WIP FPC-III support
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / nic.c
blobd1e908846f5dd9347adae576456dee70caa6820a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
6 */
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/seq_file.h>
14 #include <linux/cpu_rmap.h>
15 #include "net_driver.h"
16 #include "bitfield.h"
17 #include "efx.h"
18 #include "nic.h"
19 #include "ef10_regs.h"
20 #include "farch_regs.h"
21 #include "io.h"
22 #include "workarounds.h"
23 #include "mcdi_pcol.h"
25 /**************************************************************************
27 * Generic buffer handling
28 * These buffers are used for interrupt status, MAC stats, etc.
30 **************************************************************************/
32 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
33 unsigned int len, gfp_t gfp_flags)
35 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
36 &buffer->dma_addr, gfp_flags);
37 if (!buffer->addr)
38 return -ENOMEM;
39 buffer->len = len;
40 return 0;
43 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
45 if (buffer->addr) {
46 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
47 buffer->addr, buffer->dma_addr);
48 buffer->addr = NULL;
52 /* Check whether an event is present in the eventq at the current
53 * read pointer. Only useful for self-test.
55 bool efx_nic_event_present(struct efx_channel *channel)
57 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
60 void efx_nic_event_test_start(struct efx_channel *channel)
62 channel->event_test_cpu = -1;
63 smp_wmb();
64 channel->efx->type->ev_test_generate(channel);
67 int efx_nic_irq_test_start(struct efx_nic *efx)
69 efx->last_irq_cpu = -1;
70 smp_wmb();
71 return efx->type->irq_test_generate(efx);
74 /* Hook interrupt handler(s)
75 * Try MSI and then legacy interrupts.
77 int efx_nic_init_interrupt(struct efx_nic *efx)
79 struct efx_channel *channel;
80 unsigned int n_irqs;
81 int rc;
83 if (!EFX_INT_MODE_USE_MSI(efx)) {
84 rc = request_irq(efx->legacy_irq,
85 efx->type->irq_handle_legacy, IRQF_SHARED,
86 efx->name, efx);
87 if (rc) {
88 netif_err(efx, drv, efx->net_dev,
89 "failed to hook legacy IRQ %d\n",
90 efx->pci_dev->irq);
91 goto fail1;
93 return 0;
96 #ifdef CONFIG_RFS_ACCEL
97 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
98 efx->net_dev->rx_cpu_rmap =
99 alloc_irq_cpu_rmap(efx->n_rx_channels);
100 if (!efx->net_dev->rx_cpu_rmap) {
101 rc = -ENOMEM;
102 goto fail1;
105 #endif
107 /* Hook MSI or MSI-X interrupt */
108 n_irqs = 0;
109 efx_for_each_channel(channel, efx) {
110 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
111 IRQF_PROBE_SHARED, /* Not shared */
112 efx->msi_context[channel->channel].name,
113 &efx->msi_context[channel->channel]);
114 if (rc) {
115 netif_err(efx, drv, efx->net_dev,
116 "failed to hook IRQ %d\n", channel->irq);
117 goto fail2;
119 ++n_irqs;
121 #ifdef CONFIG_RFS_ACCEL
122 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
123 channel->channel < efx->n_rx_channels) {
124 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
125 channel->irq);
126 if (rc)
127 goto fail2;
129 #endif
132 efx->irqs_hooked = true;
133 return 0;
135 fail2:
136 #ifdef CONFIG_RFS_ACCEL
137 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138 efx->net_dev->rx_cpu_rmap = NULL;
139 #endif
140 efx_for_each_channel(channel, efx) {
141 if (n_irqs-- == 0)
142 break;
