1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
7 /* Theory of operation:
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities. Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
15 * Receive event processing:
16 * The event contains the packet's UUID and sequence number, together
17 * with the hardware timestamp. The PTP receive packet queue is searched
18 * for this UUID/sequence number and, if found, put on a pending queue.
19 * Packets not matching are delivered without timestamps (MCDI events will
20 * always arrive after the actual packet).
21 * It is important for the operation of the PTP protocol that the ordering
22 * of packets between the event and general port is maintained.
24 * Work queue processing:
25 * If work waiting, synchronise host/hardware time
27 * Transmit: send packet through MC, which returns the transmission time
28 * that is converted to an appropriate timestamp.
30 * Receive: the packet's reception time is converted to an appropriate
34 #include <linux/udp.h>
35 #include <linux/time.h>
36 #include <linux/ktime.h>
37 #include <linux/module.h>
38 #include <linux/pps_kernel.h>
39 #include <linux/ptp_clock_kernel.h>
40 #include "net_driver.h"
43 #include "mcdi_pcol.h"
45 #include "farch_regs.h"
47 #include "nic.h" /* indirectly includes ptp.h */
49 /* Maximum number of events expected to make up a PTP event */
50 #define MAX_EVENT_FRAGS 3
52 /* Maximum delay, ms, to begin synchronisation */
53 #define MAX_SYNCHRONISE_WAIT_MS 2
55 /* How long, at most, to spend synchronising */
56 #define SYNCHRONISE_PERIOD_NS 250000
58 /* How often to update the shared memory time */
59 #define SYNCHRONISATION_GRANULARITY_NS 200
61 /* Minimum permitted length of a (corrected) synchronisation time */
62 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
64 /* Maximum permitted length of a (corrected) synchronisation time */
65 #define MAX_SYNCHRONISATION_NS 1000
67 /* How many (MC) receive events that can be queued */
68 #define MAX_RECEIVE_EVENTS 8
70 /* Length of (modified) moving average. */
71 #define AVERAGE_LENGTH 16
73 /* How long an unmatched event or packet can be held */
74 #define PKT_EVENT_LIFETIME_MS 10
76 /* Offsets into PTP packet for identification. These offsets are from the
77 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
78 * PTP V2 permit the use of IPV4 options.
80 #define PTP_DPORT_OFFSET 22
82 #define PTP_V1_VERSION_LENGTH 2
83 #define PTP_V1_VERSION_OFFSET 28
85 #define PTP_V1_UUID_LENGTH 6
86 #define PTP_V1_UUID_OFFSET 50
88 #define PTP_V1_SEQUENCE_LENGTH 2
89 #define PTP_V1_SEQUENCE_OFFSET 58
91 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
94 #define PTP_V1_MIN_LENGTH 64
96 #define PTP_V2_VERSION_LENGTH 1
97 #define PTP_V2_VERSION_OFFSET 29
99 #define PTP_V2_UUID_LENGTH 8
100 #define PTP_V2_UUID_OFFSET 48
102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
103 * the MC only captures the last six bytes of the clock identity. These values
104 * reflect those, not the ones used in the standard. The standard permits
105 * mapping of V1 UUIDs to V2 UUIDs with these same values.
107 #define PTP_V2_MC_UUID_LENGTH 6
108 #define PTP_V2_MC_UUID_OFFSET 50
110 #define PTP_V2_SEQUENCE_LENGTH 2
111 #define PTP_V2_SEQUENCE_OFFSET 58
113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
114 * includes IP header.
116 #define PTP_V2_MIN_LENGTH 63
118 #define PTP_MIN_LENGTH 63
120 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
121 #define PTP_EVENT_PORT 319
122 #define PTP_GENERAL_PORT 320
124 /* Annoyingly the format of the version numbers are different between
125 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
127 #define PTP_VERSION_V1 1
129 #define PTP_VERSION_V2 2
130 #define PTP_VERSION_V2_MASK 0x0f
132 enum ptp_packet_state
{
133 PTP_PACKET_STATE_UNMATCHED
= 0,
134 PTP_PACKET_STATE_MATCHED
,
135 PTP_PACKET_STATE_TIMED_OUT
,
136 PTP_PACKET_STATE_MATCH_UNWANTED
139 /* NIC synchronised with single word of time only comprising
140 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
142 #define MC_NANOSECOND_BITS 30
143 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
144 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
146 /* Maximum parts-per-billion adjustment that is acceptable */
147 #define MAX_PPB 1000000
149 /* Precalculate scale word to avoid long long division at runtime */
150 /* This is equivalent to 2^66 / 10^9. */
151 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
153 /* How much to shift down after scaling to convert to FP40 */
154 #define PPB_SHIFT_FP40 26
156 #define PPB_SHIFT_FP44 22
158 #define PTP_SYNC_ATTEMPTS 4
161 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
162 * @words: UUID and (partial) sequence number
163 * @expiry: Time after which the packet should be delivered irrespective of
165 * @state: The state of the packet - whether it is ready for processing or
166 * whether that is of no interest.
168 struct efx_ptp_match
{
169 u32 words
[DIV_ROUND_UP(PTP_V1_UUID_LENGTH
, 4)];
170 unsigned long expiry
;
171 enum ptp_packet_state state
;
175 * struct efx_ptp_event_rx - A PTP receive event (from MC)
176 * @link: list of events
177 * @seq0: First part of (PTP) UUID
178 * @seq1: Second part of (PTP) UUID and sequence number
179 * @hwtimestamp: Event timestamp
180 * @expiry: Time which the packet arrived
182 struct efx_ptp_event_rx
{
183 struct list_head link
;
187 unsigned long expiry
;
191 * struct efx_ptp_timeset - Synchronisation between host and MC
192 * @host_start: Host time immediately before hardware timestamp taken
193 * @major: Hardware timestamp, major
194 * @minor: Hardware timestamp, minor
195 * @host_end: Host time immediately after hardware timestamp taken
196 * @wait: Number of NIC clock ticks between hardware timestamp being read and
197 * host end time being seen
198 * @window: Difference of host_end and host_start
199 * @valid: Whether this timeset is valid
201 struct efx_ptp_timeset
{
207 u32 window
; /* Derived: end - start, allowing for wrap */
211 * struct efx_ptp_data - Precision Time Protocol (PTP) state
212 * @efx: The NIC context
213 * @channel: The PTP channel (Siena only)
214 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
216 * @rxq: Receive SKB queue (awaiting timestamps)
217 * @txq: Transmit SKB queue
218 * @evt_list: List of MC receive events awaiting packets
219 * @evt_free_list: List of free events
220 * @evt_lock: Lock for manipulating evt_list and evt_free_list
221 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
222 * @workwq: Work queue for processing pending PTP operations
224 * @reset_required: A serious error has occurred and the PTP task needs to be
225 * reset (disable, enable).
226 * @rxfilter_event: Receive filter when operating
227 * @rxfilter_general: Receive filter when operating
228 * @rxfilter_installed: Receive filter installed
229 * @config: Current timestamp configuration
230 * @enabled: PTP operation enabled
231 * @mode: Mode in which PTP operating (PTP version)
232 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
233 * @nic_to_kernel_time: Function to convert from NIC to kernel time
234 * @nic_time: contains time details
235 * @nic_time.minor_max: Wrap point for NIC minor times
236 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
237 * in packet prefix and last MCDI time sync event i.e. how much earlier than
238 * the last sync event time a packet timestamp can be.
239 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
240 * in packet prefix and last MCDI time sync event i.e. how much later than
241 * the last sync event time a packet timestamp can be.
242 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
243 * field in MCDI time sync event.
244 * @min_synchronisation_ns: Minimum acceptable corrected sync window
245 * @capabilities: Capabilities flags from the NIC
246 * @ts_corrections: contains corrections details
247 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
249 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
251 * @ts_corrections.pps_out: PPS output error (information only)
252 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
253 * @ts_corrections.general_tx: Required driver correction of general packet
254 * transmit timestamps
255 * @ts_corrections.general_rx: Required driver correction of general packet
257 * @evt_frags: Partly assembled PTP events
258 * @evt_frag_idx: Current fragment number
259 * @evt_code: Last event code
260 * @start: Address at which MC indicates ready for synchronisation
261 * @host_time_pps: Host time at last PPS
262 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
263 * frequency adjustment into a fixed point fractional nanosecond format.
