WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / falcon / falcon.c
blob3324a6219a0902851810987de71756a03ea5dee2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/pci.h>
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/i2c.h>
14 #include <linux/mii.h>
15 #include <linux/slab.h>
16 #include <linux/sched/signal.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "phy.h"
25 #include "workarounds.h"
26 #include "selftest.h"
27 #include "mdio_10g.h"
29 /* Hardware control for SFC4000 (aka Falcon). */
31 /**************************************************************************
33 * NIC stats
35 **************************************************************************
38 #define FALCON_MAC_STATS_SIZE 0x100
40 #define XgRxOctets_offset 0x0
41 #define XgRxOctets_WIDTH 48
42 #define XgRxOctetsOK_offset 0x8
43 #define XgRxOctetsOK_WIDTH 48
44 #define XgRxPkts_offset 0x10
45 #define XgRxPkts_WIDTH 32
46 #define XgRxPktsOK_offset 0x14
47 #define XgRxPktsOK_WIDTH 32
48 #define XgRxBroadcastPkts_offset 0x18
49 #define XgRxBroadcastPkts_WIDTH 32
50 #define XgRxMulticastPkts_offset 0x1C
51 #define XgRxMulticastPkts_WIDTH 32
52 #define XgRxUnicastPkts_offset 0x20
53 #define XgRxUnicastPkts_WIDTH 32
54 #define XgRxUndersizePkts_offset 0x24
55 #define XgRxUndersizePkts_WIDTH 32
56 #define XgRxOversizePkts_offset 0x28
57 #define XgRxOversizePkts_WIDTH 32
58 #define XgRxJabberPkts_offset 0x2C
59 #define XgRxJabberPkts_WIDTH 32
60 #define XgRxUndersizeFCSerrorPkts_offset 0x30
61 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
62 #define XgRxDropEvents_offset 0x34
63 #define XgRxDropEvents_WIDTH 32
64 #define XgRxFCSerrorPkts_offset 0x38
65 #define XgRxFCSerrorPkts_WIDTH 32
66 #define XgRxAlignError_offset 0x3C
67 #define XgRxAlignError_WIDTH 32
68 #define XgRxSymbolError_offset 0x40
69 #define XgRxSymbolError_WIDTH 32
70 #define XgRxInternalMACError_offset 0x44
71 #define XgRxInternalMACError_WIDTH 32
72 #define XgRxControlPkts_offset 0x48
73 #define XgRxControlPkts_WIDTH 32
74 #define XgRxPausePkts_offset 0x4C
75 #define XgRxPausePkts_WIDTH 32
76 #define XgRxPkts64Octets_offset 0x50
77 #define XgRxPkts64Octets_WIDTH 32
78 #define XgRxPkts65to127Octets_offset 0x54
79 #define XgRxPkts65to127Octets_WIDTH 32
80 #define XgRxPkts128to255Octets_offset 0x58
81 #define XgRxPkts128to255Octets_WIDTH 32
82 #define XgRxPkts256to511Octets_offset 0x5C
83 #define XgRxPkts256to511Octets_WIDTH 32
84 #define XgRxPkts512to1023Octets_offset 0x60
85 #define XgRxPkts512to1023Octets_WIDTH 32
86 #define XgRxPkts1024to15xxOctets_offset 0x64
87 #define XgRxPkts1024to15xxOctets_WIDTH 32
88 #define XgRxPkts15xxtoMaxOctets_offset 0x68
89 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
90 #define XgRxLengthError_offset 0x6C
91 #define XgRxLengthError_WIDTH 32
92 #define XgTxPkts_offset 0x80
93 #define XgTxPkts_WIDTH 32
94 #define XgTxOctets_offset 0x88
95 #define XgTxOctets_WIDTH 48
96 #define XgTxMulticastPkts_offset 0x90
97 #define XgTxMulticastPkts_WIDTH 32
98 #define XgTxBroadcastPkts_offset 0x94
99 #define XgTxBroadcastPkts_WIDTH 32
100 #define XgTxUnicastPkts_offset 0x98
101 #define XgTxUnicastPkts_WIDTH 32
102 #define XgTxControlPkts_offset 0x9C
103 #define XgTxControlPkts_WIDTH 32
104 #define XgTxPausePkts_offset 0xA0
105 #define XgTxPausePkts_WIDTH 32
106 #define XgTxPkts64Octets_offset 0xA4
107 #define XgTxPkts64Octets_WIDTH 32
108 #define XgTxPkts65to127Octets_offset 0xA8
109 #define XgTxPkts65to127Octets_WIDTH 32
110 #define XgTxPkts128to255Octets_offset 0xAC
111 #define XgTxPkts128to255Octets_WIDTH 32
112 #define XgTxPkts256to511Octets_offset 0xB0
113 #define XgTxPkts256to511Octets_WIDTH 32
114 #define XgTxPkts512to1023Octets_offset 0xB4
115 #define XgTxPkts512to1023Octets_WIDTH 32
116 #define XgTxPkts1024to15xxOctets_offset 0xB8
117 #define XgTxPkts1024to15xxOctets_WIDTH 32
118 #define XgTxPkts1519toMaxOctets_offset 0xBC
119 #define XgTxPkts1519toMaxOctets_WIDTH 32
120 #define XgTxUndersizePkts_offset 0xC0
121 #define XgTxUndersizePkts_WIDTH 32
122 #define XgTxOversizePkts_offset 0xC4
123 #define XgTxOversizePkts_WIDTH 32
124 #define XgTxNonTcpUdpPkt_offset 0xC8
125 #define XgTxNonTcpUdpPkt_WIDTH 16
126 #define XgTxMacSrcErrPkt_offset 0xCC
127 #define XgTxMacSrcErrPkt_WIDTH 16
128 #define XgTxIpSrcErrPkt_offset 0xD0
129 #define XgTxIpSrcErrPkt_WIDTH 16
130 #define XgDmaDone_offset 0xD4
131 #define XgDmaDone_WIDTH 32
133 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
134 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136 #define FALCON_DMA_STAT(ext_name, hw_name) \
137 [FALCON_STAT_ ## ext_name] = \
138 { #ext_name, \
139 /* 48-bit stats are zero-padded to 64 on DMA */ \
140 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
141 hw_name ## _ ## offset }
142 #define FALCON_OTHER_STAT(ext_name) \
143 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
144 #define GENERIC_SW_STAT(ext_name) \
145 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
148 FALCON_DMA_STAT(tx_bytes, XgTxOctets),
149 FALCON_DMA_STAT(tx_packets, XgTxPkts),
150 FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
151 FALCON_DMA_STAT(tx_control, XgTxControlPkts),
152 FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
153 FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
154 FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
155 FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
156 FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
157 FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
158 FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
159 FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
160 FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
161 FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
162 FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
163 FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
164 FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
165 FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
166 FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
167 FALCON_DMA_STAT(rx_bytes, XgRxOctets),
168 FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
169 FALCON_OTHER_STAT(rx_bad_bytes),
170 FALCON_DMA_STAT(rx_packets, XgRxPkts),
171 FALCON_DMA_STAT(rx_good, XgRxPktsOK),
172 FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
173 FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
174 FALCON_DMA_STAT(rx_control, XgRxControlPkts),
175 FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
176 FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
177 FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
178 FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
179 FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
180 FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
181 FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
182 FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
183 FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
184 FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
185 FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
186 FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
187 FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
188 FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
189 FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
190 FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
191 FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
192 FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
193 FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
194 FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
195 GENERIC_SW_STAT(rx_nodesc_trunc),
196 GENERIC_SW_STAT(rx_noskb_drops),
198 static const unsigned long falcon_stat_mask[] = {
199 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
202 /**************************************************************************
204 * Basic SPI command set and bit definitions
206 *************************************************************************/
208 #define SPI_WRSR 0x01 /* Write status register */
209 #define SPI_WRITE 0x02 /* Write data to memory array */
210 #define SPI_READ 0x03 /* Read data from memory array */
211 #define SPI_WRDI 0x04 /* Reset write enable latch */
212 #define SPI_RDSR 0x05 /* Read status register */
213 #define SPI_WREN 0x06 /* Set write enable latch */
214 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
216 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
217 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
218 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
219 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
220 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
221 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
223 /**************************************************************************
225 * Non-volatile memory layout
227 **************************************************************************
230 /* SFC4000 flash is partitioned into:
231 * 0-0x400 chip and board config (see struct falcon_nvconfig)
232 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
233 * 0x8000-end boot code (mapped to PCI expansion ROM)
234 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
235 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
236 * 0-0x400 chip and board config
237 * configurable VPD
238 * 0x800-0x1800 boot config
239 * Aside from the chip and board config, all of these are optional and may
240 * be absent or truncated depending on the devices used.