143 free_irq(channel->irq, &efx->msi_context[channel->channel]);
145 fail1:
146 return rc;
149 void efx_nic_fini_interrupt(struct efx_nic *efx)
151 struct efx_channel *channel;
153 #ifdef CONFIG_RFS_ACCEL
154 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155 efx->net_dev->rx_cpu_rmap = NULL;
156 #endif
158 if (!efx->irqs_hooked)
159 return;
160 if (EFX_INT_MODE_USE_MSI(efx)) {
161 /* Disable MSI/MSI-X interrupts */
162 efx_for_each_channel(channel, efx)
163 free_irq(channel->irq,
164 &efx->msi_context[channel->channel]);
165 } else {
166 /* Disable legacy interrupt */
167 free_irq(efx->legacy_irq, efx);
169 efx->irqs_hooked = false;
172 /* Register dump */
174 #define REGISTER_REVISION_FA 1
175 #define REGISTER_REVISION_FB 2
176 #define REGISTER_REVISION_FC 3
177 #define REGISTER_REVISION_FZ 3 /* last Falcon arch revision */
178 #define REGISTER_REVISION_ED 4
179 #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
181 struct efx_nic_reg {
182 u32 offset:24;
183 u32 min_revision:3, max_revision:3;
186 #define REGISTER(name, arch, min_rev, max_rev) { \
187 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
188 REGISTER_REVISION_ ## arch ## min_rev, \
189 REGISTER_REVISION_ ## arch ## max_rev \
191 #define REGISTER_AA(name) REGISTER(name, F, A, A)
192 #define REGISTER_AB(name) REGISTER(name, F, A, B)
193 #define REGISTER_AZ(name) REGISTER(name, F, A, Z)
194 #define REGISTER_BB(name) REGISTER(name, F, B, B)
195 #define REGISTER_BZ(name) REGISTER(name, F, B, Z)
196 #define REGISTER_CZ(name) REGISTER(name, F, C, Z)
197 #define REGISTER_DZ(name) REGISTER(name, E, D, Z)
199 static const struct efx_nic_reg efx_nic_regs[] = {
200 REGISTER_AZ(ADR_REGION),
201 REGISTER_AZ(INT_EN_KER),
202 REGISTER_BZ(INT_EN_CHAR),
203 REGISTER_AZ(INT_ADR_KER),
204 REGISTER_BZ(INT_ADR_CHAR),
205 /* INT_ACK_KER is WO */
206 /* INT_ISR0 is RC */
207 REGISTER_AZ(HW_INIT),
208 REGISTER_CZ(USR_EV_CFG),
209 REGISTER_AB(EE_SPI_HCMD),
210 REGISTER_AB(EE_SPI_HADR),
211 REGISTER_AB(EE_SPI_HDATA),
212 REGISTER_AB(EE_BASE_PAGE),
213 REGISTER_AB(EE_VPD_CFG0),
214 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
215 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
216 /* PCIE_CORE_INDIRECT is indirect */
217 REGISTER_AB(NIC_STAT),
218 REGISTER_AB(GPIO_CTL),
219 REGISTER_AB(GLB_CTL),
220 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
221 REGISTER_BZ(DP_CTRL),
222 REGISTER_AZ(MEM_STAT),
223 REGISTER_AZ(CS_DEBUG),
224 REGISTER_AZ(ALTERA_BUILD),
225 REGISTER_AZ(CSR_SPARE),
226 REGISTER_AB(PCIE_SD_CTL0123),
227 REGISTER_AB(PCIE_SD_CTL45),
228 REGISTER_AB(PCIE_PCS_CTL_STAT),
229 /* DEBUG_DATA_OUT is not used */
230 /* DRV_EV is WO */
231 REGISTER_AZ(EVQ_CTL),
232 REGISTER_AZ(EVQ_CNT1),
233 REGISTER_AZ(EVQ_CNT2),
234 REGISTER_AZ(BUF_TBL_CFG),
235 REGISTER_AZ(SRM_RX_DC_CFG),
236 REGISTER_AZ(SRM_TX_DC_CFG),
237 REGISTER_AZ(SRM_CFG),
238 /* BUF_TBL_UPD is WO */
239 REGISTER_AZ(SRM_UPD_EVQ),
240 REGISTER_AZ(SRAM_PARITY),
241 REGISTER_AZ(RX_CFG),
242 REGISTER_BZ(RX_FILTER_CTL),
243 /* RX_FLUSH_DESCQ is WO */
244 REGISTER_AZ(RX_DC_CFG),
245 REGISTER_AZ(RX_DC_PF_WM),
246 REGISTER_BZ(RX_RSS_TKEY),
247 /* RX_NODESC_DROP is RC */
248 REGISTER_AA(RX_SELF_RST),
249 /* RX_DEBUG, RX_PUSH_DROP are not used */
250 REGISTER_CZ(RX_RSS_IPV6_REG1),
251 REGISTER_CZ(RX_RSS_IPV6_REG2),
252 REGISTER_CZ(RX_RSS_IPV6_REG3),
253 /* TX_FLUSH_DESCQ is WO */
254 REGISTER_AZ(TX_DC_CFG),
255 REGISTER_AA(TX_CHKSM_CFG),