264 * @current_adjfreq: Current ppb adjustment.
265 * @phc_clock: Pointer to registered phc device (if primary function)
266 * @phc_clock_info: Registration structure for phc device
267 * @pps_work: pps work task for handling pps events
268 * @pps_workwq: pps work queue
269 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
270 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
271 * allocations in main data path).
272 * @good_syncs: Number of successful synchronisations.
273 * @fast_syncs: Number of synchronisations requiring short delay
274 * @bad_syncs: Number of failed synchronisations.
275 * @sync_timeouts: Number of synchronisation timeouts
276 * @no_time_syncs: Number of synchronisations with no good times.
277 * @invalid_sync_windows: Number of sync windows with bad durations.
278 * @undersize_sync_windows: Number of corrected sync windows that are too small
279 * @oversize_sync_windows: Number of corrected sync windows that are too large
280 * @rx_no_timestamp: Number of packets received without a timestamp.
281 * @timeset: Last set of synchronisation statistics.
282 * @xmit_skb: Transmit SKB function.
284 struct efx_ptp_data
{
286 struct efx_channel
*channel
;
288 struct sk_buff_head rxq
;
289 struct sk_buff_head txq
;
290 struct list_head evt_list
;
291 struct list_head evt_free_list
;
293 struct efx_ptp_event_rx rx_evts
[MAX_RECEIVE_EVENTS
];
294 struct workqueue_struct
*workwq
;
295 struct work_struct work
;
298 u32 rxfilter_general
;
299 bool rxfilter_installed
;
300 struct hwtstamp_config config
;
303 void (*ns_to_nic_time
)(s64 ns
, u32
*nic_major
, u32
*nic_minor
);
304 ktime_t (*nic_to_kernel_time
)(u32 nic_major
, u32 nic_minor
,
308 u32 sync_event_diff_min
;
309 u32 sync_event_diff_max
;
310 unsigned int sync_event_minor_shift
;
312 unsigned int min_synchronisation_ns
;
313 unsigned int capabilities
;
322 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
325 struct efx_buffer start
;
326 struct pps_event_time host_time_pps
;
327 unsigned int adjfreq_ppb_shift
;
329 struct ptp_clock
*phc_clock
;
330 struct ptp_clock_info phc_clock_info
;
331 struct work_struct pps_work
;
332 struct workqueue_struct
*pps_workwq
;
334 efx_dword_t txbuf
[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX
)];
336 unsigned int good_syncs
;
337 unsigned int fast_syncs
;
338 unsigned int bad_syncs
;
339 unsigned int sync_timeouts
;
340 unsigned int no_time_syncs
;
341 unsigned int invalid_sync_windows
;
342 unsigned int undersize_sync_windows
;
343 unsigned int oversize_sync_windows
;
344 unsigned int rx_no_timestamp
;
345 struct efx_ptp_timeset
346 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
347 void (*xmit_skb
)(struct efx_nic
*efx
, struct sk_buff
*skb
);
350 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
);
351 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
352 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
);
353 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
354 const struct timespec64
*e_ts
);
355 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
356 struct ptp_clock_request
*request
, int on
);
358 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic
*efx
)
360 return efx_has_cap(efx
, TX_MAC_TIMESTAMPING
);
363 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
364 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
366 static bool efx_ptp_want_txqs(struct efx_channel
*channel
)
368 return efx_ptp_use_mac_tx_timestamps(channel
->efx
);
371 #define PTP_SW_STAT(ext_name, field_name) \
372 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
373 #define PTP_MC_STAT(ext_name, mcdi_name) \
374 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
375 static const struct efx_hw_stat_desc efx_ptp_stat_desc
[] = {
376 PTP_SW_STAT(ptp_good_syncs
, good_syncs
),
377 PTP_SW_STAT(ptp_fast_syncs
, fast_syncs
),
378 PTP_SW_STAT(ptp_bad_syncs
, bad_syncs
),
379 PTP_SW_STAT(ptp_sync_timeouts
, sync_timeouts
),
380 PTP_SW_STAT(ptp_no_time_syncs
, no_time_syncs
),
381 PTP_SW_STAT(ptp_invalid_sync_windows
, invalid_sync_windows
),
382 PTP_SW_STAT(ptp_undersize_sync_windows
, undersize_sync_windows
),
383 PTP_SW_STAT(ptp_oversize_sync_windows
, oversize_sync_windows
),
384 PTP_SW_STAT(ptp_rx_no_timestamp
, rx_no_timestamp
),
385 PTP_MC_STAT(ptp_tx_timestamp_packets
, TX
),
386 PTP_MC_STAT(ptp_rx_timestamp_packets
, RX
),
387 PTP_MC_STAT(ptp_timestamp_packets
, TS
),
388 PTP_MC_STAT(ptp_filter_matches
, FM
),
389 PTP_MC_STAT(ptp_non_filter_matches
, NFM
),
391 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
392 static const unsigned long efx_ptp_stat_mask
[] = {
393 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT
) - 1] = ~0UL,
396 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
*strings
)
401 return efx_nic_describe_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
402 efx_ptp_stat_mask
, strings
);
405 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
)
407 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_STATUS_LEN
);
408 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_STATUS_LEN
);
415 /* Copy software statistics */
416 for (i
= 0; i
< PTP_STAT_COUNT
; i
++) {
417 if (efx_ptp_stat_desc
[i
].dma_width
)
419 stats
[i
] = *(unsigned int *)((char *)efx
->ptp_data
+
420 efx_ptp_stat_desc
[i
].offset
);
423 /* Fetch MC statistics. We *must* fill in all statistics or
424 * risk leaking kernel memory to userland, so if the MCDI
425 * request fails we pretend we got zeroes.
427 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_STATUS
);
428 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
429 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
430 outbuf
, sizeof(outbuf
), NULL
);
432 memset(outbuf
, 0, sizeof(outbuf
));
433 efx_nic_update_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
435 stats
, _MCDI_PTR(outbuf
, 0), false);
437 return PTP_STAT_COUNT
;
440 /* For Siena platforms NIC time is s and ns */
441 static void efx_ptp_ns_to_s_ns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
443 struct timespec64 ts
= ns_to_timespec64(ns
);
444 *nic_major
= (u32
)ts
.tv_sec
;
445 *nic_minor
= ts
.tv_nsec
;
448 static ktime_t
efx_ptp_s_ns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
451 ktime_t kt
= ktime_set(nic_major
, nic_minor
);
453 kt
= ktime_add_ns(kt
, (u64
)correction
);
455 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
459 /* To convert from s27 format to ns we multiply then divide by a power of 2.
460 * For the conversion from ns to s27, the operation is also converted to a
461 * multiply and shift.
463 #define S27_TO_NS_SHIFT (27)
464 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
465 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
466 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
468 /* For Huntington platforms NIC time is in seconds and fractions of a second
469 * where the minor register only uses 27 bits in units of 2^-27s.
471 static void efx_ptp_ns_to_s27(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
473 struct timespec64 ts
= ns_to_timespec64(ns
);
474 u32 maj
= (u32
)ts
.tv_sec
;
475 u32 min
= (u32
)(((u64
)ts
.tv_nsec
* NS_TO_S27_MULT
+
476 (1ULL << (NS_TO_S27_SHIFT
- 1))) >> NS_TO_S27_SHIFT
);
478 /* The conversion can result in the minor value exceeding the maximum.
479 * In this case, round up to the next second.