242 #define FALCON_NVCONFIG_END 0x400U
243 #define FALCON_FLASH_BOOTCODE_START 0x8000U
244 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
245 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
248 struct falcon_nvconfig_board_v2 {
249 __le16 nports;
250 u8 port0_phy_addr;
251 u8 port0_phy_type;
252 u8 port1_phy_addr;
253 u8 port1_phy_type;
254 __le16 asic_sub_revision;
255 __le16 board_revision;
256 } __packed;
258 /* Board configuration v3 extra information */
259 struct falcon_nvconfig_board_v3 {
260 __le32 spi_device_type[2];
261 } __packed;
263 /* Bit numbers for spi_device_type */
264 #define SPI_DEV_TYPE_SIZE_LBN 0
265 #define SPI_DEV_TYPE_SIZE_WIDTH 5
266 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
267 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
268 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
269 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
270 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
271 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
272 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
273 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
274 #define SPI_DEV_TYPE_FIELD(type, field) \
275 (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
277 #define FALCON_NVCONFIG_OFFSET 0x300
279 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
280 struct falcon_nvconfig {
281 ef4_oword_t ee_vpd_cfg_reg; /* 0x300 */
282 u8 mac_address[2][8]; /* 0x310 */
283 ef4_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
284 ef4_oword_t pcie_sd_ctl45_reg; /* 0x330 */
285 ef4_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
286 ef4_oword_t hw_init_reg; /* 0x350 */
287 ef4_oword_t nic_stat_reg; /* 0x360 */
288 ef4_oword_t glb_ctl_reg; /* 0x370 */
289 ef4_oword_t srm_cfg_reg; /* 0x380 */
290 ef4_oword_t spare_reg; /* 0x390 */
291 __le16 board_magic_num; /* 0x3A0 */
292 __le16 board_struct_ver;
293 __le16 board_checksum;
294 struct falcon_nvconfig_board_v2 board_v2;
295 ef4_oword_t ee_base_page_reg; /* 0x3B0 */
296 struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
297 } __packed;
299 /*************************************************************************/
301 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
302 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
304 static const unsigned int
305 /* "Large" EEPROM device: Atmel AT25640 or similar
306 * 8 KB, 16-bit address, 32 B write block */
307 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
308 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
309 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
310 /* Default flash device: Atmel AT25F1024
311 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
312 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
313 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
314 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
315 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
316 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318 /**************************************************************************
320 * I2C bus - this is a bit-bashing interface using GPIO pins
321 * Note that it uses the output enables to tristate the outputs
322 * SDA is the data pin and SCL is the clock
324 **************************************************************************
326 static void falcon_setsda(void *data, int state)
328 struct ef4_nic *efx = (struct ef4_nic *)data;
329 ef4_oword_t reg;
331 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
332 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
333 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
336 static void falcon_setscl(void *data, int state)
338 struct ef4_nic *efx = (struct ef4_nic *)data;
339 ef4_oword_t reg;
341 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
342 EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
343 ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
346 static int falcon_getsda(void *data)
348 struct ef4_nic *efx = (struct ef4_nic *)data;
349 ef4_oword_t reg;
351 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
352 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
355 static int falcon_getscl(void *data)
357 struct ef4_nic *efx = (struct ef4_nic *)data;
358 ef4_oword_t reg;
360 ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
361 return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
364 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
365 .setsda = falcon_setsda,
366 .setscl = falcon_setscl,
367 .getsda = falcon_getsda,
368 .getscl = falcon_getscl,
369 .udelay = 5,
370 /* Wait up to 50 ms for slave to let us pull SCL high */
371 .timeout = DIV_ROUND_UP(HZ, 20),
374 static void falcon_push_irq_moderation(struct ef4_channel *channel)
376 ef4_dword_t timer_cmd;
377 struct ef4_nic *efx = channel->efx;
379 /* Set timer register */
380 if (channel->irq_moderation_us) {
381 unsigned int ticks;
383 ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
384 EF4_POPULATE_DWORD_2(timer_cmd,
385 FRF_AB_TC_TIMER_MODE,
386 FFE_BB_TIMER_MODE_INT_HLDOFF,
387 FRF_AB_TC_TIMER_VAL,
388 ticks - 1);
389 } else {
390 EF4_POPULATE_DWORD_2(timer_cmd,
391 FRF_AB_TC_TIMER_MODE,
392 FFE_BB_TIMER_MODE_DIS,
393 FRF_AB_TC_TIMER_VAL, 0);
395 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
396 ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
397 channel->channel);
400 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
402 static void falcon_prepare_flush(struct ef4_nic *efx)
404 falcon_deconfigure_mac_wrapper(efx);
406 /* Wait for the tx and rx fifo's to get to the next packet boundary
407 * (~1ms without back-pressure), then to drain the remainder of the
408 * fifo's at data path speeds (negligible), with a healthy margin. */
409 msleep(10);
412 /* Acknowledge a legacy interrupt from Falcon
414 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
416 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
417 * BIU. Interrupt acknowledge is read sensitive so must write instead
418 * (then read to ensure the BIU collector is flushed)
420 * NB most hardware supports MSI interrupts
422 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
424 ef4_dword_t reg;
426 EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
427 ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
428 ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
431 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
433 struct ef4_nic *efx = dev_id;
434 ef4_oword_t *int_ker = efx->irq_status.addr;
435 int syserr;
436 int queues;
438 /* Check to see if this is our interrupt. If it isn't, we
439 * exit without having touched the hardware.
441 if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
442 netif_vdbg(efx, intr, efx->net_dev,
443 "IRQ %d on CPU %d not for me\n", irq,
444 raw_smp_processor_id());
445 return IRQ_NONE;
447 efx->last_irq_cpu = raw_smp_processor_id();
448 netif_vdbg(efx, intr, efx->net_dev,
449 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
450 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
452 if (!likely(READ_ONCE(efx->irq_soft_enabled)))
453 return IRQ_HANDLED;
455 /* Check to see if we have a serious error condition */
456 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
457 if (unlikely(syserr))
458 return ef4_farch_fatal_interrupt(efx);
460 /* Determine interrupting queues, clear interrupt status
461 * register and acknowledge the device interrupt.
463 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
464 queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
465 EF4_ZERO_OWORD(*int_ker);
466 wmb(); /* Ensure the vector is cleared before interrupt ack */
467 falcon_irq_ack_a1(efx);
469 if (queues & 1)
470 ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
471 if (queues & 2)
472 ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
473 return IRQ_HANDLED;
476 /**************************************************************************
478 * RSS
480 **************************************************************************
482 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
483 const u32 *rx_indir_table)
485 (void) efx;
486 (void) user;
487 (void) rx_indir_table;
488 return -ENOSYS;
491 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
492 const u32 *rx_indir_table)
494 ef4_oword_t temp;
496 (void) user;
497 /* Set hash key for IPv4 */
498 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
499 ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
501 memcpy(efx->rx_indir_table, rx_indir_table,
502 sizeof(efx->rx_indir_table));
503 ef4_farch_rx_push_indir_table(efx);
504 return 0;
507 /**************************************************************************
509 * EEPROM/flash
511 **************************************************************************
514 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
516 static int falcon_spi_poll(struct ef4_nic *efx)
518 ef4_oword_t reg;
519 ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
520 return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
523 /* Wait for SPI command completion */
524 static int falcon_spi_wait(struct ef4_nic *efx)
526 /* Most commands will finish quickly, so we start polling at
527 * very short intervals. Sometimes the command may have to
528 * wait for VPD or expansion ROM access outside of our
529 * control, so we allow up to 100 ms. */
530 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
531 int i;
533 for (i = 0; i < 10; i++) {
534 if (!falcon_spi_poll(efx))
535 return 0;
536 udelay(10);
539 for (;;) {
540 if (!falcon_spi_poll(efx))
541 return 0;
542 if (time_after_eq(jiffies, timeout)) {
543 netif_err(efx, hw, efx->net_dev,
544 "timed out waiting for SPI\n");
545 return -ETIMEDOUT;
547 schedule_timeout_uninterruptible(1);
551 static int
552 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
553 unsigned int command, int address,
554 const void *in, void *out, size_t len)
556 bool addressed = (address >= 0);
557 bool reading = (out != NULL);
558 ef4_oword_t reg;
559 int rc;
561 /* Input validation */
562 if (len > FALCON_SPI_MAX_LEN)
563 return -EINVAL;
565 /* Check that previous command is not still running */
566 rc = falcon_spi_poll(efx);
567 if (rc)
568 return rc;
570 /* Program address register, if we have an address */
571 if (addressed) {
572 EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
573 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
576 /* Program data register, if we have data */
577 if (in != NULL) {
578 memcpy(&reg, in, len);
579 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
582 /* Issue read/write command */
583 EF4_POPULATE_OWORD_7(reg,
584 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
585 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
586 FRF_AB_EE_SPI_HCMD_DABCNT, len,
587 FRF_AB_EE_SPI_HCMD_READ, reading,
588 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
589 FRF_AB_EE_SPI_HCMD_ADBCNT,
590 (addressed ? spi->addr_len : 0),
591 FRF_AB_EE_SPI_HCMD_ENC, command);
592 ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
594 /* Wait for read/write to complete */
595 rc = falcon_spi_wait(efx);
596 if (rc)
597 return rc;
599 /* Read data */
600 if (out != NULL) {
601 ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
602 memcpy(out, &reg, len);
605 return 0;
608 static inline u8
609 falcon_spi_munge_command(const struct falcon_spi_device *spi,
610 const u8 command, const unsigned int address)
612 return command | (((address >> 8) & spi->munge_address) << 3);
615 static int
616 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
617 loff_t start, size_t len, size_t *retlen, u8 *buffer)
619 size_t block_len, pos = 0;
620 unsigned int command;
621 int rc = 0;
623 while (pos < len) {
624 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
626 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
627 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
628 buffer + pos, block_len);
629 if (rc)
630 break;
631 pos += block_len;
633 /* Avoid locking up the system */
634 cond_resched();
635 if (signal_pending(current)) {
636 rc = -EINTR;
637 break;
641 if (retlen)
642 *retlen = pos;
643 return rc;
646 #ifdef CONFIG_SFC_FALCON_MTD
648 struct falcon_mtd_partition {
649 struct ef4_mtd_partition common;
650 const struct falcon_spi_device *spi;
651 size_t offset;
654 #define to_falcon_mtd_partition(mtd) \
655 container_of(mtd, struct falcon_mtd_partition, common.mtd)
657 static size_t
658 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
660 return min(FALCON_SPI_MAX_LEN,
661 (spi->block_size - (start & (spi->block_size - 1))));
664 /* Wait up to 10 ms for buffered write completion */
665 static int
666 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
668 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
669 u8 status;
670 int rc;
672 for (;;) {
673 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
674 &status, sizeof(status));
675 if (rc)
676 return rc;
677 if (!(status & SPI_STATUS_NRDY))
678 return 0;
679 if (time_after_eq(jiffies, timeout)) {
680 netif_err(efx, hw, efx->net_dev,
681 "SPI write timeout on device %d"
682 " last status=0x%02x\n",
683 spi->device_id, status);
684 return -ETIMEDOUT;
686 schedule_timeout_uninterruptible(1);
690 static int
691 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
692 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
694 u8 verify_buffer[FALCON_SPI_MAX_LEN];
695 size_t block_len, pos = 0;
696 unsigned int command;
697 int rc = 0;
699 while (pos < len) {
700 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
701 if (rc)
702 break;
704 block_len = min(len - pos,
705 falcon_spi_write_limit(spi, start + pos));
706 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
707 rc = falcon_spi_cmd(efx, spi, command, start + pos,
708 buffer + pos, NULL, block_len);
709 if (rc)
710 break;
712 rc = falcon_spi_wait_write(efx, spi);
713 if (rc)
714 break;
716 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
717 rc = falcon_spi_cmd(efx, spi, command, start + pos,
718 NULL, verify_buffer, block_len);
719 if (memcmp(verify_buffer, buffer + pos, block_len)) {
720 rc = -EIO;
721 break;
724 pos += block_len;
726 /* Avoid locking up the system */
727 cond_resched();
728 if (signal_pending(current)) {
729 rc = -EINTR;
730 break;
734 if (retlen)
735 *retlen = pos;
736 return rc;
739 static int
740 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
742 const struct falcon_spi_device *spi = part->spi;
743 struct ef4_nic *efx = part->common.mtd.priv;
744 u8 status;
745 int rc, i;
747 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
748 for (i = 0; i < 40; i++) {
749 __set_current_state(uninterruptible ?