256 REGISTER_AZ(TX_CFG),
257 /* TX_PUSH_DROP is not used */
258 REGISTER_AZ(TX_RESERVED),
259 REGISTER_BZ(TX_PACE),
260 /* TX_PACE_DROP_QID is RC */
261 REGISTER_BB(TX_VLAN),
262 REGISTER_BZ(TX_IPFIL_PORTEN),
263 REGISTER_AB(MD_TXD),
264 REGISTER_AB(MD_RXD),
265 REGISTER_AB(MD_CS),
266 REGISTER_AB(MD_PHY_ADR),
267 REGISTER_AB(MD_ID),
268 /* MD_STAT is RC */
269 REGISTER_AB(MAC_STAT_DMA),
270 REGISTER_AB(MAC_CTRL),
271 REGISTER_BB(GEN_MODE),
272 REGISTER_AB(MAC_MC_HASH_REG0),
273 REGISTER_AB(MAC_MC_HASH_REG1),
274 REGISTER_AB(GM_CFG1),
275 REGISTER_AB(GM_CFG2),
276 /* GM_IPG and GM_HD are not used */
277 REGISTER_AB(GM_MAX_FLEN),
278 /* GM_TEST is not used */
279 REGISTER_AB(GM_ADR1),
280 REGISTER_AB(GM_ADR2),
281 REGISTER_AB(GMF_CFG0),
282 REGISTER_AB(GMF_CFG1),
283 REGISTER_AB(GMF_CFG2),
284 REGISTER_AB(GMF_CFG3),
285 REGISTER_AB(GMF_CFG4),
286 REGISTER_AB(GMF_CFG5),
287 REGISTER_BB(TX_SRC_MAC_CTL),
288 REGISTER_AB(XM_ADR_LO),
289 REGISTER_AB(XM_ADR_HI),
290 REGISTER_AB(XM_GLB_CFG),
291 REGISTER_AB(XM_TX_CFG),
292 REGISTER_AB(XM_RX_CFG),
293 REGISTER_AB(XM_MGT_INT_MASK),
294 REGISTER_AB(XM_FC),
295 REGISTER_AB(XM_PAUSE_TIME),
296 REGISTER_AB(XM_TX_PARAM),
297 REGISTER_AB(XM_RX_PARAM),
298 /* XM_MGT_INT_MSK (note no 'A') is RC */
299 REGISTER_AB(XX_PWR_RST),
300 REGISTER_AB(XX_SD_CTL),
301 REGISTER_AB(XX_TXDRV_CTL),
302 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
303 /* XX_CORE_STAT is partly RC */
304 REGISTER_DZ(BIU_HW_REV_ID),
305 REGISTER_DZ(MC_DB_LWRD),
306 REGISTER_DZ(MC_DB_HWRD),
309 struct efx_nic_reg_table {
310 u32 offset:24;
311 u32 min_revision:3, max_revision:3;
312 u32 step:6, rows:21;
315 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
316 offset, \
317 REGISTER_REVISION_ ## arch ## min_rev, \
318 REGISTER_REVISION_ ## arch ## max_rev, \
319 step, rows \
321 #define REGISTER_TABLE(name, arch, min_rev, max_rev) \
322 REGISTER_TABLE_DIMENSIONS( \
323 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
324 arch, min_rev, max_rev, \
325 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
326 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
327 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
328 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
329 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
330 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
331 #define REGISTER_TABLE_BB_CZ(name) \
332 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \
333 FR_BZ_ ## name ## _STEP, \
334 FR_BB_ ## name ## _ROWS), \
335 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \
336 FR_BZ_ ## name ## _STEP, \
337 FR_CZ_ ## name ## _ROWS)
338 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
339 #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
341 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
342 /* DRIVER is not used */
343 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
344 REGISTER_TABLE_BB(TX_IPFIL_TBL),
345 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
346 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
347 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
348 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
349 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
350 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
351 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
352 /* We can't reasonably read all of the buffer table (up to 8MB!).