481 if (min
>= S27_MINOR_MAX
) {
482 min
-= S27_MINOR_MAX
;
490 static inline ktime_t
efx_ptp_s27_to_ktime(u32 nic_major
, u32 nic_minor
)
492 u32 ns
= (u32
)(((u64
)nic_minor
* NSEC_PER_SEC
+
493 (1ULL << (S27_TO_NS_SHIFT
- 1))) >> S27_TO_NS_SHIFT
);
494 return ktime_set(nic_major
, ns
);
497 static ktime_t
efx_ptp_s27_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
500 /* Apply the correction and deal with carry */
501 nic_minor
+= correction
;
502 if ((s32
)nic_minor
< 0) {
503 nic_minor
+= S27_MINOR_MAX
;
505 } else if (nic_minor
>= S27_MINOR_MAX
) {
506 nic_minor
-= S27_MINOR_MAX
;
510 return efx_ptp_s27_to_ktime(nic_major
, nic_minor
);
513 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
514 static void efx_ptp_ns_to_s_qns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
516 struct timespec64 ts
= ns_to_timespec64(ns
);
518 *nic_major
= (u32
)ts
.tv_sec
;
519 *nic_minor
= ts
.tv_nsec
* 4;
522 static ktime_t
efx_ptp_s_qns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
527 nic_minor
= DIV_ROUND_CLOSEST(nic_minor
, 4);
528 correction
= DIV_ROUND_CLOSEST(correction
, 4);
530 kt
= ktime_set(nic_major
, nic_minor
);
533 kt
= ktime_add_ns(kt
, (u64
)correction
);
535 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
539 struct efx_channel
*efx_ptp_channel(struct efx_nic
*efx
)
541 return efx
->ptp_data
? efx
->ptp_data
->channel
: NULL
;
544 static u32
last_sync_timestamp_major(struct efx_nic
*efx
)
546 struct efx_channel
*channel
= efx_ptp_channel(efx
);
550 major
= channel
->sync_timestamp_major
;
554 /* The 8000 series and later can provide the time from the MAC, which is only
555 * 48 bits long and provides meta-information in the top 2 bits.
558 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic
*efx
,
559 struct efx_ptp_data
*ptp
,
560 u32 nic_major
, u32 nic_minor
,
567 if (!(nic_major
& 0x80000000)) {
568 WARN_ON_ONCE(nic_major
>> 16);
570 /* Medford provides 48 bits of timestamp, so we must get the top
571 * 16 bits from the timesync event state.
573 * We only have the lower 16 bits of the time now, but we do
574 * have a full resolution timestamp at some point in past. As
575 * long as the difference between the (real) now and the sync
576 * is less than 2^15, then we can reconstruct the difference
577 * between those two numbers using only the lower 16 bits of
582 * a - b = ((a mod k) - b) mod k
584 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
585 * (a mod k) and b, so can calculate the delta, a - b.
588 sync_timestamp
= last_sync_timestamp_major(efx
);
590 /* Because delta is s16 this does an implicit mask down to
591 * 16 bits which is what we need, assuming
592 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
593 * we can deal with the (unlikely) case of sync timestamps
594 * arriving from the future.
596 delta
= nic_major
- sync_timestamp
;
598 /* Recover the fully specified time now, by applying the offset
599 * to the (fully specified) sync time.
601 nic_major
= sync_timestamp
+ delta
;
603 kt
= ptp
->nic_to_kernel_time(nic_major
, nic_minor
,
609 ktime_t
efx_ptp_nic_to_kernel_time(struct efx_tx_queue
*tx_queue
)
611 struct efx_nic
*efx
= tx_queue
->efx
;
612 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
615 if (efx_ptp_use_mac_tx_timestamps(efx
))
616 kt
= efx_ptp_mac_nic_to_ktime_correction(efx
, ptp
,
617 tx_queue
->completed_timestamp_major
,
618 tx_queue
->completed_timestamp_minor
,
619 ptp
->ts_corrections
.general_tx
);
621 kt
= ptp
->nic_to_kernel_time(
622 tx_queue
->completed_timestamp_major
,
623 tx_queue
->completed_timestamp_minor
,
624 ptp
->ts_corrections
.general_tx
);
628 /* Get PTP attributes and set up time conversions */
629 static int efx_ptp_get_attributes(struct efx_nic
*efx
)
631 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN
);
632 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
);
633 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
638 /* Get the PTP attributes. If the NIC doesn't support the operation we
639 * use the default format for compatibility with older NICs i.e.
640 * seconds and nanoseconds.
642 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_GET_ATTRIBUTES
);
643 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
644 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
645 outbuf
, sizeof(outbuf
), &out_len
);
647 fmt
= MCDI_DWORD(outbuf
, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT
);
648 } else if (rc
== -EINVAL
) {
649 fmt
= MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
;
650 } else if (rc
== -EPERM
) {
651 netif_info(efx
, probe
, efx
->net_dev
, "no PTP support\n");
654 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
),
655 outbuf
, sizeof(outbuf
), rc
);
660 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION
:
661 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s27
;
662 ptp
->nic_to_kernel_time
= efx_ptp_s27_to_ktime_correction
;
663 ptp
->nic_time
.minor_max
= 1 << 27;
664 ptp
->nic_time
.sync_event_minor_shift
= 19;
666 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
:
667 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_ns
;
668 ptp
->nic_to_kernel_time
= efx_ptp_s_ns_to_ktime_correction
;
669 ptp
->nic_time
.minor_max
= 1000000000;
670 ptp
->nic_time
.sync_event_minor_shift
= 22;
672 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS
:
673 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_qns
;
674 ptp
->nic_to_kernel_time
= efx_ptp_s_qns_to_ktime_correction
;
675 ptp
->nic_time
.minor_max
= 4000000000UL;
676 ptp
->nic_time
.sync_event_minor_shift
= 24;
682 /* Precalculate acceptable difference between the minor time in the
683 * packet prefix and the last MCDI time sync event. We expect the
684 * packet prefix timestamp to be after of sync event by up to one
685 * sync event interval (0.25s) but we allow it to exceed this by a
686 * fuzz factor of (0.1s)
688 ptp
->nic_time
.sync_event_diff_min
= ptp
->nic_time
.minor_max
689 - (ptp
->nic_time
.minor_max
/ 10);
690 ptp
->nic_time
.sync_event_diff_max
= (ptp
->nic_time
.minor_max
/ 4)
691 + (ptp
->nic_time
.minor_max
/ 10);
693 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
694 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
695 * a value to use for the minimum acceptable corrected synchronization
696 * window and may return further capabilities.
697 * If we have the extra information store it. For older firmware that
698 * does not implement the extended command use the default value.
701 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST
)
702 ptp
->min_synchronisation_ns
=
704 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN
);
706 ptp
->min_synchronisation_ns
= DEFAULT_MIN_SYNCHRONISATION_NS
;
709 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
)
710 ptp
->capabilities
= MCDI_DWORD(outbuf
,
711 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES
);
713 ptp
->capabilities
= 0;
715 /* Set up the shift for conversion between frequency
716 * adjustments in parts-per-billion and the fixed-point
717 * fractional ns format that the adapter uses.
719 if (ptp
->capabilities
& (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN
))
720 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP44
;
722 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP40
;
727 /* Get PTP timestamp corrections */
728 static int efx_ptp_get_timestamp_corrections(struct efx_nic
*efx
)
730 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN
);
731 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
);
735 /* Get the timestamp corrections from the NIC. If this operation is
736 * not supported (older NICs) then no correction is required.
738 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
,
739 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS
);
740 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
742 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
743 outbuf
, sizeof(outbuf
), &out_len
);
745 efx
->ptp_data
->ts_corrections
.ptp_tx
= MCDI_DWORD(outbuf
,
746 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT
);
747 efx
->ptp_data
->ts_corrections
.ptp_rx
= MCDI_DWORD(outbuf
,
748 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE
);
749 efx
->ptp_data
->ts_corrections
.pps_out
= MCDI_DWORD(outbuf
,
750 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT
);
751 efx
->ptp_data
->ts_corrections
.pps_in
= MCDI_DWORD(outbuf
,
752 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN
);
754 if (out_len
>= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
) {
755 efx
->ptp_data
->ts_corrections
.general_tx
= MCDI_DWORD(
757 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX
);
758 efx
->ptp_data
->ts_corrections
.general_rx
= MCDI_DWORD(
760 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX
);
762 efx
->ptp_data
->ts_corrections
.general_tx
=
763 efx
->ptp_data
->ts_corrections
.ptp_tx
;
764 efx
->ptp_data
->ts_corrections
.general_rx
=
765 efx
->ptp_data
->ts_corrections
.ptp_rx
;
767 } else if (rc
== -EINVAL
) {
768 efx
->ptp_data
->ts_corrections
.ptp_tx
= 0;
769 efx
->ptp_data
->ts_corrections
.ptp_rx
= 0;
770 efx
->ptp_data
->ts_corrections
.pps_out
= 0;
771 efx
->ptp_data
->ts_corrections
.pps_in
= 0;
772 efx
->ptp_data
->ts_corrections
.general_tx
= 0;
773 efx
->ptp_data
->ts_corrections
.general_rx
= 0;
775 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
), outbuf
,
783 /* Enable MCDI PTP support. */
784 static int efx_ptp_enable(struct efx_nic
*efx
)
786 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ENABLE_LEN
);
787 MCDI_DECLARE_BUF_ERR(outbuf
);
790 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
791 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
792 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
793 efx
->ptp_data
->channel
?
