_for_each_channel_rx_queue(rx_queue, channel)
788 next_buffer_table = max(next_buffer_table,
789 rx_queue->rxd.index +
790 rx_queue->rxd.entries);
791 ef4_for_each_channel_tx_queue(tx_queue, channel)
792 next_buffer_table = max(next_buffer_table,
793 tx_queue->txd.index +
794 tx_queue->txd.entries);
797 ef4_device_detach_sync(efx);
798 ef4_stop_all(efx);
799 ef4_soft_disable_interrupts(efx);
801 /* Clone channels (where possible) */
802 memset(other_channel, 0, sizeof(other_channel));
803 for (i = 0; i < efx->n_channels; i++) {
804 channel = efx->channel[i];
805 if (channel->type->copy)
806 channel = channel->type->copy(channel);
807 if (!channel) {
808 rc = -ENOMEM;
809 goto out;
811 other_channel[i] = channel;
814 /* Swap entry counts and channel pointers */
815 old_rxq_entries = efx->rxq_entries;
816 old_txq_entries = efx->txq_entries;
817 efx->rxq_entries = rxq_entries;
818 efx->txq_entries = txq_entries;
819 for (i = 0; i < efx->n_channels; i++) {
820 channel = efx->channel[i];
821 efx->channel[i] = other_channel[i];
822 other_channel[i] = channel;
825 /* Restart buffer table allocation */
826 efx->next_buffer_table = next_buffer_table;
828 for (i = 0; i < efx->n_channels; i++) {
829 channel = efx->channel[i];
830 if (!channel->type->copy)
831 continue;
832 rc = ef4_probe_channel(channel);
833 if (rc)
834 goto rollback;
835 ef4_init_napi_channel(efx->channel[i]);
838 out:
839 /* Destroy unused channel structures */
840 for (i = 0; i < efx->n_channels; i++) {
841 channel = other_channel[i];
842 if (channel && channel->type->copy) {
843 ef4_fini_napi_channel(channel);
844 ef4_remove_channel(channel);
845 kfree(channel);
849 rc2 = ef4_soft_enable_interrupts(efx);
850 if (rc2) {
851 rc = rc ? rc : rc2;
852 netif_err(efx, drv, efx->net_dev,
853 "unable to restart interrupts on channel reallocation\n");
854 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
855 } else {
856 ef4_start_all(efx);
857 netif_device_attach(efx->net_dev);
859 return rc;
861 rollback:
862 /* Swap back */
863 efx->rxq_entries = old_rxq_entries;
864 efx->txq_entries = old_txq_entries;
865 for (i = 0; i < efx->n_channels; i++) {
866 channel = efx->channel[i];
867 efx->channel[i] = other_channel[i];
868 other_channel[i] = channel;
870 goto out;
873 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
875 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
878 static const struct ef4_channel_type ef4_default_channel_type = {
879 .pre_probe = ef4_channel_dummy_op_int,
880 .post_remove = ef4_channel_dummy_op_void,
881 .get_name = ef4_get_channel_name,
882 .copy = ef4_copy_channel,
883 .keep_eventq = false,
886 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
888 return 0;
891 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
895 /**************************************************************************
897 * Port handling
899 **************************************************************************/
901 /* This ensures that the kernel is kept informed (via
902 * netif_carrier_on/off) of the link status, and also maintains the
903 * link status's stop on the port's TX queue.
905 void ef4_link_status_changed(struct ef4_nic *efx)
907 struct ef4_link_state *link_state = &efx->link_state;
909 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
910 * that no events are triggered between unregister_netdev() and the
911 * driver unloading. A more general condition is that NETDEV_CHANGE
912 * can only be generated between NETDEV_UP and NETDEV_DOWN */
913 if (!netif_running(efx->net_dev))
914 return;
916 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
917 efx->n_link_state_changes++;
919 if (link_state->up)
920 netif_carrier_on(efx->net_dev);
921 else
922 netif_carrier_off(efx->net_dev);
925 /* Status message for kernel log */
926 if (link_state->up)
927 netif_info(efx, link, efx->net_dev,
928 "link up at %uMbps %s-duplex (MTU %d)\n",
929 link_state->speed, link_state->fd ? "full" : "half",
930 efx->net_dev->mtu);
931 else
932 netif_info(efx, link, efx->net_dev, "link down\n");
935 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
937 efx->link_advertising = advertising;
938 if (advertising) {
939 if (advertising & ADVERTISED_Pause)
940 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
941 else
942 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
943 if (advertising & ADVERTISED_Asym_Pause)
944 efx->wanted_fc ^= EF4_FC_TX;
948 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
950 efx->wanted_fc = wanted_fc;
951 if (efx->link_advertising) {
952 if (wanted_fc & EF4_FC_RX)
953 efx->link_advertising |= (ADVERTISED_Pause |
954 ADVERTISED_Asym_Pause);
955 else
956 efx->link_advertising &= ~(ADVERTISED_Pause |
957 ADVERTISED_Asym_Pause);
958 if (wanted_fc & EF4_FC_TX)
959 efx->link_advertising ^= ADVERTISED_Asym_Pause;
963 static void ef4_fini_port(struct ef4_nic *efx);
965 /* We assume that efx->type->reconfigure_mac will always try to sync RX
966 * filters and therefore needs to read-lock the filter table against freeing
968 void ef4_mac_reconfigure(struct ef4_nic *efx)
970 down_read(&efx->filter_sem);
971 efx->type->reconfigure_mac(efx);
972 up_read(&efx->filter_sem);
975 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
976 * the MAC appropriately. All other PHY configuration changes are pushed
977 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
978 * through ef4_monitor().
980 * Callers must hold the mac_lock
982 int __ef4_reconfigure_port(struct ef4_nic *efx)
984 enum ef4_phy_mode phy_mode;
985 int rc;
987 WARN_ON(!mutex_is_locked(&efx->mac_lock));
989 /* Disable PHY transmit in mac level loopbacks */
990 phy_mode = efx->phy_mode;
991 if (LOOPBACK_INTERNAL(efx))
992 efx->phy_mode |= PHY_MODE_TX_DISABLED;
993 else
994 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
996 rc = efx->type->reconfigure_port(efx);
998 if (rc)
999 efx->phy_mode = phy_mode;
1001 return rc;
1004 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1005 * disabled. */
1006 int ef4_reconfigure_port(struct ef4_nic *efx)
1008 int rc;
1010 EF4_ASSERT_RESET_SERIALISED(efx);
1012 mutex_lock(&efx->mac_lock);
1013 rc = __ef4_reconfigure_port(efx);
1014 mutex_unlock(&efx->mac_lock);
1016 return rc;
1019 /* Asynchronous work item for changing MAC promiscuity and multicast
1020 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1021 * MAC directly. */
1022 static void ef4_mac_work(struct work_struct *data)
1024 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1026 mutex_lock(&efx->mac_lock);
1027 if (efx->port_enabled)
1028 ef4_mac_reconfigure(efx);
1029 mutex_unlock(&efx->mac_lock);
1032 static int ef4_probe_port(struct ef4_nic *efx)
1034 int rc;
1036 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1038 if (phy_flash_cfg)
1039 efx->phy_mode = PHY_MODE_SPECIAL;
1041 /* Connect up MAC/PHY operations table */
1042 rc = efx->type->probe_port(efx);
1043 if (rc)
1044 return rc;
1046 /* Initialise MAC address to permanent address */
1047 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1049 return 0;
1052 static int ef4_init_port(struct ef4_nic *efx)
1054 int rc;
1056 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1058 mutex_lock(&efx->mac_lock);
1060 rc = efx->phy_op->init(efx);
1061 if (rc)
1062 goto fail1;
1064 efx->port_initialized = true;
1066 /* Reconfigure the MAC before creating dma queues (required for
1067 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1068 ef4_mac_reconfigure(efx);
1070 /* Ensure the PHY advertises the correct flow control settings */
1071 rc = efx->phy_op->reconfigure(efx);
1072 if (rc && rc != -EPERM)
1073 goto fail2;
1075 mutex_unlock(&efx->mac_lock);
1076 return 0;
1078 fail2:
1079 efx->phy_op->fini(efx);
1080 fail1:
1081 mutex_unlock(&efx->mac_lock);
1082 return rc;
1085 static void ef4_start_port(struct ef4_nic *efx)
1087 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1088 BUG_ON(efx->port_enabled);
1090 mutex_lock(&efx->mac_lock);
1091 efx->port_enabled = true;
1093 /* Ensure MAC ingress/egress is enabled */
1094 ef4_mac_reconfigure(efx);
1096 mutex_unlock(&efx->mac_lock);
1099 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1100 * and the async self-test, wait for them to finish and prevent them
1101 * being scheduled again. This doesn't cover online resets, which
1102 * should only be cancelled when removing the device.