353 * However this driver will only use a few entries. Reading
354 * 1K entries allows for some expansion of queue count and
355 * size before we need to change the version. */
356 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
357 F, A, A, 8, 1024),
358 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
359 F, B, Z, 8, 1024),
360 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
361 REGISTER_TABLE_BB_CZ(TIMER_TBL),
362 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
363 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
364 /* TX_FILTER_TBL0 is huge and not used by this driver */
365 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
366 REGISTER_TABLE_CZ(MC_TREG_SMEM),
367 /* MSIX_PBA_TABLE is not mapped */
368 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
369 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
370 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
373 size_t efx_nic_get_regs_len(struct efx_nic *efx)
375 const struct efx_nic_reg *reg;
376 const struct efx_nic_reg_table *table;
377 size_t len = 0;
379 for (reg = efx_nic_regs;
380 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
381 reg++)
382 if (efx->type->revision >= reg->min_revision &&
383 efx->type->revision <= reg->max_revision)
384 len += sizeof(efx_oword_t);
386 for (table = efx_nic_reg_tables;
387 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
388 table++)
389 if (efx->type->revision >= table->min_revision &&
390 efx->type->revision <= table->max_revision)
391 len += table->rows * min_t(size_t, table->step, 16);
393 return len;
396 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
398 const struct efx_nic_reg *reg;
399 const struct efx_nic_reg_table *table;
401 for (reg = efx_nic_regs;
402 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
403 reg++) {
404 if (efx->type->revision >= reg->min_revision &&
405 efx->type->revision <= reg->max_revision) {
406 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
407 buf += sizeof(efx_oword_t);
411 for (table = efx_nic_reg_tables;
412 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
413 table++) {
414 size_t size, i;
416 if (!(efx->type->revision >= table->min_revision &&
417 efx->type->revision <= table->max_revision))
418 continue;
420 size = min_t(size_t, table->step, 16);
422 for (i = 0; i < table->rows; i++) {
423 switch (table->step) {
424 case 4: /* 32-bit SRAM */
425 efx_readd(efx, buf, table->offset + 4 * i);
426 break;
427 case 8: /* 64-bit SRAM */
428 efx_sram_readq(efx,
429 efx->membase + table->offset,
430 buf, i);
431 break;
432 case 16: /* 128-bit-readable register */
433 efx_reado_table(efx, buf, table->offset, i);
434 break;
435 case 32: /* 128-bit register, interleaved */
436 efx_reado_table(efx, buf, table->offset, 2 * i);
437 break;
438 default:
439 WARN_ON(1);
440 return;
442 buf += size;
448 * efx_nic_describe_stats - Describe supported statistics for ethtool
449 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
450 * @count: Length of the @desc array
451 * @mask: Bitmask of which elements of @desc are enabled
452 * @names: Buffer to copy names to, or %NULL. The names are copied
453 * starting at intervals of %ETH_GSTRING_LEN bytes.
455 * Returns the number of visible statistics, i.e. the number of set
456 * bits in the first @count bits of @mask for which a name is defined.
458 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
459 const unsigned long *mask, u8 *names)
461 size_t visible = 0;
462 size_t index;
464 for_each_set_bit(index, mask, count) {
465 if (desc[index].name) {
466 if (names) {
467 strlcpy(names, desc[index].name,
468 ETH_GSTRING_LEN);
469 names += ETH_GSTRING_LEN;
471 ++visible;
475 return visible;
479 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
480 * intermediate buffer. This is used to get a consistent
481 * set of stats while the DMA buffer can be written at any time
482 * by the NIC.
483 * @efx: The associated NIC.
484 * @dest: Destination buffer. Must be the same size as the DMA buffer.
486 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
488 __le64 *dma_stats = efx->stats_buffer.addr;
489 __le64 generation_start, generation_end;
490 int rc = 0, retry;
492 if (!dest)
493 return 0;
495 if (!dma_stats)
496 goto return_zeroes;
498 /* If we're unlucky enough to read statistics during the DMA, wait
499 * up to 10ms for it to finish (typically takes <500us)
501 for (retry = 0; retry < 100; ++retry) {
502 generation_end = dma_stats[efx->num_mac_stats - 1];
503 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
504 goto return_zeroes;
505 rmb();
506 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
507 rmb();
508 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
509 if (generation_end == generation_start)
510 return 0; /* return good data */
511 udelay(100);
514 rc = -EIO;
516 return_zeroes:
517 memset(dest, 0, efx->num_mac_stats * sizeof(u64));
518 return rc;
522 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
523 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
524 * layout. DMA widths of 0, 16, 32 and 64 are supported; where
525 * the width is specified as 0 the corresponding element of
526 * @stats is not updated.
527 * @count: Length of the @desc array
528 * @mask: Bitmask of which elements of @desc are enabled
529 * @stats: Buffer to update with the converted statistics. The length
530 * of this array must be at least @count.
531 * @dma_buf: DMA buffer containing hardware statistics
532 * @accumulate: If set, the converted values will be added rather than
533 * directly stored to the corresponding elements of @stats
535 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
536 const unsigned long *mask,
537 u64 *stats, const void *dma_buf, bool accumulate)
539 size_t index;
541 for_each_set_bit(index, mask, count) {
542 if (desc[index].dma_width) {
543 const void *addr = dma_buf + desc[index].offset;
544 u64 val;
546 switch (desc[index].dma_width) {
547 case 16:
548 val = le16_to_cpup((__le16 *)addr);
549 break;
550 case 32:
551 val = le32_to_cpup((__le32 *)addr);
552 break;
553 case 64:
554 val = le64_to_cpup((__le64 *)addr);
555 break;
556 default:
557 WARN_ON(1);
558 val = 0;
559 break;
562 if (accumulate)
563 stats[index] += val;
564 else
565 stats[index] = val;
570 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
572 /* if down, or this is the first update after coming up */
573 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
574 efx->rx_nodesc_drops_while_down +=
575 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
576 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
577 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
578 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;