750 TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
751 schedule_timeout(HZ / 10);
752 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
753 &status, sizeof(status));
754 if (rc)
755 return rc;
756 if (!(status & SPI_STATUS_NRDY))
757 return 0;
758 if (signal_pending(current))
759 return -EINTR;
761 pr_err("%s: timed out waiting for %s\n",
762 part->common.name, part->common.dev_type_name);
763 return -ETIMEDOUT;
766 static int
767 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
769 const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
770 SPI_STATUS_BP0);
771 u8 status;
772 int rc;
774 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
775 &status, sizeof(status));
776 if (rc)
777 return rc;
779 if (!(status & unlock_mask))
780 return 0; /* already unlocked */
782 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
783 if (rc)
784 return rc;
785 rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
786 if (rc)
787 return rc;
789 status &= ~unlock_mask;
790 rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
791 NULL, sizeof(status));
792 if (rc)
793 return rc;
794 rc = falcon_spi_wait_write(efx, spi);
795 if (rc)
796 return rc;
798 return 0;
801 #define FALCON_SPI_VERIFY_BUF_LEN 16
803 static int
804 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
806 const struct falcon_spi_device *spi = part->spi;
807 struct ef4_nic *efx = part->common.mtd.priv;
808 unsigned pos, block_len;
809 u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
810 u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
811 int rc;
813 if (len != spi->erase_size)
814 return -EINVAL;
816 if (spi->erase_command == 0)
817 return -EOPNOTSUPP;
819 rc = falcon_spi_unlock(efx, spi);
820 if (rc)
821 return rc;
822 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
823 if (rc)
824 return rc;
825 rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
826 NULL, 0);
827 if (rc)
828 return rc;
829 rc = falcon_spi_slow_wait(part, false);
831 /* Verify the entire region has been wiped */
832 memset(empty, 0xff, sizeof(empty));
833 for (pos = 0; pos < len; pos += block_len) {
834 block_len = min(len - pos, sizeof(buffer));
835 rc = falcon_spi_read(efx, spi, start + pos, block_len,
836 NULL, buffer);
837 if (rc)
838 return rc;
839 if (memcmp(empty, buffer, block_len))
840 return -EIO;
842 /* Avoid locking up the system */
843 cond_resched();
844 if (signal_pending(current))
845 return -EINTR;
848 return rc;
851 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
853 struct ef4_nic *efx = part->mtd.priv;
855 snprintf(part->name, sizeof(part->name), "%s %s",
856 efx->name, part->type_name);
859 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
860 size_t len, size_t *retlen, u8 *buffer)
862 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
863 struct ef4_nic *efx = mtd->priv;
864 struct falcon_nic_data *nic_data = efx->nic_data;
865 int rc;
867 rc = mutex_lock_interruptible(&nic_data->spi_lock);
868 if (rc)
869 return rc;
870 rc = falcon_spi_read(efx, part->spi, part->offset + start,
871 len, retlen, buffer);
872 mutex_unlock(&nic_data->spi_lock);
873 return rc;
876 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
878 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
879 struct ef4_nic *efx = mtd->priv;
880 struct falcon_nic_data *nic_data = efx->nic_data;
881 int rc;
883 rc = mutex_lock_interruptible(&nic_data->spi_lock);
884 if (rc)
885 return rc;
886 rc = falcon_spi_erase(part, part->offset + start, len);
887 mutex_unlock(&nic_data->spi_lock);
888 return rc;
891 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
892 size_t len, size_t *retlen, const u8 *buffer)
894 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
895 struct ef4_nic *efx = mtd->priv;
896 struct falcon_nic_data *nic_data = efx->nic_data;
897 int rc;
899 rc = mutex_lock_interruptible(&nic_data->spi_lock);
900 if (rc)
901 return rc;
902 rc = falcon_spi_write(efx, part->spi, part->offset + start,
903 len, retlen, buffer);
904 mutex_unlock(&nic_data->spi_lock);
905 return rc;
908 static int falcon_mtd_sync(struct mtd_info *mtd)
910 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
911 struct ef4_nic *efx = mtd->priv;
912 struct falcon_nic_data *nic_data = efx->nic_data;
913 int rc;
915 mutex_lock(&nic_data->spi_lock);
916 rc = falcon_spi_slow_wait(part, true);
917 mutex_unlock(&nic_data->spi_lock);
918 return rc;
921 static int falcon_mtd_probe(struct ef4_nic *efx)
923 struct falcon_nic_data *nic_data = efx->nic_data;
924 struct falcon_mtd_partition *parts;
925 struct falcon_spi_device *spi;
926 size_t n_parts;
927 int rc = -ENODEV;
929 ASSERT_RTNL();
931 /* Allocate space for maximum number of partitions */
932 parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
933 if (!parts)
934 return -ENOMEM;
935 n_parts = 0;
937 spi = &nic_data->spi_flash;
938 if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
939 parts[n_parts].spi = spi;
940 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
941 parts[n_parts].common.dev_type_name = "flash";
942 parts[n_parts].common.type_name = "sfc_flash_bootrom";
943 parts[n_parts].common.mtd.type = MTD_NORFLASH;
944 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
945 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
946 parts[n_parts].common.mtd.erasesize = spi->erase_size;
947 n_parts++;
950 spi = &nic_data->spi_eeprom;
951 if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
952 parts[n_parts].spi = spi;
953 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
954 parts[n_parts].common.dev_type_name = "EEPROM";
955 parts[n_parts].common.type_name = "sfc_bootconfig";
956 parts[n_parts].common.mtd.type = MTD_RAM;
957 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
958 parts[n_parts].common.mtd.size =
959 min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
960 FALCON_EEPROM_BOOTCONFIG_START;
961 parts[n_parts].common.mtd.erasesize = spi->erase_size;
962 n_parts++;
965 rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
966 if (rc)
967 kfree(parts);
968 return rc;
971 #endif /* CONFIG_SFC_FALCON_MTD */
973 /**************************************************************************
975 * XMAC operations
977 **************************************************************************
980 /* Configure the XAUI driver that is an output from Falcon */
981 static void falcon_setup_xaui(struct ef4_nic *efx)
983 ef4_oword_t sdctl, txdrv;
985 /* Move the XAUI into low power, unless there is no PHY, in
986 * which case the XAUI will have to drive a cable. */
987 if (efx->phy_type == PHY_TYPE_NONE)
988 return;
990 ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
991 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
992 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
993 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
994 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
995 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
996 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
997 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
998 EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
999 ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1001 EF4_POPULATE_OWORD_8(txdrv,
1002 FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1003 FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1004 FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1005 FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1007 FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1008 FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1009 FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1010 ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1013 int falcon_reset_xaui(struct ef4_nic *efx)
1015 struct falcon_nic_data *nic_data = efx->nic_data;
1016 ef4_oword_t reg;
1017 int count;
1019 /* Don't fetch MAC statistics over an XMAC reset */
1020 WARN_ON(nic_data->stats_disable_count == 0);
1022 /* Start reset sequence */
1023 EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1024 ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1026 /* Wait up to 10 ms for completion, then reinitialise */
1027 for (count = 0; count < 1000; count++) {
1028 ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1029 if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1030 EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1031 falcon_setup_xaui(efx);
1032 return 0;
1034 udelay(10);
1036 netif_err(efx, hw, efx->net_dev,
1037 "timed out waiting for XAUI/XGXS reset\n");
1038 return -ETIMEDOUT;
1041 static void falcon_ack_status_intr(struct ef4_nic *efx)
1043 struct falcon_nic_data *nic_data = efx->nic_data;
1044 ef4_oword_t reg;
1046 if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1047 return;
1049 /* We expect xgmii faults if the wireside link is down */
1050 if (!efx->link_state.up)
1051 return;
1053 /* We can only use this interrupt to signal the negative edge of
1054 * xaui_align [we have to poll the positive edge]. */
1055 if (nic_data->xmac_poll_required)
1056 return;
1058 ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1061 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1063 ef4_oword_t reg;
1064 bool align_done, link_ok = false;
1065 int sync_status;
1067 /* Read link status */
1068 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1070 align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1071 sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1072 if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1073 link_ok = true;
1075 /* Clear link status ready for next read */
1076 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1077 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1078 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1079 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1081 return link_ok;
1084 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1087 * Check MAC's XGXS link status except when using XGMII loopback
1088 * which bypasses the XGXS block.
1089 * If possible, check PHY's XGXS link status except when using
1090 * MAC loopback.