794 efx
->ptp_data
->channel
->channel
: 0);
795 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
797 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
798 outbuf
, sizeof(outbuf
), NULL
);
799 rc
= (rc
== -EALREADY
) ? 0 : rc
;
801 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
802 MC_CMD_PTP_IN_ENABLE_LEN
,
803 outbuf
, sizeof(outbuf
), rc
);
807 /* Disable MCDI PTP support.
809 * Note that this function should never rely on the presence of ptp_data -
810 * may be called before that exists.
812 static int efx_ptp_disable(struct efx_nic
*efx
)
814 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_DISABLE_LEN
);
815 MCDI_DECLARE_BUF_ERR(outbuf
);
818 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
819 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
820 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
821 outbuf
, sizeof(outbuf
), NULL
);
822 rc
= (rc
== -EALREADY
) ? 0 : rc
;
823 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
824 * should only have been called during probe.
826 if (rc
== -ENOSYS
|| rc
== -EPERM
)
827 netif_info(efx
, probe
, efx
->net_dev
, "no PTP support\n");
829 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
830 MC_CMD_PTP_IN_DISABLE_LEN
,
831 outbuf
, sizeof(outbuf
), rc
);
835 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
839 while ((skb
= skb_dequeue(q
))) {
841 netif_receive_skb(skb
);
846 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
848 netif_err(efx
, drv
, efx
->net_dev
,
849 "ERROR: PTP requires MSI-X and 1 additional interrupt"
850 "vector. PTP disabled\n");
853 /* Repeatedly send the host time to the MC which will capture the hardware
856 static void efx_ptp_send_times(struct efx_nic
*efx
,
857 struct pps_event_time
*last_time
)
859 struct pps_event_time now
;
860 struct timespec64 limit
;
861 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
862 int *mc_running
= ptp
->start
.addr
;
866 timespec64_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
868 /* Write host time for specified period or until MC is done */
869 while ((timespec64_compare(&now
.ts_real
, &limit
) < 0) &&
870 READ_ONCE(*mc_running
)) {
871 struct timespec64 update_time
;
872 unsigned int host_time
;
874 /* Don't update continuously to avoid saturating the PCIe bus */
875 update_time
= now
.ts_real
;
876 timespec64_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
879 } while ((timespec64_compare(&now
.ts_real
, &update_time
) < 0) &&
880 READ_ONCE(*mc_running
));
882 /* Synchronise NIC with single word of time only */
883 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
884 now
.ts_real
.tv_nsec
);
885 /* Update host time in NIC memory */
886 efx
->type
->ptp_write_host_time(efx
, host_time
);
891 /* Read a timeset from the MC's results and partial process. */
892 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data
),
893 struct efx_ptp_timeset
*timeset
)
895 unsigned start_ns
, end_ns
;
897 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
898 timeset
->major
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MAJOR
);
899 timeset
->minor
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MINOR
);
900 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
),
901 timeset
->wait
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
904 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
905 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
906 /* Allow for rollover */
907 if (end_ns
< start_ns
)
908 end_ns
+= NSEC_PER_SEC
;
909 /* Determine duration of operation */
910 timeset
->window
= end_ns
- start_ns
;
913 /* Process times received from MC.
915 * Extract times from returned results, and establish the minimum value
916 * seen. The minimum value represents the "best" possible time and events
917 * too much greater than this are rejected - the machine is, perhaps, too
918 * busy. A number of readings are taken so that, hopefully, at least one good
919 * synchronisation will be seen in the results.
922 efx_ptp_process_times(struct efx_nic
*efx
, MCDI_DECLARE_STRUCT_PTR(synch_buf
),
923 size_t response_length
,
924 const struct pps_event_time
*last_time
)
926 unsigned number_readings
=
927 MCDI_VAR_ARRAY_LEN(response_length
,
928 PTP_OUT_SYNCHRONIZE_TIMESET
);
931 unsigned last_good
= 0;
932 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
935 struct timespec64 delta
;
938 if (number_readings
== 0)
941 /* Read the set of results and find the last good host-MC
942 * synchronization result. The MC times when it finishes reading the
943 * host time so the corrected window time should be fairly constant
944 * for a given platform. Increment stats for any results that appear
947 for (i
= 0; i
< number_readings
; i
++) {
948 s32 window
, corrected
;
949 struct timespec64 wait
;
951 efx_ptp_read_timeset(
952 MCDI_ARRAY_STRUCT_PTR(synch_buf
,
953 PTP_OUT_SYNCHRONIZE_TIMESET
, i
),
956 wait
= ktime_to_timespec64(
957 ptp
->nic_to_kernel_time(0, ptp
->timeset
[i
].wait
, 0));
958 window
= ptp
->timeset
[i
].window
;
959 corrected
= window
- wait
.tv_nsec
;
961 /* We expect the uncorrected synchronization window to be at
962 * least as large as the interval between host start and end
963 * times. If it is smaller than this then this is mostly likely
964 * to be a consequence of the host's time being adjusted.
965 * Check that the corrected sync window is in a reasonable
966 * range. If it is out of range it is likely to be because an
967 * interrupt or other delay occurred between reading the system
968 * time and writing it to MC memory.
970 if (window
< SYNCHRONISATION_GRANULARITY_NS
) {
971 ++ptp
->invalid_sync_windows
;
972 } else if (corrected
>= MAX_SYNCHRONISATION_NS
) {
973 ++ptp
->oversize_sync_windows
;
974 } else if (corrected
< ptp
->min_synchronisation_ns
) {
975 ++ptp
->undersize_sync_windows
;
983 netif_warn(efx
, drv
, efx
->net_dev
,
984 "PTP no suitable synchronisations\n");
988 /* Calculate delay from last good sync (host time) to last_time.
989 * It is possible that the seconds rolled over between taking
990 * the start reading and the last value written by the host. The
991 * timescales are such that a gap of more than one second is never
992 * expected. delta is *not* normalised.
994 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
995 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
996 if (start_sec
!= last_sec
&&
997 ((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
998 netif_warn(efx
, hw
, efx
->net_dev
,
999 "PTP bad synchronisation seconds\n");
1002 delta
.tv_sec
= (last_sec
- start_sec
) & 1;
1004 last_time
->ts_real
.tv_nsec
-
1005 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
1007 /* Convert the NIC time at last good sync into kernel time.