1104 static void ef4_stop_port(struct ef4_nic *efx)
1106 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1108 EF4_ASSERT_RESET_SERIALISED(efx);
1110 mutex_lock(&efx->mac_lock);
1111 efx->port_enabled = false;
1112 mutex_unlock(&efx->mac_lock);
1114 /* Serialise against ef4_set_multicast_list() */
1115 netif_addr_lock_bh(efx->net_dev);
1116 netif_addr_unlock_bh(efx->net_dev);
1118 cancel_delayed_work_sync(&efx->monitor_work);
1119 ef4_selftest_async_cancel(efx);
1120 cancel_work_sync(&efx->mac_work);
1123 static void ef4_fini_port(struct ef4_nic *efx)
1125 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1127 if (!efx->port_initialized)
1128 return;
1130 efx->phy_op->fini(efx);
1131 efx->port_initialized = false;
1133 efx->link_state.up = false;
1134 ef4_link_status_changed(efx);
1137 static void ef4_remove_port(struct ef4_nic *efx)
1139 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1141 efx->type->remove_port(efx);
1144 /**************************************************************************
1146 * NIC handling
1148 **************************************************************************/
1150 static LIST_HEAD(ef4_primary_list);
1151 static LIST_HEAD(ef4_unassociated_list);
1153 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1155 return left->type == right->type &&
1156 left->vpd_sn && right->vpd_sn &&
1157 !strcmp(left->vpd_sn, right->vpd_sn);
1160 static void ef4_associate(struct ef4_nic *efx)
1162 struct ef4_nic *other, *next;
1164 if (efx->primary == efx) {
1165 /* Adding primary function; look for secondaries */
1167 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1168 list_add_tail(&efx->node, &ef4_primary_list);
1170 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1171 node) {
1172 if (ef4_same_controller(efx, other)) {
1173 list_del(&other->node);
1174 netif_dbg(other, probe, other->net_dev,
1175 "moving to secondary list of %s %s\n",
1176 pci_name(efx->pci_dev),
1177 efx->net_dev->name);
1178 list_add_tail(&other->node,
1179 &efx->secondary_list);
1180 other->primary = efx;
1183 } else {
1184 /* Adding secondary function; look for primary */
1186 list_for_each_entry(other, &ef4_primary_list, node) {
1187 if (ef4_same_controller(efx, other)) {
1188 netif_dbg(efx, probe, efx->net_dev,
1189 "adding to secondary list of %s %s\n",
1190 pci_name(other->pci_dev),
1191 other->net_dev->name);
1192 list_add_tail(&efx->node,
1193 &other->secondary_list);
1194 efx->primary = other;
1195 return;
1199 netif_dbg(efx, probe, efx->net_dev,
1200 "adding to unassociated list\n");
1201 list_add_tail(&efx->node, &ef4_unassociated_list);
1205 static void ef4_dissociate(struct ef4_nic *efx)
1207 struct ef4_nic *other, *next;
1209 list_del(&efx->node);
1210 efx->primary = NULL;
1212 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1213 list_del(&other->node);
1214 netif_dbg(other, probe, other->net_dev,
1215 "moving to unassociated list\n");
1216 list_add_tail(&other->node, &ef4_unassociated_list);
1217 other->primary = NULL;
1221 /* This configures the PCI device to enable I/O and DMA. */
1222 static int ef4_init_io(struct ef4_nic *efx)
1224 struct pci_dev *pci_dev = efx->pci_dev;
1225 dma_addr_t dma_mask = efx->type->max_dma_mask;
1226 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1227 int rc, bar;
1229 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1231 bar = efx->type->mem_bar;
1233 rc = pci_enable_device(pci_dev);
1234 if (rc) {
1235 netif_err(efx, probe, efx->net_dev,
1236 "failed to enable PCI device\n");
1237 goto fail1;
1240 pci_set_master(pci_dev);
1242 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1243 * down to 32 bits, because some architectures will allow 40 bit
1244 * masks event though they reject 46 bit masks.
1246 while (dma_mask > 0x7fffffffUL) {
1247 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1248 if (rc == 0)
1249 break;
1250 dma_mask >>= 1;
1252 if (rc) {
1253 netif_err(efx, probe, efx->net_dev,
1254 "could not find a suitable DMA mask\n");
1255 goto fail2;
1257 netif_dbg(efx, probe, efx->net_dev,
1258 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1260 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1261 rc = pci_request_region(pci_dev, bar, "sfc");
1262 if (rc) {
1263 netif_err(efx, probe, efx->net_dev,
1264 "request for memory BAR failed\n");
1265 rc = -EIO;
1266 goto fail3;
1268 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1269 if (!efx->membase) {
1270 netif_err(efx, probe, efx->net_dev,
1271 "could not map memory BAR at %llx+%x\n",
1272 (unsigned long long)efx->membase_phys, mem_map_size);
1273 rc = -ENOMEM;
1274 goto fail4;
1276 netif_dbg(efx, probe, efx->net_dev,
1277 "memory BAR at %llx+%x (virtual %p)\n",
1278 (unsigned long long)efx->membase_phys, mem_map_size,
1279 efx->membase);
1281 return 0;
1283 fail4:
1284 pci_release_region(efx->pci_dev, bar);
1285 fail3:
1286 efx->membase_phys = 0;
1287 fail2:
1288 pci_disable_device(efx->pci_dev);
1289 fail1:
1290 return rc;
1293 static void ef4_fini_io(struct ef4_nic *efx)
1295 int bar;
1297 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1299 if (efx->membase) {
1300 iounmap(efx->membase);
1301 efx->membase = NULL;
1304 if (efx->membase_phys) {
1305 bar = efx->type->mem_bar;
1306 pci_release_region(efx->pci_dev, bar);
1307 efx->membase_phys = 0;
1310 /* Don't disable bus-mastering if VFs are assigned */
1311 if (!pci_vfs_assigned(efx->pci_dev))
1312 pci_disable_device(efx->pci_dev);
1315 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1317 size_t i;
1319 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1320 efx->rx_indir_table[i] =
1321 ethtool_rxfh_indir_default(i, efx->rss_spread);
1324 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1326 cpumask_var_t thread_mask;
1327 unsigned int count;
1328 int cpu;
1330 if (rss_cpus) {
1331 count = rss_cpus;
1332 } else {
1333 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1334 netif_warn(efx, probe, efx->net_dev,
1335 "RSS disabled due to allocation failure\n");
1336 return 1;
1339 count = 0;
1340 for_each_online_cpu(cpu) {
1341 if (!cpumask_test_cpu(cpu, thread_mask)) {
1342 ++count;
1343 cpumask_or(thread_mask, thread_mask,
1344 topology_sibling_cpumask(cpu));
1348 free_cpumask_var(thread_mask);
1351 if (count > EF4_MAX_RX_QUEUES) {
1352 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1353 "Reducing number of rx queues from %u to %u.\n",
1354 count, EF4_MAX_RX_QUEUES);
1355 count = EF4_MAX_RX_QUEUES;
1358 return count;
1361 /* Probe the number and type of interrupts we are able to obtain, and
1362 * the resulting numbers of channels and RX queues.