1092 return (efx->loopback_mode == LOOPBACK_XGMII ||
1093 falcon_xgxs_link_ok(efx)) &&
1094 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1095 LOOPBACK_INTERNAL(efx) ||
1096 ef4_mdio_phyxgxs_lane_sync(efx));
1099 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1101 unsigned int max_frame_len;
1102 ef4_oword_t reg;
1103 bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1104 bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1106 /* Configure MAC - cut-thru mode is hard wired on */
1107 EF4_POPULATE_OWORD_3(reg,
1108 FRF_AB_XM_RX_JUMBO_MODE, 1,
1109 FRF_AB_XM_TX_STAT_EN, 1,
1110 FRF_AB_XM_RX_STAT_EN, 1);
1111 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1113 /* Configure TX */
1114 EF4_POPULATE_OWORD_6(reg,
1115 FRF_AB_XM_TXEN, 1,
1116 FRF_AB_XM_TX_PRMBL, 1,
1117 FRF_AB_XM_AUTO_PAD, 1,
1118 FRF_AB_XM_TXCRC, 1,
1119 FRF_AB_XM_FCNTL, tx_fc,
1120 FRF_AB_XM_IPG, 0x3);
1121 ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1123 /* Configure RX */
1124 EF4_POPULATE_OWORD_5(reg,
1125 FRF_AB_XM_RXEN, 1,
1126 FRF_AB_XM_AUTO_DEPAD, 0,
1127 FRF_AB_XM_ACPT_ALL_MCAST, 1,
1128 FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1129 FRF_AB_XM_PASS_CRC_ERR, 1);
1130 ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1132 /* Set frame length */
1133 max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1134 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1135 ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1136 EF4_POPULATE_OWORD_2(reg,
1137 FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1138 FRF_AB_XM_TX_JUMBO_MODE, 1);
1139 ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1141 EF4_POPULATE_OWORD_2(reg,
1142 FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1143 FRF_AB_XM_DIS_FCNTL, !rx_fc);
1144 ef4_writeo(efx, &reg, FR_AB_XM_FC);
1146 /* Set MAC address */
1147 memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1148 ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1149 memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1150 ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1153 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1155 ef4_oword_t reg;
1156 bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1157 bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1158 bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1159 bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1161 /* XGXS block is flaky and will need to be reset if moving
1162 * into our out of XGMII, XGXS or XAUI loopbacks. */
1163 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1164 old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1165 old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1167 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1168 old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1170 /* The PHY driver may have turned XAUI off */
1171 if ((xgxs_loopback != old_xgxs_loopback) ||
1172 (xaui_loopback != old_xaui_loopback) ||
1173 (xgmii_loopback != old_xgmii_loopback))
1174 falcon_reset_xaui(efx);
1176 ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1177 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1178 (xgxs_loopback || xaui_loopback) ?
1179 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1180 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1181 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1182 ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1184 ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1185 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1186 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1187 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1188 EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1189 ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1193 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1194 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1196 bool mac_up = falcon_xmac_link_ok(efx);
1198 if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1199 ef4_phy_mode_disabled(efx->phy_mode))
1200 /* XAUI link is expected to be down */
1201 return mac_up;
1203 falcon_stop_nic_stats(efx);
1205 while (!mac_up && tries) {
1206 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1207 falcon_reset_xaui(efx);
1208 udelay(200);
1210 mac_up = falcon_xmac_link_ok(efx);
1211 --tries;
1214 falcon_start_nic_stats(efx);
1216 return mac_up;
1219 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1221 return !falcon_xmac_link_ok_retry(efx, 5);
1224 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1226 struct falcon_nic_data *nic_data = efx->nic_data;
1228 ef4_farch_filter_sync_rx_mode(efx);
1230 falcon_reconfigure_xgxs_core(efx);
1231 falcon_reconfigure_xmac_core(efx);
1233 falcon_reconfigure_mac_wrapper(efx);
1235 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1236 falcon_ack_status_intr(efx);
1238 return 0;
1241 static void falcon_poll_xmac(struct ef4_nic *efx)
1243 struct falcon_nic_data *nic_data = efx->nic_data;
1245 /* We expect xgmii faults if the wireside link is down */
1246 if (!efx->link_state.up || !nic_data->xmac_poll_required)
1247 return;
1249 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1250 falcon_ack_status_intr(efx);
1253 /**************************************************************************
1255 * MAC wrapper
1257 **************************************************************************
1260 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1262 union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1264 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1266 ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1267 ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1270 static void falcon_reset_macs(struct ef4_nic *efx)
1272 struct falcon_nic_data *nic_data = efx->nic_data;
1273 ef4_oword_t reg, mac_ctrl;
1274 int count;
1276 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1277 /* It's not safe to use GLB_CTL_REG to reset the
1278 * macs, so instead use the internal MAC resets
1280 EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1281 ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1283 for (count = 0; count < 10000; count++) {
1284 ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1285 if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1287 return;
1288 udelay(10);
1291 netif_err(efx, hw, efx->net_dev,
1292 "timed out waiting for XMAC core reset\n");
1295 /* Mac stats will fail whist the TX fifo is draining */
1296 WARN_ON(nic_data->stats_disable_count == 0);
1298 ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299 EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1300 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1303 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1304 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1305 EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1306 ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1308 count = 0;
1309 while (1) {
1310 ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1311 if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1312 !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1313 !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1314 netif_dbg(efx, hw, efx->net_dev,
1315 "Completed MAC reset after %d loops\n",
1316 count);
1317 break;
1319 if (count > 20) {
1320 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1321 break;
1323 count++;
1324 udelay(10);
1327 /* Ensure the correct MAC is selected before statistics
1328 * are re-enabled by the caller */
1329 ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1331 falcon_setup_xaui(efx);
1334 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1336 ef4_oword_t reg;
1338 if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1339 (efx->loopback_mode != LOOPBACK_NONE))
1340 return;
1342 ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1343 /* There is no point in draining more than once */
1344 if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1345 return;
1347 falcon_reset_macs(efx);
1350 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1352 ef4_oword_t reg;
1354 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1355 return;
1357 /* Isolate the MAC -> RX */
1358 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1359 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1360 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1362 /* Isolate TX -> MAC */
1363 falcon_drain_tx_fifo(efx);
1366 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1368 struct ef4_link_state *link_state = &efx->link_state;
1369 ef4_oword_t reg;
1370 int link_speed, isolate;
1372 isolate = !!READ_ONCE(efx->reset_pending);
1374 switch (link_state->speed) {
1375 case 10000: link_speed = 3; break;
1376 case 1000: link_speed = 2; break;
1377 case 100: link_speed = 1; break;
1378 default: link_speed = 0; break;
1381 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1382 * as advertised. Disable to ensure packets are not
1383 * indefinitely held and TX queue can be flushed at any point
1384 * while the link is down. */
1385 EF4_POPULATE_OWORD_5(reg,
1386 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1387 FRF_AB_MAC_BCAD_ACPT, 1,
1388 FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1389 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1390 FRF_AB_MAC_SPEED, link_speed);
1391 /* On B0, MAC backpressure can be disabled and packets get
1392 * discarded. */
1393 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1394 EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1395 !link_state->up || isolate);
1398 ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1400 /* Restore the multicast hash registers. */
1401 falcon_push_multicast_hash(efx);
1403 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1404 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1405 * initialisation but it may read back as 0) */
1406 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1407 /* Unisolate the MAC -> RX */
1408 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1409 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1410 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1413 static void falcon_stats_request(struct ef4_nic *efx)
1415 struct falcon_nic_data *nic_data = efx->nic_data;
1416 ef4_oword_t reg;
1418 WARN_ON(nic_data->stats_pending);
1419 WARN_ON(nic_data->stats_disable_count);
1421 FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1422 nic_data->stats_pending = true;
1423 wmb(); /* ensure done flag is clear */
1425 /* Initiate DMA transfer of stats */
1426 EF4_POPULATE_OWORD_2(reg,
1427 FRF_AB_MAC_STAT_DMA_CMD, 1,
1428 FRF_AB_MAC_STAT_DMA_ADR,
1429 efx->stats_buffer.dma_addr);
1430 ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1432 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1435 static void falcon_stats_complete(struct ef4_nic *efx)
1437 struct falcon_nic_data *nic_data = efx->nic_data;
1439 if (!nic_data->stats_pending)
1440 return;
1442 nic_data->stats_pending = false;
1443 if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1444 rmb(); /* read the done flag before the stats */
1445 ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1446 falcon_stat_mask, nic_data->stats,
1447 efx->stats_buffer.addr, true);
1448 } else {
1449 netif_err(efx, hw, efx->net_dev,
1450 "timed out waiting for statistics\n");
1454 static void falcon_stats_timer_func(struct timer_list *t)
1456 struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1457 stats_timer);
1458 struct ef4_nic *efx = nic_data->efx;
1460 spin_lock(&efx->stats_lock);
1462 falcon_stats_complete(efx);
1463 if (nic_data->stats_disable_count == 0)
1464 falcon_stats_request(efx);
1466 spin_unlock(&efx->stats_lock);
1469 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1471 struct ef4_link_state old_state = efx->link_state;
1473 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474 WARN_ON(!LOOPBACK_INTERNAL(efx));
1476 efx->link_state.fd = true;
1477 efx->link_state.fc = efx->wanted_fc;
1478 efx->link_state.up = true;
1479 efx->link_state.speed = 10000;
1481 return !ef4_link_state_equal(&efx->link_state, &old_state);
1484 static int falcon_reconfigure_port(struct ef4_nic *efx)
1486 int rc;
1488 WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1490 /* Poll the PHY link state *before* reconfiguring it. This means we
1491 * will pick up the correct speed (in loopback) to select the correct
1492 * MAC.
1494 if (LOOPBACK_INTERNAL(efx))
1495 falcon_loopback_link_poll(efx);
1496 else
1497 efx->phy_op->poll(efx);
1499 falcon_stop_nic_stats(efx);
1500 falcon_deconfigure_mac_wrapper(efx);
1502 falcon_reset_macs(efx);
1504 efx->phy_op->reconfigure(efx);
1505 rc = falcon_reconfigure_xmac(efx);
1506 BUG_ON(rc);
1508 falcon_start_nic_stats(efx);
1510 /* Synchronise efx->link_state with the kernel */
1511 ef4_link_status_changed(efx);
1513 return 0;
1516 /* TX flow control may automatically turn itself off if the link
1517 * partner (intermittently) stops responding to pause frames. There
1518 * isn't any indication that this has happened, so the best we do is
1519 * leave it up to the user to spot this and fix it by cycling transmit
1520 * flow control on this end.