1008 * No correction is required - this time is the output of a
1011 mc_time
= ptp
->nic_to_kernel_time(ptp
->timeset
[last_good
].major
,
1012 ptp
->timeset
[last_good
].minor
, 0);
1014 /* Calculate delay from NIC top of second to last_time */
1015 delta
.tv_nsec
+= ktime_to_timespec64(mc_time
).tv_nsec
;
1017 /* Set PPS timestamp to match NIC top of second */
1018 ptp
->host_time_pps
= *last_time
;
1019 pps_sub_ts(&ptp
->host_time_pps
, delta
);
1024 /* Synchronize times between the host and the MC */
1025 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
1027 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1028 MCDI_DECLARE_BUF(synch_buf
, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
);
1029 size_t response_length
;
1031 unsigned long timeout
;
1032 struct pps_event_time last_time
= {};
1033 unsigned int loops
= 0;
1034 int *start
= ptp
->start
.addr
;
1036 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
1037 MCDI_SET_DWORD(synch_buf
, PTP_IN_PERIPH_ID
, 0);
1038 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
1040 MCDI_SET_QWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR
,
1041 ptp
->start
.dma_addr
);
1043 /* Clear flag that signals MC ready */
1044 WRITE_ONCE(*start
, 0);
1045 rc
= efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
1046 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
1047 EFX_WARN_ON_ONCE_PARANOID(rc
);
1049 /* Wait for start from MCDI (or timeout) */
1050 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
1051 while (!READ_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
1052 udelay(20); /* Usually start MCDI execution quickly */
1058 if (!time_before(jiffies
, timeout
))
1059 ++ptp
->sync_timeouts
;
1061 if (READ_ONCE(*start
))
1062 efx_ptp_send_times(efx
, &last_time
);
1064 /* Collect results */
1065 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
1066 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
1067 synch_buf
, sizeof(synch_buf
),
1070 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
1075 ++ptp
->no_time_syncs
;
1078 /* Increment the bad syncs counter if the synchronize fails, whatever
1087 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1088 static void efx_ptp_xmit_skb_queue(struct efx_nic
*efx
, struct sk_buff
*skb
)
1090 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1091 u8 type
= efx_tx_csum_type_skb(skb
);
1092 struct efx_tx_queue
*tx_queue
;
1094 tx_queue
= efx_channel_get_tx_queue(ptp_data
->channel
, type
);
1095 if (tx_queue
&& tx_queue
->timestamping
) {
1096 efx_enqueue_skb(tx_queue
, skb
);
1098 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1099 dev_kfree_skb_any(skb
);
1103 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1104 static void efx_ptp_xmit_skb_mc(struct efx_nic
*efx
, struct sk_buff
*skb
)
1106 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1107 struct skb_shared_hwtstamps timestamps
;
1109 MCDI_DECLARE_BUF(txtime
, MC_CMD_PTP_OUT_TRANSMIT_LEN
);
1112 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
1113 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_PERIPH_ID
, 0);
1114 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
1115 if (skb_shinfo(skb
)->nr_frags
!= 0) {
1116 rc
= skb_linearize(skb
);
1121 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1122 rc
= skb_checksum_help(skb
);
1126 skb_copy_from_linear_data(skb
,
1127 MCDI_PTR(ptp_data
->txbuf
,
1128 PTP_IN_TRANSMIT_PACKET
),
1130 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
,
1131 ptp_data
->txbuf
, MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
),
1132 txtime
, sizeof(txtime
), &len
);
1136 memset(×tamps
, 0, sizeof(timestamps
));
1137 timestamps
.hwtstamp
= ptp_data
->nic_to_kernel_time(
1138 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MAJOR
),
1139 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MINOR
),
1140 ptp_data
->ts_corrections
.ptp_tx
);
1142 skb_tstamp_tx(skb
, ×tamps
);
1147 dev_kfree_skb_any(skb
);
1152 static void efx_ptp_drop_time_expired_events(struct efx_nic
*efx
)
1154 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1155 struct list_head
*cursor
;
1156 struct list_head
*next
;
1158 if (ptp
->rx_ts_inline
)
1161 /* Drop time-expired events */
1162 spin_lock_bh(&ptp
->evt_lock
);
1163 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
1164 struct efx_ptp_event_rx
*evt
;
1166 evt
= list_entry(cursor
, struct efx_ptp_event_rx
,
1168 if (time_after(jiffies
, evt
->expiry
)) {
1169 list_move(&evt
->link
, &ptp
->evt_free_list
);
1170 netif_warn(efx
, hw
, efx
->net_dev
,
1171 "PTP rx event dropped\n");
1174 spin_unlock_bh(&ptp
->evt_lock
);
1177 static enum ptp_packet_state
efx_ptp_match_rx(struct efx_nic
*efx
,
1178 struct sk_buff
*skb
)
1180 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1182 struct list_head
*cursor
;
1183 struct list_head
*next
;
1184 struct efx_ptp_match
*match
;
1185 enum ptp_packet_state rc
= PTP_PACKET_STATE_UNMATCHED
;
1187 WARN_ON_ONCE(ptp
->rx_ts_inline
);
1189 spin_lock_bh(&ptp
->evt_lock
);
1190 evts_waiting
= !list_empty(&ptp
->evt_list
);
1191 spin_unlock_bh(&ptp
->evt_lock
);
1194 return PTP_PACKET_STATE_UNMATCHED
;
1196 match
= (struct efx_ptp_match
*)skb
->cb
;
1197 /* Look for a matching timestamp in the event queue */
1198 spin_lock_bh(&ptp
->evt_lock
);
1199 list_for_each_safe(cursor
, next
, &ptp
->evt_list
) {
1200 struct efx_ptp_event_rx
*evt
;
1202 evt
= list_entry(cursor
, struct efx_ptp_event_rx
, link
);
1203 if ((evt
->seq0
== match
->words
[0]) &&
1204 (evt
->seq1
== match
->words
[1])) {
1205 struct skb_shared_hwtstamps
*timestamps
;
1207 /* Match - add in hardware timestamp */
1208 timestamps
= skb_hwtstamps(skb
);
1209 timestamps
->hwtstamp
= evt
->hwtimestamp
;
1211 match
->state
= PTP_PACKET_STATE_MATCHED
;
1212 rc
= PTP_PACKET_STATE_MATCHED
;
1213 list_move(&evt
->link
, &ptp
->evt_free_list
);
1217 spin_unlock_bh(&ptp
->evt_lock
);
1222 /* Process any queued receive events and corresponding packets
1224 * q is returned with all the packets that are ready for delivery.
1226 static void efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
1228 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1229 struct sk_buff
*skb
;
1231 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
1232 struct efx_ptp_match
*match
;
1234 match
= (struct efx_ptp_match
*)skb
->cb
;
1235 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
1236 __skb_queue_tail(q
, skb
);
1237 } else if (efx_ptp_match_rx(efx
, skb
) ==
1238 PTP_PACKET_STATE_MATCHED
) {
1239 __skb_queue_tail(q
, skb
);
1240 } else if (time_after(jiffies
, match
->expiry
)) {
1241 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
1242 ++ptp
->rx_no_timestamp
;
1243 __skb_queue_tail(q
, skb
);
1245 /* Replace unprocessed entry and stop */
1246 skb_queue_head(&ptp
->rxq
, skb
);
1252 /* Complete processing of a received packet */
1253 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1256 netif_receive_skb(skb
);
1260 static void efx_ptp_remove_multicast_filters(struct efx_nic
*efx
)
1262 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1264 if (ptp
->rxfilter_installed
) {
1265 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1266 ptp
->rxfilter_general
);
1267 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1268 ptp
->rxfilter_event
);
1269 ptp
->rxfilter_installed
= false;
1273 static int efx_ptp_insert_multicast_filters(struct efx_nic
*efx
)
1275 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1276 struct efx_filter_spec rxfilter
;
1279 if (!ptp
->channel
|| ptp
->rxfilter_installed
)
1282 /* Must filter on both event and general ports to ensure
1283 * that there is no packet re-ordering.