1364 static int ef4_probe_interrupts(struct ef4_nic *efx)
1366 unsigned int extra_channels = 0;
1367 unsigned int i, j;
1368 int rc;
1370 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1371 if (efx->extra_channel_type[i])
1372 ++extra_channels;
1374 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1375 struct msix_entry xentries[EF4_MAX_CHANNELS];
1376 unsigned int n_channels;
1378 n_channels = ef4_wanted_parallelism(efx);
1379 if (ef4_separate_tx_channels)
1380 n_channels *= 2;
1381 n_channels += extra_channels;
1382 n_channels = min(n_channels, efx->max_channels);
1384 for (i = 0; i < n_channels; i++)
1385 xentries[i].entry = i;
1386 rc = pci_enable_msix_range(efx->pci_dev,
1387 xentries, 1, n_channels);
1388 if (rc < 0) {
1389 /* Fall back to single channel MSI */
1390 efx->interrupt_mode = EF4_INT_MODE_MSI;
1391 netif_err(efx, drv, efx->net_dev,
1392 "could not enable MSI-X\n");
1393 } else if (rc < n_channels) {
1394 netif_err(efx, drv, efx->net_dev,
1395 "WARNING: Insufficient MSI-X vectors"
1396 " available (%d < %u).\n", rc, n_channels);
1397 netif_err(efx, drv, efx->net_dev,
1398 "WARNING: Performance may be reduced.\n");
1399 n_channels = rc;
1402 if (rc > 0) {
1403 efx->n_channels = n_channels;
1404 if (n_channels > extra_channels)
1405 n_channels -= extra_channels;
1406 if (ef4_separate_tx_channels) {
1407 efx->n_tx_channels = min(max(n_channels / 2,
1408 1U),
1409 efx->max_tx_channels);
1410 efx->n_rx_channels = max(n_channels -
1411 efx->n_tx_channels,
1412 1U);
1413 } else {
1414 efx->n_tx_channels = min(n_channels,
1415 efx->max_tx_channels);
1416 efx->n_rx_channels = n_channels;
1418 for (i = 0; i < efx->n_channels; i++)
1419 ef4_get_channel(efx, i)->irq =
1420 xentries[i].vector;
1424 /* Try single interrupt MSI */
1425 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1426 efx->n_channels = 1;
1427 efx->n_rx_channels = 1;
1428 efx->n_tx_channels = 1;
1429 rc = pci_enable_msi(efx->pci_dev);
1430 if (rc == 0) {
1431 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1432 } else {
1433 netif_err(efx, drv, efx->net_dev,
1434 "could not enable MSI\n");
1435 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1439 /* Assume legacy interrupts */
1440 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1441 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1442 efx->n_rx_channels = 1;
1443 efx->n_tx_channels = 1;
1444 efx->legacy_irq = efx->pci_dev->irq;
1447 /* Assign extra channels if possible */
1448 j = efx->n_channels;
1449 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1450 if (!efx->extra_channel_type[i])
1451 continue;
1452 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1453 efx->n_channels <= extra_channels) {
1454 efx->extra_channel_type[i]->handle_no_channel(efx);
1455 } else {
1456 --j;
1457 ef4_get_channel(efx, j)->type =
1458 efx->extra_channel_type[i];
1462 efx->rss_spread = efx->n_rx_channels;
1464 return 0;
1467 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1469 struct ef4_channel *channel, *end_channel;
1470 int rc;
1472 BUG_ON(efx->state == STATE_DISABLED);
1474 efx->irq_soft_enabled = true;
1475 smp_wmb();
1477 ef4_for_each_channel(channel, efx) {
1478 if (!channel->type->keep_eventq) {
1479 rc = ef4_init_eventq(channel);
1480 if (rc)
1481 goto fail;
1483 ef4_start_eventq(channel);
1486 return 0;
1487 fail:
1488 end_channel = channel;
1489 ef4_for_each_channel(channel, efx) {
1490 if (channel == end_channel)
1491 break;
1492 ef4_stop_eventq(channel);
1493 if (!channel->type->keep_eventq)
1494 ef4_fini_eventq(channel);
1497 return rc;
1500 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1502 struct ef4_channel *channel;
1504 if (efx->state == STATE_DISABLED)
1505 return;
1507 efx->irq_soft_enabled = false;
1508 smp_wmb();
1510 if (efx->legacy_irq)
1511 synchronize_irq(efx->legacy_irq);
1513 ef4_for_each_channel(channel, efx) {
1514 if (channel->irq)
1515 synchronize_irq(channel->irq);
1517 ef4_stop_eventq(channel);
1518 if (!channel->type->keep_eventq)
1519 ef4_fini_eventq(channel);
1523 static int ef4_enable_interrupts(struct ef4_nic *efx)
1525 struct ef4_channel *channel, *end_channel;
1526 int rc;
1528 BUG_ON(efx->state == STATE_DISABLED);
1530 if (efx->eeh_disabled_legacy_irq) {
1531 enable_irq(efx->legacy_irq);
1532 efx->eeh_disabled_legacy_irq = false;
1535 efx->type->irq_enable_master(efx);
1537 ef4_for_each_channel(channel, efx) {
1538 if (channel->type->keep_eventq) {
1539 rc = ef4_init_eventq(channel);
1540 if (rc)
1541 goto fail;
1545 rc = ef4_soft_enable_interrupts(efx);
1546 if (rc)
1547 goto fail;
1549 return 0;
1551 fail:
1552 end_channel = channel;
1553 ef4_for_each_channel(channel, efx) {
1554 if (channel == end_channel)
1555 break;
1556 if (channel->type->keep_eventq)
1557 ef4_fini_eventq(channel);
1560 efx->type->irq_disable_non_ev(efx);
1562 return rc;
1565 static void ef4_disable_interrupts(struct ef4_nic *efx)
1567 struct ef4_channel *channel;
1569 ef4_soft_disable_interrupts(efx);
1571 ef4_for_each_channel(channel, efx) {
1572 if (channel->type->keep_eventq)
1573 ef4_fini_eventq(channel);
1576 efx->type->irq_disable_non_ev(efx);
1579 static void ef4_remove_interrupts(struct ef4_nic *efx)
1581 struct ef4_channel *channel;
1583 /* Remove MSI/MSI-X interrupts */
1584 ef4_for_each_channel(channel, efx)
1585 channel->irq = 0;
1586 pci_disable_msi(efx->pci_dev);
1587 pci_disable_msix(efx->pci_dev);
1589 /* Remove legacy interrupt */
1590 efx->legacy_irq = 0;
1593 static void ef4_set_channels(struct ef4_nic *efx)
1595 struct ef4_channel *channel;
1596 struct ef4_tx_queue *tx_queue;
1598 efx->tx_channel_offset =
1599 ef4_separate_tx_channels ?
1600 efx->n_channels - efx->n_tx_channels : 0;
1602 /* We need to mark which channels really have RX and TX
1603 * queues, and adjust the TX queue numbers if we have separate
1604 * RX-only and TX-only channels.
1606 ef4_for_each_channel(channel, efx) {
1607 if (channel->channel < efx->n_rx_channels)
1608 channel->rx_queue.core_index = channel->channel;
1609 else
1610 channel->rx_queue.core_index = -1;
1612 ef4_for_each_channel_tx_queue(tx_queue, channel)
1613 tx_queue->queue -= (efx->tx_channel_offset *
1614 EF4_TXQ_TYPES);
1618 static int ef4_probe_nic(struct ef4_nic *efx)
1620 int rc;
1622 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1624 /* Carry out hardware-type specific initialisation */
1625 rc = efx->type->probe(efx);
1626 if (rc)
1627 return rc;
1629 do {
1630 if (!efx->max_channels || !efx->max_tx_channels) {
1631 netif_err(efx, drv, efx->net_dev,
1632 "Insufficient resources to allocate"
1633 " any channels\n");
1634 rc = -ENOSPC;
1635 goto fail1;
1638 /* Determine the number of channels and queues by trying
1639 * to hook in MSI-X interrupts.