1523 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1525 /* Schedule a reset to recover */
1526 ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1529 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1531 /* Recover by resetting the EM block */
1532 falcon_stop_nic_stats(efx);
1533 falcon_drain_tx_fifo(efx);
1534 falcon_reconfigure_xmac(efx);
1535 falcon_start_nic_stats(efx);
1538 /**************************************************************************
1540 * PHY access via GMII
1542 **************************************************************************
1545 /* Wait for GMII access to complete */
1546 static int falcon_gmii_wait(struct ef4_nic *efx)
1548 ef4_oword_t md_stat;
1549 int count;
1551 /* wait up to 50ms - taken max from datasheet */
1552 for (count = 0; count < 5000; count++) {
1553 ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1554 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555 if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556 EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557 netif_err(efx, hw, efx->net_dev,
1558 "error from GMII access "
1559 EF4_OWORD_FMT"\n",
1560 EF4_OWORD_VAL(md_stat));
1561 return -EIO;
1563 return 0;
1565 udelay(10);
1567 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568 return -ETIMEDOUT;
1571 /* Write an MDIO register of a PHY connected to Falcon. */
1572 static int falcon_mdio_write(struct net_device *net_dev,
1573 int prtad, int devad, u16 addr, u16 value)
1575 struct ef4_nic *efx = netdev_priv(net_dev);
1576 struct falcon_nic_data *nic_data = efx->nic_data;
1577 ef4_oword_t reg;
1578 int rc;
1580 netif_vdbg(efx, hw, efx->net_dev,
1581 "writing MDIO %d register %d.%d with 0x%04x\n",
1582 prtad, devad, addr, value);
1584 mutex_lock(&nic_data->mdio_lock);
1586 /* Check MDIO not currently being accessed */
1587 rc = falcon_gmii_wait(efx);
1588 if (rc)
1589 goto out;
1591 /* Write the address/ID register */
1592 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1595 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596 FRF_AB_MD_DEV_ADR, devad);
1597 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1599 /* Write data */
1600 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601 ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1603 EF4_POPULATE_OWORD_2(reg,
1604 FRF_AB_MD_WRC, 1,
1605 FRF_AB_MD_GC, 0);
1606 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1608 /* Wait for data to be written */
1609 rc = falcon_gmii_wait(efx);
1610 if (rc) {
1611 /* Abort the write operation */
1612 EF4_POPULATE_OWORD_2(reg,
1613 FRF_AB_MD_WRC, 0,
1614 FRF_AB_MD_GC, 1);
1615 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1616 udelay(10);
1619 out:
1620 mutex_unlock(&nic_data->mdio_lock);
1621 return rc;
1624 /* Read an MDIO register of a PHY connected to Falcon. */
1625 static int falcon_mdio_read(struct net_device *net_dev,
1626 int prtad, int devad, u16 addr)
1628 struct ef4_nic *efx = netdev_priv(net_dev);
1629 struct falcon_nic_data *nic_data = efx->nic_data;
1630 ef4_oword_t reg;
1631 int rc;
1633 mutex_lock(&nic_data->mdio_lock);
1635 /* Check MDIO not currently being accessed */
1636 rc = falcon_gmii_wait(efx);
1637 if (rc)
1638 goto out;
1640 EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641 ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1643 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644 FRF_AB_MD_DEV_ADR, devad);
1645 ef4_writeo(efx, &reg, FR_AB_MD_ID);
1647 /* Request data to be read */
1648 EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1651 /* Wait for data to become available */
1652 rc = falcon_gmii_wait(efx);
1653 if (rc == 0) {
1654 ef4_reado(efx, &reg, FR_AB_MD_RXD);
1655 rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656 netif_vdbg(efx, hw, efx->net_dev,
1657 "read from MDIO %d register %d.%d, got %04x\n",
1658 prtad, devad, addr, rc);
1659 } else {
1660 /* Abort the read operation */
1661 EF4_POPULATE_OWORD_2(reg,
1662 FRF_AB_MD_RIC, 0,
1663 FRF_AB_MD_GC, 1);
1664 ef4_writeo(efx, &reg, FR_AB_MD_CS);
1666 netif_dbg(efx, hw, efx->net_dev,
1667 "read from MDIO %d register %d.%d, got error %d\n",
1668 prtad, devad, addr, rc);
1671 out:
1672 mutex_unlock(&nic_data->mdio_lock);
1673 return rc;
1676 /* This call is responsible for hooking in the MAC and PHY operations */
1677 static int falcon_probe_port(struct ef4_nic *efx)
1679 struct falcon_nic_data *nic_data = efx->nic_data;
1680 int rc;
1682 switch (efx->phy_type) {
1683 case PHY_TYPE_SFX7101:
1684 efx->phy_op = &falcon_sfx7101_phy_ops;
1685 break;
1686 case PHY_TYPE_QT2022C2:
1687 case PHY_TYPE_QT2025C:
1688 efx->phy_op = &falcon_qt202x_phy_ops;
1689 break;
1690 case PHY_TYPE_TXC43128:
1691 efx->phy_op = &falcon_txc_phy_ops;
1692 break;
1693 default:
1694 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695 efx->phy_type);
1696 return -ENODEV;
1699 /* Fill out MDIO structure and loopback modes */
1700 mutex_init(&nic_data->mdio_lock);
1701 efx->mdio.mdio_read = falcon_mdio_read;
1702 efx->mdio.mdio_write = falcon_mdio_write;
1703 rc = efx->phy_op->probe(efx);
1704 if (rc != 0)
1705 return rc;
1707 /* Initial assumption */
1708 efx->link_state.speed = 10000;
1709 efx->link_state.fd = true;
1711 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1713 efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1714 else
1715 efx->wanted_fc = EF4_FC_RX;
1716 if (efx->mdio.mmds & MDIO_DEVS_AN)
1717 efx->wanted_fc |= EF4_FC_AUTO;
1719 /* Allocate buffer for stats */
1720 rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1721 FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722 if (rc)
1723 return rc;
1724 netif_dbg(efx, probe, efx->net_dev,
1725 "stats buffer at %llx (virt %p phys %llx)\n",
1726 (u64)efx->stats_buffer.dma_addr,
1727 efx->stats_buffer.addr,
1728 (u64)virt_to_phys(efx->stats_buffer.addr));
1730 return 0;
1733 static void falcon_remove_port(struct ef4_nic *efx)
1735 efx->phy_op->remove(efx);
1736 ef4_nic_free_buffer(efx, &efx->stats_buffer);
1739 /* Global events are basically PHY events */
1740 static bool
1741 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1743 struct ef4_nic *efx = channel->efx;
1744 struct falcon_nic_data *nic_data = efx->nic_data;
1746 if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748 EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749 /* Ignored */
1750 return true;
1752 if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1753 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754 nic_data->xmac_poll_required = true;
1755 return true;
1758 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1759 EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760 EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761 netif_err(efx, rx_err, efx->net_dev,
1762 "channel %d seen global RX_RESET event. Resetting.\n",
1763 channel->channel);
1765 atomic_inc(&efx->rx_reset);
1766 ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1767 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768 return true;
1771 return false;
1774 /**************************************************************************
1776 * Falcon test code
1778 **************************************************************************/
1780 static int
1781 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1783 struct falcon_nic_data *nic_data = efx->nic_data;
1784 struct falcon_nvconfig *nvconfig;
1785 struct falcon_spi_device *spi;
1786 void *region;
1787 int rc, magic_num, struct_ver;
1788 __le16 *word, *limit;
1789 u32 csum;
1791 if (falcon_spi_present(&nic_data->spi_flash))
1792 spi = &nic_data->spi_flash;
1793 else if (falcon_spi_present(&nic_data->spi_eeprom))
1794 spi = &nic_data->spi_eeprom;
1795 else
1796 return -EINVAL;
1798 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799 if (!region)
1800 return -ENOMEM;
1801 nvconfig = region + FALCON_NVCONFIG_OFFSET;
1803 mutex_lock(&nic_data->spi_lock);
1804 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805 mutex_unlock(&nic_data->spi_lock);
1806 if (rc) {
1807 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808 falcon_spi_present(&nic_data->spi_flash) ?
1809 "flash" : "EEPROM");
1810 rc = -EIO;
1811 goto out;
1814 magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1817 rc = -EINVAL;
1818 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819 netif_err(efx, hw, efx->net_dev,
1820 "NVRAM bad magic 0x%x\n", magic_num);
1821 goto out;
1823 if (struct_ver < 2) {
1824 netif_err(efx, hw, efx->net_dev,
1825 "NVRAM has ancient version 0x%x\n", struct_ver);
1826 goto out;
1827 } else if (struct_ver < 4) {
1828 word = &nvconfig->board_magic_num;
1829 limit = (__le16 *) (nvconfig + 1);
1830 } else {
1831 word = region;
1832 limit = region + FALCON_NVCONFIG_END;
1834 for (csum = 0; word < limit; ++word)
1835 csum += le16_to_cpu(*word);
1837 if (~csum & 0xffff) {
1838 netif_err(efx, hw, efx->net_dev,
1839 "NVRAM has incorrect checksum\n");
1840 goto out;
1843 rc = 0;
1844 if (nvconfig_out)
1845 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1847 out:
1848 kfree(region);
1849 return rc;
1852 static int falcon_test_nvram(struct ef4_nic *efx)
1854 return falcon_read_nvram(efx, NULL);
1857 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1858 { FR_AZ_ADR_REGION,
1859 EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860 { FR_AZ_RX_CFG,
1861 EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862 { FR_AZ_TX_CFG,
1863 EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864 { FR_AZ_TX_RESERVED,
1865 EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866 { FR_AB_MAC_CTRL,
1867 EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868 { FR_AZ_SRM_TX_DC_CFG,
1869 EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870 { FR_AZ_RX_DC_CFG,
1871 EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872 { FR_AZ_RX_DC_PF_WM,
1873 EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874 { FR_BZ_DP_CTRL,
1875 EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876 { FR_AB_GM_CFG2,
1877 EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878 { FR_AB_GMF_CFG0,
1879 EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880 { FR_AB_XM_GLB_CFG,
1881 EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882 { FR_AB_XM_TX_CFG,
1883 EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884 { FR_AB_XM_RX_CFG,
1885 EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886 { FR_AB_XM_RX_PARAM,
1887 EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888 { FR_AB_XM_FC,
1889 EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890 { FR_AB_XM_ADR_LO,
1891 EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892 { FR_AB_XX_SD_CTL,
1893 EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1896 static int
1897 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1899 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900 int rc, rc2;
1902 mutex_lock(&efx->mac_lock);
1903 if (efx->loopback_modes) {
1904 /* We need the 312 clock from the PHY to test the XMAC
1905 * registers, so move into XGMII loopback if available */
1906 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907 efx->loopback_mode = LOOPBACK_XGMII;
1908 else
1909 efx->loopback_mode = __ffs(efx->loopback_modes);
1911 __ef4_reconfigure_port(efx);
1912 mutex_unlock(&efx->mac_lock);
1914 ef4_reset_down(efx, reset_method);
1916 tests->registers =
1917 ef4_farch_test_registers(efx, falcon_b0_register_tests,
1918 ARRAY_SIZE(falcon_b0_register_tests))
1919 ? -1 : 1;
1921 rc = falcon_reset_hw(efx, reset_method);
1922 rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1923 return rc ? rc : rc2;
1926 /**************************************************************************
1928 * Device reset
1930 **************************************************************************
1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1935 switch (reason) {
1936 case RESET_TYPE_RX_RECOVERY:
1937 case RESET_TYPE_DMA_ERROR:
1938 case RESET_TYPE_TX_SKIP:
1939 /* These can occasionally occur due to hardware bugs.