1285 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1287 efx_channel_get_rx_queue(ptp
->channel
)));
1288 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1290 htons(PTP_EVENT_PORT
));
1294 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1297 ptp
->rxfilter_event
= rc
;
1299 efx_filter_init_rx(&rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1301 efx_channel_get_rx_queue(ptp
->channel
)));
1302 rc
= efx_filter_set_ipv4_local(&rxfilter
, IPPROTO_UDP
,
1304 htons(PTP_GENERAL_PORT
));
1308 rc
= efx_filter_insert_filter(efx
, &rxfilter
, true);
1311 ptp
->rxfilter_general
= rc
;
1313 ptp
->rxfilter_installed
= true;
1317 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1318 ptp
->rxfilter_event
);
1322 static int efx_ptp_start(struct efx_nic
*efx
)
1324 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1327 ptp
->reset_required
= false;
1329 rc
= efx_ptp_insert_multicast_filters(efx
);
1333 rc
= efx_ptp_enable(efx
);
1337 ptp
->evt_frag_idx
= 0;
1338 ptp
->current_adjfreq
= 0;
1343 efx_ptp_remove_multicast_filters(efx
);
1347 static int efx_ptp_stop(struct efx_nic
*efx
)
1349 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1350 struct list_head
*cursor
;
1351 struct list_head
*next
;
1357 rc
= efx_ptp_disable(efx
);
1359 efx_ptp_remove_multicast_filters(efx
);
1361 /* Make sure RX packets are really delivered */
1362 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
1363 skb_queue_purge(&efx
->ptp_data
->txq
);
1365 /* Drop any pending receive events */
1366 spin_lock_bh(&efx
->ptp_data
->evt_lock
);
1367 list_for_each_safe(cursor
, next
, &efx
->ptp_data
->evt_list
) {
1368 list_move(cursor
, &efx
->ptp_data
->evt_free_list
);
1370 spin_unlock_bh(&efx
->ptp_data
->evt_lock
);
1375 static int efx_ptp_restart(struct efx_nic
*efx
)
1377 if (efx
->ptp_data
&& efx
->ptp_data
->enabled
)
1378 return efx_ptp_start(efx
);
1382 static void efx_ptp_pps_worker(struct work_struct
*work
)
1384 struct efx_ptp_data
*ptp
=
1385 container_of(work
, struct efx_ptp_data
, pps_work
);
1386 struct efx_nic
*efx
= ptp
->efx
;
1387 struct ptp_clock_event ptp_evt
;
1389 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
1392 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
1393 ptp_evt
.pps_times
= ptp
->host_time_pps
;
1394 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
1397 static void efx_ptp_worker(struct work_struct
*work
)
1399 struct efx_ptp_data
*ptp_data
=
1400 container_of(work
, struct efx_ptp_data
, work
);
1401 struct efx_nic
*efx
= ptp_data
->efx
;
1402 struct sk_buff
*skb
;
1403 struct sk_buff_head tempq
;
1405 if (ptp_data
->reset_required
) {
1411 efx_ptp_drop_time_expired_events(efx
);
1413 __skb_queue_head_init(&tempq
);
1414 efx_ptp_process_events(efx
, &tempq
);
1416 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
1417 ptp_data
->xmit_skb(efx
, skb
);
1419 while ((skb
= __skb_dequeue(&tempq
)))
1420 efx_ptp_process_rx(efx
, skb
);
1423 static const struct ptp_clock_info efx_phc_clock_info
= {
1424 .owner
= THIS_MODULE
,
1432 .adjfreq
= efx_phc_adjfreq
,
1433 .adjtime
= efx_phc_adjtime
,
1434 .gettime64
= efx_phc_gettime
,
1435 .settime64
= efx_phc_settime
,
1436 .enable
= efx_phc_enable
,
1439 /* Initialise PTP state. */
1440 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
)
1442 struct efx_ptp_data
*ptp
;
1446 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
1447 efx
->ptp_data
= ptp
;
1452 ptp
->channel
= channel
;
1453 ptp
->rx_ts_inline
= efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
;
1455 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int), GFP_KERNEL
);
1459 skb_queue_head_init(&ptp
->rxq
);
1460 skb_queue_head_init(&ptp
->txq
);
1461 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
1467 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1468 ptp
->xmit_skb
= efx_ptp_xmit_skb_queue
;
1469 /* Request sync events on this channel. */
1470 channel
->sync_events_state
= SYNC_EVENTS_QUIESCENT
;
1472 ptp
->xmit_skb
= efx_ptp_xmit_skb_mc
;
1475 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
1476 ptp
->config
.flags
= 0;
1477 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
1478 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1479 INIT_LIST_HEAD(&ptp
->evt_list
);
1480 INIT_LIST_HEAD(&ptp
->evt_free_list
);
1481 spin_lock_init(&ptp
->evt_lock
);
1482 for (pos
= 0; pos
< MAX_RECEIVE_EVENTS
; pos
++)
1483 list_add(&ptp
->rx_evts
[pos
].link
, &ptp
->evt_free_list
);
1485 /* Get the NIC PTP attributes and set up time conversions */
1486 rc
= efx_ptp_get_attributes(efx
);
1490 /* Get the timestamp corrections */
1491 rc
= efx_ptp_get_timestamp_corrections(efx
);
1495 if (efx
->mcdi
->fn_flags
&
1496 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
)) {
1497 ptp
->phc_clock_info
= efx_phc_clock_info
;
1498 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
1499 &efx
->pci_dev
->dev
);
1500 if (IS_ERR(ptp
->phc_clock
)) {
1501 rc
= PTR_ERR(ptp
->phc_clock
);
1503 } else if (ptp
->phc_clock
) {
1504 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
1505 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
1506 if (!ptp
->pps_workwq
) {
1512 ptp
->nic_ts_enabled
= false;
1516 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1519 destroy_workqueue(efx
->ptp_data
->workwq
);
1522 efx_nic_free_buffer(efx
, &ptp
->start
);
1525 kfree(efx
->ptp_data
);
1526 efx
->ptp_data
= NULL
;
1531 /* Initialise PTP channel.
1533 * Setting core_index to zero causes the queue to be initialised and doesn't
1534 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1536 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
1538 struct efx_nic
*efx
= channel
->efx
;
1541 channel
->irq_moderation_us
= 0;
1542 channel
->rx_queue
.core_index
= 0;
1544 rc
= efx_ptp_probe(efx
, channel
);
1545 /* Failure to probe PTP is not fatal; this channel will just not be
1546 * used for anything.
1547 * In the case of EPERM, efx_ptp_probe will print its own message (in
1548 * efx_ptp_get_attributes()), so we don't need to.
1550 if (rc
&& rc
!= -EPERM
)
1551 netif_warn(efx
, drv
, efx
->net_dev
,
1552 "Failed to probe PTP, rc=%d\n", rc
);
1556 void efx_ptp_remove(struct efx_nic
*efx
)
1561 (void)efx_ptp_disable(efx
);
1563 cancel_work_sync(&efx
->ptp_data
->work
);
1564 if (efx
->ptp_data
->pps_workwq
)
1565 cancel_work_sync(&efx
->ptp_data
->pps_work
);
1567 skb_queue_purge(&efx
->ptp_data
->rxq
);
1568 skb_queue_purge(&efx
->ptp_data
->txq
);
1570 if (efx
->ptp_data
->phc_clock
) {
1571 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
1572 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1575 destroy_workqueue(efx
->ptp_data
->workwq
);
1577 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
1578 kfree(efx
->ptp_data
);
1579 efx
->ptp_data
= NULL
;
1582 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
1584 efx_ptp_remove(channel
->efx
);
1587 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
1588 char *buf
, size_t len
)
1590 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
1593 /* Determine whether this packet should be processed by the PTP module
1594 * or transmitted conventionally.
1596 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1598 return efx
->ptp_data
&&
1599 efx
->ptp_data
->enabled
&&
1600 skb
->len
>= PTP_MIN_LENGTH
&&
1601 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
1602 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
1603 skb_transport_header_was_set(skb
) &&
1604 skb_network_header_len(skb
) >= sizeof(struct iphdr
) &&
1605 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1607 skb_transport_offset(skb
) + sizeof(struct udphdr
) &&
1608 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
1611 /* Receive a PTP packet. Packets are queued until the arrival of
1612 * the receive timestamp from the MC - this will probably occur after the
1613 * packet arrival because of the processing in the MC.
1615 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
1617 struct efx_nic
*efx
= channel
->efx
;
1618 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1619 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
1620 u8
*match_data_012
, *match_data_345
;
1621 unsigned int version
;
1624 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1626 /* Correct version? */
1627 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1628 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1632 version
= ntohs(*(__be16
*)&data
[PTP_V1_VERSION_OFFSET
]);
1633 if (version
!= PTP_VERSION_V1
) {
1637 /* PTP V1 uses all six bytes of the UUID to match the packet
1640 match_data_012
= data
+ PTP_V1_UUID_OFFSET
;
1641 match_data_345
= data
+ PTP_V1_UUID_OFFSET
+ 3;
1643 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1647 version
= data
[PTP_V2_VERSION_OFFSET
];
1648 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1652 /* The original V2 implementation uses bytes 2-7 of
1653 * the UUID to match the packet to the timestamp. This
1654 * discards two of the bytes of the MAC address used
1655 * to create the UUID (SF bug 33070). The PTP V2
1656 * enhanced mode fixes this issue and uses bytes 0-2
1657 * and byte 5-7 of the UUID.