1641 rc = ef4_probe_interrupts(efx);
1642 if (rc)
1643 goto fail1;
1645 ef4_set_channels(efx);
1647 /* dimension_resources can fail with EAGAIN */
1648 rc = efx->type->dimension_resources(efx);
1649 if (rc != 0 && rc != -EAGAIN)
1650 goto fail2;
1652 if (rc == -EAGAIN)
1653 /* try again with new max_channels */
1654 ef4_remove_interrupts(efx);
1656 } while (rc == -EAGAIN);
1658 if (efx->n_channels > 1)
1659 netdev_rss_key_fill(&efx->rx_hash_key,
1660 sizeof(efx->rx_hash_key));
1661 ef4_set_default_rx_indir_table(efx);
1663 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1664 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1666 /* Initialise the interrupt moderation settings */
1667 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1668 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1669 true);
1671 return 0;
1673 fail2:
1674 ef4_remove_interrupts(efx);
1675 fail1:
1676 efx->type->remove(efx);
1677 return rc;
1680 static void ef4_remove_nic(struct ef4_nic *efx)
1682 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1684 ef4_remove_interrupts(efx);
1685 efx->type->remove(efx);
1688 static int ef4_probe_filters(struct ef4_nic *efx)
1690 int rc;
1692 spin_lock_init(&efx->filter_lock);
1693 init_rwsem(&efx->filter_sem);
1694 mutex_lock(&efx->mac_lock);
1695 down_write(&efx->filter_sem);
1696 rc = efx->type->filter_table_probe(efx);
1697 if (rc)
1698 goto out_unlock;
1700 #ifdef CONFIG_RFS_ACCEL
1701 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1702 struct ef4_channel *channel;
1703 int i, success = 1;
1705 ef4_for_each_channel(channel, efx) {
1706 channel->rps_flow_id =
1707 kcalloc(efx->type->max_rx_ip_filters,
1708 sizeof(*channel->rps_flow_id),
1709 GFP_KERNEL);
1710 if (!channel->rps_flow_id)
1711 success = 0;
1712 else
1713 for (i = 0;
1714 i < efx->type->max_rx_ip_filters;
1715 ++i)
1716 channel->rps_flow_id[i] =
1717 RPS_FLOW_ID_INVALID;
1720 if (!success) {
1721 ef4_for_each_channel(channel, efx)
1722 kfree(channel->rps_flow_id);
1723 efx->type->filter_table_remove(efx);
1724 rc = -ENOMEM;
1725 goto out_unlock;
1728 efx->rps_expire_index = efx->rps_expire_channel = 0;
1730 #endif
1731 out_unlock:
1732 up_write(&efx->filter_sem);
1733 mutex_unlock(&efx->mac_lock);
1734 return rc;
1737 static void ef4_remove_filters(struct ef4_nic *efx)
1739 #ifdef CONFIG_RFS_ACCEL
1740 struct ef4_channel *channel;
1742 ef4_for_each_channel(channel, efx)
1743 kfree(channel->rps_flow_id);
1744 #endif
1745 down_write(&efx->filter_sem);
1746 efx->type->filter_table_remove(efx);
1747 up_write(&efx->filter_sem);
1750 static void ef4_restore_filters(struct ef4_nic *efx)
1752 down_read(&efx->filter_sem);
1753 efx->type->filter_table_restore(efx);
1754 up_read(&efx->filter_sem);
1757 /**************************************************************************
1759 * NIC startup/shutdown
1761 *************************************************************************/
1763 static int ef4_probe_all(struct ef4_nic *efx)
1765 int rc;
1767 rc = ef4_probe_nic(efx);
1768 if (rc) {
1769 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1770 goto fail1;
1773 rc = ef4_probe_port(efx);
1774 if (rc) {
1775 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1776 goto fail2;
1779 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1780 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1781 rc = -EINVAL;
1782 goto fail3;
1784 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1786 rc = ef4_probe_filters(efx);
1787 if (rc) {
1788 netif_err(efx, probe, efx->net_dev,
1789 "failed to create filter tables\n");
1790 goto fail4;
1793 rc = ef4_probe_channels(efx);
1794 if (rc)
1795 goto fail5;
1797 return 0;
1799 fail5:
1800 ef4_remove_filters(efx);
1801 fail4:
1802 fail3:
1803 ef4_remove_port(efx);
1804 fail2:
1805 ef4_remove_nic(efx);
1806 fail1:
1807 return rc;
1810 /* If the interface is supposed to be running but is not, start
1811 * the hardware and software data path, regular activity for the port
1812 * (MAC statistics, link polling, etc.) and schedule the port to be
1813 * reconfigured. Interrupts must already be enabled. This function
1814 * is safe to call multiple times, so long as the NIC is not disabled.
1815 * Requires the RTNL lock.
1817 static void ef4_start_all(struct ef4_nic *efx)
1819 EF4_ASSERT_RESET_SERIALISED(efx);
1820 BUG_ON(efx->state == STATE_DISABLED);
1822 /* Check that it is appropriate to restart the interface. All
1823 * of these flags are safe to read under just the rtnl lock */
1824 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1825 efx->reset_pending)
1826 return;
1828 ef4_start_port(efx);
1829 ef4_start_datapath(efx);
1831 /* Start the hardware monitor if there is one */
1832 if (efx->type->monitor != NULL)
1833 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1834 ef4_monitor_interval);
1836 efx->type->start_stats(efx);
1837 efx->type->pull_stats(efx);
1838 spin_lock_bh(&efx->stats_lock);
1839 efx->type->update_stats(efx, NULL, NULL);
1840 spin_unlock_bh(&efx->stats_lock);
1843 /* Quiesce the hardware and software data path, and regular activity
1844 * for the port without bringing the link down. Safe to call multiple
1845 * times with the NIC in almost any state, but interrupts should be
1846 * enabled. Requires the RTNL lock.
1848 static void ef4_stop_all(struct ef4_nic *efx)
1850 EF4_ASSERT_RESET_SERIALISED(efx);
1852 /* port_enabled can be read safely under the rtnl lock */
1853 if (!efx->port_enabled)
1854 return;
1856 /* update stats before we go down so we can accurately count
1857 * rx_nodesc_drops
1859 efx->type->pull_stats(efx);
1860 spin_lock_bh(&efx->stats_lock);
1861 efx->type->update_stats(efx, NULL, NULL);
1862 spin_unlock_bh(&efx->stats_lock);
1863 efx->type->stop_stats(efx);
1864 ef4_stop_port(efx);
1866 /* Stop the kernel transmit interface. This is only valid if
1867 * the device is stopped or detached; otherwise the watchdog
1868 * may fire immediately.
1870 WARN_ON(netif_running(efx->net_dev) &&
1871 netif_device_present(efx->net_dev));
1872 netif_tx_disable(efx->net_dev);
1874 ef4_stop_datapath(efx);
1877 static void ef4_remove_all(struct ef4_nic *efx)
1879 ef4_remove_channels(efx);
1880 ef4_remove_filters(efx);
1881 ef4_remove_port(efx);
1882 ef4_remove_nic(efx);
1885 /**************************************************************************
1887 * Interrupt moderation
1889 **************************************************************************/
1890 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1892 if (usecs == 0)
1893 return 0;
1894 if (usecs * 1000 < efx->timer_quantum_ns)
1895 return 1; /* never round down to 0 */
1896 return usecs * 1000 / efx->timer_quantum_ns;
1899 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1901 /* We must round up when converting ticks to microseconds
1902 * because we round down when converting the other way.
1904 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1907 /* Set interrupt moderation parameters */
1908 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1909 unsigned int rx_usecs, bool rx_adaptive,
1910 bool rx_may_override_tx)
1912 struct ef4_channel *channel;
1913 unsigned int timer_max_us;
1915 EF4_ASSERT_RESET_SERIALISED(efx);
1917 timer_max_us = efx->timer_max_ns / 1000;
1919 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1920 return -EINVAL;
1922 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1923 !rx_may_override_tx) {
1924 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1925 "RX and TX IRQ moderation must be equal\n");
1926 return -EINVAL;
1929 efx->irq_rx_adaptive = rx_adaptive;
1930 efx->irq_rx_moderation_us = rx_usecs;
1931 ef4_for_each_channel(channel, efx) {
1932 if (ef4_channel_has_rx_queue(channel))
1933 channel->irq_moderation_us = rx_usecs;
1934 else if (ef4_channel_has_tx_queues(channel))
1935 channel->irq_moderation_us = tx_usecs;
1938 return 0;
1941 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1942 unsigned int *rx_usecs, bool *rx_adaptive)
1944 *rx_adaptive = efx->irq_rx_adaptive;
1945 *rx_usecs = efx->irq_rx_moderation_us;
1947 /* If channels are shared between RX and TX, so is IRQ
1948 * moderation. Otherwise, IRQ moderation is the same for all
1949 * TX channels and is not adaptive.
1951 if (efx->tx_channel_offset == 0) {
1952 *tx_usecs = *rx_usecs;
1953 } else {
1954 struct ef4_channel *tx_channel;
1956 tx_channel = efx->channel[efx->tx_channel_offset];
1957 *tx_usecs = tx_channel->irq_moderation_us;
1961 /**************************************************************************
1963 * Hardware monitor
1965 **************************************************************************/
1967 /* Run periodically off the general workqueue */
1968 static void ef4_monitor(struct work_struct *data)
1970 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1971 monitor_work.work);
1973 netif_vdbg(efx, timer, efx->net_dev,
1974 "hardware monitor executing on CPU %d\n",
1975 raw_smp_processor_id());
1976 BUG_ON(efx->type->monitor == NULL);
1978 /* If the mac_lock is already held then it is likely a port
1979 * reconfiguration is already in place, which will likely do
1980 * most of the work of monitor() anyway. */
1981 if (mutex_trylock(&efx->mac_lock)) {
1982 if (efx->port_enabled)
1983 efx->type->monitor(efx);
1984 mutex_unlock(&efx->mac_lock);
1987 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1988 ef4_monitor_interval);
1991 /**************************************************************************
1993 * ioctls
1995 *************************************************************************/
1997 /* Net device ioctl
1998 * Context: process, rtnl_lock() held.