1940 * We try to reset without disrupting the link.
1942 return RESET_TYPE_INVISIBLE;
1943 default:
1944 return RESET_TYPE_ALL;
1948 static int falcon_map_reset_flags(u32 *flags)
1950 enum {
1951 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1957 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958 *flags &= ~FALCON_RESET_WORLD;
1959 return RESET_TYPE_WORLD;
1962 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963 *flags &= ~FALCON_RESET_ALL;
1964 return RESET_TYPE_ALL;
1967 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968 *flags &= ~FALCON_RESET_INVISIBLE;
1969 return RESET_TYPE_INVISIBLE;
1972 return -EINVAL;
1975 /* Resets NIC to known state. This routine must be called in process
1976 * context and is allowed to sleep. */
1977 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1979 struct falcon_nic_data *nic_data = efx->nic_data;
1980 ef4_oword_t glb_ctl_reg_ker;
1981 int rc;
1983 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984 RESET_TYPE(method));
1986 /* Initiate device reset */
1987 if (method == RESET_TYPE_WORLD) {
1988 rc = pci_save_state(efx->pci_dev);
1989 if (rc) {
1990 netif_err(efx, drv, efx->net_dev,
1991 "failed to backup PCI state of primary "
1992 "function prior to hardware reset\n");
1993 goto fail1;
1995 if (ef4_nic_is_dual_func(efx)) {
1996 rc = pci_save_state(nic_data->pci_dev2);
1997 if (rc) {
1998 netif_err(efx, drv, efx->net_dev,
1999 "failed to backup PCI state of "
2000 "secondary function prior to "
2001 "hardware reset\n");
2002 goto fail2;
2006 EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007 FRF_AB_EXT_PHY_RST_DUR,
2008 FFE_AB_EXT_PHY_RST_DUR_10240US,
2009 FRF_AB_SWRST, 1);
2010 } else {
2011 EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012 /* exclude PHY from "invisible" reset */
2013 FRF_AB_EXT_PHY_RST_CTL,
2014 method == RESET_TYPE_INVISIBLE,
2015 /* exclude EEPROM/flash and PCIe */
2016 FRF_AB_PCIE_CORE_RST_CTL, 1,
2017 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018 FRF_AB_PCIE_SD_RST_CTL, 1,
2019 FRF_AB_EE_RST_CTL, 1,
2020 FRF_AB_EXT_PHY_RST_DUR,
2021 FFE_AB_EXT_PHY_RST_DUR_10240US,
2022 FRF_AB_SWRST, 1);
2024 ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2026 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027 schedule_timeout_uninterruptible(HZ / 20);
2029 /* Restore PCI configuration if needed */
2030 if (method == RESET_TYPE_WORLD) {
2031 if (ef4_nic_is_dual_func(efx))
2032 pci_restore_state(nic_data->pci_dev2);
2033 pci_restore_state(efx->pci_dev);
2034 netif_dbg(efx, drv, efx->net_dev,
2035 "successfully restored PCI config\n");
2038 /* Assert that reset complete */
2039 ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040 if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041 rc = -ETIMEDOUT;
2042 netif_err(efx, hw, efx->net_dev,
2043 "timed out waiting for hardware reset\n");
2044 goto fail3;
2046 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2048 return 0;
2050 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052 pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055 return rc;
2058 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2060 struct falcon_nic_data *nic_data = efx->nic_data;
2061 int rc;
2063 mutex_lock(&nic_data->spi_lock);
2064 rc = __falcon_reset_hw(efx, method);
2065 mutex_unlock(&nic_data->spi_lock);
2067 return rc;
2070 static void falcon_monitor(struct ef4_nic *efx)
2072 bool link_changed;
2073 int rc;
2075 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2077 rc = falcon_board(efx)->type->monitor(efx);
2078 if (rc) {
2079 netif_err(efx, hw, efx->net_dev,
2080 "Board sensor %s; shutting down PHY\n",
2081 (rc == -ERANGE) ? "reported fault" : "failed");
2082 efx->phy_mode |= PHY_MODE_LOW_POWER;
2083 rc = __ef4_reconfigure_port(efx);
2084 WARN_ON(rc);
2087 if (LOOPBACK_INTERNAL(efx))
2088 link_changed = falcon_loopback_link_poll(efx);
2089 else
2090 link_changed = efx->phy_op->poll(efx);
2092 if (link_changed) {
2093 falcon_stop_nic_stats(efx);
2094 falcon_deconfigure_mac_wrapper(efx);
2096 falcon_reset_macs(efx);
2097 rc = falcon_reconfigure_xmac(efx);
2098 BUG_ON(rc);
2100 falcon_start_nic_stats(efx);
2102 ef4_link_status_changed(efx);
2105 falcon_poll_xmac(efx);
2108 /* Zeroes out the SRAM contents. This routine must be called in
2109 * process context and is allowed to sleep.
2111 static int falcon_reset_sram(struct ef4_nic *efx)
2113 ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114 int count;
2116 /* Set the SRAM wake/sleep GPIO appropriately. */
2117 ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119 EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120 ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2122 /* Initiate SRAM reset */
2123 EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124 FRF_AZ_SRM_INIT_EN, 1,
2125 FRF_AZ_SRM_NB_SZ, 0);
2126 ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2128 /* Wait for SRAM reset to complete */
2129 count = 0;
2130 do {
2131 netif_dbg(efx, hw, efx->net_dev,
2132 "waiting for SRAM reset (attempt %d)...\n", count);
2134 /* SRAM reset is slow; expect around 16ms */
2135 schedule_timeout_uninterruptible(HZ / 50);
2137 /* Check for reset complete */
2138 ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139 if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140 netif_dbg(efx, hw, efx->net_dev,
2141 "SRAM reset complete\n");
2143 return 0;
2145 } while (++count < 20); /* wait up to 0.4 sec */
2147 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148 return -ETIMEDOUT;
2151 static void falcon_spi_device_init(struct ef4_nic *efx,
2152 struct falcon_spi_device *spi_device,
2153 unsigned int device_id, u32 device_type)
2155 if (device_type != 0) {
2156 spi_device->device_id = device_id;
2157 spi_device->size =
2158 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159 spi_device->addr_len =
2160 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162 spi_device->addr_len == 1);
2163 spi_device->erase_command =
2164 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165 spi_device->erase_size =
2166 1 << SPI_DEV_TYPE_FIELD(device_type,
2167 SPI_DEV_TYPE_ERASE_SIZE);
2168 spi_device->block_size =
2169 1 << SPI_DEV_TYPE_FIELD(device_type,
2170 SPI_DEV_TYPE_BLOCK_SIZE);
2171 } else {
2172 spi_device->size = 0;
2176 /* Extract non-volatile configuration */
2177 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2179 struct falcon_nic_data *nic_data = efx->nic_data;
2180 struct falcon_nvconfig *nvconfig;
2181 int rc;
2183 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184 if (!nvconfig)
2185 return -ENOMEM;
2187 rc = falcon_read_nvram(efx, nvconfig);
2188 if (rc)
2189 goto out;
2191 efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2194 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195 falcon_spi_device_init(
2196 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197 le32_to_cpu(nvconfig->board_v3
2198 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199 falcon_spi_device_init(
2200 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201 le32_to_cpu(nvconfig->board_v3
2202 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2205 /* Read the MAC addresses */
2206 ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2208 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209 efx->phy_type, efx->mdio.prtad);
2211 rc = falcon_probe_board(efx,
2212 le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214 kfree(nvconfig);
2215 return rc;
2218 static int falcon_dimension_resources(struct ef4_nic *efx)
2220 efx->rx_dc_base = 0x20000;
2221 efx->tx_dc_base = 0x26000;
2222 return 0;
2225 /* Probe all SPI devices on the NIC */
2226 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2228 struct falcon_nic_data *nic_data = efx->nic_data;
2229 ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230 int boot_dev;
2232 ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234 ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2236 if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237 boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241 "flash" : "EEPROM");
2242 } else {
2243 /* Disable VPD and set clock dividers to safe
2244 * values for initial programming. */
2245 boot_dev = -1;
2246 netif_dbg(efx, probe, efx->net_dev,
2247 "Booted from internal ASIC settings;"
2248 " setting SPI config\n");
2249 EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250 /* 125 MHz / 7 ~= 20 MHz */
2251 FRF_AB_EE_SF_CLOCK_DIV, 7,
2252 /* 125 MHz / 63 ~= 2 MHz */
2253 FRF_AB_EE_EE_CLOCK_DIV, 63);
2254 ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2257 mutex_init(&nic_data->spi_lock);
2259 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260 falcon_spi_device_init(efx, &nic_data->spi_flash,
2261 FFE_AB_SPI_DEVICE_FLASH,
2262 default_flash_type);
2263 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265 FFE_AB_SPI_DEVICE_EEPROM,
2266 large_eeprom_type);
2269 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2271 return 0x20000;
2274 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2276 /* Map everything up to and including the RSS indirection table.