1659 match_data_345
= data
+ PTP_V2_UUID_OFFSET
+ 5;
1660 if (ptp
->mode
== MC_CMD_PTP_MODE_V2
) {
1661 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 2;
1663 match_data_012
= data
+ PTP_V2_UUID_OFFSET
+ 0;
1664 BUG_ON(ptp
->mode
!= MC_CMD_PTP_MODE_V2_ENHANCED
);
1668 /* Does this packet require timestamping? */
1669 if (ntohs(*(__be16
*)&data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1670 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1672 /* We expect the sequence number to be in the same position in
1673 * the packet for PTP V1 and V2
1675 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1676 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1678 /* Extract UUID/Sequence information */
1679 match
->words
[0] = (match_data_012
[0] |
1680 (match_data_012
[1] << 8) |
1681 (match_data_012
[2] << 16) |
1682 (match_data_345
[0] << 24));
1683 match
->words
[1] = (match_data_345
[1] |
1684 (match_data_345
[2] << 8) |
1685 (data
[PTP_V1_SEQUENCE_OFFSET
+
1686 PTP_V1_SEQUENCE_LENGTH
- 1] <<
1689 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1692 skb_queue_tail(&ptp
->rxq
, skb
);
1693 queue_work(ptp
->workwq
, &ptp
->work
);
1698 /* Transmit a PTP packet. This has to be transmitted by the MC
1699 * itself, through an MCDI call. MCDI calls aren't permitted
1700 * in the transmit path so defer the actual transmission to a suitable worker.
1702 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1704 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1706 skb_queue_tail(&ptp
->txq
, skb
);
1708 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1709 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1710 efx_xmit_hwtstamp_pending(skb
);
1711 queue_work(ptp
->workwq
, &ptp
->work
);
1713 return NETDEV_TX_OK
;
1716 int efx_ptp_get_mode(struct efx_nic
*efx
)
1718 return efx
->ptp_data
->mode
;
1721 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1722 unsigned int new_mode
)
1724 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1725 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1728 if (enable_wanted
) {
1729 /* Change of mode requires disable */
1730 if (efx
->ptp_data
->enabled
&&
1731 (efx
->ptp_data
->mode
!= new_mode
)) {
1732 efx
->ptp_data
->enabled
= false;
1733 rc
= efx_ptp_stop(efx
);
1738 /* Set new operating mode and establish
1739 * baseline synchronisation, which must
1742 efx
->ptp_data
->mode
= new_mode
;
1743 if (netif_running(efx
->net_dev
))
1744 rc
= efx_ptp_start(efx
);
1746 rc
= efx_ptp_synchronize(efx
,
1747 PTP_SYNC_ATTEMPTS
* 2);
1752 rc
= efx_ptp_stop(efx
);
1758 efx
->ptp_data
->enabled
= enable_wanted
;
1764 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct hwtstamp_config
*init
)
1771 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1772 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1775 rc
= efx
->type
->ptp_set_ts_config(efx
, init
);
1779 efx
->ptp_data
->config
= *init
;
1783 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct ethtool_ts_info
*ts_info
)
1785 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1786 struct efx_nic
*primary
= efx
->primary
;
1793 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1794 SOF_TIMESTAMPING_RX_HARDWARE
|
1795 SOF_TIMESTAMPING_RAW_HARDWARE
);
1796 /* Check licensed features. If we don't have the license for TX
1797 * timestamps, the NIC will not support them.
1799 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1800 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1802 if (!(nic_data
->licensed_features
&
1803 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
)))
1804 ts_info
->so_timestamping
&=
1805 ~SOF_TIMESTAMPING_TX_HARDWARE
;
1807 if (primary
&& primary
->ptp_data
&& primary
->ptp_data
->phc_clock
)
1808 ts_info
->phc_index
=
1809 ptp_clock_index(primary
->ptp_data
->phc_clock
);
1810 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1811 ts_info
->rx_filters
= ptp
->efx
->type
->hwtstamp_filters
;
1814 int efx_ptp_set_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1816 struct hwtstamp_config config
;
1819 /* Not a PTP enabled port */
1823 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
1826 rc
= efx_ptp_ts_init(efx
, &config
);
1830 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
))
1834 int efx_ptp_get_ts_config(struct efx_nic
*efx
, struct ifreq
*ifr
)
1839 return copy_to_user(ifr
->ifr_data
, &efx
->ptp_data
->config
,
1840 sizeof(efx
->ptp_data
->config
)) ? -EFAULT
: 0;
1843 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1845 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1847 netif_err(efx
, hw
, efx
->net_dev
,
1848 "PTP unexpected event length: got %d expected %d\n",
1849 ptp
->evt_frag_idx
, expected_frag_len
);
1850 ptp
->reset_required
= true;
1851 queue_work(ptp
->workwq
, &ptp
->work
);
1854 /* Process a completed receive event. Put it on the event queue and
1855 * start worker thread. This is required because event and their
1856 * correspoding packets may come in either order.
1858 static void ptp_event_rx(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1860 struct efx_ptp_event_rx
*evt
= NULL
;
1862 if (WARN_ON_ONCE(ptp
->rx_ts_inline
))
1865 if (ptp
->evt_frag_idx
!= 3) {
1866 ptp_event_failure(efx
, 3);
1870 spin_lock_bh(&ptp
->evt_lock
);
1871 if (!list_empty(&ptp
->evt_free_list
)) {
1872 evt
= list_first_entry(&ptp
->evt_free_list
,
1873 struct efx_ptp_event_rx
, link
);
1874 list_del(&evt
->link
);
1876 evt
->seq0
= EFX_QWORD_FIELD(ptp
->evt_frags
[2], MCDI_EVENT_DATA
);
1877 evt
->seq1
= (EFX_QWORD_FIELD(ptp
->evt_frags
[2],
1879 (EFX_QWORD_FIELD(ptp
->evt_frags
[1],
1880 MCDI_EVENT_SRC
) << 8) |
1881 (EFX_QWORD_FIELD(ptp
->evt_frags
[0],
1882 MCDI_EVENT_SRC
) << 16));
1883 evt
->hwtimestamp
= efx
->ptp_data
->nic_to_kernel_time(
1884 EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
),
1885 EFX_QWORD_FIELD(ptp
->evt_frags
[1], MCDI_EVENT_DATA
),
1886 ptp
->ts_corrections
.ptp_rx
);
1887 evt
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1888 list_add_tail(&evt
->link
, &ptp
->evt_list
);
1890 queue_work(ptp
->workwq
, &ptp
->work
);
1891 } else if (net_ratelimit()) {
1892 /* Log a rate-limited warning message. */
1893 netif_err(efx
, rx_err
, efx
->net_dev
, "PTP event queue overflow\n");
1895 spin_unlock_bh(&ptp
->evt_lock
);
1898 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1900 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1901 if (ptp
->evt_frag_idx
!= 1) {
1902 ptp_event_failure(efx
, 1);
1906 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1909 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1911 if (ptp
->nic_ts_enabled
)
1912 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1915 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1917 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1918 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1921 if (!efx
->ptp_warned
) {
1922 netif_warn(efx
, drv
, efx
->net_dev
,
1923 "Received PTP event but PTP not set up\n");
1924 efx
->ptp_warned
= true;
1932 if (ptp
->evt_frag_idx
== 0) {
1933 ptp
->evt_code
= code
;
1934 } else if (ptp
->evt_code
!= code
) {
1935 netif_err(efx
, hw
, efx
->net_dev
,
1936 "PTP out of sequence event %d\n", code
);
1937 ptp
->evt_frag_idx
= 0;
1940 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1941 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1942 /* Process resulting event */
1944 case MCDI_EVENT_CODE_PTP_RX
:
1945 ptp_event_rx(efx
, ptp
);
1947 case MCDI_EVENT_CODE_PTP_FAULT
:
1948 ptp_event_fault(efx
, ptp
);
1950 case MCDI_EVENT_CODE_PTP_PPS
:
1951 ptp_event_pps(efx
, ptp
);
1954 netif_err(efx
, hw
, efx
->net_dev
,
1955 "PTP unknown event %d\n", code
);
1958 ptp
->evt_frag_idx
= 0;
1959 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1960 netif_err(efx
, hw
, efx
->net_dev
,
1961 "PTP too many event fragments\n");
1962 ptp
->evt_frag_idx
= 0;
1966 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
)
1968 struct efx_nic
*efx
= channel
->efx
;
1969 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1971 /* When extracting the sync timestamp minor value, we should discard
1972 * the least significant two bits. These are not required in order
1973 * to reconstruct full-range timestamps and they are optionally used
1974 * to report status depending on the options supplied when subscribing
1977 channel
->sync_timestamp_major
= MCDI_EVENT_FIELD(*ev
, PTP_TIME_MAJOR
);
1978 channel
->sync_timestamp_minor
=
1979 (MCDI_EVENT_FIELD(*ev
, PTP_TIME_MINOR_MS_8BITS
) & 0xFC)
1980 << ptp
->nic_time
.sync_event_minor_shift
;
1982 /* if sync events have been disabled then we want to silently ignore
1983 * this event, so throw away result.