2000 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2002 struct ef4_nic *efx = netdev_priv(net_dev);
2003 struct mii_ioctl_data *data = if_mii(ifr);
2005 /* Convert phy_id from older PRTAD/DEVAD format */
2006 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2007 (data->phy_id & 0xfc00) == 0x0400)
2008 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2010 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2013 /**************************************************************************
2015 * NAPI interface
2017 **************************************************************************/
2019 static void ef4_init_napi_channel(struct ef4_channel *channel)
2021 struct ef4_nic *efx = channel->efx;
2023 channel->napi_dev = efx->net_dev;
2024 netif_napi_add(channel->napi_dev, &channel->napi_str,
2025 ef4_poll, napi_weight);
2028 static void ef4_init_napi(struct ef4_nic *efx)
2030 struct ef4_channel *channel;
2032 ef4_for_each_channel(channel, efx)
2033 ef4_init_napi_channel(channel);
2036 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2038 if (channel->napi_dev)
2039 netif_napi_del(&channel->napi_str);
2041 channel->napi_dev = NULL;
2044 static void ef4_fini_napi(struct ef4_nic *efx)
2046 struct ef4_channel *channel;
2048 ef4_for_each_channel(channel, efx)
2049 ef4_fini_napi_channel(channel);
2052 /**************************************************************************
2054 * Kernel net device interface
2056 *************************************************************************/
2058 /* Context: process, rtnl_lock() held. */
2059 int ef4_net_open(struct net_device *net_dev)
2061 struct ef4_nic *efx = netdev_priv(net_dev);
2062 int rc;
2064 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2065 raw_smp_processor_id());
2067 rc = ef4_check_disabled(efx);
2068 if (rc)
2069 return rc;
2070 if (efx->phy_mode & PHY_MODE_SPECIAL)
2071 return -EBUSY;
2073 /* Notify the kernel of the link state polled during driver load,
2074 * before the monitor starts running */
2075 ef4_link_status_changed(efx);
2077 ef4_start_all(efx);
2078 ef4_selftest_async_start(efx);
2079 return 0;
2082 /* Context: process, rtnl_lock() held.
2083 * Note that the kernel will ignore our return code; this method
2084 * should really be a void.
2086 int ef4_net_stop(struct net_device *net_dev)
2088 struct ef4_nic *efx = netdev_priv(net_dev);
2090 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2091 raw_smp_processor_id());
2093 /* Stop the device and flush all the channels */
2094 ef4_stop_all(efx);
2096 return 0;
2099 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2100 static void ef4_net_stats(struct net_device *net_dev,
2101 struct rtnl_link_stats64 *stats)
2103 struct ef4_nic *efx = netdev_priv(net_dev);
2105 spin_lock_bh(&efx->stats_lock);
2106 efx->type->update_stats(efx, NULL, stats);
2107 spin_unlock_bh(&efx->stats_lock);
2110 /* Context: netif_tx_lock held, BHs disabled. */
2111 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2113 struct ef4_nic *efx = netdev_priv(net_dev);
2115 netif_err(efx, tx_err, efx->net_dev,
2116 "TX stuck with port_enabled=%d: resetting channels\n",
2117 efx->port_enabled);
2119 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2123 /* Context: process, rtnl_lock() held. */
2124 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2126 struct ef4_nic *efx = netdev_priv(net_dev);
2127 int rc;
2129 rc = ef4_check_disabled(efx);
2130 if (rc)
2131 return rc;
2133 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2135 ef4_device_detach_sync(efx);
2136 ef4_stop_all(efx);
2138 mutex_lock(&efx->mac_lock);
2139 net_dev->mtu = new_mtu;
2140 ef4_mac_reconfigure(efx);
2141 mutex_unlock(&efx->mac_lock);
2143 ef4_start_all(efx);
2144 netif_device_attach(efx->net_dev);
2145 return 0;
2148 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2150 struct ef4_nic *efx = netdev_priv(net_dev);
2151 struct sockaddr *addr = data;
2152 u8 *new_addr = addr->sa_data;
2153 u8 old_addr[6];
2154 int rc;
2156 if (!is_valid_ether_addr(new_addr)) {
2157 netif_err(efx, drv, efx->net_dev,
2158 "invalid ethernet MAC address requested: %pM\n",
2159 new_addr);
2160 return -EADDRNOTAVAIL;
2163 /* save old address */
2164 ether_addr_copy(old_addr, net_dev->dev_addr);
2165 ether_addr_copy(net_dev->dev_addr, new_addr);
2166 if (efx->type->set_mac_address) {
2167 rc = efx->type->set_mac_address(efx);
2168 if (rc) {
2169 ether_addr_copy(net_dev->dev_addr, old_addr);
2170 return rc;
2174 /* Reconfigure the MAC */
2175 mutex_lock(&efx->mac_lock);
2176 ef4_mac_reconfigure(efx);
2177 mutex_unlock(&efx->mac_lock);
2179 return 0;
2182 /* Context: netif_addr_lock held, BHs disabled. */
2183 static void ef4_set_rx_mode(struct net_device *net_dev)
2185 struct ef4_nic *efx = netdev_priv(net_dev);
2187 if (efx->port_enabled)
2188 queue_work(efx->workqueue, &efx->mac_work);
2189 /* Otherwise ef4_start_port() will do this */
2192 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2194 struct ef4_nic *efx = netdev_priv(net_dev);
2195 int rc;
2197 /* If disabling RX n-tuple filtering, clear existing filters */
2198 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2199 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2200 if (rc)
2201 return rc;
2204 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2205 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2206 /* ef4_set_rx_mode() will schedule MAC work to update filters
2207 * when a new features are finally set in net_dev.
2209 ef4_set_rx_mode(net_dev);
2212 return 0;
2215 static const struct net_device_ops ef4_netdev_ops = {
2216 .ndo_open = ef4_net_open,
2217 .ndo_stop = ef4_net_stop,
2218 .ndo_get_stats64 = ef4_net_stats,
2219 .ndo_tx_timeout = ef4_watchdog,
2220 .ndo_start_xmit = ef4_hard_start_xmit,
2221 .ndo_validate_addr = eth_validate_addr,
2222 .ndo_do_ioctl = ef4_ioctl,
2223 .ndo_change_mtu = ef4_change_mtu,
2224 .ndo_set_mac_address = ef4_set_mac_address,
2225 .ndo_set_rx_mode = ef4_set_rx_mode,
2226 .ndo_set_features = ef4_set_features,
2227 .ndo_setup_tc = ef4_setup_tc,
2228 #ifdef CONFIG_RFS_ACCEL
2229 .ndo_rx_flow_steer = ef4_filter_rfs,
2230 #endif
2233 static void ef4_update_name(struct ef4_nic *efx)
2235 strcpy(efx->name, efx->net_dev->name);
2236 ef4_mtd_rename(efx);
2237 ef4_set_channel_names(efx);
2240 static int ef4_netdev_event(struct notifier_block *this,
2241 unsigned long event, void *ptr)
2243 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2245 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2246 event == NETDEV_CHANGENAME)
2247 ef4_update_name(netdev_priv(net_dev));
2249 return NOTIFY_DONE;
2252 static struct notifier_block ef4_netdev_notifier = {
2253 .notifier_call = ef4_netdev_event,
2256 static ssize_t
2257 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2259 struct ef4_nic *efx = dev_get_drvdata(dev);
2260 return sprintf(buf, "%d\n", efx->phy_type);
2262 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2264 static int ef4_register_netdev(struct ef4_nic *efx)
2266 struct net_device *net_dev = efx->net_dev;
2267 struct ef4_channel *channel;
2268 int rc;
2270 net_dev->watchdog_timeo = 5 * HZ;
2271 net_dev->irq = efx->pci_dev->irq;
2272 net_dev->netdev_ops = &ef4_netdev_ops;
2273 net_dev->ethtool_ops = &ef4_ethtool_ops;
2274 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2275 net_dev->min_mtu = EF4_MIN_MTU;
2276 net_dev->max_mtu = EF4_MAX_MTU;
2278 rtnl_lock();
2280 /* Enable resets to be scheduled and check whether any were
2281 * already requested. If so, the NIC is probably hosed so we
2282 * abort.