2277 * The PCI core takes care of mapping the MSI-X tables.
2279 return FR_BZ_RX_INDIRECTION_TBL +
2280 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2283 static int falcon_probe_nic(struct ef4_nic *efx)
2285 struct falcon_nic_data *nic_data;
2286 struct falcon_board *board;
2287 int rc;
2289 efx->primary = efx; /* only one usable function per controller */
2291 /* Allocate storage for hardware specific data */
2292 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293 if (!nic_data)
2294 return -ENOMEM;
2295 efx->nic_data = nic_data;
2296 nic_data->efx = efx;
2298 rc = -ENODEV;
2300 if (ef4_farch_fpga_ver(efx) != 0) {
2301 netif_err(efx, probe, efx->net_dev,
2302 "Falcon FPGA not supported\n");
2303 goto fail1;
2306 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2307 ef4_oword_t nic_stat;
2308 struct pci_dev *dev;
2309 u8 pci_rev = efx->pci_dev->revision;
2311 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2312 netif_err(efx, probe, efx->net_dev,
2313 "Falcon rev A0 not supported\n");
2314 goto fail1;
2316 ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2317 if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2318 netif_err(efx, probe, efx->net_dev,
2319 "Falcon rev A1 1G not supported\n");
2320 goto fail1;
2322 if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2323 netif_err(efx, probe, efx->net_dev,
2324 "Falcon rev A1 PCI-X not supported\n");
2325 goto fail1;
2328 dev = pci_dev_get(efx->pci_dev);
2329 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2330 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2331 dev))) {
2332 if (dev->bus == efx->pci_dev->bus &&
2333 dev->devfn == efx->pci_dev->devfn + 1) {
2334 nic_data->pci_dev2 = dev;
2335 break;
2338 if (!nic_data->pci_dev2) {
2339 netif_err(efx, probe, efx->net_dev,
2340 "failed to find secondary function\n");
2341 rc = -ENODEV;
2342 goto fail2;
2346 /* Now we can reset the NIC */
2347 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2348 if (rc) {
2349 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2350 goto fail3;
2353 /* Allocate memory for INT_KER */
2354 rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2355 GFP_KERNEL);
2356 if (rc)
2357 goto fail4;
2358 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2360 netif_dbg(efx, probe, efx->net_dev,
2361 "INT_KER at %llx (virt %p phys %llx)\n",
2362 (u64)efx->irq_status.dma_addr,
2363 efx->irq_status.addr,
2364 (u64)virt_to_phys(efx->irq_status.addr));
2366 falcon_probe_spi_devices(efx);
2368 /* Read in the non-volatile configuration */
2369 rc = falcon_probe_nvconfig(efx);
2370 if (rc) {
2371 if (rc == -EINVAL)
2372 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2373 goto fail5;
2376 efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2377 EF4_MAX_CHANNELS);
2378 efx->max_tx_channels = efx->max_channels;
2379 efx->timer_quantum_ns = 4968; /* 621 cycles */
2380 efx->timer_max_ns = efx->type->timer_period_max *
2381 efx->timer_quantum_ns;
2383 /* Initialise I2C adapter */
2384 board = falcon_board(efx);
2385 board->i2c_adap.owner = THIS_MODULE;
2386 board->i2c_data = falcon_i2c_bit_operations;
2387 board->i2c_data.data = efx;
2388 board->i2c_adap.algo_data = &board->i2c_data;
2389 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2390 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2391 sizeof(board->i2c_adap.name));
2392 rc = i2c_bit_add_bus(&board->i2c_adap);
2393 if (rc)
2394 goto fail5;
2396 rc = falcon_board(efx)->type->init(efx);
2397 if (rc) {
2398 netif_err(efx, probe, efx->net_dev,
2399 "failed to initialise board\n");
2400 goto fail6;
2403 nic_data->stats_disable_count = 1;
2404 timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2406 return 0;
2408 fail6:
2409 i2c_del_adapter(&board->i2c_adap);
2410 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411 fail5:
2412 ef4_nic_free_buffer(efx, &efx->irq_status);
2413 fail4:
2414 fail3:
2415 if (nic_data->pci_dev2) {
2416 pci_dev_put(nic_data->pci_dev2);
2417 nic_data->pci_dev2 = NULL;
2419 fail2:
2420 fail1:
2421 kfree(efx->nic_data);
2422 return rc;
2425 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2427 /* RX control FIFO thresholds (32 entries) */
2428 const unsigned ctrl_xon_thr = 20;
2429 const unsigned ctrl_xoff_thr = 25;
2430 ef4_oword_t reg;
2432 ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2433 if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2434 /* Data FIFO size is 5.5K. The RX DMA engine only
2435 * supports scattering for user-mode queues, but will
2436 * split DMA writes at intervals of RX_USR_BUF_SIZE
2437 * (32-byte units) even for kernel-mode queues. We
2438 * set it to be so large that that never happens.
2440 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442 (3 * 4096) >> 5);
2443 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446 EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447 } else {
2448 /* Data FIFO size is 80K; register fields moved */
2449 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451 EF4_RX_USR_BUF_SIZE >> 5);
2452 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2459 /* Enable hash insertion. This is broken for the
2460 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461 * IPv4 hashes. */
2462 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464 EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2466 /* Always enable XOFF signal from RX FIFO. We enable
2467 * or disable transmission of pause frames at the MAC. */
2468 EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469 ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2472 /* This call performs hardware-specific global initialisation, such as
2473 * defining the descriptor cache sizes and number of RSS channels.
2474 * It does not set up any buffers, descriptor rings or event queues.
2476 static int falcon_init_nic(struct ef4_nic *efx)
2478 ef4_oword_t temp;
2479 int rc;
2481 /* Use on-chip SRAM */
2482 ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2483 EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484 ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2486 rc = falcon_reset_sram(efx);
2487 if (rc)
2488 return rc;
2490 /* Clear the parity enables on the TX data fifos as
2491 * they produce false parity errors because of timing issues
2493 if (EF4_WORKAROUND_5129(efx)) {
2494 ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495 EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496 ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2499 if (EF4_WORKAROUND_7244(efx)) {
2500 ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502 EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505 ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2508 /* XXX This is documented only for Falcon A0/A1 */
2509 /* Setup RX. Wait for descriptor is broken and must
2510 * be disabled. RXDP recovery shouldn't be needed, but is.
2512 ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515 if (EF4_WORKAROUND_5583(efx))
2516 EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517 ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2519 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520 * descriptors (which is bad).
2522 ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2523 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524 ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2526 falcon_init_rx_cfg(efx);
2528 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2529 falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2531 /* Set destination of both TX and RX Flush events */
2532 EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533 ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2536 ef4_farch_init_common(efx);
2538 return 0;
2541 static void falcon_remove_nic(struct ef4_nic *efx)
2543 struct falcon_nic_data *nic_data = efx->nic_data;
2544 struct falcon_board *board = falcon_board(efx);
2546 board->type->fini(efx);
2548 /* Remove I2C adapter and clear it in preparation for a retry */
2549 i2c_del_adapter(&board->i2c_adap);
2550 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2552 ef4_nic_free_buffer(efx, &efx->irq_status);
2554 __falcon_reset_hw(efx, RESET_TYPE_ALL);
2556 /* Release the second function after the reset */
2557 if (nic_data->pci_dev2) {
2558 pci_dev_put(nic_data->pci_dev2);
2559 nic_data->pci_dev2 = NULL;
2562 /* Tear down the private nic state */
2563 kfree(efx->nic_data);
2564 efx->nic_data = NULL;
2567 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2569 return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570 falcon_stat_mask, names);
2573 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2574 struct rtnl_link_stats64 *core_stats)
2576 struct falcon_nic_data *nic_data = efx->nic_data;
2577 u64 *stats = nic_data->stats;
2578 ef4_oword_t cnt;
2580 if (!nic_data->stats_disable_count) {
2581 ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583 EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2585 if (nic_data->stats_pending &&
2586 FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587 nic_data->stats_pending = false;
2588 rmb(); /* read the done flag before the stats */
2589 ef4_nic_update_stats(
2590 falcon_stat_desc, FALCON_STAT_COUNT,
2591 falcon_stat_mask,
2592 stats, efx->stats_buffer.addr, true);
2595 /* Update derived statistic */
2596 ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597 stats[FALCON_STAT_rx_bytes] -
2598 stats[FALCON_STAT_rx_good_bytes] -
2599 stats[FALCON_STAT_rx_control] * 64);
2600 ef4_update_sw_stats(efx, stats);
2603 if (full_stats)
2604 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2606 if (core_stats) {
2607 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612 stats[GENERIC_STAT_rx_nodesc_trunc] +
2613 stats[GENERIC_STAT_rx_noskb_drops];
2614 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615 core_stats->rx_length_errors =
2616 stats[FALCON_STAT_rx_gtjumbo] +
2617 stats[FALCON_STAT_rx_length_error];
2618 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2622 core_stats->rx_errors = (core_stats->rx_length_errors +
2623 core_stats->rx_crc_errors +