1985 (void) cmpxchg(&channel
->sync_events_state
, SYNC_EVENTS_REQUESTED
,
1989 static inline u32
efx_rx_buf_timestamp_minor(struct efx_nic
*efx
, const u8
*eh
)
1991 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1992 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_ts_offset
));
1994 const u8
*data
= eh
+ efx
->rx_packet_ts_offset
;
1995 return (u32
)data
[0] |
1997 (u32
)data
[2] << 16 |
2002 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
2003 struct sk_buff
*skb
)
2005 struct efx_nic
*efx
= channel
->efx
;
2006 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
2007 u32 pkt_timestamp_major
, pkt_timestamp_minor
;
2009 struct skb_shared_hwtstamps
*timestamps
;
2011 if (channel
->sync_events_state
!= SYNC_EVENTS_VALID
)
2014 pkt_timestamp_minor
= efx_rx_buf_timestamp_minor(efx
, skb_mac_header(skb
));
2016 /* get the difference between the packet and sync timestamps,
2019 diff
= pkt_timestamp_minor
- channel
->sync_timestamp_minor
;
2020 if (pkt_timestamp_minor
< channel
->sync_timestamp_minor
)
2021 diff
+= ptp
->nic_time
.minor_max
;
2023 /* do we roll over a second boundary and need to carry the one? */
2024 carry
= (channel
->sync_timestamp_minor
>= ptp
->nic_time
.minor_max
- diff
) ?
2027 if (diff
<= ptp
->nic_time
.sync_event_diff_max
) {
2028 /* packet is ahead of the sync event by a quarter of a second or
2029 * less (allowing for fuzz)
2031 pkt_timestamp_major
= channel
->sync_timestamp_major
+ carry
;
2032 } else if (diff
>= ptp
->nic_time
.sync_event_diff_min
) {
2033 /* packet is behind the sync event but within the fuzz factor.
2034 * This means the RX packet and sync event crossed as they were
2035 * placed on the event queue, which can sometimes happen.
2037 pkt_timestamp_major
= channel
->sync_timestamp_major
- 1 + carry
;
2039 /* it's outside tolerance in both directions. this might be
2040 * indicative of us missing sync events for some reason, so
2041 * we'll call it an error rather than risk giving a bogus
2044 netif_vdbg(efx
, drv
, efx
->net_dev
,
2045 "packet timestamp %x too far from sync event %x:%x\n",
2046 pkt_timestamp_minor
, channel
->sync_timestamp_major
,
2047 channel
->sync_timestamp_minor
);
2051 /* attach the timestamps to the skb */
2052 timestamps
= skb_hwtstamps(skb
);
2053 timestamps
->hwtstamp
=
2054 ptp
->nic_to_kernel_time(pkt_timestamp_major
,
2055 pkt_timestamp_minor
,
2056 ptp
->ts_corrections
.general_rx
);
2059 static int efx_phc_adjfreq(struct ptp_clock_info
*ptp
, s32 delta
)
2061 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2062 struct efx_ptp_data
,
2064 struct efx_nic
*efx
= ptp_data
->efx
;
2065 MCDI_DECLARE_BUF(inadj
, MC_CMD_PTP_IN_ADJUST_LEN
);
2069 if (delta
> MAX_PPB
)
2071 else if (delta
< -MAX_PPB
)
2074 /* Convert ppb to fixed point ns taking care to round correctly. */
2075 adjustment_ns
= ((s64
)delta
* PPB_SCALE_WORD
+
2076 (1 << (ptp_data
->adjfreq_ppb_shift
- 1))) >>
2077 ptp_data
->adjfreq_ppb_shift
;
2079 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2080 MCDI_SET_DWORD(inadj
, PTP_IN_PERIPH_ID
, 0);
2081 MCDI_SET_QWORD(inadj
, PTP_IN_ADJUST_FREQ
, adjustment_ns
);
2082 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
2083 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
2084 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
2089 ptp_data
->current_adjfreq
= adjustment_ns
;
2093 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
2095 u32 nic_major
, nic_minor
;
2096 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2097 struct efx_ptp_data
,
2099 struct efx_nic
*efx
= ptp_data
->efx
;
2100 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ADJUST_LEN
);
2102 efx
->ptp_data
->ns_to_nic_time(delta
, &nic_major
, &nic_minor
);
2104 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2105 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2106 MCDI_SET_QWORD(inbuf
, PTP_IN_ADJUST_FREQ
, ptp_data
->current_adjfreq
);
2107 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MAJOR
, nic_major
);
2108 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MINOR
, nic_minor
);
2109 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2113 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
)
2115 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2116 struct efx_ptp_data
,
2118 struct efx_nic
*efx
= ptp_data
->efx
;
2119 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_READ_NIC_TIME_LEN
);
2120 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
);
2124 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
2125 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2127 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2128 outbuf
, sizeof(outbuf
), NULL
);
2132 kt
= ptp_data
->nic_to_kernel_time(
2133 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MAJOR
),
2134 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MINOR
), 0);
2135 *ts
= ktime_to_timespec64(kt
);
2139 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
2140 const struct timespec64
*e_ts
)
2142 /* Get the current NIC time, efx_phc_gettime.
2143 * Subtract from the desired time to get the offset
2144 * call efx_phc_adjtime with the offset
2147 struct timespec64 time_now
;
2148 struct timespec64 delta
;
2150 rc
= efx_phc_gettime(ptp
, &time_now
);
2154 delta
= timespec64_sub(*e_ts
, time_now
);
2156 rc
= efx_phc_adjtime(ptp
, timespec64_to_ns(&delta
));
2163 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
2164 struct ptp_clock_request
*request
,
2167 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2168 struct efx_ptp_data
,
2170 if (request
->type
!= PTP_CLK_REQ_PPS
)
2173 ptp_data
->nic_ts_enabled
= !!enable
;
2177 static const struct efx_channel_type efx_ptp_channel_type
= {
2178 .handle_no_channel
= efx_ptp_handle_no_channel
,
2179 .pre_probe
= efx_ptp_probe_channel
,
2180 .post_remove
= efx_ptp_remove_channel
,
2181 .get_name
= efx_ptp_get_channel_name
,
2182 /* no copy operation; there is no need to reallocate this channel */
2183 .receive_skb
= efx_ptp_rx
,
2184 .want_txqs
= efx_ptp_want_txqs
,
2185 .keep_eventq
= false,
2188 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
)
2190 /* Check whether PTP is implemented on this NIC. The DISABLE
2191 * operation will succeed if and only if it is implemented.
2193 if (efx_ptp_disable(efx
) == 0)
2194 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
2195 &efx_ptp_channel_type
;
2198 void efx_ptp_start_datapath(struct efx_nic
*efx
)
2200 if (efx_ptp_restart(efx
))
2201 netif_err(efx
, drv
, efx
->net_dev
, "Failed to restart PTP.\n");
2202 /* re-enable timestamping if it was previously enabled */
2203 if (efx
->type
->ptp_set_ts_sync_events
)
2204 efx
->type
->ptp_set_ts_sync_events(efx
, true, true);
2207 void efx_ptp_stop_datapath(struct efx_nic
*efx
)
2209 /* temporarily disable timestamping */
2210 if (efx
->type
->ptp_set_ts_sync_events
)
2211 efx
->type
->ptp_set_ts_sync_events(efx
, false, true);