2284 efx->state = STATE_READY;
2285 smp_mb(); /* ensure we change state before checking reset_pending */
2286 if (efx->reset_pending) {
2287 netif_err(efx, probe, efx->net_dev,
2288 "aborting probe due to scheduled reset\n");
2289 rc = -EIO;
2290 goto fail_locked;
2293 rc = dev_alloc_name(net_dev, net_dev->name);
2294 if (rc < 0)
2295 goto fail_locked;
2296 ef4_update_name(efx);
2298 /* Always start with carrier off; PHY events will detect the link */
2299 netif_carrier_off(net_dev);
2301 rc = register_netdevice(net_dev);
2302 if (rc)
2303 goto fail_locked;
2305 ef4_for_each_channel(channel, efx) {
2306 struct ef4_tx_queue *tx_queue;
2307 ef4_for_each_channel_tx_queue(tx_queue, channel)
2308 ef4_init_tx_queue_core_txq(tx_queue);
2311 ef4_associate(efx);
2313 rtnl_unlock();
2315 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2316 if (rc) {
2317 netif_err(efx, drv, efx->net_dev,
2318 "failed to init net dev attributes\n");
2319 goto fail_registered;
2321 return 0;
2323 fail_registered:
2324 rtnl_lock();
2325 ef4_dissociate(efx);
2326 unregister_netdevice(net_dev);
2327 fail_locked:
2328 efx->state = STATE_UNINIT;
2329 rtnl_unlock();
2330 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2331 return rc;
2334 static void ef4_unregister_netdev(struct ef4_nic *efx)
2336 if (!efx->net_dev)
2337 return;
2339 BUG_ON(netdev_priv(efx->net_dev) != efx);
2341 if (ef4_dev_registered(efx)) {
2342 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2343 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2344 unregister_netdev(efx->net_dev);
2348 /**************************************************************************
2350 * Device reset and suspend
2352 **************************************************************************/
2354 /* Tears down the entire software state and most of the hardware state
2355 * before reset. */
2356 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2358 EF4_ASSERT_RESET_SERIALISED(efx);
2360 ef4_stop_all(efx);
2361 ef4_disable_interrupts(efx);
2363 mutex_lock(&efx->mac_lock);
2364 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2365 method != RESET_TYPE_DATAPATH)
2366 efx->phy_op->fini(efx);
2367 efx->type->fini(efx);
2370 /* This function will always ensure that the locks acquired in
2371 * ef4_reset_down() are released. A failure return code indicates
2372 * that we were unable to reinitialise the hardware, and the
2373 * driver should be disabled. If ok is false, then the rx and tx
2374 * engines are not restarted, pending a RESET_DISABLE. */
2375 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2377 int rc;
2379 EF4_ASSERT_RESET_SERIALISED(efx);
2381 /* Ensure that SRAM is initialised even if we're disabling the device */
2382 rc = efx->type->init(efx);
2383 if (rc) {
2384 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2385 goto fail;
2388 if (!ok)
2389 goto fail;
2391 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2392 method != RESET_TYPE_DATAPATH) {
2393 rc = efx->phy_op->init(efx);
2394 if (rc)
2395 goto fail;
2396 rc = efx->phy_op->reconfigure(efx);
2397 if (rc && rc != -EPERM)
2398 netif_err(efx, drv, efx->net_dev,
2399 "could not restore PHY settings\n");
2402 rc = ef4_enable_interrupts(efx);
2403 if (rc)
2404 goto fail;
2406 down_read(&efx->filter_sem);
2407 ef4_restore_filters(efx);
2408 up_read(&efx->filter_sem);
2410 mutex_unlock(&efx->mac_lock);
2412 ef4_start_all(efx);
2414 return 0;
2416 fail:
2417 efx->port_initialized = false;
2419 mutex_unlock(&efx->mac_lock);
2421 return rc;
2424 /* Reset the NIC using the specified method. Note that the reset may
2425 * fail, in which case the card will be left in an unusable state.
2427 * Caller must hold the rtnl_lock.
2429 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2431 int rc, rc2;
2432 bool disabled;
2434 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2435 RESET_TYPE(method));
2437 ef4_device_detach_sync(efx);
2438 ef4_reset_down(efx, method);
2440 rc = efx->type->reset(efx, method);
2441 if (rc) {
2442 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2443 goto out;
2446 /* Clear flags for the scopes we covered. We assume the NIC and
2447 * driver are now quiescent so that there is no race here.
2449 if (method < RESET_TYPE_MAX_METHOD)
2450 efx->reset_pending &= -(1 << (method + 1));
2451 else /* it doesn't fit into the well-ordered scope hierarchy */
2452 __clear_bit(method, &efx->reset_pending);
2454 /* Reinitialise bus-mastering, which may have been turned off before
2455 * the reset was scheduled. This is still appropriate, even in the
2456 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2457 * can respond to requests. */
2458 pci_set_master(efx->pci_dev);
2460 out:
2461 /* Leave device stopped if necessary */
2462 disabled = rc ||
2463 method == RESET_TYPE_DISABLE ||
2464 method == RESET_TYPE_RECOVER_OR_DISABLE;
2465 rc2 = ef4_reset_up(efx, method, !disabled);
2466 if (rc2) {
2467 disabled = true;
2468 if (!rc)
2469 rc = rc2;
2472 if (disabled) {
2473 dev_close(efx->net_dev);
2474 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2475 efx->state = STATE_DISABLED;
2476 } else {
2477 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2478 netif_device_attach(efx->net_dev);
2480 return rc;
2483 /* Try recovery mechanisms.
2484 * For now only EEH is supported.
2485 * Returns 0 if the recovery mechanisms are unsuccessful.
2486 * Returns a non-zero value otherwise.
2488 int ef4_try_recovery(struct ef4_nic *efx)
2490 #ifdef CONFIG_EEH
2491 /* A PCI error can occur and not be seen by EEH because nothing
2492 * happens on the PCI bus. In this case the driver may fail and
2493 * schedule a 'recover or reset', leading to this recovery handler.
2494 * Manually call the eeh failure check function.
2496 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2497 if (eeh_dev_check_failure(eehdev)) {
2498 /* The EEH mechanisms will handle the error and reset the
2499 * device if necessary.
2501 return 1;
2503 #endif
2504 return 0;
2507 /* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2510 static void ef4_reset_work(struct work_struct *data)
2512 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2513 unsigned long pending;
2514 enum reset_type method;
2516 pending = READ_ONCE(efx->reset_pending);
2517 method = fls(pending) - 1;
2519 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2520 method == RESET_TYPE_RECOVER_OR_ALL) &&
2521 ef4_try_recovery(efx))
2522 return;
2524 if (!pending)
2525 return;
2527 rtnl_lock();
2529 /* We checked the state in ef4_schedule_reset() but it may
2530 * have changed by now. Now that we have the RTNL lock,
2531 * it cannot change again.
2533 if (efx->state == STATE_READY)
2534 (void)ef4_reset(efx, method);
2536 rtnl_unlock();
2539 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2541 enum reset_type method;
2543 if (efx->state == STATE_RECOVERY) {
2544 netif_dbg(efx, drv, efx->net_dev,
2545 "recovering: skip scheduling %s reset\n",
2546 RESET_TYPE(type));
2547 return;
2550 switch (type) {
2551 case RESET_TYPE_INVISIBLE:
2552 case RESET_TYPE_ALL:
2553 case RESET_TYPE_RECOVER_OR_ALL:
2554 case RESET_TYPE_WORLD:
2555 case RESET_TYPE_DISABLE:
2556 case RESET_TYPE_RECOVER_OR_DISABLE:
2557 case RESET_TYPE_DATAPATH:
2558 method = type;
2559 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2560 RESET_TYPE(method));
2561 break;
2562 default:
2563 method = efx->type->map_reset_reason(type);
2564 netif_dbg(efx, drv, efx->net_dev,
2565 "scheduling %s reset for %s\n",
2566 RESET_TYPE(method), RESET_TYPE(type));
2567 break;
2570 set_bit(method, &efx->reset_pending);
2571 smp_mb(); /* ensure we change reset_pending before checking state */
2573 /* If we're not READY then just leave the flags set as the cue
2574 * to abort probing or reschedule the reset later.
2576 if (READ_ONCE(efx->state) != STATE_READY)
2577 return;
2579 queue_work(reset_workqueue, &efx->reset_work);
2582 /**************************************************************************
2584 * List of NICs we support
2586 **************************************************************************/
2588 /* PCI device ID table */
2589 static const struct pci_device_id ef4_pci_table[] = {
2590 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2591 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2592 .driver_data = (unsigned long) &falcon_a1_nic_type},
2593 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2594 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2595 .driver_data = (unsigned long) &falcon_b0_nic_type},
2596 {0} /* end of list */
2599 /**************************************************************************
2601 * Dummy PHY/MAC operations
2603 * Can be used for some unimplemented operations
2604 * Needed so all function pointers are valid and do not have to be tested
2605 * before use
2607 **************************************************************************/
2608 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2610 return 0;
2612 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2614 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2616 return false;
2619 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2620 .init = ef4_port_dummy_op_int,
2621 .reconfigure = ef4_port_dummy_op_int,
2622 .poll = ef4_port_dummy_op_poll,
2623 .fini = ef4_port_dummy_op_void,
2626 /**************************************************************************
2628 * Data housekeeping
2630 **************************************************************************/
2632 /* This zeroes out and then fills in the invariants in a struct
2633 * ef4_nic (including all sub-structures).