2624 core_stats->rx_frame_errors +
2625 stats[FALCON_STAT_rx_symbol_error]);
2628 return FALCON_STAT_COUNT;
2631 void falcon_start_nic_stats(struct ef4_nic *efx)
2633 struct falcon_nic_data *nic_data = efx->nic_data;
2635 spin_lock_bh(&efx->stats_lock);
2636 if (--nic_data->stats_disable_count == 0)
2637 falcon_stats_request(efx);
2638 spin_unlock_bh(&efx->stats_lock);
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642 * they arrive when we call this just after start_stats
2644 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2646 msleep(10);
2649 void falcon_stop_nic_stats(struct ef4_nic *efx)
2651 struct falcon_nic_data *nic_data = efx->nic_data;
2652 int i;
2654 might_sleep();
2656 spin_lock_bh(&efx->stats_lock);
2657 ++nic_data->stats_disable_count;
2658 spin_unlock_bh(&efx->stats_lock);
2660 del_timer_sync(&nic_data->stats_timer);
2662 /* Wait enough time for the most recent transfer to
2663 * complete. */
2664 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666 break;
2667 msleep(1);
2670 spin_lock_bh(&efx->stats_lock);
2671 falcon_stats_complete(efx);
2672 spin_unlock_bh(&efx->stats_lock);
2675 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2677 falcon_board(efx)->type->set_id_led(efx, mode);
2680 /**************************************************************************
2682 * Wake on LAN
2684 **************************************************************************
2687 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2689 wol->supported = 0;
2690 wol->wolopts = 0;
2691 memset(&wol->sopass, 0, sizeof(wol->sopass));
2694 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2696 if (type != 0)
2697 return -EINVAL;
2698 return 0;
2701 /**************************************************************************
2703 * Revision-dependent attributes used by efx.c and nic.c
2705 **************************************************************************
2708 const struct ef4_nic_type falcon_a1_nic_type = {
2709 .mem_bar = EF4_MEM_BAR,
2710 .mem_map_size = falcon_a1_mem_map_size,
2711 .probe = falcon_probe_nic,
2712 .remove = falcon_remove_nic,
2713 .init = falcon_init_nic,
2714 .dimension_resources = falcon_dimension_resources,
2715 .fini = falcon_irq_ack_a1,
2716 .monitor = falcon_monitor,
2717 .map_reset_reason = falcon_map_reset_reason,
2718 .map_reset_flags = falcon_map_reset_flags,
2719 .reset = falcon_reset_hw,
2720 .probe_port = falcon_probe_port,
2721 .remove_port = falcon_remove_port,
2722 .handle_global_event = falcon_handle_global_event,
2723 .fini_dmaq = ef4_farch_fini_dmaq,
2724 .prepare_flush = falcon_prepare_flush,
2725 .finish_flush = ef4_port_dummy_op_void,
2726 .prepare_flr = ef4_port_dummy_op_void,
2727 .finish_flr = ef4_farch_finish_flr,
2728 .describe_stats = falcon_describe_nic_stats,
2729 .update_stats = falcon_update_nic_stats,
2730 .start_stats = falcon_start_nic_stats,
2731 .pull_stats = falcon_pull_nic_stats,
2732 .stop_stats = falcon_stop_nic_stats,
2733 .set_id_led = falcon_set_id_led,
2734 .push_irq_moderation = falcon_push_irq_moderation,
2735 .reconfigure_port = falcon_reconfigure_port,
2736 .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2737 .reconfigure_mac = falcon_reconfigure_xmac,
2738 .check_mac_fault = falcon_xmac_check_fault,
2739 .get_wol = falcon_get_wol,
2740 .set_wol = falcon_set_wol,
2741 .resume_wol = ef4_port_dummy_op_void,
2742 .test_nvram = falcon_test_nvram,
2743 .irq_enable_master = ef4_farch_irq_enable_master,
2744 .irq_test_generate = ef4_farch_irq_test_generate,
2745 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2746 .irq_handle_msi = ef4_farch_msi_interrupt,
2747 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2748 .tx_probe = ef4_farch_tx_probe,
2749 .tx_init = ef4_farch_tx_init,
2750 .tx_remove = ef4_farch_tx_remove,
2751 .tx_write = ef4_farch_tx_write,
2752 .tx_limit_len = ef4_farch_tx_limit_len,
2753 .rx_push_rss_config = dummy_rx_push_rss_config,
2754 .rx_probe = ef4_farch_rx_probe,
2755 .rx_init = ef4_farch_rx_init,
2756 .rx_remove = ef4_farch_rx_remove,
2757 .rx_write = ef4_farch_rx_write,
2758 .rx_defer_refill = ef4_farch_rx_defer_refill,
2759 .ev_probe = ef4_farch_ev_probe,
2760 .ev_init = ef4_farch_ev_init,
2761 .ev_fini = ef4_farch_ev_fini,
2762 .ev_remove = ef4_farch_ev_remove,
2763 .ev_process = ef4_farch_ev_process,
2764 .ev_read_ack = ef4_farch_ev_read_ack,
2765 .ev_test_generate = ef4_farch_ev_test_generate,
2767 /* We don't expose the filter table on Falcon A1 as it is not
2768 * mapped into function 0, but these implementations still
2769 * work with a degenerate case of all tables set to size 0.
2771 .filter_table_probe = ef4_farch_filter_table_probe,
2772 .filter_table_restore = ef4_farch_filter_table_restore,
2773 .filter_table_remove = ef4_farch_filter_table_remove,
2774 .filter_insert = ef4_farch_filter_insert,
2775 .filter_remove_safe = ef4_farch_filter_remove_safe,
2776 .filter_get_safe = ef4_farch_filter_get_safe,
2777 .filter_clear_rx = ef4_farch_filter_clear_rx,
2778 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2779 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2780 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2782 #ifdef CONFIG_SFC_FALCON_MTD
2783 .mtd_probe = falcon_mtd_probe,
2784 .mtd_rename = falcon_mtd_rename,
2785 .mtd_read = falcon_mtd_read,
2786 .mtd_erase = falcon_mtd_erase,
2787 .mtd_write = falcon_mtd_write,
2788 .mtd_sync = falcon_mtd_sync,
2789 #endif
2791 .revision = EF4_REV_FALCON_A1,
2792 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798 .rx_buffer_padding = 0x24,
2799 .can_rx_scatter = false,
2800 .max_interrupt_mode = EF4_INT_MODE_MSI,
2801 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802 .offload_features = NETIF_F_IP_CSUM,
2805 const struct ef4_nic_type falcon_b0_nic_type = {
2806 .mem_bar = EF4_MEM_BAR,
2807 .mem_map_size = falcon_b0_mem_map_size,
2808 .probe = falcon_probe_nic,
2809 .remove = falcon_remove_nic,
2810 .init = falcon_init_nic,
2811 .dimension_resources = falcon_dimension_resources,
2812 .fini = ef4_port_dummy_op_void,
2813 .monitor = falcon_monitor,
2814 .map_reset_reason = falcon_map_reset_reason,
2815 .map_reset_flags = falcon_map_reset_flags,
2816 .reset = falcon_reset_hw,
2817 .probe_port = falcon_probe_port,
2818 .remove_port = falcon_remove_port,
2819 .handle_global_event = falcon_handle_global_event,
2820 .fini_dmaq = ef4_farch_fini_dmaq,
2821 .prepare_flush = falcon_prepare_flush,
2822 .finish_flush = ef4_port_dummy_op_void,
2823 .prepare_flr = ef4_port_dummy_op_void,
2824 .finish_flr = ef4_farch_finish_flr,
2825 .describe_stats = falcon_describe_nic_stats,
2826 .update_stats = falcon_update_nic_stats,
2827 .start_stats = falcon_start_nic_stats,
2828 .pull_stats = falcon_pull_nic_stats,
2829 .stop_stats = falcon_stop_nic_stats,
2830 .set_id_led = falcon_set_id_led,
2831 .push_irq_moderation = falcon_push_irq_moderation,
2832 .reconfigure_port = falcon_reconfigure_port,
2833 .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2834 .reconfigure_mac = falcon_reconfigure_xmac,
2835 .check_mac_fault = falcon_xmac_check_fault,
2836 .get_wol = falcon_get_wol,
2837 .set_wol = falcon_set_wol,
2838 .resume_wol = ef4_port_dummy_op_void,
2839 .test_chip = falcon_b0_test_chip,
2840 .test_nvram = falcon_test_nvram,
2841 .irq_enable_master = ef4_farch_irq_enable_master,
2842 .irq_test_generate = ef4_farch_irq_test_generate,
2843 .irq_disable_non_ev = ef4_farch_irq_disable_master,
2844 .irq_handle_msi = ef4_farch_msi_interrupt,
2845 .irq_handle_legacy = ef4_farch_legacy_interrupt,
2846 .tx_probe = ef4_farch_tx_probe,
2847 .tx_init = ef4_farch_tx_init,
2848 .tx_remove = ef4_farch_tx_remove,
2849 .tx_write = ef4_farch_tx_write,
2850 .tx_limit_len = ef4_farch_tx_limit_len,
2851 .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2852 .rx_probe = ef4_farch_rx_probe,
2853 .rx_init = ef4_farch_rx_init,
2854 .rx_remove = ef4_farch_rx_remove,
2855 .rx_write = ef4_farch_rx_write,
2856 .rx_defer_refill = ef4_farch_rx_defer_refill,
2857 .ev_probe = ef4_farch_ev_probe,
2858 .ev_init = ef4_farch_ev_init,
2859 .ev_fini = ef4_farch_ev_fini,
2860 .ev_remove = ef4_farch_ev_remove,
2861 .ev_process = ef4_farch_ev_process,
2862 .ev_read_ack = ef4_farch_ev_read_ack,
2863 .ev_test_generate = ef4_farch_ev_test_generate,
2864 .filter_table_probe = ef4_farch_filter_table_probe,
2865 .filter_table_restore = ef4_farch_filter_table_restore,
2866 .filter_table_remove = ef4_farch_filter_table_remove,
2867 .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2868 .filter_insert = ef4_farch_filter_insert,
2869 .filter_remove_safe = ef4_farch_filter_remove_safe,
2870 .filter_get_safe = ef4_farch_filter_get_safe,
2871 .filter_clear_rx = ef4_farch_filter_clear_rx,
2872 .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2873 .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2874 .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2875 #ifdef CONFIG_RFS_ACCEL
2876 .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2877 .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2878 #endif
2879 #ifdef CONFIG_SFC_FALCON_MTD
2880 .mtd_probe = falcon_mtd_probe,
2881 .mtd_rename = falcon_mtd_rename,
2882 .mtd_read = falcon_mtd_read,
2883 .mtd_erase = falcon_mtd_erase,
2884 .mtd_write = falcon_mtd_write,
2885 .mtd_sync = falcon_mtd_sync,
2886 #endif
2888 .revision = EF4_REV_FALCON_B0,
2889 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2890 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2891 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2892 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2893 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2894 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2895 .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2896 .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2897 .rx_buffer_padding = 0,
2898 .can_rx_scatter = true,
2899 .max_interrupt_mode = EF4_INT_MODE_MSIX,
2900 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2901 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2902 .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,