2635 static int ef4_init_struct(struct ef4_nic *efx,
2636 struct pci_dev *pci_dev, struct net_device *net_dev)
2638 int i;
2640 /* Initialise common structures */
2641 INIT_LIST_HEAD(&efx->node);
2642 INIT_LIST_HEAD(&efx->secondary_list);
2643 spin_lock_init(&efx->biu_lock);
2644 #ifdef CONFIG_SFC_FALCON_MTD
2645 INIT_LIST_HEAD(&efx->mtd_list);
2646 #endif
2647 INIT_WORK(&efx->reset_work, ef4_reset_work);
2648 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2649 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2650 efx->pci_dev = pci_dev;
2651 efx->msg_enable = debug;
2652 efx->state = STATE_UNINIT;
2653 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2655 efx->net_dev = net_dev;
2656 efx->rx_prefix_size = efx->type->rx_prefix_size;
2657 efx->rx_ip_align =
2658 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2659 efx->rx_packet_hash_offset =
2660 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2661 efx->rx_packet_ts_offset =
2662 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2663 spin_lock_init(&efx->stats_lock);
2664 mutex_init(&efx->mac_lock);
2665 efx->phy_op = &ef4_dummy_phy_operations;
2666 efx->mdio.dev = net_dev;
2667 INIT_WORK(&efx->mac_work, ef4_mac_work);
2668 init_waitqueue_head(&efx->flush_wq);
2670 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2671 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2672 if (!efx->channel[i])
2673 goto fail;
2674 efx->msi_context[i].efx = efx;
2675 efx->msi_context[i].index = i;
2678 /* Higher numbered interrupt modes are less capable! */
2679 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2680 interrupt_mode);
2682 /* Would be good to use the net_dev name, but we're too early */
2683 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2684 pci_name(pci_dev));
2685 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2686 if (!efx->workqueue)
2687 goto fail;
2689 return 0;
2691 fail:
2692 ef4_fini_struct(efx);
2693 return -ENOMEM;
2696 static void ef4_fini_struct(struct ef4_nic *efx)
2698 int i;
2700 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2701 kfree(efx->channel[i]);
2703 kfree(efx->vpd_sn);
2705 if (efx->workqueue) {
2706 destroy_workqueue(efx->workqueue);
2707 efx->workqueue = NULL;
2711 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2713 u64 n_rx_nodesc_trunc = 0;
2714 struct ef4_channel *channel;
2716 ef4_for_each_channel(channel, efx)
2717 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2718 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2719 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2722 /**************************************************************************
2724 * PCI interface
2726 **************************************************************************/
2728 /* Main body of final NIC shutdown code
2729 * This is called only at module unload (or hotplug removal).
2731 static void ef4_pci_remove_main(struct ef4_nic *efx)
2733 /* Flush reset_work. It can no longer be scheduled since we
2734 * are not READY.
2736 BUG_ON(efx->state == STATE_READY);
2737 cancel_work_sync(&efx->reset_work);
2739 ef4_disable_interrupts(efx);
2740 ef4_nic_fini_interrupt(efx);
2741 ef4_fini_port(efx);
2742 efx->type->fini(efx);
2743 ef4_fini_napi(efx);
2744 ef4_remove_all(efx);
2747 /* Final NIC shutdown
2748 * This is called only at module unload (or hotplug removal). A PF can call
2749 * this on its VFs to ensure they are unbound first.
2751 static void ef4_pci_remove(struct pci_dev *pci_dev)
2753 struct ef4_nic *efx;
2755 efx = pci_get_drvdata(pci_dev);
2756 if (!efx)
2757 return;
2759 /* Mark the NIC as fini, then stop the interface */
2760 rtnl_lock();
2761 ef4_dissociate(efx);
2762 dev_close(efx->net_dev);
2763 ef4_disable_interrupts(efx);
2764 efx->state = STATE_UNINIT;
2765 rtnl_unlock();
2767 ef4_unregister_netdev(efx);
2769 ef4_mtd_remove(efx);
2771 ef4_pci_remove_main(efx);
2773 ef4_fini_io(efx);
2774 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2776 ef4_fini_struct(efx);
2777 free_netdev(efx->net_dev);
2779 pci_disable_pcie_error_reporting(pci_dev);
2782 /* NIC VPD information
2783 * Called during probe to display the part number of the
2784 * installed NIC. VPD is potentially very large but this should
2785 * always appear within the first 512 bytes.
2787 #define SFC_VPD_LEN 512
2788 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2790 struct pci_dev *dev = efx->pci_dev;
2791 char vpd_data[SFC_VPD_LEN];
2792 ssize_t vpd_size;
2793 int ro_start, ro_size, i, j;
2795 /* Get the vpd data from the device */
2796 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2797 if (vpd_size <= 0) {
2798 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2799 return;
2802 /* Get the Read only section */
2803 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2804 if (ro_start < 0) {
2805 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2806 return;
2809 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2810 j = ro_size;
2811 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2812 if (i + j > vpd_size)
2813 j = vpd_size - i;
2815 /* Get the Part number */
2816 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2817 if (i < 0) {
2818 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2819 return;
2822 j = pci_vpd_info_field_size(&vpd_data[i]);
2823 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2824 if (i + j > vpd_size) {
2825 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2826 return;
2829 netif_info(efx, drv, efx->net_dev,
2830 "Part Number : %.*s\n", j, &vpd_data[i]);
2832 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2833 j = ro_size;
2834 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2835 if (i < 0) {
2836 netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2837 return;
2840 j = pci_vpd_info_field_size(&vpd_data[i]);
2841 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2842 if (i + j > vpd_size) {
2843 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2844 return;
2847 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2848 if (!efx->vpd_sn)
2849 return;
2851 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2855 /* Main body of NIC initialisation
2856 * This is called at module load (or hotplug insertion, theoretically).
2858 static int ef4_pci_probe_main(struct ef4_nic *efx)
2860 int rc;
2862 /* Do start-of-day initialisation */
2863 rc = ef4_probe_all(efx);
2864 if (rc)
2865 goto fail1;
2867 ef4_init_napi(efx);
2869 rc = efx->type->init(efx);
2870 if (rc) {
2871 netif_err(efx, probe, efx->net_dev,
2872 "failed to initialise NIC\n");
2873 goto fail3;
2876 rc = ef4_init_port(efx);
2877 if (rc) {
2878 netif_err(efx, probe, efx->net_dev,
2879 "failed to initialise port\n");
2880 goto fail4;
2883 rc = ef4_nic_init_interrupt(efx);
2884 if (rc)
2885 goto fail5;
2886 rc = ef4_enable_interrupts(efx);
2887 if (rc)
2888 goto fail6;
2890 return 0;
2892 fail6:
2893 ef4_nic_fini_interrupt(efx);
2894 fail5:
2895 ef4_fini_port(efx);
2896 fail4:
2897 efx->type->fini(efx);
2898 fail3:
2899 ef4_fini_napi(efx);
2900 ef4_remove_all(efx);
2901 fail1:
2902 return rc;
2905 /* NIC initialisation
2907 * This is called at module load (or hotplug insertion,
2908 * theoretically). It sets up PCI mappings, resets the NIC,
2909 * sets up and registers the network devices with the kernel and hooks
2910 * the interrupt service routine. It does not prepare the device for
2911 * transmission; this is left to the first time one of the network
2912 * interfaces is brought up (i.e. ef4_net_open).
2914 static int ef4_pci_probe(struct pci_dev *pci_dev,
2915 const struct pci_device_id *entry)
2917 struct net_device *net_dev;
2918 struct ef4_nic *efx;
2919 int rc;
2921 /* Allocate and initialise a struct net_device and struct ef4_nic */
2922 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2923 EF4_MAX_RX_QUEUES);
2924 if (!net_dev)
2925 return -ENOMEM;
2926 efx = netdev_priv(net_dev);
2927 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2928 efx->fixed_features |= NETIF_F_HIGHDMA;
2930 pci_set_drvdata(pci_dev, efx);
2931 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2932 rc = ef4_init_struct(efx, pci_dev, net_dev);
2933 if (rc)
2934 goto fail1;
2936 netif_info(efx, probe, efx->net_dev,
2937 "Solarflare NIC detected\n");
2939 ef4_probe_vpd_strings(efx);
2941 /* Set up basic I/O (BAR mappings etc) */
2942 rc = ef4_init_io(efx);
2943 if (rc)
2944 goto fail2;
2946 rc = ef4_pci_probe_main(efx);
2947 if (rc)
2948 goto fail3;
2950 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2951 NETIF_F_RXCSUM);
2952 /* Mask for features that also apply to VLAN devices */
2953 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2954 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2956 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2958 /* Disable VLAN filtering by default. It may be enforced if
2959 * the feature is fixed (i.e. VLAN filters are required to
2960 * receive VLAN tagged packets due to vPort restrictions).
2962 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2963 net_dev->features |= efx->fixed_features;
2965 rc = ef4_register_netdev(efx);
2966 if (rc)
2967 goto fail4;
2969 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2971 /* Try to create MTDs, but allow this to fail */
2972 rtnl_lock();
2973 rc = ef4_mtd_probe(efx);
2974 rtnl_unlock();
2975 if (rc && rc != -EPERM)
2976 netif_warn(efx, probe, efx->net_dev,
2977 "failed to create MTDs (%d)\n", rc);
2979 rc = pci_enable_pcie_error_reporting(pci_dev);
2980 if (rc && rc != -EINVAL)
2981 netif_notice(efx, probe, efx->net_dev,
2982 "PCIE error reporting unavailable (%d).\n",
2983 rc);
2985 return 0;
2987 fail4:
2988 ef4_pci_remove_main(efx);
2989 fail3:
2990 ef4_fini_io(efx);
2991 fail2:
2992 ef4_fini_struct(efx);
2993 fail1:
2994 WARN_ON(rc > 0);
2995 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2996 free_netdev(net_dev);
2997 return rc;
3000 static int ef4_pm_freeze(struct device *dev)
3002 struct ef4_nic *efx = dev_get_drvdata(dev);
3004 rtnl_lock();
3006 if (efx->state != STATE_DISABLED) {
3007 efx->state = STATE_UNINIT;
3009 ef4_device_detach_sync(efx);
3011 ef4_stop_all(efx);
3012 ef4_disable_interrupts(efx);
3015 rtnl_unlock();
3017 return 0;
3020 static int ef4_pm_thaw(struct device *dev)
3022 int rc;
3023 struct ef4_nic *efx = dev_get_drvdata(dev);
3025 rtnl_lock();
3027 if (efx->state != STATE_DISABLED) {
3028 rc = ef4_enable_interrupts(efx);
3029 if (rc)
3030 goto fail;
3032 mutex_lock(&efx->mac_lock);
3033 efx->phy_op->reconfigure(efx);
3034 mutex_unlock(&efx->mac_lock);
3036 ef4_start_all(efx);
3038 netif_device_attach(efx->net_dev);
3040 efx->state = STATE_READY;
3042 efx->type->resume_wol(efx);
3045 rtnl_unlock();
3047 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3048 queue_work(reset_workqueue, &efx->reset_work);
3050 return 0;
3052 fail:
3053 rtnl_unlock();
3055 return rc;
3058 static int ef4_pm_poweroff(struct device *dev)
3060 struct pci_dev *pci_dev = to_pci_dev(dev);
3061 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3063 efx->type->fini(efx);
3065 efx->reset_pending = 0;
3067 pci_save_state(pci_dev);
3068 return pci_set_power_state(pci_dev, PCI_D3hot);
3071 /* Used for both resume and restore */
3072 static int ef4_pm_resume(struct device *dev)
3074 struct pci_dev *pci_dev = to_pci_dev(dev);
3075 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3076 int rc;
3078 rc = pci_set_power_state(pci_dev, PCI_D0);
3079 if (rc)
3080 return rc;
3081 pci_restore_state(pci_dev);
3082 rc = pci_enable_device(pci_dev);
3083 if (rc)
3084 return rc;
3085 pci_set_master(efx->pci_dev);
3086 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3087 if (rc)
3088 return rc;
3089 rc = efx->type->init(efx);
3090 if (rc)
3091 return rc;
3092 rc = ef4_pm_thaw(dev);
3093 return rc;
3096 static int ef4_pm_suspend(struct device *dev)
3098 int rc;
3100 ef4_pm_freeze(dev);
3101 rc = ef4_pm_poweroff(dev);
3102 if (rc)
3103 ef4_pm_resume(dev);
3104 return rc;
3107 static const struct dev_pm_ops ef4_pm_ops = {
3108 .suspend = ef4_pm_suspend,
3109 .resume = ef4_pm_resume,
3110 .freeze = ef4_pm_freeze,
3111 .thaw = ef4_pm_thaw,
3112 .poweroff = ef4_pm_poweroff,
3113 .restore = ef4_pm_resume,
3116 /* A PCI error affecting this device was detected.
3117 * At this point MMIO and DMA may be disabled.
3118 * Stop the software path and request a slot reset.
3120 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3121 pci_channel_state_t state)
3123 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3124 struct ef4_nic *efx = pci_get_drvdata(pdev);
3126 if (state == pci_channel_io_perm_failure)
3127 return PCI_ERS_RESULT_DISCONNECT;
3129 rtnl_lock();
3131 if (efx->state != STATE_DISABLED) {
3132 efx->state = STATE_RECOVERY;
3133 efx->reset_pending = 0;
3135 ef4_device_detach_sync(efx);
3137 ef4_stop_all(efx);
3138 ef4_disable_interrupts(efx);
3140 status = PCI_ERS_RESULT_NEED_RESET;
3141 } else {
3142 /* If the interface is disabled we don't want to do anything
3143 * with it.
3145 status = PCI_ERS_RESULT_RECOVERED;
3148 rtnl_unlock();
3150 pci_disable_device(pdev);
3152 return status;
3155 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3156 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3158 struct ef4_nic *efx = pci_get_drvdata(pdev);
3159 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3161 if (pci_enable_device(pdev)) {
3162 netif_err(efx, hw, efx->net_dev,
3163 "Cannot re-enable PCI device after reset.\n");
3164 status = PCI_ERS_RESULT_DISCONNECT;
3167 return status;
3170 /* Perform the actual reset and resume I/O operations. */
3171 static void ef4_io_resume(struct pci_dev *pdev)
3173 struct ef4_nic *efx = pci_get_drvdata(pdev);
3174 int rc;
3176 rtnl_lock();
3178 if (efx->state == STATE_DISABLED)
3179 goto out;
3181 rc = ef4_reset(efx, RESET_TYPE_ALL);
3182 if (rc) {
3183 netif_err(efx, hw, efx->net_dev,
3184 "ef4_reset failed after PCI error (%d)\n", rc);
3185 } else {
3186 efx->state = STATE_READY;
3187 netif_dbg(efx, hw, efx->net_dev,
3188 "Done resetting and resuming IO after PCI error.\n");
3191 out:
3192 rtnl_unlock();
3195 /* For simplicity and reliability, we always require a slot reset and try to
3196 * reset the hardware when a pci error affecting the device is detected.
3197 * We leave both the link_reset and mmio_enabled callback unimplemented:
3198 * with our request for slot reset the mmio_enabled callback will never be
3199 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3201 static const struct pci_error_handlers ef4_err_handlers = {
3202 .error_detected = ef4_io_error_detected,
3203 .slot_reset = ef4_io_slot_reset,
3204 .resume = ef4_io_resume,
3207 static struct pci_driver ef4_pci_driver = {
3208 .name = KBUILD_MODNAME,
3209 .id_table = ef4_pci_table,
3210 .probe = ef4_pci_probe,
3211 .remove = ef4_pci_remove,
3212 .driver.pm = &ef4_pm_ops,
3213 .err_handler = &ef4_err_handlers,
3216 /**************************************************************************
3218 * Kernel module interface
3220 *************************************************************************/
3222 module_param(interrupt_mode, uint, 0444);
3223 MODULE_PARM_DESC(interrupt_mode,
3224 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3226 static int __init ef4_init_module(void)
3228 int rc;
3230 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3232 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3233 if (rc)
3234 goto err_notifier;
3236 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3237 if (!reset_workqueue) {
3238 rc = -ENOMEM;
3239 goto err_reset;
3242 rc = pci_register_driver(&ef4_pci_driver);
3243 if (rc < 0)
3244 goto err_pci;
3246 return 0;
3248 err_pci:
3249 destroy_workqueue(reset_workqueue);
3250 err_reset:
3251 unregister_netdevice_notifier(&ef4_netdev_notifier);
3252 err_notifier:
3253 return rc;
3256 static void __exit ef4_exit_module(void)
3258 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3260 pci_unregister_driver(&ef4_pci_driver);
3261 destroy_workqueue(reset_workqueue);
3262 unregister_netdevice_notifier(&ef4_netdev_notifier);
3266 module_init(ef4_init_module);
3267 module_exit(ef4_exit_module);
3269 MODULE_AUTHOR("Solarflare Communications and "
3270 "Michael Brown <mbrown@fensystems.co.uk>");
3271 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3272 MODULE_LICENSE("GPL");
3273 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3274 MODULE_VERSION(EF4_DRIVER_VERSION);